

What's new at the FIG business office? We're in the process
of revising and updating our database of members. From time
to time, we hope to be sending you "Notes of Interest" in your

mailbox from the FIG office. Do we have your current e-mail
address? Ace you on-line? Or are you not? These are a few of
the questions you can help us with. If you are not on-line but
would still like to receive the special "Notes of Interest," let me
know and we'll find a way to get them to you.

Please just take a minute now and send us your current e-
mail address, even if you think you've done it recentIy. ['I[be
happy to receive it again. Remember, that one of the benefits
of being a member of the Forth Interest Group is that we can
provide e-mail forwarding to you. For example: your e-mail
account may actually be with a provider like AOL or Prodigy.
With the e-mail forwarding benefit from your membership,
your e-mail address could be yournarnc@forth.org and we would
forward that to your actual account. Just get in touch with us
and let us know, we'll be happy to get this service up and run-
ning for you!

Here's my first piece of "Notes of Interest": The next issue
of Forth Dimensions will have a revised Mail Order Form. Many
of the prices of disks, back issues, FORML Proceedings, and
other books we carry will be going up. Sorry about that but,
unfortunately, we do need to raise the prices, as many of the
prices have been raised on us, But, Cortunately, for you ttwre
is one last chance ... if you order now, before we publish the
next issue of Forfll Dimrnsions with the new increased prices,
you can get a deal by paying the lower current published price
listed in this issue of Forth Dirnensioris. So now is the time to
order those back issues you thought might order someday, or
the previous year's FORML Proceedings, or disks of programs
you thought might be cool to have.

Recently, several of you who are outside of the United
States have suggested that when we receive an e-mail from
you for renewal or to place an order, that we send of f a simple
reply that we did indeed get your e-mail. I'm not sure why
we didn't think of that-it's quick and easy, and it helps to
keep you better informed. Most often, we simply process the

order, but it can be four to six weeks be-
fore you get the shipment (or the renewal
invoice receipt). In the meantime, you're
left wondering if we got the information
or not. So, thank you to those of you who
made the suggestion-we will now imple-
ment it.

If you have suggestions that you feel
will help to make us more efficient, or
which will increase or improve coinrnuni-
cations, we're always open to listening.
And we map even implement your idea.

Again, it's always a pleasure to work
with Forth Interest Group members.

Cheers,

Trace Carter
Administrative Manager
Forth Interest Group
100 Dolores Street, Suite 183
Carmel, CA 93923 USA
voice: 831.373.6784 fax: 83 1.373.2845
e-mail: office@forth.org

This classic is no longer out of print!

Poor Man's
Kalman Filtering
or, How I Stopped Worrying and
Learned to Love Matrix Inversion

by Roger M. du Plessis

% 19.95 plus shipping and
handling (2.75 for surface US.,
4.50 for surface international)

You can order in several ways:
can call our 24-hour message

e-mail: kaIrnan@taygeta.com line a t 408.641 -0647. For your
fax: 408-641 -0647 convenrence, we accept Master-
voice: 408-641 -0645 Card and VISA.
mail: send your check or money order in U.S. dollars to:

faygeta Scienrlfic Inc, 1340 Munras Avenue, Ste. 314 Monrerey, CA 93940

2 Forth Dimensions XX.3

The author was working for DEC's semiconductor division as an applications engineer and settled
upon the idea of doing a port to the 64-bit Alpha RTSC processor. But his group won the task of
supporting StrongARM chip sales, and he started work on the design of a board that would be used as
a hardware verification and evaluation platform for the first StrongARM chip, the SA-110.

The Stuff ering Context Switch

mizing the time-wasting stack-shuffling operations, devising a method of buffering the top three
items on the stack and performing stack shuffling in parallel with other operations. Task switching,
however, he had to learn about from his plumbing.

Linearizing a Thermocouple with Two-Step Interpolation

A NS Appendix to "Finite State Machines in Forth"

ANS-compatible code to accompany the author's article (which appeared in out preceding issue), and
an erratum to the code that appeared previously in these pages.

