
PatientIO
How I think Kestrel-3 will use RapidIO.

Samuel A. Falvo II <kc5tja@arrl.net>
http://sam-falvo.github.io/kestrel

Who am I?

mailto:kc5tja@arrl.net
http://sam-falvo.github.io/kestrel
http://sam-falvo.github.io/kestrel

I reserve the right to change anything, at any
time, for any reason.

!!! DISCLAIMER !!!

Parts

I Why I Need Intelligent I/O
II Channel I/O
III PatientIO
IV Keyboard and Mouse
V Network Adapter
VI Someday, PatientIO in Hardware

Why I Need Intelligent I/O

PART I

Ken’s Challenge

Use Kestrel-3 for:

● five full business days

● at work for work.
Image by Lisa Yarost, CC BY 2.0;

primary source: http://tinyurl.com/pe7meyu

My Plan

Use the Kestrel-3:

● as a VNC terminal

● to a cloud-hosted

server.

Peripheral Output Requirements

(Highest bandwidth)
Video.
SD Card.
Ethernet Adapter.
(Lowest bandwidth)

Peripheral Input Requirements

(Highest bandwidth)
Ethernet Adapter.
SD Card.
Keyboard and Mouse.
(Lowest bandwidth)

Limitations

16-bit path to RAM.
70ns access time (~14MHz).
28MB/s peak.
12.5MHz clock, 25MB/s expected.
CPU @ 12.5MHz yields 6.25 MIPS peak.
Slow, but still 2x faster than 12.5MHz MC68000. :)

Bandwidth Budget: Video Refresh

640*480 px/f = 307,200 px/f
* 8 b/px = 2,457,600 b/f
* 60 f/s = 147,456,000 b/s
/ 16 b/t = 9,216,000 t/s
* 2 B/t = 18,432,000 B/s (18.5 MB/s)

Bandwidth Budget: Network

Video leaves only 6.5MB/s memory bandwidth
left over for network I/O and CPU combined.

That’s 52Mbps for fastest possible network
transfer.

Bandwidth Budget: CPU

CPU wants to fetch 32-bit instructions.

Since it won’t have a cache, it really wants
25MBps to RAM.

Bandwidth Budget: Results

CPU performance will vary between 0.0 MIPS
and 6.25 MIPS, depending on network traffic
and video retrace activity.
Expected average: 1.6 MIPS.
(Slightly slower than 8MHz MC68000.)

Software Expectations, redux.

1.6 MIPS is:
● plenty fast enough for keyboard and mouse

event handling.
● barely fast enough for framebuffer updates.

I expect sub-Atari 520ST performance:
usable, but irksome.

Software Expectations, redux.

Bit-banging SD and network I/O, therefore, is
clearly out of the question.

I need I/O that can work on its own, without
CPU intervention, as much as possible.

Channel I/O

PART II

Channel I/O

Channels are programmable DMA engines.
They execute their own instruction set.

First appearing in the IBM 709, they really
came into their own with System/360, and has
remained a fixture to this very day.

Channel I/O

Master/slave.

Periodically poll to see if device need service.
With clever programming, polling can be hidden from CPU
via an endless channel program.

Channel I/O

Channel programs are particularly ideal for
taking care of medium- to high-level protocol
functionality.

READ, WRITE, (addresses units)
SENSE, CONTROL, (addresses controllers)
TRANSFER-IN-CHANNEL.

Channel I/O

Channel I/O for SPI needs more instructions
than IBM S/360 to account for lower level
protocols.

RECV, SEND, EXCH, WAIT, DROP, SBYTE,
SSEL, RATE, etc.

SD Card Read Protocol

Send command block (6 bytes).
Wait for R1 response byte.
Wait for Data Token byte.
Read in 512 data bytes.
Read (and perhaps ignore) 2-byte CRC.

Channel Program: SD Card Read

SEND commandBlock, 6
WAIT $FF, $FF, $FE, $00
READ $FF, bufferAddr, 512
DROP! $FF, 2

SD Card Write Protocol
Send command block (6 bytes).
Wait for R1 response byte.
Send Data Token byte.
Send 512 data bytes.
Send 2-byte CRC.
Wait for R1 response byte.
Wait for card busy status to clear.

