loT for Fun!
2017 Maker Faire Workshop
Dr. Chen-Hanson Ting

ESP8266 is the first commercial microcontroller with an integrated WiFi radio. With its 32-bit
CPU, 128 KB of RAM, 4 MB of flash, and a MicroUSB connector, the NodeMCU board is
easily the most capable microcontroller kit under $5. NodeMCU thus opens the door for all
people to explore 10T applications. This workshop exposes several different paths for you to try
your hands on this kit, and encourages you to make the first step into the exciting loT field.

WiFi is a very complicated subjet involving many hardware and software issues. It is impossible
to cover even a very small portion of it satisfactorily. The original developers of ESP8266 in
Espressif Systems solved the hardware problem in silicon, and left a software development kit
(SDK) for other software engineers to build programming tools known as IDE (Integrated
Development Environment) for users to develop their own applications. In this workshop, we
introduce three such IDE’s for you to evaluate, hands on.

To help you taking the first step, we present you with a very simple challenge: to turn the LED
on NodeMCU board on and off, remotely through WiFi. If you meet this challenge, you get a
NodeMCU board for free!

Here is a picture of our project. A NodeMCU board with its LED turned on. A small speaker is
also connected to a GND pin and GP10-D5 pin. In our examples, the speak beeps when LED is
turned on.

This task can be boiled down to two parts: making NodeMCU board a server and using PC as a
client. The server and the client are connected to a WiFi network. You are sitting in front of the
PC and typing in a command. The command is sent by the client to the server as a UDP packet.
The server then turns the LED on and off, depending on the command you typed on PC.

You will use a UDP terminal emulator like Hercules as a client on PC. In a microPython
experiment, you will use WebREPL as a client.

On NodeMCU board, you have the options to program it using espForth, Arduino, MicroPython,
or Lua. In the Experiments Section, we detail steps to control the LED remotely:

espForth Compile espForth_41.ino to NodeMCU under Arduino IDE;
Send UDP packets to Forth server.

Arduino UDP Server Compile UDPserver.ino to NodeMCU under Arduino IDE;
Send UDP packets to server.

MicroPython/WebREPL Flash NodeMCU with MicroPython;

Enable WebREPL on MicroPython;
Open WebREPLon on PC to control LED.

MicroPython Server Flash NodeMCU with MicroPython;
Load UDPserver.py code on MicroPython;
Send UDP packets to server.

Lua/ ESPlorer Flash NodeMCU with Lua;
Load UDPserver.lua on Lua;
Send UDP packets to server.

To load programs and test them on NodeMCU board, you will need a few tools, which we
provided on our PC workstations. They are:

TeraTerm Serial Terminal Emulator to interact with NodeMCU
ESP8266Flasher Write MicroPython or Lua into flash memory on NodeMCU
Arduino IDE Program NodeMCU

Hercules SETUP utility Send UDP packets to NodeMCU

In Tools section of this Manual, we detailed steps to set up these tools and to use them to meet
the challenge.

Cheat sheets are available to guide you through the steps on the PC workstations, without
reading the entire Manual. Following the cheat sheets, you can complete one of the experiments
in about 30 minutes. If you encounter serious problems, then read the relevant sections in the
Manual.

Since Espressif Systems took care of WiFi hardware, and the IDE developers took care much of
the software, it is easy for you to meet this challenge. These experiments are simple because we
use UDP protocols, the simplest way to get computers to talk to one another over WiFi.

For this workshop in the Maker Faire, we set up a WiFi router NETGEAR 150, with a SSID of
“SVFIG” and a password of “12345678”. Our NodeMCU boards and PC’s send and receive
UDP packets over this local area network, and avoid all the problems in using public WiFi
networks to do experiments.

Tool 1. TeraTerm Serial Terminal Emulator

ESP8266 has a number of serial communication ports to communicate with outside world. On
NodeMCU board, one serial port is connected to a USB-Serial interface chip, which allows you
to connect to a PC through a MicroUSB cable. When NodeMCU powers up, it configures the
serial port to communicate at 11520 baud. Depending on the program loaded in it flash memory,
NodeMCU can be controlled and also programmed through this USB-Serial cable.

Different versions of NodeMCU used different USB-Serial interface chips. | have seen CP2101
chips and CH340g chips. They require specific USB drivers in PC to establish communication.
All necessary drivers are included when Arduino IDE is installed. When you plug in a
NodeMCU board, PC would recognize it and assigns it a uniqgue COM port. A terminal emulator
on PC can then be opened to communicate with NodeMCU through this COM port.

There are many terminal emulators available on PC. The most convenient one is TeraTerm,
which was installed on our PC for this workshop. It is generally the first thing you do in testing a
fresh NodeMCU board, or any other microcontroller kit with USB-Serial interface.

Open TeraTerm. If it is the first time you used it, you will see a black window:

¥ Tera Term - [disconnected] VT |ﬂ|i‘]

File Edit Setup Control Window Help

Click Setup>Serial Port... and select the proper COM port. Set baud rate to 115200:

.
Tera Term: Senial port setup

S
Bort
Baud rate: 115200 -
Data: [Bhn—v] Cancel
Flow contral:

Transmit delay

0 msecichar 0 msecfline

A black window was customary for the old PC-DOS operating system. In modern days, people
expect black characters on a white screen. Click Setup>Window... and click the Reverse button
to invert the screen color:

Tera Term: Window setup ' X
p—
Title: Tera Term
C h
| Cursorshape [7] Hide title bar I

® Block 7] Hide menu bar
Eicilicallline [7]16 Colors (PC style)
© Horizontal line 16 Colors [aixterm style]

[¥] 256 Colors [<term style]

Enable bold font [¥] Scroll butfer: 10000 lines

Color

Crew b
) Background

ABC

Q@ D P
[— I — T —]
~Nollz
-

[7] Always use Normal text's BG

F

T Tera Term - [disconnected] VT =RACN X
“_:ile Edit Setup Control Window Help

If you are happy with the screen, click Setup>Save Setup... and save you terminal settings in the
file TERATERM.INI. Hereafter, when you open TeraTerm, you will have this screen to
communicate with NodeMCU.

Plug in your NodeMCU board, and press the reset switch RST on NodeMCU, and you will see a
screen full of characters. When | got MicroPython loaded in NodeMCU, the screen looks like
this:

| 1l COM4 - Tera Term [E=REE

Eile- Edit Setup Control Window Help |
1 -

1
?1d?7—
El #4 ets_taszk{481

BAA164,. 3. 3fFF8398. 4>

erforming initial setup

raceback <most recent call lastl:

File "_boot.py". line 11, in <{module’>
File “inisetup.py'”. line 37. in setup
File "inisetup.py', line 9, in wifi
SError: can’'t set AP config

ould not open file "hoot.py’ for reading
ould not open file ‘main.py’ for reading

icroPython v1.8.6—7-gefdd?27 on 2016-11-18; ESP module with ESPBZ6

ype "help(>" for more information.
>3

TeraTerm has many other functions and features. You only need it as a serial terminal emulator
in this workshop.

Sometimes, when you reset NodeMCU board, you will get a screenful of garbage characters. It is
because when ESP8266 boots up, it sends characters to PC and reads characters sent back from
PC. Some control characters upset TeraTerm and caused it to use a different character set. To
restore TeraTerm to its normal character set, click Control>Reset Terminal, and Edit>Clear
Screen. You will get a blank screen to start over.

Tool 2. Arduino IDE

Arduino was originally developed for lowly 8-bit AVR microcontrollers like ATmega328P from
Atmel Corp. It greatly simplified the C programming language and made it very easy for you to
write your own application on AVR chips. It gives you a very simple program template, which
expects you to fill C code in two routines setup() and loop(). It captures the essences of firmware
engineering and invites everybody to become a firmware engineer.

It is amazing that people in ESP8266 Community extended the Arduino IDE so that you can
program this sophisticated 32-bit ESP8266 chip with ease. It even supports our ESP8266
NodeMCU 12E board!