A Forth Switchblade

An example of a mitclr jn Forth is the CASE statement. The execution-time behavior of CASE and OF can
be optimjzed until your system implementor is exhausted, and performance wi1I be similar to that of a
C version. So why wouId anyone want to impIement a new switch construct in Forth? For SwiftForth,
the reason was the need for extensibility-to be able to define the base structure and to extend it at will.
The traditional CASE statement does not lend itself to being extended after it i s defined.

r Pygmy Forth although, with minor modifications, they

D E P A R T M E N T S

OFFICE NEWS
*>

26 STANDARD FORTH TOOL BELT
Changes on the horizon Number Conversion and Literals

29 STRETCHING STANDARD FORTH
Only Standard Definitions

CROSSWORD - 'Stacks"
34 URLs - a selection of on-line Forth resources

PRESIDENT'S LETTER
Ready for an eFO? 35 SPONSORS & BENEFACTORS

Forth Dimensions XX.3 3

... ..

Please see this issue's "Office News" for important information about changes taking
place to the rates on our mail-order form-current prices will only remain in effect until our
revised form can be published (which is planned for the next issue).

We received the following suggestion in response to a plea we issued some months ago
for more Forth articles, both in this magazine and in publications directed outside the
immediate Forth community:

Forth Dimensions
Volume XX, Number 3

Dear editor,
An opportunity has come up that could propel Forth to the forefront of com-
puter languages. I am speaking of the Design Your Own ProcessorTM Tools at:

This and Errata.. .

If we get on top of this and write about it, we could be the language of reconfig-
urable computing.

-M. Simon msimon@tefbbs.com

September 1998 October

Forth Published Intmrmst by Group the

Editor
Marlin Ouverson

I hope that both activists and the curious will take note of this and other opportunities
to explore, and to point out to others, Forth's suitability in particular application and engi-
neering domains. Waiting to be discovered is a sure way to insularity!

Those who tried Julian Noble's Finite State Machines code (see our preceding issue) might
have had a bit of difficulty, and a one-line "fix" is provided in this issue. Julian remarks,
"This is a good example of a cautionary tale--why one must never trust a listing printed in
a book or journal. (I have long known that scribal errors make it impossible to trust formu-
las taken from texts and journals, and it looks as though this is the case with program
listings as well.)" It's also a good example of the perils of technical publishing, whatever the
medium, although we go to great lengths to avoid such things.

As a concluding note for now (we are already working on the next issue and will have
more to say then), Fred Behringer's (behringeC3mathematik.t~-muenchen.de) transputer Forth
package now is also available from ftp://ftp.taygeta.comlpub/forthlcompilerslnativeldosl
transputer1 for downloading.

-Marlin Ouverson

-

Would you like to brush up on your German and, at the same time, get
first-hand information about the activities of your Forth friends in Germany?

Become a member of the German Forth Society
("Deutsche Forth-Gesellschaft")

80 DM (50 US-$) per yea;
or 32 DM (20 US-$) for students or retirees

Read about programs, projects, vendors, and our annual conventions in the
quarterly issues of Vierte Dimension. For more information, please contact:

Forth-Gesellschaft e.V.
Postfach 161204
18025 Rostock
e-mail: SECRETARY@ADMIN.FORTH-EV.DE

CirculationKJrder Desk
Trace Carter

Forth Dimensions welcomes editorial ma-
teria1,letters to the editor,and comments
from its readers. No responsibility is as-
sumed for accuracy of submissions.

Subscription to Forth Dimensions is in-
cluded with membership in the Forth In-
terest Group at $45 per year (U.S.) $60
(international).For membershipschange
of addressand to submit items for pub-
lication,the address is:

Forth lnterest Group
100 Dolores Street,suite 183
Carmel, California 93923
Administrative offices:
408-37-FORTH Fax: 408-373-2845

Copyright 0 1998 by Forth lnterest
Group,lnc.The material contained in this
periodical (but not the code) is copy-
righted by the individual authors of the
articlesand by Forth lnterestGroup,lnc.,
respectively.Any reproduction or use of
this periodical as it is compiled or the
articles, except reproductions for non-
commercial purposes,without the writ-
ten permission of Forth lnterest Group,
Inc.is a violation of the Copyright Laws.
Any code bearing a copyright notice,
however,can be used only with permis-
sion of the copyright holder.

