
1
CHAPTER 7. THE VIRTUAL MEMORY

The source code discussed in this chapter is in KERNEL86.BLK, screens 50 to 56.

7.1. MASS STORAGE AND VIRTUAL MEMORY

Mass storage is a very important and integral part of a computer although we often think of it as a
peripheral or an appendage. The computer uses the RAM memory for most of its normal operations,
executing programs stored in RAM and operating on data also stored in RAM. However, programs and
data must be saved to more permanent and less expensive media before the power to the computer is
turned off, or to transfer programs or data from one computer to another. Without mass storage, a
computer is just as useful as a video game, operating entirely from the ROM memory with very limited
amount of RAM. Most programming languages, by default or by neglect, do not include facilities to
deal with the mass storage as part of the language problem. Thus we have to have a huge beast, an
operating system, underneath the language to supply the functions necessary to use the mass storage
conveniently and effectively.

Charles Moore perceived the need of the facility to use mass storage efficiently to make Forth not only
as a programming language but also as a total environment in which the user can describe the solution of
his programming problems. At the time he put together Forth, core memory was much more expensive
than now and its use had to be optimized at all costs. His design used the mass storage, whether tape or
disk, as a direct extension of the core memory. The user can address the mass storage in the same way
he addresses the core memory, without worrying about the detailed processes in storing data to disk or
retrieving data from disk. This is the concept of 'virtual memory'.

The way virtual memory operates is as follows: The mass storage, tape or disk, is divided into
consecutive blocks as the basic storage units, each block consisting of 1024 bytes. The blocks are
numbered from 0 to the capacity of the device, and are addressed by the block number. In the core or
the RAM memory in the computer, an area called disk buffer is reserved as temporary storage for blocks
of data from disk. One disk buffer is also of 1024 bytes and one or more disk buffers can be reserved.
When a block of data is needed, it is read from the disk and stored in one of the disk buffers. Data in this
disk buffer can then be used or modified, as needed by the program. When all disk buffers are filled and
the system needs to read another block, the system will select the least used disk buffer to receive the
new block of data. If the data in the selected disk buffer was modified by the program and was marked
as 'updated', the contents of this buffer will be written back to the disk before the new block is read in.
This way, the data on disk are assured of their integrity and constantly updated as required, while a few
disk buffers can fulfill the need to gain access to the entire disk without large overhead.

If you know how to read and write a sector of the disk, it is not a big job to implement the virtual
memory system in Forth. Many Forth systems include such functions. These Forth system have no
need for an operating system because the functions of an operating system, handling terminal I/O and
managing mass storage, are all provided by the Forth system. In this sense, Forth is its own operating
system. F83 on the other hand was designed to run under the CP/M or MS-DOS system and uses the
file system in CP/M for mass storage. The advantage is that the resulting Forth system can be easily
transported from one computer to another, under the umbrella of CP/M or DOS, and that data can be

2
dealt with within a more manageable file system. The disadvantage is that one cannot address disk at
the sector level and the performance is degraded.

3

7.2. DISK BUFFERS

A set of pointers and constants is needed to construct the virtual memory system by allocating the disk
buffers and defining their characteristics:

0 CONSTANT FIRST The starting address of the disk buffers. The actual address
is patched during Forth initialization.

0 CONSTANT LIMIT The address above the top disk buffer. Also patched at
initialization.

4 CONSTANT #BUFFERS Four disk buffers are allocated in this example.
1024 CONSTANT B/BUF 1024 bytes per disk buffer.
128 CONSTANT B/REC 128 bytes per record in CP/M and DOS.
8 CONSTANT REC/BLK 8 records per block of 1024 bytes.
42 CONSTANT B/FCB 42 bytes in a file control block
VARIABLE DISK-ERROR Storing error code after a disk operation.
#BUFFERS 1+ 8 * 2+ CONSTANT >SIZE The size of a buffer-pointer array. Each disk

buffer uses 8 bytes in this array to store buffer information:
0-1 Block number 2-3 Pointer to file

4-5 Buffer address 6-7 Update flag

This array is reserved just below the first disk buffer or FIRST. Whenever a block is referenced, its
pointer is moved to the head of this array, so that the most recently used buffer is always checked first.
This allows the references to multiple disk buffers to be very fast. Disk buffers are 1024 bytes long. No
trailing zeros are needed to stop the text interpreter, as in fig-Forth, because the text interpreter in F83
will process only 1024 characters in a buffer. The following words are defined to get pointers to address
into this array:

: >BUFFERS (--- addr) Return the address of the first buffer pointer.
FIRST Starting address of first buffer.
>SIZE Total bytes in the pointer array.
- First buffer pointer entry.
;

