
Program, Test,
Program, Test

Silicon Valley
Forth Interest Group

Mar. 23, 2024
Bill Ragsdale

The Need

While coding we should test incrementally.

Code - Test; Code – Test

The Need

While coding we should test incrementally.

Code - Test; Code – Test

But once the code is verified we can suppress the

testing.

The Need

While coding we should test incrementally.

Code - Test; Code – Test

But once the code is verified we can suppress the

testing.

But with major changes we may want to restore the

testing.

The Need

While coding we should test incrementally.

Code - Test; Code – Test

But once the code is verified we can suppress the

testing.

But with major changes we may want to restore the

testing.

When the code is completed the tests may be repeated

or only tested from one point onward.

The Need II

Historically the selective execution has been

handled by [IF] [ELSE] [THEN]

On [IF], [ELSE] and [THEN]

[IF] [ELSE] [THEN] are interpreted conditionals. The

following text may be skipped or executed/compiled.

f [IF] <True- code> [ELSE] <False-code> [THEN]

On [IF], [ELSE] and [THEN]

[IF] [ELSE] [THEN] are interpreted conditionals. The

following text may be skipped or executed/compiled.

f [IF] <True- code> [ELSE] <False-code> [THEN]

[IF] Selectively executes/compiles <True-code> or

 <False-code> based on the Boolean f.

On [IF], [ELSE] and [THEN]

[IF] [ELSE] [THEN] are interpreted conditionals. The

following text may be skipped or executed/compiled.

f [IF] <True- code> [ELSE] <False-code> [THEN]

[IF] Selectively executes/compiles <True-code> or

 <False-code> based on the Boolean f.

[IF] is an immediate word. It contains a mini-interpreter that

looks for [ELSE] and [THEN].

On [IF], [ELSE] and [THEN]

[IF] [ELSE] [THEN] are interpreted conditionals. The

following text may be skipped or executed/compiled.

f [IF] <True- code> [ELSE] <False-code> [THEN]

[IF] Selectively executes/compiles <True-code> or

 <False-code> based on the Boolean f.

[IF] is an immediate word. It contains a mini-interpreter that

looks for [ELSE] and [THEN].

But how to selectively activate test sequences?

My Variation On [IF]

7 VALUE TestLimit
\ Execute tests numbered n and greater.

: *IF (n ---)
 TestLimit >= TestLimit and [compile] [IF] ;

Here is the magic.

My Variation On [IF]

7 VALUE TestLimit
\ Execute tests numbered N and greater.

: *IF (n ---)
 TestLimit >= TestLimit and [compile] [IF] ;

*IF accepts a number and compares it to TestLimit.

If equal to or greater than TestLimit, interpretation
continues until [THEN]. If TestLimit is zero, no tests are
performed.

test code
report

Flow of *IF
Code

Module

n *IF

[THEN]

Using *IF

8 *IF .(8 Test of }sub-random)
 A{ 1 2 1 2 1000e }SubRandom
 A{ }list
 [then]

Using *IF

8 *IF .(8 Test of }sub-random)
 A{ 1 2 1 2 1000e }SubRandom
 A{ }list
 [then]

And see:

8 Test of }sub-random
.00000000 .00000000 .00000000
.00000000 657.67050 741.66470
.00000000 619.29350 399.92490

Flow of *IF

Code
Module

n *IF

[THEN]

[IF]

[THEN]

[ELSE

Math Operators Test

4 *IF .(4 Test + - /)
 100 500 + 200 - 4 / 100 =
 [if] .(Got the expected 100.)
 [else] .(Error in math operators) 4 bells [then]
 [then]

Math Operators Test

4 *IF .(4 Test + - /)
 100 500 + 200 - 4 / 100 =
 [if] .(Got the expected 100.)
 [else] .(Error in math operators) 4 bells [then]
 [then]

And see:

4 Test + - / Got the expected 100.

Math Operators Test

4 *IF .(4 Test + - /)
 100 500 + 200 - 4 / 100 =
 [if] .(Got the expected 100.)
 [else] .(Error in math operators) 4 bells [then]
 [then]

And see:

4 Test + - / Got the expected 100.

Or else

4 Test + - / Error in math operators
 ding ding ding ding

More Involved Testing

7 *IF .(7 Test of {[|]} executing and compiling)

4 4 create{ A{
A{ {[1 2 3 4 | 5 6 7 8 |
 9 10 11 12 | 13 14 15 16]}
A{ }list

: }fill {[1 2 3 4 | 5 6 7 8 |
 9 10 11 12 | 13 14 15 16]} ;

A{ }zeros A{ }fill A{ }list forget A{

[then]

More Involved Testing III

8 Test of {[|]} executing and compiling

 1.0000 2.0000 3.0000 4.0000
 5.0000 6.0000 7.0000 8.0000
 9.0000 10.000 11.000 12.000
13.000 14.000 15.000 16.000

1.0000 2.0000 3.0000 4.0000
5.0000 6.0000 7.0000 8.0000
9.0000 10.000 11.000 12.000
13.000 14.000 15.000 16.000

Time Comparisons

Load with no testing:

FLOAD 'C:\Data\Forth\MatrixTwo\MatrixTwo-L.F'

Elapsed time: 00:00:00.026 (26 miliseconds)

Load with full testing:

FLOAD 'C:\Data\Forth\MatrixTwo\MatrixTwo-L.F'

Elapsed time: 00:00:05.466 (5.5 seconds)

Benefits

You are thinking most clearly about code just
after you have written it.

Benefits

You are thinking most clearly about code just
after you have written it.

Use that moment to capture test methods.

Benefits

You are thinking most clearly about code just
after you have written it.

Use that moment to capture test methods.

And preserve those methods.

Benefits

You are thinking most clearly about code just
after you have written it.

Use that moment to capture test methods.

And preserve those methods.

But only reuse them when needed.

Prior Art on Forth Testing

http://www.euroforth.org/ef19/papers/
hoffmanna.pdf

Annex F, Test Suite of Forth200x at:
http://www.forth200x.org/documents/

https://github.com/Anding/simple-

tester

http://www.euroforth.org/ef19/papers/hoffmanna.pdf
http://www.euroforth.org/ef19/papers/hoffmanna.pdf
http://www.forth200x.org/documents/
https://github.com/Anding/simple-tester
https://github.com/Anding/simple-tester

Credits

• Andrew McKewan and Tom Zimmer
for Win32Forth.

• The European team who updated it
in the early 2000s.

• https://github.com/BillRagsdale/
Forth_Projects/Program-And
Test.pdf

• https://github.com/BillRagsdale/
WIN32Forth-Guide

References

https://github.com/BillRagsdale/Forth_Projects/Program-And%20Test.pdf
https://github.com/BillRagsdale/Forth_Projects/Program-And%20Test.pdf
https://github.com/BillRagsdale/Forth_Projects/Program-And%20Test.pdf
https://github.com/BillRagsdale/WIN32Forth-Guide
https://github.com/BillRagsdale/WIN32Forth-Guide

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31

