
1
CHAPTER 11. TEXT INTERPRETER

The source code of the text interpreter is in file KERNEL86.BLK, screens 65 to 69.

11.1. THE OPERATING SYSTEM OF FORTH

The text interpreter is the heart of a Forth system. As a matter of fact, the text interpreter is 'the'
operating system of Forth, if there is one in Forth. The text interpreter accepts the input stream from the
console and extracts commands from the input stream. It looks up the commands in a dictionary and
causes the system to perform the functions designed into these commands. After it successfully carries
out the commands, it will come back to the console and ask for another line of commands. If all the
commands designed into the dictionary have names similar to English words commonly used, the Forth
text interpreter makes a computer rather intelligent and easy to use, using a computer industry cliche,
user friendly.

11.2. ENTERING THE TEXT INTERPRETER

The functions of the text interpreter are best traced from the very beginning in the bringing up of the
Forth system to the point when a command line or input stream is accepted and processed. Instead of
explaining all the low level definitions first and building up layers of high level definitions to reach to
the top level of the text interpreter, lets try this top-down approach: explaining the functions of the high
level definitions and then detailing the functions of the modules invoked in the high level definition.
The most logical definition to start with is ABORT, which is the starting point of the Forth system and
also the point of return whenever a serious error condition is encountered.

DEFER ABORT Vectored to (ABORT). Re-initialize all the Forth registers
and start the text interpreter afresh.

: (ABORT) (---) Unconditional abort routine.
SP0 @ Get the initial data stack pointer from the user variable SP0.SP!

Stuff that pointer into the data stack pointer register of the
virtual Forth computer.

QUIT Jump to QUIT routine which is the point of return for
normal forced termination of execution.

;

: WARM (---) Perform a warm start.
TRUE Force an abort.
ABORT" Warm Start" Abort with a message.
;

: COLD (---) High level cold start.
BOOT Execute a user defined bootup definition.
QUIT Jump to QUIT, a normal re-start oint.

2
;

DEFER BOOT Vectored to a user-selected initializing routine. The default
oot routine is ABORT.

3

: QUIT (---) The main Forth loop. Get more input from the console
terminal and interpret it. Respond with "ok" if every thing is
well.

SP0 @ 'TIB ! Initialize the terminal input buffer to address just above the
data stack.

BLK OFF Store a zero in BLK. Force the interpreter to process input
from the console terminal.

[COMPILE] [Store a zero in the variable STATE, forcing the system into
the interpretive mode.

BEGIN Enter the main Forth loop.
RP0 @ RP! Initialize the return stack pointer.
STATUS Indicate status of the system. A deferred word normally

vectored to CR, doing a carriage return. QUERY
Prompt the user to enter a line of commands on the console

and place this command line in the terminal input buffer. RUN
Process the command line.

STATE @ NOT If STATE is zero, the system is n the interpretive mode.
IF ." ok" THEN Then print the ok message.
AGAIN The Forth loop is an infinite loop. After one command line is

processed, it goes back to ask for another line. It goes on
this way forever.

;

: RUN (---) An enhanced INTERPRET. It allows for multiline
compilation, enabling you to enter a colon definition that

spans over several lines.
STATE @ IF If STATE is not zero, the system must be in the compiling

dictionary.
STATE @ NOT After compiling one line of source codes, test STATE again.
IF INTERPRET THEN If the system left the compiling mode, then interpret

the rest of the line. Otherwise, exit.
ELSE The state is zero,

INTERPRET interpret the command line.
THEN ;

11.3. INTERPRET

INTERPRET is a beautiful piece of code, a classic example of the simplicity and power of Forth
language in describing complicated computational processes using high level words. It is worthy of our
time to read the code and do our best to gain the fullest understanding of it. The definition of
INTERPRET reads:

: INTERPRET (---) The Forth interpreter loop. It parses out a word from the
input stream. If the word is defined execute it, otherwise

convert it to a number and push it on the stack. BEGIN
Begin the interpret loop.

4
?STACK Check for stack underflow or overflow. DEFINED

Get the next word from the input stream and return its cfa
and a flag.

IF EXECUTE If the word is defined, execute it using the cfa left on stack. ELSE
NUMBER Otherwise, convert it to a number.

DOUBLE? Is it a double precision integer?

