
Quantum Encryption

FPGA Integration

Incorporating FPGA Chips as Security Keys in
Quantum Encryption

• Field-Programmable Gate Arrays (FPGAs) are highly versatile, programmable

silicon chips that can be configured to perform a wide array of computing

tasks. Their reprogrammable nature, high-speed processing capabilities, and

parallel processing features make them an ideal choice for a variety of

applications, including cybersecurity. When combined with quantum

encryption methods, FPGA chips can significantly enhance the security and

efficiency of cryptographic protocols.

Integration of FPGA Chips in Quantum Encryption

• Quantum Key Distribution (QKD) Acceleration:

• Key Generation: FPGA chips can rapidly process quantum measurement outcomes to

generate encryption keys. Their ability to handle parallel computations allows for the

fast generation of keys, which is essential in real-time communications.

• Error Correction and Privacy Amplification: After the initial key generation phase in

QKD, certain post-processing steps like error correction and privacy amplification are

required. FPGAs can efficiently execute these computationally intensive tasks,

ensuring the final key is secure and free from any potential eavesdropping.

Simulation and Real-time Processing:

• Quantum Circuit Simulation: For development and testing purposes, FPGAs

can simulate quantum circuits much faster than conventional processors,

providing a platform for testing quantum encryption algorithms before they

are run on actual quantum hardware.

• Real-time Quantum Encryption: In a deployed system, FPGAs can process

quantum encryption algorithms in real-time, ensuring that data encryption

and decryption are performed with minimal latency.

Secure Key Storage:

• Hardware-based Security: FPGA chips can securely store encryption keys and

perform cryptographic operations directly on the chip. This hardware-based

approach to key management enhances security by minimizing the exposure

of sensitive keys to potentially compromised software environments.

Custom Cryptographic Protocols:

• Customization and Flexibility: The programmable nature of FPGA chips allows

for the implementation of custom, proprietary cryptographic protocols or the

optimization of existing ones to meet specific security requirements or

performance metrics.

• Adaptability: As quantum-resistant encryption algorithms evolve, FPGA chips

can be reprogrammed with new algorithms, ensuring the cryptographic system

remains secure against emerging threats.

The Not So Hard Stuff
Quantum Gates

Quantum gates typically included in a quantum
computing library, such as Qiskit. These gates
operate on qubit states, which are vectors in a
complex Hilbert space and for this example it is a
space where there are infinite positions where
the gate is stored in the FPGA. Here, we'll focus
on single-qubit gates for simplicity.

Pauli-X Gate (NOT Gate) The not gate is an entry
way to say hay I am here let’s start.

Pauli-Y Gate Do you Spin me Round and Round.
This sets the position of the gate direction. Hey, go in this
direction.

3. Pauli-Z Gate (Phase Flip Gate) Lets Flip It to name
the user and find the direction of the Not Gate. It
uses radians a degree of direction but unchanged
because it recognizes the user not gate and y gate.

Hadamard Gate This is important we recognize you
and we are sending you with this password that is
encrypted

T Gate (T-Phase Gate)
We are going to confuse you now that you
have the credentials so no one follows you.

CNOT Gate (Controlled-NOT Gate) We are now going
to encrypt those previous steps go back to the
beginning. We are using a matrices of suppositions
ie spins that are quantum that classical computers
can not compute or calculate.

Let's calculate the effect of
applying a Hadamard gate to
a qubit initially in the state
∣0⟩∣0⟩, a common operation in
quantum computing that
illustrates the creation of a
superposition state. Simply,
multiple the groups like the
foil method and using cosine
as the square root. Find the
angle in ie gate with sq root. It
will give the gate key in a spin
phase ie supposition.

Secure Gate Key Generation, Make it safe

• Complexity and Unpredictability: By abstracting quantum gate operations into

mathematical models involving π cosine constants and applying these in an nth

integer superposition framework, you create a layer of complexity and

unpredictability that is hard to replicate without knowing the exact parameters

and algorithms used. This unpredictability is a cornerstone of cryptographic

security.

Key Sharing

• Key Sharing:

• Alice transmits the key to Bob through a secure channel established

by the FPGA. The FPGA uses its hardware capabilities to encrypt the

transmission further, perhaps using a physically unclonable function

(PUF) for an additional layer of security.

Communication

• Once Bob receives and decrypts the key using the same custom

library and his FPGA, both parties can use this key for encrypting

and decrypting their messages. The complexity and unpredictability

of the key generation process, coupled with the hardware-specific

encryption for key sharing, ensure that the communication remains

secure.

Python Example

Cracking The
Encryption

Don Golding
Space Exploration and Communication

• We could apply a similar library to communicate complex

mathematical equations using your Polarfire RT to a space craft. You

could almost and possibly do quantum simulations on mars to

demonstrate its capability. It also could also be used for

cryptography for satellite communication. Just a thought and not for

sure if it would work.

Examples

• In these pseudocode examples, mat! would be a hypothetical Forth

word used to initialize the matrices representing quantum gates, and

qubit* would represent applying a gate to a qubit. The variables qubit,

qubit2, and all the gate variables would store the state of the qubits

and the matrices for the gates.

