
S16X4 Data Sheet

Samuel A. Falvo II

2012-Aug-20

• 64KiB Addressing Space

• SS0 Load/Store Stack Architecture

• 8-Bit and 16-Bit Memory Accessors

• 16-Bit Internal Architecture

• All Instructions Execute in 1 Clock Cycle

• Wishbone Bus Compatible

• Easy to Program

1 Introduction

The Steamer16 architecture, �rst de�ned by Myron Plichota in December 1999
(see Appendix A), speci�es an exceptionally small, relatively high performance
microprocessor with good qualities for deep-embedded applications and easy
synthesis on small programmable logic devices. Originally consisting of 9 in-
structions and four opcodes per instruction word, the design was later revised
to include only 8 instructions, allowing for �ve opcodes per 16-bit word. The
S16X4 microprocessor is a speci�c variant of the original Steamer16 concept.
The processor design caters to ease of programming and easy integration with
other components in an FPGA development platform.

1.1 Addressing

The S16X4, without the use of external hardware, supports a �at, uni�ed ad-
dress space. Unlike most processors that provide at least two addressing modes,
the S16X4 only o�ers one addressing mode: stack indirect. All memory acces-
sors take their e�ective address from the top of the parameter stack.

1

1.2 Data Types

The S16X4 supports two data types: bytes and words. The most basic address-
ing unit on the S16X4 is an octet (8-bit) byte. All addresses consist of 16 bits,
thus limiting the S16X4 to 65536 bytes of directly addressible space.

Words consist of two bytes, back to back, placed on an even address bound-
ary. The least-signi�cant byte appears at the lower address; thus making the
S16X4 a little-endian machine. When addressing 16-bit words, the S16X4 cur-
rently ignores bit 0 of an address. Hence, the two pointers $AAAA and $AAAB
both refer to the same word of memory, even though they refer to two di�er-
ent bytes within the same word. For compatibility with later generations of
processors, all pointers to 16-bit entities should have bit 0 clear.

2 Internal Architecture

Figure 1 illustrates the block diagram of the S16X4 processor.

2.1 Parameter Stack

The parameter stack provides the working storage and the means for expression
evaluation. The S16X4 can hold up to three words of data at any given time,
arranged as a stack. The three words are labelled X, Y, and Z, with Z repre-
senting the top of the stack. Presently, only one instruction, LIT, can push data
onto the stack. All other instructions either replace Z directly or consume data
from the stack on an as-needed basis. When popping values o� the stack, the
processor retains the current value for X. In the example below, values �lled in
from popping the stack appear in italics, while new or computed values appear
in bold.

Instruction X Y Z

LIT $1111 - - $1111
LIT $2222 - $1111 $2222
LIT $5555 $1111 $2222 $5555
ADD $1111 $1111 $7777
SWM $1111 $1111 $1111

While having only three stack elements might seem constraining to someone
familiar with either Forth or Java, it turns out you can do anything that (at
least) an accumulator- or register/memory-architecture CPU can do. For exam-
ple, suppose you're writing a program that needs to store a value at a location
Y bytes beyond the start of a bu�er whose pointer can be found in an array of
pointers starting at address $44 + S. This is a genuinely complex addressing
mode by anyone's measure. Here's an example S16X4 program that computes
this complex e�ective address:1

1The corresponding W65C816 microprocessor instruction for this operation is STA
($44,S),Y.

2

CLK_I RES_I ACK_I

T-COUNTER
INSTRUCTION

REGISTER

CONTROL AND RANDOM LOGIC

+1

P

ALU

ZY

X

Z

Y

DAT_I

“0”

DAT_O ADR_O

“0”

WE_O STB_O CYC_O VPA_O VDA_O SEL_O

Figure 1: Block Diagram of the S16X4 Processor.

3

LIT a ; Fetch the datum to store.

FWM

LIT s ; Reference our array of pointers.

FWM

LIT $44 ; We want element 34 in the array.

ADD

FWM

LIT y ; Calculate final storage address.

FWM

ADD

SWM ; Store the datum.

Observe that no more than two stack cells (Y and Z, speci�cally) are involved
in computing the e�ective address for the subsequent store instruction, allowing
X to hold onto the value we wish to store during e�ective address calculation.

2.2 ALU

The arithmetic/logic unit, or ALU, computes identities, sums, bitwise ANDs,
and bitwise exclusive-ORs of Y and Z. The NOP, ADD, AND, and XOR in-
structions respectively selects which of these results will be chosen as the result.

