
The "Contributions from the Forth Communitv" disk libraw contains
author-submitted donations, generally includhg source, f& a variety
of computers &disk formats. Each file is designated by the author as
public domain, shareware, or use with some restrictions. This library
does not contain "For Sale" applications. To submit your own contri-
butions, send them to the FIG Publications Committee.

' FLOAT4th.BLK V1.4 Robert L. Smith COO1 - $1 5
Software floating-point for fig-, poly-, 79-Std., 83-Std.
Forths. IEEE short 32-bit, four standard functions.
square root and log.
ttt IBM, 190Kb, F83

Games in Forth COO2 - $1 2
Misc. games, Go, TETRA, Life ... Source. + IBM, 760Kb

A Forth Spreadsheet, Craig Lind!ey COO3 - $1 2
This model s readsheet flrst appeared in Forth
~imensions ~ll/?,2. hose issues contain docs & source.

t IBM, 100Kb

Automatic Structure Charts, Kim Harris COO4 - $1 5
Tools for analysis of large Forth programs, first presented
at FORML conference. Full source; docs included in
1985 FORML Proceedings.
tt IBM, 114Kb

A Simple Inference Engine, Martin Tracy COO5 - $1 5
Based on engine in Winston & Horn's book on LISP,
takes ou from pattern variables to com lete unification
algoritim, with running commentary on 8 r th philosophy
& style. Incl. source.
tt IBM, 162 Kb

The Math Box, Nathaniel Grossman COO6 - $1 5
Extended double-precision arithmetic, complete 32-
bit fixed- oint math & auto-ranging text. Incl. graphics.
Utilities g r rapid polynomial evaluation, continued
fractions & Monte Carlo factorization. Incl. source &
docs.
tt IBM, 118Kb

AstroForth & AstroOKO Demos, I.R. Agumirsian COO7 - $1 2
AstroForth is the 83-Standard Russian version of Forth.
Incl. window interface, full-screen editor, dynamic
assembler & a great demo. AstroOKO, an
astronavi ation system in AstroForth, calculates sky
gosition o?several objects from different earth Positions.

emos only.
t IBM, 700 Kb

Forth List Handler, Martin Tracy COO8 - $1 5
List primitives extend Forth to provide a flexible, high-
s eed environment for Al. Incl. ELSA and Winston & 8 orn's micro-LISP as examples. Incl. source & docs.
tt IBM, 170 Kb

8051 Embedded Forth, William Payne C050 - $30
8051 ROMable Forth operating system. 8086-to-8051
tar et compiler. Incl. source. Docs are in the book
~m%edded Controller Forth for the 8057 Family.
(Included with item #216.)
*.kt IBM HD, 4.3 Mb

68HC11 Collection C060 - $25
Collection of Forths, tools and floating-point routines
for the 68HC11 controller.
ttt IBM HD, 2.5 Mb >

Forth classroom on disk. First seven lessons on learning
Forth, from Jack Brown of B.C. lnstltute of Technology.

f IBM HD. F-PC, 790 Kb

VP-Planner Float for F-PC, V l .Ol . Jack Brown C202 - $1 5
Software floatln polnt engine behlnd the VP-Planner
spreadsheet. 80-Eit (temporary-real) routines with transcen-
dental functions, number 110 support, vectors to support
numeric co- rocessor overlay & user NAN checking.
tf IBM. p-PC, 350 Kb

F-PC Graphics V4.6, Mark Smiley C203 - $20
The latest versions of new graphics routines, including CGA,
E M , and VGA support, wlth numerous improvements over
earher verslons created or supported by Mark Smlley.
tt IBM HD, F-PC, 605 Kb

PocketForth V6.4, Chris Heilman C300 - $18
Smallest complete Forth for the Mac. Access to all Mac
functions, events, files, graphics, floating oint, macros,
create standalone applications and DAs gased on fig &
Startrn Forth. Incl. source and manual.

t %AC. 640 Kb. System 7.01 Compatible.

Kevo V0.9b6, Antero Taivalsaari C360 - $20
Complete Forth-like object Forth for the Mac. Object-
Prototype access toall Mac functions, files, gra hics, floating
point, macros, create standalone applications. Eernel source
Included, extensive demo files, manual.
ttt MAC, 650 Kb, System 7.01 Compatible.

Yerkes Forth V3.67 C350 - $30
Complete object-oriented Forth for the Mac. Object access
to all Mac functions, files, graphics, floating point, macros,
create standalone applicat~ons. Incl. source, tutorial,
assembler & manual.
tt MAC, 2.4Mb, System 7.1 Compatible.

Pygmy V1.4, Frank Sergeant C500 - $30
A lean, fast Forth wlth full source code. Incl. full-screen
editor, assembler and metacompiler. Up to 15 files open at
a time.
t* IBM, 320 Kb

KForth, Gu Kelly C600 - $30
A full Forth system with windows, mouse, drawing and
modem ackages. Incl. source & docs.
tt I ~ M , 83,2.5 Mb

Mops V2.6, Michael Hore C710 - $30
Close cousln to Yerkes and Neon. Very fast, complles
subroutine-threaded & native code. Object oriented. Uses
F-P co-processor if present. Full access to Mac toolbox &
system. Supports System 7 (e.g., AppleEvents). Incl.
assembler, manual & source.
f f MAC. 3 Mb. System 7.1 Compatible

BBL & Abundance, Roed Green C800 -
BBL public:domain, l2-bif Fqrth with extensive support of
DOS, met~culously optlmlzed for execution speed.
Abundance is a publlc-domain database language wrltten in
BBL. Incl. source & docs.
+f f IBM HD, 13.8 Mb, hard disk required

F83 V2.01, Mike Perry & Henry Laxen C l 00 - $30
Editor, assembler, decompiler, metacompiler. Source
and shadow screens. Manual available separately (items
#217, #235). Base for other F83 applications. + IBM, 83,490 Kb

F-PC V3.6 & TCOM 2.5, Tom Zimmer C200 - $37
A full Forth system with pull-down menus, se uential
files, editor, forward assembler, metacompiler,?loatin
point. Complete source and help files. ~ a n u a l for ~ 3 . g
available separately (Items #350, #351). Base for other
F-PC a lications.

t P$)M HD, 83,3.5Mb

1 F-PC TEACH V3.5, Lessons 0-7, Jack Brown C201 - $1 5 I

~ Q F S ~ O l t l - ~ Q p ~ c % C Q ~ Q ~ ~ Policy

Return the old version with the FIG labels
and get a new version replacement for 112

the current version price.

I
*-Starting ** - lntennediate *** - Advanced

Volume 18 818 - $30 I MuP21 - programming, demos, eForth. 114 pp,

Volume 10 (January 1989) 810 - $25
RTXreprints from 1988 Rochester Forth conference, object-
oriented cmforth, lesser Forth engines. 87 pp.

Volume 11 (July 1989) 81 1 - $25
RTXsupplementtoFootsteps inan Empty Valley, SC32,32-
bit Forth engine, RTX interrupt utility. 93 pp.

Volume 12 (April 1990) 81 2 - $25
ShBoom chi architecture and instructions, neural computing
module ~ ~ b 3 2 3 2 , pigforth, binary radix sort on 80286,
6801 0, and RTX2000.87 pp.

Volume 13 (October 1990h
, ,-

813 - $25
PALS of the RTX200 M I ~ I BEE, EBForth, AZForth, RTX-
2101,8086 eForth, 8051 eforth. 107pp.

Volume 14 814 - $25
RTX Pocket-Sco eForth for muP20, ShBoom, eForth for
CP/M & 280, X$DEM for eforth. 116 pp.

Volume 15 815 - $25
Moore: new CAD system for chip design, a ortrait of the
P20; Rible: QS1 Forth processor, QS2, R I S R ~ ~ it all; P20
eForth software simulator/debugger. 94 pp.

Volume 19 819 - $30
More MuP21 - programming, demos, eforth. 135 pp.

Volume 20 820 - $30
More MuP21 - programming, demos, F95, Forth Spec~fic
Language Microprocessor Patent 5,070,451. 126 pp.

Volume 21 821 - $30
MuP21 Kit, My Troubles with This Dam 82651, CT100 Lab
Board, Born to Be Free, Lawsof Com uting, Traffic Controller
and Zen of State Machines. ~ h g o o m Micro rocessor,
Pro rammable Fieldbus Controller 1x1, Logic Besign of a
16-Bit Microprocessor P I 6.98 pp.

T-shirt. "Mav the Forth Be With You" 601 - $24
~ h ~ t e d6sign on dark blue shirt, or green design on tan shlrt.
Spec~fy size--small, med~um, large, x - l a r g m n order form.

Volume 16 816 - $25
OK-CAD System, MuP20, eFoCh system words, 386eForth,
80386 protected mode operation, FRP 1600 - 16-b~t real-
time processor. 104 pp.

Volume 17 817 - $25
P21 chi and specifications; PIC1 7C42; eforth for 68HC11,

its members an on-line database, a large selection of Forth bterature, and other services. Cost is $45 per year for U S.: all other countries $60 per year. This fee includes $39 for Forth D~mens~ons.
No sales tax, handllng fee, or discount on membersh~p.

Annual Forth issues, including code for Forth applications.

CHECK ENCLOSED (payable to: Forth lnterest Group) sub-total

When youjo~n, your flrst Issue wlll arrive in four to six weeks; subsequent Issues will be ma~led to you every other month as they are published-SIX Issues in all. Your membersh~p entitles you to a 10%
dlscount on DubllcatlOnS and FIG functions. Dues are not deductible as a charitable contr~bution for U.S federal Income tax purposes, but may be deduct~ble as a buslness expense.

8051, 7?ansputer. 128 pp. September 1982, September 1983, Sepember 1984 (3 issues)
425 - $25

PAYMENT MUST ACCOMPANY ALL ORDERS
PRICES: All orders must be pre-pald. Prlces subject to SHIPPING & HANDLING: SHIPPING TIME: *CALIFORNIA SALES TAX BY COUNTY:
change wlthout notlce. Creditcard orders will be sent All orders calculate sh~pplng Books in stock are shlpped withln 7.75J6: N ~ ~ ~ ~ , F ~ ~ ~ ~ ~ , ~ ~ ~ ~ ~ i ~ l , inyo, ~ ~ d ~ ~ ~ , orange,
and bllled at current prlces. Checks must be In U.S. & handling based on order seven daysof rece~ptofthe order. ~ i ~ ~ ~ ~ i ~ ~ , sacramento, santa clara, santa ~ ~ ~ b ~ ~ ~ , sari B ~ ~ .
dollars, drawn on a U.S. bank A $20 charge will be dollar value. Special handling SURFACE DELIVERY: nardino. San D~ego, and San Joaquln; 8.25%: Alameda. Contra
added for returned checks. available on request. U S.. 10 days Costa. Los Angeles. San Mateo. San Franc~sco. San Ben~to, and

other: 3&60 days Santa Cruz; 7.25%: other counties.
XX.5.6

I

VISA/MasterCard:

Card Number exp. date

--
Sales tax* on sub-total (California only)

Shipping and handling (see chart above)
Membership* in the Forth Interest Group

New 17 Renewal

Signature TOTAL

: S'ENDMSG (object member-id --) OVER ?OBJECT
OVER CELL- @ MEMBER? O= THROW LATE-BINDING ;

: CALLING (--)
BL WORD COUNT MEMBERS SEARCH-WORDLIST O= ABORT" Member not defined"
STATE @ IF

POSTPONE LITERAL POSTPONE SENDMSG
ELSE SENDMSG THEN ; IMMEDIATE

(..
Each class has a namespace of members which belong to it. Members
exist as unique identifiers in a single wordlist. All are
immediate. All know their own XT, which is used as a unique
identifier for a method name.

DO-MEMBER is the execution behavior of a member. This is complicated
by the need to re-cast the xt for non-class evaluation if
it is a member, but not a member of THIS class.

CREATE-MEMBER makes a new member in THIS class' namespace. The member
knows its xt and name -- because these are kept in its body.

MEMBER is a defining word which a) returns the xt of an existing
member or b) creates a new member and returns its xt.

.. 1

: DO-NONMEMBER (addr --)
-MEMBERS FIND DUP IF

O< STATE @ O<> AND IF COMPILE, ELSE EXECUTE THEN
CSTATE @ IF +MEMBERS ELSE 0 >THIS THEN EXIT THEN

DROP COUNT TYPE ." not found" 0 >THIS -1 THROW ;

: DO-MEMBER (member-addr --)
@ + VISIBLE-MEMBER? IF

NIP REFERENCE-MEMBER EXIT THEN
DO-NONMEMBER ;

: CREATE-MEMBER (-- xt)
>IN @ >R CREATE-XT IMMEDIATE (xt) DUP , R> >IN !
BL WORD COUNT STRING, DOES> DO-MEMBER ;

: MEMBER (-- xt)
>IN @ BL WORD COUNT MEMBERS SEARCH-WORDLIST IF NIP EXIT THEN >IN !
GET-CURRENT >R MEMBERS SET-CURRENT
['1 CREATE-MEMBER CATCH R> SET-CURRENT THROW ;

{ ..
Late binding behaviors

When members are explicitly referenced at ruhtime, these are the
routines that are called for the different-type objects. RUN-COLON
is used for both the colon and defer types.

RUN-DATA adds the offset in the member list data field to the object
whose base address is on the stack.

RUN-OBJECT sets the current class according to the

Forth Dimensions XX.5,6 4 1

: RUN-DATA (object 'data -- addr) @ + 0 > T H I S ;

: RUN-OBJECT (o b j e c t ' da ta -- addr) 2 @ SWAP > T H I S + ;

: RUN-COLON (objec t 'data --)
SWAP > S T H I S > C @ EXECUTE C> S> 0 > T H I S ;

{ ..
E a r l y b i n d i n g c o m p i l e r s

When m e m b e r s are r e f e r e n c e d a t c o m p i l e t i m e , code t o e x e c u t e a specfic
behavior i s c o m p i l e d . E a c h of t h e d i f f e r e n t m e m b e r t ypes n e e d s i t s
o w n e a r l y b i n d i n g c o m p i l e r .

T e r m i n a l m e t h o d s , w h i c h are t h e f i n a l m e m b e r n a m e i n a phrase, c lear
t h e c lass n a m e s p a c e f r o m t h e Fo r th search order.

R r e f e r e n c e s t o a n e m b e d d e d ob jec t s a re n o t t e r m i n a l , b u t c h a n g e t h e
a c t i v e n a m e s p a c e t o re f lec t t h e c lass w h i c h d e f i n e d t h e ob jec t .

END-REFERENCE r e m o v e s t h e c lass n a m e s p a c e f r o m t h e F o r t h search order .

COMPILE-OBJECT c o m p i l e s "SELF" L I T + a n d c h a n g e s t h e n a m e s p a c e .

COMPILE-DATA c o m p i l e s " S E L F ' L I T + .
COMPILE-COLON c o m p i l e s "SELF" > S " T H I S " > C x t C> S> .