In the experiments with espForth and UDP Server, you will have to use Arduino IDE. If your
computer does not have it, you have to install it first. Aduino IDE has to be extended so that it
can compile programs for the ESP8266 chip, and to upload the compiled code to flash memory
on NodeMCU board. After Arduino IDE is set up properly, it will be very easy to do
experiments with NodeMCU board.

Download Arduino 1.8.2 IDE or the latest version from www.arduino.cc and install it on your
PC. Open Auduino, and you will see its title page:

Genuino

ARDUINO

AM OPEMN PROJECT WRITTEN, DEBUGGED,
AND SUPPORTED BY ARDUIND.CC AND f o % Pt
THE ARDUING COMMUNITY WORLDWIDE A U '._Y_'> L
LEARMN MORE ABOUT THE CONTRIBUTORS

of [ELLIETTMIN on arduine.ccl/credits

Click File>Preferences to open the Preferences window.

Enter http://arduino.esp8266.com/stable/package_esp8266com_index.json into
Additional Board Manager URLSs field:

[Preferences
Sketchbook location:

JUsers /todd/Documents /Arduino Browse

Editor language: System Default : (requires restart of Arduino)

Editor font size: 10

Show verbose output during: compilation upload

Compiler warnings: None v

Display line numbers
Enable Code Folding
¥ Verify code after upload
Use external editor
¥ Check for updates on startup
[\ﬁ Update sketch files to new extension on save (.pde -> .ino)

¥ Save when verifying or uploading
Additional Boards Manager URLs: http://arduino.esp8266.com/stable/package_esp8266com_index.json [=)

More preferences can be edited directly in the file Enter a comma separated list of urls
fUsers /todd/Library/Arduinol5/preferences.txt
(edit only when Arduino is not running)

oK Cancel

Next, Click Tools>Board:xxxxxxx>Boards Manager. Scroll to the bottom of the display, and
click on the panel named esp8266 by ESP8266 Community to select it:

[N | Boards Manager

Type All = Filter your search..

SmartEverything Fox.
Online help
More info

Intel i686 Boards by Intel
Boards included in this package:
Edison.

More info

8266 by C
Boards included in this package:

‘Generic ESP8266 Module, Olimex MOD-WIFI-ESP8266(-DEV), NodeMCU 0.9 (ESP-12 Module), NodeMCU 1.0 (ESP-12E Module), Adafruit HUZZAH
ESPB266 (ESP-12), SweetPea ESP-210.

Online help
More info

Installing...

e TP | Fepur b Por - ¥ W—| | Cancel

Click the Install button at bottom right to install the ESP8266 package.

After the install process, you should see that ESP8266 package is marked INSTALLED. Close
the Boards Manager window once the install process has completed.

Select NodeMCU 1.0 from the Tools->Board dropdown menu:

e = % 34 Find ~
(o] i P="10 g
o € UDPserver | Arduino 1.8.2 L > 3l Replace
N N _ (Change
4 | Eile Edit Sketch Is| Help Styles = lg Select -
i Auto Format Ctri+T {Fi Editing
Archive Sketch o=
u UDPserver ' '
Fix Encoding & Reload
hl Serial Monitor Ctrl+Shift+M o
|7/ UBE sErve Serial Plotter Ctrl+Shift+L 4
) Arduino Industrial 101
of| #eetudes <ESE k101 Firmware Updater Linino One
#include <WiF|
: Board: "NodeMCU 1.0 (ESP-12E Module)" G Uy T

[l v z3i i
z::: z:;:“ a CPU Frequency: "80 MHz" ESP8266 Modules
unsigned int Flash Size: "4M (3M SPIFFS)" Generic ESP8266 Module
char packetBu Upload Speed: "115200" Generic ESP8285 Module
WiFiUDE Udp: Port: "COMA4" ESPDuino (ESP-13 Module)
int led=2; .
int audio=ld: Get Board Info Adafruit HUZZAH ESPE266

ESPresso Lite 1.0

Programmer: "AVRISP mikd"

void setup() ESPresso Lite 2.0
pinMode {1led| Burn Bootloader Phoenix 1.0
digitalWrite {led, HIGH); :

Phoenix 2.0

f/ Initialize serial and wait for port to open:
4 i1 | MNodeMCU 0.9 (ESP-12 Module)

MedeMCU 1.0 (E5P-12E Module)
Olimex MOD-WIFI-ESP2266(-DEV)
SparkFun ESP8266 Thing
SparkFun ESP8266 Thing Dev
SweetPea ESP-210

WeMos D1 R2 & mini

‘WeMos D1 (Retired)

E5Pino (ESP-12 Module)
ThaiEasyElec's ESPino

WifInfo

Core Development Module

ki

In the Tools menu, you will see the following selections:

Board: NodeMCU 1.0 (ESP-12E Module)

CPU frequency: 80 MHz

Flash Size: 4M (3M SPIFFS)

Upload Speed: 115200 baud

Port: COM port for your FTDI or USB-Serial cable

Arduino IDE is now set up properly. You can now proceed to do espForth or UDP Server
experiments.

Tool 3. ESP8266Flasher

If you will use Arduino IDE to do your experiment, skip this section, because Arduino IDE
writes directly to flash memory when compiled code is uploaded to NodeMCU board.

In the experiments with MicroPython and Lua/ESPlorer, the language/programming operating
system or the IDE (Integrated Development Environment) must be loaded into the flash memory
on NodeMCU board. This is often called “Flashing”. The most convenient flashing tool is
ESP8266Flasher on Windows PC.

Plug the MicroUSB end of the USB cable to NodeMCU, and the regular end of USB cable to
your PC. If you have Arduino 1.8.2 installed properly, USB/Serial drivers are all loaded and
NodeMCU should connect to PC automatically.

Open ESP8266flasher.exe. Click Config button. If you will use MicroPython, select binary file
esp8266-20161110-v1.8.6.bin in the wh6 folder, and specify flash memory address 0x00000. If
you will use Lua, first select binary file 0x0000.bin in the wb6 folder, and specify flash memory
address 0x00000. Then select 0x10000.bin for memory address 0x10000, as shown here:

E.
Operation Config Advanced About Log

C:\2017Workshop\wb&\0x00000.bin "a‘ 0x00000
C:\2017Workshop\wb6\0x10000.bin fa‘ 0x10000
C:\2017Workshop\wb6\esp8266-20161110-v1.8.6.L @ Ox00000

NODEMCU TEAM

Make sure that the small square button to the left of a selected file is checked. Only a checked
file will be written to the corresponding flash memory on NodeMCU board.

Click the Advance button, and select 115200 for baud rate:

E.
Operation Config Advanced About Log

Baudrate 115200
Flash size 4MByte
Flash speed 40MHz
SPI Mode DIO

Restore default

NODEMCU TEAM Ready

Now click Operation button and return to the Operation main window. Click the big Flash(E)
button to write the selected files into flash memory.

B.
Operation Config Advanced About Log

COM Port COM4 Flash(E)

AP MAC Waiting MAC

STA MAC Waiting MAC

NODEMCU TEAM

After binary files are written into flash memory, the Operation window will look like the
following:

ﬁ.
Operation Config Advanced About Log

COM Port COM4 Flash(E)

% AP MAC A2-20-A6-1A-3F-08
iR sTA MAC AD-20-A6-1A-3F-08

o NODEMCU TEAM

10

If you don’t see the green button checked in the lower left corner, Flasher does not work
correctly. Check Log window to see what is bothering it. Press the Reset (RST) button on
NodeMCU board before flashing usually helps.

After flashing successfully, press the Reset button on NodeMCU board. Its LED flashes briefly,
and NodeMCU should announce its presence to the terminal emulator on your PC. Be sure that
the terminal emulator is set at 115200 baud, and the correct COM port is selected.

To run MicroPython, TeraTerm is a good terminal emulator. For Lua, use ESPlorer IDE. For
Arduino, you can use its own Serial Monitor, or TeraTerm.

