
myForth – mods for me

● SVFIG 27-Jul-2013

● Glen Worstell

– Retired engineer, embedded systems programmer,

– IT worker, applications programmer, pilot, world-

cruising sailor, ...

– HP, Seagate Technology, UCSC, consultant

● Seeking advice from experts on mods to Forth

– To use for embedded systems.

– Not for applications programming, better tools

available.

Because we have limited time, and

because myForth is for me, Please

don't tell me:

● It is not standard.

● It has always been done that way.

● I won't be able to use other's code.

● I won't be able to publish.

● You won't be able to use myForth.

● Please do give technical reasons why it is

not a good idea (if it isn't).

I am a sort of a newbie to Forth

● Toyed with it some years ago.

● Never wrote a complete app.

● Did write parts of a Forth system

– For many different micros.

– Have created many small

embedded systems in

assembly language and C

for many different micros.

Ideas to discuss

● 'OK' needs to have proper <crlf> around it.

● 'base' needs to go away.

● 'do' needs to have proper limits.

● words should have stack effects known at

compile time.

● core words should not be able to be redefined.

● white space should be <space>, <tab>, <crlf>.

More ideas...

● <cntl-c> or something needs to break out of a

loop.

● printing words could have consistent syntax.

● should implementations be hosted (on a PC)?

● merits of omitting the interpreter?

● others e.g. vocabulary, don't know enuf to have

an opinion.

Why not Forth?

● Outrageous claims

– Smaller than assembly

– Faster than C

– Virtual memory

– File system

– Don't need floating point

● See 'Starting Forth' for a

good argument about

why we DO need F.P.

● But – that seems mostly

to be in the distant past

Why not Forth?

Reputation as “write-only” language.

include<stdio.h>// .IOCCC Fluid-

include <unistd.h> //2012 _Sim!_

include<complex.h> //|||| ,____. IOCCC-

define h for(x=011; 2012/*

*/-1>x ++;)b[x]//-' winner

define f(p,e) for(/*

*/p=a; e,p<r; p+=5)//

define z(e,i) f(p,p/*

*/[i]=e)f(q,w=cabs (d=*p- *q)/2- 1)if(0 <(x=1- w))p[i]+=w*///

double complex a [97687] ,*p,*q ,*r=a, w=0,d; int x,y;char b/* ##

*/[6856]="\x1b[2J" "\x1b" "[1;1H ", *o= b, *t; int main (){/**

/for(;0<(x= getc (stdin));)w=x >10?32< x?4[/

*/*r++ =w,r]= w+1,*r =r[5]= x==35, r+=9:0 ,w-I/*

/:(x= w+2);; for(;; puts(o),o=b+ 4){z(p [1]/*

/9,2) w;z(G, 3)(d(3-p[2] -q[2]) *P+p[4]*V-/*

*/q[4] *V)/p[2];h=0 ;f(p,(t=b+10 +(x=*p *I)+/*

/80(y=*p/2),*p+=p [4]+=p [3]/10 *!p[1]))x=0/*

*/ <=x &&x<79 &&0<=y&&y<23?1[1 [*t|=8 ,t]|=4,t+=80]=1/*

*/, *t |=2:0; h=" '`-.|//,\\" "|_" "\\/\x23\n"[x/**

/%80- 9?x[b] :16];;usleep(12321) ;}return 0;}/

####

###

**###*/

We can do better.

Why Forth?

● Arm Cortex M0-M3-M4-M4F

– Becoming a world standard

– Lots of vendors

– Cheap, powerful

– Slowly becoming hobby-friendly

● BUT …

– Next slide

Why Forth?

● Writing and debugging assembly code on

MSP430 is pretty easy (my experience)

● Writing and debugging forth (Mecrisp) on

MSP430 is even easier! (my experience)

● Compiling and debugging c and/or assembly on

Cortex is drudgery.

'OK' needs to have proper <crlf>

around it.

● Shell output; easy to read; there is a prompt

followed by user input, then there is the

computer's output, then there is another

prompt.

● glen@dell ~/Documents/svfig $ ls -al

● total 1056

● drwxr-xr-x 2 glen glen 4096 Jul 26 11:32 .

● drwxr-xr-x 14 glen glen 4096 Jul 26 11:08 ..