COMPILE-DEFER c o m p i l e s "SELF" > S " T H I S " > C m e m b e r RESOLVED C> S> .
.. 1

: END-REFERENCE (--)
CSTATE @ DUP > T H I S ? E X I T -MEMBERS ;

: COMPILE-OBJECT ('da ta --) "SELF"
2 @ ?DUP I F POSTPONE LITERAL POSTPONE + THEN > T H I S +MEMBERS ;

: COMPILE-DATA ('da ta --) "SELF" \ ' da ta : o f f s e t
@ ?DUP I F POSTPONE LITERAL POSTPONE + THEN END-REFERENCE ;

: PRE-COLON (--) " S E L F " POSTPONE > S " T H I S " POSTPONE > C ;
: POST-COLON (--) POSTPONE C> POSTPONE S> END-REFERENCE ;

: COMPILE-COLON (object ' da ta --) PRE-COLON
@ COMPILE, POST-COLON ;

: COMPILE-DEFER (o b j e c t 'data --) PRE-COLON
2 CELLS - @ POSTPONE LITERAL POSTPONE RESOLVED POST-COLON ;

PRIVATE, PROTECTED, and PUBLIC s e t w h i c h k i n d of m e m b e r s f o l l o w .
P r i v a t e w o r d s are b r a c k e t e d b y PRIVATE . . . PUBLIC o r PRIVATE ...
PROTECTED. P r o t e c t e d w o r d s a re b r a c k e t e d by PROTECTED ... P U B L I C o r
PROTECTED . . . PRIVATE.

END-CLASS c o n c l u d e s a c lass d e f i n i t i o n by c l e a r i n g CSTATE and r e s t o r i n g
t h e search order as best it c a n .

BUFFER: reserves n b y t e s of data space i n t h e c u r r e n t c lass .

42 Forth Dimensions XX.5,6

DEFER: compiles a virtual member for the current class that has a
default behavior. Used like a colon definition. When a reference
to the routine is made, it will late-bind in the current class
or subclass for a more recently defined version (defined via :)
and execute that if found. Otherwise, it will execute its default
behavior. The stack effect for all routines with the same name
should be the same!

: defines a new executable member which
; terminates. Just like Forth!

BUILDS creates an embedded object of a specific class in the current
class. When referenced, all methods of its class are available.

SUPER allows the reference of a parent's member.
COMMON allows access to a word in the underlying system that has

been obscured by a class member.

GET-CURRENT (*) CC-WORDS SET-CURRENT

: PUBLIC (--) 0 OPAQUE ! ;
: PROTECTED (--) 1 OPAQUE ! ;
: PRIVATE (--) 2 OPAQUE ! ;

: END-CLASS (--) 0 RE-OPEN -CC ;

: SUPER (--)
THIS >SUPER @ >THIS POSTPONE SELF ; IMMEDIATE

: COMMON -CC BL WORD DO-NONMEMBER +CC ; IMMEDIATE

: BUFFER: (n --) MEMBER THIS SIZEOF
1 'I RUN-DATA ['1 COMPILE-DATA NEW-MEMBER
THIS >SIZE + ! ;

: VARIABLE (--) THIS SIZEOF ALIGNED THIS >SIZE !
[+CC] CELL BUFFER: [-CC] ;

: CVARIABLE (--)
[+CC] 1 BUFFER: [-CC] ;

: DEFER: (-- member runtime compiler colon-sys)
OPAQUE @ 0 2 WITHIN O= ABORT" Can't DEFER: in private" MEMBER
['1 RUN-COLON ['1 COMPILE-DEFER :NONAME ;

: : (-- member class-sys colon-sys) MEMBER
['1 RUN-COLON ['1 COMPILE-COLON :NONAME ;

. . , . (member runtime compiler colon-sys ?-)

POSTPONE ; ROT ROT NEW-MEMBER ; IWEDIATE

: BUILDS (class --) MEMBER THIS SIZEOF
['1 RUN-OBJECT ['1 COMPILE-OBJECT NEW-MEMBER
(class) DUP , SIZEOF THIS >SIZE + ! ;

GET-CURRENT CC-WORDS <> THROW (*) SET-CURRENT

Forth Dimensions XX.5,6 43

Listing Two

{ ..

(C) Copyright 1999 FORTH, Inc. www. forth.com
Examples of extensions
____--_____________--- ________-__________--- 1

{ ..
OBJ-SIZE returns the size and base address of an object from its xt.

INDEXED[] generates an address from a base given a size and index.
>DATq] returns the address of the nth object in the array at the xt.

BUILDS[] creates a named array of objects. The structure of an indexed
named object in memory is:

I xt 1 class I data[01 I data[l] I . . . I data[n-11 I
------____--_______--- 1

: OBJ-SIZE (xt -- addr size) >BODY CELL+ CELL+ @+ SIZEOF ;

: INDEXED[] (n base size -- addr) ROT * + ;

: >DATA[] (n xt -- object) OBJ-SIZE INDEXED[] ;

: BUILDS[] (n class --)
CREATE-XT IMMEDIATE (xt) , OBJTAG , (class) DUP , SIZEOF * /ALLOT
DOES> ['1 >DATA[] (OBJECT) ;

Between CLASS and END-CLASS, we want constants to simply return
their value when executed. For instance,

CLASS FOO
28 CONSTANT LC
LC POINT BUILDS[] ARRAY

END-CLASS
but when accesses interpretively outside class definition, it would
have to be used as

FOO BUILDS SAM
SAM LC

which means that an unnecessary object address is on the stack,
present simply to set the context for the named constant. sigh . . .
This behavior is target compilable because the tc will require a
twin of the constant anyway.

RUN-CONSTANT discards the object address and reads the constant
from the member list entry.

COMPILE-CONSTANT compiles a forced drop of the required object
address followed by the literal value of the constant. -. .. I

1

: RUN-CONSTANT (object 'data -- n)
NIP @ ;

: COMPILE-CONSTANT ('data --) "SELF" POSTPONE DROP
@ POSTPONE LITERAL END-REFERENCE ;

{ ..
CREATE has similar problems to CONSTANT when used in a class.
RUN-CREATE discards the object address and skips over the

unused data field in the member list entry.

44 Forth Dimensions XX.5,6

COMPILE-CREATE compi les a d r o p , t h e n compi les a c o n v o l u t e d
r e f e r e n c e t o t h e memory f o l l o w i n g t h e member l i s t e n t r y .
This i s n e c e s s a r y , b e c a u s e we c a n ' t assume a c o n s t a n t
a d d r e s s f o r t h e run- t ime sys tem and must g e n e r a t e r e l o c a t a b l e
code. The o n l y t h i n g s t h a t a r e c o n s t a n t a r e : t h e d i s t a n c e f rom
t h e body a d d r e s s o f t h e c l a s s t o t h e a c t u a l a d d r e s s o f t h e
d a t a , and t h e h a n d l e (x t) o f t h e c l a s s t o which t h e d a t a
be longs . So, t h e code, assuming t h e member e n t r y a d d r e s s
on t h e s t a c k , i s :

[THIS] LITERAL >BODY [THIS >BODY - CELL+] LITERAL +
.. 1

: RUN-CREATE (o b j e c t ' d a t a --)
NIP CELL+ ;

: COMPILE-CREATE (' d a t a --) "SELF" POSTPONE DROP
THIS POSTPONE LITERAL POSTPONE >BODY
THIS >BODY - CELL+ POSTPONE LITERAL POSTPONE + END-REFERENCE ;

{ ..
RUN-OBJECT[] r e s e m b l e s RUN-OBJECT, b u t i n d e x e s a n a r r a y o f o b j e c t s .

COMPILE-OBJECT[] c o m p i l e s t h e l i t e r a l o f f s e t t o t h e s t a r t of t h e
a r r a y , t h e n a r e f e r e n c e t o t h e INDEXED[] r o u t i n e f o r t h e c l a s s .

.. 1

: RUN-OBJECT[] (n o b j e c t ' d a t a -- a d d r)
2 @ ROT + ROT ROT DUP >THIS SIZEOF * + ;

: COMPILE-OBJECT[] (' d a t a --) "SELF"
2 @ ?DUP IF POSTPONE LITERAL POSTPONE + THEN
DUP >THIS SIZEOF POSTPONE LITERAL POSTPONE INDEXEU] ;

{ ..
CONSTANT CREATE and BUILDS[] c r e a t e new member l i s t e n t r i e s .

CONSTANT u s e s t h e d a t a f i e l d f o r t h e c o n s t a n t v a l u e .

CREATE r e s e r v e s b u t d o e s n ' t u s e t h e f i r s t c e l l o f t h e d a t a f i e l d ; d a t a
f o l l o w i n g t h e CREATE w i l l e x t e n d t h e d a t a f i e l d o f t h e e n t r y .

BUILDS[] u s e s t h e f i r s t c e l l o f t h e d a t a f i e l d f o r t h e o f f s e t from t h e
c o n t a i n e r ' s d a t a s p a c e s t a r t t o t h e a r r a y s t a r t , and t h e second
c e l l o f t h e d a t a s p a c e t o h o l d t h e c l a s s o f t h e c o n t a i n e d o b j e c t .

.. I

I GET-CURRENT (*) CC-WORDS SET-CURRENT

: CONSTANT (n --)
MEMBER SWAP ['1 RUN-CONSTANT ['1 COMPILE-CONSTANT NEW-MEMBER ;

: CREATE (--)
MEMBER CELL ['1 RUN-CREATE ['1 COMPILE-CREATE NEW-MEMBER ;

: BUILDS[] (n c l a s s --) MEMBER THIS SIZEOF
['1 RUN-OBJECT[] ['1 COMPILE-OBJECT[] NEW-MEMBER
(c l a s s) DUP , SIZEOF * THIS >SIZE + ! ;

GET-CURRENT CC-WORDS <> THROW (*) SET-CURRENT

Forth Dimensions XX.5,6 45

46 Forth Dimensions XX.5,6

1. Introduction
The blending of Forth and C is a hot topic. Last FORML

was even completely dedicated to it. In practice, it is not al-
ways that easy. The newest release of 4tH offeis a new and
easy way of doing just that, enabling the programmer to in-
tegrate Forth programs with C source easily, while the user
never even knows he is actually using a Forth program!

2. Bytecode
Bytecode has been here for a long time. Even the UCSD

Pascal compiler, which was quite popular in the seventies,
used bytecode. If you have used Windows 3.x, the chances
are you used to run bytecode programs every day, because
earlier versions of Visual BASIC created bytecode programs.
Nowadays, bytecode is more popular than ever, because Java
is based on that very same technology.

What is bytecode? Bytecode is machine code for a virtual
processor. This virtual processor is usually created in software
and interprets the bytecode. Of course, this slows down ex-
ecution, but in real-life applications the performance is usu-
ally still acceptable.

A virtual processor (or virtual machine, as it is usually
called) can be embedded in a program. Your browser prob-
ably contains one. Once you have loaded a Java applet from
the World Wide Web, the virtual machine in your browser
starts executing it.

A Visual BASIC program may seem like a plain Windows
executable, but all i t does is start the appropriate
VBRUNxxx.DLL, which contains the virtual machine that
actually executes the bytecode of the program.

4tH [4tH was discussed in more depth in Forth Dimen-
sions (XV111.3) and Forthwrite UK (issue 96).] is not an
ordinary Forth system. It is much more like an ordinary com-
piler, but instead of native code it creates bytecode. The
bytecode 4tH creates looks like the code field of a single Forth
word. In fact, 4tH has two bytecode formats: one in memory
that can be executed, and one that can be saved to disk. The
former is called Hcode and the latter is called HX code.

Of course, there is a reason for these two very different for-
mats. Hcode was created for speed. It uses the native data-type
formats of the processor, so interpretation is kept to a bare
minimum. Since these native data-type formats differ from
processor to processor, portability of this bytecode is restricted?

With 4tH version 3.0a, HX code was introduced. The HX
code format is processor independent; it can be ported fi'om
processor to processor and from operating system to operat-
ing system without recompilation. Yes, you can compile a
4tH program on an RSl6000 running AIX, and run it under
an Intel machine running Windows NT 4.0.

3.The 4tH library
The current 4tH distribution includes several programs

which enable you to compile and run 4tH programs; but, in
fact, these programs depend heavily on the 4tH library, which
contains the actual compilation and execution functions. You
can use the same functions in your own C programs if you
link them with the 4tH library.

The 4tH library contains functions that load HX files, save
HX files, run Hcode, decompile Hcode, or compile 4tH
sources. A basic 4tH interpreter first calls the function that
loads the HX file, and passes the resulting Hcode pointer to
the execution function. However, the HX file is an external
file which needs to be distributed along with the 4tH inter-
preter. This is not always what you want.

4. Embedding HX code
HX code was a good thing to start with, because it con-

tains several safeguards against improper use and is highly
portable. Furthermore, with the proper loading sequence, you
could treat it just like an ordinary HX file.

The next thing to do was to create a program that con-
verted the bytecode to C source. A first attempt to do that
was done in late 1997. The bytecode was simply converted to
unsigned chars, which were stored in a static string variable.
This proved to be the proper approach.

Then a loading sequence had to be created. I already had
one: the one that read an HX file from disk. All I had to do
was modify it to read HX code from a string variable. Because
only one static function in the loading function was dedi-
cated to reading a byte from disk, I simply had to create an-
other one that read a byte from a static string.

Finally, I had to put it all together. A C program was de-
signed which could load and execute the bytecode. This would
enable the user to create a standalone program that ran the
embedded bytecode. This program was embedded into the
conversion program, which could now either create a static
string with the bytecode or a complete C source. Just in time
to be included into the 4tH version 3.3a distribution!

5. Using embedded HX code
Making a standalone native executable is very easy, and it

will work on all platforms to which 4tH has been ported,
including MS-DOS, MS-Windows, and most Unixes. You can
even do it without ever reading a book on C, because the
HX2C conversion program takes care of that. HX2C is a com-
mand-line utility that takes two arguments: the name of the
HX file and the name of the C source file it has to create. You
can make a rule for the Unix make utility that compiles your
4tH source, converts the resulting HX file to C source, and
compiles it to a native executable.

The C source created by HX2C is pretty straightforward
(see Listing One). After all the red tape comes the bytecode.
The main () function follows. First the HX code is loaded
into memory by the inst-4 th () function, which is virtu-
ally identical to the load-4th () function. It checks the in-
tegrity of the HX code and its compatibility with the linked
virtual machine. If everything is all right, the virtual machine
is invoked by calling exec-4 th () . After the program has ter-
minated, error messages (if any) are displayed, memory is
freed by free 4 th () , and the result is returned to the C pro-
gram that called it.

