VHDL Design of eP32 Microprocessor

Silicon Valley Forth Interest Group

C. H. Ting

August 28, 2010
FORTH Microprocessor

- Minimal instruction set:
 - Designs scalable from 16 to 64 bits
- Dual stack architecture:
 - Return stack for nested return addresses
 - Data stack for nested parameter lists
- Compute before execution:
 - All instructions executes in 1 clock cycle
- Minimized subroutine call and returns:
 - Support modular and structured programs
 - Seamless integration of high level programming language
eP32 CPU Core

- 32 bit address and data busses
- 25 powerful instructions extensible to 64 instructions
- 32 level return stack
- 33 level data stack
- Single cycle execution of all instructions
- Natural 5 instruction pipeline
eP32 CPU Core

- CPU architectural Overview
- ALU and data processing chain
- Program and data memory address multiplexer
- Return address processing chain
- Instruction execution finite state machine
ALU and Data Processing Chain

ALU

T

S

MUX

T

S

Data Stack
Program and Data Memory Mux

- T
- X+1
- ((T+S).X)/2
- (T.X)/2
- ((T+S).X)*2

- P+1
- (P.I)
- R
- Interrupt

X

PMUX

XMUX

Address MUX

Address Bus
Return Address Processing Chain
Instruction Execution FSM

- Data Bus
- I
 - I(29,24)
 - I(23,18)
 - I(17,12)
 - I(11,6)
 - I(5,0)
- IMUX
- code
- DECODER
- slot
- COUNTER
 - slot1
 - clock
 - reset
Instruction Execution Timing

Execution Cycles of Short Instructions

Slot 0: Read
Slot 1: Execute
Slot 2: Execute
Slot 3: Execute
Slot 4: Execute
Slot 5: Read

Read and execute 5 short instructions

Execution Cycles of Long Instructions

Slot 0: Read
Slot 1: Execute
Slot 2: Execute
Slot 3: Execute
Slot 4: Execute
Slot 5: Execute
Slot 0: Read
Slot 1: Execute
Slot 2: Read
Slot 3: Execute
Slot 4: Execute
Slot 5: Execute

Read and execute 5 short instructions

Read and execute 1 long instruction

Read and execute 5 short instructions
eP32 Instruction Set

- 25 orthogonal instructions
- Encoded in 6 bit fields
- Easily expandable to 64 for specific applications
- 4 Types of instructions:
 - 6 Program transfer instructions
 - 5 Memory access instruction
 - 9 ALU instructions
 - 8 Register and stack instructions
Program Transfer Instructions

- BRA Branch always
- RET Return from subroutine
- BZ Branch on zero
- BC Branch on carry
- CALL Call subroutine
- NEXT Loop until R is 0
Memory Access Instructions

- **LD**: Load from memory
- **LDP**: Load from memory and increment X register
- **LDI**: Load immediate value
- **ST**: Store to memory
- **STP**: Store to memory and increment X register
ALU Instructions

- ADD Add S to T
- AND AND S to T
- XOR XOR S to T
- COM Complement T
- SHR T shift to right
- SHL T shift to left
- RR8 T rotate right by 8 bits
- MUL Multiplication step
- DIV Division step
Register and Stack Instructions

- **PUSHS**: Duplicate T to S
- **POPS**: Pop S to T
- **PUSHR**: Push T to R
- **POPR**: Pop R to T
- **OVER**: Duplicate S over T
- **LDA**: Load X to T
- **STA**: Store T to X
- **NOP**
ep32q.vhd contains the complete source code in VHDL

eP32 was implemented on these FPGA’s:
 - Xilinx Virtex II
 - Actel ProASIC
 - Altera Stratix II
Quartus Software System

- Altera Stratix II FPGA chip for design and development
- eP32 system integrates:
 - eP32 CPU
 - RAM memory
 - UART
 - GPIO
- NIOS II Board for testing
eP32 Forth System

- CPU core
- 32 levels of data and return stacks
- 4K words of RAM
- UART
- 16 bit GPIO
- 50/16 MHz clock
Synthesis Statistics

- 3368 Logic elements
- 2473 Register
- 131,072 Memory bits
- Synthesis time 5:55 minutes
eForth Operating System

- Subroutine thread model
- Word addressing
- Command interpreter
- High level command compiler
- Debugging utilities
eForth Metacompiler

- Based on F# eForth system
- Assembler
- Kernel
- Interpreter/Compiler
- Programming tools
- Simulator
Demonstrations

- Power-up NIOS II board
- Interactive eForth system
- Control LED indicators
- Operate switches
- Download and compile source code
Thank you very much!