11

Tool 4. Hercules SETUP Utility

To control the LED remotely over WiFi, the server on NodeMCU is set up to receive UDP
packets, and act on the payloads. Here NodeMCU just turns its on-board LED on and off. To
send packets you need a client on the same network. A client can be programmed to send many
different packets, according to specific network protocols. Protocols can be very complicated,
and for this workshop, you are required to learn the simplest protocol, UDP, the User Datagram
Protocol. It does not make sense to use complicated protocols to do such a simple job: turning an
LED on and off.

There are infinite ways to send UDP packets. We picked the Hercules SETUP Utility to do this
job.

Open Hercules.exe, which is a network communication utility. Select UDP. Enter IP address and
Port number of the server that you set up on NodeMCU board:

% Hercules SETUP utility by HW-group.com =

UDF Setup | Serial | TCP Client | TCP Sever UDP | Test Mode | About |
Received data

uopP

Maodule IP Part
[152166.1.2 10003
Local part

10009 b Listen

Server zettings

[~ Serverecho
Sent data

[Redirect to TCP Server
[Redirect ta TCP Client

UDP broadcast

File narne:
Mo file

Load fil | ‘

Send

|12 PinSel ~ HEX HI_Ugroup
|E| 2 Finut ™~ HEX v .HW-group.com

Hercules SETUP wtilivy
|12 Piniu

[HEX Yersion 3.2.8

Press the Listen button to create a UDP socket which you can use to send UDP packets to
NodeMCU.

At the bottom of UDP window, there are three text boxes. If you are working on espForth
Experiment, enter three messages,(as shown in the above picture):

12

1 2 pinSel
0 2 pinOut
1 2 pinOut

into the text boxes.

If you are working on all other experiments, enter these numbers in the text boxes:
440

0

220

[% Hercules SETUP utility by HW-group.com EE

UDF Setup | Serial | TCP Client | TCP Sever UDP | Test Mode | About |

Received data LUDP
Madule IP Part
[192168.1.2 10003
Local port

10009 b Listen

Server setlings
[~ Server echa

Sent data [~ Redirect to TCP Server

[~ Redirect to TCF Client

UDF broadeast

File nanne:
Mo file

Load fil | ‘

Send

- pl= |11
o M HEX v HUgroup.com

Hercules SETUP wtilivy

|22D [HEX Yersion 3.2.8

Pressing a Send button to the left of a text box, you send the corresponding UDP packet from
Hercules to NodeMCU. You can see that the LED on NodeMCU is turned on and off,

responding to payloads in packets.

13

Experiment 1. espForth

Forth is the simplest programming language, and has been widely used for industrial, scientific,
and embedded applications. eForth is the simplest Forth implementation for microcontrollers. |
ported it to ESP8266 under Arduino IDE as espForth. Once espForth is loaded on NodeMCU, it
allows you to explore this chip, and test its 10 devices interactively. Since espForth accepts input
from both the USB-serial COM port, and UDP packets simultaneously, you can turn its on-board
LED on and off interactively through the Serial Monitor in Arduino, or through UDP packets
through a UDP terminal like Hercules SETUP Utility.

Open Arduino IDE. If it is the first time you do anything with Arduino, you will probably have a
default program template like this:

—
| %) sketeh_apr26a | Arduino 1.8. (= o]

File Edit Sketch Tools Help

sketch_apr26a

| void setup() ¢
/f put your setup code here, to run once

i

void loop()
// put your main code here, to run repeatedly:

1

NodeMCLU 1.0 (ESP-12E Module), 80 MHz, 115200, 4M (3M SPIFFS) on COM4

Click File>Open..., and select C:/2017Workshop/espForth_41/:espForth_41.ino, supplied in the
workshop project folder.

14

[espForth_41 | Arduino 182 =] & S
—

File Edit Sketch Tools Help

W csprorn 41§

»

#include «ESPE26EWiFi.h>
#include <WiFilUdp.h>

[an]

con3t char* 53id = "SVEIG":;//type your 33id
con3st char* pass = "12345678";//type your password
unsigned int localPort = 100097 // local port to listen on

WiFiUDP Udp:

typedef long cell;
typedef long instruction;

define DATAROOM 4096

define RETURN_STACK CELLS 50

define STRACE CELLS 50

define FALSE 0

define TRUE -1 -
| 1 2

PR T T S Y

NodeMCU 1.0 (ESP-12E Module), 80 MHz, 115200, 4M (2M SPIFFE) on COMS

espForth is a file of 66 KB size, very small comparing to software of this age, but it is a complete
interactive operating system with a high level Forth programming language. Here in this
workshop, I will not bother you with its features and its usage. | just want to lead you to meet our
challenge to turn a LED on and off.

Please note that espForth is connected to our local WiFi network, with a name of ‘SVFIG’ and a
password of ‘12345678. All NodeMCU boards and all PC’s used in this workshop have to be
connected to this network, if they need to communicate with one another. Each NodeMCU are
assigned a unique local port number from 10001 and up, to avoid conflicts.

Click the Upload button(->), the one with an arrow pointing to right:

15

[espForth 41 | Arduino 1.8.2 =R X
_d—
File Edit Sketch Tools Help

l, espFaorth_41

»

#include «ESPE26EWiFi.h>
#include <WiFilUdp.h>

[an]

con3t char* 53id = "SVEIG":;//type your 33id
con3st char* pass = "12345678";//type your password
unsigned int localPort = 100097 // local port to listen on

WiFiUDP Udp:

typedef long cell;
typedef long instruction;

define DATRAROOM 4094

define RETURM_STACK CELLS 50

define STACK CELLS 50

FALSE 0

define TRUE -1 -
| 1 | 3

PR T T S Y

NodeMCU 1.0 (ESP-12E Mod. A SPIFFE) on COM4

It takes a few minutes for Arduino IDE to compile the code and then upload the binary image
into the flash memory on NodeMCU board. Eventually, it will report ‘Done uploading’, and
reports to you what it accomplished:

16

& espForth_41 | Arduino 1.8.2 SRECE X

Eile Edit Sketch Tools Help

espFoaorth_41

»

[

NodeMCU 1.0 (ESP-12E Module), 80 MH=z, 115200, 46 (3M SPIFFS) on COMS

Click Tools>Serial Monitor. Be sure to select the correct COM port, and set baud rate to 115200.
Press the RST (Reset) button on NodeMCU, and you will see espForth signing in:

[E=SHEER =)
cov | T B
|

{% 100] Odo| 0O 10 #|00 O OsOb0 cO0'o0%g'000 o pO0dsdsdx0o0 O0d4d0O0 4 gO 40 O#00no0 SO0 ~
WiFi connected |
S5ID: SVFIG

IF Rddress: 192.168.1.2

3ignal strength (RS55I):-75 dBm
Starting connection to server...
Local Port: 10009

m

espForth V4.0, 2016

4 | [T | 3

Autoscroll :Carriage return v: :115200 baud v:

17

Notice the IP Address and the Local Port number. You need these numbers to turn LED one and
off remotely. Now you can type in the following Forth commands in the text box on the top of
Serial Monitor window, (and click the Send button to the right), to exercise espForth system.
After entering one line, press the Send button to the right of the text box.