But you can do a lot more with embedded HX code. You can
embed several pieces of HX code and let them interact. How-
ever, this requires more inside knowledge of C. For this pur-
pose, HX2C can generate only the static string containing the
bytecode. Take a look at Listing Two. This code contains two
pieces of bytecode. The first one adds two numbers, in this case
5 and 7. The result of this addition is stored in the variable Re-
sult. There is no need to keep the HX code in memory, so it
can be freed by f ree-4 th () . The second piece of code per-
forms a division; in this case, it divides the contents of variable
Result by 6. The result is stored in Result again, and can be
displayed by the standard printf () function.

This proves you can seamlessly mix Forth and C with very

little effort. There are no restrictions whatsoever to the use of
the rest of the 4tH API, since inst-4th () returns an ordi-
nary Hcode pointer. For instance, you can still use
load-4 th () to load additional HX-files.

6.The future
First of all, I want to use embedded code myself in a non-

trivial program. Second, I'd like to experiment a bit further
with this concept. It would be fun to duplicate the architec-
ture of Visual BASIC and convert the 4tH library to a DLL. In
this version, the virtual machine and loading sequence has
to be included in every executable, which is 10 KB overhead,
at least. Finally, I'd like to see if the direct creation of Hcode
in an executable has any advantages; it is quite volatile and
requires special treatment, but doesn't have to be loaded or
discarded.

What has this all to do with Forth? You haven't seen a
single line of Forth code up to now. In my view, it has every-
thing to do with Forth. Forth works best in niches other lan-
guages can't reach. Only the Forth concept makes it possible
to embed small pieces of bytecode so easily and so efficiently.
Forth works best in places where you can't see it. Bytecode is
just another example.

Listing One

/*
* * This f i l e was g e n e r a t e d by t h e HX t o C c o n v e r t e r
* * Copyright 1997 ,9 by J . L . Bezemer
* /

i n c l u d e <sys/cmds-4th.h>
e l s e
i n c l u d e " 4 t h . h"
i n c l u d e " cmds - 4 t h . h"
#end i f

s t a t i c by tecode
' \ ~ 0 0 ' , ' \ x 3 a 1 ,
'\xOO', ' \xOO',
'\xOO', ' \xOO',
'\xOO', '\xOO',
'\xOO', ' \xOO',
' \ x 0 5 ' , l\xOO',
' \ x 6 5 ' , ' \ x 6 c 1 ,
' \ x 6 c 1 , ' \ x 6 4 ' ,

1 ;

EmbeddedHX [1 = {

' \ x 0 3 ' , '\xOO', ' \xOOv, ~ \ x ~ ~ ~ , ~ \ x o o ~ , ' \ x ~ ~ ~ ,
' \xOO', ' \ x f f l , ' \ x f f f , ' \ X f f ' , ' \ x 7 f ' , ' \ x O 1 ' ,
' \x0O1 1 ' \x0O1 , ' \xOO', ' \ x 0 2 ' , ' \ x o o ' , ' \ x o o ' ,
' \ xOd ' , ' \xOO', ' \ x o o ' , l \ x ~ ~ l , ' \ x ~ ~ ' , ' \ x ~ ~ ~ ,
' \ xoo ' 1 ' \ xoo ' , ' \ xoo ' , '\%x00 ' , ' \ X O O ' , ' \ xoo I ,

' \ x o o ' l ' \ X O O ' ~ ' \ X O o ' , . , ' \ x o o ' , ' \ x o 2 ' , 1\x481,
' \ x 6 c 1 1 ' \ ~ 6 f ' , ' \ x 2 0 1 , ' \ x 7 7 1 , ' \ x 6 f ' , 1 \ ~ 7 2 I ,

' \ x 2 1 1 , ' \xOO', ' \ x 9 1 ' , ' \ X O O '

i f n d e f ARCHAIC
i n t main (i n t a r g c , c h a r * * a r g v)

e l s e
i n t main (a r g c , a r g v) i n t a r g c ; c h a r * * a r g v ;

Forth Dimensions XX.5.6 47

t
cell Result; /* holds the result from the program * /
Hcode* Object; /* Hcode pointer * /

/* load the file * /
if ((Object = inst - 4th (EmbeddedHX)) != NULL)

t
fflush (stderr) ; /* flush any messages * /

/* now execute it * /
Result = exec-4th (Object, argc, argv, 1, (cell) Version4th);

fflush (stdout) ;

if (Ob ject->ErrNo) /* show exit messages * /
fprintf (stderr, "Exiting; word %u: %s\nW , Object->ErrLine,

errs 4th [Object->ErrNo]) ; -
else

if (Result != CELL-MIN)
fprintf (stderr, "Exiting; result: %ld\nW , Result) ;

Result = (Object->ErrNo ? EXIT FAILURE : EXIT SUCCESS); - -
free 4th (Object) ; / * discard the object * /
retuTn ((int) Result) ;

1
return (EXIT FAILURE) ; -

1

static bytecode
'\x00', '\x3a1,
'\xOO', '\xOO',
'\xOO', '\xOO',
'\xOO', '\xOO',
'\xOO', '\xOO',
'\x3d1, '\xOO',
'\xOO', '\xOO',
'\x03', '\xOO',
'\xOO', '\xOO',
'\xOO', '\xOO',
1;

Addition [I = {

'\x03', '\xOo',
'\xOO', '\xff',
'\xOO', '\xOO',
'\xOO', '\xOO',
'\xOO', '\xOO',
'\x03', '\xOo',
'\xOO', '\xOO',
'\xOO', '\xOO',
'\xOb8, '\x07',
'\xOO', '\x08',

static bytecode Division- [1 =

'\xOO', '\x3a1, '\x03', ' \ x ~ ~ ~ ,
'\xOO1, '\xOO', '\xOO', '\xff',
'\xOO', '\xOO', '\xOO', '\xoo',
,'\xOO', '\xOO', '\xOO', '\xoo',
'\xOO', '\xOO', '\xOO', '\xOO',
'\x3d1, '\xOOq, '\x03', ' \ x ~ ~ ' ,
'\xOO', '\xOO', '\xOO', '\xoo',

' \ xoo ' ,
'\xff ',
'\ xoo ' ,
I \ xoo ' ,
' \ xoo ' ,
'\xOO',
'\xOb',
'\x3dtI
'\xObf ,
'\x8e1,

'\xOO',
'\ xff ' ,
'\xOO',
'\xOO',
'\xOO',
' \ xoo ' ,
' \ xObl,

' \ xoo ' , ' \ xoo ' ,
'\x7f1, '\xOl',
'\x0O1, '\xOO',
'\xOO', '\x0O1 ,
'\xOO', '\xOO',
'\x3d1, ' \ xOO ' ,
' \ x3d8, ' \ xOO I ,

'\x0l1, '\xOO',
' \ xoo ' , '\ x02 ' ,

48 Forth Dimensions XX.5,6

i n t main (i n t a r g c , char** a r g v)

I
Hcode* I n s t a n c e ;
c e l l R e s u l t ;

/* l o a d a d d i t i o n b y t e c o d e * /
Ins tance = i n s t - 4 t h (A d d i t i o n) ;

/* e x e c u t e : add 5 t o 7 * /
Result = exec-4th (I n s t a n c e , 0, NULL, 2 , 5 , 7) ;

/* f r e e i n s t a n c e * /
f r e e - 4 t h (I n s t a n c e) ;

/* l o a d d i v i s i o n b y t e c o d e * /
Ins tance = i n s t - 4 t h (D i v i s i o n) ;

/* e x e c u t e : d i v R e s u l t by 6 * /
Result = exec-4th (I n s t a n c e , 0 , NULL, 2 , R e s u l t , 6) ;

/* f r e e i n s t a n c e * /
f r e e - 4 t h (I n s t a n c e) ;

/* p r i n t R e s u l t and e x i t * /
p r i n t f (" R e s u l t : %ld\n1I , (l o n g) R e s u l t) ;

r e t u r n (EXIT-SUCCES) ;

I

1 Toolbelt W, continued from page 28. I
THEN
1 -

REPEAT DROP (widn ... wid1 n)
SET-ORDER ()

R> DROP ;

: +ORDER (wid --)

DUP > R -ORDER GET-ORDER R> SWAP 1+ SET-ORDER ;

CREATE-XT WORDLI ST :
.....................

ANS p r o v i d e s no way f o r a c r e a t e d word t o know i t s own x t .
This i s needed f o r p o r t a b i l i t y i n t h i s o b j e c t package .
CREATE-XT p r o v i d e s a means t o CREATE a n e n t i t y i n t h e
d i c t i o n a r y t h a t can know i t s x t . <

WORDLIST: <name> p r o v i d e s named word l i i t s .

: CREATE-XT ("name" -- xt
> I N @ CREATE >IN !
BL WORD COUNT GET-CURRENT SEARCH-WORDLIST O = THROW ;

: WORDLIST: ("name" --) WORDLIST CONSTANT ;

Forth Dimensions XX.5,6 49

How about a single-pass as- Figure One. Jump-forward routine.
sembler with no jump distance
limits? Hopefully, that has been CREATE JF-TBL 8448 ALLOT \ Table for forward reference.
achieved here. Having an interest \ Room for 256 groups of
in the PIC1 7C44 microcontroller, \ 16 two-byte addresses.
I wrote a simple assembler using JF-TBL 8 4 4 8 0 FILL
F-PC. The assembler didn't have
any forward or backward label
functions, as I didn't know how
to do that yet. I proceeded to hand
count the addresses for GOT0 for-
ward and backward jumps, and
used a lot of NOPS between rou-
tines; not a very efficient method,
to say the least.

The application was for elec-
tronic setting circles for amateur
telescopes using optical sensors
for right ascension and declina-
tion, and containing the Messier
catalog and a bright star catalog.
After getting that system working,
I turned my attention to the label
function problem.

Any articles I found on the
subject were either too limited or
too complicated to be of use.
There must be an easy way to do
this for a RISC microcontroller
instruction set. It took me about
a day and a half to figure out a
method. I decided on using num-
bers instead of names (try making
up 200 names). Numbers are used
to index into a table for stored
GOTO addresses and are used as n
J F (jump forward) or n J B (jump
backward).

When an n J F is encountered
at a GOTO instruction, n address of
JF-TBL is fetched and the first byte
(count) is used as an offset to store
the present GOTO instruction ad-
dress. For any n from 0 to 255, each
has a count byte and 16 two-byte
addresses, so there can be 16 for-
ward jumps of any one number to
the same address. If more than 16
forward jumps are needed to the
same address, another n JF is used

\ Get multiple forward jumps to same address.
: JF (n -- k) \ Jump forward. k is GOT0 data.

DUP
17 * JF-TBL + \ Base address of n.
DUP DUP C@ \ Count of n.
DUP 2* 1+ \ Offset.
ROT + \ JF-TBL + base + offset.
WORDCOUNT @ \ Present program address.
SWAP ! \ Store to base n + offset.
1+ SWAP ! \ Increment count,

\ leave n for GOTO.

Figure Two. Forward-jump routine.

\ C-BUF address is where assembled code is stored.
\ Store jump-to address to multiple GOTO'S.
: FJ (n --) \ Forward jump.

17 * JF-TBL + \ Base address of n.
DUP
C@ 0 \ Get count.
?DO DUP I 2* 1+ + \ Calculate offset.

@ 2* \ Get GOT0 addr 2* = C-BUF addr
C-BUF \ Base addr;

\ start of EEPROM pgm " 0" .
+ \ Add GOT0 address offset.
WORDCOUNT @ \ Present FJ address.
$2800 OR \ Add GOT0 instruction.
SWAP ! \ Overwrite n JF GOTO.

LOOP DROP ;

FigureThree. Backward-jump routine.

CREATE BK-TBL 512- ALLOT \ Table for backward reference.
\ Room for 256 backward jumps.

BK-TBL 512 0 FILL
: BJ (n - -) \ Backward jump.

WORDCOUNT @ \ Present BJ address.
BK-TBL ROT 2* + ! ; \ Store address for later

\ use of GOTO.

50 Forth Dimensions XX.5.6

andn(a) F J n (b) F J (forward
jump) is placed at the designation
address.

The jump forward routine is
shown in Figure One.

Later in the assembly, an n F J
(forward jump) will be encoun-
tered. When this happens, n ad-
dress of JF-TBL is fetched; the
present address of the forward
jump is added to the GOT0 instruc-
tion and written to n J F of pro-
gram memory, overwriting the old
n J F GOTO. The forward jump
routine is shown in Figure Two.

The backward jump is some-
what easier and takes less
memory. All that is needed is to
store the present address of n B J
(backward jump) to n BK-TBL.
The backward jump routine is
shown in Figure Three.

When n JB (jump backward)
is encountered, all that is needed
is to fetch n BK-TBL data for the
GOTO instruction. There are no
limits to the number of backward
jumps of any one n. The jump
backward routine is shown in Fig-
ure Four.

The result of all this is an as-
sembler with no jump distance
limits and which assembles in a
single pass.

Figure Five is an example of a
source code listing.

I am offering to the public do-
main the ASCII files
16ASM84.SEQ 84EEPROM.SEQ
and 17ASM44.SEQ. 16ASM84.SEQ
is the assembler, and contains er-
ror traps for forward and back-
ward jumps and simple subrou-
tine generation. 84EEPROM con-
tains a written description of a
schematic for a programmer
board driven by the printer port
of a PC. The files work together.
17ASM44.SEQ is similar t o
16ASM84.SEQ.

Figure Four. Jump-backward routine.

: J B (n - - k)
2* BK-TBL + @ ;

Figure Five. Example source code.

AUTOEDITOFF
0 VALUE LO-TBL
0 VALUE HI-TBL
OCH TMP-DATA PAST
ODH TMP-DATA PRESENT
1 J F GO TO

NO P
NO P
NO P

2 J F GO TO

1 F J 0 DD-PORT-A
COH DD-PORT-B

CLRW
PAST CLRF
PRESENT CLRF

11 II

3 J F GO TO

PADDR S P L I T !> HI-TBL !> LO-

PADDR CALL-SUB INDEX
PCL MOVWF

0 RETLW
I 1 I,

1 8 H RETLW

\ J u m p b a c k w a r d . k i s GOT0 da ta .
\ G e t b a c k w a r d j u m p address
\ f o r GOTO.

\ F-PC s y s t e m w o r d .
\ A s s e m b l e r u s e .
\ 11

\ 1 6 F 8 4 u s e .
\ II

\ OOOOH R e s e t vec tor

\ 0 0 0 4 H I n t e r r u p t vec to r .

\ P o r t A o u t p u t s .
\ P o r t B b i t 6 - 7 i n p u t s ;
\ 0 - 5 o u t p u t s .

\ Jump t o r u n p r o g r a m .

-TBL \ S a v e PCH a n d PCL
\ of INDEX.

\ L o a d c o m p u t e d o f f s e t .
\ 0 0 - > 5 b i t 7 SEGMENT code.

,I

\ 9 II

Forth Dimensions XX.5,6 5 1

1 { ..
2 The following words are in COMMON so they can be
3 used outside of a class.

The first two uses of object-oriented Forth for me were
FILES and LINKED-LISTS. This article covers LINKED-LIST
and ORDERED-LIST.

