myForth — mods for me

. SVFIG 27-Jul-2013

. Glen Worstel

- Retired engineer, embedded systems programmer,

— IT worker, applications programmer, pilot, world-
cruising sailor, ...

- HP, Seagate Technology, UCSC, consultant
. Seeking advice from experts on mods to Forth

- To use for embedded systems.

— Not for applications programming, better tools
available.

Because we have limited time, and
because myForth is for me, Please
don't tell me:

. It 1S not standard.
. It has always been done that way.
. | won't be able to use other's code.

. | won't be able to publish.
. You won't be able to use myForth.

. Please do give technical reasons why it is
not a good idea (if it isn't).

| am a sort of a newbie to Forth

. Toyed with it some years ago.
. Never wrote a complete app.

. Did write parts of a Forth system

- For many different micros. ‘»

- Have created many small
embedded systems in
assembly language and C
for many different micros.

|deas to discuss

. 'OK' needs to have proper <crlf> around it.
. 'base' needs to go away.
. 'do’ needs to have proper limits.

. words should have stack effects known at
compile time.

. core words should not be able to be redefined.

. White space should be <space>, <tab>, <crlf>.

More Ideas...

. <cntl-c> or something needs to break out of a

loop.

. printing words could have consistent syntax.

. should implementations be hosted (on a PC)?

. merits of omitting t

. others e.g. vocabu
an opinion.

ne interpreter?

ary, don't know enuf to have

Why not Forth?

. Outrageous claims

- Smaller than assembly
- Faster than C

- Virtual memory

— File system

- Don't need floating point

. See 'Starting Forth' for a
good argument about
why we DO need F.P.

. But — that seems mostly
to be in the distant past

Why not Forth?
Reputation as “write-only” language.

include<stdio.h>// .IOCCC Fluid-
include <unistd.h> //2012 _Sim!
include<complex.h> //|| || , . IOCCC-
define h for(x=011; 2012/*
*/-1>x ++;)b [x1//-" winner
define f(p,e) for(/*
*/p=a; e, p<r; p+=5)//
define z(e,1i) f(p,p/*
*/[i]=e) f(g,w=cabs (d=*p- *q)/2- 1)if (0 < (x=1- w))pl[il+=w*///

double complex a [97687] ,*p,*q ,*r=a, w=0,d; int x,y;char b/* ##
*/[6856]="\x1b[2J" "\xlb" "[1;1H ", *o= b, *t; int main () {/** #4#
/for(;0< (%= getc (stdin));)w=x >107232< X224 [/
5/ *r++ =w,r]= w+l,*r =r[5]= x==35, r+=9:0 ,W=I/* #4
#H# */: (x= w+2);; for(;; puts(o),o=b+ 4){z(p [11*/* #+#
/9,2) w;z (G, 3) (d(3-p[2] -ql2]) *P+pl4 1*V=/*
*/ql4] *V)/pl[2]1:h=0 ;f(p, (t=b+10 +(x=*p *T)+/* #4#
*/80%(y=*p/2) ,*p+=p [4]+=p [31/10 *!p[l])) x=0/*
$ox) <=x §6x<79 &8&0<=y&&y<23?1[1 [*t|=8 ,t]|=4,t+=80]=1/* ##
#H */, *t [=2:0; h=" ""=_[//,\N\" "IN_" "N\/\x23\n" [x/** ##
/%80- 9?x [b] :16]1;;usleep(12321) ;lreturn 0;}/ #4#
#H#4 #H4#

R R i
FRpS A Y/

We can do better.

Why Forth?

. Arm Cortex MO-M3-M4-M4F

- Becoming a world standard

- Lots of vendors

- Cheap, powerful

- Slowly becoming hobby-friendly

. BUT ...

— Next slide

Why Forth?

. Writing and debugging assembly code on
MSP430 Is pretty easy (my experience)

. Writing and debugging forth (Mecrisp) on
MSP430 is even easier! (my experience)

. Compiling and debugging ¢ and/or assembly on
Cortex Is drudgery.

'OK' needs to have proper <crlf>
around It.

. Shell output; easy to read; there Is a prompt
followed by user input, then there is the
computer's output, then there Is another
prompt.

. glen@dell ~/Documents/svfig $ Is -al

. total 1056

. drwxr-xr-x 2 glen glen 4096 Jul 26 11:32.

. drwxr-xr-x 14 glen glen 4096 Jul 26 11:08 ..

