
1
CHAPTER 15.   TEXT EDITOR

The source code of the editors are in the file UTILITY.BLK, screens 12 to 27.

The Editor is the most often used utility in an operating system to support programming activity.  The
friendliness of an operating system depends heavily on the editor it provides to the user. Since the source
code in Forth is organized around blocks of 1024 bytes and the editor has to deal only with blocks of
fixed size, the editor is simpler than the editors in other systems which have to be able to handle large
text files, usually of variable length.

The line editor in F83 system is compatible with the editor described in the popular book "Starting
FORTH".  For details on the various commands in this editor, see the book by Leo Brodie.  There are a
few extensions, most notably the word NEW which allows you to enter multiple lines of text.

A screen editor is also provided in F83 so that the user always has a full screen showing on his terminal.
The description of the screen editor will be in the Chapter 16.

15.1.    STRING UTILITY

The  string  manipulation  primitives  include  string  comparison  and  searching.   The  string  search
command is used in the editor to find the desired string.  The only unusual feature about this string
package is the presence of a variable called CAPS, which determines whether or not to ignore the case
of the subject and pattern strings.  If case is ignored then A-Z=a-z.  The default is to ignore case.

Many string primitives are defined in the kernel, like string compare, lower-to-upper case conversion,
etc.  Many of them are defined in machine code form to increase execution speed. Here their high level
definitions are shown for completeness and for reference.  You should consult the sections in the kernel
for the code definitions actually used in the system, in the file KERNEL86.BLK, screens 41-43.

VARIABLE CAPS If true, lower case characters are to be converted to upper case.

: UPC  ( char --- char' ) Convert a character to upper case.
DUP Copy char for comparison.
ASCII a ASCII z BETWEEN Is it between a and z?
IF BL - THEN If so, convert to upper case by subtracting 32.
;

: ?CHAR ( char --- char' ) Convert a character to upper case if CAPS flag is set.
 CAPS @ Is CAPS true?

IF UPC THEN If so, convert; otherwise skip.
;

: COMPARE ( addr1 addr2 count --- n ) Compare two strings at addr1 and addr2 of equal 
length. Case may be significant depending on CAPS.  0 is

 returned if the strings are equal.  1 is returned if string at



2
 addr1 is greater than that at addr2.  -1 is returned if the string
 at addr1 is less than that at addr2.

>R Save the count.
0 The initial value of n to be returned.
-ROT Put it under addr1.
R> Retrieve the count.
0 ?DO Scan through the strings.

OVER I C@ Get a character from string 1.
?UPCHAR Convert it to upper case if needed.
OVER I C@ Get the corresponding character from string 2.

 ?UPCHAR Convert.
- DUP Are the characters the same?
IF No.  The characters are not equal.

>R Save the comparison result.
ROT DROP Discard the initial n.
R> Retrieve comparison result.
0< IF -1 If it is less than zero, return -1 because string 2 is larger.

 ELSE 1 THEN If the comparison is positive, return 1 to indicate that
 string 1 is greater than string 2.

 -ROT Put the result below addr1, replacing the initial n.
LEAVE Quit the do-loop immediately.

ELSE DROP Characters are equal.  Discard the result of comparison.
 THEN

LOOP
2DROP Discard the addresses.
;

 : INSERT ( sa sl ba bl --- ) Insert a string at sa into the buffer at ba.  The length of string
 inserted is the smaller of sl and bl.

ROT OVER MIN >R Save the smaller of sl and bl on the return stack.
R@ - bl-sl or 0 if sl>bl.
OVER DUP Buffer address ba.
R@ + Address of the remainder of the buffer.
ROT CMOVE> Shift the string in the buffer forward, making room for the 

string to be inserted.
R> Restore the count of insert string.
CMOVE Copy string to buffer.
;

: REPLACE ( sa sl ba bl --- ) Copy a string from sa to ba. Characters copied is the smaller
 of sl and bl.

