
espForth Browser

Forth Modification Lab

SVFIG

C. H. Ting

March 23, 2019

Summary

 Serial IO in eForth

 ESP8266 with UDP

 ESP32 HTTP Browser

 EVAL

 EspForth Browser

 Evaluate()

 ESP32 Programming

Serial IO in eForth

 KEY receives a character from
UART input device and stores it in
Terminal Input Buffer (TIB).

 EMIT sends a character out to
UART output device.

 HyperTerminal is my choice to
interact with eForth.

Serial IO in More
Sophisticated Forth

 EXPECT receives a stream of
characters from UART input
register and stores them in
Terminal Input Buffer (TIB).

 TYPE streams characters in an
output buffer to UART output
register.

ESP8266 with UDP

 UDP is the simplest protocol for
WiFi interaction.

 ACCEPT is modified to receive
input stream from both Serial
Monitor and UDP receiver.

 EMIT is modified to send
characters to UDP output buffer.

 CR is modified to send out an
assembled UDP packet.

ESP8266 with UDP

 I need an UDP terminal emulator
on Windows to interface with
esp8266forth through WiFi.

 Serial Monitor on Arduino works
much better than HyperTerminal.

ESP32 Browser

 Most WiFi LED tutorials for esp32
use browsers to turn LEDs on and
off with buttons on a web page.

 Web page seems to be a natural
interface for eForth, with a few
kinks.

Forth Interpreter

Forth Interpreter
: QUIT (--)

[BEGIN QUERY EVAL AGAIN

: QUERY (--)

TIB $100 LIT ACCEPT #TIB !

DROP 0 LIT >IN ! ;

: EVAL (--)

BEGIN TOKEN DUP @

WHILE 'EVAL @EXECUTE

REPEAT DROP .OK ;

EVAL

 Instead of QUIT, we now focus on
EVAL as the essence of Forth
interpreter.

 Other languages or operating
systems can prepare Forth words,
stuff them into TIB, and then call
EVAL to interpret them.

EVAL

 To integrate EVAL into other
languages and operating systems,
we just have to make sure that:

 EVAL gets all Forth words in TIB

 EVAL can exit Forth and return to
other system smoothly.

espForth_53 Loop

void loop() {

bytecode=(unsigned char)cData[P++];

primitives[bytecode](); }

espForth_56 Browser

 espForth receives and decodes an
URL.

 Forth words in URL are handed to
EVAL to evaluate.

 A BREAK instruction in espForth
causes Forth to exit and then
sends back a web page.

 Etc…

espForth_56 Browser

void loop()

{ get URL

decode URL into TIB

EVAL

send out web page

}

Break out loop()

 espForth has an un-used opcode
NOP with 0 opcode.

 NOP was not used in espForth.

 NOP is now used to break out the
Arduino loop(), and terminate
Forth interpreter.

 Forth loop is in evaluate().

evaluate()

void evaluate()

{ while (true){

bytecode=(unsigned char)cData[P++];

if (bytecode)

{primitives[bytecode]();}

else {break;}

}}

esp32forth 5.6 Loop

void loop()

{ get URL

decode URL

evaluate();

send out web page

}

void loop() {

WiFiClient client = server.available();

if (client) {

Serial.println("New Client.");

HTTPin = "";

HTTPout = "";

while (client.connected()) {

if (client.available()) {

char c = client.read();

Serial.write(c);

HTTPin += c;

if (c == '\n') // end of line

HTTPin.replace("%20"," ");

HTTPin.replace("GET /","");

HTTPin.replace("HTTP/1.1","");

Serial.println(HTTPin);

len=HTTPin.length();

HTTPin.getBytes(cData,len);

Serial.println("Enter Forth.");

data[0x66] = 0; // >IN

data[0x67] = len; // #TIB

data[0x68] = 0; // 'TIB

P = 0x180; // EVAL

WP = 0x184;

evaluate();

Serial.println("Return from Forth.");

client.println("HTTP/1.1 200 OK");

client.println("Content-type:text/html");

client.println();

client.println("<html><head><title>esp32fort

h_5.6</title></head>");

client.println("<link rel=\"icon\"

href=\"data:,\"><body><pre>");

client.println(HTTPout);

client.println("</pre></body></html>");

client.println();

break;}}}

client.stop(); }}

Serial Monitor

Esp32forth Browser

Esp32forth Browser

EVAL

 EVAL is very powerful. It is used to
load a file in flash memory to
customized espForth for specific
applications.

: LOAD (a n --, load text string)

#TIB ! 'TIB ! 0 >IN ! EVAL ;

espForth_53/56

 EspForth_53 with Serial Monitor is
for programming and testing.
Program can be store in flash for
loading.

 EspForth_56 with browser is for
controlling and showcasing.
Application program in flash is
loaded automatically on boot.

espForth Programming

 Only a few audio commands were
tested on NodeMCU ESP32 kit.

 Programming and testing methods
are developed.

 When AI Robot is ready, real
program will be developed.

espForth Programming

 Serial Monitor Level

 Load.txt Level

 cEF level

 Arduino Level

Serial Monitor Level

 Serial Monitor in Arduino is better
than HyperTerminal, with very large
output display panel

 It does not accept text file

 256 Byte Terminal Input Buffer

 Long line of text works like blocks

Load.txt Level

 ESP32 has 4MB flash memory

 SPIFFS and FS libraries implement a
simple flash file system.

 I need only one file: Load.txt.

 Load.txt can be compiled manually
in espForth_53, or automatically in
espForth_56.

cEF Level

 Use cefMETA_56.fex to meta-
compile esp32eforth:

 cefMeta_56.f

 cefASM_56.f

 cefKERN_56.f

 cEF_56.f

 Rom_56.h is generated for Arduino.

Arduino Level

 New Byte Code

 Forth Virtual Machine

 Finite State Machine

 Call Arduino Libraries

Conclusion

 EspForth browser shows that there
is a much more natural and
pleasant interface for Forth to the
Internet universe.

 We need to put a Forth like it on-
line, to attract more followers.

Questions?

Thank you.