2.3 Instruction Register

The instruction register holds the most recently fetched package of instructions.
Since S16X4 opcodes consume only 4 bits in memory, the S16X4 packs four
instructions per instruction word, as illustrated below.

Slot 1 Slot 2 Slot 3 Slot 4
15..12 11..8 7..4 3..0

The processor will execute instructions starting �rst with slot 1, and contin-
uing up to and including slot 4 before fetching another instruction.

The S16X4 fetches a new instruction word if it detects that all remaining
opcodes are NOP instructions. This includes the case where all four slots contain
NOPs.

2.4 Program Counter Register

The P register holds the location of the next program literal or instruction word.
It contains only 15 bits, hard-wiring bit 0 to zero to enforce even addressing while
fetching instructions.

2.5 T-Counter

This internal register controls when the processor should fetch an instruction
word, when it is safe to perform non-program memory references, et. al. In
essence, it determines which slot in the instruction register is currently being

4

executed, and de�nes extra �slots� for handling reset logic, instruction fetching,
etc.

2.6 Control and Random Logic

The random logic portion of the processor interprets the currently executing
instruction, if any, the T-counter, as well as the current state of any bus trans-
action in progress to decide how best to proceed. It can either fetch another
instruction word, advance to the next, delay the current bus transaction until
some external device says it's OK to proceed, etc.

3 Hardware Interface

3.1 Logic Symbol

�����

CLK_I

RES_I

ACK_I

DAT_I

SEL_O(1:0)

VDA_O

VPA_O

CYC_O

STB_O

WE_O

ADR_O(15:1)

DAT_O(15:0)

3.2 Signal Descriptions

The S16X4 complies with Wishbone B3 bus master standards with a 16-bit port
size and 8-bit granularity.

3.2.1 SYSCON Signals

CLK_I. Provides the standard time-base for the processor. All processor state
transitions occur on the rising edge of this signal.

RES_I. When asserted during the rising edge of CLK_I, the processor resets
to its power-on default state, immediately commencing a new instruction
packet fetch. See section 4 for more details.

5

3.2.2 MASTER Signals

ACK_I. If negated upon the rising edge of CLK_I during a read or write
bus transaction, the processor will insert a wait-state, holding the en-
tire processor state as-is. If asserted during a CLK_I rising edge, the
bus transaction completes, thus allowing the processor to make progress.
However, if the processor does not require the use of the bus, namely when
either CYC_O or STB_O are negated, the state of ACK_I will be ig-
nored, allowing the processor to make progress at the CLK_I frequency
regardless of external bus activity.

ADR_O(15:1). This 15-bit bus provides the word address for an external
memory or peripheral to decode. This bus is valid only while STB_O
remains asserted; if STB_O is negated, the value on this bus is unde�ned.

CYC_O. This signal serves as a �ag to external bus arbitration logic that the
S16X4 wishes to use the bus, asserting it when it has data to transfer, and
negating it otherwise. As such, CYC_O quali�es all other bus signals
except for RES_I and CLK_I.

DAT_I(15:0). When reading from external memory or peripherals, the ad-
dressed memory or peripheral puts its data on this bus. This bus must
be valid at least by the time ACK_I is asserted. The processor senses
the state of this bus only when it asserts STB_O and negates WE_O; it
ignores it otherwise.

DAT_O(15:0). When writing to external memory or peripherals, the ad-
dressed memory or peripheral must accept data from this bus. This bus
will remain valid at least until ACK_I is asserted and the following CLK_I
rising edge. The processor will place valid data on this bus only while as-
serting STB_O. Peripherals must never trust the value on this bus when
the processor negates STB_O.

SEL_O(1:0). These signals indicates which byte-lanes are valid. SEL_O(1)
indicates that the processor expects valid data on DAT_I(15:8) or that
the it drives valid data on DAT_O(15:8), while SEL_O(0) does the same
respectively for DAT_I(7:0) and DAT_O(7:0). STB_O quali�es these
signals. Assertion of both signals implies a full 16-bit transfer.

STB_O. This signal quali�es a single bus transfer. As of this writing, the
S16X4 supports neither read-modify-write bus transactions nor burst trans-
actions; thus, the S16X4 maps individual transfers to their own transac-
tions by driving STB_O and CYC_O with the same state for any given
clock cycle. It's important to remember, however, that CYC_O requests
the use of the bus, while STB_O quali�es a single bus transfer. Future
generations of this processor may exploit this semantic of the Wishbone
bus without notice. Thus, device-enable and acknowledgement signals
should be derived from STB_O ∧ CYC_O, not just CYC_O, and cer-
tainly never from STB_O alone.

