C:\Text\Projects\MRP\RPS_Data\Programming\bprint.m

Wednesday, August 19, 2020 5:06 P

#function ou
Formatted

=cprint (FileIn,FirstRow,LastRow,ColSelector,FieldWidths,Trailing]
ariable column string reporter.

for test
FileIn = {'j§23

tion this section will be deleted ###
ams = {' e' , Ly - [5:=252 1)} &
t, first row, last row, column span, Field Widths,

As a fun
SelectionPa
[input te

Trail Char]

Characters
Col_l = 15 ;
Trailing = 2

per data field
Col_2 = Col_3 =6 ; Col_4 = - Col_5 = - ;
only for testing. Blanks after each field

Control pframeters only for testing.

FirstRow = cell2mat (SelectionParams (2)) ;
LastRow = cell2mat (SelectionParams (3)) ;
ColSelector = cell2mat (SelectionParams (4)) ;
FieldWidths = [cel 1, Col 2, €ol 3, Col 4, €6l 8] 7
Trailing = blanks (Trailing) ;

from here on ###

Keep thefuser's parameters in the range of the text file.

FirstRow = max (FirstRow,1) ; # 1 or lower

LastRow = min(LastRow,rows(FileIn)) ; # keep in range
ColSelectorf§= max(ColSelector,l) ; # or greater
ColSelectorf= min(ColSelector,columns (FileIn)) # keep in range

Declare vafiables
ActiveWidth=j} ; FieldBuffer=1; LineBuffer=l ;

Probably sPould limit row and column to actual rows and columns size.

printf('\n')}; # clean for display
to make ed loops must be a conditional test for a num2str, just in case
for rownu } 4 : tRow (1) # Over the specified sequence of rows

ColSelector

CW = 1dWidths (colnum)
BW = nks(CW) right (text)
if or numbers & text

Exploring The Wonder
Of D-Charting

SVFIG
Aug. 22, 2020
Bill Ragsdale

#
tText = num25tr(Tex n{rownum,colnum}) ; # grab e rxc cell contents

size(TarfetText)

double(T
xt] ; # apply leg g blanks

#

#
er) ; # get the $urrent buffer size
FBcols=CW+1l:end) ; Fidth

#

#

#
,colnum}) ;# gram the rxc ce contents
BW] ; # add the trailing bldkks

[FieldBuffcl(1,1:CW)] ; # trim to specj width
endif
ble([LineBuffer Fi¥ ffer FieldSep])
LineBuffer)

ffer = [LineBuffer FieldBuffer Trailing] ;
endfor # loop for next field in the current row

append to buffer

s

What We'll Cover

A bit of programming history.
Traditional flow charting.
D-chart symbols.

D-chart structures.
Comparing traditional and D-charting.
D-charting and Forth structures.

Some actual programming examples.

The Four Horsemen of Apocalypse

The Three Horsemen of Structured Programming

Edsger Djikstra coined the phrase “Structured
Programming. His letter to CACM, "A Case Against
the Goto Statement", was retitled by editor
Niklaus Wirth "Go To Statement Considered
Harmful“. Turing Award 1972. Popularized
parsing into RPN.

“Control complexity by layering”.

Niklaus Wirth, Turing Award 1984.
Designer of Algol and Pascal.

CAR ‘Tony’ Hoare created Quicksort and Quickselect.
Coauthor of Structured Programming with Djikstra
and Dahl. Turing Award 1970

FORTH DIMENSIONS

OCTOBER/NOVEMBER VOLUME 1, NO.
CONTENTS

HISTORICAL PERSPECTIVE Page 24

CONTRIBUTED MATERIAL Page 24

DTC vs ITC for FORTH Page 25
David J. Sirag

D-CHARTS Page 30
Kim Harris

FORTH vs ASSEMBLY Page 33
Richard B. Main

HIGH SPEED DISC COPY Page 34
Richard B. Main

SUBSCRIPTION OPPORTUNITY Page 35

October, 1978

D-CHARTS

Kim Harris

An alternative style of flowcharts called
D-charts will be described. But first the
purpose of flowcharting will be discussed as
well as the shortcomings of traditional
flowcharting.