Channel Program: SD Card Write
SEND commandBlock, 6

WAIT $FF, $FF, $FF, $00

SBYTE $FE

SEND bufferAddress, 512

SBYTE crc1

SBYTE crc2

WAIT! $FF, $FF, $FF, $00

Channel I/O

Because channels run independently of CPU,
with buffers as a first-class data type, data
exchange can reach up to 50Mbps peak.

A channel program can interrupt the CPU to let
it know it has finished.

Channel I/O

I’m evaluating an S16X4-derived MISC core for
use as the channel processor.

commandBlock (64-bits)

SEND NOP commandLength (16-bits)

WAIT sendByte andMask||xorMask

...

Channel I/O

I’m evaluating an S16X4-derived MISC core for
use as the channel processor.

It’s Turing-complete.
It’s a proven architecture (CPU for Kestrel-2!).

PatientIO

PART III

Why RapidIO

Channel I/O is great for master/slave type
devices, like SD and MMC memory cards,
ADCs and DACs, SPI flash memories, etc.

Digilent Nexys2 only has 4 PMod ports!
AVNet board only has 2 PMod ports!

Why RapidIO
Kestrel-3 motherboard

Ethernet
(PatientIO)

SD card slot
(Channel I/O)

Why RapidIO

To support two or more I/O devices on a single
channel, IBM opted to complect their channel
I/O concept with “block multiplexors” and “byte
multiplexors”.

Why RapidIO

SPI link expanders globally affects protocol all
devices talk on that link.
Drivers must be aware this is happening!

Why RapidIO

Channel I/O still not a good fit for autonomous
peripherals.

E.g., no way to tell device A to deposit received
traffic directly into device B’s channel without
going through the host’s channel hardware first.

Why RapidIO

Packet-switched I/O fabric.

Proven protocol I don’t have to invent myself.

Typically spec’d for links 1 Gbps or faster.

Proper superset of channel I/O.

Why RapidIO

RapidIO is a set of:
● open,
● easily available,
● easily understood
standards.

http://www.rapidio.org/rapidio-specifications/

RapidIO Summary

Supports bus semantics as simple as the 6502.

Supports NUMA and ccNUMA architectures.

Supports general message passing.

First implemented to replace PowerPC’s FSB.

RapidIO Summary

Typical overhead: 24 bytes including ACKs.

RapidIO Summary

Peer-to-peer, not master/slave.
34-/50-/66-bit address space per device.
256, 65536, or 4.2B devices per fabric.
Up to 256 byte payloads in powers of 2.
Intended for hardware implementation.

PatientIO

RapidIO physical layer bindings for SPI
● 50Kbps to 100Mbps, x1 SDR.
● 6.4Gbps+ via 100MHz, bonded, x4 DDR.

PatientIO

Pin many RapidIO variables.
● 256 devices per fabric.
● 34-bit address space per device.
● All devices have vendor ID $FFFF.
● UUID-based service discovery.
● SPI-specific CARs and CSRs

PatientIO

“Vendor ID” needed to make peripherals.
$9500/year to RapidIO TA.

WAY too expensive for the homebrewer!

PatientIO

Inefficient device driver pairing.
(model ID * vendor ID) -> driver.

(Just look at the horror that is Linux PCI support.)

PatientIO

PatientIO uses COM-inspired query-interface
approach to service discovery.

No vendor ID necessary.
(Though, not mutually exclusive.)

PatientIO
extern UUID PIOIID_STD_UART;

...

if(queryInterface(deviceID, &PIOIID_STD_UART, &ptr)) {

writeString(deviceID, ptr, “+++”);

sleep(SECONDS(2));

writeString(deviceID, ptr, “ATH\r\n”);

} else {

printf(“Device %d doesn’t offer a UART.”, deviceID);

}

PatientIO
CREATE PIOIID_STD_UART

 $1111111122222222 , $3333333344444444 ,

: err (devID --)

 .” Device ” . .” doesn’t offer a UART.” CR ;

: slam (devID ptr --)

2>R S” +++” 2R@ writeStr 2000 MS

S\” ATH\r\n” 2R> writeStr ;

: hangup (devID --)

 DUP PIOIID_UART query IF slam ELSE err THEN ;

PatientIO

If a device reports it supports PIOIID_x, then:
● It implements at least the required registers

specified by “x”.
● It implements at least the required control

bits as specified by “x”.
● Registers must be placed relative to each

other as “x” specifies.

PatientIO

If a device reports it supports PIOIID_x, then:
● It implements at least the required interrupts

that “x” specifies.
● Supports at least the required mailboxes and

messaging protocols that “x” specifies.
● Behavioral semantics must be fully

backward compatible with “x”.