: >END (--- addr) Return the address of the last cell in the buffer pointer array.
FIRST
2- One cell below FIRST.
;

: BUFFER# (n --- addr) Return the address of the nth buffer pointer.
8* Offset of the nth buffer pointer.
>BUFFERS Origin of the buffer pointer array.
+ ;

4
Figure 7.1 The File Control Block

0

1
drive number

file name

file name extension

extend number

record count

reserved

current record

random record number

max record number

view file number38

36

33

32

15

12

9

byte offset

5
7.3. THE FILE CONTROL BLOCK (FCB)

CP/M-DOS programs access the disk files through BDOS calls. However, a program must maintain a
special memory array which contains all the information about the file it is using. This memory array is
called FCB, File Control Block, usually 36 bytes in length, as shown in Fig. 7.1. The first byte in FCB
stores the disk drive code. The next 11 bytes store the file name and extension. Bytes 33, 34, and 35
store the current random record number in read/write operation. F83 reserves 8 more bytes at the end of
FCB for some special purposes. A user variable named FILE is used to store the address of the FCB
currently used by the Forth system and indicates the current file. All other Forth words doing disk I/O
refer to the file pointed to by this user variable FILE. FILE @ leaves the address of the file control
block on the stack.

To fully understand the structure of CP/M-DOS files and how they are utilized by programs is beyond
the scope of this book. You have to go back to the CP/M manuals where these topics are treated in
details. What I shall do here is to go through the F83 disk I/O words and explain there functions. We
only have to know a small portion of the CP/M to get a working knowledge of the CP/M-DOS files as
required by F83 system.

CREATE FCB1 B/FCB ALLOT Create a default file control block in the Nucleus of F83. 42
bytes are reserved.

: CLR-FCB (fcb ---) Initialize the current FCB, given the address of the current
File Control Block.

DUP B/FCB ERASE Clear the entire array to zero.
1+ Address of the first byte of the file name.
11 BLANK Initialize the name and extension to blanks, as required by

CP/M.
;

: SET-DMA (addr ---) Set direct memory transfer address.
26 BDOS DROP A standard BDOS call.
;

: RECORD# (fcb --- addr) Return the address of the 3 byte pointer to the current
random record.

33 + Offset to the random record pointer.
;

: MAXREC# (fcb --- addr) Return the address of the field storing maximum record
number in the current FCB.

38 + ;

: VIEW# (fcb --- addr) Return the address where the file number for viewing is
stored.

40 + ; The last cell in FCB.

: CAPACITY (--- n) Return the number of blocks in the current file.
FILE @ Fcb of current file.

6
MAXREC# @ Get the maximum record number.
1+ 0 Make it a double number.
8 UM/MOD Unsigned mixed division.
NIP Discard the remainder.
;

7
VARIABLE DISK-ERROR A variable storing the record number out-of-range flag.

: IN-RANGE (fcb --- fcb) Make sure that the current random record is within range.
Abort if it is not.

DUP MAXREC# @ Maximum record in the file.
OVER RECORD# @ Current record number.
U< Do an unsigned comparison.
DUP DISK-ERROR ! Store the flag in DISK-ERROR# for diagnostics.
IF 1 Error process.

BUFFER# ONSet buffer flag.
" Out of Range"
DISK-ABORTAbort if out of range.

THEN ;

7.4. READ AND WRITE DISK FILES

The following words are the fundamental interface to the disk drive through the CP/M-DOS BDOS.
They specify the disk drive, the memory address, the sector to be read or written, and they do the
reading or writing.

: REC-READ (fcb ---) Read one record from the current file. The record number is
stored in the field of random record.

DUP IN-RANGE Check the random record number.
33 BDOS Call the read random function.
?DISK-ERROR Store the returned error code in DISK-ERROR.
;

: REC-WRITE (---) Write one random record.
DUP IN-RANGE Check the random record number.
34 BDOS Write the record from memory.
?DISK-ERROR Store error code.
;

One CP/M record is 128 bytes long. One Forth block is 1024 bytes long. To read or write one Forth
block, we have to do eight consecutive reads or writes. Another thing we have to take care of is that
there are four disk buffers allocated in the F83 system. The buffer to be used for disk I/O has to be
specified by a pointer to the appropriate entry in the disk buffer pointer array in front of the buffer area.

DEFER READ-BLOCK Vectored to FILE-READ.
DEFER WRITE-BLOCK Vectored to FILE-WRITE.

: SET-IO (buffer-pointer-entry --- buffer rec/blk 0) Set up common parameters for file
reads or writes.

