
CREOLE

FORTH FOR

VB(A)

WHY BUILD A FORTH FOR VB6

 In this case, because someone asked for it.

 In January of this year, Peter Forth put me in touch with Buzz Ross.

 Buzz has a background in Forth for embedded systems but has also done a lot of development work using Visual

Basic.

 He was interested in combining the strengths of both languages.

 This short presentation will summarize my work on building a version of Forth for VB6.

 It is similar in structure to other versions of Forth I have bult for my own use.

DESIGN
 Partitioned into the following VB class files:

 AppSpec.cls – reserved for application-specific primitives

 ArrayList.cls – used as the basis for the stacks

 CompileInfo.cls – container used to help build a high-level definition

 Compiler.cls – colon compiler, defining and compiling definitions

 CorePrims.cls – code for core primitives such as DUP, SWAP, ROT, -ROT, and basic math

 CreoleForthBundle.cls – builds the table of primitives and high-level definitions

 CreoleWord.cls – defines a Creole Forth word

 GlobalSimpleProps.cls – generic object that all primitives takes as a parameter. Has the stacks, other globally-available

data structures, push, pop.

 Interpreter.cls – outer interpreter, DoColon and vocabulary words

 LogicOps.cls – logical operatives

 LoopInfo.cls – container for DO..LOOP iteration

 ReturnLoc.cls – container for return stack information

CREATING WORDS

 All words are based on the CreoleWord object

 They come in two forms:

 - Primitives. Write code in VB, then reference with the BuildPrimitive method.

 - High-level definitions. Generally built with the colon compiler. CREATE/DOES> pair is available too. They make use

of the parameter field while primitives generally do not.

EXAMPLE

 In CorePrims.cls module:

 ' (n1 n2 -- sum) Adds two numbers on the stack

 Function DoPlus(ByRef poGSP As GlobalSimpleProps)

 Dim dblVal1 As Double

 Dim dblVal2 As Double

 Dim dblSum As Double

 Call poGSP.Pop(poGSP.DataStack)

 dblVal1 = CDbl(poGSP.Scratch)

 Call poGSP.Pop(poGSP.DataStack)

 dblVal2 = CDbl(poGSP.Scratch)

 dblSum = dblVal1 + dblVal2

 poGSP.Scratch = dblSum

 Call poGSP.Push(poGSP.DataStack)

 DoPlus = 0

 End Function

EXAMPLE 2

 After setting up in CorePrims module, add a dictionary entry in CreoleForthBundle.cls with the BuildPrimitive

method:

 Call BuildPrimitive("+", "CorePrims", "DoPlus", "FORTH", "COMPINPF", "(n1 n2 -- sum) Adds two numbers on the

stack")

HIGH-LEVEL DEFINITIONS

 Call BuildHighLevel(": 3H 3 0 DO HELLO LOOP ;", "Three hellos")

THE COLON COMPILER

 Has no state variable

 Immediate words are all in the IMMEDIATE vocabulary

 Compilation begins when IMMEDIATE is pushed onto the vocabulary stack.

 This means IMMEDIATE words are always first in the search order during compilation.

 When compilation is terminated, the IMMEDIATE vocabulary is popped off the vocabulary stack. This prevents this

vocabulary from being accessible when not compiling.

IS IT USABLE IN MICROSOFT OFFICE?

 Yes, just Import the listed cls files and make sure Microsoft Scripting Runtime is referenced in Tools→References.

There is an example of this in my Github repository.

 If you use it with Excel, primitives like +. -, *, /, <, >, =, <=, >= don’t react well when placed at the beginning of Excel

cells.

 Because of this it may be advisable to give them substitute names such as N+, N-, N*, N/, LT, GT, EQ, LE, GE, etc.

PROOF OF CONCEPT - DEMO APPLICATION IN EXCEL

 Steps to building:

 1. Import the class files

 2. Change the names of the primitives +, -, *, / % to N+, N-, N*, N/, N% to be more compatible with using an Excel

cell as a ‘command line’.

 3. Do the same with the logic primitives =, <>, <, >, <=, >= become EQ, NE, LT, GT, LE, >GE.

 Write an interfacing macro or macros.

 Write any other necessary primitives or high-level definitions. Application-specific primitives can go in the AppSpec

class.

QUESTIONS?

 Code is available on Github at http://github.com/tiluser/cfvb

http://github.com/tiluser/cfvb