● rw-r--r-- 1 glen glen 68 Jul 26 11:32 .~lock.myForth.odp#

● -rw-r--r-- 1 glen glen 1063766 Jul 26 11:32 myForth.odp

● -rw-r--r-- 1 glen glen 2497 Jul 26 11:05 svfigTalk.txt

● glen@dell ~/Documents/svfig $

'base' needs to go away.

● Use $nnn (hex)

● Use %nnn (binary)

● Use nnn (decimal) or #nnn if base exists

● Use nrnnn (any base, the first n is the base in

decimal)

● Next slide...

BASE ball

What is the score?

You need to carefully watch the entire game to

know.

Or, look at the scoreboard.

27 foobar (n –)

foobar gets executed n times.

What is n?

Nobody knows. It is not necessarily 27.

decimal base @ .

oh, ya, now I know. I looked at the scoreboard.

(oops – now the score has been changed

(maybe) by looking at it.

Meanings should be clear and

normal for humans.
● C: 010 = 8

– WTF? (This error occurs in many languages)

– For math and finance, just plain wrong.

– Humans can get used to anything (but should not need to).

● Forth: 010 = ? (happily does not repeat above)

– Anything. Depends on base.

– May also depend on whether 010 or 10 was defined to

mean something else.

– 42 constant 010

● Still don't know, depends on base.

'do' needs to have proper limits.

● Programmers are not entirely human. :)

● We should try to make our languages human-

like.

Two couples getting married

: getMarried 1 do cr

." person " i .

." said I do." loop cr ;

4 getMarried

person 1 said I do.

person 2 said I do.

person 3 said I do.

ok.

OOPS –

one didn't say “I do”.

Are they married? NOT “ok”

How many sheep do you have?

Forth, Python, etc: I'll count. 0, 1, 2. OK, I have

two sheep.

Lua: I'll count. 1, 2, 3. OK, I have 3 sheep.

Human: Same as Lua.

Words should have stack effects

known at compile time.

● (eg, get rid of '?DUP')

● (n – n n) or (0 – 0)

● Any others?

● Why?

– Important for optimization.

– Consistent behavior with other words.

– Not very difficult to avoid it.

– I don't like it.

Core words should not be able to be

redefined.
● Forth on modern micros (more flash than ram) should have 3

areas for code to be stored:

– 'core' flash, must re-compile forth to change.

– 'user' flash, for new definitions that are pretty solid.

– RAM, for words under development.

● Core words are supposed to be solid and well-defined.

Changing them is simply a bad idea.

● Arbitrary words in 'user' flash are sometimes difficult to erase,

so maybe redefining them should be OK. Flash is usually

erasable only in blocks. Erasing en masse should be ok.

● Words in RAM are easily forgotten.

White space should be <space>,

<tab>, <crlf>.
Will this compile? (Python)

import re

for test_string in ['555-1212', 'ILLEGAL']:

if re.match(r'^\d{3}-\d{4}$', test_string):

print test_string, 'is a valid'

else:

print test_string, 'rejected'

Nobody knows – is the indention spaces, tabs, or a mixture?

Will this compile? (Forth)

1 2 + . \ add em up

Nobody knows...

More ideas...

● <cntl-c> or something needs to break out of a

loop.

● printing words could have consistent syntax.

– . .” u. u.r d.r .s ud. d. .rs

● should implementations be hosted (on a PC)?

– Source and docs must be on PC anyway.

● merits of omitting the interpreter?

● others e.g. vocabulary, don't know enuf to have

an opinion.

I forgot what this was supposed to represent. If it

walks like a duck and quacks...

Forth needs to have words that are easy to

remember for my overloaded brain.

After-Talk Ideas

● Thank you all for the excellent comments.

● I've decided that I do not yet have enough experience

and knowledge to modify core forth.

● It is easy to do some of my ideas – define new printing

words, for example, without modification.

● If I change anything it will be 'OK' – the only thing that I

don't want to live with.

● Un-thanks to the rude person who yelled irrelevant

things in my face during my presentation – everyone

else was polite.

Thank you for your ideas.

● I will probably make a modified version of

Mecrisp Forth.

– It will run on Cortex M0.

– It will have the mods you did not shoot down.

– M3 is much better and only a bit more expensive.

– M0 has hobby-friendly packages.

– M0 has some peripherals not available in M3.

● Cheers, more info at next talk. Bye... gw.