A flowchart should be a tool for the design
and analysis of sequential procedures which
make the control flow of a procedure clear.
With FORTH and other modern languages,
flowcharts should be optimized for the
top-down design of structured programs and
should help the understanding and debugging
of existing ones. An analogy may be made
with a road map. This graphic representa-
tion of data makes it easy to choose an
optimum route to some destination, but when
driving, a sequential list of instructions
is easier to use (e.g., turn right on 3rd
street, left on Ave. F, go 3 blocks, etc.).
Indentation of source statements to show
control structures is helpful and is recom-
mended, but a two dimensional graphic
display of those control structures can be
superior. A good flowchart notation should
be easy to learn, convenient to use (..,
good legibility with free-hand drawn
charts), compact (minimizing off-page
lines), adaptable to specialized notations,
language, and personal style, and modifiable
with minimum redrawing of unchanged sec-
tions.

Traditional flowcharting using ANSI standard
symbols has been so unsuccessful at meeting
these goals that "flowchart" has become a
dirty word. This style is not structured,
is at a lower level than any higher level
language (e.g., no locop symbol), requires
the use: of symbol templates for legibility,
and forces program statements to be crammed
inside these symbols 1like captions in a
cartoon.

D-charts have a simplicity and power similar
to FORTH. They are the invention of Prof.
Edsger W. Dijkstra, a champion of top-down
design, structured programming, and clear,
concise notation. They form a context-free
language. D-charts are denser than ANSI
flowcharts usually allowing twice as much
program to be displayed per page. There are
only two symbols in the basic language;
however, like FORTH, extensions may be added
for convenience. .

Sequential statements are written in free
form, one below the other, and without
boxes.

statement

next statement

next statement

PAGE 30

FORTH INTEREST GROUP :---- PQ. Box 1105

The only "lines" in Drcharts are used to
show nonsequential control paths (e.g.,
conditional branches, loops). In a proper
D-chart, no lines go up; all lines either go
down or sideways. Any need for lines
directed up can be (and should be) met with
the loop symbols. This simplifies the
reading of a D-chart since it always starts
at the top of a page and ends at the bottom.

It is customary to underline the entry name

(or FORTH definition name) at the top of a
D-chart.

2-WAY BRANCH SYMBOL
In FORTH, this structure takes the form:
condition IF true phrase
ELSE false phrase
THEN .
Another FORTH structure which is used for
conditional compilation has more mnemonic
names:
condition IFTRUE true phrase
OTHERWISE false phrase
ENDIF

The D-chart symbol has parts for each of
these elements:

condition

false phrase true phrase

words following ENDIF (or THEN)

The "condition" is evaluated. If it is true, the
""true phrase' is executed; otherwise, the "false
phrase' is executed. The words following ENDIF
(or THEN) are unconditionally executed.

If either phrase is omitted, as with
condition IF true phrase THEN

a vertical line is drawn as shown:

condition

true phrase

++=-+ San Carlos, Ca. 94070

LOOP_SYHBOL

The basic loop defining symbol for
D-charts is properly structured.

condition

loop body

The switch symbol:

indicates that when the switch is
encountered, the "condition" (on the
side line) is evaluated.

1. 1If the “condition" is true, then
the side line path is taken; if
false, then the down line is taken
(and the loop is terminated).

2. If the side line is taken, all
statements down to the dot are
executed. The dot is the loop end
symbol and indicates that control
is returned to the switch. ‘

3. The "condition" is again evalua-
ted. Its outcome might have
changed during the execution of
the loop statement.

Repeat these steps starting with
Step 1.

This symbol tests thl loop condition
before executing body. However,
other loops test tho conditlon at th!
end of the loop body (e.g., . LOOI
and BEGIN .. END) or 1n‘ the mlddl- of thn
loop body. This loop symbol may be
extended for these other cases by adding
a test within the loop body. Consider
the FORTH loop structure

BEGIN loop body condition END .

