Third Virial Coefficients

Silicon Valley FIG

September 23, 2017

Chen-Hanson Ting

Summary

Gas-Liquid-Solid Equilibrium 2nd and 3rd Virial coefficient Van der Waals, 1873 Virial Equation of state, 1906 Beattie–Bridgeman, 1928 Benedict-Webb-Rubin, 1940 Starling-Hans, 1972 Lee-Kesler, 1975 Cubic Virial Equation, 2017

Original Paper in 1972

THE GAS-LIQUID-SOLID EQUILIBRIUM STUDIED BY A SIMPLE EQUATION OF STATE

Chen-hanson Ting (丁陳漢蓀)

Suan Chen (陳爽)

and

Cheng Chen (陳成)

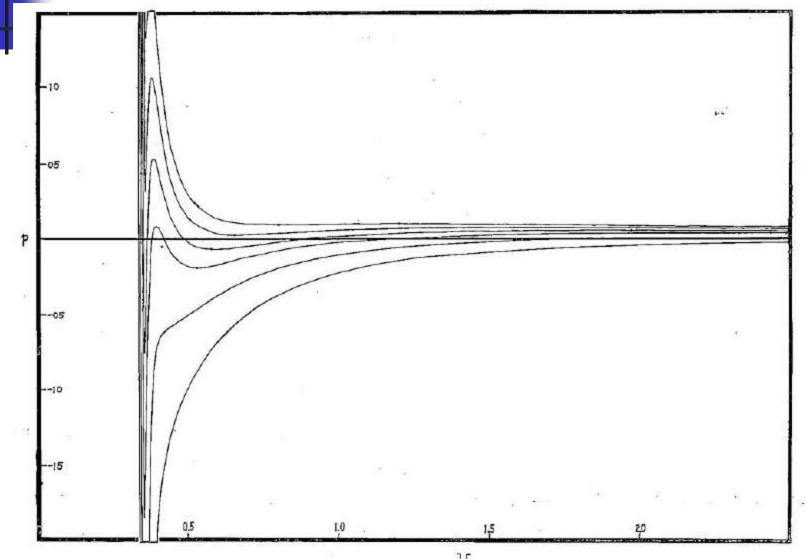
1.12

Abstract

The van der Waals' equation of state is modified by adding a correction term to become:

 $P = RT/(V-b) - a/V^2 - e/((V-c)^2 + d^2)$

1.1


This equation is capable of describing all the essential features of the equilibrium among the gaseous, liquid and solid phases of a pure compound. Preliminary results are given for carbon dioxide. Quantitative treatments are currently in progress.

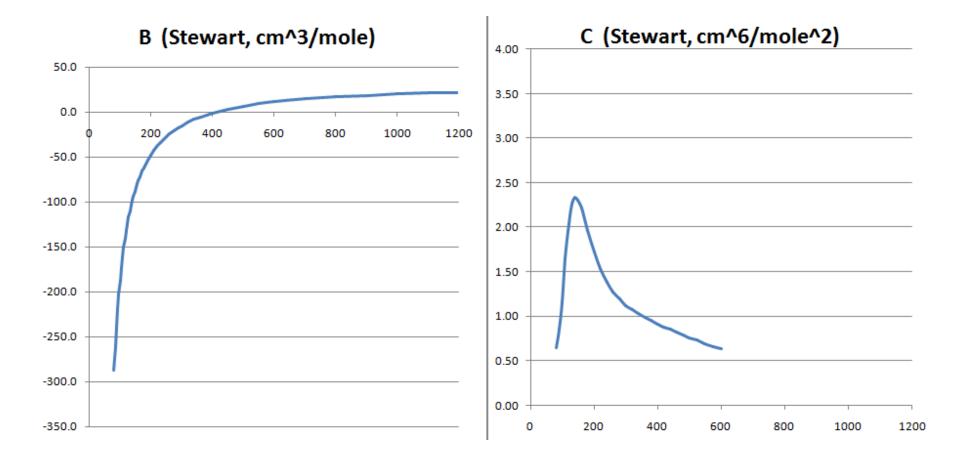
A Desktop Wang Computer

www.utumy.com - DHGGTT

Plot on Wang Computer

Gas-Liquid-Solid Phases

The best virial EOS is with n=26: $p = 3t/v - 3(1 - v_s/v)(1 - (v_m/v)^{26})(1 - (v_l/v)^{26})/v^2$ For Argon at the triple point, t=0.553 p=0.0142 v_c=0.330 v₁=0.378 v_m=0.354 n=26


2nd and 3rd Virial Coefficients

The 2nd and 3RD virial coefficients had been studied for more than 100 years.

All existing studies showed that they are not correlated.

Argon has been a typical gas for extensive experimental studies.

2nd and 3rd Virial coefficients of Argon

Virial Equation of State

Compressibility Z as a function of density ρ and temperature T: Z=P/RTρ= (1+Bρ+Cρ²+Dρ³+Eρ⁴+Fρ⁵+Gρ⁶+...)

Virial coefficients B-G... depend only on temperature.

Van der Waals, 1873

$P=RT/(v-b) + a/v^2$

It can be recast in virial form:

$Z=1+(b-a/RT)/v+b^2/v^2+b^3/v^3+b^4/v^4+...$

Third virial coefficient is a constant b².

