
espForth Browser

Forth Modification Lab

SVFIG

C. H. Ting

March 23, 2019

Summary

 Serial IO in eForth

 ESP8266 with UDP

 ESP32 HTTP Browser

 EVAL

 EspForth Browser

 Evaluate()

 ESP32 Programming

Serial IO in eForth

 KEY receives a character from
UART input device and stores it in
Terminal Input Buffer (TIB).

 EMIT sends a character out to
UART output device.

 HyperTerminal is my choice to
interact with eForth.

Serial IO in More
Sophisticated Forth

 EXPECT receives a stream of
characters from UART input
register and stores them in
Terminal Input Buffer (TIB).

 TYPE streams characters in an
output buffer to UART output
register.

ESP8266 with UDP

 UDP is the simplest protocol for
WiFi interaction.

 ACCEPT is modified to receive
input stream from both Serial
Monitor and UDP receiver.

 EMIT is modified to send
characters to UDP output buffer.

 CR is modified to send out an
assembled UDP packet.

ESP8266 with UDP

 I need an UDP terminal emulator
on Windows to interface with
esp8266forth through WiFi.

 Serial Monitor on Arduino works
much better than HyperTerminal.

ESP32 Browser

 Most WiFi LED tutorials for esp32
use browsers to turn LEDs on and
off with buttons on a web page.

 Web page seems to be a natural
interface for eForth, with a few
kinks.

Forth Interpreter

Forth Interpreter
: QUIT (--)

[BEGIN QUERY EVAL AGAIN

: QUERY (--)

TIB $100 LIT ACCEPT #TIB !

DROP 0 LIT >IN ! ;

: EVAL (--)

BEGIN TOKEN DUP @

WHILE 'EVAL @EXECUTE

REPEAT DROP .OK ;

EVAL

 Instead of QUIT, we now focus on
EVAL as the essence of Forth
interpreter.

 Other languages or operating
systems can prepare Forth words,
stuff them into TIB, and then call
EVAL to interpret them.

EVAL

 To integrate EVAL into other
languages and operating systems,
we just have to make sure that:

 EVAL gets all Forth words in TIB

 EVAL can exit Forth and return to
other system smoothly.

espForth_53 Loop

void loop() {

bytecode=(unsigned char)cData[P++];

primitives[bytecode](); }

espForth_56 Browser

 espForth receives and decodes an
URL.

 Forth words in URL are handed to
EVAL to evaluate.

 A BREAK instruction in espForth
causes Forth to exit and then
sends back a web page.

 Etc…

espForth_56 Browser

void loop()

{ get URL

decode URL into TIB

EVAL

send out web page

}

Break out loop()

 espForth has an un-used opcode
NOP with 0 opcode.

 NOP was not used in espForth.

 NOP is now used to break out the
Arduino loop(), and terminate
Forth interpreter.

 Forth loop is in evaluate().

evaluate()

void evaluate()

{ while (true){

bytecode=(unsigned char)cData[P++];

if (bytecode)

{primitives[bytecode]();}

else {break;}

}}

esp32forth 5.6 Loop

void loop()

{ get URL

decode URL

evaluate();

send out web page

}

void loop() {

WiFiClient client = server.available();

if (client) {

Serial.println("New Client.");

HTTPin = "";

HTTPout = "";

while (client.connected()) {

if (client.available()) {

char c = client.read();

Serial.write(c);

HTTPin += c;

if (c == '\n') // end of line

HTTPin.replace("%20"," ");

HTTPin.replace("GET /","");

HTTPin.replace("HTTP/1.1","");

Serial.println(HTTPin);

len=HTTPin.length();

HTTPin.getBytes(cData,len);

Serial.println("Enter Forth.");

data[0x66] = 0; // >IN

data[0x67] = len; // #TIB

data[0x68] = 0; // 'TIB

P = 0x180; // EVAL

WP = 0x184;

evaluate();

Serial.println("Return from Forth.");

client.println("HTTP/1.1 200 OK");

client.println("Content-type:text/html");

client.println();

client.println("<html><head><title>esp32fort

h_5.6</title></head>");

client.println("<link rel=\"icon\"

href=\"data:,\"><body><pre>");

client.println(HTTPout);

client.println("</pre></body></html>");

client.println();

break;}}}

client.stop(); }}

Serial Monitor

Esp32forth Browser

Esp32forth Browser

EVAL

 EVAL is very powerful. It is used to
load a file in flash memory to
customized espForth for specific
applications.

: LOAD (a n --, load text string)

#TIB ! 'TIB ! 0 >IN ! EVAL ;

espForth_53/56

 EspForth_53 with Serial Monitor is
for programming and testing.
Program can be store in flash for
loading.

 EspForth_56 with browser is for
controlling and showcasing.
Application program in flash is
loaded automatically on boot.

espForth Programming

 Only a few audio commands were
tested on NodeMCU ESP32 kit.

 Programming and testing methods
are developed.

 When AI Robot is ready, real
program will be developed.

espForth Programming

 Serial Monitor Level

 Load.txt Level

 cEF level

 Arduino Level

Serial Monitor Level

 Serial Monitor in Arduino is better
than HyperTerminal, with very large
output display panel

 It does not accept text file

 256 Byte Terminal Input Buffer

 Long line of text works like blocks

Load.txt Level

 ESP32 has 4MB flash memory

 SPIFFS and FS libraries implement a
simple flash file system.

 I need only one file: Load.txt.

 Load.txt can be compiled manually
in espForth_53, or automatically in
espForth_56.

cEF Level

 Use cefMETA_56.fex to meta-
compile esp32eforth:

 cefMeta_56.f

 cefASM_56.f

 cefKERN_56.f

 cEF_56.f

 Rom_56.h is generated for Arduino.

Arduino Level

 New Byte Code

 Forth Virtual Machine

 Finite State Machine

 Call Arduino Libraries

Conclusion

 EspForth browser shows that there
is a much more natural and
pleasant interface for Forth to the
Internet universe.

 We need to put a Forth like it on-
line, to attract more followers.

Questions?

Thank you.

