A Clever Computation of Pi

SVFIG

Feb. 24, 2024
Bill Ragsdale

How To Compute π ?

$$
\pi=2\left(1+\frac{1}{3}+\frac{1 \cdot 2}{3 \cdot 5}+\frac{1 \cdot 2 \cdot 3}{3 \cdot 5 \cdot 7}+\frac{1 \cdot 2 \cdot 3 \cdot 4}{3 \cdot 5 \cdot 7 \cdot 9}+\frac{1 \cdot 2 \cdot 3 \cdot 4 \cdot 5}{3 \cdot 5 \cdot 7 \cdot 9 \cdot 11}+\cdots\right)
$$

That is a lot of work.

I want the answer in one step.

The Logic

I only want one term/variable.

$$
\pi=N+\mathrm{f}(\mathrm{~N})
$$

Where $\mathrm{f}(\mathrm{N})$ is the deviation from π.

The Logic

$$
\pi=N+\mathrm{f}(\mathrm{~N})
$$

But, we do not know N, so we have to guess.

The Logic

$$
\pi=N+\mathrm{f}(\mathrm{~N})
$$

But, we do not know N, so we have to guess.
$\pi \approx N_{1}=N_{0}+\mathrm{f}\left(\mathrm{N}_{0}\right)$
And repeat iteratively.

The Logic

$$
\begin{gathered}
\pi \approx N_{1}=N_{0}+\mathrm{f}\left(\mathrm{~N}_{0}\right) \\
\pi-N_{0} \approx \mathrm{f}\left(\mathrm{~N}_{0}\right) \text {, the error }
\end{gathered}
$$

The Logic

$$
\pi \approx N_{1}=N_{0}+\mathrm{f}\left(\mathrm{~N}_{0}\right)
$$
 $$
\pi-N_{0} \approx \mathrm{f}\left(\mathrm{~N}_{0}\right), \text { the error }
$$

Thus, as $f\left(\mathrm{~N}_{0}\right) \rightarrow 0$

Then $N_{0} \rightarrow \pi$

The Logic

Thus, as $f\left(\mathrm{~N}_{0}\right) \rightarrow 0$

Then $N_{0} \rightarrow \pi$

So, what $f(\pi)=0$?

The Logic

$$
\begin{aligned}
N^{2} & =\pi^{2} \\
\ln (\mathrm{~N}) & =\ln (\pi) \\
\mathrm{e}^{\mathrm{N}} & =\mathrm{e}^{\pi}
\end{aligned}
$$

But these are not zero for π.

The Logic

We need a cyclic function.

How about tangent?

Zero at π but it is not continuous

Ah Ha!

How about sine?

Zero at π and it is continuous.

A Geometric Example

A Geometric Example

A Geometric Example

A Geometric Example

The Logic

$$
N_{1}=N_{0}+\sin \left(\mathrm{N}_{0}\right)
$$

In Forth
: one-term fdup fsin f+ ;
:runpi 1e0 60 dup one-term loop;

Our Program As A D-Chart

$\begin{array}{lll}\text { By sin expansion } & 3.1415926535897932 & \\ \text { By cpu } & 3.1415926535897932 & \text { ok }\end{array}$

Summary

Yes . . . I realize any calculator or program that can compute sin can compute pi.

We are interested in exploring short cuts or clever techniques.

Plus this method gives more clarity than an infinite number series.