A linked list is a sequence of addresses with each address
holding the next address, except the last address, which has 0.

The addresses are the nodes of the linked list.
The first node is the head of the list. From it, we can get to

the rest of the nodes.
The nodes, other than the head, have information associ-

ated with them. This information, the payload, generally starts
in the cell just above the node. We will follow that convention.

A payload has identifying material. In the programming
here, the identifying material is at the start of the payload.
This is the item of the node. For me, the item is usually a counted
string. The contents of the string is the name of the node.

SWOOP is required for the class definitions. This will be
part of SwiftForth.

If you don't already have SWOOP, then Tool Belt #7 and
the SWOOP source in this issue have definitions that will be

5 ITEM-SCAN= scans the items in an Linked List for an item
6 that is equal. (s t r l e n head -- p r e v i t e m 1 0)

used here. In particular, it has >LINK to attach a new node to
a list, and a definition of STRING, also.

To attach a new item to a list, we use NEW-ITEM defined
with >LINK and STRING,.

The addresses held in the nodes of a list are offsets from
the address of their containing node. This allows the memory
containing the list to be saved and moved to a different loca-
tion. This is necessary for saving and re-loading the system.

To look up an item in a list, start from the head and check
each item for equality. ITEM-SCAN= does that. OVER + con-
verts the relative address to an absolute address. 0 remains 0.

In my work, I need or want the items to be in ordered
sequence-"sorted." Therefore, I look for an item that is less
than or equal to the one I have. When I find one, I compare
it once more for equality, and return previous 0 or previous
item . ITEM-SCAN<= does that.

If all items were referenced the same number of times,
this would make the look-up twice as fast.

For simplicity, I generally keep lists of text items ordered.

8 ITEM-SCAN<= scans the items in an Ordered List for an item
9 that is less or equal. (s t r l e n head -- p r e v i tern10)

11 NEW-ITEM adds a new item to a list.
12 (s t r l e n p r e v -- i t e m)

14 TOUPPER is a Forth equivalent of the Standard C Library
15 toupper. (c h a r -- f l a g)

18 : ITEM-SCAN= (s t r l e n head -- p r e v i t e m 1 0)

19 DUP 2SWAP 2>R (p r e v h e a d) (R: s t r l e n)
2 0 BEGIN NIP DUP @ DUP WHILE OVER+
21 DUP CELL+ COUNT 2R@ COMPARE O=
22 UNTIL CELL+
23 THEN (p r e v i t e m 1 0)
24 2R> 2DROP (R:) ;

26 : ITEM-SCAN<= (s tr l e n head -- p r e v i t em1 0)

27 DUP 2SWAP 2>R (p r e v h e a d) (R : str l e n)

52 Forth Dimensions XX.5,6

28 BEGIN NIP DUP @ DUP WHILE OVER +
2 9 DUP CELL+ COUNT 2R@ COMPARE O< NOT
30 UNTIL CELL+ DUP COUNT 2R@ COMPARE O= AND
31 THEN (prev i t e m 10)
32 2R> 2DROP (R:) ;

34 : NEW-ITEM (str l e n p rev -- i t e m)

3 5 >LINK (s t r l e n)
3 6 HERE >R STRING, ALIGN R> (i t e m) ;

38 : TOUPPER (c h a r -- f l a g)
39 DUP [CHAR] a - 26 U< 32 AND XOR ;

LINKED-LIST that will be used in the class and all its subclasses. These defi-
To make list handling easier, I define a class, and subclasses nitions will not be visible outside the class and its subclasses.

of, LINKED-LIST. There will be a Set of all VARIABLE and BUFFER: words for
In the class LINKED-LIST there are protected definitions each object of the class.

41 CLASS LINKED-LIST

43 { ..
44 RESERVING has the amount of data space to be alloted.

46 HEAD is the head of the linked list. (-- a d d r)

48 NEXT is the node pointer that points to the next node
49 when listing. (-- a d d r)

5i FIND does an ordered scan through the list. Deferred.
52 (s t r l e n -- p r e v i t e m 1 0)
53 .. 1

55 PROTECTED

5 7 VARIABLE RESERVING

59 VARIABLE HEAD

61 VARIABLE NEXT

63 DEFER: FIND (str l e n -- prev i t e m 1 0)

64 HEAD ITEM-SCAN<= ;

There are also public definitions that are visible inside and in subclasses.
outside the class and its subclasses. When these are used outside a class they must be immedi-

The deferred ones are virtual definitions and may get new by a reference to an appropriate object.

66 { ..
67 INIT re-initializes the list. Deferred.

69 RESERVE sets the amount of data space to be reserved when
70 a new-item is added. Default 0. (n fobjl --)

72 .LINE displays a line from the list. Deferred.
7 3 (i t e m [objl --)

Forth Dimensions XX.5.6 53

7 4 REWIND s e t s node p o i n t e r of t h e l i s t t o t h e beginning.
7 5 Deferred.

7 7 READ goes t o t h e next i t em i n t h e l i s t . Deferred.
7 8 ([obj] -- f a l s e I i t e m t r u e)

81 PUBLIC

83 DEFER: I N I T (--) 0 HEAD ! ;

85 : RESERVE (n --) 0 MAX RESERVING ! ;

8 7 DEFER: . L I N E (a d d r --) COUNT TYPE 3 SPACES ;

8 9 DEFER: REWIND HEAD NEXT ! ;

9 1 DEFER: READ (-- f a l s e I i t e m t r u e)

92 NEXT @
93 DUP @ DUP I F + DUP NEXT ! CELL+ DUP
9 4 ELSE N I P REWIND
9 5 THEN ;

We have a definition for looking up an item in a list, and
four definitions for adding an item to a list.

When deferred words in the definitions change in sub-
classes, these definitions do not change.

9 8 ITEM looks up a s t r i n g a s an i tem i n a l i s t .
9 9 (str l e n [obj] -- i t e m 1 0)

1 0 1 ADD-ITEM adds an i tem t o a l i s t i f i t ' s not a l r e a d y
1 0 2 t h e r e , and r e t u r n s t h e at idress .
1 0 3 (s t r l en [obj] -- i t e m)

1 0 5 ADD adds an i tem t o a l i s t i f i t ' s no t a l r e a d y t h e r e .
1 0 6 (str l e n [obj] --)

1 0 8 ADD-NEW-ITEM adds an i tem t o a l i s t , and r e t u r n s t h e
1 0 9 add res s . (s t r l en [obj] -- i t e m)

111 ADD-NEW adds an i tem t o a l i s t . (str l e n [obj] --) -
113 Adding an i tem t o an ordered l i s t i n s e r t s it i n t h e proper
1 1 4 p o s i t i o n t o keep it ordered .
115 .. 1

1 1 7 : ITEM (s t r l en [obj] -- i t e m 1 0) FIND N I P ;

1 1 9 : ADD-ITEM (str l en [obj] -- i t e m)

1 2 0 2DUP FIND (s t r l e n p r e v i t e m)
121 DUP I F N I P N I P N I P
122 ELSE DROP (s t r l e n p r e v) NEW-ITEM (i t e m)

I

54 Forth Dimensions XX.5,6

123 RESERVING @ /ALLOT
124 THEN ;

126 : ADD (str l e n [obj] --) ADD-ITEM DROP ;

128 : ADD-NEW-ITEM (str l en [obj] -- i t e m)

129 2DUP FIND (s tr l e n p r e v i t e m)
130 DROP (str l en p r e v) NEW-ITEM (i t e m)
131 RESERVING @ /ALLOT ;

133 : ADD-NEW (str l e n [obj] --) ADD-NEW-ITEM DROP ;

Very often, items are single words with no space characters. It is convenient to get them as the next input word.

136 ITEM' gets the next input word as an item and looks it
137 up in the list. ([obj] "name" --- i t e m 1 0)

139 ADD-ITEM: gets the next input word as an item, adds it
140 to the list if it's not already there, and returns
141 the item. ([obj] "name1' -- i t e m)

143 ADD: gets the next input word as an item, and adds it to
144 to the list if it's not already there.
145 ([obj] "name" -- i t e m)

147 ADD-NEW-ITEM: gets the next input word as an item, adds it
148 to the list, and returns the item.
149 ([obj] f f name" -- i t e m)

151 ADD-NEW: gets the next input word as an item, and adds it
152 to the list. ([objl " n a m e f f -- i t e m)
153 .. 1

155 : ITEM' TOKEN >QPAD COUNT ITEM ;

157 : ADD-ITEM: TOKEN >QPAD COUNT ADD-ITEM ;

159 : ADD: TOKEN >QPAD COUNT ADD ;

161 : ADD-NEW-ITEM: TOKEN >QPAD COUNT ADD-NEW-ITEM ;

163 : ADD-NEW: TOKEN >QPAD COUNT ADD-NEW ;
x.

We want some definitions to display the items in a list,

165 { ..
166 ITEMS displays the items in a list.

168 LIST displays the items in a list using .LINE deferred
169 word. ([objl --

171 #ITEMS counts the items in a list. (tobj l -- n)
172 .. 1

Forth Dimensions XX.5.6 55

1 7 4 : ITEMS
1 7 5 CR REWIND
1 7 6 BEGIN READ WHILE COUNT ? T Y P E 3 SPACES REPEAT ;

1 7 8 : LIST CR REWIND BEGIN READ WHILE . L I N E REPEAT ;

1 8 0 : #ITEMS 0 REWIND BEGIN READ WHILE DROP 1+ REPEAT ;

182 END-CLASS

ORDERED-LIST
The class LINKED-LIST uses a single ordered list. When

the list has many items, the performance will suffer.
A method that has worked well for me is to define a class

of multiple ordered lists. This is a subclass of LINKED-LIST.
One approach I considered was 256 ordered sublists--one

for each possible first character.

That's a lot of lists for the items I use.
The items I deal with are usually English words or lines of

text. I take the first character, convert lower case to upper
case, translate characters below A to 0, A-Z to 1-26, and char-
acters above Z to 27. This gives 28 sublists, each an ordered

, list. All the items in a sublist precede those in the next sublist.

1 8 4 LINKED-LIST SUBCLASS ORDERED-LIST

186 {

1 8 7 [HEADS1 is the number of sublists. (- - n)

189 SUBHEADS is the array of sublists. (-- a d d r)

191 HASH hashes the items. (str 1, -- s tr l e n h a s h)

193 FIND looks up a string in the string'. ;ublist.
1 9 4 (s tr I -- p r e v i t e m 1 0 1

196 MORE gets the next item, passing from le sublist to the
1 9 7 next. (-- ~ l s e I i t e m t r u e)

199 HEAD has the index of the active subl. :. (-- a d d r)
2 0 0 1

202 PROTECTED

2 0 4 2 8 CONSTANT IHEADSl

2 0 6 IHEADSl CELLS BUFFER: SUBHEADS

2 0 8 : HASH (str l e n - s t r l e n h a s h)

2 0 9 OVER C@ TOUPPER 6 4 - 0 MAX -. ' MIN ;

211 : FIND (s t r 'le. - - p r e v i t e m 1 0)

212 HASH CELLS SUBHEADS + ITEM-SCAI = ;

2 1 4 : MORE (-- f. ;e I i t e m t r u e)

215 NEXT @
216 DUP @ DUP I F + DUP NEXT ! CE: - TRUE (i t e m t r u e)
2 1 7 E L S E N I P
218 THEN ;

56 Forth Dimensions XX.5.6

The deferred words in LINKED-LIST get new definitions.
The other words of LINKED-LIST are available in OR-

DERED-LIST using the new definitions of deferred words.

220 PUBLIC

222 : INIT ([obj] --) SUBHEADS)HEADS1 CELLS ERASE ;

22 4 : .LINE (i tem [obj] --) COUNT TYPE CR ;

22 6 : REWIND (lobj I --) 0 HEAD ! SUBHEADS NEXT ! ;

22 8 : READ ([objl -- f a l s e I i tem true)

22 9 BEGIN MORE DUP ? ? EXIT DROP ()

230 HEAD @ 1+ DUP IHEADSI < WHILE (index)
231 DUP HEAD ! CELLS SUBHEADS + NEXT ! ()

232 REPEAT (index)
233 DROP 0 REWIND ;

235 END-CLASS

The following words are COMMON.

ITEM-SCAN<= ITEM-SCAN= NEW-ITEM

The following words are in class LINKED-LIST and ORDERED-LIST

#ITEMS .LINE ADD ADD-ITEM ADD-ITEM: ADD-NEW
ADD-NEW-ITEM ADD-NEW-ITEM: ADD-NEW: ADD: INIT
ITEM ITEM' ITEMS LIST READ RESERVE REWIND

Tool Belt #8

"EVALUATE Macros" has the following.

TOKEN >QPAD (: ? ?

Forth Dimensions XX.5,6 57

58 Forth Dimensions XX.5,6

opening of the file isn't shown here because there are many After the last line has been read and inserted in the list,
ways you might want to choose it. LOANER LIST displays it. LIST uses deferred method .LINE

ized, filled, displayed, and discarded. matter, because LOANER will be initialized at its next use.
As the list will consume data space, the sort process saves To sort the lines of a file after opening SRC with it:

HERE before initializing the list.

1 I N P U T F I L E S BUILDS SRC
2 ORDERED-LIST BUILDS LOANER

4 \ < f i l e - o b j > SORT d i sp lays t h e s o r t e d l i n e s of t h e f i l e .

6 I N P U T F I L E S RE-OPEN

8 : SORT
9 HERE > R

1 0 LOANER I N I T
11 REWIND
12 BEGIN READ WHILE LOANER Add-New REPEAT
13 LOANER L I S T
14 R> HERE - ALLOT ;

1 6 END-CLASS

Count Word Frequencies
Rather than sorting the lines of a file, we want to count

the number of occurrences of the different words in it.
For this we define ItemhQuantity as a subclass of or-

dered list. After the item of the list, we will make space for
the quantity. In other applications, we may make space for
further things. The definition of the cell for the quantity is

deferred so different positions for it may be used in other
lists. In the same way, NAME and .NAME: are deferred.

In this new class, we replace the definition of .LINE. It
will display the quantity when space has been allotted for it.

The definition of LIST is not changed.
The name of the object is Word-Counts.

1 ORDERED-LIST SUBCLASS ItemhQuantity

3 DEFER: QTY (i t e m -- a d d r) COUNT + ALIGNED ;

5 DEFER: NAME (i t e m -- s tr l e n) COUNT ;

Standard Forth. For the source for thisarticle,send e-mail
requesting Stretching Forth 1125: Ordered List Examples.

7 : .N= (i t e m --) NAME ?TYPE SPACE ;

9 : . L I n (i t e m - -)

10 DUP .NAME
11 RESERVING @ IF DUP QTY @ . THEN
12 DROP
13 2 SPACES ;

15 END-CLASS

17 Item&Quantity BUILDS Word-Counts CELL Word-Counts RESERVE

We may want to count words in several files, so we do not
initialize the list with each source file. The list can be dis-
played with Word-counts LIST after collecting from any or
all files.