The loop body is always executed once,
and is repeated as long as condition is
false. The D-chart symbol for this
structure would be:

loop bedy
condition

FORTH INTEREST GROUP --:-- PO. Box

A more general case is
BEGIN first phrase
condition IF second phrase
AGAIN

which is explained better graphically
than verbally:

first phrase
condition

second phrase

Both previous symbols may be properly
nested indefinitely. The following example
shows how these symbols may be combined.
This is the FORTH interpreter Efrom the
F.I.G. model.

t INTERPRET BEGIN %) IF HERE NUMBER
ELSE EXECUTE

THEN
?STACK
AGAIN

INTERPRET

until null word executed

found

convert word
to integer

push integer

check stack

PAGE 31

1105 --+-- San Carlos, Ca. 94070

search dictionary for next word

execute word

n-WAY BRANCH SYMBOL

A structured n-way branch symbol (some=-
times called a CASE statement) may be
defined for convenience. (1t is func-
tionally equivalent to n nested 2-way

branches). One style for this symbol
is:

first case second case . last case

il

P.0. Box 8045
Austin, TX 78712
November 3, 1978

Editor, Forth Dimensions:

Thank you for your card and subsequent letter.
I am sorry that I did not get back to you sconer with
a copy of the scurce eodl !or my rom lyltu.
Frankly, 1 was surprised thal are ed in
the system, since it is nthnr “nuod m ncunm
and conforms with no other FORTH version in temms of
names. I stopped work on the system just about the
time I began to receive namuals form DECUS and the
6502 FORTH form FIG. I can see now how I would add
an assembler, text editor, and random block i/0 to
the system, but my duties at work and at lchool
preclude any further development of U.T. FORTH
now.

The condition is usually an index which
selects one of the cas The rejoining
of control to a single line after the
cases are required by structured program-
ming. Depending on the complexity of
the cases, this symbol may be drawn
differently.

D-charts are efficient and useful. They are
vastly superior to traditional flowchart
style.

35 KIM HARRIS

SYSTEM LANGUAGE 1

SL/1 was written by Emperical Research Group, Inc.
to be exactly what it says it is, a SYSTEM language.
SL/1 is a small interactive incremental compiler that
generates indirect threaded code. It is a 16 bit
pseudo machine for use on mini and micro computers.
New definitions can be added to an already rich set
of intrinsic instructions. It is this extensibility
that allows any user to create the most optimum
vocabulary for his individual application.

SL/1 is a virtual stack processor. Ullnq the
FPN concept tor both variables and instruc makes
it xtend g u: include
SL/1 does this quite nicely.

I want to especially thank you for i
me of Paul Bartholdi's visit tp the University of
Texas. [was able to meet with him and we had a very
stimulating discussion for about an hour and a
half. 1 was surprised to learn fram him how widely
FORTH is used commercially, though usually under
other names. We also discussed two extensions to the
language that I believe greatly enhance it: (1)
syntax checking on compilation for properly balanced
BEGIN, .END and IF..ELSE..THEN constructs, and (2) the
functions "n PARAMETERS" and "PAR|" to "PARN" that
allow explicit reference to parameters on the stack.
Finally, he sl me some programming examples
from the FORTH manual he wrote which provide first-
hand proof of the ease of programming rather sophis-
ticated problems in FORTH. It i3 especially im-
portant because most pecple in the computer science
department here respond to my presentation of FORTH
with a resounding lack of interest. After all, they
k;c? abreast of the field and if they have not heard
ol {

I have been promoting FORTH among the local
computer clubs and look forward to the results of
FIG's micro computer efforts. Please keep in touch.

Sincerely yours,
Greg Walker
PAGE 32

The RPN stack is also one of the most effective means
of implementing top down design, bottom up coding.

SL/1 operates on a principle of threaded code.
All of the elements of SL/1 (procedures, variable,
compiler directives, etc.) reference the previous
entry. Thus, each code indirectly "threads" the
others and is in turn threaded by the code following
it., Because SL/1 is a pseudo machine, portability
between different processors and hardware is readily
accomplished. The low level interpreter is really
the P-machine. It is small (only 11 bytes are used),
and fast.

One of the most powerful features of SL/1 is the
fact that is uses all on-line storage media as
virtual memory. In effect the user can write
programs in SL/1 using the full capacity of disk
storage and never be concerned with placement of
information on the disk. SL/1 allows you to program
machine code es in assembler using a high
level language. This can optimize I/O or math
routines.