ROT MIN Smaller of sl and bl.
CMOVE Copy from sl to ba.
;

 : DELETE ( ba bl sl --- ) Delete sl characters from the start of buffer, ba.  Fill the end
 of buffer with blanks. 

OVER MIN >R Save the smaller of bl and sl.



3
R@ - The remainder of the buffer.
DUP 0> Any character to be move forward in the buffer? 
IF Yes.  Copy the remainder of buffer forward to the start of buffer.

2DUP Duplicate ba and remainder of buffer.
SWAP DUP Buffer address ba.
R@ + Address of remainder of buffer.
-ROT SWAP CMOVE Copy the remainder of buffer to the beginning of the buffer.

THEN
+ Address of remainder of buffer.
R> BLANK Fill the remainder of buffer with blanks.
;

VARIABLE FOUND A local variable to be used by SEARCH as a flag.

: SEARCH ( sa sl ba bl --- n f ) Search for the string at sa inside the string at ba.  If found,
 return the offset of the found string as n and a true flag.  If
 not found, f is false and n is meaningless.

FOUND OFF Initialize FOUND to be false.
OVER >R Save buffer address ba.
ROT TUCK - bl-sl.
1+ 0 ?DO Scan the buffer for the string. Stack is now ( sa ba sl --- )

 3DUP COMPARE Is the string found at this position?
0= IF If found, 
FOUND ON turn on the FOUND flag,
LEAVE and quit the do loop immediately.
THEN
SWAP 1+ SWAP Increment the buffer address ba to do the next comparison.

 LOOP
DROP NIP Discard sl and sa.
R> - Offset from the beginning of the buffer to the starting point

 of the found string.
FOUND @ Get the found flag.
;

These string commands are the basic words used in implementing the string editing commands which
are needed in both the line editor and the screen editor in this F83 system.

15.2.   TERMINAL DEPENDENT DEFERRED WORDS

Several words which will be used to control screen display in the screen editor are defined here as
deferred words so that words defined in the line editor can be used also in the screen editor by re-
vectoring these deferred words.

DEFER AT \( col row --- ) Position the cursor at the given location specified by the
 stack numbers.

DOES> A vectored word.
-ROT 2DUP #LINE ! Store col in #LINE.



4
#OUT ! Store row in #OUT.
ROT PERFORM Execute the word vectored to by AT.
; 

AT Execute AT vectors to itself.

DEFER BLOT ( col --- ) Delete the rest of the current line.

DEFER -LINE ( --- ) Delete the current  line and scroll  the rest  of screen up by one  
line.

: DARK ( --- ) Clear the screen and home the cursor.
DOES> Dark is a deferred word and can be re-vectored.
PERFORM First execute the routine whose execution address was put 

into the parameter field.
#LINE OFF Reset line count.
#OUT OFF Reset character count.
; 

DARK Vector DARK to itself.

VOCABULARY EDITOR Create a new EDITOR vocabulary.
EDITOR ALSO DEFINITIONS Make it the current vocabulary so that following definitions
 will be included in it.

DEFER .SCREEN ( --- ) Display the entire screen.

:  (AT) ( col row ---) Do a carriage return in line editor mode.
2DROP CR ;

: (BLOT) ( col --- ) Fill the rest of line with spaces.
C/L SWAP - Characters in the rest of this line.
SPACES Output spaces.
;

: (DARK) ( --- ) Clear the screen with line feeds.
24 0 DO CR LOOP Send 24 carriage returns.
;

' (AT) IS AT Initialize AT,
' (BLOT) IS BLOT and the rest of the deferred words to support the dumbest 

possible terminal.
' (DARK) IS DARK
' NOOP IS -LINE
' CR IS .SCREEN



5
15.3.   THE CURSOR COMMANDS

The cursor in the editor is a pointer pointing to the character position where the next editing actions will
occur.  The cursor position is stored in a variable R#, as the offset from the beginning of the screen
buffer to the address of the current character.  All cursor commands use or modify this variable. Often
the cursor is represented by a caret '^' on CRT display.

VARIABLE R# Defined in the nucleus.