12 3 4
|

WORDS

espForth is case insensitive. WORDS and Words are the same. After WORDS is entered,
TeraTerm window looks like the following, showing all the Forth commands implemented in
espForth:

= o o= e
sow . il TP W

e3apForth V4.0, 2016 ~
1234 £g»

0127 fg>»

IMMEDIATE COMPILE-QONWLY (% .{ DOES CONSTANI VARIZBLE CREATE COLE £" ABORI™
REPEAT AHEAD IF AGAIN UNTIL NEXT BEGIN FOR THEN COLD UDP FORGET WORDS .ID > ||
DUME dm+ ;] OVERT #$COMPILE COMFILE [COMPILE] " &,n 2UNIQUE £,™ NAME> ALLI
QUIT EVAL .OK [#$INIERPFRET ERRCE abort™ ABORT QUERY EXPECT NaME: find SaME? |
PACES (parse) 2 U. U.R .R ."™| &"| dos CE TYFE SPACES CHARRS SPFACE NUMBER?
>upper wupper DECIMAL HEX str #> SIGN #5 # HOLD <«# EXTRACT DIGIT FILL MOVE
TIE EARD HERE »>CHRR WITHIN FPEEK POEE TONE DOVAR 1- 14+ CELL/ CELLS CELL- CELL|s
MIN MAX COUNT 2@ 2! +! PICK */ +*/MOD M* +* TUM* [/ MOD /MOD M/MOD TUM/MCD

< U« = ABS - DNEGATE NEGATE NOT + 2DUP ZO0ROF ROT =2DUF NEXT UM+ XOR OR

LND 0O< OVER SWRAF DUF DROF pinIn pinfut >R RE BR>» pin3el sendPacketr C@ C! @
BRANCH QBRANCH DONEXT EXECUTE EXIT DOLIST DOLIT DOCON EMIT ACCEFT NOF SPO RED

CP CONTEXT BASE 'TIIB #TIB >IN SFRN HLD

3

m

:Carriage return v: :115200 baud v:

Autoscroll

Now, try to turn the on-board LED on and off with these lines of commands:

1 2 pinSel
0 2 pinOut
1 2 pinOut

The commands ‘1 2 pinSel’ configure GPIO Pin 2 as an output pin. ‘0 2 pinOut’
commands turn the on-board LED on. ‘1 2 pinOut’ commands turns the LED off.

OK. You can turn the LED on and off, interactively, through USB-Serial cable. Now, try to do it
remotely.

Hercules SETUP Utility

To control the LED remotely over WiFi, open Hercules.exe, which is a network communication
utility. Follow instruction in Tool 4 Section to set up Hercules properly. Select UDP. Enter IP
address and Port number.

18

Press the Listen button to create a UDP socket which you can use to send UDP packets to
NodeMCU.

At the bottom of UDP window, there are three text boxes. Enter three messages:

1 2 pinSel
0 2 pinOut
1 2 pinOut

into the text boxes.

5% Hercules SETUP utility by HW-group.com E@lﬂ

UDP Setup | Serial | TCP Client | TCP Server UDP | Test Mode | About |
Received data

UDP socket created

0000 for

D000 for [192168.1.2 10003

0000 for
s | Koo |

Server sethings

uopP

[~ Server echo
Sent data

[~ Redirect to TCP Server
1 2 pinSell 2 pinCutl 2 pinCutl 2 pinSell 2 pinD'Jt|

[Redirect ta TCP Client

UDP broadcast

File narne:
Mo file:

Load file | ‘

Send

12 pinSel [~ HEX Send IllljgrouP
|D 2 pinQut ™ HEX Send www.HW-group.com

Herculas SETUP stilivy

12 pindut [HEX Send Version 3.2.8

Pressing a Send button to the left of a text box, you send the corresponding UDP packet from
Hercules to NodeMCU. You can see that the LED on NodeMCU is turned on and off, with the
pinOut messages.

Congratulations! You have just proved that you can control the on-board LED on NodeMCU

remotely. You’ve met our challenge. Take your NodeMCU board home, and have lots of fun
with it.

19

Experiment 2. Arduino UDP Server

In this experiment, you will build a server on NodeMCU board. This server waits for UDP
packets. It will turn the on-board LED on and off, depending on the payload in the UDP packet.
There are many different ways to send UDP packets. We will use a Hercules SETUP Utility by
HW-Group to send UDP packets over our local WiFi network.

Open Auduino IDE, Click File>Open File... menu selection. Open UDPserver.ino, save it in a
project file UDPserver when you are asked.

[|
@ UDPserver | Arduino 1.8.2 ol o= [

Eile Edit Sketch Tools Help

UDPsemver

»

/f ULDP Server for NodeMCU, léaprl7cht

1

#include <ESFE266WiFi.h>
#include <WiFiUdp.h>

char asid[] = "SVFIG"; // your network 55ID (name)

char pass[] = "12345678"; // your network password (use for WEZ
unsigned int localPort = 10009; f/ local port to listen on
char packetBuffer([10]:; //buffer to hold incoming packet

WiFiULDP Udp;

int led=2;

int audic=14;

volid setup() |

pinMode {(led, CUIPUT):

digitalWrite (led, HIGH};

f/ Initialize serial and wait for port to open: -
4| m | &

NodeMZU 1.0 (ESP-12E Module), 20 MHz, 115200, 40M (3M SPIFFE) on COM4

UDPserver.ino implements a server on NodeMCU. The server waits for UDP packets sent to it
on the WiFi network. It expects a number in the packet, and uses it to set the speaker frequency
in Hz. It also turns on the on-board LED. If the number is 0, it silences the speaker and also turns

off the LED.

Source code of UDPserver.ino is actually very simple, if you ignore all the messages sent out to
the Serial Monitor to help you understanding the booting procedure. The essential core of code is

as follows:

20

WiFiUDP Udp;
void setup () {
WiFi.begin(ssid, pass);
while (WiFi.status() != WL CONNECTED) ({
delay (500) ;
Serial.print(".");
}
IPAddress ip = WiFi.localIP();
Udp.begin(localPort);
}
void loop () {
// if there's data available, read a packet
int packetSize = Udp.parsePacket();
int n;
if (packetSize) {
IPAddress remotelp = Udp.remotelP ()
int len = Udp.read(packetBuffer, 10
if (len > 0) { packetBuffer[len] =
n=atoi (packetBuffer);
if (n>0) { digitalWrite(led,LOW); tone(audio,n); }
else { digitalWrite(led,HIGH); noTone (audio); }

’

)
0; 1}

Click the Upload button. UDPserver is compiled and then uploaded to NodeMCU board. After
uploading, you will see the compile/upload report at the bottom of the Arduino window:

Select Tools>Serial Monitor. Make sure that the baud rate is set at 115200 baud at the bottom of
the Serial Monitor window. UDPsever will sign in:

21

TS e L % M

;1 4001 Os0O1 O&0 cl|! OO0{0cO cO0cgOl"o000 # x001{1{5x0c0 0400 # gOl d0 O#00noO £00.
WiFi connected F
533ID: SVFIG IP Address: 192.1488.1.2

Starting connection to server...Local Port: 10009

m

-

4 | i 2

Autoscroll :Carriage return v: :115200 baud v:

Please note the IP address shown. In this case, it is 192.168.1.2. The Port number assigned to
UDP server is 10009. They will be used to communicate with NodeMCU remotely through a
UDP terminal emulator Hercules.

Hercules SETUP Utility

Open Hercules.exe, and select UDP menu. Enter IP address and Port number as you saw in
Serial Monitor when NodeMCU started. See Tool 4 Section for detailed set up instructions.

Press the Listen button to get Hercules connected to NodeMCU. In the Receive Data panel, you
will see that Hercules announces “UDP socket created”.

At the bottom of UDP window, there are three text boxes. Enter three messages: 440, 220 and 0,
into the text boxes. Pressing a Send button to the left of a text box, you send the corresponding
UDP packet from Hercules to NodeMCU. You can see that the LED on NodeMCU is turned on
and off, and the speaker beeps accordingly.