The above information was excerpted from a press
release of November 3, 1978. For further informa-
tion, contact Mr. Dick Jones, Emperical Research
Group, Inc., 28206 144th Avenue, S.E., Kent, WA
98031. Phone (206) 631-4851.

FORTH INTEREST GROUP :---- PO. Box 1105 ----- San Carlos, Ca. 94070

Classical Flowchart Symbols D-Chart Symbols

O BEGIN/END I Code in Sequence
<action> (either between
‘ ‘ ASSIGNMENT | e sogmente or
beside.
IN/OUT

DECISION * TEST (IF)
/ﬁ)\ CASE or N-WAY
BEGIN LOOP

SWITCH and
‘ ‘ ‘ ‘ RETURN POINT

o

7N\
N

SUBROUTINE

RETURN TO
Loop by upward arrow. SWITCH

D-Chart Principles

Programs start at the top and end at the bottom.
Show sequential statements vertically.

Lines show control paths.

All lines go downward or to the side.

Example Of A Test

<test?>

<false part> <true part>

<false part> is optional

Example Of A Loop

<loop conditions>

<loop actions>

:

Example Of A Loop with a
Concluding Test (BEGIN-UNTIL)

<loop conditions>

<loop actions>

<exit condition>

Example Of A Case Statement

<4 way test>

<action 1> <action 3>
<action 2> <action 4>

One-Way Logical Test

<test>

TRUE

<action>

<action>

Two Way Logical Test

|F <test>

ELSE % TRUE FALSE TRUE

<action> <action>

<action> <action>
ENDIF ‘\l/l

Infinite Loop

| <action>

‘ <action> ‘ l

-

Indefinite Loop

<limit/test>

<limit>
<action>
<action>

‘

Finite Loop

<limits>

<limits>

<action>

<action>

:

Pros and Cons of D-Charts

PRO
e D-Charts have more information per page.
* Quick to draw for rapid revision.
 No need for a template.

* Context free for any language.

CON
 Will confuse those unfamiliar.
* Not suitable for publication.

Let’s Look At Forth Code Fragments

Two Way Logical Test
|

<test>
|F
e : ;
<test>
IF <action> ELSE
ELSE <aCtion> <action> <action>

THEN \)

THEN
|

Infinite Loop

BEGIN
BEGIN
<action>
<action> <action>
<action>
AGAIN AGAIN

o

Definite Loop
I

<limits>
|
DO
<limits>
DO <action>
<action> <action>
<action>
LOOP e

Indefinite Loop

BEGIN

<test>

.« .. WHILE

BEGIN <test>
WHILE

<action> <action>
. <action>
<action> CEpEAT

REPEAT ‘

Another Indefinite Loop

BEGIN

BEGIN

<action> <action>
. <action>
<action> ctests
<test> UNTIL
UNTIL

<action>

Three Examples

Absolute Value Conversion
and
String Formatting
and
Twos-Complement Math

Absolutue Value Conversion

I
DUP 0O<

e o o IF
DUP 0<
IF NEGATE THEN
NEGATE

THEN

Number Conversion into: ‘nnn.nnn’

S 30 DO

3 0(3 digits)

DO 10 /MOD append %\
LOOP 10 /MOD

46 C, (ascii dot) 40C append

DO 10 /MOD append

LOOP prop 10 /'V'OdD
appen
DROP | loop

Twos Complement Arithmetic

REPEAT

Create A Report From A CSV File

| This is the whole
Input CSV file program in four lines.
Setup control params

Convert all rows
And display

Create a report from a CSV file

| This is the whole
Input CSV file program in four lines.

Setup control params

Convert all rows
And display \
| So how do we convert

all rows for output?

Input CSV file
Setup control params

Over all rows / the rows in the file

1

Convert a row

Add a loop over all

Display row
Next row

l

Input CSV file
Setup control params
Over all rows

Add a loop over all
the rows in the file

1 So how do we
/ convert one row?

Convert a row

Display row
Next row

l

Input CSV file Add a loop over all

Setup control params fields in a row.
Over all rows

—
Over all fields

S

Display row Convert a field

Next row Next field

:

Input CSV file Add a loop over all

Setup control params fields in a row.
Over all rows

— So how do
Over all fields we convert

‘if one field?

