Al, Robotics + IOT Our Future World!

SUMMIT OF

Virtual Event & Expo Oct. 25-27

Intelligent Machines: Al IOT, Robotics, Al Com

About Don Golding

- SR Staff Engineer
 - Designed NASA's Archinaut One Computer
 - Currently Working on a new Space Computer
 - for NASA Goddard/JPL
- Founder: Space-Tek, Inc.
 - Medical Imaging Computers & Systems
- Founder: Angelus Research Corp.
 - Intelligent Robotics: STEM, Military, AGV
 - Triune OS & Language for Intelligent Robots

Intelligent Robotics Engineering

Lockheed Martin M.U.L.E Robot

- 6 Articulated Arms with Powered Wheels
- Fully Autonomous
- Canceled 2011
- Six Cyclone FPGAs with two 32 bit Processors
- One FPGA Computer per Wheel/ARM
- 100 MBIT Network
- Each Arm Controller 6KWatt Brushless Motor

All Teraine 2.5 Ton Advanced Military Robot (2

NASA Redwire Archinaut One Mission (OSA/

- 10 Meter Lattice Beam (100mmx100mm)
- Fully Autonomous
- Launch in 2024
- Designed the Rad Hard FPGA Command and Control Computer
- Redwire designed a Space Rated 3D Printing Filament
- Simulate the 3D Printing of a Solar Panel in Space
- Solar Film unrolls as Beam is 3D Printed

First NASA Mission to Build a Major Structure in

Angelus Research Corp. Don Golding - Founder/

Some of the Intelligent Robots DG Designe

CORE | Applications: IOT Devices

Internet Of Things (IOT)

https://www.linkedin.com/groups/12858138/

Facebook: AI & Robotics

(356 Mei

https://www.facebook.com/groups/130454897663

CISC On RISC Engine

CORE I 32/64/256 Bit

Neural Nets

SERDES 20ghz Network

Supercomputer on a Chip

Chatbot User Interface

Intelligent Machines: Massive Parallelism in HARD

2,00

On S

Pr

Why Forth?

- Forth was Invented in 1963 by Charles Moore
- Forth has used a Chat-bot Interface since the very beginnin
- Outer Interpreter, promotes simple Testing and Debugging
- Simple incremental Compiler
- Forth is a Virtual Machine easily Implemented on a Chip
- Forth is a Meta Language, easy to implement other Language
- Forth was 60 Times faster than Python Parsing Strings Dr

Think C, C++, Python, Pytorch and Java, Combine

Why not use C?

- Not interactive, unless you use a derivative like Java, Pytho
- Very complex Compiler Requires Powerful Computer
- You must Compile entire Application if you change one line
- JTAG binary file into CPU
- Need more Memory and Processing Power
- Reprogramming on Same Machine requires and OS, IE: Lin

CORE I is Efficient Utilize >90 Percent of Fabr

Forth in Hardware History

- Forth is a Virtual Machine, Forth is really a CHIP design!
- Chuck "Discovered Forth" while writing assembler code
- Forth is THE IDEAL processor architecture
- Forth is easy to implement in HARDWARE
- Chuck's Chips: NC4000, Sh-Boom, RTX2000, F21
- <u>https://colorforth.github.io/bio.html</u>
- Green Array's 144 Multi-Computer chip

http://www.greenarraychips.com/

• The World of Forth in Silicon

http://www.ultratechnology.com/chips.htm

Forth is an Alternative Hardware Design for a CPU

General Purpose Computers vs CORE I

On a typical software program, only a small fraction of the available OPU opcodes are actually used.

