
Exploring The Wonder
Of D-Charting

SVFIG
Aug. 22, 2020
Bill Ragsdale

What We’ll Cover

A bit of programming history.

Traditional flow charting.

D-chart symbols.

D-chart structures.

Comparing traditional and D-charting.

D-charting and Forth structures.

Some actual programming examples.

The Four Horsemen of Apocalypse

The Three Horsemen of Structured Programming

CAR ‘Tony’ Hoare created Quicksort and Quickselect.
Coauthor of Structured Programming with Djikstra
and Dahl. Turing Award 1970

Niklaus Wirth, Turing Award 1984.
Designer of Algol and Pascal.

Edsger Djikstra coined the phrase “Structured
Programming. His letter to CACM, "A Case Against
the Goto Statement", was retitled by editor
Niklaus Wirth "Go To Statement Considered
Harmful“. Turing Award 1972. Popularized
parsing into RPN.
“Control complexity by layering”.

October, 1978

BEGIN/END

ASSIGNMENT

IN/OUT

DECISION

BEGIN LOOP

SUBROUTINE

Classical Flowchart Symbols D-Chart Symbols

TEST (IF)

CASE or N-WAY

SWITCH and
RETURN POINT

RETURN TO
SWITCHLoop by upward arrow.

Code in Sequence
(either between
line segments or
beside.

<action>

D-Chart Principles

Programs start at the top and end at the bottom.

Show sequential statements vertically.

Lines show control paths.

All lines go downward or to the side.

Example Of A Test

<test?>

<false part> <true part>

<false part> is optional

Example Of A Loop

<loop conditions>

<loop actions>

Example Of A Loop with a
Concluding Test (BEGIN-UNTIL)

<loop conditions>

<loop actions>

<exit condition>

Example Of A Case Statement

<4 way test>

<action 1>

<action 2>

<action 3>

<action 4>

TRUE

<action>

<action>

One-Way Logical Test

<test>

TRUE

<test>

FALSE

Two Way Logical Test

<action><action>
<action>

<test>

<action>

TRUEELSE TRUEFALSE

<test>IF

ENDIF

Infinite Loop

<action>

<action>

fs

<limit>

<action>
<action>

Indefinite Loop

<limit/test>

<limits>

<action>

<action>

Finite Loop

<limits>

Pros and Cons of D-Charts

PRO

• D-Charts have more information per page.

• Quick to draw for rapid revision.

• No need for a template.

• Context free for any language.

CON

• Will confuse those unfamiliar.

• Not suitable for publication.

Let’s Look At Forth Code Fragments

Two Way Logical Test

<action><action>

ELSE

T

THEN

F. . .
<test>
IF <action>
ELSE <action>
THEN

. . .

<test>

IF

Infinite Loop

. . .
BEGIN

<action>
<action>

AGAIN
. . .

BEGIN

<action>
<action>

AGAIN

Definite Loop

. . .
<limits>
DO <action>

<action>
LOOP

. . .

DO

<action>
<action>

<limits>

LOOP

Indefinite Loop

. . .
BEGIN <test>

WHILE
<action>
<action>

REPEAT
. . .

BEGIN

<action>
<action>

<test>
WHILE

REPEAT

Another Indefinite Loop

. . .
BEGIN

<action>
<action>
<test>

UNTIL
. . .

BEGIN

<action>
<action>

<test>
UNTIL

<action>

Three Examples

Absolute Value Conversion
and

String Formatting
and

Twos-Complement Math

IF

NEGATE

THEN

Absolutue Value Conversion

. . .
DUP 0<
IF NEGATE THEN
. . .

DUP 0<

10 /MOD
append

Number Conversion into: ‘nnn.nnn’

. . .
3 0 (3 digits)

DO 10 /MOD append
LOOP

46 C, (ascii dot)
3 0
DO 10 /MOD append

LOOP
DROP . . .

3 0 DO

46 C,

10 /MOD
append

3 0 DO

DROP

LOOP

LOOP

Twos Complement Arithmetic

REPEAT

WHILE
BEGIN

Input CSV file
Setup control params

Convert all rows
And display

Create A Report From A CSV File

This is the whole
program in four lines.

Input CSV file
Setup control params

Convert all rows
And display

Create a report from a CSV file

This is the whole
program in four lines.

So how do we convert
all rows for output?

Input CSV file
Setup control params

Over all rows

Display row

Convert a row

Next row

Add a loop over all
the rows in the file

Input CSV file
Setup control params

Over all rows

Display row

Convert a row

Next row

So how do we
convert one row?

Add a loop over all
the rows in the file

Input CSV file
Setup control params

Over all rows

Display row

Over all fields

Convert a field

Next row Next field

Add a loop over all
fields in a row.

Input CSV file
Setup control params

Over all rows

Display row

Over all fields

Convert a field

Next row Next field

So how do
we convert
one field?

Add a loop over all
fields in a row.

Input CSV file
Setup control params

Over all rows

Over all fields

Text

Number?

Number

Display row

Next row

Next field

Right justify for
numbers; left justify
for text.

Add a test for input
data type.

: report
read-file setup-parameters
BEGIN another-row?

WHILE (rows remain)
BEGIN another-field?

WHILE (while fields remain) a-number?
IF process-number

ELSE process-text THEN
next-field

REPEAT
display-row next-row

REPEAT
;

On paper this is beautiful.

How can you get a running program?

IMMEDIATELY.

The answer?

Start with the pseudocode as printout

Stepwise, refine the pseudocode into
code, with only one change at a time.

: report cr

.” Input CSV file” cr

.” Setup control params” cr

.” Convert all rows” cr

.” And display”

;

Express each line of pseudocode as a print
statement.

You now have a
functioning
program even
if it is only a
shell.

How can we make it do more?

And again, you
always have a
functioning
program or are
just one step
away.

Add a word ‘fake-load’ with CSV data in a
text buffer & ‘display-buffer’ to display it.

: report cr

fake-load

.” Setup control params” cr

.” Convert all rows” cr

display-buffer

;

Now. . .How to convert the rows?

And you still have
a functioning
program or are
just one step
away.

Create code to translate fields of the CSV
buffer into the desired output and display.

: report cr

fake-load

.” Setup control params” cr

simple-field-conversion

display-buffer

;

Continue refining stepwise, by converting
pseudocode into actual code and testing.

Summary

Learning D-Charts is like learning another
programming language.

Only much, much simpler.

D-Charts augment writing pseudocode.

Plan on using and discarding many sheets of
paper before going to your computer.

You can capture a whole program, or just a
part, on a single sheet of paper.