When traversing a source file, instead of inserting each
line, Tally-Words-in-the-Line is called for each line.

In Tally-Words-in-the-Line, the alphabetic words are
extracted from each line. Each alphabetic word is inserted in
word-Counts with ADD-ITEM, which yields the address of
the item. When a new item is inserted, the quantity has 0 as
its value. The quantity is incremented with ++.

Extracting the alphabetic words is done with SCAN [, SKIP [,

IS-ALPHA, and SPLIT. Definitions for SCAN[and SKIP [are
in Tool Belt #8.

IS-ALPHA tests a character for alphabetic. SCAN[IS-AL-
PHA]SCAN advances in the line up to the next alphabetic
character.

We remember where we are in the line with PDUP, and use
SKIP [IS-ALPHA 1 SKIP to advance to the next non-alpha-
betic character. SPLIT splits the line into two parts, the top
part being the alphabetic word that has been isolated, the
other part being the rest of the line.

Display the words with their counts using:
.Word-Counts LIST

19 : Tally-Words-in-the-Line (s t r l e n --)

21 BEGIN SCAN[Is-Alpha] SCAN DUP WHILE (s t r l e n)

23 2DUP SKIP[Is-Alpha] SKIP SPLIT (s t r 2 len2 s t r l l e n l)
2 4 Word-Counts Add-Item Word-Counts QTY ++ (s t r l e n)

26 REPEAT 2DROP ;

28 : Tally-Words (--)

2 9 SRC REWIND
30 BEGIN SRC READ WHILE (s t r l e n)
3 1 Tally-Words-in-the-Line ()

32 ?REPEAT ;

Here is the beginning of the word counts of DPANS94.

Tally-Words Word-Counts LIST

a 1980 AAAA 1 abandoned 1 abbreviation 3
abbreviations 1 ABC 3 ABCD 2 abilities 1
ability 10 able 5 abort 49 Aborted 1 about 27
above 32 ABS 9 absence 6 absent 1 absolute 10
Abstain 1 abstract 1 abstraction 2 ABUFFER 1
Academic 2 accented 1 accept 29 acceptable 3
acceptance 3 accepted 5 accepting 1 accepts 4
Access 69 accessed 15 accesses 4 accessible 4
accessing 10 accommodate 2 accommodated 5

Forth Dimensions XX.5,6 59

accomplish 3 accomplished 6 accomplishing 1
accordance 2 according 6 accordingly 1
Accredited 1 accuracy 6 accurate 2 accurately 2
accustomed 1 achieve 2 achieved 2 achievements 1
achieves 1 acknowledges 1 ' acknowledging 2
acknowledgment 1 ACM 1 acquire 3 acquired 3
acquiring 1 across 6 acted 1 acting 1 action 17

Most Frequent Words
The listing we started to display was too much of too little.
So instead of displaying all of the words alphabetically,

let's show a few of them in order of greatest frequency.
An object, named TOPPER, to do that is given later. Now

we'll use ! , ADD, and LIST from it to define another method
in ItemLQuantity.

! seems to work like common !, but it does much more.

For one thing, the size of the value is checked. It also initial-
izes the working arrays.

ADD takes a pointer to a counted string and an associated
quantity, and merges them into the working array. The maxi-
mum number of pairs is set by !.

LIST displays the saved pairs.
The new method in I tem&Quanti ty is TOP.

1 Item&Quantity RE-OPEN

3 : TOP (n --)

4 TOPPER !
5 REWIND BEGIN READ WHILE
6 DUP QTY @ TOPPER ADD
7 REPEAT
8 TOPPER LIST ;

10 END-CLASS

Now we can see the 31 most-frequent words of our data.

31 WORD-COUNTS TOP

the 4857 of 2155 a 1980 to 1555 is 1398 and 1217
in 1058 Forth 740 Word 732 that 670 be 646
for 615 by 603 R 600 If 519 or 515 an 510
are 498 n 473 Stack 443 This 432 X 430 set 429
as 411 Core 406 U 400 Data 394 with 389 on 388
not 374 c 366

v

12 ORDERED-LIST BUILDS STOPWORD

In this listing, the special words are buried in the very
frequent general words. So let's eliminate the uninteresting
words from the output.

In information retrieval, uninteresting words are called

1 4 Item&Quantity RE-OPEN

stopwords . We will put a bunch of them in an ordered list.
HOT is the name of the new method, and looks a lot like

TOP.

1 6 : H O T (n - -)
1 7 TOPPER !
18 REWIND BEGIN READ WHILE
1 9 DUP NAME STOPWORD ITEM O= IF
2 0 DUP DUP QTY @ TOPPER ADD
21 THEN DROP

60 Forth Dimensions XX.5.6

22 RE PEAT
23 TOPPER LIST ;

25 END-CLASS

The set of important words looks a lot better.

31 Word-Counts HOT

Forth 740 Word 732 Stack 443 set 429 Core 406
Data 394 Standard 355 words 350 system 348
addr 334 file 333 Address 323 Floating 305
definition 303 implementation 289 Input 279
String 269 EXT 265 Name 263 cell 256
Character 245 defined 238 space 229 execution 224
characters 221 Program 217 Semantics 204 zero 198
Systems 197 Block 191 Code 188

Iterated interpretation is used to put words into the or-
dered list STOPWORD.

The following code is equivalent to:

STOPWORD ADD: a STOPWORD ADD: about STOPWORD ADD: above
STOPWORD ADD: across STOPWORD ADD: after . . .

2 These stop words are taken from Christopher Fox,
3 "Lexical Analysis and Stoplists" in Frakes and
4 Baeza-Yates, -Information Retrieval-, ISBN 0-13-463837-9.
5 The list is based on the Brown Corpus.

STOPWORD ADD: I I
a about above across after again against
all almost alone along already also
although always among an and another any
anybody anyone anything anywhere are area
areas around as ask asked asking asks
at away b back backed backing backs be
became because become becomes been before
began behind being beings best better
between big both but by c came can
cannot case cases certain certainly clear
clearly come could d did "differ different
differently do does done down downed
downing downs during e each early either
end ended ending ends enough even evenly
ever every everybody everyone everything
everywhere f face faces fact facts far
felt few find finds first for four from
full fully further furthered furthering
furthers g gave general generally get
gets give given gives go going good
goods got great greater greatest group

Forth Dimensions XX.5,6 6 1

grouped g r o u p i n g g r o u p s h had h a s have
h a v i n g h e h e r h e r e h e r s e l f h i g h h i g h e r
h i g h e s t him h i m s e l f h i s how however i
i f i m p o r t a n t i n i n t e r e s t i n t e r e s t e d
i n t e r e s t i n g i n t e r e s t s ' i n t o i s it i t s
i t s e l f j j u s t k keep keeps k i n d knew
know known knows 1 l a r g e l a r g e l y l a s t
l a t e r l a t e s t l e a s t l e s s l e t l e t s l i k e
l i k e l y l o n g l o n g e r l o n g e s t m made make
making man many may m e member members
men migh t more most m o s t l y m r m r s much
must my myself n n e c e s s a r y need needed
n e e d i n g needs n e v e r new newer newest n e x t
no nobody non noone n o t n o t h i n g now
nowhere number numbers o o f o f f o f t e n
o l d o l d e r o l d e s t on once one o n l y open
opened open ing opens o r o r d e r o r d e r e d
o r d e r i n g o r d e r s o t h e r o t h e r s o u r o u t o v e r
p p a r t p a r t e d p a r t i n g p a r t s p e r p e r h a p s
p l a c e p l a c e s p o i n t p o i n t e d p o i n t i n g p o i n t s
p o s s i b l e p r e s e n t p r e s e n t e d p r e s e n t i n g
p r e s e n t s problem problems p u t p u t s q
q u i t e r r a t h e r r e a l l y r i g h t room rooms
s s a i d same saw s a y s a y s second s e c o n d s
s e e seem seemed seeming seems s e e s
s e v e r a l s h a l l s h e s h o u l d show showed
showing shows s i d e s i d e s s i n c e s m a l l
s m a l l e r s m a l l e s t s o some somebody someone
something somewhere s t a t e s t a t e s s t i l l s u c h
s u r e t t a k e t a k e n t h a n t h a t t h e t h e i r
them t h e n t h e r e t h e r e f o r e t h e s e t h e y
t h i n g t h i n g s t h i n k t h i n k s t h i s t h o s e
though t h o u g h t t h o u g h t s t h r e e t h r o u g h t h u s
t o t o d a y t o g e t h e r t o o t o o k toward t u r n
t u r n e d t u r n i n g t u r n s two u under u n t i l
up upon u s u s e u s e d u s e s v v e r y w
want wanted wan t ing wants was way ways
we w e l l w e l l s went were what when where
whe the r which w h i l e who whole whose why
w i l l w i t h w i t h i n w i t h o u t work worked
working works would x y y e a r y e a r s y e t
you young younger y o u n g e s t y o u r y o u r s z

Accumulate and Display Top Values
The class object here is not a linked list or ordered list.

However, most of the operations have the same purpose
and the same name. Subclasses can re-define .LINE to get
other forms for listings.

1 { ..
2 CLASS TOPPERS -- Accumulate and D i s p l a y Top Values

I 4 < o b j e c t > INIT c l e a r s a c c u m u l a t o r s f o r t o p v a l u e s .

I I

62 Forth Dimensions XX.5,6

6 <n> < o b j e c t > ! s e t s number o f t o p v a l u e s t o <n>, and
7 i n i t i a l i z e s .

9 <addr> < q u a n t i t y > < o b j e c t > qDD i n s e r t s i n t o t o p v a l u e s .
1 0 <addr> i s a c o u n t e d s t r i n g .

12 < o b j e c t > ITOPPERI i s t h e maximum number o f t o p p e r s .

1 4 < o b j e c t > @ i s t h e c u r r e n t number o f t o p p e r s .

1 6 < o b j e c t > REWIND s e t s t h e l i s t t o t h e b e g i n n i n g .

18 < o b j e c t > READ g e t s t h e n e x t (-addr qty-) .

2 0 < o b j e c t > ITEMS d i s p l a y s t h e s t r i n g s .

2 2 < o b j e c t > . L I N E d i s p l a y s t h e s t r i n g a t (-addr-) and
2 3 (-qty-) . D e f e r r e d .

25 < o b j e c t > L I S T u s e s . L I N E f o r e v e r y (- a d d r qty-)

2 9 CLASS TOPPERS

31 1 5 0 CONSTANT JTOPPERJ (Allow f o r s o many.)

33 PROTECTED

35 VARIABLE N

3 7 VARIABLE NEXT

39 ITOPPERI 1+ CELLS BUFFER: ADDR (P t r t o Counted S t r i n g)

40 ITOPPERI 1+ CELLS BUFFER: RANK (Q u a n t i t y f o r Rank)

4 2 PUBLIC

4 4 : @ (-- n) N COMMON @ ?DUP O = ? ? ITOPPERI ;

4 6 : INIT (--)

4 7 N COMMON @ O = I F (T O P P E R (N COMMON ! THEN
4 8 ADDR N COMMON @ CELLS ERASE ?.

4 9 RANK N COMMON @ CELLS ERASE ;

51 : ! (n - -)
52 DUP 1- [TOPPER1 U< NOT ABORT1' I l l e g a l Number of Toppers ."
53 N COMMON ! ()

5 4 I N I T ;

56 : ADD (i t e m q u a n t i t y --)

5 7 0 N COMMON @ 1- CELLS DO (i t e m q u a n t i t y)
58 DUP RANK I + COMMON @ > NOT ? ? LEAVE
59 DUP RANK I + DUP COMMON @ OVER CELL+ COMMON ! COMMON !

Forth Dimensions XX.5.6 63

60 OVER ADDR I + DUP COMMON @ OVER CELL+ COMMON ! COMMON !
61 -1 CELLS +LOOP 2DROP ;

63 : REWIND NEXT O F F ;

65 : READ (-- f a l s e I a d d r q ty t r u e)

66 NEXT COMMON @ DUP N COMMON @ < I F
6 7 CELLS DUP ADDR + COMMON @
68 SWAP RANK + COMMON @ TRUE
69 NEXT ++
7 0 E L S E
7 1 DROP NEXT O F F FALSE
7 2 THEN ;

7 4 : ITEMS CR REWIND
7 5 BEGIN READ WHILE
7 6 DROP COUNT ? TYPE 3 SPACES
7 7 REPEAT
7 8 CR ;

8 0 DEFER: .%1m (a d d r q t y --)

8 1 SWAP COUNT ? T Y P E SPACE . 2 SPACES ;

83 : LIST CR REWIND BEGIN READ WHILE . L I N E ?REPEAT CR ;

8 7 : OFF 0 ! ;

95 END-CLASS

9 7 TOPPERS BUILDS TOPPER

64 Forth Dimensions XX.5.6

Part Two

Reed Solomon Err
In part one of this article (FD XX.4), an introduction to

finite field arithmetic was given. This is the math system used
in many computer algorithms such as error correction, data
encryption, and pseudo-random number generation. It is used
because it is efficiently implemented in both computer hard-
ware and software. In this article, Reed Solomon Error Cor-
rection design and use is discussed.

Reed Solomon Design
To design a Reed Solomon corrector, various parameters

such as symbol size, generator polynomial, and number of
redundancy symbols must be chosen. A thumbnail sketch of
how to do this is presented here.

Reed Solomon Error Correction Codes (ECC) always work
on a block of data, usually of a fixed size determined by the
designer. If you have a continuous data stream to protect, it
must be divided into blocks, or chunks of fixed size. Some-
times, the block size to choose is obvious: if you are sending
data in 128-byte packets, for example, that would be a natu-
ral choice for the block size. The protected data is not changed
by the ECC. ECC symbols are simply added to the end of the
data block and the new, larger block is sent as a single block
of data. The maximum block size that can be protected is
limited by the symbol size chosen, as follows:

Maximum block size = 2(symba''b'u)- error correction sym-
bols added - 2

For example, if we choose an eight-bit symbol (byte), and
decide to protect the data block with 16 bytes of ECC, the
maximum data block we could handle would be 256 - 16 - 2,
or 238 bytes. Any smaller block size will also work. The data
symbols must be the same size or smaller than the ECC sym-
bols, so eight-bit symbols are often chosen if the data block is
byte-oriented. Interleaving techniques, discussed later, can be
used if larger block sizes are needed.

The number of correction symbols to add to each data
block depends on the correction capability desired. It takes
two symbols of redundancy (ECC symbols, or check symbols)
to correct any data symbol in error. You can think of it as one
symbol to figure out where the error is, and one to figure out
what the error needs to be corrected to. If we only needed tg
correct a single byte in error, we would append two bytes to a
byte-oriented datablock. It is usual practice to use at least six
to eight or more symbols of protection, and more symbols
may be needed to give good error detection performance, as
discussed later.

