
1
CHAPTER 2. BROWSING F83 SYSTEM

I assume that you have either followed the instructions as described in the README.TXT file on the
original disk you obtained from Henry Laxen or Mike Perry and expanded the compressed files to the
full length files comprising the F83 system, or somebody did the expansion for you and you have a set
of floppy disks ready to be used to explore this interesting and powerful Forth operating system and
language. If you did not have an expanded system, please read the instructions in the README file and
then run the executable file RUNME. You will be guided step by step to create a set of disks which will
contain all the files to be used by the F83 system.

In this chapter, I would like to show you what are contained in the F83 system and also the files on the
disks and help you to get familiar with this system. All the commands and exercises mentioned in this
chapter can be used freely to exercise the system so that you will gain certain degree of confidence to
use them later when you will do programming. These commands will in no way disturb the information
stored on the disks. The best way to learn them is to type them in on the keyboard and observe the
results on the CRT terminal.

F83 system is very large comparing to earlier public domain Forth system like figForth. It has about
1000 words or instructions in its dictionary. However, most words are defined to support other high
level words and are seldom used for ordinary programming purposes. Only a very limited number of
words are used often and these are words that a user must learn and be fluent in them to use Forth
productively. Included in this set of words are the required word set defined in the Forth-83 Standards,
which is a minimum set of words allowing you to compose solutions to a wide range of programming
problems, and the set of utility words in this F83 system which allows you to use the specific resources
provided by your computer. I further assume that you have already had some knowledge on Forth by
reading some textbook like Leo Brodie's 'Starting Forth', or its equivalent, and used a Forth system from
some other source. Therefore, I will not try to explain in details the elementary functions and words
common to most Forth system and only discuss those words unique in the F83 system. The purpose is
to get you to know this system well enough so that you will be able to use it as a basis to build your
application or your new Forth system.

In this chapter, all the words or instructions discussed are non-destructive. They will allow you to
browse through the entire system and explore its riches without writing anything to any of the files. You
must try them all and get to know them well before we get to the next chapter where we will try to edit
files and make permanent changes on disks. However, it is recommended that you make some backup
copies of the disks with the expanded files and only use the copies for the exercises, just to be safe.

2.1. LISTING THE WORD NAMES

Words or instructions in Forth are very powerful constructs. They have the essence of subroutines in
FORTRAN, procedures in PASCAL and PL/I, characters in APL, macro instructions in assembly, and
command files in operating systems. Because they are resident in a dictionary in the RAM memory of a
computer, they are available for immediate execution or for compilation into other high level words.
Words in the dictionary are arranged in the form of a linked list so that the execution procedure
associated with a particular word can be located quickly by the Forth operating system. A very useful

2
utility word is defined to go through this linked list and print the names of all the words in the
dictionary. It is called WORDS in Forth-83 Standard, a remarkable improvement over the old
computerese name VLIST in the figForth model. Typing:

3

Figure 2.1. IBM PC-DOS files in F83 system

4
WORDS

on your keyboard will generate a long list of word names on the terminal, as shown in the following
figures. On the list of Forth words, you will find all the regular Forth words for arithmetic operations
like + , - , * , / , and other division and ratioing operators; the stack operators like DUP , DROP , SWAP ,
OVER and ROT; the memory operators like @ , ! , C@ , and C! ; etc. In fact, all the Forth-83 standard
words are included in this list some where.

WORDS has few equivalent in other language or operating system. The Forth computer can tell you all
the words it knows and which are available for your use, any time you care to browse. In other language
or operating system, you have to go look them up in thick manuals and can never be sure that they are
really in your system. WORDS reveals the current state of the dictionary. If you add more words to the
dictionary, they will appear at the top of the name list. It is very handy when you are extending the
system by defining new words and add them to the dictionary. In this case you will be interested in the
words on the top of the dictionary and not the rest of the long listing. You can stop the name listing by
pressing any key on the keyboard.

Fig. 2.2 shows you how to list the words in the FORTH vocabulary.

2.2. VOCABUALRY

The dictionary in Forth is usually not a single linked list of words or instructions, but contains a number
of logically independent linked lists of words called vocabularies. The purpose of the vocabulary is
three-fold: to shorten the time needed to search through the dictionary, to group functionally related
words together, and to allow different words to share the same name. There are nine vocabularies
defined in the F83 system. The names of these vocabularies can be displayed by typing the following
word:

VOCS

and nine vocabulary names will be displayed on the terminal. The function and contents of these
vocabularies are summarized in Table 2.1.