Keyboard and Mouse

PART IV

Keyboard and Mouse

Today, Keyboard Interface Adapter

● Handles PS/2 communications for one port.

● Input only. No output capability exists.

● Memory-mapped.

Keyboard and Mouse

KIA characteristics include:

● 16-byte queue, but no interrupts.

● CPU must poll periodically or risk data loss.

● First introduced in the Kestrel-2.

Keyboard and Mouse

Digilent Nexys2 FPGA board only has one
PS/2 port.

I must use one Pmod port for mouse anyway, I
might as well use it for keyboard too.

SD Card

Keyboard and Mouse

Network Adapter

Keyboard and
Mouse

Controller
(ATmega328)

Kestrel-3

Keyboard

Mouse

Keyboard and Mouse

Two PS/2 ports (one keyboard, one mouse)

Event notification and LED control through
RapidIO message passing.

Keyboard and Mouse

Isolate system firmware from keyboard
hardware through generic scancodes.

Between generic scancodes and message
passing semantics, keyboard driver software
should work with any kind of keyboard.

Keyboard and Mouse

Anticipated keyboard message (8 bytes)

 K1 K2 K3 K4 K5 K6 K7 K8

Keyboard and Mouse

Anticipated mouse message (8 bytes)

 Buttons 00 00 00 dX (high) dX (low) dY (high) dY (low)

Network Adapter

PART V

Network Adapter

Couples to 100Mbps Ethernet.

Line rate limited to 50Mbps due to RAM
bandwidth.

Built on AVnet FPGA board.

Network Adapter

To send: Nexys2 board assembles entire
frames to transmit in AVnet’s RAM first, then
tells network controller to send it.

To Recv: AVnet sends doorbell to Nexys2,
which then reads only the frames it wants from
AVnet RAM.

Network Adapter

Use NREAD, NWRITE, SWRITE packets to
access network adapter’s memory.

Use MESSAGE packets to tell network adapter
what to do with them.

Native PatientIO Bridge

PART VI

PatientIO Bridge

Everything discussed to this point builds on top
of SPI Channel I/O.

SPI is slow enough for this to work.

What about the future though?

PatientIO Bridge

With a 4-wide, x4 DDR SPI channel running at
100MHz, setting up the channel program and
kicking it off takes more time than sending a
packet.

PatientIO Bridge

Remember: RapidIO intended to replace
PowerPC front-side bus.

Entire protocol meant to be codified in
hardware. What I’ve done with PatientIO is a
hack!

PatientIO Bridge

Bridge acts as a surrogate peripheral in local
address space.

Translates local, parallel bus transactions into
serializable RapidIO packets.

PatientIO Bridge

Base Address Registers (BARs) define the start
and size of a RapidIO region in local address
space.

They also tell the bridge which device the I/O
window corresponds to.

PatientIO Bridge

A bridge also serves as a local memory bus
master for incoming traffic, too.

Translates in-bound transactions into local
memory accesses. No need to interrupt CPU
to handle remote DMA requests.

PatientIO Bridge

Significant hardware investment (on par with a
CPU cache controller).

However, it’d eliminate the majority of PatientIO
driver software in firmware. Only fabric auto-
config and device registry would remain.

Summary
Channel I/O is foundation for 1st-gen PatientIO.

Consistent device model, driver architecture.

Scales from kilobits to gigabits per second.

Switches offer zero-overhead port expansion.

Easy software implementation for μCs.

2nd-gen hardware bridges for rubber-burning performance.

Summary
Channel I/O to drive SD card.

Keyboard and mouse rely only on messaging.

Network adapter relies on both messaging and RDMA.

Two device driver stacks: SD/MMC and PatientIO.

NIC, keyboard, and mouse drivers just thin veneers.

Questions?

EXTRA SLIDES

Software Expectations

Expected CPU workloads:
● Bit-block transfers from VNC.
● Packet and event routing.
● Keyboard and mouse updates.
● Block storage I/O.

Channel I/O (Digression)

I have to admit, I’m jealous of IBM.

IBM’s channel I/O is so elegant because they
control channel hardware, instruction set, and
controller hardware, so it all plays together
nicely. I don’t have that luxury. :(

PatientIO

Interface-based approach does not require an
expensive, central authority to maintain a
vendor ID registry.

You can make a peripheral today without my
knowledge or consent.