: TOP ( --- ) Go to the top of the screen.
R# OFF Initialize R# to zero.
;

: C ( n --- ) Move the cursor by n characters, right or left.
R# @ Current cursor position.
C/SCR 1- 1023, a 10 bit mask.
AND Ensure the cursor is within the screen.
R# ! Replace it.
;

: T ( n --- ) Go to the beginning of line n.
TOP Reset R#.
C/L * Beginning of the nth line.
C Set the cursor.  Always within screen.
;

: CURSOR ( --- n ) Return the current cursor position.
R# @ ;

: LINE# ( --- n ) Return the current line number.
CURSOR C/L / Divide the cursor position by characters per line.
;

: COL# ( --- n ) Return the current column number.
CURSOR C/L MOD The modulo of cursor position.
;

: +T ( n --- ) Increment the current line by n.
LINE# + Get the new line number.
T Select it as the current line.
;

: 'START ( --- addr ) The buffer address of the start of the screen.
SCR @ The current screen number.
BLOCK The address of the buffer.
;

: 'CURSOR ( --- addr ) The actual address of the current character in the buffer 
pointed to by the cursor.



6
'START Beginning of the screen.
CURSOR + Add cursor offset to get the address in the buffer.
;

: 'LINE ( --- n ) The address of the beginning of the current line.
'CURSOR Address of the cursor.
COL# - Subtract the column number to get back to the beginning. ;

: #AFTER ( --- n ) Return the number of characters after the cursor on the current line.
C/L Characters per line.
COL# - Characters after cursor.
;

: #REMAINING ( --- n ) Return the number of characters after the cursor on screen.
B/BUF Characters per screen.
CURSOR - Characters after cursor on screen.
;

: #END ( --- n ) Number  of  characters  between  the  beginning  of  current  line  
to the end of screen.

#REMAINING Characters from cursor to end of screen.
COL# Characters from start of line to cursor on current line.
+ ;

15.4.   EDITING BUFFERS

PAD returns the address of a text buffer used by FORTH system for string output and temporary storage.
The Starting FORTH editor requires two additional text buffers: an insert buffer and a find buffer.  The
insert buffer stores a text string which will be inserted into the screen during editing, and the find buffer
stores a string to be used in string search. These two buffers are assigned immediately above the PAD
buffer and they all float some distance above the top of the dictionary. Since they are using the free
memory space between the data stack and the dictionary, they do not require fixed allocation in the
RAM memory.

Some of other editing utility words are also defined here.

VARIABLE CHANGED A variable  indicating  that  the  current  screen  has  been  edited  
so that date stamp can be applied automatically.

: MODIFIED ( --- ) Mark the screen as updated and also set the CHANGED flag.
CHANGED ON Set CHANGED flag.
UPDATE Set the UPDATE flag.
;

ASCII ^ CONSTANT EOS EOS is the character to denote the end of a string on input. It
 allows multiple editing commands on one line.



7
: ?TEXT ( addr --- addr+1 n ) Accept a string to addr.  For a null string, do not disturb the 

string already at addr.
>R Save addr on return stack.
EOS PARSE Scan the input stream for ^ or end of line.
DUP Get the character count of the input string.
IF If character count is not 0, do the string copying.

R@ Retrieve addr.
C/L 1+ BLANK Clear one line at addr.
HERE COUNT The string is in the word buffer.
R@ PLACE Copy the string to addr.

ELSE 2DROP Clean the stack after PARSE.
THEN
R> Get the addr back.
COUNT Replace it by addr+1 and count.
;

10 CONSTANT ID-LEN Length of the id stamp buffer.
CREATE ID ID-LEN ALLOT Id stamp buffer containing the user name and date stamp.
ID ID-LEN BLANK Initialize the id stamp buffer.
84 CONSTANT C/PAD All text buffers are to be 84 characters long.

: 'INSERT ( --- addr ) Return the address of insert buffer.
PAD C/PAD  + 84 bytes above PAD.
;



8

Figure 15.1   The editing buffers.