22

— —
% Hercules SETUP utility by HW-group.cam g & e = 'E R .l;lﬂlg

UDF Setup | Serial | TCP Client| TCP Server UDP | Test Mode | About |

Received data

— UCP

UDF socket created
4adule IP Part
[19216812 f10003
Local port

foms | Xoee |

— Semver zettings

[~ Server echa
Sendat [~ Redirect to TCF Server
440022004400
[~ Rediect to TCP Client
— UDP broadcast
File: nanne:
Mo file
Loadfle | Send |
— Send

| |
[440 [~ HEX Send | ngmup
ID l- HE S | v HU-group.com

Hercules SETUP atility

|220 [~ HEX Send | Version 3.2.8

)

On the Serial Monitor opened by Arduino, you can see the packets NodeMCU received:

n=h
=T :

Send

;1 dOdl oOsOl O %0 cl! O0{0cO cO0ogOl'o000 # x001{1{$x0c0 O0d 00 # gO 40 O#00no0 00 +
iFi connected F
353ID: SVFIG IP Rddress: 192.168.1.2

Starting connection to server...Local Port: 10009
From 192.168.1.3, port 10009 Contents:0

From 192.168.1.3, port 10009 Contents:220

From 192.16%.1.3, port 10009 Contents:(

From 192.168.1.3, port 10009 Contents:440

From 192.16%.1.3, port 10009 Contents:(

m

'y M 3 I

Autoscroll :Carriage return v: :115200 baud v:

Here you are. NodeMCU was programmed as a server, and receives packets over our WiFi
network to control its LED and speaker. You’ve met out challenge. You have just made the first
step into the wonderful 10T world.

23

Experiment 3. MicroPython/WebREPL

In this experiment, you will first set up MicroPypthon on a NodeMCU board. When powered up,
MicroPython communicate with you through REPL interpreter, across the USB-Serial cable. Its
WIiFi communication is generally not enabled. You have to set WiFi up correctly so that
NodeMCU can receive commands remotely from a web page called WebREPL. Once WiFi is
enabled and WebREPL is set up correctly, you can issue commands on WebREPL to turn the
LED on NodeMCU on and off. You do not have to write any code to meet our challenge.

First, you have to load MicroPython binary into the flash memory of NodeMCU. Follow the
directions in the Tool 3 ESP8266Flasher section earlier.

REPL

After you flash MicroPython on NodeMCU, you can talk to it in REPL(Read Evaluate Process
Loop). Open TeraTerm or any other serial terminal emulator to talk to it through the USB-Serial
cable. TeraTerm is my preferred terminal emulator. If it is not set up properly on your PC,
follow instructions in Tool 1 section.

Open TeraTerm. Click Setup>Serial Port... and select the proper COM port. Set baud rate to
115200.

Press the RST (Reset) switch on NodeMCU board. MicroPython you just flashed in NodeMCU
will sign in:

F I |
W COMS - Tera Term VT =

Eile Edit Setup Control Window Help

cE
milecdlhdégl ILnprllinK;'c
lpc IfD ets_task(49180164,. 3. 3FFf8398. 4>
Performing initial setup
could not open file ‘main.py’ for reading

MicroPython vl1.8.6—7—gefdBA?27 on 2016—11-18; ESP module with ESPB266
Type "help{>'" for more information.
>33

When NodeMCU is reset, you may see lots of garbage characters on screen, and characters you
typed might be garbled. Click Setup>Serial Port, and select the right COM port and baud rate.
Click Control>Reset Terminal to display ASCII characters properly. Click Edit>Clear Screen to
clear the terminal window.

24

Sometimes, you may get these messages, with an ‘OSError: can’t set AP config’. It is because
MicroPython expects an AP (access point) WiFi configuration on booting. Just type in the
following commands to enable AP:

>>>import network
>>>ap=network.WLAN (network.AP IF)
>>>ap.active (True)

® - .
-

File Edit S5etup Control Window Help

>2»¥ import network

>»» ap=network _WLANCnetwork_ AF_IF>

>>¥ ap.active(Truel

>>> #5 ets_task<{482@BedcB, 29, 3fff74f8. 18D

>*¥ ap.activell

Now, reset NodeMCU by pressing its RST switch, and you will get the sign in window as shown
earlier.

You are now in REPL(Read Evaluate Process Loop), which is the interactive interpreter of
MicroPython. With REPL, you can turn the LED on and off easily by typing the follow
commands:

>>>from machine import Pin
>>>p2=Pin (2, Pin.OUT)
>>>p2.1low ()

>>>p2.high ()

>>> are prompt characters issued by REPL. You just type in characters after the prompt.
Remember, REPL is case sensitive, and you have to type in commands exactly as shown.
Misspelling and wrong cases will be rejected with error messages.

p2 is a Pin object, which initializes GPIO Pin 2 as a output pin. After p2 is initialized, issuing
p2.low () command turns the on-board LED on. Issuing p2.high () command turns it off.

25

- - 3
-

Eile Edit Setup Control Window Help
b?<1 -

decélnd” Hgxs%
5% soc?

5 ets_task(489188164. 3. 3Ffff8398, 4
ould not open file 'main.py’ for reading

icroPython vl 8. 6—Y—gefdB?27 on 2816—-11-18; ESP module with ESPBZ66
ype "help{>" for more information.
>»> from machine import Pin

You can now turn the on-board LED on and off now manually through TeraTerm and the USB-
Serial cable. However, the challenge of this workshop is to switch the LED remotely through
WiFi. Then you need WebREPL.

WebREPL
WebREPL is a special terminal emulator on PC to control a MicroPython microcontroller
through WiFi. It is in the form of an html file C:/2017Workshop/webrepl-master/webrepl.html,

which you can open in Windows, preferably with Google Chrome.

Normally, MicroPython disables its WebREPL on power-up. To enable WebREPL over WiFi,
bring up REPL on TeraTerm, and type:

>>>import webrepl setup
You will be prompted to enable or disable WebREPL, and to select a password. Follow the

instructions displayed on REPL. Enter your choice for both password prompts, and then press y
when prompted to reboot.

26

File Edit Setup Control Window Help

- - =
-

Type "help<>" for more information.
»>>» from machine import Pin

>>y p2=Pin{2 . Pin.OUT>

>>¥ p2 _high{)

>x¥ p2 . lowdl

>3¥ p2 high()

>»> import webrepl_setup
ebREPL daemon auto—-start status: disabled

opuld you like to ¢E>nable or (D>isable it running on boot?
§EEpty line to guit2

o enable WebREFL., you must set password for it
ew password: password

onfirm password: password

hanges will be activated after rehoot

ould you like to rehoot now? C(y-nl

After you type ‘y’, and hit Enter key, MicroPyton reboots and show you the following window.

webREPL is now enabled.

-

T COM4 - Tera Term VT

File Edit Setup Control Window Help

Lg8{%
75?1 soc?
$x

b
IS ets_task(409180164, 3, IfFff8378. 4
ebREPL daemon started on ws:/-192.168.4.1:8266
ebREPL daemon started on ws://7B.B.B._B:8266
Started webrepl in normal mode
could not open file 'main.py’ for reading

Type "help<>" for more information.
>>> 1

MicroPython vl . B.6—"7—qgefdBd?2?7 on 2016—11-18; ESP module with ESPBZ6G

Anytime afterwards, you can reset NodeMCU by pressing its RST switch, and MicroPython will

get WebREPL enabled.

Next, you have to connect your PC to NodeMCU board over WiFi.

As | discussed a while ago, MicroPython configured itself as an Access Point (AP) on booting.
To communicate with it, our PC must be connected it as an AP. As an AP, the ESP8266 chip on

NodeMCU board has its own unique SSID name and password.

On PC, go to your Wireless Network Connection panel, which shows all the WiFi stations in its

receiving range.

27

Currently connected to:

~N. SVFIG

‘1 Nolnternet access

TING

%1 Internet access

Wireless Network Connection ~ |2
SVFIG Connected g1
MicroPython-1a3fbf A
TING M |
neverland-g M
BLUTO _l

Open MNetwerk and Sharing Center

Connect to MicroPython-xxxxxx station, where xxxxxx is the 1D of the ESP8266 chip. You will
be asked to enter a password to connect. Type in the universal password for NodeMCU:
‘micropythoN’, ending with a capitalized N.