6

WE_O. If asserted, the current bus transaction is a write cycle (data on
DAT_O(15:0)). If negated, the processor will expect an external periph-
eral or memory to drive data on its DAT_I(15:0) bus. STB_O quali�es
this signal.

VPA_O. Also known as TGA_O(1). When asserted, the address on the bus
refers to a valid program address. This signal will be asserted while the
processor is fetching either an instruction packet or instruction operands.
STB_O quali�es this signal.

VDA_O. Also known as TGA_O(0). When asserted, the address on the bus
refers to some kind of data. If VPA_O is negated, the address corresponds
to data memory or peripherals; otherwise, the fetch is for an instruction
operand. If negated, the fetch must be for an instruction packet. STB_O
quali�es this signal. To summarize:

VPA_O VDA_O Type of Memory Access

0 0 Not possible except when (CYC_O∧STB_O) = 0 as well.
0 1 Data memory access (fetch or store).
1 0 Instruction packet fetch.
1 1 Instruction operand fetch.

3.3 Timing Diagrams

3.3.1 Reset Timing

Reset timing follows standard Wishbone B3 recommendations. For any rising
clock edge, the S16X4 will reset immediately if RES_I becomes asserted, and
will continue to reset for as long as RES_I remains asserted, plus one cycle
thereafter.

7

7654321

cyc_o

stb_o

ack_i

dat_o(15:0)

dat_i(15:0)

sel_o(1:0)

we_o

vda_o

vpa_o

0adr_o(15:1)

res_i

clk_i

3.3.2 Memory Read

Read timing follows standard Wishbone B3 recommendations. For logic that
responds fast enough, single-cycle transactions (as seen in clock cycle 2) are sup-
ported; just make sure the data is valid on the DAT_I inputs no later than the
minimum set-up time to the next rising clock edge.2 For slower devices, or for
those devices which require additional clocking requirements (e.g., synchronous
memories), the ACK_I signal may be negated as long as necessary to insert
wait states, as per cycles 3, 4, and 5.

2Consult the timing reports generated by your Verilog synthesis for these data. Since this
document describes the behavior of a Verilog model, no concrete timing information can be
provided.

8

654321

cyc_o

stb_o

ack_i

dat_o(15:0)

10dat_i(15:0)

sel_o(1:0)

we_o

vda_o

vpa_o

10adr_o(15:1)

clk_i

3.3.3 Memory Write

Write timing follows standard Wishbone B3 recommendations. For logic that
responds fast enough, single-cycle transactions (as seen in clock cycle 2) are
supported. For slower devices, or for those devices which require additional
clocking requirements (e.g., synchronous memories), the ACK_I signal may be
negated as long as necessary to insert wait states, as per cycles 3, 4, and 5.
Observe that VPA_O will never assert during a write cycle.

9

654321

cyc_o

stb_o

ack_i

10dat_o(15:0)

dat_i(15:0)

sel_o(1:0)

we_o

vda_o

vpa_o

10adr_o(15:1)

clk_i

3.3.4 Instruction Fetch Timing

Instruction fetches occur by issuing memory read cycles to program space (VPA=1,
VDA=0; see cycles 2, 6, and 7). Depending on the instructions fetched, between
zero and four execution cycles occur, whereby the state of the processor bus in-
dicates program operand fetches (VPA=1, VDA=1; see cycles 3, 4, and 8), data
memory reads (see cycles 9 and 11) and writes (see cycle 5). The following
timing diagram shows a sample trace with no wait states, involving three in-
struction word fetches and their subsequent instruction execution cycles and
e�ects. Observe how instructions which operate exclusively on the parameter
stack don't require external memory access, and so release the bus completely
(see cycle 10). Also observe how an instruction word consisting entirely of NOP
instructions results in an immediate fetch of the subsequent instruction word
(see cycles 6 and 7).

Calculating the number of cycles an instruction word takes follows a fairly
simple formula. If we let n equal the number of instructions in an instruction
word, then that word will take n+1 cycles to execute (remembering to include
the fetch cycle as well). Note that trailing NOP instructions do not count as
instructions, since the S16X4 will fetch the next instruction word when it sees
all subsequent instructions do nothing productive. Leading NOPs, however, do
count.

