
ooeForth

SVFIG

Chen-Hanson Ting
June 26, 2021

Java Forth

◼There were several Forth
implemented in Java.

◼There was even an Java eForth
implemented by Michael A. Losh
in 1997.

◼They were all very complicated
beyond my comprehension.

Java Eforth
◼I wanted a simple Java Forth

modeled after jeforth614.
◼Every Forth word should be an

object.
◼Java is a better host to Forth than

JavaScript.
◼ooeForth is a truly object oriented

Forth.

ooeEforth
◼There are only two types of

words:
◼Primitive words

◼Colon words
◼All system words are primitive

objects.
◼All user defined words are colon

objects.

ooeForth

◼A single class Code constructs all
Forth words as objects.

◼A single method with a giant
HashMap executes all primitive
objects.

◼nest() method executes colon
objects.

ooeForth

◼All colon objects contain linear
object lists.

◼All colon objects are executed by
this very simple inner interpreter:
nest(){for(var w:pf) w.xt();}

◼Great appreciation to Shawn Chen
and Brad Nelson.

Eforth112 Object
◼Stack: value list
◼Rstack: value list
◼Dictionary:

◼Primitive list + Colon list
◼Method:

◼main(), Outer Interpreter
◼Class Code constructs all objects

Class Code
◼It is an one-size-fits-all object

constructor.
◼It constructs all primitive

objects.
◼The Outer Interpreter uses it to

compile all colon objects
defined by user.

Primitive Objects
◼nf: name
◼token: id
◼pf
◼pf1
◼pf2
◼qf
◼ immediate: flag
◼method: xt(name)

Colon Objects
◼nf: name
◼token: id
◼pf: object list
◼pf1
◼pf2
◼qf
◼ immediate
◼method: next()

Literals
◼There are data literals in an

object list.
◼All literals are colon objects

which has embedded literals:
◼Constants

◼Variables

◼Arrays

◼Strings

Constant Objects
◼nf: name
◼token: id
◼pf: docon
◼pf1
◼pf2
◼qf
◼ immediate
◼method: next()

docon Objects
◼nf: docon
◼token: id
◼pf:
◼pf1
◼pf2
◼qf: value
◼ immediate
◼method: xt(docon)

dovar Objects
◼nf: dovar
◼token: id
◼pf:
◼pf1
◼pf2
◼qf: value
◼ immediate
◼method: xt(dovar)

Array Objects
◼nf: dovar
◼token: id
◼pf:
◼pf1
◼pf2
◼qf: value list
◼ immediate
◼method: xt(dovar)

String Objects
◼nf: name
◼token: id
◼pf: dostr[dotstr]
◼pf1
◼pf2
◼qf
◼ immediate
◼method: next()

dostr Objects
◼nf: dostr[dotstr]
◼token: id
◼pf:
◼pf1
◼pf2
◼ literal: string
◼ immediate
◼method: xt(dostr[dotstr])

Usage: $” xxx” , .” yyy”

Control Structures
◼There are branches and loops in

an object list.
◼All control structures are colon

objects with alternate paths:
◼if pf else pf1 then

◼begin pf again

◼begin pf until

◼begin pf while pf1 repeat

◼for pf aft pf1 then pf2 next

IF Object
◼nf: name
◼token: id
◼pf: branch
◼pf1
◼pf2
◼qf
◼ immediate
◼method: next()

branch Object

◼nf: branch
◼token: id
◼pf: object list
◼pf1: object list
◼pf2
◼qf
◼ immediate
◼method: xt(branch)

Usage: if pf else pf1 then

BEGIN Object
◼nf: name
◼token: id
◼pf: branch
◼pf1
◼pf2
◼qf
◼ immediate
◼method: next()

loops Object
◼nf: loops
◼token: id
◼pf: object list
◼pf1: object list
◼pf2
◼qf
◼ immediate
◼method: xt(loops)

Usage: begin pf while pf1 repeat

FOR Object
◼nf: name
◼token: id
◼pf: donext
◼pf1
◼pf2
◼qf
◼ immediate
◼method: next()

cycles Object
◼nf: cycles
◼token: id
◼pf: object list
◼pf1: object list
◼pf2: object list
◼qf
◼ immediate
◼method: xt(cycles)

Usage: for pf aft pf1 then pf2 next

Outer Interpreter

◼The Forth outer interpreter is the
main()method in Eforth112 class.

◼The parser is a single Java
method: Scanner.in.next().

◼To use in.next(). I sacrificed
the universal Forth prompt OK,
and the opportunity to dump the
data stack.

in=new Scanner(System.in);String idiom;

while(!(idiom=in.next()).equals("bye")){

Code newWordObject=null;

for (var w : dictionary){

if (w.name.equals(idiom)) {newWordObject=w;break;}}

if(newWordObject != null){

if((!compiling) || newWordObject.immediate) {newWordObject.xt(),}

else{ Code latestWord=dictionary.get(dictionary.size()

latestWord.addWord(newWordObject);}}

else{try {int n=Integer.parseInt(idiom, base),

if (compiling){Code latestWord=dictionary.get(dictionary.size()

latestWord.addWord(new Code("dolit",n));}

else{stack.push(n);}}

catch (NumberFormatException ex) {System.out.println(idiom + " ?");

compiling=false,stack.clear();}}}

System.out.println("Thank you.");in.close();}

Linear Object Lists

▪ Colon objects compile linear
object lists in their pf fields.

▪ Linear lists can be executed
conveniently.

▪ Linear lists can be nested
indefinitely to solve complicated
problems.

ooeForth
▪ Complicated data structures like

arrays and strings are reduced to
objects.

▪ Complicated control structures
like branches and loops are
reduced to objects.

▪ Hence the new name ooeForth.

Law of Structures

▪ The Third Law of Computing is the
Law of Structures in my Laws of
Computing.

▪ It states that all computable
problems can be reduced to
nested linear lists of structures.

▪ ooeForth proves this law.

Conclusions

◼Eforth112 implements Forth
words as true objects.

◼It is my first Java project and
shows my lack of understanding
of this extremely complicated
language.

◼Eforth112 is logically correct but
can use lots of improvements.

Link to Eforth112

◼Link to Eforth112:
https://drive.google.com/file/d/1rRlCiVu
Ux6jqx4axNwyX6nwQvP-
_qGQ5/view?usp=sharing

◼Email comments to me:
◼chenhansunding@gmail.com

Demo

Thank You!

