!'_ espForth Browser

Forth Modification Lab
SVFIG
C. H. Ting
March 23, 2019

i Summary

= Serial IO in eForth

= ESP8266 with UDP

= ESP32 HTTP Browser
= EVAL

= EspForth Browser

O Evaluate()

= ESP32 Programming

i Serial I0 in eForth

= KEY receives a character from
UART input device and stores it in
Terminal Input Buffer (TIB).

= EMIT sends a character out to
UART output device.

= HyperTerminal is my choice to
interact with eForth.

Serial 10 in More
i Sophisticated Forth

= EXPECT receives a stream of
characters from UART input
register and stores them in
Terminal Input Buffer (TIB).

= TYPE streams characters in an
output buffer to UART output
register.

i ESP8266 with UDP

= UDP is the simplest protocol for
WiFi interaction.

= ACCEPT is modified to receive
input stream from both Serial
Monitor and UDP receiver.

= EMIT is modified to send
characters to UDP output buffer.

= CR is modified to send out an
assembled UDP packet.

i ESP8266 with UDP

= I need an UDP terminal emulator
on Windows to interface with
esp8266forth through WiFi.

= Serial Monitor on Arduino works
much better than HyperTerminal.

i ESP32 Browser

= Most WiFi LED tutorials for esp32
use browsers to turn LEDs on and
off with buttons on a web page.

= Web page seems to be a natural
interface for eForth, with a few
kinks.

Forth Interpreter

Power Up

Init Forth Virtual Machine

Init Data Stack

Init Return Stack
Start Interpreter

Read Input Line

Interpret Input Line

Forth Interpreter

QUIT (--)
[BEGIN QUERY EVAL AGAIN
QUERY (--)

TIB $100 LIT ACCEPT #TIB !
DROP 0 LIT >IN ! ;
EVAL (--)

BEGIN TOKEN DUP @

WHILE 'EVAL QEXECUTE
REPEAT DROP .OK ;

i EVAL

= Instead of QUIT, we now focus on
EVAL as the essence of Forth
interpreter.

= Other languages or operating
systems can prepare Forth words,
stuff them into TIB, and then call
EVAL to interpret them.

i EVAL

= To integrate EVAL into other
languages and operating systems,
we just have to make sure that:
= EVAL gets all Forth words in TIB

= EVAL can exit Forth and return to
other system smoothly.

‘L espForth_53 Loop

void loop () {
bytecode=(unsigned char)cData[P++];
primitives[bytecode] (), }

i espForth_56 Browser

= espForth receives and decodes an
URL.

= Forth words in URL are handed to
EVAL to evaluate.

= A BREAK instruction in espForth
causes Forth to exit and then
sends back a web page.

s EtC...

i espForth_56 Browser

void loop()

{ get URL
decode URL into TIB
EVAL

send out web page

Break out loop()

= espForth has an un-used opcode
NOP with 0 opcode.

= NOP was not used in espForth.

= NOP is now used to break out the
Arduino loop(), and terminate
Forth interpreter.

= Forth loop is in evaluate().

‘L evaluate()

void ewvaluate ()
{ while (true) {
bytecode=(unsigned char)cData[P++];
if (bytecode)
{primitives[bytecode] () ;}

else {break;}

)

esp32forth 5.6 Loop

void loop ()

{ get URL
decode URL
evaluate () ;

send out web page

void loop () {
WiFiClient client = server.available() ;
if (client) {
Serial.println("New Client.");
HTTPin = "";
HTTPout = "";
while (client.connected()) ({
if (client.available()) {
char ¢ = client.read();
Serial.write(c) ;
HTTPin += c;
if (¢ == '\n') // end of line

HTTPin.replace("%20"," ");
HTTPin.replace ("GET /" ,"");
HTTPin.replace ("HTTP/1.1","");
Serial.println (HTTPin) ;
len=HTTPin.length() ;
HTTPin.getBytes (cData, len) ;
Serial.println("Enter Forth.");

data[0x66] = O; // >IN
data[0x67] = len; // #TIB
data[0x68] = O; // 'TIB
P = 0x180; // EVAL
WP = 0x184;

evaluate() ;

Serial .println("Return from Forth.");
client.println ("HTTP/1.1 200 OK");
client.println("Content-type:text/html") ;
client.println();

client.println ("<html><head><title>esp32fort
h 5.6</title></head>");

client.println("<link rel=\"icon\"
href=\"data:, \"><body><pre>") ;

client.println (HTTPout) ;
client.println("</pre></body></html>") ;
client.println() ;

break;}}}

client.stop(); }}

Serial Monitor

COMb6

...

I

WiFi connected

IP RAddress: 152.1g8.1.4

Booting esp3Z2Forth 56 ...

Load file.

