
1
CHAPTER 6. TERMINAL INPUT AND OUTPUT

The source code discussed in this chapter is in file KERNEL86.BLK, screens 41 to 49.

Forth is an interpretive language which intimately interacts with the user through a CRT terminal.
Terminal input and output control is a very important part of the Forth system, allowing the user to enter
commands and data into the computer and display the results or messages on the CRT. Many Forth
implementations have input/output commands coded in the host machine codes which access the
terminal interface directly. These Forth systems are often stand-alone system which do not need support
from a traditional operating system. F83 was design to run under the popular CP/M or MS-DOS system,
so that it can be transported between different host computers. The terminal input/output commands in
F83 thus utilize the CP/M or DOS BIOS routines to receive information from the keyboard and send
information to the CRT display.

6.1. THE BDOS I/O CALLS TO THE OPERATING SYSTEM

The fundamental interface between Forth terminal I/O commands and the CP/M or DOS is the Forth
word BDOS:

CODE BDOS(entry function --- return-value) Load function code into C register
and entry parameter into D register. Call the BIOS. Return

result are then pushed on the data stack.
CX POP Load function code into C register.
DX POP Load entry parameter into D register.
33 INT Call BIOS by a software interrupt. This is the MS-DOS

interrupt vector. For CP/M, it is 224 INT.
AH AH SUB Clear the high byte in the AX register.
1PUSH Return with the result on stack.
END-CODE

BDOS is not only used for terminal I/O, it can also be used for most of the disk I/O calls, making Forth
I/O commands very neat and simple.

: (KEY?) `(--- f) Return a true flag if the user presses a key. Otherwise,
return a false flag.

0 11 BDOS Function 11 is the direct console I/O call. Entry 0 specifies
a console status command. If no character is ready, 0 is

returned. If a character is entered, FFH is returned.
0<> Reversed the BDOS flag.
;

: (KEY) (--- char) Wait until a key is pressed, and then return the ASCII code.
BEGIN Enter the wait loop.

PAUSE Release the CPU to other tasks so that the multitasking
scheme can work smoothly.

2
(KEY?) Is a key pressed?

UNTIL Yes, then exit the loop. Otherwise, wait another round.
0 8 BDOS Entry parameter 0 specifies a console input function and

returns an ASCII code on the stack.
;

3

: (CONSOLE) (char ---) Send the character on stack to the terminal for display.
PAUSE Let other task have a run on the CPU.
6 BDOS Call BDOS to send out the character.
DROP BDOS always returns a number on the stack. It has to be

dropped.
1 #OUT +! Increment user variable #OUT, keeping track of the output

character count.
;

: (PRINT) (char ---) Send a character to the printer.
PAUSE Always pause before an I/O operation because I/O operations

are generally slow. CPU can then be freed to serve other
tasks or other users.

5 BDOS Function 5 is the BDOS call for output to listing device.
DROP Clear the stack.
1 #OUT +! Increment #OUT.
;

: (EMIT) (char ---) Send the character to both the terminal and the printer.
PRINTING @ Is the printing flag set?
IF Yes. Sent character to the printer.

DUP (PRINT) Print character.
-1 #OUT +! Back up #OUT so it will not be incremented twice. THEN

(CONSOLE) Output to the terminal.
;

(KEY?), (KEY), and (EMIT) are the actual operators vectored to by KEY?, KEY, and EMIT. EMIT can
vector to (PRINT) or (EMIT) like the regular CP/M system to activate the printer with the console.

6.2. TERMINAL OUTPUT COMMANDS

The following output words are all simple derivatives of EMIT and they do not need extensive
comments:

: CRLF (---) Send a carriage return and a line feed to the console.
13 EMIT Carriage return.
10 EMIT Line feed.
#OUT OFF Clear the output character count.
1 #LINE +! Increment the line count.
;

: TYPE (addr len ---) Display a string on the console.
0 ?DO Repeat len times, but skip if len is zero.

DUP C@ EMIT Send one character.
1+ Increment character address.