- Some estimates suggest that around 5-10% of a CPU's inst is utilized on average for most programs.
- Today's Computers require an General Purpose Operating Solution
 slowing Program Execution.
- High Power Consumption, Low Efficiency
- CORE I Implement only the Opcodes you need 95% Uti

CORE I is Efficient Utilize >90 Percent of Fabr

CORE | FPGA Benefits

- Fully Programmable 32 bit(64,128?) Computer on a single 0
- Outer Interpreter On Chip (UI), like Chatbot
- Incremental Compiler On Chip
- Built on Forth Virtual Machine
- Send Source Code through Terminal Interface
- Move Application Software into Hardware (FPGA)
- No External Development Tools Required for Forth Code
- Future: Build Very High Level Natural Language on top of Fe

Build most Converational Computer on a Chip

Forth CORE I Computer Features

- Microcode Forth programs and Words in BootROM
- CORE extensions (opcodes) can be complex, taking as many cycles as they require
- Forth "Words" are opcodes
- These "Words" execute at the speed of SILICON
- Steal "Borrow?" high level concepts from other popular languages
- The computer grows as FPGA technology grows: 32 bit, 64 bit, 12
- Network multiple 32 bit Forth Engines together over internal network Internet as a VPN
- Store source code in Flash or on disk, compile: on-the-fly as neede
- Take SRAM Snapshots and store in Flash or SD Card

Forth CORE I FPGA Computer

CORE I FPGA Development Goals

- Develop Vast Open Source User Community in AI
- Extend the System for an Intelligent Chat-bot User Interface
- Users can quickly and easily add their own Words to the System
- Load LLAMA 7B Dataset into Flash Memory (33 Megabytes
- Build Inference Engine to Interrogate LLAMA LLM Dataset
- Need to Figure out how to build a Pytorch Model

A file with a . pth extension typically contains a serialized PyTorch state dictionary. A PyTor state dictionary is a Python dictionary that contains the state of a PyTorch model, including model's weights, biases, and other parameters.

CORE I FPGA Benefits, Continued

- Create your own Complex Opcodes in System Verilog
- Share Opcodes on Github
- Opcodes run at the Speed of Silicon 200mhz+
- Using System Verilog, create 1000's of Parallel Processes –
- Create Parallel Processing Device Drivers for Peripherals
- Send Source Code over Remote Internet or RF Link, Compi On Chip

Complete Computer on Chip

Forth + System Verilog

- The User Interface Computer is On-Chip in Forth
 - 1 Easy Programming
 - 2 NLP/Interpreter
 - **3 Incremental Compiler**
 - 4 Extensible High Level Language
- Chip Processing in System Verilog

1 Code becomes a Chip Circuit (Fabric)2 All Processes Run in Parallel

3 Massively Parallel Processing Capable

Forth + Syste Easier to learn

Chip Level Speed, Easy to Program and Deb

Forth + System Verilog

- Forth is the User Interface Chat-bot
- System Verilog (SV) is the Assembler
- Program All Device Drivers in SV
- All SV processes run at 200mhz+
- All SV processes run in Parallel
- FPGAs can run Thousands of Parallel Processes, Concurrently
- Multi-Tasking Supported in Forth

Simple UI, Massive Parallel Processing

CORE | Al Playground Block Board

YOU can Experiment and Develop Computer Archite

CORE I + RISC V on a Single Chip

YOU can Experiment and Develop Intelligent Mac

CORE I + RISC V on Current AI Playground E

Forth, CORE I, RISC V on Current Board

CORE I + RISC V on a Future Development B

It could use the more Powerful Microchip Polarfire FPGA with 481 KLUTs, 33,792,0 of SRAM, and 584 GPIO pins, more parallel memory can be added to the des

Forth, CORE I & RISC V: Integrate C Based AI C

Sequential vs Parallel Computing

Massive Parallelism vs Today's Sequencial Com

CORE I Massively Parallel Computer

Coded in System Verilog...

Massively Parallel Computer

CORE | Al Playground Board

YOU can Experiment and Develop Intelligent Mac

CORE I AI Playground Dev Board - 1st Produ

Very Low Power Runs on Batteries

- Demonstrates COI Technology
- Encourage Early A
- Build Community of Developers
- Benchmark Massiv Computer vs PC