LINE reDef PP reDef PO reDef Pl
000 0 ok> Done leoading.

Efw Client.

ET / HITP/1.1

Enter Forth.
0000 ck>

Return from Forth.
Flient. disconnected.

ew Client.

reDef

POEN reDef PIlEN reDef P(

‘L Esp32forth Browser

Y esp32forth_5.6 x G

. ‘ . -
RS C ® Notsecure | 192.168.1.4 * [0O . :
1 Apps @ Forth Programming.. & Google [l FTEFEFEER » Other bookmarks
B 0 0 0 ok>

JL Esp32forth Browser

=i
esp32forth_5.6 x B4+ B -
< C ©® Notsecure | 192.168.1.4/words w [O . :
3! Apps @ ForthProgramming.. & Google [l FEFEFIEZS sow Index to Texts & Tr.. » Other bookmarks

HUSH INIT PLAY notes DELAY channel ppgn kkk kk k <clk pppp typee emittt emitt ppp plin

p@in plen p@en pl p@ pp line IMMEDIATE COMPILE-ONLY (\ .(CONSTANT VARIABLE CREATE CODE ."
$" ABORT" WHILE ELSE AFT REPEAT AHEAD IF AGAIN UNTIL NEXT BEGIN FOR THEN KKK PPPP TYPEE
EMITT PPP P1IN POIN PI1ENC PI1ENS P1EN POENC POENS POGEN P1C P1S P1 POC POS PO PP

LINE HI FORGET WORDS .ID »>NAME DUMP dm+ ; :] OVERT $COMPILE COMPILE [COMPILE] ' $,n
?UNIQUE $," ALLOT LITERAL , LOAD EVAL .0OK [$INTERPRET ERROR abort™ QUERY EXPECT NAME? find SAME?
NAME> WORD TOKEN PARSE PACK$ (parse) ? . U. U.R .R ."| $"| do$ CR TYPE SPACES

CHARS SPACE NUMBER? DIGIT? >upper wupper DECIMAL HEX str #> SIGN #S # HOLD <# EXTRACT DIGIT
FILL MOVE CMOVE @EXECUTE TIB PAD HERE ALIGNED >CHAR WITHIN FREQ DUTY TONE PIN ADC PEEK POKE
sendPacket 2/ 2* 2- 2+ 1- 1+ CELL/ CELLS CELL- CELL+ CELL BL MIN MAX COUNT 2@

2! +! PICK */ */MOD M* * UM* / MOD /MOD M/MOD UM/MOD < U< = ABS

- DNEGATE NEGATE NOT + 2DUP 2DROP ROT ?DUP UM+ XOR OR AND ©< OVER SWAP DUP

DROP >R R@ R> C@ C! @ ! BRANCH QBRANCH DONEXT EXECUTE EXIT DOLIST DOLIT EMIT ACCEPT

BREAK channel ppgn Z +tmp 'ABORT 'EVAL LAST CP CONTEXT BASE 'TIB #TIB >IN SPAN HLD

0 0 0 0 ok>

i EVAL

= EVAL is very powerful. It is used to
load a file in flash memory to
customized espForth for specific
applications.

: LOAD (a n --, load text string)
#TIB ! 'TIB ! 0 >IN ! EVAL ;

i espForth_53/56

= EspForth_53 with Serial Monitor is
for programming and testing.

Program can be store in flash for
loading.

= EspForth_56 with browser is for

controlling and showcasing.

Application program in flash is
loaded automatically on boot.

i espForth Programming

= Only a few audio commands were
tested on NodeMCU ESP32 kit.

= Programming and testing methods
are developed.

= When AI Robot is ready, real
program will be developed.

i espForth Programming

= Serial Monitor Level
= Load.txt Level

= CEF level

= Arduino Level

i Serial Monitor Level

= Serial Monitor in Arduino is better
than HyperTerminal, with very large
output display panel

= It does not accept text file
= 256 Byte Terminal Input Buffer
= Long line of text works like blocks

i Load.txt Level

= ESP32 has 4MB flash memory

= SPIFFS and FS libraries implement a
simple flash file system.

= I need only one file: Load.txt.

= Load.txt can be compiled manually
in espForth_53, or automatically In
espForth_56.

i cEF Level

= Use cefMETA_56.fex to meta-
compile esp32eforth:

= cefMeta_56.f
= cefASM_56.f
= CefKERN_56.f
= CEF_56.f

= Rom_56.h is generated for Arduino.

i Arduino Level

= New Byte Code

= Forth Virtual Machine
= Finite State Machine
= Call Arduino Libraries

Conclusion

= EspForth browser shows that there
iIs a much more natural and
pleasant interface for Forth to the
Internet universe.

= We need to put a Forth like it on-
line, to attract more followers.

Questions?

Thank you.