DUP 2@ Get the block number, the first cell in a buffer pointer entry.
REC/BLK * The record number.
OVER RECORD# ! Use it as the random record number. Put it in the FCB. SWAP

4 + @ Get the address of the disk buffer in the third cell of the

8
buffer pointer entry.

REC/BLK 0 These two parameters are the index and limit for read/write
do-loops in FILE-READ and FILE-WRITE.

;

9
: FILE-READ (buffer-pointer-entry ---) Read 1024 bytes from current file to the disk buffer

specified on stack.
SET-IO Set random record number and leave buffer address and loop

parameters on the stack.
DO Repeat 8 times.

2DUP SET-DMA Address for one record.
DUP REC-READ Read one record.
1 SWAP RECORD# +! Increment the random record number for the next read.

B/REC + Address of next buffer area.
LOOP 2DROP Discard the addr on stack.
;

: FILE-WRITE (buffer-pointer-entry ---) Write a block to file.
SET-IO Get buffer address and loop parameters.
DO Repeat 8 times.

2DUP SET-DMA Record address.
DUP REC-WRITE Write one record.
1 SWAP RECORD# +! Next random record.
B/REC + Address of next buffer area.

LOOP 2DROP ;

: FILE-IO (---) Vector block I/O words to file /O words to use CP/M files. [']
FILE-READ Get the address of FILE-READ.

IS READ-BLOCK Vector READ-BLOCK to it.
['] FILE-WRITE Get address of FILE-WRITE.
IS WRITE-BLOCK Vector WRITE-BLOCK.
;

7.5. DISK BUFFER MANAGEMENT

The above set of words allows us to access files on disk. As mentioned earlier, F83 maintains 4 disk
buffers in its memory. How are these buffers used? Who decides which buffer is given to which block?
When does the block on disk get updated? These are problems we have to face in using a virtual
memory system projected into a file system. The following words are designed to deal with these
problems. We might call them the 'Virtual Memory Management' in the F83 system.

Let's review what we know about the virtual memory in F83. There are 4 disk buffers, each of 1024 byte
length. There is a buffer pointer array with 4 entries, each entry being 8 bytes long. Each entry has four
cells containing the block number, the pointer to a file, the buffer address, and the update flag. This
array has all the management information for the disk buffers, while the buffers contain the actual data
from/ the disk file.

The buffer pointer array is a prioritized structure, in which the first entry points to the most recently used
buffer and the last entry points to the least recently used buffer. When a file block is requested, this
array is searched. If the disk block is in one of the buffers, its pointer entry is moved to the head of the
array. If the disk block is not in the buffers, then the buffer pointed to by the last pointer entry is
assigned to the new disk block. However, if the contents of this buffer was modified and the pointer

10
entry was marked as updated, this buffer will be written back to the disk file before the new disk block is
read into this buffer. Thus the disk file is maintained to reflect the current state of any update and
modifications, while disk read/write is kept to a minimum. The disk I/O activities are totally transparent
to the user, as long as he uses the words BLOCK or BUFFER to access his file.

11

Figure 7.2 Disk buffer management

buffer pointers

buffer 0

buffer 1

buffer 2

buffer 3

disk sectors

update

buffer addr

FCB addr

block number

update

buffer addr

FCB addr

block number

update

buffer addr

FCB addr

block number

update

buffer addr

FCB addr

block number

update

buffer addr

FCB addr

block number

transient
buffer pointer

least used
buffer

most used
buffer

Disk
Memory

12
: LATEST? (n fcb --- fcb n | addr f) Check if block n is the first entry in the buffer pointer

array. If it is, return the buffer address and a false flag, and
exit from the calling word ABSENT?. If not, return the

block number n with the file control block address.
DISK-ERROR OFF First reset the error flag.
SWAP OFFSET @ + Add the offset block number to obtain the true block number

in the file.
2DUP Leave a copy for return.
1 BUFFER# The first entry in the pointer array.
2@ Get the FCB address and the block number of the buffer

pointed to by the first entry.

D= IF If block n is pointed to by the first entry,
2DROP Drop n and fcb. They are not needed.

1 BUFFER# Get the address of the entry again.
4 + @ Get the address of the disk buffer.
FALSE Push a false flag on top.
R> DROP Discard the top address on the return stack and terminate the

calling word ABSENT?. The disk buffer was found and
there's no point to search through the pointer array.

THEN Block n is not the first entry.
; Return with the block number intact.

The most recently referred block is also the block most likely to be referred to the next time. LATEST?
thus will cut down much buffer searching overhead and improve significantly the performance of the
disk buffer management system.

