
SmithForth handwritten in x86-64 SVFIG August 2022

1 Order

� Idea > artifact.

� Unnecessarily complex systems and tools. C compiles to assembly. Assembler written in C.

� Software written for many architectures, even though x86 is the only thing at the store.

� Each problem should be addressed once, between where a solution

– becomes possible

– is first needed.

SmithForth handwritten in x86-64 SVFIG August 2022

2 Forth

� I have trouble understanding the available Forths. Obstacles:

– assembly, C, etc.

– many files or layers

� JonesForth has two files (assembly + Forth). Obvious where to start reading.

� Started writing own Forth in assembly.

– I still don’t understand assembly.

– Now I don’t know why we like assemblers. I have to read the machine manual anyway.

� Switched to handwritten machine code. Made a video series. Replaced assembly by DMQ. Eliminated DMQ.

� SmithForth has two files (1000 bytes machine code + 1000 lines Forth).

SmithForth handwritten in x86-64 SVFIG August 2022

3 SmithForth

� Subroutine threaded Linux x86-64 with 64-bit cells

interpreter binary intention instruction opcode ModR/M SIB
input 99 50 Call PARSE

output FF 14 25 XX XX XX XX call PARSE call r/m64 FF /2 00 010 100 00 100 101

C3 return ret C3

� 8-column Forth-x86 concordance (see)

� Let structure emerge

– Assembler did not emerge, but a few assembler words did.

– Disassembler did emerge.

� Forth 2012

– completeness? CASE DO LOOP CREATE DOES> M*/

– hyperlinked online reference with visitor comments

– test suite

� No floating-point arithmetic, no local variables, no file system

SmithForth handwritten in x86-64 SVFIG August 2022

4 Binary interpreter

binary intention instruction opcode
Loop: AC al = [rsi++] lods m8 AC

AA [rdi++] = al stos m8 AA

EB FC jump Loop jmp rel8 EB cb

� Transcribe bytes

– from where rsi points, where the binary file appears

– to where rdi points, the Forth (dictionary) data area

� Modify the routine so that input byte 99 signifies one of several special commands:

1. new dictionary entry with a name 1 to 25 − 1 bytes long

2. compile a call to a word∗ (* latest word whose name has the given initial character)

3. execute a word∗ (especially to run the next interpreter)

SmithForth handwritten in x86-64 SVFIG August 2022

5 Fundamental Forth words

REFILL get input line from system source only
PARSE PARSE-NAME recognize word boundaries
FIND search dictionary
>NUMBER read number (hexadecimal only)
: ; define a word

SForth.dmp

99 05 50 41 52 53 45 #### PARSE (cl dl "ccc<char>" -- rbp=addr rax=u) addr: where ccc begins ; u: length of ccc

system.fs

: PARSE (char "ccc<char>" -- addr u) DUP 1+ [8 1 v 0 2 v] PARSE [8 5 ^ 0 0 ^] ;

SmithForth handwritten in x86-64 SVFIG August 2022

6 Videos

� SmithForth workings

– Tour source code from the beginning

– https://youtu.be/9MSJGzYELBA

� Handmade Linux x86 executables (no Forth)

– ELF header

– Loops, conditionals, subroutine calls

– ModR/M and SIB

– Linux system calls

– http://dacvs.neocities.org/