The Forth lnterest Group
The Forth lnterest Group is the associa-
tion of programmers, managers, and
engineers who create practical, Forth-
based solutions to real-world needs.
FIG provides a climate of intellectual
exchange and benefits intended to as-
sist each of its members. Publications,
conferences, seminars, telecommuni-
cations,and area chapter meetings are
among its activities.

FORTH DIMENSIONS (ISSN 0884-0822)
is published bimonthly for $45160 per
year by Forth lnterest Group at 1340
Munras Avenue, Suite 314, Monterey
CA 93940. Periodicals postage rates
paid at Monterey CA and at additional
mailing offices.

POSTMASTER: Send address changes to
FORTH DIMENSIONS, 100 Dolores Street,
Suite 183,Carmel CA 93923-8665.

Forth Dimensions XX.3

1. Background
Once upon a time I downloaded Julian Noble's

FPRIMER.ZIP from a SIMTEL archive and discovered eForth
V1.O. I was fascinated by the way eForth used an assembler's
macro expansion capability to generate all of the header and
dictionary structures for a Forth compiler. I ported eForth to
the Z80 (not knowing that this had already been done); I
chose the 280 because I was familiar with it and I had a de-
velopment environment for it. Doing the 280 port was not
useful, except as a Great Learning Experience.

At the time I started playing with eForth, I was working
for Digital Equipment Corporation's semiconductor division
(Digital Semiconductor, DS) as an applications engineer. Hav-
ing completed the eForth port to the 280, I was casting around
for another fun spare-time project, and I naturally settled upon
the idea of doing a port to the 64-bit Alpha RISC processor.
However, before I could get started on this project, DS took a
license for the Advanced RISC Machines Ltd. ARM architec-
ture, and announced that it was developing StrongARM. My
group won the task of supporting StrongARM chip sales, and
I started work on the design of a board that would be used as
a hardware verification and evaluation platform for the first
StrongARM chip, the SA-110.

When the board design was completed, I had about a
month to spare whilst the board was in layout and manufac-
ture. The SA-110 itself was still in the last stages of design. I
took some code examples from another engineer, who was
writing the diagnostic and test code, and set about the task
of learning ARM assembler programming, with a view to port-
ing eForth to the SA-110.

I debugged the ARM eForth port on an instruction-set
simulator, and then on an ARM610 processor evaluation
board. Meanwhile, my board had come back from assembly
and I had done as much testing as you can do on a processor
board when it has no processor. Boards were shipped to Aus-
tin, Texas where the SA-110 design team were headquartered,
and I eagerly awaited SA-110 prototypes.

Finally, we had word that the SA-110 was due out of fab
imminently. A software engineer and I travelled to Austin.
We powered the very first SA-110 chip up in the last week of
November, 1995 and, within a day, the diagnostics were up
and running (well done, Anthony). The code for talking to'
the debug tools presented more of a problem, and there wasp't
much I could do to help. It was time to blow an EPROM on
my own account.

A couple of days (and many cycles through the EPROM
eraser) later, eForth was up and running (it was the third or
fourth program ever to run on SA-110 silicon). It was imme-
diately useful for writing code one-liners to exercise logic and

to measure power consumption. In addition, I added facili-
ties to allow the processor's caches to be turned on and off
under software control so we could measure the impact on
speed and power consumption.

Overall, eForth proved to be very useful during the course
of the project, but in the meantime I had discovered the ANS
Forth standard, and 1 wanted to try some of the features that
eForth lacked. I began to modify eForth to bring it in line
with the ANS standard. One day, during a bit of web brows-
ing, I came across Dr. Wonyong Koh's hForth[l]. When I saw
what Dr. Koh had achieved, using eForth as a starting point,
I abandoned eForth and started a port of hForth.