10

121110987654321

cyc_o

stb_o

ack_i

0200dat_o(15:0)

0011D02B1A420000D02B000211B0dat_i(15:0)

1010sel_o(1:0)

we_o

vda_o

vpa_o

D02AA00AA008A006D02AA004A002A000adr_o(15:1)

clk_i

4 Initialization

After reset, the S16X4 fetches its �rst instruction at address $0000. The state
of the parameter stack remains unde�ned until explicitly initialized in software.

5 Instruction Set

Unless stated otherwise, the S16X4 will always consume an appropriate number
of elements from the parameter stack prior to generating its results.

5.1 NOP (0)

Function

X := X

Y := Y

Z := Z

P := P

Description

Takes no action for one execution cycle.

11

5.2 LIT (1)

Function

X := Y

Y := Z

Z := WordAt(P)

P := P+2

Description

Fetches the word pointed at by the program counter, placing it onto the param-
eter stack. The program counter automatically increments to the next word.

5.3 FWM (2)

Function

X := X

Y := Y

Z := WordAt(Z∧$FFFE)
P := P

Description

Fetches a word from memory. Z must hold the address to fetch from; note that
bit 0 of the pointer is ignored. After completing the bus transaction, Z will
contain the word stored at that location.

5.4 SWM (3)

Function

WordAt(Z∧$FFFE) := Y

X := X

Y := X

Z := X

P := P

Description

Stores the contents of Y into the word addressed by Z. Note that bit 0 of Z is
ignored.

5.5 ADD (4)

Function

X := X

12

Y := X

Z := Z+Y
P := P

Description

Adds two words on the parameter stack, yielding a single result.

5.6 AND (5)

Function

X := X

Y := X

Z := Z∧Y
P := P

Description

Computes the bit-wise AND of Y and Z, yielding a single result.

5.7 XOR (6)

Function

X := X

Y := X

Z := Z⊕Y
P := P

Description

Computes the bit-wise exclusive-OR of Y and Z, yielding a single result.

5.8 ZGO (7)

Function

X := X

Y := X

Z := X

P := (Y6=0)→P ; Z

Description

If Y holds a non-zero value, continue processing with the next instruction in the
current instruction word. Otherwise, jump to the address contained in Z.

13

5.9 FBM (A)

Function

X := X

Y := Y

Z := ZeroExtend(ByteAt(Z))

P := P

Description

Fetches the byte contained at the address in Z. Note all 16-bits of Z comprise
the byte address.

5.10 SBM (B)

Function

ByteAt(Z) := Y∧$00FF
X := X

Y := X

Z := X

P := P

Description

Stores the byte held in Y(7:0) at the memory location referenced by Z. Note all
16-bits of Z comprise the byte address.

5.11 GO (E)

Function

X := X

Y := X

Z := Y

P := Z

Description

Unconditionally jumps to the address in Z. The processor discards the current
instruction register contents, causing an immediate fetch for a new instruction
word.

5.12 NZGO (F)

Function

X := X

14

Y := X

Z := X

P := (Y66=0)→Z ; P

Description

If Y holds a non-zero value, branch to the address in Z. Otherwise, continue
with the next instruction in the currently fetched instruction word, if any.

6 Roadmap

6.1 Support for Interrupts

When working with multitasking or otherwise with event-driven external stim-
uli, support for interrupts proves valuable. The S16X4 presently lacks inter-
rupts; however, future revisions to the processor will add support for them.

Preliminarily speaking, I anticipate using address $0004 as the interrupt
handler entry point. For this reason, good S16X4 coding practices suggests
using a LIT/GO combination at location $0000, like so:

ORG $0000

XREF cold_boot_entry_point

XREF interrupt_handler_entry_point

; $0000 - reset entry point

LIT cold_boot_entry_point

GO

; $0004 - interrupt entry point

LIT interrupt_handler_entry_point

GO

; ...

Saving application context to memory, such as will be necessary to support
context-switching in any multitasking environment, will require at least two
additional parameter stack registers. For this reason, any S16X4 model that
supports interrupts will likely support three extra stack registers, U, V, and W,
behind the current X, Y, and Z. This should give su�cient room to either ignore
the contents of X, Y, and Z completely3, or enough room to save and restore
application X, Y, and Z values to/from memory using any e�ective address
computation you choose.

3For this approach to work, the interrupt handler will need to be proven to never use more
than three stack elements under any circumstances.