: ABSENT? (n fcb --- addr flag) Search through the buffer pointer array for block n in the
current file. If it is found, bring the buffer entry to the head
of the array and return the buffer address with a false flag.

If block n is not found in the array, return a dummy address
with a true flag.

LATEST? Is block n same as the first entry in the buffer pointer array?
Exit if so. Otherwise continue.

FALSE Put a false flag on the data stack as the initial flag before
looping.

#BUFFERS 1+ 2 DO Scan through the buffer pointer array.
DROP 2DUP Get the block number n and fcb address duplicated.

I BUFFER# 2@ Get the n and fcb in the pointer array.
D= IF Is the block number and the fcb a match?
2DROP I LEAVE Yes. Block n is in a buffer. Leave the loop immediately.

ELSE FALSE THEN No match. Put a false flag back.
LOOP ?DUP IF If a buffer is found to contain the required block, do the

following:
BUFFER# DUP Address of the pointer entry found.
>BUFFERS Starting address of the pointer arrays or the 0th entry.

8 CMOVE Copy this entry to the 0th entry.
>R Save the address of entry found.

13
>BUFFERS Address of 0th entry.
DUP 8 + Address of 1st entry.
OVER R> SWAP Current entry address.
- Length of entries to be shifted downward by 8 bytes.

CMOVE> This shift brings the entry with block n to the 1st entry,
making it the currently used buffer.

14
1 BUFFER# Address of the 1st entry with block n just found and moved

to he 1st entry.
4 + @ Get its block buffer address.
FALSE Put the 'found' flag on data stack.

ELSE No match. The requested block is not in any of the disk
buffers.

>BUFFERS 2!Store the block number and fcb in the 0th pointer entry. TRUE
Return with a 'not found' flag.

THEN ;

: >UPDATE (--- addr) Get the address of the update field in the 1st buffer pointer
entry.

1 BUFFER# 6 + ;

: UPDATE (---) Mark the most recently used buffer as modified. >UPDATE
Address of the update field in the 1st entry.

ON Set it true to indicate that the buffer is modified.
;

: DISCARD (---) Mark the most recently used buffer as unmodified,
preventing it from being written back to disk.

1 >UPDATE ! Store a one in the update field in the 1st entry, marking it as
unmodified.

;

The update cell in the buffer pointer entry is very important in the virtual memory management system.
When this cell is set to true (-1), nothing will happen for the moment. However, when this buffer space
is assigned to a new disk buffer and before the data in the new block is brought in from the disk, the
contents of this buffer will be written back to disk to where it came from. This way, any change we
made in the disk buffer will eventually be written back to disk. On the other hand, if the update cell is
set to 0 or 1, presumably the contents of the disk buffer is the same as that on the disk, and there is no
need of writing the data in the disk buffer back to the disk. Therefore, the new disk block can be
brought into this buffer immediately without flushing the old block back to the disk. The disk accessing
can thus be reduced while the integrity of data on disk is assured.

: MISSING (---) Discard the least recently used disk buffer. If this buffer
was marked as modified, it is written back to disk. The first
three buffer pointer entries are then shifted down by one

entry. The first entry is made available to the new block to
be brought in.

>END 2- @ The address of the update cell in the last buffer pointer entry,
which is the least used one.

0< IF If it contains a true flag, write the buffer data back to disk.
>END 8 - The block number of the last entry.

WRITE-BLOCK Write this buffer back to disk.
>END 2- OFF Reset the update cell.

THEN
>END 4 - @ The buffer address of the last entry.

15
>BUFFERS 4 + ! Make it the buffer address of the 0th entry.
1 >BUFFERS 6 + ! Mark the 0th entry unmodified.
>BUFFERS Source address of the down shift of pointer entries.
DUP 8 + Target address of the down shift.
#BUFFERS 8* Total bytes to be shifted.

16
CMOVE> Move from the last byte to first.
; Last pointer entry is discarded. First entry is initialized for

a new block of data.

: (BUFFER) (n fcb --- addr) Assign a disk buffer to block n and return the buffer address
on the stack. Block n is not read in from the disk.

PAUSE Allow other tasks a chance of execution.
ABSENT? Is block n already in one of the disk buffers?
IF No. A buffer has to be allocated to block n.
MISSING Shift the pointer entries.

1 BUFFER# Get the first entry.
4 + @ Fetch the buffer address therein.

THEN ;

: BUFFER (n --- addr) Do (BUFFER) on the current file.
FILE @ Fcb of the current file.
(BUFFER) Assign a buffer to the disk block. Write the old block in the

buffer to disk if it was updated.
;

: (BLOCK) (n fcb --- addr) Return the address of a buffer which contains data from
block n. If block n is not already in one of the buffers, it is

read in from the disk.
(BUFFER) Assign a buffer to the requested block.
>UPDATE @ Get the update field.
0> Is it 1?
IF Yes. The block is not in the buffer.