In the example above, sixteen bytes of ECC have been
appended to the data block. The ECC can therefore correct
up to eight bytes in error. The bytes in error can be anywhere

in the received block, including the ECC bytes themselves.
However, the nature of Reed-Solomon ECC is such that, if
the received data block has more errors than can be corrected,
no errors at all can be corrected. So if, in the example above,
nine bytes are in error, the correction algorithm will fail, and
not a single byte can be repaired.

Furthermore, if all the check symbols are used to correct
errors, we cannot tell with confidence whether or not the
capability of the ECC was overrun. This can result in a
miscorrection in which the ECC seemed to correct all errors
but, in reality, there were still more errors and we didn't know
it. We can reduce the probability of miscorrection either by
giving up some error correction capability, by adding more
check symbols, or by further protecting the data with an er-
ror detector such as CRC (cyclic redundancy check). Notes in
the ECC software package discuss this further.

The choice of which of the available irreducible polynomi-
als and which offsets to use is subtle and not important in most
applications. Some polynomials and offsets allow hardware sav-
ings if parts of the algorithms are to be implemented in hard-
ware. I don't recommend one over another, as all valid polyno-
mials will give the sarne correction capability and the sarne prob-
ability of miscorrection over the full set of data patterns.

An encoder (Figure One-a) is used to generate the ECC sym-
bols on the sending end. These symbols are then sent along
with the original data. A decoder (Figure One-b) is used at the
receiving end to detect received errors, and to provide the
information necessary to correct errors if any are present. The
encoder is implemented as a polynomial divider that gener-
ates check symbols. When the check symbols are appended
to data symbols, the entire data set is evenly divisible by a
polynomial called the generator polynomial.

Because the number of data sets that are evenly divisible
by the generator polynomial is miniscule compared to all
possible data sets, nearly any error combination will corrupt
the data set to something not evenly divisible by the genera-
tor polynomial. We can, therefore, detect the presence of an
error in the received data set by testing to see if a remainder
exists when the data set is divided by the generator polyno-
mial. This is what the decoder does.

If errors are detected, the decoder block's registers con-
tain syndrome symbols. These symbols contain the informa-
tion necessary to locate and correct the errors. For each error
in the data set, two parameters are required: the location of
the error (given as the number of symbols from the end of
the data set) and the error value, which is given as the sym-
bol to add (XOR) to the received symbol to make it correct.
The algorithms to find these parameters involve solutions to
simultaneous equations.

The more errors there are in the received data set, the larger

--

Forth Dimensions XX.5,6 65

one data set.
The code package that implements Reed-Solomon in Forth

is too large to be included with this article. It is available for
downloading at ftp://ftp.forth.org/pub/Forth/FD/1999/
ReedSol.zip. The zipped file contains five files:

rsencode.txt The finite field generator and the en-
coder. Also verifies the finite field.

rsdecode. tx t The decoder, and single- and double- er-
ror correctors. Some disk utilities for read-
ing and writing data sets are also included.

rscorrec. txt The full error corrector.
rsverifi.txt A simple code verifier that ensures things

are basically working.
rsload. txt Loads the above files.

Some words of note
ENCODE takes a symbol on the stack and encodes it. Re-

sults are in the array called REGISTERS. DECODE takes a sym-
bol from the stack and decodes it. Results are in the SYN-
DROMES array.

RESET-ENCODER and RESET-DECODER must be invoked
before starting a new data set.

DATABUF is an array you can use for the data set you're
working on.

ERROR? returns a true flag if the syndrome array indicates
an error has occurred. You must decode the entire data set,
including the ECC check symbols, before the syndrome ar-
ray has valid data.

CORRECT implements the correction algorithm. It checks
for an error, then attempts single and double error correc-

tion, in order. If that fails, it invokes the full correction algo-
rithm. It returns a true flag if correction was done success-
fully. The data in DATABUF is changed to a corrected version
by the CORRECT algorithm. Note that if ECC is overrun, COR-
RECT may return a true flag when the data has actually been
miscorrected. As noted above, you can compensate for this
with CRC protection, or by limiting the number of errors the
full corrector is allowed to correct. If, for example, the ECC
has the capability to correct eight symbol errors (16 check
symbols), and you limit the corrector to error lengths of four
or less and fail any data set with five or more errors, the
miscorrection probability will be very low.

In this implementation, all symbols are stored as CELLS,
and the check symbols are always stored separately from the
data, in the REGISTERS array. In practice, the check symbols
are concatenated to the data, and then sent. This implemen-
tation does not have support for interleaving multiple data
sets.

As a final comment, Forth's interactivity was very valuable
in helping me understand this difficult subject. The ability to
do finite field arithmetic from the keyboard as if it were a cal-
culator, and to simply play with the algorithms, was very nice.

References
1. Theory and Practice of Error Control Codes. Richard Blayhut.

ISBN 0-201-10102-5 (1983)
2. Practical Error Correction Design for Engineers. Znd ed. Neal

Glover and Trent Dudley. Available from Cirrus Logic (303-
466-5228).

3. "Error Recovery Codes," Dr. Dobbs journal (Dec 1994). Bart
de Cann. Good summary of ECC.

Three-Stack Machine, continued from page 14.

in the world. I suspect that a viable H3sm engine would be
somewhere in the vicinity of twice the silicon of a similar
Forth or p21-type machine. Maybe more, but not ten times
more. Most of the horridness of H3sm-in-C should vanish as
hardware. While coding the interpreter in macros, I got the
sense of the thickness of the language. I had hoped stack-danc-
ing would all but vanish. It didn't, not nearly; but with three
legs, you kick twice as many shins with the same pirouettes.

Parts of the H3sm interpreter are reusable in ways that
may not be the case in a Forth, because things could be done
with just pointers. Pointers seem almost inviting at times in
H3sm. That surprised me. They were certainly a nightmare
in C in the H3sm primitives, such as doHNC, H3sm1s EXECUTE.
~ O H N C is where everything that is out of phase with C comes
to a head. Pointers are still sort of an unsolved problem in
programming, it seems, and remain so. H3sm hides pointers
somewhat, though, without Java-like silliness like pretend-
ing there's no address bus.

Also of note, stack manipulation challenges are perhaps
at their worst when writing an interpreter, because the inter-
preter must be immune to any possible stack or s i z e effects
of EXECUTE (doHNC). That's one of the things you learn when
writing a TIL. Hairy stuff. The H3sm user shouldn't have to
resort to elaborate stack notations like the ones in the inter-
preter source, which I found quite necessary at the time be-
cause that wasn't H3sm yet. Similarly, 1 hope to have done

Forth Dimensions XX.5,6

the ugliest pointer abuse for you already.
Proper factoring can allow you to make maintainable C

programs that violate every written and unwritten rule of
C programming. Factoring is the Light and the Way. "Struc-
tured Programming" is a historically unfortunate obfusca-
tion of factoring.

The "operator-typing" of Forth words like 2+ and so on
tends to persist in threads using these operators. I see the
elimination of size-typed operators like ~ D U P and so on as a
win, and the win persists. The attendant added instructions,
such as TOsize, have other uses and synergies as well. That
is, they are not purely namespace baggage. And once again,
H3sm has the equivalent of 8DuP, 64DUP, 128XOR, 11+ and

-.so on, innately. There is no semantic cost for them, although
bigger is still slower, in most cases. I suspect that some of
these oddities would be quite useful in, e.g., graphics, and in
conjunction with floating-point hardware. The possibilities
are myriad.

Charles Moore mentioned recently that there is some sus-
picion that the p21's address register may become a stack. He
doesn't see it going that way. The part the p21 doesn't have
that justifies the extra stack in H3sm is the sizeability of pytes.
This has been my interest since before hearing about p21.
On the other hand, I settled on "flagpytes" after hearing about
the p21's nifty little portable flag bits.

This paper was first presented a t the 1998 FORML Conference.

Introduction
Forth systems have been used for real-time applications

from its earliest days. These real-time systems have typically
been monolithic Forth systems (that is, they were pure Forth
systems where Forth provided both the operating environ-
ment as well as the application itself).

It is increasingly common for Forth to be used in systems
where Forth implements the application but not the operat-
ing environment. In the past, I have shown how Forth can
still be used practically in these environments. This includes
network applications [I] for scripting and to implement
WWW CGI [Z] and multithreading [3]. Forth can also be used
to advantage in real-time systems that are designed in this
way. We discuss the kinds of environments likely to be seen
when using Forth in this way and present a small example
under real-time Linux.

"External" real-time environments
There are many "external" real-time environments that a

Forth application may find itself running in. The smallest of
these are the real-time microkernels that provide only the
real-time scheduler and the functions necessary to support
applications that use it. RTKernel [5] is an example of this
type of environment. Using this kind of system from Forth
simply requires the use of a new API from Forth to reach the
real-time functions; otherwise, it is pretty much like a mono-
lithic Forth system.

There are more-sophisticated systems that provide a com-
plete operating system environment, specifically designed for
real-time use. An example of this is the VxWorks [6] system
which was successfully used in the recent Mars Pathfinder
mission. In this type of environment, a proprietary operat-
ing system sits underneath the applications, which must use
the operating system to provide all the real-time resources
and the API to use them. Technically, these types of systems
are ideal, since the real-time operating system is specifically
designed to handle that part of the tasks.

Proprietary real-time operating systems have the disad-
vantage that the systems developers must learn a new oper-
ating system in order to develop, implement, and test their
application. As a consequence of this, many vendors of pro"
prietary real-time operating systems have made an effort, as
much as possible, to present a "look and feel" that is similar
to more familiar operating systems (most typically, this means
Unix). These operating systems also are necessarily rather
expensive, because they must provide the complete operat-
ing system and support tools, which can make it onerous to
use in an R&D environment. In response to these disadvan-

tages, another category of real-time systems has been created.
These systems retrofit real-tirne into an existing general pur-
pose operating system. This has the advantage that the ex-
pense of obtaining this type of operating system is limited to
the "kernel patch" that makes real-time possible and to the
real-time API libraries. This type of retrofit is available for
Linux [7] and for Windows NT.

Using Real-Time Linux from Forth
The Real-Time Linux kernel works by running a real-time

microkernel underneath Linux. Linux itself is run as a low-
priority microkernel task. To run a real-time application, one
writes a small module that implements the portion of the
application that is the real-time component. This module
must conform to the Linux specification for a run-time load-
able module [4], using the real-time API. The rest of the ap-
plication is then a normal Linux program that communicates
the control information to the module. The communication
mechanism between the two parts of the application are up
to the implementor to choose; typically shared memory or a
FIFO is used. Because the module only needs to implement
the actual real-time code, the module portion is typically quite
small. The scale of the main control portion of the code de-
pends upon the demands of the application.

An example
As a simple example, we present an application which

must control two Pulse-Width-Modulated (PWM) controlled
servomotors, which are commonly used in radio-controlled
aircraft using the parallel port of the PC. The real-time code
(Listing One) is a simple C program that generates two differ-
ent square waves on the first two output pins of the parallel
port. The controlling Forth program (Listing Two) accepts
pairs of numbers from the user (which correspond to the de-
sired position of the two motors) and sends them to the real-
time module.

The communication between the real-time module and
Forth is accomplished using a FIFO. This communication is
accomplished with extensions to the Forth system that allow
it to do binary 110 through a Unix file descriptor (which is
more general than the ANS Forth File wordset); see Appendix
One for details. If a shared memory design was used, then
the two processes would use a programmatic interface simi-
lar to that described in Appendix Two.

Summary
A system where there is no real distinction between the

Forth operating environment and the Forth application is
considered ideal by most Forth programmers. However sys-
tems where Forth is used to implement the application and

Forth Dimensions XX.5,6

not the environment are increasingly common and are quite
practical. We have presented here a case where real-time ap-
plications can be implemented in such an environment. In
order to be able to use Forth in these kinds of a system, then
it must be able to communicate with the real-time environ-
ment. This means that, depending upon the type of real-time
system being used, that Forth must either have access to the
real-time API or that it must have a means of communicating
with the real-time tasks. Both of these are fairly easy to achieve
in modern Forths.
References
l.Carter, E.F., 1994; "Internetworking with Forth," FORML

1994.
2.Carter, E.F., 1996; "Forth as a scripting language,"

Rochester Forth Conference, 1996.
3.Carter, E.F., 1996; "Can POSIX threads be used as a

Standard Forth Multitasker?" FORML 1996.
4. Rubini, Allessandro, 1998; Linux Device Drivers, OIReilley

& Associates, ISBN 1-56592-292-1.
5. RTKernel, On Time lnformatik GMbH, Hamburg Ger-

many
6.VxWorks1 Wind River Systems.
7. http://luz.cs.nmt.edu/-rtlinuxl

Appendix One. Forth System Calls for Multitasking support
The following glossary describes the words added to the

standard PFE V0.9.14 compiler in order to support multitask-
ing on LinuxIUnix systems.

ing copies of all variables as they are currently set and of all
open file descriptor handles. The value of x is -1 if the fork
fails. If the fork is successful, the value of x is 0 for the copied
version (the child process), it is the process id of the child
process for the original version (the parent process).

open-fd (c-addr u £am - f d flag)
This word opens a file specified by the string c-addr, u with
the given file-access method, fam. The flag value is non-zero
if it failed and zero if it succeeds. The fd is an integer file
descriptor of the file.

pipe (- rd w r flag)
This word causes the creation of an anonymous (or un-named)
pipe for use with inter-process communication. If it succeeds,
flag is zero and rd is the file descriptor of the read end of the
pipe, and wr is the fie descriptor of the write end of the pipe. If
pipe fails, flag is -1 and the values of rd and wr are undefined.

read-fd (addr u f d - u')
This word reads up to u bytes from the filedescriptor, fd, and
places the data at addr. The returned value u' is the number of
bytes actually read.

wait (- p s)
This word is used by parent processes to wait for the exit of a
child process. On return, p is the process id of the exiting child
process, and s is the exit status of the child.

close-fd (fd - flag)
This word closes a file specified by the file descriptor, fd. The
flag value is non-zero if it fails and zero if it succeeds.

VARIABLE wfd
VARIABLE rfd
VARIABLE cnt

write-fd (addr u fd - u')
This word writes up to bytes from the data starting at the
address, addr, to the file descriptor, fd. The returned value u'

fork (- x)

This word causes the current process to clone itself, includ-

1 128 CONSTANT bufsize

is the number of bytes actually written.

CREATE iobuf bufsize ALLOT

Example application
\ pipe-f.fth Example of using pipes for two-way communication
\ between parent and child processes
\
\ This program runs on PFE or GForth
\ with special extensions to handle binary 1/0 to a
\ file descriptor: open-fd, write-fd, close-fd
\ (see accompanying documentation for details)
\
\ (c) Copyright 1998, Everett F. Carter
\ This program may be used for any purpose provided the above
\ copyright notice is preserved.
\ =-- ..

