jeforth
ﬁ | Implementation Issues

SVFIG
C. H. Ting
February 27, 2021

) L 1 Jeforth6.13 Statistics

=i
= Jeforth613.js
= Source code: 20,249 bytes
= 213 words
= 109 system words

= 18,454 bare byte
= 8086eForthl1.01

=« Source code: 47Kbytes
=« 232 system words

i L 1 Irreducible Complexity

= "'Things should be as simple as
possible, but not simpler.”
--Einstein.

= jeforth is at this ‘not simpler’
state.

= I like to call it ‘Irreducible
Complexity.’

i L : JavaScript

NI
JavaScript is C with very flexible

objects which can be anything:
var ip=0,wp=0,w=0;

var stack=[],rstack=[];

var tib="",ntib=0,base=10;

var idiom="";

var compiling=false;

var fence=0;

var newname;

var words|[..];

i L 3 Terminology

-
= Words

= Objects with name, code and data

= Dictionary
= An array of all word objects

= Tokens
= Index of word objects in a dictionary

= Idioms
= Character strings in a source code file
= May be words, nhumbers, or strings

i L : Word Objects

=i
= 5 fields in a word object:
« words[w].name
= words[w].xt
= words[w].pf, optional
= words[w].qf , optional
« words[w].immediate, optional

i L : Defining Words

= Defining words
= : (colon)
= constant
= variable
= Create

= Primitive words are JavaScript
functions.

= Custom defining words are defined
using create-does construct.

) L s 4 Types of Words

=l |
= Primitive words

{name:"parse"“ .xt:function() {idiom=parse() ;}}

= Colon words
{name:"quit" ,xt:function() {nest();},pf:[1,2,3,0]}

= Constants, Variables, Arrays
{name:"a4" ,xt:function() {docon();},qgf:[440 1]}

= Words defined by defining words
{name:"1/4" ,xt:function() {nest();},qgf:[32]},
pf[5,0,121,225,114,35,227,6]}

i L 3 Interpreters

=l |
= Outer or text interpreter
: quit begin parse evaluate again
= Inner interpreters
= nest() for colon words
s docon () for constants
= dovar () for variables and arrays

= nest () for words defined by custom defining
words

= Code field functions for primitives words

i L 1 Outer Interpreter

"F = Outer or text interpreter
: quit begin parse evaluate again

= parse parses out next idiom in the

input stream.
» evaluate evaluates the idiom and
then execute It as:
= A word
= A number
= None of above

3 ..L. s nest () Inner Interpreter

= It is the inner interpreter

function nest () {
rstack.push (wp) ;rstack.push (ip) ;
wp=w;ip=0;

while (ip>=0)

{w=words [wp] .pf[ip++] ;words[w] .xt () ;

}
ip=rstack.pop () ;wp=rstack.pop() ;}

function exit () {ip=-1;}

i L s xt, pf, and gf Fields

=l |
= Primitive words

s xt:function () { }

= Colon words
m xt:nest() ,pf: []

= Constants
s xt:docon() ,qgf: | 1

= Variables and arrays
m xt:dovar () ,gf: []

= Words defined by deflnmg words

m xt:nest() ,pf: [1,9f:[

i _.L. iconstant, variable, array

= constant
m xt:docon () ,gf: [n]
= variable
m xt:dovar () ,gf:[0]
= Create
m xt:dovar() ,gf:[, , , , , , , , 1
= Words defined by defining words

= xt:nest () ,pf: [1,9€: , , , , 1

i L 3 Stack Picture

=l NI
negate xor or and mod / * - + pop
push r@ r> >r 2drop nip drop roll
pick 2over 2swap -rot rot swap 4dup
2over 2dup over dup branch evaluate
parse quit < >ok

< >0k

< >0k

1 2345 67<12345 6 7 >k
<12 345 6 7 >k

<12 345 6 7 >k

i

L ; Stack Words

=i
{name:"dup”,xt:function(){stack=stack.concat(stack.slice(-1)); }}

{name:"over”, xt:function(){stack=stack.concat(stack.slice(-2,-1));}}
{name:"2dup”,xt:function(){stack=stack.concat(stack.slice(-2));}}

{name:"2over”, xt:function(){stack=stack.concat(stack.slice(-4,-2));}}
{name:"4dup”,xt:function(){stack=stack.concat(stack.slice(-4));}}