4
LOOP DROP Clear stack.
;

: SPACE (---) Send a space to console.
BL EMIT ;

5

: SPACES (n ---) Send n spaces to console.
0 MAX Eliminate negative counts.
0 ?DO Repeat n times.

SPACE
LOOP ;

: BACKSPACES (n ---) Send n backspaces to console.
0 ?DO

BS EMIT
LOOP ;

6.3. INTERPRETING CONTROL CHARACTERS

Forth is capable of using most of the ASCII characters for word names. Only a few ASCII codes are
reserved for system functions. Many fig-Forth system reserve the NUL (ASCII 0), CR (ASCII 13), and
SP (ASCII 32) as delimiters for Forth words. The DEL (ASCII 127) is used to nullify the previously
entered character, which is important in correcting typing errors. Other non-printable characters or
control character can be used freely to name definitions. Because it is difficult to document the non-
printable characters, embedding them in names is discouraged unless you want a very secured
environment.

F83, on the other hand, provides a mechanism for you to implement special functions for control
characters. EXPECT checks to see if an input character is a control character. When a function is
defined for a particular control character, the function will be executed immediately when that character
is entered on the keyboard. A jump table is maintained for all the 32 control characters. A few of them
are used for special purposes which are defined as follows:

: BS-IN (n char --- n-1) Back up the input character buffer by dropping the character
off the stack and decrementing n by 1. If n is zero, sound

the bell instead. Used for ctrl-H.
DROP Discard the character.
DUP IF Is n=0?

1- BS Yes. Decrement n and backspace.
ELSE BELL n=0. Sound the bell.
THEN EMIT Send either BS or BELL to console.
;

: (DEL-IN) (n char --- n-1) Backup the input and erase the previous character. If n=0,
sound the bell. Used for DEL (127).

DROP DUP IF
1- BS Backspace.
SPACE BS Send a space and backspace again. Erase the previous

character.
ELSE BELL
THEN EMIT ;

6
: BACK-UP (n char --- 0) Erase the current line and set the character count to zero.

Used for ctrl-U and ctrl-X.
 DROP Discard the character on the stack.

DUP BACKSPACES Backup to the beginning of the current line.
DUP SPACES Erase all the characters on this line.
BACKSPACES Backup

7
0 ; Clear character count.

: RES-IN (char ---) Reset the Forth system to a clean start again. (ctrl-C)
FORTH Set default vocabulary.
TRUE Force system abort.
ABORT" Reset" Abort with a message.
;

: P-IN (char ---) Toggle the printer on or off. (ctrl-P)
DROP PRINTING @ Get the flag in PRINTING.
NOT Complement it to turn the printer on or off.
PRINTING ! Store it back.
;

: CR-IN (m addr n char --- m addr m) Finish input and remember the number of characters
in SPAN. (ctrl-M or CR)

DROP SPAN ! Store n in SPAN.
OVER Duplicate m.
BL EMIT Send out a space.
;

: (CHAR) (addr n char --- addr n+1) Process a normal character by appending it to the
input buffer.

3DUP EMIT Send character to console.
+ Addr+n, the memory address for the current character.
! Store the character into the input buffer at addr+n.
1+ Increment n by 1 for the next character.
;

DEFER CHAR CHAR will be vectored to (CHAR).
DEFER DEL-IN DEL-IN will be vectored to (DEL-IN).
VARIABLE CC CC will be used to point to the current control character

table.
CREATE CC-FORTH The control character table which can handle each control

character as a special case. It is actually an execution array
which is indexed into by EXPECT to do the right thing

when it receives a control character.
] Enter compilation mode to compile 32 execution address for

the 32 control characters.
CHAR CHAR CHAR CHAR CHAR CHAR CHAR CHAR
BS-IN CHAR CHAR CHAR CHAR CR-IN CHAR CHAR
P-IN CHAR CHAR CHAR CHAR BACK-UP CHAR CHAR
BACK-UP CHAR RES-IN CHAR CHAR CHAR CHAR CHAR

[Reenter the execution mode.