Now, find the webrepl.html file in the C:/2017Workshop/webrepl-master folder, and double
click it. WebREPL web page will be opened:

Gz | [] B [
[MicroPython WebREPL X
C | @ file:///C:/2017Workshop/webrepl-master/webrepl.html | @

i Apps G Google :. BEFEFITEESR eow Index to Texts & Tra- @ YouTube - Broadcast CDC - Seasonal Influ »

ws://192.168.4.1:8266/
1 Choose File
Send to device

It shows the IP address 192.168.4.1, and the Port number 8266. Click the Connect button to the
right of IP address, and you are asked to enter a password. Type in the password you selected

28

earlier in REPL, and WebREPL is activated. You get the prompts as shown in follow screen, and
you can type in MicroPython commands, just like in REPL.

Gz a5 [
[MicroPython WebREPL X

C | @ file:///C:/2017Workshop/webrepl-master/webrepl.html

i Apps G Google O FEFFIEES eow IndextoTexts & Trar (8 YouTube - Broadcast

ws://192.168.4.1:8266/

CDC - Seasonal Influ

Password:
WebREPL connected
»>

Choose File

>

> 11

WebREPL acts exactly like REPL, and you can type these commands to turn the LED on and off:

>>>from machine import Pin
>>>p2=Pin (2, Pin.OUT)
>>>p2.1low ()

>>>p2.high ()

The WebREPL window looks like:

29

[M MicroPython WebREPL X

C | @ filey///C:/2017Warkshop/webrepl-master/webrepl.htm| | &

| .. -

B Apps G Google [FEFFIEES eow Indexto Texts & Tran (0 YouTube - Broadcast @8 CDC - Seasonal Influ »

ws:/192.168.4.1:8266/ Disconnect |

Choose File

Password:
WebREPL connected Send to device
>3 -
33>
»»> from machine import Pin

2 ouT)) Get from device

e C ast):

d

»>»> pZ.high()
333

p2.1o () turnsthe LED on, and p2.high () turns it off.

Congratulations!!! You succeeded to meet our challenge. Take the NodeMCU board home and
have lots of fun with it.

In this experiment, you were not asked to do any programming, as MicroPython has library
routines controlling the on-board LED. You were using the interpreters REPL and WebREPL to
issue the canned commands to do your work. In the other experiments, you have to learn how to
program NodeMCU to meet the challenge. It is more fun to get NodeMCU to do what you like it
to do, than just following directions to do something other people allow you to do.

30

Experiment 4. MicroPython UDP Server

In this experiment, you will set up a MicroPypthon UDP server on NodeMCU board. The server
waits for UDP packets from a client, directing it to turn the on-board LED on and off. It can also
drive a speaker to beep at different frequencies, if you had a small speaker connected to
NodeMCU. The client is Hercules SETUP Utility on PC, which sends out UDP packets to the
MicroPython server to turn the LED on and off.

First, you have to load MicroPython binary in the flash memory of NodeMCU. Follow the
directions in the Tool 3 ESP8266Flasher section earlier.

MicroPython REPL

After MicroPython is loaded into the flash memory of NodeMCU. Open TeraTerm on PC. Press
the reset switch RST on NodeMCU board to get MicroPython REPL running:

7 COMA4 - Tera Term VT = | B |

File Edit Setup Control Window Help
k<4uiBai64. 3. 3IfFF8398. 4> -
could not open file ‘main.py’ for reading

MicroPython vl.8.6-7—gefdB?27 on 2816—11-18; ESP module with ESP8266
Type "help{>" for more information.
>>

With REPL, you can turn the LED on and off easily by typing the follow commands:

>>>from machine import Pin
>>>p2=Pin (2, Pin.OUT)
>>>p2.1low ()

>>>p2.high ()

MicroPython UDP Server

The server on MicroPython is very simple. The code is as follows:

import machine, time
pl4=machine.PWM (machine.Pin (14, 1))
p2=machine.Pin (2, machine.Pin.OUT)

p2.low ()
def beep(n):
if n:
pléd.duty(512)
pléd.freqg(n)

31

P2.1low ()
else:

pléd.duty(0)

p2.high ()

import network

sta=network.WLAN (network.STA IF)

sta.connect ('SVFIG', '12345678")

#static IP
#sta.ifconfig(('192.168.1.10"',"'255.255.255.0"','192.168.1.1"','192.168.1.1"))
time.sleep (1)

newconfig=sta.ifconfig()

print (newconfiqg)

import socket
s=socket.socket (socket.AF INET, socket.SOCK DGRAM)
s.setsockopt (socket.SOL SOCKET, socket.SO REUSEADDR, 1)
addr=(newconfig[0],8266)

print (addr)

s.bind (addr)

def listen{():
while True:
data,address=s.recvfrom (10)
beep (int (data))
listen ()

The first section of the code defines a routine beep() which produces an audio beep and turns the
LED on, given a frequency parameter. If the frequency is 0, stop the audio and also turns the
LED off.

The second section establishes NodeMCU as a server station, connection to the WiFi network.
The IP address can be assigned dynamically or statically.

The third section sets up a socket to receive UDP packets. Finally, the routine listen() receives
UDP packets and drives the audio and the LED.

This piece of code must be stored in the flash memory of NodeMCU as main.py file, which is
executed when NodeMCU boots up, and performs server services.

This code is embedded in a loader file WriteFile.py, which is executed by REPL to generate
main.py. Following these steps:

In REPL, press Ctrl-E to enter into the ‘Paste Mode’:

32

EOMA. Term Teaniil | (5 e

Eile Edit Setup Control Window Help

b3 -
>>> L4
paste mode; Ctrl-C to cancel. Ctrl-D to finish

!|_ v

Click File>Send File... option, and then chose WriteFile.py. It is pasted into REPL:

U e
COMA4 - Tera Term VT

File Edit Setup Control Window Help

s.setsockopt{(socket.S0L_SOCKET, socket.50_REUSEADDR,. 1> ~
addr=<(newconfigl[A],.16808%9>

print {addr?

s.bind{addr>

def listen{): L
while True:
data,addresz=s.recuvfrom{18>
bheeplint{datad>>
listen{)

import os

f=open{' main.py’ . 'w'>

f.uwrite (CONTENT >

f.closed)

print{os.listdir(l) |:]

Press Ctrl-D to exit paste mode, and also compile the code pasted.

COM4 - Tera Term VT ESSECE™=X)

Eile Edit Setup Control Window Help
== g . bhind<addr> -

def listeni>:
vhile True:
data.address=s.recuvfrom{18>
beep{int<{datad> L

listend>

import os
f=open{'main.py’ . "'uw'l
f .urite{CONTENT>
f.close<>
printfos.listdir(l)

7?1 |:|
[*hoot.py’,. ‘wehrepl_cfg.py’, "main.py’1] L
2 5

33

791 bytes were received in paste mode. Code is compiled and a main.py file is written to the
flash memory. When MicroPython re-boots, it automatically compiles main.py. You put your
application code in main.py, and NodeMCU will execute you code when you power it up. This is
what | called firmware engineering.

You can type in ‘import main’, to exercise the code. Or, you can press Ctrl-D to do a
software reset in MicroPython to start the server. Or, you can press the RST switch on
NodeMCU board for a hardware reset to start the server. After reset, you will have this screen in
TeraTerm:

& -

-
Eile Edit 5Setup Control Window Help

Traceback {(most recent call last>:
File "main.py'. line 38. in <module>
File "main.py', line 36, in listen
Ke yhoardInterrupt:
MicroPython vl.B.6—7—gefdd?27 on 2016-11-1@; ESP module with ESP8266

Type "help(>'" for more information.

>3y

YB: soffi8 ets_task(40100164,. 3. 3IFFFfE398, 4>

ebREPL iz not configured,. run ’inport webhrepl_ setup’
('192.168.1.2", *255.255.255.8', ’192.168.1.1", "192.168.1.1">
C'192.168.1.2' . 18889>

The server is now running. Note that its IP address is 192.168.1.2, or whatever is shown on
TeraTerm screen. Its Port number is 10009. These numbers will be used in Hercules Client to
send UDP packets to this server.