{name:"swap”, xt:function(){stack=stack.concat(stack.splice(-2,1));}}
{name:"rot”, xt:function(){stack=stack.concat(stack.splice(-3,1));}}
{name:"-rot”,xt:function(){stack.splice(-2,0,stack.pop()); }}

{name:"2swap”, xt:function(){stack=stack.concat(stack.splice(-4,2));}}

{name:"2over”, xt:function(){stack=stack.concat(stack.slice(-4,-2));}}
{name:"pick”,xt:function(){var j=stack.pop()+1;stack.push(stack.slice(-j,-j+1));}}
{name:"roll” xt:function(){ var j=stack.pop()+1;stack.push(stack.splice(-j,1));}}
{name:"drop”,xt:function(){stack.pop(); }}>

{name:"nip” xt:function(){stack[stack.length-2]=stack.pop(); }}
{name:"2drop”,xt:function(){stack.pop();stack.pop(); } >

i Lu create allot ,
1 DA

= Arrays are defined by create.
= Arrays elements must be explicitly
declared:
mCcreate xxx 1 , 2 , 3 ,
m xt:dovar () ,qgf:[1,2,3]
= Create yyy 6 allot
m xt:dovar() ,qf£:[0,0,0,0,0,0]

@ ' array@ array! g(

-

= @ and ! access variables,
constants, and the first element
of an array.

= array@ and array! access an
array by its token and an index
into the array.

= Defining words access its array
by g@ and an index.

L " to a Constant
=1 .

0 constant x 0 constant y
(libya is a prototype for drawing)
: proto 0 255 0 ;

haiku 39996

99 for r@ to x

99 for r@ to y
>r proto r@ image! r> 4 -

next next drop show ;

haiku

i

L . is a Word

(sin is fun)
switzerland 255 x 32 / sin 0.95 > y 32 / sin

0.95 > or
x 32 / sin 0.5 > and y 32 / sin 0.5 > and 255 *
dup ;

' switzerland is proto haiku

4spire x 100 / 23 * sin y 100 / 1 swap - max
x 100 / over / sin y 100 / 1 swap - rot / sin
2dup / sin 255 * rot 255 * rot 255 * rot ;

' 4spire is proto haiku

Im—

: dump
_

= It dumps the entire dictionary in
a form that can be copied back
to the source code file jeforth.js
and make all the colon words
available at boot-up.

= Kind of a turnkey system.

L : see
i
i N

- It decompiles a colon word.

= Tokens are substituted by their
names.

= 6 literal words are identified to
display their literal values:
= Number literals: dolit

= Address literals: branch, Obranch,
donext

« String literals: dostr, dotstr.

L. DO-LOOP
T

= for-nest loops need only one
primitive word donext.
= DO-LOOP requires a host of

primitive words to support it.
= Converting DO-LOOPs to for-

next loops:
=« Globally replace LOOP by next
= Globally replace 0 DO by 1 - for

i L : BLOCK

1 DA
= Blocks are not essential to Forth.
= Blocks prevented the wide-
spread use of Forth because they
are not compatible with other
operating systems.

= Text files are better media for
Forth programming, data
storage, and information
sharing.

3 _.L. I Audio Context

var AudioContext = window.AudioContext ||
window.webkitAudioContext;

var audio = new AudioContext() ;

var amp = audio.createGain() ;

var oscl = audio.createOscillator () ;

var osc2 audio.createOscillator () ;

var osc3 audio.createOscillator () ;

var osc4 audio.createOscillator() ;

var osch audio.createOscillator () ;

var oscét audio.createOscillator () ;

i L : Conclusion
=i

= JavaScript is very expressive.

= Sam Chen coded all eForth
words in Javascript as
primitives.

= All application words are
compiled as colon words.

s create-does defines defining
words.

Conclusion

= HTML allows jeforth603.html
and jsBach603.html to design
very friendly user interface for
Forth.

= The input box accepts large text
files and will be useful for you to
program large applications.

L

; Conclusion

= Jeforth603.js system source
code has 177 lines, 18,454 bytes
of text, and it defines 109 words.

= It is by far the smallest,
simplest, and prettiest Forth I
have ever produced.

i L : Conclusion

=i

= Lao Tze said:

= For knowledge, learn one thing
each day. For wisdom, forget
one thing each day. When you
have no-thing, you can do
every-thing.”

= Have we forgotten things
enough?

L Google Drive Link
|

i

= https://drive.google.com/file/d/15p
JFff6CciINDIBR-
jVIE_Eusob72YLPmO/view?usp=shar

ing