5
NOT IF DROP THEN No. Only a single precision number. Drop the upper half

of the double number, preserving only the lower half single
integer.

THEN
FALSE Put up a false flag for DONE?.
DONE? Is it the end of line?

UNTIL If we reach end of line here, exit the loop. Otherwise, loop
back to interpret the next word.

;

DEFINED is a very big word. It first parses a word out of the input stream and places it in the word
buffer on the top of the dictionary. It then searches through the dictionary for a command with the same
name. If a command is found, its code field address is placed on the data stack followed by a true flag.
A valid code field address is then turned over to EXECUTE. EXECUTE executes this command by
invoking the appropriate inner interpreter, which we had discussed in the chapter on inner interpreters.
DEFINED is discussed in the chapter on vocabulary.

Now, if DEFINED failed to find a command with a matching name, control is passed to NUMBER,
which converts the parsed word to a double precision number on the data stack. If a period was
embedded in the number string, which causes DPL to differ from -1, the word DOUBLE? returns a true
flag and the double number remain on the stack. Otherwise, the higher half of the double number is
dropped from the stack and only a single precision number is left on the stack.

At the beginning of the loop, the data stack is checked for overflow or underflow by ?STACK. If the
stack is ok, control falls into DEFINED to process the next word in the input stream. If a stack error
condition is encountered, the system is forced into ABORT to start all over again. If an error condition
is encountered during the number conversion process, an abort is also forced. These are the two
conditions for abnormal exit from the INTERPRET loop.

11.4. DONE? AND X

At the end of the INTERPRET loop, DONE? is executed to test the end-of-buffer condition. If it has
reached the end of the input buffer, the loop would be terminated and the control would fall into the
outer Forth loop in QUIT. Otherwise, the interpreter will loop back to parse and execute the next word
in the input buffer.

A flow chart of this chain of activities might be helpful in visualizing the sequence of events when the
Forth system is cranking in full steam, as shown in Fig. 12.1.

A number of loose ends have to be patched before we finish this chapter.

: ?STACK (---) Check for data stack underflow or overflow. Abort if any of
the error conditions occurred.

SP@ Get the current data stack pointer.
SP0 @ SWAP U< If the stack underflowed,
ABORT" Stack Underflow" Abort.
SP@ PAD U< If the stack grows too close to the top of the dictionary, ABORT"

6
Stack Overflow" Abort also.

; Otherwise, return normally.

7
: DONE? (n --- f) Return a true flag if the inputstream is exhausted or the

STATE doesn't match with the current state.
STATE @ <> Is the state flag left on stack he same as that in STATE? END?

@ OR Or the end of line? Leave the or'ed flag on stack.
END? OFF Turn off the end-of-buffer flag to let the interpreter get a new

line of command and start over.
;

In F83 systems before Version 2.0, the end-of-buffer condition is detected and the END? flag is set by a
word with a null string as its name. This null word was defined using a pseudo name of X and later
patched to null. When the input stream is exhausted, the last word parsed out by WORD is this null
word and it tells the text interpreter to stop processing the input buffer. This technique had been used in
most Forth systems including fig-Forth. In F83 Version 2.0 and later, the end-of- buffer condition is
detected and the END? flag is set in the word FIND; therefore, this mysterious null word is eliminated
and the text interpreter is in much better shape. The discussion on the null word X is included here for
completeness and for users with older versions of F83.

: X (---) The null word to flag end-of-buffer and to terminate the
interpreter loop.

END? ON Turn on the end-of-buffer flag in the user variable END?. ;

HEX A080 LAST @ ! IMMEDIATE DECIMAL

The real name of X in the Forth dictionary is a null string, with a character count of 0 and a blank
character. This null string is returned by WORD to the word buffer when the end of the input stream is
reached. The contents of the name field of this null word is A080 in hex, with the MSB's in both bytes
set as name field delimiters. As we reach the end of the input stream, this null word is returned by
WORD and executed. It turns on the END? flag and terminates the interpret loop. Explicitly terminating
the interpret loop at the end of input stream makes the definition of INTERPRET comprehensible.
Another advantage is that the end-of-buffer condition does not have to be artificially synthesized by
appending a NUL character at the end of the input line form the console or at the end of every disk
buffer (as done in figForth), which can be easily corrupted and causes the Forth system to behave
erratically.