Free Memory

Video Screen Buffer

1024 Bytes

Find Buffer

Insert Buffer

Text Buffer

Word Buffer

'VIDEO

'FIND

'INSERT

PAD

HERE

Dictionary



9
: 'FIND ( --- addr ) Return the address of find buffer.

'INSERT C/PAD + 84 bytes above the insert buffer.
;

: 'VIDEO ( --- addr ) Return the screen editor buffer.
'FIND C/PAD + 4 bytes above the find buffer.
;

: .FRAMED ( addr --- ) Print a string at addr framed with single quotes.
." '" Print preceeding quote.
COUNT TYPE Print the string.
." '" Print following quote.
;

: .BUFS ( --- ) Display the contents of the insert and find buffers.
CR ." I " Header for insert string.
'INSERT .FRAMED Print insert buffer.
CR ." F " Header of find string.
'FIND .FRAMED Print find buffer.
;

: ?MISSING ( n f --- n, or abort ) If flag is false, print the find buffer and abort.  Otherwise, 
return only n.

0= IF If flag is false, do the following.
DROP Discard n.
'FIND .FRAMED Print contents of find buffer.
."  not found "    This is used when a string cannot be found in the screen.
QUIT Give up and return to the text interpreter.

THEN ;

: KEEP ( --- ) Copy the current line into the insert buffer.
'LINE Address of current line.
C/L 'INSERT PLACE Copy the line to insert buffer.
;

: K ( --- ) Exchange the contents of the insert and find buffers.
'FIND PAD C/PAD CMOVE Copy find buffer into PAD buffer.
'INSERT 'FIND C/PAD CMOVE Copy insert buffer to find buffer.
PAD 'INSERT C/PAD CMOVE Copy old find string to insert buffer.
;

: 'F+ ( n1 --- n2 ) Add the length of the found string to n1.
'FIND Address of the find buffer.
C@ Length of find string.
+ ;

: W ( --- ) Abbreviation of SAVE-BUFFERS.
SAVE-BUFFERS ;



10

: 'C#A ( --- addr count ) Return the address of the cursor and the characters after 
cursor on the current line.

'CURSOR Address of the cursor.
#AFTER Characters after cursor.
MODIFIED Update flags.
;

: (I) ( --- len 'insert len 'cursor #after) Get input string into the insert buffer and
 leave addresses and lengths necessary to do the insertion.

'INSERT ?TEXT Get input text and copy it into the insert buffer.
TUCK Tuck a copy of len under address of insert buffer.
'C#A Push cursor address and character count on stack.
; 

15.5.    LINE EDITING COMMANDS

Line editing commands modify the contents of the current line in the current screen.  Many of these
commands expect a string immediately following the command in the same input line. The string may
be a null  string,  i.e.,  the command is  followed immediately by a carriage return.   In this  case,  the
contents of the appropriate buffer are used in place of input string. The text string is shown as <text>,
which is a sequence of ASCII characters.  Blanks or spaces can be included in the string.  The string is
terminated either by a carriage return or by the carat character '^'.

: I ( --- ) I <text>  inserts text string on the current line at the cursor.
(I) Get the insert string.
INSERT Insert it on the current line.
C Move the cursor to the end of the inserted string.
;

: O ( --- ) O <text>  overwrites text string on the current line at the cursor.
(I) Get the insert string.
REPLACE Write over the current line with the insert string.
C Move cursor to end of inserted string.
;

: P ( --- ) P <text>  replaces the current line with <text> and blank fill
 the rest  of the line.

'INSERT ?TEXT Get insert string.
DROP Discard character count.
'LINE C/L CMOVE Copy the entire line.
MODIFIED Update flags.
;

: U ( --- ) U <text>  inserts a line under the current line.  Subsequent 
line in the screen are pushed down by one line.  The last line

 is lost.



