Rock-Paper-Scissors

Silicon Valley Forth Interest Group April 27, 2024 Bill Ragsdale

Today We'll Cover

- Programming a game.
- Systematic Testing.
- Strategy development.

Two players alternate. Each plays an object: rock, paper, scissors. Each object can win, lose or tie to the other.

Two players alternate. Each plays an object: rock, paper, scissors. Each object can win, lose or tie to the other.

Rock breaks scissors. Scissors cut paper. Paper wraps rock.

If the play by Allen specifies a column. If the play by Betsy specifies a row. Then the win/loss/tie and winner is given by an integer in the following table:

If the play by Allen specifies a column. If the play by Betsy specifies a row. Then the win/loss/tie and winner is given by an integer in the following table:

ROCK	PAPER	SCISSORS	
Tie-0	Win-1	Lose-2	ROCK
Lose-3	Tie-0	Win-4	PAPER
Win-5	Lose-6	Tie-0	SCISSORS

Pseudocode

- Create logic for win/loss/tie by player and by object.
- Create report elements: who & why.
- Create a playing process.
- Report process results of one match.
- Report process for a sequence of matches.
- An automatic play process.
- A statistical choice of play.
- A strategy to win against a biased player.

Array For Items and Players

From two plays select the game result. Alan's choice is the column. Betty's choice is the row.

CREATE Outcome (0 to 6)
\ rock paper scissors for Allen
0 C, 1 C, 2 C, \ rock for Betty
3 C, 0 C, 4 C, \ paper for Betty
5 C, 6 C, 0 C, \ scissors for Betty

A Sample Game

Establish the game result from two inputs.

- 0 CONSTANT rock 1 CONSTANT paper
- 2 CONSTANT scissors
- : a-game
 result-selection show-result show-reason ;
- : result-selection
 - 3 * + Outcome + c@ log-game-result ;

paper rock a-game 🔷 🔪 play play result

[see] Allen wins: paper wraps rock ok

Log Game Winner

Increment a value for a match winner.

- : log-game-result dup to Result 1 swap
 - case 0 of +to Ties endof
 - 1 of +to Allen endof
 - 2 of +to Betty endof
 - 3 of +to Betty endof
 - 4 of +to Allen endof
 - 5 of +to Allen endof
 - 6 of +to Betty endof
 - endcase ;

Display The Game Winner

Give a message selected by the game result.

- : show-result
- Result case cr
- 0 of ." Allen and Betty tie." endof 1 of ." Allen wins: " endof
- 2 of ." Betty wins: " endof
- 3 of ." Betty wins: " endof
- 4 of ." Allen wins: "
- 5 of ." Allen wins: "
- 6 of ." Betty wins: "

- endof endof endof
- endof
- endcase ;

Display The Reason

From the game result give a message why.

- : show-reason
 - Result case

0	OF	(silent here)	endof
1	of	." paper wraps rock "	endof
2	of	." rock breaks scissors "	endof
3	of	." paper wraps rock "	endof
4	of	." scissors cut paper "	endof
5	of	." rock breaks scissors "	endof
6	of	." scissors cut paper "	endof
			daaca

endcase ;

Sample Play

paper rock a-game \ play play result
show-result Allen wins:
show-reason paper wraps rock ok

Strategy Development

Your opponent must have a bias or you have an 'edge'. When you win, do more if it. When you lose do less of it. Vary your play to avoid alerting your opponent.

[This is identical to card counting at a casino.]

Pseudocode

Setup your probability for each of the three choices. All equal to start. Your opponent picks a choice at random but with a bias. You make a choice according to your table of probabilities. On a win, increase the future probability of that choice. On a loss, decrease the future probability of that choice.

Probability Support For Betty

Begin with equal probability of choices.

VARIABLE B-Rock \ Probability of a choice VARIABLE B-Paper VARIABLE B-Scissors

: setup-Betty \ all equal probabilities
 333 dup dup B-Rock ! B-Paper ! B-Scissors !
;

Allen's Choice, 50% ROCK,

- If a random number is greater than 500 play ROCK (0).
- Else if it is greater than 250 play PAPER (1).
- Else play SCISSORS (2).
- : Allen-Strategy-Play
 1000 random dup
 500 > if drop ROCK else
 250 > if PAPER else SCISSORS then then;

Betty's Choice

Random number under 1000.

- If greater than prob(Paper+Scissors)
 play ROCK.
- If greater than prob(Scissors) play PAPER
 else play SCISSORS.
- : Betty-Strategy-Play 1000 random dup B-Paper @ B-Scissors @ + > if drop ROCK else B-Scissors @ > if PAPER else SCISSORS then then

Betty's Adjustments, +/- 1/2%

Adjust probability of a choice up or down by win/loss.

- : Betty-update B-play case 0 of B-rock endof \ Betty's last play 1 of B-paper endof 2 of B-scissors endof endcase dup @ Result \ Betty's outcome
 - case 0 of 1000 endof \ no adjustment
 1 of 995 endof \ decrease by ½%
 2 of 1005 endof \ increase by ½%
 3 of 1005 endof
 4 of 995 endof
 5 of 995 endof
 6 of 1005 endof 1000 endcase
 1000 */ swap !; \ apply adjustment

Results, all in percentages

		Ties	Allen	Betty	Rock	Paper	Scissors
Match	1	0	100	0	33	33	33
Match	100	31	33	36	32	36	31
Match	500	34	29	35	35	45	19 🗛
Match	1,000	37	30	32	32	56	10
Match	1,200	31	31	36	19	76	3
Match	1,500	34	28	36	B 28	71	0
Match	1,600	30	31	38	5	94	0
Match	1,700	30	28	C 41	0	100	0
A Firs	st Betty	decrea	ises Sci	ssors,	to avo:	id loss	es.

B Then Betty decreases Rock, to avoid ties.

C Due to ties the final is Betty 41% to Allen 28%.

This illustrates the Law of Large Numbers.

 Game play was very simple; select a win/loss/tie from a table.

- Game play was very simple; select a win/loss/tie from a table.
- User input and scoring was simple.

- Game play was very simple; select a win/loss/tie from a table.
- User input and scoring was simple.
- Even against a very gross player developing a strategy took many matches.

- Game play was very simple; select a win/loss/tie from a table.
- User input and scoring was simple.
- Even against a very gross player developing a strategy took many matches.
- The law of large numbers is why casinos stay in business: A small edge over a large number of plays.