2. Problems
There were three basic problems to address:

Coding low-level routines for the target processor
Tool chain
Portability issues in the code

2.1 Coding low-level routines for the target processor
hForth is a direct-threaded code (DTC) Forth, and it is

designed to be built using a macro assembler. Macros are used
in the source code to express Forth constructs like constants,
variables, colon definitions, and code definitions. To simplify
the porting effort, a minimal number of definitions must be
coded in assembler; the remainder are colon definitions. The
first step in the porting process is to map registers of the Forth
virtual machine to real registers in the target processor. The
ARM has 15 general-purpose registers, named RO through R14;
R15 is the program counter. R14 has a special role during
subroutine calls: it stores the return address from the subrou-
tine (unlike CISC processors, RISC processors do not tend to
have dedicated hardware stack pointers). The instruction set
is highly orthogonal (another RISC characteristic), so it makes
little difference which register is used for which function. I
chose this register assignment:

Name Register Descri~tion
dsp R12 Data stack pointer
rsP R 1 1 Return stack pointer
~ P C R10 Forth virtual machine program counter
tos R9 Top of (data) stack

The assembler source defines aliases for these four regis-
ters, so they can be referred to by name.

Having allocated registers, the second stage in the porting
process is to design the virtual machine and code the low-
level routines. The main difference between eForth and hForth
in these areas is that hForth uses the common technique of

Forth Dimensions XX.3 5

address, the branch destination (to the label DOLIST) is en-
coded as a 24-bit, signed, PC-relative offset within the opcode.
This only makes a sub-set of the 32-bit address space acces-
sible, but the range is more than adequate. As before, the
execution tokens are absolute addresses. The BL stores a re-
turn address in processor register R14 (R14 must be preserved
before another BL can be executed). The value of R14 is used
by the inner interpreter to access the execution tokens that
make up the definition.

The result of using the $COLON macro is that the colon defi-
nition of ~ U B L E is portable, even though the macro and result
of the macro expansion are not portable. Next, we will look at
how the same definition would be expressed as a (processor-
dependent) code definition. For the 8086 it looks like this:
$CODE 6, 'DOUBLE', DUBBLE,-SLINK
MOV AX, BX
ADD BX, Ax
$NEXT

While for the ARM it looks like this:
$CODE 6, ' DOUBLE ' , DUBBLE,-SLINK
ADD tos, tos, tos
$NEXT

The macro $CODE expands out to generate a label and a
name dictionary entry as before, but does not generate any-
thing in the code dictionary. The macro $NEXT terminates
the definition by returning control to the caller of this defi-
nition. Everything in between is expanded by the assembler
to generate opcodes for the particular processor. Remember
that tos is simply an alias for the register R9, which is used to
hold the top-of-stack value.

For the 8086, the expansion of $NEXT generates this code:
LODSW ; get the next code address into AX
JMP AX ; jump directly to the code address

Whilst for the ARM, the expansion of $NEXT generates
this code:
MOV PC,[fpc] , #CELLL

This instruction can be read as "load the PC (i.e., branch
to) with the value that is stored in the cell addressed by the
current value of fpc, and post-increment fpc (by the cell-
size) to address the subsequent cell."

To understand these examples more clearly, we need to

keeping top-of-stack in a processor register. That meant that 1
could reuse much of my existing code with only minor modi-
fications. In any case, the amount of work is small; in ARM
assembler, the longest "required" code definition is about ten
lines of assembler code. The hForth source highlights a num-
ber of words that should be coded in assembler for speed, but
also provides colon definitions that can be used during the
initial debug of a new port.