15

6.2 32- or 64-Bit Successors

Contemporary applications work extensively with graphics data, like it or not.
The freedom and �exibility of a fully bitmapped display, however, is paid for
in memory consumed by a frame bu�er. A simple 640×480, monochrome
bitmapped display consumes 38KiB of memory; more than half that addressible
by the S16X4. For a true-color display at the same resolution, a framebu�er will
consume a minimum of 921 600 bytes of storage. Additionally, the instruction
set for the S16X4 lacks many useful primitives, including but not limited to
multiplication, bit-shifts, etc. To overcome these limitations in a performant
manner often involves the use of a look-up table of some kind.

To that end, working with a larger address space motivates the consideration
for wider data paths inside the processor core itself. A hypothetical 32-bit
variant of the S16X4 would have several useful characteristics:

• It can pack 8 4-bit instructions per instruction word fetched. This matches
nicely the average basic block length of 8 instructions.4 This translates
to a small yet measurable performance increase, particularly useful inside
inner-loops, for the microprocessor will need to issue fewer instruction
fetches for the same amount of work done. It also reduces the size of a
program by roughly halving the number of instruction words fetched for a
given number of operands fetched. It decreases the best-case instruction
delays from 1.250 cycles to 1.125 cycles.

• If we widen the instructions to 5 bits, we can add support for many missing
features, such as an internal return stack for fast subroutine support, bit-
shift operators, multiply-step instructions, etc. We pay for this by packing
fewer instructions per instruction word, however; with 5-bit opcodes, we
can reliably pack only 6 5-bit opcodes. Good code density can still be
expected, but not as good as having 8.

• Support for a �at 4GiB address space, providing more than enough storage
space for large bitmapped displays or extensive look-up tables.

A 64-bit variant of the architecture may not o�er any useful advantage, again
excepting for the case of larger address space. This poses an interesting design
challenge: does one simply widen everything to 64-bits including the instruction
word, or can one be made which retains an essentially 32-bit instruction word
(for the purposes of best code density) while retaining an essentially 64-bit
data word width? If the latter approaches are taken, how do we handle 64-bit
literals in an otherwise 32-bit instruction stream? A 64-bit Steamer adaptation
will require further research before any predictions on its characteristics can be
made.

4http://piotrbania.com/all/articles/bb_instr_stats.html , accessed 2012-Aug-23.

16

6.3 Macro-instruction Execution

Many instruction patterns emerge as you become more familiar with assembly-
level programming of the S16X4 processor. For example, pushing a literal ad-
dress then executing a GO instruction, takes two cycles to execute, not including
instruction word fetches. It's conceivable, then, that the processor can recognize
this sequence of instructions (opcodes 1, E, in that order) and implement an
inline jump behavior in a single cycle. Conditional branches most likely would
bene�t the most from this optimization, as they're most likely to be found inside
loop bodies.

Fetching a word from memory and using it to operate on the parameter
stack happens quite frequently. For example, to add two variables in memory
together, and store it in a third, you might use this code:

LIT var1

FWM

LIT var2

FWM

ADD

LIT var3

SWM

The �rst and perhaps most obvious optimization involves the processor recog-
nizing a fetch/operate pattern (in this case, opcodes 2, 4 in that order). The
processor, in this case, would have a modi�ed data path inside the ALU cir-
cuitry, allowing Z to appear on the address bus, while the DAT_I signals route
directly to the ALU Z input. In this way, fetching a value and adding, ANDing,
or XORing can be accomplished in a single cycle instead of two.

You might think it'd be worth optimizing LIT/FWM combinations since
they happen frequently as well. However, doing so continues to require two bus
cycles (one to fetch the address, and one to fetch what's at that address), so the
net result is a wash.

Since it'd generally prove di�cult to recognize instruction sequences across
instruction word boundaries, this optimization would make more sense on wider
Steamer architectures (32-bit or larger), where greater opportunities for larger
patterns exist to be recognized.

7 Original Steamer16 Announcement

The following e-mail message has been edited only so as to �t the typesetting
limitations used in this data-sheet.