Develop Your Own AI based IOT Products or Just Ex

Al Playground Board Block Diagram

A Full IOT Computer

How to Build AI/ML on CORE I Technology

- Define YOUR Functions as OPCODES
- Use Opcodes Interactivity (They are now Words)
- Extend Opcodes to Fit your Application
- Over 2,000 Parallel Processing Engines per Chip (depends on LUT
- AI/Machine Learning (ML)
- Neural Networks
- Expert Systems
- Implement other Languages: Lisp, Smalltalk, Prolog, Python?
- Use CORE I Processors for Top Level Processors: Display, Flash, SD
- Create Input, Output, Semaphore Registers for Forth NLP
- Create Opcodes to update these Registers

Conclusions/Benefits

- Build High Performance/Low-Cost "Intelligent" Embedded
- Research Novel Forth based Computer Architectures
- Research/Develop AI on Top of Forth
- Add High-Level constructs to Forth the language: ENUM, St
- Easy Way for beginners to Learn About FPGAs
- Use the Serial Port and Forth to Debug System Verilog Pro
- Basic 32-bit Forth Computer fits in \$5 FPGA
- Controller for Intelligent Machines and Robots

Forth CORE | Computer Goals

- Microcode Forth programs and Words in BootROM
- CORE extensions (opcodes) can be complex, taking as many cycles as they require.
- Forth "Words" are opcodes
- These "Words" execute at the speed of SILICON
- Steal "Borrow?" high level concepts from other popular languages
- The computer grows as FPGA technology grows: 32 bit, 64 bit, 12
- Network multiple 32 bit Forth Engines together over internal netwo
- Store source code in Flash or on disk, compile: on-the-fly as neede

Forth CORE I FPGA Computer by Don Golding, Demitri Peynado, Dr. Ting, Cl

Digital Neural Networks

- Each Neuron Processor Updates Thousands of Neurons Depending on Application
- Thousands Neurons per FPGA Chip
- Size only Limitied to the Number of LUTs on the FPGA
- Each Neuron Processor Executes at 250 MIPS

Combine Expert Systems/Neural Networks

- Massively Parallel Processor
- Neuron Processor/Expert System executes in Parallel
- Thousands of Processes per FPGA Chip
- Each Neuron Processor Executes at 250 MIPS

Use Processes as Intelligent Processors

- Processes can be used for Very High Level AI Engines
- More than 2,000
 Processors per FPGA
 Chip (depends on
 LUTs)
- Typical Processes for High Level Functions might be in the Hundreds of AI Engines

CORE I

```
System Verilog
```

_plus : begin busy = true; --dp; data_stack[dp] = data_stack[dp] + data_stack[dp+1]; busy = false; end

Experiment with novel comp

Easy to Create YOUR Own Op-codes

CORE I

Massive Para

- Generate
- for (i=0; i < 1000; i++) begin
- function int update_neurons();
- for (int j = 0; j < HIDDEN_LAYERS; j++) begin

for (int z = 0; z < NUM_NEURONS; z++) begin hidden_neuron_regs[i].synapse = input_neuron_regs[i].synapse; hidden_neuron_regs[i].weight = hidden_neuron_regs[i].weight; hidden_neuron_regs[i].bias = 8'd50; hidden_neuron_regs[i][j].fire = 1'b1;

end

• end

endgenerate

_update_neuron : begin

- busy = true;
- update_neurons();
- busy = false;
- end

Massive Parallel Processing will change Computer

Integrate Lla

- Store Llama 7B Dataset in Flash Memory
- Create the Inference Engine to Access/Parse Dataset in SV
- Using Llama 7B as the base, "Fine Tune" for Personal Assis
- Optionally add RISC V Co-Processor Use PyTorch Codir
- Build Internet Search Engine on esp32 Co-Processor

Massive Parallel Processing will change Computer

CORE I

Hardware Integrate

- 7B Llama dataset fits into a single 100 Mbyte Flash Memory Ch
- This Memory Chip has a Dedicated I/O Pinsbuilds your
- Inference Engine written in System Verilog
- This builds your AI Chatbot Machine
- Use "Fine Tuning" to create your Application Specific AI Comput

🗟 checklist.chk	7/13/2023 7:00 PM	Recovered File Fra	1 K
consolidated.00.cvs	8/26/2023 9:26 PM	CVS File	33,165 K
🗋 consolidated.00.pth	8/26/2023 9:26 PM	PTH File	33,165 K
consolidated.00.txt	12/6/2023 10:28 AM	Text Document	33,165 K
🗋 params.json	7/13/2023 7:00 PM	JSON File	1 K