11
C/L C Move the cursor to next line.
'LINE C/L OVER #END INSERT Insert a dummy line at the next line and push all

 subsequent line down.
P Put the insert string at the next line.
;

: X ( --- ) Delete the current line and save it in the insert buffer.
KEEP Save the current line in the insert buffer.
'LINE #END C/L DELETE Delete the current line.
MODIFIED Update flags.
;

: SPLIT ( --- ) Break the current line in two at the cursor.
PAD C/L 2DUP BLANK Clear the PAD buffer.
'CURSOR #REMAINING Address of cursor and characters to end of screen.
INSERT Insert a line of blanks at the cursor.
MODIFIED ;

: JOIN ( --- ) Put a copy of next line after the cursor.
'LINE C/L + Beginning of the next line.
C/L Copy one line,
'C#A INSERT to the cursor.
MODIFIED ;

: WIPE ( --- ) Clear the screen to blanks.
'START B/BUF BLANK    Fill the screen with blanks.
MODIFIED ;

: M ( m n --- ) M copies the current line to nth line in the mth screen. M is
 neutralized because the editor should not affect other screens
 and M moves the current line to another screen.

TRUE ABORT" Use G!"   Always abort.
;

: G ( screen line --- ) Get a line from another screen and insert it in front of the 
current line.

C/L * character offset to the line.
SWAP IN-BLOCK + Get the source block from the in-file. Add offset to the 

source line.
C/L 'INSERT PLACE First put the source line in the insert buffer.
C/L NEGATE C Move the cursor to the line above.
U Insert the source line.
C/L C Move the cursor back.
;

: BRING ( screen first last --- ) Get a range of lines from another screen.
1+ SWAP DO Scan the range of lines.

DUP Source screen number.



12
[ FORTH ] I Select the loop index in FORTH, not the I defined above in

the EDITOR.
G Get one line.

LOOP DROP Discard the screen number.
;

15.6.   STRING EDITOR COMMANDS

The main task of the string editor is to locate a string inside the current screen and place the cursor at the
end of the found string.   This  allows the user  to  modify strings  in  a screen quickly to  make local
modifications as he debugs his source code.  The string pattern to be searched is put in the find buffer.

: FIND? ( --- n f ) Get the find string from the input stream and search for a
 matching string in the screen starting at the current cursor
 position. Return the character offset of the found string as n
 and a true flag if the string is found. Return a false flag if not
 found, and n is meaningless in this case.

'FIND Address of the find buffer.
?TEXT Get the input text into find buffer.
'CURSOR #REMAINING SEARCH Search the screen from the cursor down to 

find a match.
;

: F ( --- ) F <text>  finds the text and leaves the cursor just pass it.
FIND? Get the find string and do the searching.
?MISSING Quit with an error message "?" if string is not found.
'F+ C Move cursor to the end of the found string.
;

: E ( --- ) E <text>  erases the string just found.
'FIND C@ The character count of the found string.
DUP NEGATE C Move the cursor to the beginning of the found string.
'C#A ROT DELETE Delete the found string.
;

: D ( --- ) D <text>  finds and deletes a string.
F Find.
E Erase.
;

: R ( --- ) R <text>  replaces the text string just found with the string in
 the insert buffer.

E Erase the found string.
I Insert the insert string.
;



13
: S ( n --- ) n S <text> searches for the text through all screens from the
 current up to screen n.  Each time a match is found, n 

remains on the stack until screen n is reached.
1 ?ENOUGH Abort if the data stack does not have at least one item on it.
FIND? Search the current screen.
IF 'F+ C EXIT THEN    Found in current screen.  Move cursor and quit.
DROP Discard dummy number on stack when string is not found.
FALSE Put a false flag on stack for do loop scanning.
OVER SCR @ DO Scan a range of screens.