Press Ctrl-C to return to REPL. You can type the following commands to turn the LED on and
off:

>>>beep (440)
>>>beep (0)

If you have a small speaker connected to GND and D5, you can hear the audio beep at the

specified frequency. beep (440) makes the speaker beep at 440 Hz, and also turns the LED on.
beep (0) silences the speaker, and also turns the LED off.

34

- - [
[COMA - Tera Term Lo o
F = L _____________

Eile Edit Setup Control Window Help
Type "help(>" for more information. -

PYB: sof#t? ets_task(409108i6d4,. 3, IFffE398, 4>

ebhREPL is not configured. run ’import webrepl_setup’

('192.168.1.2", *255.255.255.8", "192.168.1.1", "192.168.1.1">

('192.168.1.2' . 188689> »
raceback (most recent call last):
File "main.py'. line 38. in <module>
File "main.py'. line 36. in listen

icroPython vl .B.6—7—gefdd?27 on 2016-11-18; ESP module with ESPB266
ype "help(d'" for more information.

>>> heepd44@)

>>» heepi@)

>»> beepd22@8) K|
>>> heep(A) =—

Here you demonstrated that you can turn the LED on and off remotely. You’ve met our
challenge. Take a NodeMCU board home and do more challenging experiments.

35

Experiment 5. Lua/ESPlorer

When the Chinese engineers in Espressif Systems released ESP8266, no high level programming
tools were available. Then a group of Russian engineers ported the Brazilian programming
language Lua to ESP8266, and released an IDE ESPlorer with it. It was the first high level
language allowing users to program ESP8266 for 10T applications. Then we had Arduino IDE
and MicroPython with different approaches to program ESP8266.

In this experiment, you will control the LED on NodeMCU board, first with ESPlorer
interactively, and then remotely with an UDP client Hercules.

First you have to flash ESP8266 with Lua. Hook your NodeMCU board with your PC with the
MicroUSB cable. Follow the instructions in the Tool 3 ESP8266FIlasher section of this workshop.

Lua language system came in the form of two binary images 0x00000.bin and 0x10000.bin in the
C:/2017Workshop/wb6 folder. They are to be flashed into the flash memory of NodeMCU board,
using ESP8266Flasher.exe.

ESPlorer IDE

To bring up ESPlorer IDE, double click c:/2017Workshop/Esplorer6/Esplorer/ESPlorer.jar, and
you get the ESPlorer windows:

[ESPlorer v0.2.0-rc5 by 4refrint = | B |
File Edit ESP View Links?
[ModeMCU & WMicroPython AT-based RN2483 \oom TJ
J Scripts T Commands T Snippets T Ssﬂmgsﬂ] [~} () o V] asetcrn Bl =
= — Open CTS [] =0 w7 (] e Temual
E 4 H B @ % ¢ i Open _
Open Reload Save Save.. Cose | Undo Redo Cut Copy Paste L) L J
bTR RTS |115200 vJ { Donate
New

3 |5 Format
[E] FsInfo
%: Reload

l SaveBRun J { SaveBCompile J { SaveBCompieBRun... J l Save

l SavelCompile All J { Vieve on ESP J { View on ESP J l Saveli

l Heap Jl Chip Info J{ Chip ID J{ Flzsh 1D J @ res=t

By SavetoESP B sendtoEsp @ Run [. 4 5end

36

On the right is the Editor panel, and on the left is the Terminal panel. On the top of Terminal
panel, make sure that the right COM port is selected, and that the baud rate is set to 115200.
Then click the big Open button to start communicating with NodeMCU board:

¢ ESPlorer v0.2.0-rc5 by drefrOnt (B | S

File Edit ESP View Links?

[NodeMCU&MicroPython AT-based RMN2483 \oom TJ

J Scripts T Commands I Snippets T Semngsﬁ] (] [} s (] actaseren o | s e
— o] CTs LF e
= $ B B B 9% ¢ { 0 Fen Sl l_J e (] oo vermems

@ .
Open Reload Save Save.. Close Undo Redo Cut Copy Paste w L
et o |115200 vH Donate J
New

-1 [Format

PORT OPEN 115266 @FSme
-
Communication with MCU.. | GiReload

19
l SaveBRun J { SaveBCompile J t SaveRCompile&Run... J l Save

l SevebCompie Al J { Vieve an ESB J { View on ESP J l Savely l Hezp J l Chip Info J { Chip ID J { Flash 1D J [==

B savetoEsP B sendtoEsp @ Run [uple| | —node.hean(4= send

|——— —

On the Terminal panel, it shows “Communication with MCU..” Now, press the RST reset switch
on NodeMCU board and Lua signs in:

W ESPlorer v0.2.0-rc5 by drefrOnt R

File Edit ESP View Links?

[NudaMCu&MlcruPymun AT-based RN2483

J Scripts T Commands T Snippets T Setlmgsﬁ] @ b (s [2] @cn B
= — Open CTS (] e (e [e Termiat
0o E $ B B @m 0H ¢ 1 | &' Close _
Open Reloed Save Saven. Cose | Undo Redo Cut Copy Paste 1) (")
et e |115200 vJ { Donate J
New

Eg{; Format
[E] FsInfo

I
Communication with MCU..Got answer! Communij R acil
AutoDetect firmware...

PORT OPEN 115280

| Srippeto | { Snippet J | Snippetz | | sSnippets | | Snippetd | [Snippets | | Snippets |

[Snippet? J [Snippetd J [Snippet3 J [Snippetl) J [Snippetil J L Snippetlz J L Snippetl3 J
l SaveBRun J { SaveBCompile J { SaveBCompieBRun... J l Save Snippet14 Snippst15

l SavekCompil All J { View on ESP J { View on ESP J l Savehy

l Hezp Jl Chip Info J{ ChipID J{ Flash ID J{ (@) Resst J

| % SawetoESP || [§ SendtoESP || (@ Run J | 8 Uple| | —noge.hezp() H 4= send

L —— =

37

At the bottom of the Terminal Panel, there is a text box for you to enter Lua commands. Type in
these commands to turn the LED on and off, and to generate an audio beep at 440 Hz:

gpio.write (4,0)
gpio.write(4,1)
pwm.setup(5,440,512)
pwm.start (5)
pwm.stop (5)

Type one line of code at a time, and press the Send button to the right of the text box.

i ESPlorer v0.2.0-1c5 by 4refrdnt x|

File Edit ESP View Links?

{ NodeMCU & MicroPython AT-based RN2483

[seripts | commands | snippets | satings.? | ® © o Drs Bles e
= — Open CTS [] e [[roe remea
o 5 6 BB E 5 e 4 . -
Open Relosd Save Save.. Chkss © Undo Redo Cut JTJR R:‘S |115200 'J [Donate J

MNew.

A [5& Format
El Fsinfo
% Reload

pwm.stop(5)
pwm.stop(5)

L Snippstd J l Snippstl J l Snippst2 J l Snippet3 J l Snippetd J l Snippsts J L Snippsts J L Snippst? J

{ Snippets J lmj l Snippetid J l Snippetil J l Snippet1? J l Snippat13 J l Snippat14 J
{ SaveBRun J l SaveRCompile J l SaveBCompieBRun., Snippet1s
{ SaveRCompile All J l View on ESP J l View on ESP l e J l — J l —— J l mm— J l © et J

| % savewEsP || [§ SendtoESP | | @ Run

pwm.stop(5) I:J €= Send

UDP Server

The code to turn LED on and off remotely is also easy. The server code receiving UDP packets
is in a Lua file C:/2017Workshop/UDPserver.lua. In the Editor panel, open this file:

38

¢ ESPlorer v0.2.0-rc5 by drefrOnt (B | S

File Edit ESP View Links?

[ModeMCU & MicroPython | AT-based | RM2483 com4
J Scripts T Commands I Snippets T Semngsﬁ] G L4 (s} E] [ZJCR &=
— = 5 5 Open CTs (Jem [[e vermem
pD(E|% B @B B8 % ¢ « 8] Floo= | T
Open | Relosd Save Save.. Cost : Undo Redo : Cut Copy Peste] (5]
et o {115200 vJ { Donate J
UDPserverlua
E‘; Format
PORT OPEN 11 ' E FS Info

=
Communication with MCU..Got answer! Communi] B
AutoDetect firmware...

