
02/25/2022 1

Symmetric Multiprocessing in zeptoforth on the
Raspberry Pi Pico

02/25/2022 2

Getting zeptoforth

● zeptoforth can be gotten from:
● https://github.com/tabemann/zeptoforth
● The most recent release at the time of writing, 0.26.4, can be

gotten from:
● https://github.com/tabemann/zeptoforth/releases/tag/v0.26.4
● Note that this release is necessary for some of the code examples

to work properly.
● The code examples in this presentation are at:
● https://github.com/tabemann/zeptoforth/tree/master/test/rp2040/present

https://github.com/tabemann/zeptoforth
https://github.com/tabemann/zeptoforth/releases/tag/v0.26.4
https://github.com/tabemann/zeptoforth/tree/master/test/rp2040/present

02/25/2022 3

Multiprocessing and Multitasking

● zeptoforth, aside from in kernel-only builds, is a preemptive
multitasking system with priority scheduling. Its scheduler also
attempts to balance the time allocated to each task within a given
priority.

● On the Raspberry Pi Pico and other compatible RP2040-based
systems zeptoforth also has support for symmetric
multiprocessing combined with multitasking.

● The only exceptions to this are that attempting to write to flash
once the second core is booted will result in undefined behavior,
and zeptoforth can only be rebooted from the first core.

02/25/2022 4

A Basic Demo

● Before we get into things, a basic demo program for zeptoforth on
the Raspberry Pi Pico:
task import

led import

: init-test (--)

0 [: begin led-toggle 750 ms again ;] 320 128 512 1 spawn-on-core run

150 ms 0 [: begin led-toggle 600 ms again ;] 320 128 512 0 spawn-on-core run ;

● This toggles the LED attached to the MCU at two different rates
simultaneously from two different cores.

02/25/2022 5

A Basic Demo (cont'd)

● Some video of the previous:

02/25/2022 6

Basic Multitasking Words

● These words are in the forth module:
● pause (--)

● This relinquishes control of the current core by the current task to
the next task that is ready to execute on it.

● ms (ms --)

● This temporarily halts the execution of the current task for the
specified number of milliseconds.

● user ("name" --)

● This defines a task-local variable by the given name. Note that it
is only applied to tasks created after it is defined.

02/25/2022 7

Basic Multitasking Words (cont'd)
● cpu-count (-- cpus)

● This returns the number of cores supported on the MCU.
● cpu-index (-- index)

● This returns the index of the core on which the current task is
executing.

● These words are in the task module:
● current-task (-- task)

● This returns the current task.

02/25/2022 8

Basic Multitasking Words (cont'd)
● spawn (xn … x0 count xt dsize ssize rsize -- task)

● This spawns a new task on the same core as the spawning task.
● spawn-on-core (xn … x0 count xt dsize ssize rssize core -- task)

● This spawns a new task on an arbitrary core.
● run (task –)

● This starts the execution of a task.
● Note that tasks are allocated high in RAM and subtract space

from the main task's dictionary without impacting its here pointer.

02/25/2022 9

Task Creation (cont'd)

● An example of task creation on the second core of the RP2040:
task import

: init-test (--)

0 [: begin ." *" 1000 ms again ;] 320 128 512 1 spawn-on-core run ;

● This creates and starts a task on the second core which prints an
asterisk once every second which has a dictionary of 320 bytes
(including user variables), a data stack of 128 bytes, and a return
stack of 512 bytes (including nested interrupts and multitasker
state).

02/25/2022 10

Priority

● Each task is assigned a priority, with higher priorities being
assigned a higher value and lower priorities being assigned a
lower value. Valid priorities range from -32768 to 32767. Tasks
default to priority 0. Note that except when resolving priority
inversion, only tasks of the highest priority that can run will run.

● These words are in the task module:
● task-priority! (priority task --)

● This sets a task's priority.
● task-priority@ (task -- priority)

● This gets a task's priority.

02/25/2022 11

Priority (cont'd)

● The following code illustrates the use of priorities:
task import

: init-test (--)

0 [: begin ." *" 250 ms again ;]

320 128 512 spawn 0 over task-priority! run

0 [: begin 10 0 ?do ." x" 100000 0 ?do loop loop 4000 ms again ;]

320 128 512 spawn 1 over task-priority! run ;

● This prints alternating sequences of '*' and 'x'; when the higher
priority task is printing 'x's, the lower priority task which prints '*'s
cannot execute.