N Next screen.
TOP Beginning of next screen.
'FIND COUNT Find string.
'CURSOR #REMAINING Buffer address and count in the next screen buffer.
SEARCH Search the text string.
IF Found the string.
'F+ C Move cursor to end of found string.
DROP TRUE Replace false flag with true.
LEAVE Exit the do loop.
ELSE DROP Discard the character offset if string is not found.
THEN

KEY? ABORT" Break!"   If any key is received on the keyboard, quit the searching.
LOOP Otherwise, continuing the search to the next screen.
?MISSING n should be on the stack.
;

: (TILL) ( --- ) Search in the current line for the text string.
'FIND ?TEXT Get the text string and put it in the find buffer.
'C#A SEARCH Search current line from the cursor for the find string.
?MISSING If string can"t be found, abort.
;

: TILL ( --- ) TILL <text>  deletes all text on the current line from cursor
 to the end of the find string.

'C#A (TILL) Search the find string.
'F+ DELETE Delete from cursor to end of found string.
;

:  JUST   ( --- ) Justify.  Delete up to but not including the text string.
'C&A (TILL) Find the text string.
DELETE Delete all characters between the cursor and the starting

character of the found string.
;

:  KT   ( --- ) Keep-Till.  Copy all the characters between the cursor and 
the end of the text string into the insert buffer.

'CURSOR (TILL) Find the text string.
'F+ The end of string.



14
'INSERT PLACE Copy the characters into insert buffer.
;

15.7.   SCREEN EDITOR

The line editor works on the source screen one line at a time.  It serves well all the editing functions.
The only problem is that the text screen displayed on the terminal scrolls up with the entering of new
lines at the bottom of terminal screen.  After some editing, compiling and testing, the text screen starts to
disappear over the top of the terminal and the user must type L command to re-display the text again. As
the terminals getting smarter and smarter, it is nice if we can use some of the extra functions in the
terminal to keep the text screen at the top of the terminal all the time.  This is basically what a screen
editor does.  Any time the text screen is modified, the modification will be written on the displayed text
screen immediately.

If all the terminals were built the same way, it would be a simple exercise to write a screen editor.
However, terminals are built with different screen control commands.  The screen editor must be tailored
to the specific terminal to use its specific cursor and display control commands.  The screen editor in
F83 uses all the words developed in the line editor for editing functions.  The terminal-specific functions
are concentrated in four words: AT, DARK, BLOT, and -LINE, which manage a continuous display of
the text screen being edited.  The display is updated automatically as each command line is executed.

Figure 15.2   Screen editor display

File Name and Screen Number

Comment Line ID Stamp

15 Lines of Text

Current Line under Editing

Scrolling Command Window



15
15.8.   THE SCREEN DISPLAY COMMANDS

The display on the terminal is assumed to have a 24 by 80 character format.  The screen editor displays
the screen number on the top line or line 0 on the screen display.  Lines 1 to 16 are used to display 16
lines of text in the current screen.  Line 17 display the current line.  Lines 18 to 23 are used as a scrolling
screen for command input and character output.  The text screen stays at the top of display and always
shows the updated text of the current screen under editing.

3 CONSTANT DX Column offset for screen text. Allow room for line numbers.
1 CONSTANT DY Row offset for screen text.  Allow room for screen number.

: .LINE ( --- ) Display the current line, with the cursor shown as an up-
arrow or caret.

LINE# 2 .R SPACE      Display the current line number.
'LINE COL# >TYPE Display the text before cursor.
ASCII ^ EMIT Display ^, current position of the cursor.
'CURSOR #AFTER >TYPE  Display the text after the cursor.
;

: REDISPLAY( line# --- ) Update the image of line n on the terminal.
0 OVER DY + Column and row of line n on the display.
AT Move the display cursor to the display coordinates.
DUP 2 .R SPACE Print the line number.
DUP C/L * Character offset of line n.
'START + Address of line n in screen buffer.
C/L TYPE Display the entire line.
SPACE . Display the line number.
#OUT @ BLOT Erase the rest of the line.
;

: CHANGED? ( line# --- f ) Return a true flag if the line has changed since last display.
It is sensitive to case changes.

C/L * Character offset to the line.
DUP 'START + Address of the line in the buffer.
SWAP 'VIDEO + Address of same line in the video buffer.
C/L COMP Compare the lines in text screen and video buffer.  Return 
; true if two line are different.