TABLE 2.1. VOCABULARIES IN F83

NAME FUNCTIONS

ROOT Words to assign vocabulary searching order. All vocabularies must be
defined in this vocabulary.

FORTH The main trunk vocabulary for all standard and system words.
EDITOR All editing commands.
ASSEMBLERAll words needed to define low level machine code routines.
DOS Words to use the underlying DOS utility.
USER Words to define user variables.
SHADOW Words to support shadow screens for comments and documentation.

5
BUG Words to support F83 debugger.
HIDDEN Miscellaneous supporting words not useful to the user.

Executing a vocabulary name makes the specified vocabulary the 'context' vocabulary. The system will
search the context vocabulary first to locate a word entered by the user. The word WORDS displays
only the list of words in the context vocabulary. Since normally the context vocabulary is the FORTH
vocabulary, executing WORDS usually displays the word names in the FORTH vocabulary as shown in
Fig. 2.2. Executing WORDS after a vocabulary name will list the word names in that vocabulary, as
shown in the examples in Figures 2.3-4.

Figure 2.2 FORTH words

6

Figure 2.3 ASSEMBLER and DOS words

7

Figure 2.4 Words in other vocabularies

8
The vocabulary structure in F83 is significantly improved as compared with the vocabulary structure in
the figForth Model. It is more flexible in that the user can dynamically change the vocabulary searching
sequence and specify up to to eight different vocabularies in the searching sequence. The speed of
dictionary searching is also much faster than that in the figForth Model, because all vocabularies in the
dictionary are hashed into four threads. In order to locate a word, only a quarter of a vocabulary needs
to be scanned. This hashed searching greatly improves the speed of text interpretation and program
compilation.

Two words are used to manage the vocabulary searching sequence: ONLY and ALSO. ONLY initializes
the searching sequence and makes ROOT as the only vocabulary available for searching. In the ROOT
vocabulary, all the other vocabulary names must be defined so that they are accessible. After ONLY is
executed, executing any other vocabulary word will make that vocabulary the context vocabulary which
becomes the first vocabulary to be searched during text interpretation. Executing ALSO pushes the
context vocabulary on the top of a vocabulary stack and makes it the first resident vocabulary. Other
resident vocabularies already in the vocabulary stack are pushed down so that they will be searched in
order after searches in the context and the first resident vocabularies failed to locate a word.

The context vocabulary, for all practical purposes, is the equivalent to the context vocabulary in fig-
FORTH. The resident vocabularies are extensions of the context vocabulary to allow the user to specify
the number and the order of vocabularies to be searched in runtime.

To arrange the searching order as DOS-EDITOR-ASSEMBLER-FORTH, one has to execute the
following command sequence:

ONLY FORTH ALSO ASSEMBLER ALSO EDITOR ALSO DOS

Here DOS becomes the context vocabulary and EDITOR is the first resident vocabulary to be searched.
If a word cannot be located in either DOS or EDITOR, the ASSEMBLER and the FORTH vocabularies
will be searched in turn.

Another word ORDER will list the context and the resident vocabularies on the terminal. It is a useful
command to assure yourself the context environment you are in at any time. If you executed the above
string of vocabulary words, typing

ORDER

results in the following display on the terminal:

Context: DOS EDITOR ASSEMBLER FORTH ROOT
Current: FORTH ok

indicating the desired vocabulary search order. The current vocabulary, in this case FORTH, is the
vocabulary to which new word definitions are added. It will be discussed later.

The command WORDS behaves similarly to VLIST in figFORTH. However, WORDS only lists the
names of words in the context vocabulary; therefore, WORDS must be preceded by the name of the
vocabulary you wish to examine, like FORTH WORDS, DOS WORDS, etc. Since the list of names
always starts with the word defined last, it is often used to see which word was compiled last. If there

9
were any error during disk file loading, you can find quickly where compilation stopped.