● Note that priorities operate on a per core-basis.

02/25/2022 12

Timeouts

● Blocking operations in zeptoforth have support for timeouts.
Timeouts by default are off, but they may be enabled as follows:

● These words are in the task module:
● timeout

● This is a user variable which specifies the current timeout from
the beginning of each blocking operation in 100 µs increments.

● no-timeout

● This value stands for no timeout when set as timeout.
● x-timed-out

● This is an exception raised when a timeout is reached.

02/25/2022 13

Timeouts (cont'd)

● The following code illustrates the use of timeouts with rendezvous
channels (which will be mentioned later):
task import

fchan import

fchan-size buffer: my-fchan

: init-test (--)

my-fchan init-fchan

0 [: begin [: 10000 timeout ! my-fchan recv-fchan ;] extract-allot-cell . again ;]

320 128 512 0 spawn-on-core run ;

● The displays the message "block timed out" after one second
passes.

02/25/2022 14

Semaphores

● Semaphores in zeptoforth are the usual multitasking construct
allowing multiple tasks to wait on events signaled by any number
of tasks.

● These words are in the sema module:
● sema-size (-- bytes)

● This returns the size of a semaphore in bytes.
● init-sema (limit counter addr --)

● This initializes a semaphore at address addr with initial counter
counter and maximum counter limit limit; no-sema-limit specifies an
unlimited semaphore.

02/25/2022 15

Semaphores (cont'd)
● take (sema --)

● This decrements the counter of semaphore sema and if the
counter is less than zero, block the current task until the counter
becomes zero.

● give (sema --)

● This increments the counter of semaphore sema and if the
counter is less than or equal to zero afterwards, unblock the
longest-blocked task waiting on the semaphore.

02/25/2022 16

Semaphores (cont'd)

● The following code illustrates the use of semaphores across cores
to print an asterisk every second:
task import

sema import

sema-size buffer: my-sema

: init-test (--)

1 0 my-sema init-sema \ This is a binary semaphore, as indicated by the limit of 1

0 [: begin my-sema take ." *" again ;] 320 128 512 0 spawn-on-core run

0 [: begin my-sema give 1000 ms again ;] 320 128 512 1 spawn-on-core run ;

02/25/2022 17

Notifications

● Notifications in zeptoforth are a lightweight data
transfer/synchronization construct; they differ from semaphores in
having the advantages of that they are capable of higher
performance than semaphores and they store single cells of data
in mailboxes (with a limit of 32 mailboxes per task) that can be
updated when tasks are notified, while having the disadvantages
of that only a single task can be notified at a time and that
potential wakeups can be lost if multiple notifications arrive at a
task in close succession or while a task is not waiting for any
notifications.

02/25/2022 18

Notifications (cont'd)

● These words are in module task:
● config-notify (mailbox-addr mailbox-count task --)

● This initializes notifications for a specified task, including both the
size of the task's mailbox space in cells and its address.

● wait-notify (mailbox -- x)

● This waits for a notification on a specified mailbox of the current
task and then, once the notification is received or if a notification
had been received already, returns the contents that mailbox.

02/25/2022 19

Notifications (cont'd)
● notify (mailbox task --)

● This notifies a task on a mailbox without updating the mailbox.
● notify-set (x mailbox task --)

● This notifies a task on a mailbox while setting the mailbox to a
fixed value.

● notify-update (xt mailbox task --)

● This notifies a task on a mailbox while using an xt to mutate the
value of the mailbox. Note that said xt should not carry out any
operations that affect the state of the multitasker, including any
IO.

02/25/2022 20

Notifications (cont'd)
● mailbox@ (mailbox task -- x)

● This gets the value of a mailbox on a task without blocking.
● mailbox! (x mailbox task --)

● This sets the value of a mailbox on a task without notifying the
task.

02/25/2022 21

Notifications (cont'd)

● The following code illustrates the use of notifications across cores
to count each second:
task import

1 constant notify-count

notify-count cells buffer: notify-area

variable notified-task

: init-test (--)

0 [: begin 0 wait-notify . again ;] 320 128 512 0 spawn-on-core notified-task !

notify-area notify-count notified-task @ config-notify -1 0 notified-task @ mailbox!

notified-task @ run

0 [: begin ['] 1+ 0 notified-task @ notify-update 1000 ms again ;]

320 128 512 1 spawn-on-core run ;

02/25/2022 22

Locks

● Locks in zeptoforth are self-explanatory. They are non-recursive
(so do not lock a lock you have already locked), and they have
support for priority inheritance to resolve priority inversion.

