
CREOLE

FORTH FOR

VB(A)

WHY BUILD A FORTH FOR VB6

 In this case, because someone asked for it.

 In January of this year, Peter Forth put me in touch with Buzz Ross.

 Buzz has a background in Forth for embedded systems but has also done a lot of development work using Visual

Basic.

 He was interested in combining the strengths of both languages.

 This short presentation will summarize my work on building a version of Forth for VB6.

 It is similar in structure to other versions of Forth I have bult for my own use.

DESIGN
 Partitioned into the following VB class files:

 AppSpec.cls – reserved for application-specific primitives

 ArrayList.cls – used as the basis for the stacks

 CompileInfo.cls – container used to help build a high-level definition

 Compiler.cls – colon compiler, defining and compiling definitions

 CorePrims.cls – code for core primitives such as DUP, SWAP, ROT, -ROT, and basic math

 CreoleForthBundle.cls – builds the table of primitives and high-level definitions

 CreoleWord.cls – defines a Creole Forth word

 GlobalSimpleProps.cls – generic object that all primitives takes as a parameter. Has the stacks, other globally-available

data structures, push, pop.

 Interpreter.cls – outer interpreter, DoColon and vocabulary words

 LogicOps.cls – logical operatives

 LoopInfo.cls – container for DO..LOOP iteration

 ReturnLoc.cls – container for return stack information

CREATING WORDS

 All words are based on the CreoleWord object

 They come in two forms:

 - Primitives. Write code in VB, then reference with the BuildPrimitive method.

 - High-level definitions. Generally built with the colon compiler. CREATE/DOES> pair is available too. They make use

of the parameter field while primitives generally do not.

EXAMPLE

 In CorePrims.cls module:

 ' (n1 n2 -- sum) Adds two numbers on the stack

 Function DoPlus(ByRef poGSP As GlobalSimpleProps)

 Dim dblVal1 As Double

 Dim dblVal2 As Double

 Dim dblSum As Double

 Call poGSP.Pop(poGSP.DataStack)

 dblVal1 = CDbl(poGSP.Scratch)

 Call poGSP.Pop(poGSP.DataStack)

 dblVal2 = CDbl(poGSP.Scratch)

 dblSum = dblVal1 + dblVal2

 poGSP.Scratch = dblSum

 Call poGSP.Push(poGSP.DataStack)



 DoPlus = 0

 End Function

EXAMPLE 2

 After setting up in CorePrims module, add a dictionary entry in CreoleForthBundle.cls with the BuildPrimitive

method:

 Call BuildPrimitive("+", "CorePrims", "DoPlus", "FORTH", "COMPINPF", "(n1 n2 -- sum) Adds two numbers on the

stack")

HIGH-LEVEL DEFINITIONS

 Call BuildHighLevel(": 3H 3 0 DO HELLO LOOP ;", "Three hellos")

THE COLON COMPILER

 Has no state variable

 Immediate words are all in the IMMEDIATE vocabulary

 Compilation begins when IMMEDIATE is pushed onto the vocabulary stack.

 This means IMMEDIATE words are always first in the search order during compilation.

 When compilation is terminated, the IMMEDIATE vocabulary is popped off the vocabulary stack. This prevents this

vocabulary from being accessible when not compiling.

IS IT USABLE IN MICROSOFT OFFICE?

 Yes, just Import the listed cls files and make sure Microsoft Scripting Runtime is referenced in Tools→References.

There is an example of this in my Github repository.

 If you use it with Excel, primitives like +. -, *, /, <, >, =, <=, >= don’t react well when placed at the beginning of Excel

cells.

 Because of this it may be advisable to give them substitute names such as N+, N-, N*, N/, LT, GT, EQ, LE, GE, etc.

PROOF OF CONCEPT - DEMO APPLICATION IN EXCEL

 Steps to building:

 1. Import the class files

 2. Change the names of the primitives +, -, *, / % to N+, N-, N*, N/, N% to be more compatible with using an Excel

cell as a ‘command line’.

 3. Do the same with the logic primitives =, <>, <, >, <=, >= become EQ, NE, LT, GT, LE, >GE.

 Write an interfacing macro or macros.

 Write any other necessary primitives or high-level definitions. Application-specific primitives can go in the AppSpec

class.

QUESTIONS?

 Code is available on Github at http://github.com/tiluser/cfvb

http://github.com/tiluser/cfvb