: .ALL ( --- ) Redisplay all lines which have changed, the screen number,
 the cursor line, and scroll the command region.

DISK-ERROR @ 0= If no disk error, display the screen.
IF

DX 0 AT .SCR Display the screen number.
#OUT @ BLOT Erase the rest of the line.
[ FORTH ] Switch context to FORTH because
?STAMP Stamp the screen if not done.
L/SCR 0 DO Scan all the lines in the screen.

I CHANGED? Has this line been changed?



16
IF I REDISPLAY If changed, redisplay the new line.
THEN

LOOP
'START 'VIDEO B/BUF CMOVE Update the video buffer.
0 18 AT .LINE Display the current line under the displayed screen.
0 19 AT -LINE Delete line 18 on display and scroll up the rest of screen display.
0 23 AT Position the display cursor at the bottom of display,

assuming 24 line display.
#OUT OFF Clear output character count.

THEN
;

: EDIT-AT ( --- ) Move the diplay cursor to show the position of the editor 
cursor for editing functions.

CURSOR C/L /MOD Convert cursor offset to screen coordinates.
SWAP DX + Column number.
SWAP DY + Row number.
AT Move the display cursor.
;

: NEW ( n --- ) Move the display cursor to the beginning of line n and accept
text for following lines until a null line (a line begins with
a carriage return) is entered, i.e., 2 CR's gets you out of NEW.

L/SCR SWAP DO Scan from line n down.
[ FORTH ] I Loop index.
[ EDITOR ] T Position editor's cursor.
EDIT-AT Position the display cursor.
>IN OFF Reset the input character offset.
QUERY Wait for a line of input text.
SPAN @ Number of characters in the input text.
IF If not a null line,

P Put the text in the current line.
ELSE For a null line,

[ FORTH ] I Get the current line number,
REDISPLAY Put back the old line.
LEAVE Quit here.

THEN
.SCREEN Refresh the display.

LOOP
.SCREEN
;

: GET-ID ( --- ) Check the ID stamp field.  If it is empty, prompt for user's
id and date.

ID ID-LENGTH Get the ID string address and length.
-TRAILING NIP 0=      Is the length 0?
IF Yes.  Prompt the user.

CR ." Enter you ID: "



17
ID-LEN 0 DO Display a string of dots.

ASCII . EMIT
LOOP
ID-LEN BACKSPACES Backspace over the dots.
ID ID-LEN EXPECT   Input the id stamp to the id stamp buffer.

THEN
;

: STAMP ( --- ) Put the stamp at the end of line 0 in the current screen.
ID Id buffer address.
'START C/L + End of line 0.
ID-LEN 1- - Backup the length of stamp text.
ID-LEN 1-
CMOVE Copy the stamp to screen.
;

: ?STAMP ( --- ) Update the ID if  the screen has  changed and clear  the change  
flag.

CHANGED @ IF Changed?
STAMP Stamp the screen.
CHANGED OFF Reset changed flag.

THEN   ;

2VARIABLE AUTO Addresses of CR and STATUS to patch vectors for CRT 
and TTY, respectively.

VARIABLE EDITING? Set during editing.

VARIABLE CHANGED Set if the edited screen has been changed.

: INSTALL ( --- ) Initialize the screen editor.
EDITING? @ NOT IF     If not in the editing mode, initialize screen editor.

['] .SCREEN Address of the screen refresher.
AUTO @ ! Vector it through AUTO.
EDITING? ON Turn on editing flag.
CHANGED OFF Turn off changed flag.

THEN
DISK-ERROR OFF Turn off the disk error flag always.
;

15.9.   THE SCREEN EDITOR COMMANDS



18

FORTH DEFINITIONS The following screen editing commands should be made
 accessible from the common FORTH vocabulary.

: DONE ( --- ) Normal exit from the screen editor. Update the id stamp, tell
 you if the screen was modified, flush the screen to disk file,
 and remove automatic screen refresh.