● These words are in the lock module:
● lock-size (-- bytes)

● This is the size of a lock in bytes.
● init-lock (addr --)

● This initializes a lock at address addr.

02/25/2022 23

Locks (cont'd)
● lock (lock --)

● This claims lock if it is not already locked, and if it is, block the
current task until all previously-locking tasks have released lock
and then claim lock.

● unlock (lock --)

● This releases lock, which has been claimed by the current task.
● with-lock (xt lock --)

● This claims lock, blocking if necessary, execute xt, and then
release lock; if an uncaught exception occurs in xt, release lock
and then re-raise the exception.

02/25/2022 24

Locks (cont'd)

● The following code illustrates the use of locks to protect IO across
cores:
task import

lock import

● lock-size buffer: my-lock

: init-test (--)

my-lock init-lock

0 [: begin [: $100 0 ?do i h.2 space loop ;] my-lock with-lock again ;]

● 320 128 512 0 spawn-on-core run

0 [: begin [: 100 0 ?do i . loop ;] my-lock with-lock again ;]

320 128 512 1 spawn-on-core run ;

02/25/2022 25

Queue Channels

● Queue channels in zeptoforth are simple queues consisting of a
fixed number of fixed-sized slots for messages that are shared
between tasks. Sending to a full queue channel will block the
current task until another task receives at least one message from
the queue channel, and receiving from an empty queue channel
will block the current task until another task sends at least
message to the queue channel.

● Note that larger queue channels can achieve significantly greater
bandwidth than smaller queue channels, at the expense of
increased latency.

02/25/2022 26

Queue Channels (cont'd)

● These words are in the chan module:
● chan-size (bytes count -- bytes)

● This is the size of a queue channel that may contain up to count
messages of size bytes.

● init-chan (bytes count addr --)

● This initializes a queue channel at address addr that may contain
up to count messages of size bytes.

02/25/2022 27

Queue Channels (cont'd)
● send-chan (addr bytes chan --)

● This sends a message at address addr consisting of size bytes to
queue channel chan; the message will be zero-filled or truncated
depending on the queue channel element size. If the queue
channel is full, block the current task until it is not full.

● recv-chan (addr bytes chan -- recv-bytes)

● This receives a message into a buffer at address addr of size
bytes from queue channel chan and return either bytes or the
element size depending on which is smaller, truncating the
message if necessary. If the queue channel is empty, block the
current task until it is not empty.

02/25/2022 28

Queue Channels (cont'd)

● The following code illustrates the use of queue channels across
cores to count each second:
task import

chan import

64 constant element-count

cell element-count chan-size buffer: my-chan

: init-test (--)

cell element-count my-chan init-chan

0 [: begin [: my-chan recv-chan ;] extract-allot-cell . again ;]

● 320 128 512 0 spawn-on-core run

0 [: 0 begin dup [: my-chan send-chan ;] provide-allot-cell 1+ 1000 ms again ;]

320 128 512 1 spawn-on-core run ;

02/25/2022 29

Rendezvous Channels

● Rendezvous channels (aka "fchans") in zeptoforth operate much
like queue channels with an element count of 1, except that there
is no buffer storing queued data but rather data is transferred
directly from the sending task to the receiving task, and the
sending task must wait for a receiving task to receive on the
rendezvous channel before it may continue executing.
Additionally, there are no predetermined limits aside from RAM
available on the size of data sent via rendezvous channels, as
any message up to the size of the receiving task's buffer can be
sent.

02/25/2022 30

Rendezvous Channels (cont'd)

● These words are in the fchan module:
● fchan-size (-- bytes)

● This is the size of a rendezvous channel in bytes.
● init-fchan (addr --)

● This initializes a rendezvous channel at address addr.
● send-fchan (addr bytes fchan --)

● This sends a message at address addr consisting of size bytes to
rendezvous channel fchan. If there is no task waiting on the
rendezvous channel for a message, block until a task receives
from the rendezvous channel.

02/25/2022 31

Rendezvous Channels (cont'd)
● recv-fchan (addr bytes fchan -- recv-bytes)

● This receives a message into a buffer at address addr of size
bytes from rendezvous channel fchan and return either bytes or
the sending task's buffer size depending on which is smaller,
truncating or zero-filling the message if necessary. If no task is
waiting on the rendezvous channel to send a message, block until
a task sends on the rendezvous channel.

