Rock-Paper-Scissors

Silicon Valley Forth Interest Group
April 27, 2024
Bill Ragsdale

Today We'll Cover

- Programming a game.
- Systematic Testing.
- Strategy development.

The Game

Two players alternate.
Each plays an object: rock, paper, scissors. Each object can win, lose or tie to the other.

The Game

Two players alternate.
Each plays an object: rock, paper, scissors. Each object can win, lose or tie to the other.

Rock breaks scissors.
Scissors cut paper.
Paper wraps rock.

The Game

If the play by Allen specifies a column.
If the play by Betsy specifies a row.
Then the win/loss/tie and winner is given by an integer in the following table:

The Game

If the play by Allen specifies a column.
If the play by Betsy specifies a row.
Then the win/loss/tie and winner is given by an integer in the following table:

ROCK	PAPER	SCISSORS	
Tie-0	Win-1	Lose-2	ROCK
Lose-3	Tie-0	Win-4	PAPER
Win-5	Lose-6	Tie-0	SCISSORS

Pseudocode

Create logic for win/loss/tie by player and by object.
Create report elements: who \& why.
Create a playing process.
Report process results of one match.
Report process for a sequence of matches.
An automatic play process.
A statistical choice of play.
A strategy to win against a biased player.

Array For Items and Players

From two plays select the game result. Alan's choice is the column. Betty's choice is the row.

CREATE Outcome (6 to 6)
\ rock paper scissors for Allen

ac,	1 C,	\(2 \mathrm{C}, ~	
) rock for Betty			
3 C,	6 C,	4 C,	\paper for Betty
5 C,	6 C,	BC,	scissors for Betty

A Sample Game

Establish the game result from two inputs.
0 CONSTANT rock 1 CONSTANT paper
2 CONSTANT scissors
: a-game
result-selection show-ressult show-reason ;
: result-selection

$$
3 \text { * + Outcome + ca log-game-result ; }
$$

paper rock a-game \& play play result
[see] Allen wins: paper wraps rock ok

Log Game Winner

Increment a ualue for a match winner.
: log-game-r゙esult

dup to Result 1	swap
case	of + to Ties
1 of + to Allen	endof
2 of + to Betty	endof
3 of + to Betty	endof
4 of + to Allen	endof
5 of +to Allen	endof
6 of +to Betty	endof

Display The Game Winner

Give a message selected by the game result.
: show-result
Result case cr
b of ." Allen and Betty tie." endof

1 of ." Allen wins: " endof
2 of ." Betty wins:
endof
3 of ." Betty wins: " endof
4 of ." Allen wins: "
5 of .' Allen wins: '
6 of .'" Betty wins: "
endof
endof
endof
endcase ;

Display The Reason

From the game result give a message why.
: show-reason

> Result case

6 of (silent here) endof
1 of ." paper wraps rock " endof
2 of ." rock breaks scissors " endof
3 of .' paper wraps rock " endof
4 of ." scissors cut paper " endof
5 of .' rock breaks scissors " endof
6 of ." scissors cut paper " endof endcase ;

Sample Play

paper rock a-game a play play result show-r゙esult Allen wins:
show-reason paper wraps rock ok

Strategy Development

Your opponent must have a bias or you have an 'edge'.
When you win, do more if it.
When you lose do less of it.
Vary your play to avoid alerting your opponent.
[This is identical to card counting at a casino.]

Pseudocode

Setup your probability for each of the three choices. All equal to start.
Your opponent picks a choice at random but with a bias.
You make a choice according to your table of probabilities.
On a win, increase the future probability of that choice.
On a loss, decrease the future probability of that choice.

Probability Support For Betty

Begin with equal probability of choices.
UARIABLE B-Rock \ Probability of a choice
UARIABLE B-Paper
UARIABLE B-Scis5ors
: setup-Betty y all equal probabilities 333 dup dup B-Rock : B-Paper : B-Scissor's : ;

Allen's Choice, 50\% ROCK,

If a random number is greater than 506 play ROCK (0^{2}).

Else if it is greater than 250 play PAPER (1)

Else play SCISSORS (2).
: Allen-Strategy-Play
1069 random dup
506 > if drop ROCK else
25 ($>$ if PAPER else SCISSORS then then ;

Betty's Choice

Random number under 19619.
If greater than prob(Paper+Scissors) play ROCK.

If greater than prob(Scissors) play PAPER else play SCISSORS.
: Betty-Strategy-Play
19619 random dup
B-Paper (G-Scissors + >
if drop ROCK
else B-Scissors [
if PAPER else SCISSORS then then ;

Betty's Adjustments, +/- ½\%

Adjust probability of a choice up or down by win/loss.
: Betty-update

Results, all in percentages

	Ties	Allen	Betty	Rock	Paper	Scissors
Match 1	\square	101	1	33	33	33
Match 100	31	33	36	32	36	31
Match 500	34	29	35	35	45	19 A
Match 1, 009	37	30	32	32	56	10
Match 1,200	31	31	36	19		3
Hatch 1,500	34	28	36	B28	11	1
Match 1,691	30	31	38	5	94	9
Match 1,709	30	28	C 41	\square	109	0
A First Betty decreases Scissors, to avoid losses.						
B Then Betty	decr	5 Ro	, to	oid		

This illustrates the Law of Large Numbers.

Conclusions

- Game play was very simple; select a win/loss/tie from a table.

Conclusions

- Game play was very simple; select a win/loss/tie from a table.
- User input and scoring was simple.

Conclusions

- Game play was very simple; select a win/loss/tie from a table.
- User input and scoring was simple.
- Even against a very gross player developing a strategy took many matches.

Conclusions

- Game play was very simple; select a win/loss/tie from a table.
- User input and scoring was simple.
- Even against a very gross player developing a strategy took many matches.
- The law of large numbers is why casinos stay in business: A small edge over a large number of plays.