1 BUFFER# DUP READ-BLOCK Read it from the disk.
6 + OFF Reset the update flag to false.

THEN ;

VARIABLE FILE Pointing to the file control block of the current file.
VARIABLE IN-FILE Pointing to the file control block of the second opened file or

the in-file.

: BLOCK (n --- addr) Read a block from the current file if it is not in the buffer.
Return the buffer address.

FILE @ Fcb of the current file.
(BLOCK) Read it.
;

F83 allows you to open and use two files concurrently. The first file is opened with the command OPEN
and is referred to as the current file. The second file is open by the command FROM and is called the
in-file. The current file is always used as the output file and the in-file is always used as the input file.
This way you can copy blocks from one file to another. When OPEN is executed, the invoked file is set
to be both the current file and also the in-file so that you can read and write to the same file. The file
control block address of the current file is stored in FILE, and that of the in-file is in IN-FILE.

17
: IN-BLOCK (n --- addr) Read a block from the in-file, which is the second file

opened, to the system.
IN-FILE @ Get the fcb of the in-file.
(BLOCK) Read it.
;

18

BLOCK is the most important command to communicate with the disk. It is the virtual memory
manager. If we need any block of data from disk, just give BLOCK the block number and it will make
sure that you have the data in one of the disk buffers. From the address returned by BLOCK, you can
access the disk block data using the regular memory accessing commands. If you remember to set the
update cell when you change the data in the disk buffer, BLOCK will see to it that the modified data will
be written back to disk. This is done using the UPDATE command. You can command BLOCK to
ignore any change you made in a disk buffer by the command DISCARD.

In cases that you want to write raw data onto a fresh disk or you do not want to read in the disk block,
BUFFER is the word to use because it does not do the disk read. You can use BLOCK for the same
purpose, but then you will do a useless disk read operation. When you are writing a large file on to the
disk, BUFFER can save you quite some time because only write operations are performed.

7.5. SAVING DISK BUFFERS TO DISK FILES

BLOCK and BUFFER will write to disk only when disk buffers are full and new disk blocks are
requested. If the computer is turned off, the buffers will be lost because their contents do not have a
chance of being written back. The following commands force the system to write all the updated buffers
back to disk. They are highly recommended, especially when you are doing editing work.

: SAVE-BUFFERS (---) Write back all the updated buffers to disk and then mark
them all as unmodified.

1 BUFFER# Address of the 1st pointer entry.
#BUFFERS 0 DO Scan all the pointer entries.

DUP @ Get the block number.
1+ IF Block number cells were initialized to -1 as empty buffers.

Make sure the buffer is not empty.
DUP 6 + Address of the update cell.
@ IF Is the buffer updated?

DUP WRITE-BLOCK Yes. Write it back to disk.
DUP 6 + OFF Reset the update cell.

THEN
8 + Address of the next entry.

THEN
LOOP DROP Discard the entry address.
;

: EMPTY-BUFFERS (---) First wipe out the data in the buffers. Initialize the buffer
pointers to point to the right addresses in memory and reset

all the update cells.
FIRST LIMIT Boundary of disk buffers.
OVER - ERASE Erase the entire disk buffer area.
>BUFFERS Buffer pointer array.
#BUFFERS 1+ 8 * Bytes in the pointer array.
ERASE Clear the pointer array.
FIRST 1st buffer address.

19
1 BUFFER# Address of the 1st pointer entry.
#BUFFERS 0 DO Go through all pointer entries.

DUP ON Initialize the block number cell.
4 + 2DUP ! Initialize the buffer address cell.

20
SWAP B/BUF + Address of the next buffer.
SWAP 4 + Address of the next pointer entry.

LOOP 2DROP ; Clear the stack.

: FLUSH (---) Save and empty all the buffers.
SAVE-BUFFERS
0 BLOCK DROP Cheat the CP/M system to defeat its extra bufferring in

BIOS. By accessing a dummy block, you can be sure that
the old one is flushed out of the pipeline and written to disk.

EMPTY-BUFFERS ;

Whenever you change the disk, be sure to FLUSH out all the buffers to the old disk. During program
development, if you have any concern about losing data or crashing the system, FLUSH the buffers first.
If you are absolutely sure that the data in the buffers are corrupted, use EMPTY-BUFFERS to clear the
buffers. If you want to throw away only one buffer, use DISCARD immediately after you access this
buffer by BLOCK, making it the most recently used buffe

