
  

The case for: Forth fifosf 
( not stacks . )

Andreas Bernhard Wagner
@lowfatcomputing (twitter)
@pointfree@x0r.be (mastodon)

pointfree (irc freenode)



  

stack juggling:
● the worst part of forth

● the driver of forth innovation



  

What gives rise to stack juggling?

consumes too much?

DUP 2DUP OVER

TUCK >R R@ R>

...to hang on to those 
items for later!

produces too much?

SWAP ROT -ROT

OVER >R R@ R> 

PICK ROLL

...to get those items 
out of your way!

your word:



  

stack juggling is a producer-consumer problem.



  

a producer-consumer problem means:
we need ffos 

...to induce parameter datafow!

fifos alleviate parameter congestion

FIFO’s:
For UART buffering, 

For Internet router packet buffering,
For forth code.



  

...so I replaced the data ftack
with a data fifos

● with stacks (pop/push):

2 2 3 3 * -rot * + . 13
● with parallel concatentation (2D pop/push)

2 2 3 3 * ; * + . 13
● with ffos (consume/produce)

2 2 3 3 * * + . 13



  

...so I replaced the data ftack
with a data fifos (WITHIN)

: >= consume consume >= produce ;

: <= consume consume <= produce ;

: within >= <= ;

: printables $1F $7E within ;

char A printables emit A

variable number of items on the stack BAD
variable number of items in a pipe OK  



  

WITHIN ( from JonesForth)

( c a b WITHIN returns true if a <= c and c < b )

(  or define without ifs: OVER - >R - R>  U<  )

: WITHIN

  -ROT ( b c a )

  OVER ( b c a c )

  <= IF

    > IF ( b c -- )

       TRUE

    ELSE

      FALSE

    THEN

  ELSE

    2DROP ( b c -- )

    FALSE

  THEN

;



  

from ftackf to fifosf:s
things I noticed

● In forth, parameters f l o w  left → right

● ...words process them on the right, 

( also left → right)

● with ffos: If I want some parameters to be swallowed up 
into a defnition: 

just move the colon left  ← …no weird re-factoring needed!

( defs are neatly clustered downstream → ) 

● with ffos: I found myself rearranging words at edit time 
instead of parameters at runtime.



  

any sense in replacing 
the return ftack with a return fifos?

● 1st thought: No, we need to get to the 
machine code words at the leaves of a def.

● 2nd thought: Traversal with a stack is DFS, 
traversal with a FIFO is BFS.

Haskell does this for lazy evaluation.

C has conditional short-circuit evaluation.



  

dictionary congestion: same problem?

● I’d avoid a non-interactive, off-line forth 
compiler.

● Forth isn’t winning at interactivity after the 
source code has been compiled to the 
dictionary.

● Words pile up in the dictionary long after they 
are needed.

● FORGET causes fragmentation

● MARKER only truncates the dictionary



  

return-fifo/dict/parameters

● numbers, word defs, etc in one ffo:
– CONSUME

– do something with it…

– PRODUCE whatever is non-reducible and left over

● The return/dict/parameter-ffo is expected to 
continue fowing.

● Some words will linger in the ffo ( the dict)



  

Many fifos for many different uses?

● foating-point/string/etc… ffo?
– fragmentation.

● Fragmentation may be an unsolvable problem.
...when the partition/stack/ffo/etc is oblivious to its 
contents.

● Stack juggling, MARKER & FORGET are 
symptoms of fragmentation
– fragmentation is a network-fow/producer-

consumer problem.



  

Thank you!


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 16
	Slide 30