6.4. MORE SOPHISTICATED INPUT COMMANDS

8

KEY is the most elementary word to accept keyboard input. It simply gets a character and puts its ASCII
code up on the data stack: not a very intelligent word. Once we have the control character table, we can
build a very intelligent input definition which can respond to many control characters to do a wide range
of different things in response to our keyboard strokes. This definition is EXPECT:

9

: EXPECT (addr len ---) Get a string from the terminal and place it in the buffer at
addr specified. Perform a limited amount of line editing.

Save the number of characters input in the variable SPAN.
Process control characters as specified by the control
character table pointed to by CC.
DUP SPAN ! Save len in SPAN.
SWAP 0 Stack is now: len addr 0 ---
BEGIN Start the input loop.

2 PICK Copy len to top of stack.
OVER - (len addr count #left ---)

WHILE If all characters have been received, exit the loop. If #left is
not 0, continue on.

KEY Get one more character.
DUP BL < Is it less than 32, i.e., a control character?
IF Yes. A control character.

DUP 2* Offset into the CC table.
CC @ + The table entry address.
PERFORM Execute the CC table entry.

ELSE Not a control character.
DUP 127 = Is it a DEL?
IF DEL-IN Yes. Do delete the prior character.
ELSE CHAR No. A regular character. Append it to the input buffer.
THEN

THEN
REPEAT End of string input loop.
2DROP DROP Clear the stack.
;

: TIB (--- addr) Get the address of the terminal input buffer.
'TIB @ TIB is vectored through 'TIB.
;

: QUERY (---) Get an input stream of text from the terminal and store it in
the terminal input buffer. Prepare the system to interpret this
input text.

TIB 80 EXPECT Receive upto 80 characters into the terminal input buffer.
SPAN @ Get the actual length of the input stream, which may be less

than 80.
#TIB ! Store it in #TIB so that the text interpreter will know when

the text is exhausted.
BLK OFF Clear BLK so that the text interpreter will use the terminal

input buffer for text input.
 >IN OFF Clear the character pointer to start from the beginning of the

terminal input buffer.
;

QUERY is the Forth input word at the highest level. It waits on the user to type a line of text on the

10
keyboard. The line is terminated either by receiving 80 characters from the keyboard or by receiving a
carriage return key. The line of text is stored in the terminal input buffer. All the pertinent parameters
are set so that the text interpreter can take over and interpret or execute the commands given in the input
line.

11
6.5. STRING COMMANDS

Screens 41 to 43 are a set of commands to operate on strings in memory. A string in Forth is a sequence
of ASCII characters preceded by a byte count. A string may have zero to 255 characters. It is generally
identified by the address of the count byte. However, most string commands require the address of the
first character in the string as argument, not the address of the count byte. String commands use the
following generalized syntax:

<source addr> <dest addr> <length> <string command>

Destination address is optional in cases of single string operations.

Most of the string commands are standard Forth-83 words and their definitions are simple and
straightforward. I will only list here their functions and stack parameters:

TABLE 6.1. STRING COMMANDS

COUNT (addr --- addr+1 len) Convert the string address to address-length representation.
LENGTH (addr --- addr+2 len) Return address-length for long strings whose character count

is 16-bits.
FILL (addr len char ---) Initialize a string to char.
ERASE (addr len ---) Initialize a string to NUL.
BLANK (addr len ---) Initialize a string to blanks.
MOVE (sour dest len ---) Move a string without overlapping.
UPC (char --- char') Convert a character to upper case.
UPPER (addr len ---) Convert s string to upper case.
-TRAILING (addr len --- addr len') Delete trailing blanks from a string by changing its length.
COMP (sour dest len --- n) Compare source string with destination string. Return -1

if source<destination. Return 1 if source>destination.
Return 0 if strings are the same.

CAPS-COMP (sour dest len --- n) Compare two strings regardless of character cases.
COMPARE (sour dest len --- n) Compare two strings. If CAPS is true, convert to upper case

before comparing.

12

Figure 6.1 Representation of strings

6 S T R I G

021 T H I S I S A L O N G S T R I N G

0

N

short string

long string

null string