Can't autodetect firmware, because proper a

eset module continue.
@33 ¢ piCd Uga fl

print(

NodeMCU 1.5.1-wb5a build 201¢

{ Snippetd J { Snippetl J { Snippet2 J { Snippet3 J { Snippetd J { Snippets J { Snippets J

C:\2017Waorkshop\ESPlorer6\UDPsemver.lua | swippetz | | Snippets | | Snippets | | Snippetio | | Snippettn | | Snippetiz | | Snippeit3 |

l SaveBRun J { SaveB.Compile J L SaveB.CompileRur... J Save Snippetid Snippetls

l SavelCompile Al J { View on ESP J L View on ESP J l Savels l Heap J l Chip Info J { Chip D J { o J L @ — J

| [savewoese || [5 sendtoEsP || @ Run | Upl| | —pade.heap() M gy
| ——

Source code in UDPserver.lua is very simple, as shown here:

led=4
audio=5
port=10009
print ("IP:"..wifi.sta.getip()..", Port:"..port)
gpio.mode (led, gpio.OUTPUT)
gpio.write(led, gpio.LOW)
pwm.setup (audio, 440, 512)
srv=net.createServer (net.UDP)
srv:on ("receive", function(srv, pl)
n = tonumber (pl)
print ("Command Reveived: "..n)
if n==0 then
gpio.write(led, gpio.HIGH)
pwm.stop (audio)
else
gpio.write(led, gpio.LOW)
pwm.setup (audio,n,512)
pwm.start (audio)
end
end)
srv:listen (port)

The Lua commands accomplish these functions:

wifi.sta.getip() obtains the IP address on the current WiFi network
gpio.mode (led, gpio.OUTPUT) initializes Pin 4 as output to LED

gpio.write (led, gpio.LOW) turns on LED

pwnm.setup (audio, 440, 512) sets up Pin 5 for PWM output
srv=net.createServer (net.UDP) sets up NodeMCU as an UDP server

39

srv:on("receive", function(srv, pl) receives payload pl in an UDP packet

If the payload in a UDP packet is a number 0, turn off LED and silence beeper. If the payload is
a number other than 0, use it as the frequency for the beeper, and also turn the LED on.

Now, press the Save to ESP button at the bottom left corner of Editor panel. This UDPserver.lua
file is sent to NodeMCU and compiled.

3¢ ESPlorer v0.2.0-rc5 by 4refrOnt = |] e S
File Edit ESP View Link:s ?

[NodeMCLU & MicroPython | AT-based I RN2483 COM4

> w(

_[Scripts T Commands I Snippets T Semngsj‘] 0 - [} E] MER B
— — Open CTsS] e (e [vaoe Termnal
= & B B = 4 ¢ 1 o .
Open Reloed Save Save.. Clse . Undo Redo Cut [) L]
e s |115200 - { Donate
UDPserver lua
7 >

EB Format
|=) FgInfo
i Reload

isten(port)
L Snippetd J l Snippati J l Snippet2 J L Snippet3 J l Snippatd J l Snippats J L Snippets J l Snippet? J
C2017Workshop\ESPlorer6\UDPsenver lua | snippetg | | Snippets | [Snippetto | [Snippetit | [Snippett2 | [Snippett3 | [Snippetts |
l SaveRRun J l SavelCompils J l SaveRCompieBRun., Snippetls
l SaveBCompie Al J l View en ESR J l View en ESR l Hesp J l Chip Infa J l Chip D J L Flzsh 1D J l @) Reset J
| % savewese || [§ sendioEse || @ Run pwm.ston(5) H & sand

Notice that in the Terminal panel, Lua reports that the IP address is 192.168.1.4, and the Port
number is 10009. These numbers characterizes the UDP server socket on NodeMCU.

Hercules SETUP Utility
Now, open Hercules SETUP Utility. Refer to Tool 4 Section for details. Select UDP menu, enter

the IP/Port addresses, and then click the Listen button. The Listen button changes to a Close
button:

40

% Hercules SETUP utility by HW-group.com o

UDP Setup | Serial | TCP Client | TCP Server UDP | Test Mode | About |
Received data
UDF socket created

LDP

[192.188.1.4 10009

10005 x Cloge

Server zettings
[Server echo
[Redirect to TCP Server
[Redirect to TCP Client

Sent data

UDP broadcast

File: name:
Mo file

Laad file ‘ |

Send

220 [~ HEX Send H I.Ugrnu :
o [HEX Send || _e-HW-groupcom

Hercules SETUP atility

|440 [~ HEX Send Version 3.2.8

e

There are 3 text boxes at the bottom of UDP window. Enter “440” in one of them, and then click
the Send button to its left. Hercules send a “440” packet to NodeMCU. The on-board LED will
turn on, and the speaker beeps at 440 Hz. Enter a “0” in another text box, and click the
corresponding Send button, the LED is turned off, and the speaker is silenced. This way you can
control NodeMCU board remotely.

ESPlorer Terminal panel will show the commands received from Hercules.

41

("8 ESPlorer v0.2.0-1c5 by ref0nt HEI—)
File Edit ESP View Links ?
[NodeMCU&M\cruF'thun AT-based RN2483 COM4
_[Scripts T Commands T Snippets T Semngsﬁ} DQ [;JS S] gm‘ | e Eamer
— — pen o0 I3 +aige Termnal
pesaras 2 oo Bl B
lﬂJ lﬂJ |11521m vJ [Donate
E 5 [5& Format
El Fsinfo
i Reload

L Snippetd J l Snippetl J l Snippet2 J l Snippet3 J l Snippetd J l Snippets J L Snippets J L Snippet? J

LIS C\2017Workshop\ESPlorers\UDPserver.lua

{ Snippets J l Snippety J l Snippetid J l Snippetil J l Snippet1? J l Snippat13 J l Snippat14 J

{ SaveBRun J l SaveRCompil J l SaveRCompieBRun., Snippet1s

{ SaveCompils Al J l \iew an ESP J l Wiew: on ESP

l Heap Jl Chip Info Jl ChipID Jl Flash ID Jl @) Resst J

pwm.stop(5) I:J €= Send

| (% savetoESP || [§ SendtoESP | | @ Run

According to ESPlorer manual, you can save UDPserver.lua file as an init.lua file in the flash
memory of NodeMCU. After that, if you press RST switch on NodeMCU, the init.lua file will be
loaded after ESP8266 resets, and you can send UDP packets to it at will. However, on my

NodeMCU board, init.lua is not loaded automatically, and I have to load it manually for UDP
communication.

42

Postlude

With the advent of personal computers and cell phones, the entire humanity is turned into
monkeys trained to push buttons. WiFi become so ubiquitous that we don’t even think about it.
We just push buttons, and are fully occupied. Are we happy? | am not sure.

Here you are challenged to do a very simple task: turn an LED on and off remotely over WiFi. It
is really quite complicated. It is almost impossible without ESP8266 on a NodeMCU board.
ESP8266 solved the hardware and software problems so that you can meet this challenge in a
$3.18 kit. But, it requires more than a monkey to do it.

Moreover, as we firmware engineers always claim: “If you can turn a LED on and off, you can
do anything!”

Having proven that you are more than a button pushing monkey, go ahead and do something
useful in the 10T world.

43

	IoT for Fun!
	Tool 1. TeraTerm Serial Terminal Emulator
	Tool 2. Arduino IDE
	Tool 3. ESP8266Flasher
	Tool 4. Hercules SETUP Utility
	Experiment 1. espForth
	Experiment 2. Arduino UDP Server
	Experiment 3. MicroPython/WebREPL
	Experiment 4. MicroPython UDP Server
	Experiment 5. Lua/ESPlorer
	Postlude

