
Jeforth 4.03
Forth in Javascript

Silicon Valley Group

C. H. Ting

January 23, 2021

Summary

◼ Jeforth at 2011

◼ Jeforth 2.01 (minimal)

◼ Jeforth 2.02 (eForth)

◼ Jeforth 3.01 (objects)

◼ Jeforth 4.01 (minimal)

◼ Jeforth 4.02 (full eForth)

◼ Jeforth 4.03 (audio,haiku)

jeforth

◼ I asked Brad Nelson if he will
modify the browser he did
for esp32eforth to run a
Forth on PC.

◼ Then I remembered that Sam
Chen and Cheahshen Yap did
a one page Forth system in
Javascript, in 2011.

jeforth

◼ Sam presented it to SVFIG in
2012 but did not generate
much enthusiasm.

◼ I dug it up and found it is
what I can use.

◼ Good way to learn Javascript.

Jeforth 2.01

◼ Only 9 Forth words:

Quit token exec exit : ;

* . dup

◼ Simple Demo:

: square dup * ;

: quad square square ;

: octet quad quad ;

8 octet . 4 octet .

Jeforth 2.01

◼ Sam wrote some code and
much comments in Chinese

◼ I changed the Chinese text
to Engish and polished the
code a little bit and call it
jeforth 2.01.

◼ Minimal Forth in 69 lines.

Jeforth 2.02

◼ Full eForth implementation.

◼ More convenient user
interface with a small
graphic demo.

◼ 19 eforth lessons can be
pasted in and compiled all at
once.

Jeforth 3.01

◼ The inner interpreter was
changed to the standard
Forth set of words:

nest() and exit().

◼ All Forth words are self-
contained objects.

Jeforth 4.01
◼ Each word has a name field,

a code field, an optional
parameter field, and an
optional immediate flag field.

◼ In a colon word, the token
list is in the parameter field.

Outer Interpreter

◼ The outer interpreter process
a text stream in the terminal
input buffer.

◼ In Forth it is:
: quit begin token exec again

◼ In jeforth it is:
{name:"quit" ,xt:function(){nest();},pf:[1,2,3,0]}

{name:"token",xt:function(){token=nexttoken();}}

{name:"exec" ,xt:function(){exectoken(token);}}

{name:"bran" ,xt:function(){ip=words[wp].pf[ip];}}

Jeforth 4.01

Jeforth 4.01

Jeforth Word Objects
var words = [

{name:"quit" ,xt:function(){nest();},pf:[1,2,3,0]}

,{name:"token",xt:function(){token=nexttoken();}}

,{name:"exec" ,xt:function(){exectoken(token);}}

,{name:"bran" ,xt:function(){ip=words[wp].pf[ip];}}

,{name:"exit" ,xt:function(){exit();}}

,{name:":" ,xt:function(){newname=nexttoken();compiling=t

rue;

words.push({name:newname,xt:function(){nest();},pf:[]});}}

,{name:";" ,xt:function(){compiling=false;compilecode("ex

it");},immediate:true}

,{name:"*" ,xt:function(){stack.push(stack.pop()*stack.po

p());}}

,{name:"." ,xt:function(){ticktype(stack.pop()+" ");}}

,{name:"dup“ ,xt:function(){stack.push(stack[stack.length-

1]);}}

]

Outer Interpreter

Inner Interpreter
function execute(n){w=n;words[n].xt();}

function exit(){ip=-1;}

function nest(){

rstack.push(wp);rstack.push(ip);wp=w;ip=0;

while

(ip>=0){w=words[wp].pf[ip++];words[w].xt();}

ip=rstack.pop();wp=rstack.pop();}

function dovar(){stack.push(w);}

function

docon(){stack.push(words[w].pf[0]);}

Jeforth 4.02
◼ A complete, operational

eForth with 122 words.

◼ 19 lessons in the
Lessons403.txt file can be
compile all at once.

◼ Audio interface allows
playing songs implemented
in esp32eforth.

Jeforth 4.02

Jeforth 4.02

Jeforth 4.02

Jeforth 4.03
◼ The canvas in jeforth

202/203 is brought back.

◼ You can paint the canvas
with Brad Nelson’s Haiku
syntax.

◼ Audio interface now plays
Bach’s polyphonic music.

Jeforth 4.03

Jeforth 4.03

Demo
◼ Load 19 lessons in the

Lessons403.txt and see some
of the results.

◼ Play some robotic songs.

◼ Paint a few Haiku pictures.

Conclusion

◼ I complained loudly that C
does not have structures to
support Forth.

◼ Javascript objects are Forth
friendly and simplifies Forth
implementations.

◼ Forth can take advantage of
its native FP numbers.

Conclusion

◼ We now have a good brower
interface, smooth file loading,
graphic and audio playing
primitives.

◼ Is it good enough to market
Forth to the netizens?

Questions?

Thank you.

