Cubic Virial Equation of State

Silicon Valley FIG

March 28, 2015

Chen-Hanson Ting

Functional relationship among pressure, volume and temperature of gases:

Boyle's Law (1662) PV = constant

Charles's Law (1787) V = constant * T

The Ideal Gas Law (1834) PV = nRT

Real gases deviate from the Ideal Gas Law:

Van der Waals EOS (1873) $P = RT/(V-b) + a/V^2$

Dieterici EOS (1899) P = (RT /(V-b))exp(-a/RTV)

Berthelot EOS (1907) $P = RT/(v-b) - a/TV^2$

Most other EOS are variants of van der Waals EOS

Redlich-Kwong EOS (1949) $P = RT/(V-b) - a/(T^{1/2}V(V+b))$

Soave-Redlich-Kwong EOS (1972) P = RT/(V-b) - aa/(V(V+b))

Peng-Robinson EOS (1976) P = $RT/(V-b) - a\alpha/(V(V+b) - V(V-b))$

Other EOS are based on Virial Expansion:

Kamerlingh Onnes EOS (1901) P=(RT/V)(1+B/V+C/V²+D/V⁴+E/V⁶+F/V⁸)

Beattie-Bridgeman EOS (1927) $P=RT(1-c/T^{3}V)(V+B_{0}(1-b/V))/V^{2}$ $-A_{0}(1-a/V)/V^{2}$

Benedict-Webb-Rubin EOS (1940) P=RT/V+B/V²+C/V³+D/V⁶ +(E/V³)(1+F/V²)exp(-F/V²)

Van der Waals EOS has a singular point at V=b. It does not allow investigation into the region V<b.

Non van der Waals EOS are generally complicated beyond comprehension.

Cubic Virial Equation

A virial EOS truncated to the third term

$\mathbf{P} = \mathbf{R}\mathbf{T}/\mathbf{V} - \mathbf{B}/\mathbf{V}^2 + \mathbf{C}/\mathbf{V}^3$

It has all the nice properties of van der Waals EOS, but without the singular point.

Cubic Virial Equation

At the critical point, dP/dV=0 and $d^2P/dV^2=0$ lead to $B = V_C$, $C = V_C^2/3$

A reduce EOS becomes $p = 3t/v - 3/v^2 + 1/v^3$ $(p=P/P_c v=V/V_c t=T/T_c)$

Z-Plots of Real Gases

Z-Plots of Cubic Virial EOS

Scaled Cubic Virial EOS

The Z-plots are too low for reduced temperatures t>1.

A reduce EOS must be scaled by $1/t^2$ p = $3t/v - (3/v^2+1/v^3)/t^2$

The Z-plots are brought to within 5% of experimental Z values.

Scaled Cubic Virial EOS

Under saturation pressure, Gibbs free energy of gas must equal to that of liquid. Under constant temperature, Gibbs free energy can be computed from a PVT isotherm:

 $\mathbf{G} = \int \mathbf{v} d\mathbf{p} = \mathbf{p} \mathbf{v} - \int \mathbf{p} d\mathbf{v}$

Gibbs free energy curve crosses itself at the saturation pressure.

Between critical point and triple point, EOS(7) needs to be scaled by $t^{1/2}(12)$ or t(13) to determine the saturation pressure:

$$p = 3t/v - 3/v^{2} + 1/v^{3}$$
(7)

$$p = 3t/v - 3/t^{1/2}v^{2} + 1/t^{1/2}v^{3}$$
(12)

$$p = 3t/v - 3/tv^{2} + 1/tv^{3}$$
(13)

Reduced T	Reduced Saturation Pressure			
	Exper.	Eq. 7	Eq. 12	Eq.13
0.9	0.538	0.69	0.62	0.55
0.8	0.256	0.47	0.35	0.26
0.7	0.100	0.30	0.17	0.095
0.6	0.028	0.16	0.055	Note a
0.5	Note b	0.10	Note a	Note a

It looks like the best solution is between Eq. 12 and Eq. 13, a bit closer to Eq. 12.

$$p = 3t/v - 3/v^{2} + 1/v^{3}$$
(7)

$$p = 3t/v - 3/t^{1/2}v^{2} + 1/t^{1/2}v^{3}$$
(12)

$$p = 3t/v - 3/tv^{2} + 1/tv^{3}$$
(13)

Cubic virial EOS $p = 3t/v - 3/v^2 + 1/v^3$ (7)

First term 3t/v is kinetic energy Second term -3/v² is attraction between two molecules Third term 1/v³ is repulsion among molecules in close contact

Cubic virial EOS $p = 3t/v - 3/v^2 + 1/v^3$ (7)

There are three roots for this equation when t<1. These roots account for the equilibrium between gaseous and liquid phases.

A fifth order virial EOS in the form of: $p = 3t/v - 3(1-v_s/v)(1-v_m/v)(1-v_l/v)/v^2$

It could have 5 roots, and give rise of a solid phase.

If t=0, there might be 3 roots at v_s for a solid phase, v_l for a liquid phase, and a intermediate root at v_m .

A fifth order virial EOS in the form of: $p = 3t/v - 3(1-v_s/v)(1-v_m/v)(1-v_l/v)/v^2$

This EOS does not work. Three roots are too shallow for a solid phase which is stable over a wide temperature range. The critical point is also shifted to a wrong place.

A very high order virial EOS is necessary: $p = 3t/v - 3(1-v_s/v)(1-(v_m/v)^n)(1-(v_l/v)^n)/v^2$ This EOS still has three roots at $v_{s'}$ v_l and v_m . The S-shaped bend between v_s and v_l can be make very sharp and very steep, by raising (v_m/v) and (v_l/v) to high powers. The power factor n will be determined graphically.

The best virial EOS is with n=26: $p = 3t/v - 3(1 - v_s/v)(1 - (v_m/v)^{26})(1 - (v_l/v)^{26})/v^2$ For Argon at the triple point, t=0.553 p=0.0142 v_s=0.330 v₁=0.378 v_m=0.354 n = 26

The best virial EOS is with n=26: $p = 3t/v - 3(1 - v_s/v)(1 - (v_m/v)^{26})(1 - (v_l/v)^{26})/v^2$

The Gibbs free energy curve at t=0.553crosses itself at p=0, indicating that a solid phase is in equilibrium with a liquid phase. The pressure is low, and the gaseous phase behaves like ideal gas, coexisting with solid and liquid phases.

Conclusions

A cubic virial EOS has all the nice properties of van der Waals EOS without the problematic singular point.

The cubic virial EOS can be modified to $p = 3t/v - 3(1 - v_s/v)(1 - (v_m/v)^{26})(1 - (v_l/v)^{26})/v^2$ and it can account for the coexistence of gaseous, liquid and solid phases.

Thank You Very Much!