2.1.1 Example code fragments
This section shows how hForth definitions are expressed

in the assembler source and how the macros expand to gen-
erate code for the target. The ARM and 8086 implementa-
tions are compared by considering this colon definition:
: DOUBLE (n -- n) DUP + ;

In the source code, this could be represented as a colon
definition, which would be portable across processors:
$COLON 6, ' DOUBLE ' , DUBBLE,-SLINK
DEFW DUP, PLUS, EXIT

$COLON is a macro that expands to perform three tasks:
generate an entry in the name dictionary for the word
WUBLE, and associate an execution token (xt) with the
name. The value of the xt is the assembler label DUBBLE,
and its value is a forward reference that will be resolved by
the assembler in the usual way. -SLINK is an assembler
variable used to build a link to the previous entry in the
name dictionary. By using different variables here, mul-
tiple wordlists can be intertwined in the name dictionary.
generate a label in the code dictionary with the name
DUBBLE.
generate a processor-dependent call to the inner interpreter,
DoLIST.

DEFW is an assembler pseudo-op, and is followed by a list
of labels. Each label corresponds to an xt that will have been
created by some other macro expansion. The labels may be
forward or backward references because they will all be re-
solved by the assembler in the usual way. In this example,
the values will be the execution tokens for DUP, +, and EXIT,
respectively.

For the 8086, the cell size is 16 bits and the opcode size is
variable. The call to the inner interpreter is a call to an abso-
lute address. The opcode for CALL is one byte, so this is pre-
fixed with a one-byte NOP to keep
the code aligned to a cell boundary.
The definition looks like Figure One. One

DoLIsT is a label, resolved by the
assembler. The execution tokens are
absolute addresses. The CALL pushes

NOP 1 byte } Macro expansion.. processor
CALL DOLIST +. bytes } native code
XT- DUP bytes

a return address onto the hardware
xT-+

1
2 bytes } Executed by inner interpreter stack and this return address is used

XT-EXIT 2 bytes } on Forth Virtual Machine
by the inner interpreter to access the
execution tokens that make up the
definition. Figure Two

For the ARM, the cell size and the
opcode size are both 32 bits; the BL DoLIST 4 bytes] Macro expansion.. processor
definition looks like Figure Two.] native code

The BL (branch-and-link) in- XT-DUP 4 bytes 1
struction is a single 32-bit opcode. XT-+ 4 bytes } Executed by inner interpreter
Rather than specifying an absolute XT-EXIT 4 bytes } on Forth Virtual Machine

see how the inner interpreter, DOLIST, is implemented. Re-
member from the discussion above that DOLIST takes an in-
put parameter; the address of the first xt to be executed, and
that this parameter is passed to the DOLIST code in a proces-
sor-specific way:

For the 8086, D o L I S T is entered through a native CALL,
and the parameter is passed on the hardware stack, since
it is the return address for the call.
For the ARM, DOLIST is entered through a native BL and
the parameter is passed in R14, since this is the return
(link) address for the BL.
For the 8086, D o L I s T looks like this:

$CODE COMPO+6, ' d o L I S T V , DOLIST,-SLINK
SUB B P , 2
MOV [B P I , S I ; p u s h r e t u r n s t a c k
POP S I ; n e w l i s t address
$NEXT

For the ARM, DOLIST looks like Figure Three.
The STR (store) instruction performs a store of the current

f p c value onto the return stack, then updates the fpc with
the parameter passed in R14. The [rsp , # - CELLL] !
means, "store at the location addressed by r s p but first dec-
rement r s p by the value of CELLL"-in other words, this in-
struction implements a "push" with r s p as the stack pointer

and fpc as the data.
Now that we've seen how definitions are generated by the

assembler, there's one final thing we need to consider: the
processor-dependent parts of generating a new definition
when hForth is up and running on the target. Again, we will
consider the definition for DOUBLE.

The only processor-dependent part of the compilation
process is the generation and detection of the call to DOLI ST.
In hForth, this is handled by the words? c a l l and x t , . ? c a l l
is used to check whether a given location contains a direct-
threaded code call; it is used for optimisation purposes and
by SEE (the word decompiler). x t , takes an x t as a parameter
and compiles a direct-threaded code call to that location.