Display row Convert a field

Next row Next field

:

Add a test for input
Input CSV file

data type.
Setup control params
Over all rows Right justify for
_ numbers; left justify

Over all fields for text.

i Number?

Display row /\I

Next row Text Number

l -

Next field
O

. report
read-file setup-parameters
BEGIN another-row?
WHILE (rows remain)
BEGIN another-field?
WHILE (while fields remain) a-number?
IF process-number
ELSE process-text THEN
next-field
REPEAT
display-row next-row
REPEAT

C:\Text\Projects\MRP\RPS_Data\Programming\bprint.m Wednesday, August 19, 2020 5:06 P

#function outffcprint (FileIn,FirstRow,LastRow,ColSelector,FieldWidths,Trailing]
Formatted riable column string reporter.

for test
FileIn = {'1@3

As a fundkion this section will be deleted
SelectionPargms = (' e' , 5 1, [5:-1:2 1} ;
[input texf, first row, last row, column span, Field Widths, Trail Char]

ber data field
01_2 = Col_3 =6 ; Col_4 == 3 Col_S = - ;
only for testing. Blanks after each field

Characters
Col_l = 15 ;
Trailing = 2

Control pdffameters only for testing.

FirstRow = cell2mat (SelectionParams(2)) ;
LastRow = cell2mat (SelectionParams (3)) ;
ColSelector = cell2mat (SelectionParams (4)) ;
FieldWidths = [cel 1, ol 2, €ol 3, Col 4, €6l 8] 7
Trailing = blanks (Trailing) ;

Programfffrom here on

Keep thefuser's parameters in the range of the text file.

FirstRow max (FirstRow,l) ; # 1 or lower

LastRow min(LastRow,rows (FileIn)) ; # keep in range
ColSelector max (ColSelector,l) ; # 1 or greater

ColSelector min(ColSelector,columns (FileIn)) # keep in range

Declare vafiables
ActiveWidth=j ; FieldBuffer=l; LineBuffer=1 ;

Probably sPould limit row and column to actual rows and columns size.

printf ('
to make

clean for display
ed loops must be a conditional test for a num2str, just in case
1) - tRow (1) # Over the specified sequence of rows
LineBu char ([]
for coln m = ColSelector ;

CW = 1dwidths (colnum)

BW = nks(CW) right (text)

if or numbers & text
n)

tText = num25tr(Tex n{rownum,colnum}) ; # grab e rxc cell contents
size(TarfgetText)
double (TRrgetText)
Buffer = [BW TargetT@xt] ; # apply leg g blanks
ble (FieldBuffer)
ring (FieldBuffer)
= columns (FieldBufffer) ; # get the &grrent buffer size
FBcols=CW+1l:end) ; Fidth
#
#
#
; # add the trailing bldlkks
[FieldBuffgl :CW)] ; # trim to specj width
endif
ble ([LineBuffer Fi¥ ffer FieldSepl])
LineBuffer)

ffer = [LineBuffer FieldBuffer Trailing] ; # append to buffer
loop for next field in the current row

s

On paper this is beautiful.

How can you get a running program?

IMMEDIATELY.

The answer?

Start with the pseudocode as printout

Stepwise, refine the pseudocode into
code, with only one change at a time.

Express each line of pseudocode as a print

statement.

You now have a
functioning
program even
if itis only a
shell.

. report cr

U Input CSV file” cr

" Setup control params” cr

" Convert all rows” cr

" And display”

4

How can we make it do more?

Add a word ‘fake-load” with CSV data in a
text buffer & ‘display-buffer’ to display it.

And again, you
always have a
functioning
program or are
just one step
away.

’

. report cr

fake-load
" Setup control params” cr
" Convert all rows” cr

display-buffer

Now. . .How to convert the rows?

Create code to translate fields of the CSV
buffer into the desired output and display.

And you still have
a functioning
program or are
just one step
away.

. report cr

4

fake-load
. Setup control params” cr
simple-field-conversion

display-buffer

Continue refining stepwise, by converting
pseudocode into actual code and testing.

Summary

Learning D-Charts is like learning another
programming language.

Only much, much simpler.
D-Charts augment writing pseudocode.

Plan on using and discarding many sheets of
paper before going to your computer.

You can capture a whole program, or just a
part, on a single sheet of paper.