[ EDITOR ]
EDITING? @ IF If still in the editing mode,

PREVIOUS
EDITING? OFF turn off editing flag,
CR  SCR ? type the screen number,
>UPDATE @ 0< NOT IF  and look at the update field.
." Un" THEN Not updated.  Print prefix.
." modified" Complete the message.
?STAMP Update the ID stamp.
W Save contents to disk file.

THEN
DISK-ERROR OFF Turn of disk error flag.
AUTO 2@ ! Re-vector CR to normal scrolling mode.
;

: ED ( --- ) Re-enter the screen editor.  Clear and initialize the display 
and begin automatic screen refresh.

[ EDITOR ] GET-ID     Get id stamp.
INSTALL Initialize the screen editor.
EDITOR Make EDITOR the context vocabulary.
'VIDEO B/BUF ERASE    Clear the video buffer.
DARK Home the cursor and clear CRT.
.ALL  Print the screen on CRT.
;

: EDIT ( n --- ) Set n as the current editing screen and call ED to do screen editing.
1 ?ENOUGH Abort if the stack has less than one item.
SCR ! Store n in SCR, making screen n the current editing screen.
[ EDITOR ] TOP Move editor cursor to top of screen.
ED Do screen editing.
;

: (WHERE) ( pos scr --- ) When an error occurred during compilation, the position and
screen number where error occurred are saved on the data

 stack. (WHERE) uses these two numbers to invoke the 
screen editor and show the screen to be edited.

DISK-ERROR @ 0= Make sure the error is not caused by disk reading.
IF

EDIT Do screen editing.
[ EDITOR ] 1- C     Position the display cursor before the error.
'WORD COUNT 'FIND PLACE



19
Put the word in trouble into the find buffer.

THEN   ;

15.10.   CONFIGURING THE TERMINAL

Each terminal manufacturer has its own way of controlling the display on the terminal screen.  To use
the full power of a screen editor, the screen editor must know how to position the display cursor at any
position on the display screen and a few other things like initialize the display, erase one line and delete
one  line.   In  F83 system,  terminal  configuration  commands  are  provided  for  a  number  of  popular
terminals.  If your terminal is not in this list, you will have to define the proper commands.  You can
follow the pattern as provided. It is not a very difficult task.

An example is shown here.  You should consult the F83 listing for other terminals.

:  SMART ( --- ) Initialize vectored routines for the IBM PC.
['] CRLF Execution address of carriage return.
['] CR >BODY Vector address in the deferred word CR.
AUTO 2! Store them in the AUTO area.
['] .ALL IS .SCREEN   Vector .SCREEN to .ALL.
;

CODE IBM-AT ( col row --- ) Position cursor at the specified location on CRT screen.
AX POP DX POP AL DH MOV Copy col and row into DX.
BH BH XOR Clear BH register.
2 # AH MOV Cursor positioning code.
16 INT Call BIOS.
NEXT
END-CODE

CODE IBM-DARK ( --- ) Clear screen and home the cursor.
2 # AX MOV Home code.
16 INT Call BIOS.
NEXT
END-CODE

CODE IBM-BLOT ( col --- ) Clear from cursor to end of line.
80 SWAP - Remaining characters on the line.
SPACES Output that many spaces.
;

CODE IBM--LINE ( --- ) Delete the current line and scroll the rest of the screen.
BP PUSH Save BP register.
BH BH XOR Clear BH.
3 # AH MOV  16 INT    Call BIOS for cursor position.
DH CH MOV Line number moved to CH.
CL CL XOR Column number cleared to zero.
24 256 * 79 + Bottom line and right-most column



20
# DX MOV copied to DX register.
7 # BH MOV
6 256 * 1 + # AX MOV  Code stored in AX.
16 INT Call BIOS.
BP POP Restore BP.
NEXT
END-CODE

: IBM ( --- ) Initialize the screen editor for IBM PC.
SMART Vector CR and .SCREEN.
['] IBM-AT IS AT Vector the rest of terminal specific commands.
['] IBM-DARK IS DARK
['] IBM--LINE IS -LINE
['] IBM-BLOT IS BLOT
;


