
VALUE, TO and +TO

SVFIG
Aug. 26, 2023
Bill Ragsdale

The Basics

A word defined by VALUE yields its stored value as does

a CONSTANT.

However, its value may be changed by prefacing with TO.

The value may be incremented by prefacing with +TO.

Today

We will examine the development of VALUE, TO

and +TO.

First, the classical method in Forth 79 onward.

A high-level implementation.

And the innovation in Win32Forth by Andrew

McKewan.

History on VALUE

Was proposed casually by Chuck at the 1979

Standards Meeting in Catalina upon complaints on the

extra step in reading from variables.

 We all got excited.

Published by Michael McNeil in 1980 FORML

Proceedings and Paul Bartoldi in Forth Dimensions.

Forth 79 Background, I

0x777 VALUE A-Value

<header-A-Value> DOVALUE 0x777 \ as compiled

: VALUE
 create , \ header and storage
 [‘] DOVALUE >BODY lastcfa @ ! ; \ rewrite the cfa

CODE DOVALUE
 from W+cell locate following parameter field
 add TOS space
 load TOS from that address
 return to interpreter ;c

Forth 79 Background, II
<compiled code>
 . . . (TO) <pfa-A-Value> . . .

: TO
 ' ['] DOVALUE >BODY over @ = \ get cfa and validate
 if state @ \ has value's compiled address
 if COMPILE (TO) >body , \ compiles the VALUES's pfa
 else >body ! Then \ or store now
 else abort" Not a value
 then ; immediate

CODE (TO)
 get address pointed by [IP] \ the values’s storage address
 copy TOS to address
 increment IP by cell
 delete TOS
 to interpreter c;

0 VALUE A-Value

<header-A-Value> DOVALUE <storage cell>

: A-Demo 2l2 to A-Value ;

<header-A-Demo> DOCOLON LIT 212 (TO) <address> UNNEST

CODE (TO)
 get address pointed by [IP] \ values’s storage address
 copy TOS to address
 increment IP by cell
 delete TOS
 to interpreter c;

As Compiled

Forth 79 Background, III

<interpreting>
 . . 0x1234 TO A-Value . . . \ immediately stores

: A-Demo 0x1234 TO A-Value ;

<header-A-Demo>
 DODOLON LIT 0x1234 (TO) <pfa-A-Value> UNNEST

: B-Demo 0x5678 +TO A-Value ;

<header-B-Demo>
 DODOLON LIT 0x5678 (+TO) <pfa-A-Value> UNNEST

My High-level Version
probably portable

: VALUE create , does> @ ;

0 value (DOVALUE) \ to locate the cfa for DOVALUE

: (TO) r> dup cell+ >r @ ! ; \ run-time to do TO.

: TO
 ' ['] (DOVALUE) @ over @ = \ get cfa and validate
 if state @ \ has value's compiled address
 if compile (TO) >body , \ compiles the VALUES's pfa
 else >body ! then
 else abort" Not a value
 then ; immediate

For +TO replace ! With +! two places.

Win32Forth Innovation

101 VALUE A-Value

<header-A-Value>
 DOVALUE <pf = 101> DOVALUE! DOVALUE+!

For VALUE

For TO

For +TO

I N N O V AT I O N

<header>
DOVALUE <storage cell> DOVALUE! DOVALUE+!

DOVALUE Reads from next cell

DOVALUE! Stores into prior cell.

DOVALUE+! Increments into 2nd prior cell.

 TO compiles DOVALUE!

+TO compiles DOVALUE+!

Win32Forth Method

<header-A-Value>
DOVALUE <storage cell> DOVALUE! DOVALUE+!

: Demo-1 A-VALUE ;
<header> DOCOLON <add-DOVALUE> UNNEST

: Demo-2 222 TO A-Value ;
<header> DOCOLON LIT 222 <add-DOVALUE!> UNNEST

: Demo-3 333 +TO A-Value ;
<header> DOCOLON LIT 333 <add-DOVALUE+!> UNNEST

Win32Forth Compiled

Advantages Of Win32Forth

▪ The value definition is two cells larger, but . . .

▪ Each value usage is one cell smaller.

▪ Fast as only one in-line cfa is interpreted.

▪ Facilitates decompiling as there is a specific cfa for
VALUE, TO and +TO.

Conclusions

▪ VALUES seem to be increasing in usage over
VARIABLES.

▪ Meta-compiling can be quite challenging.

▪ I’m unsure of the complexity to meta-compile for
direct threaded and subroutine threaded versions.

Win32Forth Cosmology

The Complete Forth Textbook

By
Bill Ragsdale

	Slide 1
	Slide 2: The Basics
	Slide 3: Today
	Slide 4: History on VALUE
	Slide 5: Forth 79 Background, I
	Slide 6: Forth 79 Background, II
	Slide 7: As Compiled
	Slide 8: Forth 79 Background, III
	Slide 9: My High-level Version probably portable
	Slide 10: Win32Forth Innovation
	Slide 11: Win32Forth Method
	Slide 12: Win32Forth Compiled
	Slide 13: Advantages Of Win32Forth
	Slide 14: Conclusions
	Slide 15
	Slide 16