8086 versions, where c a l l - c o d e is OxE890 (opcode for a
NOP followed by a CALL) [see Figure Four.]

ARM versions, where call-code is OxEBOOOOOO (opcode
for BL, with an offset of 0) [see Figure Five.]

The final call to I D f l u s h l i n e is required to support the
caches on the SA-110, and it is discussed further below.

2.2 Tool chain
eForth and hForth both rely on macro expansion in an

8086 assembler in order to build code and name dictionaries
for the target image. Some ports to other processors have con-
tinued to use the 8086

Figure Three

$CODE COMP0+6, ' d o L I S T ' , DOLIST,-SLINK
STR f p c , [rsp , # - CELLL] ! ;preserve f o r t h PC
MOV fpc, R14 ; f i r s t x t o f d e f i n i t i o n
$NEXT

Figure Four

: ? c a l l DUP @ call-code =

I F CELL+ DUP @ SWAP CELL+ DUP ROT + EXIT THEN
\ D i r e c t T h r e a d e d C o d e 8 0 8 6 r e l a t i v e c a l l
0 ;

: x t , x h e r e ALIGNED DUP T O x h e r e SWAP
call-code c o d e , \ D i r e c t T h r e a d e d C o d e
x h e r e CELL+ - code, ; \ 8 0 8 6 r e l a t i v e c a l l

Figure Five

: ? c a l l DUP @ OffOOOOOOh AND c a l l - c o d e =
I F DUP DUP @ O O f f f f f f h AND \ i t ' s a b r a n c h . . ge t o f f s e t

DUP 0 0 7 f f f f f h > I F
OOffOOOOOOh OR \ s i g n e x t e n d t h e o f f s e t + \

THEN
2 LSHIFT \ c o n v e r t t o b y t e o f f s e t
t CELL+ CELL+ \ f i x u p f o r p i p e l i n e p r e f e t c h
SWAP CELL+ SWAP EXIT

THEN 0 ;

: x t , x h e r e ALIGNED DUP T O x h e r e SWAP
x h e r e - ce l l - ce l l - 2 RSHIFT \ g e t s i g n e d o f f s e t
O O f f f f f f h AND \ m a s k o f f h i g h - o r d e r s i g n b i t s
c a l l - c o d e OR \ m a k e t h e opcode
x h e r e s w a p \ r e m e m b e r w h e r e i t w i l l g o
c o d e , I D f l u s h l i n e ; \ e m i t i t a n d p u r g e t h e b l o c k

Forth Dimensions XX.3

macro assembler; in this technique,
the low-level words are hand-as-
sembled and edited into the assem-
bler source files as DEFW (define
word) statements. This is some-
what tedious but entirely effective.
That technique was unsuitable for
the ARM port because the 8086
macro assembler is designed to use
16-bit addresses, whereas the ARM
uses 32-bit addresses. Therefore, it
was logical to use the assembler
and linker in ARM Ltd.'~ Software
Development Toolkit (SDT). This is
where I hit a major problem.

The macros work by repeatedly
changing the value of ORG-the
position in the target image at
which codeldata is being generated.
They do this because each macro
expansion generatess stuff in both
the code dictionary and name dic-
tionary, and these are in separate
memory areas. The problem is that
the ARM assembler does not allow
ORG to be changed. (At the time I
learned this, it came as something
of a shock. I have since learnt that
it is a common restriction in mod-
ern single-pass assemblers.)

The only solution to this prob-
lem was to change the structure of
the assembler source so that every
definition was broken into two
parts (one that generated code dic-
tionary entry and one that gener-
ated name dictionary entry). Rather
than embarking on a major editing

7

session, I used the AWK scripting language to process the as-
sembler source. I ended up with three separate scripts:

The first script makes syntax changes to the assembler
source to suit the ARM assembler
The second script expands all the macros and generates
three output files: one representing the code dictionary,
one representing the name dictionary, and one represent-
ing a jump table and ASCII strings for the system THROW
(error) messages
The third script reverses the order of the entries in the
name dictionary so that entries logically grow down from
high memory.