10
2.3. VIEWING SOURCE CODE OF WORD DEFINITIONS

Since there are so many words in the F83 system, it is impossible for anybody to remember the meaning
and the function of all these words. Although the compiled object code of a word in the dictionary
contains all the information about this word, it is not readily usable to casual users. F83 system provides
a very interesting and powerful tool which permits the user to see the source code of any word in the
system. This magic word is named 'VIEW'. If you wanted to see how the word LIST was defined, you
should type:

VIEW LIST

and the F83 system will open the file in which LIST was defined and display the screen containing the
definition of LIST. On the top of the displayed screen, you will also find the name of the file. This is
shown in Fig. 2.5.

To use the viewing facility, you must have all the source files on disks and have them properly inserted
into appropriate disk drives. For some computers, the files fit on a single floppy disk. This is the ideal
case because you don't have to worry about where a particular file is. For computers with smaller disk
drives, the files must be spread over two or more drives. If the required file is not on the disk of your
current disk drive, you have to log on to the drive where the file is located and repeat the viewing
command, or insert the proper disk in the the log-on drive and repeat the viewing command.

Words are grouped by their functions and by the order of compilation into six major files in the F83
system:

METAnn.BLK The meta-compiler.
KERNELnn.BLK The trunk Forth system. Nucleus, interpreter and compiler.
EXTENDnn.BLK Vocabulary and file words.
CPUnnnn.BLK Assembler and CPU dependent words.
UTILITY.BLK Editor, debugger, decompiler, printing and other utility.
HUFFMAN.BLK Huffman compression.

where nn or nnnn identifies the CPU for which the F83 system is hosted. 80 for 8080 and Z80, 86 for
8086 and 8088, and 68 for 68000.

If you have to choose which files to put on a disk for viewing, I suggest that you put UTILITY.BLK,
KERNELnn.BLK, and EXTENDnn.BLK on one disk and use it for viewing, because they comprise the
majority of useful words that you might be interested in browsing.

F83 also comes with a built-in decompiler which can regenerate the source code from the object code in
the dictionary. The decompiler word is 'SEE', followed by the name of the word you want to decompile.
For example:

SEE LIST

will display the sequence of words which define the function of LIST on the terminal. The displayed
sequence of words does not match exactly the sequence in the original source code, because the control
structures are not decompiled but simply represented by the corresponding runtime routines.

11
Nevertheless, the decompiled sequence does reveal the composition of the source code faithfully. The
advantage of the decompiler over the viewing facility is that the decompiler is always available for you
to browse words, even without the disk files.

The result of SEE LIST is shown in Fig. 2.5, at the bottom.

12

Figure 2.5 VIEW and SEE

2.4. SHADOW SCREEN DOCUMENTATION

Since most people think that a FORTH screen of 1024 bytes is too small to put inline documentation
with the code in the same screen, the shadow screen technique was developed to give the user an extra
screen to write comments and documentation for each source screen. This documentation screen is the
shadow of the source screen.

F83 divides a screen file into two equal parts: the first half will be used for source code and the second
half for documentation. One can toggle between a source screen and its shadow screen with the
commands A and L. After viewing the source code in a source screen, the user can type A L and switch
to the shadow screen to see the comments and documentation. Documentation thus provided in the F83
system is quite extensive, and you are encouraged to examine the shadow screens with their respective
source screens. The shadow screens generally bring out the purpose and over-all function of words
which are not obvious in the source definition.

2.5. FILES IN F83

F83 uses MS-DOS or CP/M operating system to access the terminal and the disk files. Using a readily

13
available operating system to host the F83 system has the advantage that it can be transported to a large
number of computers with that operating system. It also allows the partitioning of the F83 system into
several named files which are easier to handle than a simply blocked disk. Within a file, however, F83
system still deals with program or data in the 1024 byte block format as required by the Forth-83
standard. Most of the elementary file functions are defined as Forth words. However, only a few high
level words are needed by the user to use files to store and to retrieve programs and data.

Three simple Forth words have functions similiar to their DOS or CP/M counterparts: DIR lists on the
terminal all the files on the current disk drive, A: makes drive A the current drive, and B: makes drive
B the current drive. All file activities are processed for files on the current drive.

All the Forth words using the disk mass storage, such as BLOCK, BUFFER, FLUSH, etc., access the
current file on the current disk. A file becomes the current file when it is opened by the command
OPEN <filename>, and subsequent disk commands are directed to this file. In our previous example of
the word VIEW, which displays the screen containing the source code in a file, the word VIEW actually
opens the file containing the word definition and displays the requested block on the terminal. If you
want to examine or to modify data or source in a specific file, you have to open it explicitly. Once a file
is opened, you can display any block within that file.