. rw-r--r-- 1glenglen 68 Jul 26 11:32 .~lock.myForth.odp#
. -fw-r--r-- 1 glen glen 1063766 Jul 26 11:32 myForth.odp

. -fw-r--r-- 1 glenglen 2497 Jul 26 11:05 svfigTalk.txt

. glen@dell ~/Documents/svfig $

'base’ needs to go away.

. Use $nnn (hex)

. Use %nnn (binary)
. Use nnn (decimal) or #nnn if base exists

. Use nrnnn (any base, the first n is the base In
decimal)

. Next slide...

BASE ..

What is the score?

You need to carefully watch the entire game to
know.

Or, look at the scoreboard.

i o ~.

27 foobar (n—) whw shuterstock.com - 3699058
foobar gets executed n times.
What is n?
Nobody knows. It is not necessarily 27.
decimal base @ .
oh, ya, now | know. | looked at the scoreboard.

(oops — now the score has been changed
(maybe) by looking at it.

Meanings should be clear and

normal for humans.
. C:010=8
- WTF? (This error occurs in many languages)

- For math and finance, just plain wrong.

- Humans can get used to anything (but should not need to).
. Forth: 010 = ? (happily does not repeat above)
— Anything. Depends on base.

- May also depend on whether 010 or 10 was defined to
mean something else.

— 42 constant 010

. Still don't know, depends on base.

'do’ needs to have proper limits.

. Programmers are not entirely human. :)

. We should try to make our languages human-
like.

Two couples gettlng marrled

4\ r‘;

. getMarried 1 do cr

. person " 1.
"said | do." loop cr;

4 getMarried
person 1 said | do.
person 2 said | do.
person 3 said | do.
ok.

OOPS —
one didn't say “| do”.
Are they married? NOT “ok™

How many sheep do you have?

Forth, Python, etc: I'll count. 0, 1, 2. OK, | have
two sheep.

Lua: I'll count. 1, 2, 3. OK, | have 3 sheep.

Human: Same as Lua.

Words should have stack effects
known at complile time.

. (eg, get rid of "?DUP")

. (n—=nn)or(0-0)

. Any others?

. Why?

— Important for optimization.

— Consistent behavior with other words.

- Not very difficult to avoid it.
- I don't like it.

Core words should not be able to be
redefined.

Forth on modern micros (more flash than ram) should have 3
areas for code to be stored:

— 'core' flash, must re-compile forth to change.
— 'user flash, for new definitions that are pretty solid.
- RAM, for words under development.
. Core words are supposed to be solid and well-defined.
Changing them is simply a bad idea.

. Arbitrary words in 'user' flash are sometimes difficult to erase,
so maybe redefining them should be OK. Flash is usually
erasable only in blocks. Erasing en masse should be ok.

. Words in RAM are easily forgotten.

White space should be <space>,
<tab>, <crlf>.

Will this compile? (Python)
Import re
for test_string in ['555-1212", 'ILLEGAL:
if re.match(r'"\d{3}-\d{4}$', test_string):
print test_string, 'is a valid'
else:
print test_string, 'rejected'
Nobody knows — is the indention spaces, tabs, or a mixture?
Will this compile? (Forth)
1 2+ . \addemup
Nobody knows...

More Ideas...

. <cntl-c> or something needs to break out of a
loop.

. printing words could have consistent syntax.

- .. u.urdr.sud.d. .rs

. should implementations be hosted (on a PC)?
— Source and docs must be on PC anyway.

. merits of omitting the interpreter?

. others e.g. vocabulary, don't know enuf to have
an opinion.

| forgot what this was supposed to represent. If it
walks like a duck and quacks...
Forth needs to have words that are easy to
remember for my overloaded brain.

After-Talk Ideas

. Thank you all for the excellent comments.

. I've decided that | do not yet have enough experience
and knowledge to modify core forth.

. Itis easy to do some of my ideas — define new printing
words, for example, without modification.

. If I change anything it will be 'OK' — the only thing that |
don't want to live with.

. Un-thanks to the rude person who yelled irrelevant
things in my face during my presentation — everyone
else was polite.

Thank you for your ideas.

. | will probably make a modified version of
Mecrisp Forth.

— It will run on Cortex MO.

— It will have the mods you did not shoot down.
- M3 is much better and only a bit more expensive.
- MO has hobby-friendly packages.

- MO has some peripherals not available in M3.

. Cheers, more info at next talk. Bye... gw.