Beattie–Bridgeman, 1928

$$P=RT (1-c/vT^{3})(v+B) / v^{2}-A/v^{2}$$
$$A=A_{0}(1-a/v)$$
$$B=B_{0}(1-b/v)$$

$Z=1+(B_0-A_0/RT-c/T^3)/v$ $-(B_0b-A_0a/RT+B_0c/T^3)/v^2+B_0bc/T^3v^3$ The third virial coefficient is negative.

Benedict-Webb-Rubin, 1940

 $P = RT\rho + (B_{0}RT - A_{0} - C_{0}/T^{2})\rho + (bRT - a/T)\rho^{2}$ $+aa\rho^{5}+(c/T^{2})(1+v\rho^{2})(exp(-v\rho^{2}))\rho^{3}$

$Z=1+(B_0-A_0/RT-CO/RT^3)\rho$ +(b-a/RT) ρ^{2}

 $+(a\alpha/RT)\rho^{5}+(c/RT^{3})(1+\gamma\rho^{2})(exp(-\gamma\rho^{2}))\rho^{3}$

The exponential term is troublesome.

Benedict-Webb-Rubin, 1940

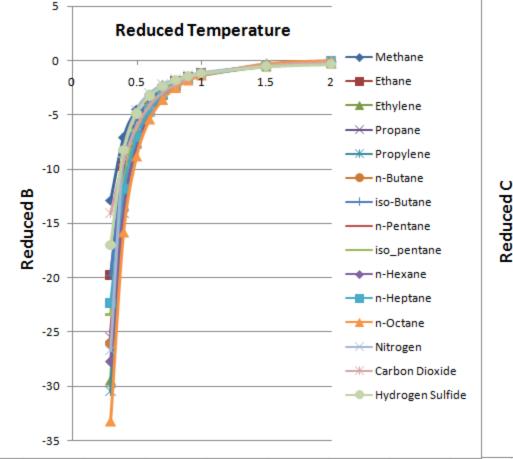
The exponential term is rapidly converging, and can be expanded: $exp(-\gamma\rho^2)=1-\gamma\rho^2$

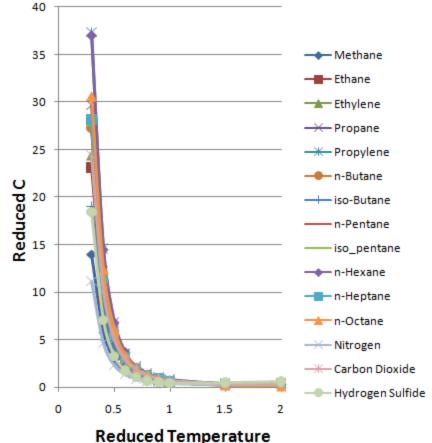
Then, it has a much simpler virial form: $Z=1+(B_0-A_0/RT-CO/RT^3)\rho$ $+(b-a/RT+c/RT^3)\rho^2$ $+(a\alpha/RT)\rho^5-(c/RT^3)\gamma^2\rho^6$

Starling-Hans, 1972

$P=RT\rho+(B_0RT-A_0-C_0/T^2+D_0/T^3-E_0/T^4)\rho +(bRT-a+d/T)\rho^2 +a(a+d/T)\rho^5+(c/T^2)(1+\gamma\rho^2)(exp(-\gamma\rho^2))\rho^3$

Then, it has a virial form: $Z=1+(B_0-A_0/RT-C_0/RT^3+D_0/RT^4-E_0/RT^5)\rho$ $+(b-a/RT-d/RT^2+ c/RT^3)\rho^2+$ $\alpha(a/RT+d/RT^2)\rho^5+(c/RT^3)\gamma^2\rho^6$


Lee-Kesler, 1975


A single equation generalized for many different compounds:

$$\begin{split} Z = 1 + (b_1 - b_2/t - b_3/t^2 - b_4/t^3)\rho \\ + (c_1 - c_2/t + c_3/t^3)\rho^2 \\ + (d_1 + d_2/t)\rho^5 + (c_4/t^3)(\beta + \gamma\rho^2)(exp(-\gamma\rho^2))\rho^3 \end{split}$$

$t=T/T_c$ and $\rho=RT_c/P_cV$

Starling-Hans, 1972

A virial EOS truncated to the third term $P = (RT/v)(1+B/v+C/v^2)$

It has all the nice properties of van der Waals EOS, but without the singular point.

At the critical point, assuming: dP/dv=0; and d²P/dv²=0

Cubic virial equation can be solved to get: $B=-v_c$; $C=v_c/3$ and $Z_c=0.333$

 Z_c is better than what van der Waals results, 0.375, but still not close to actual values , 0.26-0.30.

Cubic virial equation dominates the virial equation of state, and should be studied more carefully and more thoroughly.

The second and third virial coefficients in the reduced forms still show divergent behavior, and need more studies.

Virial equations were generally constructed with 'multiproperty analysis' or 'multivariable regression', and you don't know what happened underneath.

Now, cubic virial equation can be constructed first using 'second order regression' to obtain 2nd and 3rd coefficients. Residues can be analyzed separately.

Using cubic virial equation, 2nd and 3rd coefficients can be solved analytically in the saturation region. They should be used to check results from second order regressing.

Residues from higher virial coefficients must be analyzed after 2nd and 3rd coefficients are determined precisely.

Conclusions

Properly determined 3rd virial coefficients will reduce complexity in virial EOS, and improve its accuracy.

My cubic virial EOS has great value in improving our understanding of real gases, particularly in the saturation region.

Thank You Very Much!