Massive Parallel Processing will change Computer

Natural language Processing

- Forth 2.0 Conversational Forth
- Talk to your Computer in English
- Forth is already a Programmable Chatbot
- Interpreter Front end (Chatbot Interface)
- Incremental Compiler (On the fly!)
- New: Named Local Variables
- No Stack Manipulation Words Required
- Higher Level Language Built on top of Forth
- Built with Voice Input in mind

Courte PS: B

Hardware Optimized on FPGA Anyone can Program their Computer!

Triune OS in Silicon

- Emulates Human Triune Brain
- Programming is like "Teaching a Child"

Simplifies Programming and Machine Learning

The CORE I Al Board Mimics Human Brain

Triune OS in Silicon

- Cerebral Cortex Goal Level
 - The Outer Layer of the Brain
 - Folds under the Skull
 - Decision making, Analysis, and Dreaming
- Limbic System Behavior Level
 - The Gray Matter found in the Center of the Brain
 - Hunger, Fear, Feelings
- Brain Stem Instinct Level
 - The Base of the Brain Connected to the Spinal Cord and Nervous System
 - Controls Critical Responses and Instinctive Behavior

TOS Emulates Intelligence in Nature

CORE I AI Playground Board Mimics Human B

Triune OS Multitasking/AI Model

TOS Emulates Intelligence in Nature

CORE I AI Playground Board Mimics Human Intelli

LLM OS Al Hardware Architecture

An LLM in a few years: It can read and generate text

It has more knowledge than any single human about all subjects

It can browse the internet

It can use the existing software infrastructure (calculator, Python, mouse/keyboard)

It can see and generate images and video

It can hear and speak, and generate music

It can think for a long time using a System 2

It can "self-improve" in domains that offer a reward function

It can be customized and finetuned for specific tasks, many versions exist in app stores

It can communicate with other LLMs

https://www.youtube.com/watch?v=zjkBMFhNj_g

CORE I AI Playground Board Mimics Human Intelli

CORE | Processor REQUIRED for Space Robo

- Increme Software
- Compute Stop Exercise
 While Network
 Function
 Updated
- Updates
 in One 0

Space Applications

Intelligent Drones

- Real-time Al
- Behavior Based Intelligence
- Motion Sensor Fusion
- Software Upgrades in Real Time

Drone Applications

Home Assistant Robots

- Uses Wifi to Communicate with Online Chatbots, Medical, Polic
- Boomers need Help
- Connected to Alarm System
- Call for Help
- •
- Help get up from a Fall

Help 10's of Millions of Seniors Live at Home

Make the Personal Computer a Personal Assi

- The Computer of the Future doesn Crash!
- Anyone can program it using Voice
- It uses very little Power
- It can be As Small as a Phone or Tablet
- Communicate using Voice
- Program using English or Voice
- Even Children can Program it

Computers become Personal Assistants (PAs

The Rabbit R1 is an Al-powered gadget

- Voice Controller interface
- Rabbit OS, and the AI tech undern
- similar to Alexa or Google Assistar
- Rabbit OS can control your music, a car, buy your groceries, send you messages
- The large action model, or LAM, w by humans interacting with apps lik and Uber

https://www.theverge.com/2024/1/9/24030667/rabbit-r1-ai-action-model-price-release-date?fbclid=eyqKxaQwJbl9sspwuYLPzj4nDtWR0wfqFuYC6nVF1iMb_dw

Computers become Personal Assistants (PAs

The Rabbit R1 is an Al-powered gadget

Figure 1.1. Top View of ECP5 Evaluation Board

- Same FPGA as C Playground
- 85KLUTs FPGA
- Use Lattice Diam coding
- \$99

https://www.mouser.com/ProductDetail/Lattice/LFE5UM5G-85F-EVNG?qs=Li%252BoUPsLEnuS2%3D%3D

Computers become Personal Assistants (PAs