The assembler source is run through these three scripts, and
the three output files (code dictionary, reversed name dictio-
nary, and throw table) are concatenated and fed through the
ARM assembler. The final stage is to link them using the ARM
linker. The entire build processs takes about five seconds.

The AWK scripts took some weeks to develop, but I had
already made that investment for eForth, and the modifica-
tions for hForth were relatively minor (adding the throw table,
for example, since this was not present in eForth). The whole
process had a major benefit that I did not anticipate: my as-
sembler source file had a relatively small number of changes
from the 8086 version. When Dr. Koh made new releases of
his code, I was able to use the excellent ediff feature in GNU
Emacs to view differences between my old code and Dr. Koh's
new release, and patch (with a single keystroke) any revision
that affected my port.

2.3 Portability issues
eForth and hForth were originally written for a 16-bit pro-

cessor, the 8086, with a 16-bit cell size. My target machine was
a 32-bit processor, with a 32-bit cell size. I had found a couple
of places in eForth (loop counters in the division and multipli-
cation routines) where the code relied on a 16-bit cell size, and
I had changed these to get the 32-bit version working. I checked
for these same problems in hForth but I found they had al-
ready been abstracted to a constant, cell-size-in-bits. I was later
able to conclude that there were no portability issues in the
code related to cell size (at least, none that affected the transi-
tion from 16 to 32 bits). In addition, as Dr. Koh predicted[l],
the multitasker ran without modification.

One area that limited portabilty was an environment string
called systemID. As previously described in [I], hForth has
three closely associated implementations; ROM model, RAM
model, and EXE model. Different assembler source code is
used to build each model, and generates the basic kernel of
the Forth system. Additional functionality is added by
INCLUDEing Forth source files on the running system. The
definitions in these files are coded to work correctly for any
of the models. Where data structures vary for the different
models, s y s t e m 1 ~ is tested to see which version to use. Origi-
nally, the environment string systemID expanded to "8086
ROM Model". For the ARM port, this was changed to "ARM
ROM Model", but this stopped the Forth source files from
working. Dr. Koh revised hForth to solve this problem; he
split the environment string into two parts; CPU (for example,
"8086") and Model (for example, "ROM Model"). As a result,
most of the high-level files only needed to test Model, and
became CPU-independent. The only time where the CPU en-
vironment string must be tested is for definitions that use

(CPU-dependent) assembler. For example, see Figure Six.

3. Additions to the functionality
In addition to re-coding the low-level routines, I made

these modifications to hForth:
Changed the 110 to support simple terminal 110 and file
download.
Added some primitive code to help in the debug of new
ports.
Added support for processor caches.

3.1 I/O routines
The 8086 hForth is designed to run under MS-DOS. It uses

software interrupts to DOS to perform character I/O and file
110. My target platforms had no underlying operating envi-
ronment, so I had to write initialisation code for the system
memory controller and 110 devices, and character input and
output routines to control a UART. I connected to the UART
on the target using an RS232 connection from a PC running
a terminal emulator.

I added a simple file-download function, which relies on
an ASCII file download from the terminal emulator and XON/
XOFF flow control within hForth. This facility copies the FILE/
HAND technique used by eForth.

All the target boards I ran hForth on had on-board Flash
ROM. hForth was stored in ROM but copied into RAM at startup
so it would run more quickly. I added Forth definitions to al-
low me to take a running RAM image of hForth (including all
the definitions that had been added interactively or by file
download) and program this image back into Flash.

3.2 Debugging
The initial debug of both the eForth and hForth ports was

done using ARM Ltd.'s SDT. This includes an instruction set
simulator that runs under the control of a debugger to allow
single-stepping, source-level debug, and breakpointing.

Both eForth and hForth use a minimal number of words
defined in machine code (code definitions); the bulk of the
image consists of the name dictionary (which the debugger
just treats as data) and threaded lists of execution tokens. By
definition, a breakpoint can only be set on an opcode, and
for a DTC Forth there is only one opcode in each colon defi-
nition: the DTC call to DoLIST.