02/25/2022 32

Rendezvous Channels (cont'd)

● The following code illustrates the use of rendezvous channels
across cores to count each second:
task import

fchan import

fchan-size buffer: my-fchan

: init-test (--)

my-fchan init-fchan

0 [: begin [: my-fchan recv-fchan ;] extract-allot-cell . again ;]

● 320 128 512 0 spawn-on-core run

0 [: 0 begin dup [: my-fchan send-fchan ;] provide-allot-cell 1+ 1000 ms again ;]

320 128 512 1 spawn-on-core run ;

02/25/2022 33

Bidirectional Channels

● Bidirectional channels (aka "rchans") in zeptoforth operate much
like rendezvous channels, except that the receiving task replies to
the message it receives, sending data back to the original sending
task. The original sending task blocks until it receives its reply,
and the original receiving task blocks until it has sent its reply to
the original sending task.

● Bidirectional channels achieve better performance in sending data
than using a pair of rendezvous channels to achieve the same.

02/25/2022 34

Bidirectional Channels (cont'd)

● These words are in the rchan module:
● rchan-size (-- bytes)

● This is the size of a bidirectional channel in bytes.
● init-rchan (addr --)

● This initializes a bidirectional channel at address addr.
● send-rchan (saddr sbytes raddr rbytes rchan -- rbytes')

● This sends a message at address saddr consisting of size sbytes
to rendezvous channel rchan. Block until a reply is generated,
which is copied into a buffer at address raddr of size rbytes, and
return the size of the reply in bytes.

02/25/2022 35

Bidirectional Channels (cont'd)
● recv-rchan (addr bytes rchan -- recv-bytes)

● This receives a message into a buffer at address addr of size
bytes from bidirectional channel rchan and return either bytes or
the sending task's buffer size depending on which is smaller,
truncating or zero-filling the message if necessary. If no task is
waiting on the bidirectional channel to send a message, block until
a task sends on the bidirectional channel.

● reply-rchan (addr bytes rchan --)

● This replies to a message received from a bidirectional channel
rchan with a message in a buffer at address addr of size bytes.

02/25/2022 36

Bidirectional Channels (cont'd)

● The following code illustrates the use of bidirectional channels
across cores to count each second:
task import

rchan import

rchan-size buffer: my-rchan

: init-test (--)

my-rchan init-rchan

0 [: begin cell [: dup cell my-rchan recv-rchan my-rchan reply-rchan ;]

with-aligned-allot again ;] 320 128 512 0 spawn-on-core run

0 [: 0 begin dup [: [: my-rchan send-rchan ;] extract-allot-cell . ;] provide-allot-cell

● 1+ 1000 ms again ;]

320 128 512 1 spawn-on-core run ;

02/25/2022 37

Streams

● Streams in zeptoforth operate much like queue channels, except
that they are designed for sending and receiving arbitrary number
of bytes at a time rather than discrete messages.

● Sending and receiving multiple bytes at a time with a stream
garners higher bandwidth and lower latency than sending and
receiving single bytes at a time with either a stream or a queue
channel.

02/25/2022 38

Streams (cont'd)

● These words are in the stream module:
● stream-size (dbytes -- bytes)

● This is the size of a stream of size dbytes in bytes.
● init-stream (dbytes addr --)

● This initializes a stream at address addr of size dbytes.
● send-stream (addr bytes stream --)

● This sends data to a stream stream from a buffer at address addr
of size bytes. The data will be sent as one fixed block, so this will
block until enough room is available in the stream to fit all of the
data being sent.

02/25/2022 39

Streams (cont'd)
● recv-stream (addr bytes stream -- recv-bytes)

● This receives data into a buffer at address addr of size bytes from
stream stream and return the size of the data received in bytes. If
the stream is empty, block until the stream contains data.

02/25/2022 40

Streams (cont'd)

● The following code illustrates the use of streams to transfer
sequences of bytes between cores:
task import

stream import

256 constant my-bytes

my-bytes stream-size buffer: my-stream

: init-test (--)

my-bytes my-stream init-stream

0 [: begin 16 [: dup 16 my-stream recv-stream type ;] with-allot again ;]

● 320 128 512 0 spawn-on-core run

0 [: begin s" 0123456789ABCDEF" my-stream send-stream again ;]

320 128 512 1 spawn-on-core run ;