To: <MISC>

Subject: 16-bit stack machine implemented on a Cypress CY37128 CPLD

From: "Myron Plichota" <myron.plichota@xxxxxxxxxxxx>

Date: Fri, 31 Dec 1999 11:01:53 -0500

17

I have developed a 16-bit zero-operand stack machine that I call

Steamer16. It fits on the Cypress CY37128 CPLD in an 84-pin PLCC

package. Using the 125 MHz speed grade, wirewrapped operation at

20 MHz is predicted by the simulator.

Unfortunately, a dual-stack Forth architecture doesn't fit in the

128 macrocells available. Consequently the design isn't a true Forth

chip, but it is a zero-operand stack machine nonetheless. In the

future I would like to fit a true Forth architecture to one of the

CPLD or FPGA architectures that include on-chip RAM blocks for the

stacks.

Being fearfull of actually fitting the design to the target device,

the instruction set and architecture was minimized to a ridiculous

extent, and it indeed just barely fits. In the future, more elaborate

implementations may be implemented on larger devices not suitable for

hobby projects due to exotic packaging. For this reason, the document-

ation contains nerdy phrases typical of growth-path specifications,

but don't let that distract you from understanding the Steamer16 init-

ial implementation that exists today.

I plan to design a companion chip, also using the CY37128 to provide

a timer, parallel I/O, a funnel shifter, memory decoder/wait state

logic, and glue logic for a 16-bit 3-port multiplier/accumulator.

I think it might be bad netiqette to attach the 40Kbyte zip file I

have available because of the load on the MISC server. It contains

the assembler, JEDEC file, and side documentation. Interested parties

should e-mail me for a copy. Please withold any technical questions

until having read the documentation package.

BTW, I am well aware of the shortcomings of the Steamer16 implement-

ation, so please don't take me to task over it. My defense is: 1) it

fits on a low-cost CPLD in a package hobbyists can deal with 2) com-

panion chips can alleviate some of the shortcomings 3) at 20 MHz, it

can clunk through inelegant code sequences quickly (sic)

Following is an excerpt from the assembler documentation (STASM.TXT),

part of the zipped package.

Happy New Millenium, MISCers! Myron Plichota

**

Programming Model:

18

The Steamer architecture consists of a program counter (P) and a 3-

deep RPN evaluation stack (TOP, 2ND, 3RD). P is cleared on reset.

The stack registers are undefined until loaded under program control.

There is no program status word or carry flag. P addresses instruction

groups, not necessarily individual instructions. Steamer architecture

mandates operations on natural size words without forbidding other

data types.

Steamer16 implements the Steamer architecture in 16 bits, with no

enhancements.

Stack diagrams:

Stack diagrams are used to describe instruction behavior by showing

both the inputs on the stack and the results in a concise notation.

The input list is on the left-hand side of the "--" before/after

separator, the results are on the right-hand side. eg. (3RD 2ND

TOP -- 3RD 2ND TOP)

The input list shows the proper order of input entry in left-to-

right order. The input list shows only the requisite stack entries.

The output list shows all three entries. The symbols x, y, and z,

are used to denote the original values of any surviving independent

stack entries.

Instruction Descriptions: opcodes are in hexadecimal order

NOP, {0} (-- x y z) no operation

lit, {8} (-- y z data) P++ read memory at P, increment P

@, {9} (addr -- x y data) read memory at addr

!, {A} (data addr -- x x x) write data to memory at addr

+, {B} (n1 n2 -- x x n1+n2) add 2ND to TOP

AND, {C} (n1 n2 -- x x n1&n2) and 2ND to TOP

OR, {D} (n1 n2 -- x x n1|n2) or 2ND to TOP

XOR, {E} (n1 n2 -- x x n1^n2) exclusive-or 2ND to TOP

zgo, {F} (flg addr -- x x x) if flg equals 0 then jump to addr

else continue

Notes:

1) 3RD is sticky. When the stack shrinks it holds its value.

2) lit, is the only instruction that grows the stack,

destroying 3RD.

3) The Steamer16 instruction set contains no additions to the

Steamer required instruction set.

19

4) Opcodes {1..7} are implemented as no operation and are not

part of the Steamer required instruction set.

Instruction Timing:

Steamer16 executes all instructions in 1 clock cycle. A quartet

fetch cycle is required when the current quartet has finished

executing or a jump is taken. For sequential execution, quartets

are fetched and executed in 5 clocks.

Software delays are deterministic and may be counted from the

fetch of any quartet.

The adder for the +, instruction is implemented as a cascade of

8 2-bit ripple-carry adder cells. Running on a 125 MHz part, the

maximum clock frequency is 20 MHz for unambiguous results.

Instruction timing is not mandated in the Steamer architecture.

20