I HEX
: tolower (cu -- cl) \ trivial, for demo only

DUP 10 > IF 20 OR THEN

--

Forth Dimensions XX.5,6

DECIMAL

/ : parent-process (--) \ sends (upper case) 'HELLO WORLD' to child I
s" HELLO WORLD" wfd @ write-fd DROP

iobuf bufsize rfd @ read-fd iobuf SWAP TYPE CR
>

: child-process (--) \ returns received data converted to lower case
iobuf bufsize rfd @ read-fd cnt !

1 cnt @ 0 DO iobuf I + DUP C@ tolower SWAP C! LOOP I
iobuf cnt @ wfd @ write-fd DROP

: pipe-test (--)

\ open two pipes
pipe O< ABORT" unable to open first pipe "

pipe O< ABORT" unable to open second pipe "

\ now split in two '

fork DUP O< ABORT" unable to fork "

0 = IF \ child
\ the child uses the second write pipe and the

\ first read pipe, closing the others
wfd !

close-fd DROP
close-f d DROP
rfd !

\ close standard I / O , since the child does not use
\ them. If they are not explicitly closed in the child
\ then Forth starts double echoing everything typed.

0 close-fd DROP
1 close-fd DROP
2 close-fd DROP

child-process

wfd @ close-fd DROP
rfd @ close-fd DROP

BYE
ELSE \ parent

\ the parent uses the second read pipe and the
\ first write pipe, closing the others

close-fd DROP
rfd !

%

wfd !
close-fd DROP

I parentprocess I
I wait ." wait status " . . CR I

wfd @ close-fd DROP
rfd @ close-fd DROP

1 THEN 1

70 Forth Dimensions XX.5.6

AppendixTwo. PFE Forth system interface to shared
memory and semaphores

The following glossary describes the words added to the
standard PFE v0.9.14 compiler in order to support shared
memory and semaphores on LinuxIUnix systems.

Shared Memory Words
shm-alloc (size -- addr id)
This word allocates a block of shared memory of size bytes.
The id value is -1 if it failed, otherwise it is an identifying
integer that can be used to reference that block by other words.
The addr value is the memory location of the block.

shm attach (id -- addr flag)
 hisw word is for attaching to a previously allocated shared
memory block. The id value is the identification returned by
the word shm-alloc when the block was first created. The
value of flag will be -1 on a failure, and 0 if this word suc-
ceeds. shm-attach can be invoked by a separate process from
the one that created the block with shm-alloc, thereby pro-
viding a mechanism for the two processes to communicate
through a memory window.

shm detach (addr --)
 hisw word causes the shared memory block to no longer be
associated with the address, addr. After this word is invoked,
references to addr are no longer valid, but the shared memory
block still exists (the block can still be accessed through other
attached addresses).

shm-dealloc (id --)
This word causes the shared memory block referenced by id
to be released from the system.

Semaphore words
sem-create (key val -- id)
This word creates a semaphore that will be referred to by the
returned id. The initial value of the semaphore is passed in as
val on the top of the stack. The semaphore key is an arbitrary
value that must be unique of for each created semaphore.

sem open (key -- id)
 hisw word ovens a reference to an existing semavhore, iden-

tified by key. This reference uses the returned id.

sem-close (id --)
This word removes a reference to an existing semaphore, iden-
tified by the id. The semaphore will still exist on the system,
but id is no longer a valid reference to it. Typically this word
is used by a task that no longer needs to use the semaphore,
but there are still other tasks that are using it.

sem-rm (id --)
This word removes semaphore identified by the id from the
system. Typically this word is used by the last process that
will require the use of the semaphore. Note: the semaphore
might not actually leave the system active semaphore list until
the process that created it exits.

sem wait (id --)
The task that calls this word will block until the semaphore
with the given id becomes non-zero. When the semaphore
has been signaled, then sem-wait will decrement it and re-
turn. If there are multiple tasks waiting on the same signal, it
is undetermined which task will unblock first. Typically
sem-wait is called immediately before entering a region of
restricted or controlled access.

sem-signal (id --)
This word increments the internal value of the semaphore
id. This causes tasks that are waiting for a semaphore signal
to unblock. Typically sem-signal is called after a task has
left a region of controlled access.

General considerations
Shared memory and semaphores are limited system-wide

resources. The number of shared memory blocks allowed de-
pends upon the configuration of the system, but it is typi-
cally a number like 128. This means that it it is generally
more efficient to request a just few large blocks of shared
memory and to manage them within the application, rather
than requesting many small blocks. The maximum size of an
individual block is also limited; again the actual value varies,
but it is typically four kilobytes. The Unix command ipcs -
1 will show what the limits for the system are.

Example application
\ sharmem.fth Example of shared memory
\
\ This program runs on PFE or GForth
\ with special extensions to handle shared memory on Unix
\ (see accompanying documentation for details) %

\
\ (c) Copyright 1998, Everett F. Carter
\ This program may be used for any purpose provided the above
\ copyright notice is preserved
\
\ ====--- ...

0 VALUE meml \ place holders for memory references
0 VALUE mem2

-1 VALUE id \ to hold the shared memory block id

32 shm-alloc \ allocate some shared memory, 32 bytes

Forth Dimensions XX.5.6 71

TO id
TO meml

\ id would be -1 if the allocation failed

\ now we can use meml like any other address, i.e.
1234 meml !
meml @ . CR ,

\ we can get to it through another handle,
\ this can even be done in a different process
id shm-attach ABORT" unable to attach"
TO mem2

." note that meml and mem2 are different values " CR
meml . CR
mem2 . CR
\ but that mem2 has the same data as meml
mem2 @ . CR

\ removing a reference
mem2 shm-detach

\ mem2 no longer refers to a valid address

\ actually removing the shared memory block:
\ the block will stay around until the system reboots
\ unless someone eventually does this!

Listing 0ne.The real-time module

/* rt-pr0cess.c The Real-Time process that creates TWO PWM signals suitable for
RC servos on the first two data bits of the parallel port.
Communicates with the Linux side via a FIFO.

Requires modules rt-prio-sched.0 and rt-fifo-new.0 to be loaded

(c) Copyright 1998, Everett F. Carter
This program may be used for any purpose provided the above
copyright notice is preserved

#define MODULE
#include <linux/module.h>
#include <linux/kernel. h>
#include <linux/version.h>
#include <linux/cons.h>
#include <asm/io. h>

/* the address of the parallel port * /

#define LPT 0x378

RT-TASK mytask[21 ;
int hitime[21 ;
int mask[21 ;

72 Forth Dimensions XX.5.6

float scale = RT-TICKS-PER-SEC / 1000000.0;
int msgsize = 2* sizeof (int) ;

/* a very simple PWM signal function * /
void fun1 (int t)
(

int val;
RTIME now, when;

for(;;)
(

val = inb (LPT) ;
val *= mask[t] ;

outb (val, LPT) ; /* write on the parallel port * /

now = rt-get-time () ;
when = now + hitime[t] ;
while (when > now)

now = rt-get-time () ;

val = inb (LPT) ;
val I = mask[t] ;
outb (val, LPT) ;

/* receives the duty cycle data from the controlling application * /
int iohandler (unsigned int f ifo)
I

int dat[21 ;

if (dat[01 < 1)

{
rt-task-suspend (&mytask[0]) ;
rt-task-suspend (&mytask[l]) ;

1
else

(
hitime[01 = (int) (dat[0] * scale) ;
hitime[11 = (int) (dat[11 * scale) ;

1
1

return 0;
1

/* called when the module is loaded * /
int initmodule (void)
(

T.

RTIME now = rt-get-time () ;

int period = (RT-TICKS-PER-SEC * 16667) / 1000000;
int hi = (RT-TICKS-PER-SEC * 1000) / 1000000;

hitime[01 = hitime[11 = hi;
mask[01 = 1;
mask[l] = 2;

/* create two tasks, one for each PWM signal * /

Forth Dimensions XX.5,6 73

rt task-init (&mytask[01 , funl, 0, 3000, 4);
rtrtask-init (&mytask[11 , funl, 1, 3000, 4) ;

rt-task-makeperiodic (&mytask[01 , now + 3000, period) ;
rt-taskmake-periodic (&mytask[11 , now + 4000, period) ;

/* create another task to handle control input data * /
rtf - create-handler (1, &iohAndler) ;

return 0;

/* called when the module is removed * /
void cleanup-module(void)
t

rtf-destroy (1) ;
rt task-delete (&mytask[0]) ;
rtItask-delete (&mytask[11) ;

}

Listing Two.The controlling Forth program

! /usr/local/bin/forth -q
\ pwmtest.fth excercises the PWM controls
\
\ This program runs on Real-Time Linux using PFE or GForth with special extensions to handle
\ binary 1/0 to a file descriptor: open-fd, write-fd, close-fd
\ (see accompanying documentation for details).
\
\ (c) Copyright 1998, Everett F. Carter
\ This program may be used for any purpose provided the above copyright notice is preserved.
\ ===-------=---

-1 VALUE fifo

CREATE sbuf 12 ALLOT

: init-port (-- n)

S" /dev/rtflW 1 open-fd
ABORT" Unable to open real-time FIFO at /dev/rtflW

: pwm-init
init-port TO fifo

: pwm-close
fifo close-fd drop

: fifo-write (x y --)
sbuf !
sbuf 4 + !
sbuf 8 fifo write-fd DROP

pwm - init

\ to control the motors,
\ giye two positions (in the range 400 to 2400)
\ then fifo-write:
\ 400 2000 fifo-write

\ when finished type:
\ pwm-close

74 Forth Dimensions XX.5,6

This article repeats some old material, but has lots of new
stuff. It has been made agreeable with SwiftForth as well as
other systems I use. It's a survey of my macro facilities. It
shows why 1 generally prefer EVALUATE to POSTPONE for
macros. Not all my uses of EVALUATE are given, but the ex-
amples are representative.

All definitions are in Standard Forth. Some definitions have
an environmental dependency on 1 CHARS is 1.

Martin Tracy introduced EVALUATE to Forth. (It was called
EVAL by him.) John Hayes taught us how to use it.

To me, EVALUATE is an INCLUDED literal or a BLOCK lit-
eral. My first implementation of EVALUATE 15 years ago was:

: EVAL (s t r l e n -- ??'?) 0 LOAD ;

where LOAD had been tweaked.
John Hayes showed that

: <name> S" < t e x t > " EVALUATE ; IMMEDIATE

could be used for simple macros.
An important feature of EVALUATE macros is that they

can be defined immediately in Standard Forth.
MACRO uses SLITERAL to make the text and expansion

easier to see: MACRO <name> " <text>"

: MACRO ("<name> < c h a r > < t e x t > < c h a r > " --)

: CHAR PARSE
POSTPONE S L I T E R A L POSTPONE EVALUATE
POSTPONE ; IMMEDIATE

Simple Macros are severely limited-they cannot parse and
they cannot have arguments.

Most of the Simple Macros I use could easily be written
with POSTPONE. But not all.

MACRO NOT I' 0 = I' Figure One.

Check a POSTPONE version.

: NOT STATE @ I F POSTPONE
O = ELSE O= THEN : IMMEDIATE

The version using EVALUATE is not STATE-smart.
Optimization is also the reason for the following.

MACRO S = " COMPARE O = "
MACRO S < " COMPARE O< "

0= and 0< will combine with a following I F with peep-
hole optimization.

S= NOT I F becomes COMPARF, O= O= IF becomes COM-
PARE IF.

The optimization in one of the systems I use does not
handle CELLS CELL+ CKAR+ I+ I-.

It turns them into subroutine calls rather than extending
a literal. It works fine with literals and operators.

MACRO CELLS " 4 * I'

MACRO CELL+ " 4 + I'

MACRO CHAR+ " 1 + "
MACRO 1+ 11 1 + "

MACRO 1- 11 I - "

Now 4 CELLS + CHAR+ becomes 17 +
How could POSTPONE compile a definition with a given

name? With EVALUATE there's no problem, [See Figure One]
where

: H I S" ELECTIVES" INCLUDED ;

I do not have MACRO for macros with one or more
arguments. Instead I define them explicitly with EVALUATE.

I think oi 0=, 0= 0=, and 0, oZ are MACRO : GO " ANEW NONCE : (GO) "

ugly, and I would rather write O< NOT, O= MACRO GO " I' (GO) NONCE "

NOT, and 0> NOT. MACRO GOSEE " SEE (GO) NONCE "

I do not want the invocation of O= to
be within a call, particularly since O= will MACRO EMPTY JOB ANEW --EMPTY --
be optimized before I F with even the sim- MACRO JOB w [UNDEFINED] --EMPTY-
plest peephole optimizer. MACRO PANIC " J O B ANEW --PANIC--

I also want to use NOT when interpret-
ing, which I cannot do with POSTPONE.

DECIMAL "
[I F] H I [THEN] "

DECIMAL "

Forth Dimensions XX.5,6 75

: TOKEN (-- s t r l e n)

BL WORD COUNT
DUP ABORT" Unexpected End of L ine . "
I

: ? ? (uword" -- ? ? ?)

S" IF I' EVALUATE
TOKEN EVALUATE
S" THEN " EVALUATE
; IMMEDIATE

How can you write +TO in Standard Forth? Temporarily
ignoring the problem of PAD -

: +TO (n < v a l u e word> --)

>IN @ BL WORD COUNT PAD PLACE
S" + TO " PAD APPEND
>IN ! BL WORD COUNT PAD APPEND
PAD COUNT EVALUATE
; IMMEDIATE

I don't think the following can be written without
EVALUATE.

: b e f o r e I a f t e r I f i l l - i n s :)

It needs private or general work areas. Here it is using a
ring of PAD replacements.

CREATE QBUF 0 , 1024 ALLOT
: >QPAD (s t r l e n -- a d d r)
QBUF DUP @ 128 + 1023 AND

(s t r l e n a d d r i)
TUCK OVER ! (s t r l e n i a d d r)

+ CELL+ DUP >R PLACE R> (a d d r) ;

\ NEXT-WORD g e t s n e x t word a c r o s s l i n e
\ b r e a k s a s a c h a r s t r i n g . Length o f
\ s t r i n g i s 0 a t end o f f i l e .

: NEXT-WORD (-- s t r l e n)

BEGIN BL WORD COUNT (s t r l e n)
DUP ? ? EXIT
REFILL

WHILE 2DROP ()
REPEAT ; (s t r l e n)

Iterated Interpretation

CREATE FILL-IN 128 ALLOT
: .FILL-IN (--) FILL-IN COUNT TYPE ;

\ (: b e f o r e l a f t e r 1 word-or-^ p h r a s e A ... :)

: (:

[CHAR] I PARSE >QPAD
[CHAR] I PARSE >QPAD SWAP

(end s t a r t)
BEGIN NEXT-WORD (e n d s t a r t s t r l e n)

DUP
WHILE 2DUP S" :) " S= NOT WHILE

2DUP S" ^" S= IF
2DROP [CHAR] A PARSE

THEN
2DUP FILL-IN PLACE
20VER

(end s t a r t s t r l e n end s t a r t)
COUNT >QPAD >R
COUNT >QPAD >R

(R: s t a r t end)
ROT DUP >R
APPEND COUNT R@ APPEND
R> COUNT EVALUATE (1
R> R> (end s t a r t)

REPEAT THEN (e n d s t a r t s t r l e n)
2DROP 2DROP

; IMMEDIATE

Examples

1 (: DUP CONSTANT I 1+ I
JAN FEB MAR APR MAY JUN
JUL AUG SEP OCT NOV DEC
:) DROP

Polynomial Evaluation

(F: x) OEO (: FOVER F* I F+ I
a4 a3 a2 a 1 a0 :) FNIP

: ISVOWEL (c h a r - f l a g)
0 (: OVER[CHAR] I = O R , I
A E I 0 U :) NIP;

I have several definitions I want to test: PEASEBMSSOM,
COBWEB, MOTH, MUSTARDSEED.