The size of a file is usually specified when the file was created. The size in number of 1024 byte blocks
can be recalled by the word CAPACITY. Execute CAPACITY and the number of blocks in the current
file is returned on the stack. Source code files in the F83 system with the extension BLK are arranged to
have the source code in the first half of the file and the shadow documentation in the second half.

To examine the contents of a BLK file, you can use the command INDEX to display the first lines in a
range of screens. For example, to display the first lines of all the source code screens, you can type:

0 CAPACITY 2/ INDEX

and the first lines of those screens will be displayed on the terminal. By convention, the first line in a
screen should always be a comment to the contents of this screen. Thus INDEX gives us the
information equivalent to a directory in a file. An example of the index listing of the UTILITY.BLK file
is shown in Fig. 2.6.

If you identify any screen of your interest, you can examine the detailed contents of this screen by the
command LIST, preceded by the screen number:

1 LIST

will display the first text screen in a file. In all the F83 source code files, screen one is the load screen of
the file, i. e., it contains commands that will load or compile the source screens in the rest of the file.
There are also some comments in screen one indicating the packaging of the screens in the file.

To display the shadow documentation of any source screen, you should type:

A L

The command A uses CAPACITY to calculate the screen number of the associated shadow screen, then

14
makes it the current screen. The command L displays the current screen. Executing A and L again will
display the source screen again.

15

Figure 2.6 Files and directory commands

16
2.6. PRINTING UTILITY

To make hard copy of the source screens and shadow screens, a simple method is to let the printer
follow the terminal display. In the CP/M systems you can type the control P code on the keyboard to turn
on the printer. Any character hereafter displayed on the terminal will also be printed. Now you can use
any of the listing commands discussed in the last section to print index of a file or individual screens.
However, you do not have control over the printing format. F83 provides some utility commands to
print source code and shadow screens. If you have an EPSON printer capable of printing in condensed
format, you can print the source screens side by side with their shadows on single 8.5" by 11" paper,
which is very convenient when studying the source code.

The print utility allows you to print a range of screens on a printer. It must be properly initialized for
your printer. If you do have an EPSON printer you have to initialize it by the following commands:

' EPSON IS INIT-PR

which initializes the vectored word, INIT-PR. The print format is 6 screen to a page with two 3 screen
columns. The printer must be able to print 132 characters per line to fit two screens side by side on one
page. The command to print a range of screens is SHOW:

1 30 SHOW

will print screens 1 to 30.

There are two versions of SHOW in F83. The version in FORTH prints 6 screens per page and the
version in the SHADOW vocabulary prints 3 screens of source with their corresponding shadow
screens:

1 30 SHADOW SHOW

prints source screens 1 to 30, 3 screens to a page with 3 shadow screens.

If your printer cannot handle 132 columns per line, you will have to use the command TRIAD to print
three screens on a page.

To obtain the complete listing of a file in the source-shadow format, there is a simple command
LISTING. LISTING was used to generate all the source listings as distributed with the F83 systems,
with file name, page number, and footing. .

2.7. DEBUGGER

The debugger is designed to let the user single-step through the execution sequence of a high level
definition. To invoke the debugger to trace a word, issue the following command:

DEBUG <name>

where <name> is the word to be debugged. Nothing happens at this point. DEBUG sets things up so

17
that when the word is executed you will get a single step trace showing the word within <name> that is
about to be executed and the contents of the parameter stack.

During the single stepping through a word, the name of the next word to be executed and the contents of
the parameter stack are displayed on the CRT terminal. The debugger then waits for a key stroke on the
terminal keyboard. Any key will cause the next word to be executed and the debugging information
displayed. Three special keys, C, F, and Q, have the following functions:

Q Quit the debugging process and restore the debugged word to its original state for normal
execution.

C Turn off the single stepping mechanism and let execution run to completion.
F Temporarily return to Forth system so that you can execute other Forth commands, for

example, to change the data stack items. You must type RESUME to come back and
continue the debugging process.

An example to single step through the execution of 1 LIST is shown in Fig. 2.7. Typing Q at the bottom
of the list terminates the execution.

Figure 2.7 Debugging LIST