MACRO [TIME I' :GO COUNTER 1000000 0 DO "
MACRO TIME] " LOOP TIMER CR ; GO "

(: [TIME I TIME] I
PEASEBLOSSOM COBWEB MOTH MUSTARDSEED :)

This becomes the following.

Forth Dimensions XX.5.6

:GO COUNTER 1000000 0 DO
PEASEBLOSSOM LOOP TIMER CR ; GO

:GO COUNTER 1000000 0 DO
COBWEB LOOP TIMER CR ; GO

:GO COUNTER 1000000 0 DO
MOTH LOOP TIMER CR ; GO "

:GO COUNTER 1000000 0 DO
MUSTARDSEED LOOP TIMER CR : GO

:GO and GO are macros. The first line becomes:

ANEW NONCE : (GO) COUNTER 1000000 0 DO
PEASEBLOSSOM LOOP TIMER CR ;
(GO) NONCE

MACRO SKIP[" BEGIN DUP WHILE OVER C@ "
MACRO 1 SKIP vf WHILE 1 /STRING REPEAT THEN

MACRO SCAN[" SKIP["
MACRO] SCAN " 0=] SKIP "

Examples.

: JUSTIFY SKIP[IS-SPACE] SKIP ;
: SCAN >R SCAN[R@ =] SCAN R> DROP ;

where

: IS-SPACE (char -- f l a g) 33 - 0< ;

Macros help with repetitious coding. I found while 1 As written in "1 PRESWOOP- 1
using classes for input files and ordered lists that I was
frequently writing:

SRC REWIND BEGIN SRC READ WHILE ...
CORPUS REWIND BEGIN CORPUS READ WHILE ...
LOANER REWIND BEGIN LOANER READ WHILE ...

This requires constructing the phrase before evaluating it.

\ TRAVERSE <obj> becomes
\ <obj> REWIND BEGIN <obj> READ WHILE

ANS Forth specifies word list identifiers as"imp1ementation-
dependent single-cell values that identify word lists7which is the
weakest possible specification, meaning you know nothing about
them.ANS Forth also ignores saving the system after compiling new
definitions,and then reloading the system with a possible relocation of
addresses.

Some systems,such as PowerMacForth,define a word list identifier
(wid) so that it is valid only in the session where it's defined.To provide
maintenance and transition,WORDLLST : should provide in such
systems named word list identifiers that can be used across sessions.
The definition of WORDLIST : here is for implementations without a
problem with word list identifiers.

: TRAVERSE (" object" --)

TOKEN (str len) I : WORDLIST: ("name" --)

2DUP >QPAD >R WORDLIST CONSTANT ;

S" REWIND BEGIN " R@ APPEND
R@ APPEND ()

S" READ WHILE " R@ APPEND
R> COUNT EVALUATE ; IMMEDIATE

Example.

INPUTFILE BUILDS SRC
ORDERED-LIST BUILDS LOANER

: SORT-FILE
HERE >R
LOANER INIT
TRAVERSE SRC LOANER ADD-NEW REPEAT ,
TRAVERSE LOANER COUNT TYPE CR REPEAT

R> HERE - ALLOT ;

S" xxxxxxxxxx" SRC OPEN
SORT-FILE

Around 1982 Klaus Schleisiek introduced SKIP and
SCAN. Their stack-effect is (str len char - str' len'). A
common use is BL SKIP and BL SCAN.

To extend SKIP and SCAN to check for more than a
single value, break apart the two sections of logic.

Here's how it's to be done in PowerMacForth for word
list identifier MEMBERS, using implementation dependent
words.

0 VALUE MEMBERS
VOCABULARY MEMBERS-VOCABULARY
: PMF-RESTORE-MEMBERS

ALSO MEMBERS-VOCABULARY
GET-FIRST-WORDLIST TO MEMBERS PREVIOUS

I

' PMF-RESTORE-MEMBERS
RESTORER LINKTOKEN
PMF-RESTORE-MEMBERS

This is an atrocious solution that has to be done for
word list identifier cc-WORDS as well.

The following extravagant macro is to provide for these
and future word list identifiers. It is very implementation
dependent.

: WORDLIST: (" name" --)

TOKEN >QPAD >R
S" 0 VALUE " >QPAD >R (R: a r g pad)

(0 VALUE a r g)

2R@ DROP COUNT R@ APPEND

Forth Dimensions XX.5.6 77

R@ COUNT EVALUATE
(VOCABULARY arg-VOCABULARY)

S" VOCABULARY " R@ PLACE
2 R @ DROP COUNT R@ APPEND ,
S" -VOCABULARY " R@ APPEND
R@ COUNT EVALUATE

(: PMF-RESTORE-arg)

S" : PMF-RESTORE-" R@ PLACE
2 R @ DROP COUNT R@ APPEND
R@ COUNT EVALUATE

(ALSO arg-VOCABULARY)

S" ALSO " R@ PLACE
2 R @ DROP COUNT R@ APPEND
S" -VOCABULARY " R@ APPEND
R@ COUNT EVALUATE

(GET-FIRST-WORDLIST TO a r g PREVIOUS ;)

S" GET-FIRST-WORDLIST TO " R@ PLACE
2 R @ DROP COUNT R@ APPEND
S" PREVIOUS ; I' R@ APPEND
R@ COUNT EVALUATE

(' PMF-RESTORE-arg RESTORER LINKTOKEN)

S" ' PMF-RESTORE-" R@ PLACE
2 R @ DROP COUNT R@ APPEND
S" RESTORER LINKTOKEN'! R@ APPEND
R@ COUNT EVALUATE

(PMF-RESTORE-arg)

S" PMF-RESTORE-" R@ PLACE
2 R @ DROP COUNT R@ APPEND
R@ COUNT EVALUATE

2R> 2DROP ;

In the source for SWOOP:

WORDLIST: CC-WORDS
WORDLIST : MEMBERS

[In the Real World], chars have eight bits. They just do.
All integral arithmetic is done in twos-complement binary. It
just is. Several simple "get real" assumptions like these make
our work possible.

Newsbrief

Forth in Space-again
A significant new application of Forth in space was re-

cently launched with the help of several members of the Forth
Interest Group.

The Chandra x-ray telescope was launched on the space
shuttle Columbia on 23 July 1999. This telescope is the x-ray
equivalent of the Hubble Space Telescope.

Among the FIG members who worked on the satellite are:
Fred Smith, Skip Carter, and Tom Zimmer (Tom may be sur-
prised to learn that he had done anything. His TCOM cross-
compiler was used to create the Forth software).

August 4, 1999 - One of Chandra's sensitive x-ray cam-
eras detected x-rays from a cosmic event even before the door
to the observatory has been opened. A solar flare occurred on
the afternoon of August 2, and at 5:25 p.m. EDT the High
Resolution Camera (HRC) aboard Chandra recorded an in-
crease in the count rate.

lustration and announcement just before press time.

Image courtesy of Chondra Center,
Smrthsonran Astrophysrcal Observatory

125 miles: Altitude of early cosmic x-ray observations.
367-381 miles: Altitude range of Hubble SpaceTelescopels orbit.
6,000-86,000 miles: Altitude range of Chandra X-ray Observatory's
orbit.

Code published in Forth Dimensions generally is available
to be used without restriction unless otherwise indicated in
the code itself or in the text that accompanies it. The general
copyright notice for this magazine provides important and
more-specific information. Applicable export laws apply.

If no URL is given from which the code you want can be
downloaded, contact the author by e-mail.

"SWOOP: Object-Oriented Programming in SwiftForth" - A
link to the code can be found in the members-only section of
the FIG web site (www.forth.org). Have your FIG member
number available when logging on for members-only features.

At ftp.forth.org/pub/Forth/FD/1999 you can find, from this
issue:
CrakPoly.zip
PICasmRM.zip
ReedSoLzip
UsrStack.zip

78 Forth Dimensions XX.5.6

The following are corporate sponsors and individual benefactors
whose generous donations are helping, beyond the basic member-
ship levels, to further the work of Forth Dimensions and the Forth In-
terest Group. For information about participating in this program,
please contact the FIG office (office@forth.org).

Corporate Sponsors

AM Research, Inc. specializes in Embedded Control applications us-
ing the language Forth. Over 75 microcontrollers are supported in
three families, 8051,6811 and 8xC16x with both hardware and soft-
ware. We supply development packages, do applications and turn-
key manufacturing.

Clarity Development, Inc. (http://www.clarity-dev.com) provides con-
sulting, project management, systems integration, training, and semi-
nars. We specialize in intranet applications of Object technologies,
and also provide project auditing services aimed at venture capitalists
who need to protect their investments. Many of our systems have
employed compact Forth-like engines to implement run-time logic.

Computer Solutions, Ltd. (COMSOL to its friends) is Europe's premier
supplier of embedded microprocessor development tools. Users and
developers for 18 years, COMSOL pioneered Forth under operating
systems, and developed the groundbreaking chipFORTH hostltarget
environment. Our consultancy projects range from single chip to one
system with 7000 linked processors. www.computer-solutions.co.uk.

Digalog Corp. (www.digalog.com) has supplied control and instrumen-
tation hardware and software products, systems, and s e ~ c e s for the
automotive and aerospace testing industry for over 20 years. The real-
time software for these products is Forth based. Digalog has offices in
Ventura CA, Detroit MI, Chicago IL, Richmond VA, and Brighton UK.

Forth Engineering has collected Forth experience since 1980. We now
concentrate on research and evolution of the Forth principle of pro-
gramming and provide Holon, a new generation of Forth cross-de-
velopment systems. Forth Engineering, MeggenILucerne, Switzerland
- http://www.holonforth.com.

FORTH, Inc. has provided high-performance software and services
for real-time applications since 1973. Today, companies in banking,
aerospace, and embedded systems use our powerful Forth systems
for Windows, DOS, Macs, and micro-controllers. Current develop-
ments include token-based architectures, (e.g., Open Firmware,
Europay's Open Terminal Architecture), advanced cross-compilers,
and industrial control systems.

The iTV Corporation is a vertically integrated computer company
developing low-cost components and information appliances for the
consumer marketplace. iTVc supports the Forth development com-
munity. The iTVc processor instruction set is based on Forth primi-
tives, and most development tools, system, and application code are
written in Forth.

Keycorp (www.keycorp.com.au) develops innovative hardware and
software solutions for electronic transactions and banking systems,
and smart cards including GSM Subscriber Identification Modules
(SIMs). Keycorp is also a leading developer of multi-application smart
card operating systems such as the Forth-based OSSCA and MULTOS.

An interactive programming environment for writing Windows NT
and Windows 95 kernel mode device drivers in Forth.

MicroProcessor Engineering supplies development tools and
consultancy for real-time programming on PCs and embedded sys-
tems. An emphasis on research has led to a range of modern Forth
systems including ProForth for Windows, cross-compilers for a wide

t h e - ~ u r o ~ a y Open ~ e r m i n a l ~rchitecture. http://www.mpeltd

RAM Technology Systems - Specialists in real-time embedded con-
trol. We develop hardware and software from initial idea to final
production if required. We have developed the only commercial Forth
for the PIC16Cxx range of microcontrollers and now for the AVR. If
you need an embedded compiler for your new processor give us a
callhttp://www.ram-tech.co.uk irtc@ram-tech.co.uk

Silicon Composers (web site address www.silcomp.com) sells single-
board computers using the 16-bit RXT 2000 and the 32-bit SC32 Forth
chips for standalone, PC plug-in, and VME-based operation. Each SBC
comes with Forth development software. Our SBCs are designed for
use in embedded control, data acquisition, and computation-intense
control applications.

T-Recursive Technology specializes in contract development of hard-
ware and software for embedded microprocessor systems. From con-
cept, through hardware design, prototyping, and software implemen-
tation, "doing more with less" is our goal. We also develop tools for
the embedded marketplace and, on occasion, special-purpose soft-
ware where "small" and "fast" are crucial.

Tateno Dennou, Inc. was founded in 1989, and is located in Ome-
city Tokyo. Our business is consulting, developing, and reselling prod-
ucts by importing from the U.S.A. Our main field is DSP and high-
speed digital.

AS0 Bldg., 5-955 Baigo, Ome,Tokyo 198-0063 Japan
+81-428-77-7000 Fax: +81-428-77-7002

http://www.dsp-tdi.com E-mail: sales@dsp-tdi.com

Taygeta Scientific Incorporated specializes in scientific software: data
analysis, distributed and parallel software design, and signal process-
ing. TSI also has expertise in embedded systems, TCP/IP protocols
and custom applications, W W and FTP services, and robotics.
Taygeta Scientific Incoporated 1340 Munras Avenue, Suite 314
Monterey, CA 93940 408-641-0645, fax 408-641-0647 http://
www.taygeta.com

Triangle Digital Services Ltd.-Manufacturer of Industrial Embedded
Forth Computers, we offer solutions to low-power, portable data log-
ging, CAN and control applications. Optimised performance, yet ever-
increasing functionality of our 16-bit TDS2020 computer and add-
on boards offer versatility. Exceptional hardware and software sup-
port to developers make us the choice of the professional.

Individual Benefactors

Makoto Akaishi
Everett F. Carter, Jr.
Edward W. Falat
Michael Frain
Guy Grotke
Bjorn Gruenwald
John D. Hall
Guy Kelly
Zvie Liberman
Marty McGowan

Andrew McKewan
Peter Midnight
John Muller
Gary S. Nemeth
Marlin Ouverson
John Phillips
Thomas A. Scally
Martin Shann
Werner Thie
Richard C. Wagner

Forth Dimensions XIX.5,6

November 19-2 1,1999
Asilomar Conference Center

Pacific Grove, California

Call for Papers

FORML welcomes papers on any Forth-related topics, even those
which do not adhere strictly to the published theme.

Please send the title and abstract of your paper to
abstracts@forth.org

Deadline for abstracts: August 31, 1999

For more information, connect to the FORML21 web site:
www.forth.org

Richard C. Wagner, Conference Director
director@forth.org T.

or contact: I
Forth Interest Group

100 Dolores Street, Suite 183
Carmel CA 93923

voice 831.373.6784 fax 831.373.2845
office@forth.org