Simply trapping on the call to DoLIST leads to multiple
unwanted traps. For example, consider a definition that in-
cludes this fragment:

R> SWAP 2DUP + ALIGNED > R

If a breakpoint is set on the call to DOLIST for each of
these words, the breakpoint would also be triggered if, for
example, the definition of ALIGNED used SWAP. It would be
useful to step through each word in turn (and check its effect
on stacks and other data areas) without diving down into
other definitions. The threaded nature of the code makes it
very difficult to step through a particular definition in this
way using breakpoints.

Conventional Forth programming philosophy encourages
you to test and debug each low-level word and work your
way upwards to a complete, debugged program. However,
when you are trying to bring up Forth with no particular tools
to help you, you have no "test harness" to exercise a word
other than the entirety of the Forth compiler.

Forth Dimensions XX.3

Forth Dimensions XX.3 9

My solution to this problem was to modify $NEXT to imple-
ment a micro debugger, u D e b u g .

All definitions end with $NEXT--either directly (code defi-
nitions) or indirectly (colon definitions terminating in E X I T ,
which is itself a code definition). The normal action of $NEXT
is to use the f pc to fetch the xt of the next word and jump to
it. The modified action of $NEXT is to make a jump (not a call)
to the routine u D e b u g . Invoking this modified behavior is a
build-time option that requires you to reassemble the code.

In ARM assembler, u D e b u g looks like Figure Seven.
To invoke u D e b u g for a particular definition:

1. Set a debugger breakpoint at the DTC call to DOLIST at
the start of the definition to be debugged, and run until
you hit this breakpoint.

2. Load the location t r a p f p c with the address of the first
xt in the definition to be debugged.

3. Set a debugger breakpoint on the final instruction in the
u D e b u g routine.

When you run the code, the debugger will now trap after
the execution of the first xt in the definition. Run again and
it will stop after the execution of the second. To disable
u D e b u g , set the location t r a p f p c to 0.

This technique has a number of limitations:
It depends upon an x t of 0 being illegal (since this acts as
a magic value to turn u D e b u g off)

• It does not allow you to automatically debug a code
stream that includes inline string definitions, or any
other kind of inline literal; you must step into the word
that includes the definition, then hand-edit the appropri-
ate new value into t rapf pc.

These limitations could be overcome by making u D e b u g
more complex-but at a risk of introducing bugs into the
debugger code itself. u D e b u g has now been incorporated into
Dr. Koh's hForth source.

Figure Six

Another technique I used early in eforth debug was even
simpler: a definition called DXIT, which has behavior identi-
cal to E X I T , but with a different xt . To use this to debug a
definition:
1. Set a debugger breakpoint on the DTC call at the start of

DXIT.
2. In the definition to be debugged, patch the x t of E X I T

with the x t of D X I T .

Now when you run the code, the debugger will trap at the
end of the definition to be debugged, an ideal point at which
to examine the stack effects. A duplicate D O L I S T could be
used in a similar way but, for the ARM, patching in a B L to
DOLIST requires a fiddly calculation of a relative offset.

Once hForth was up and running on my target hardware,
I re-coded some colon definitions as code definitions, to im-
prove performance. I started by giving a code definition a
different name from its colon definition and debugging it
interactively. After testing, I replaced the colon definition with
the code definition and reassembled.

3.3Caches
Everything described so far applies equally to SA-110 and

any other ARM processor. However, the architecture of the SA-
110 caches differs from that of earlier ARM processors. In com-
mon with many RISC processors, but unusual for an ARM pro-
cessor, the SA-110 has a modified Harvard architecture: sepa-
rate instruction and data caches, but a unified 32-bit address
space accessed through a single external bus interface. This
cache architecture introduced two problems for the hForth port:

keeping the I-cache coherent during code generation
achieving high cache utilisation

3.3.1 Cache coherence
As is usual on RISC processors, the SA-110 has no hard-

ware mechanism to keep the I-cache coherent with the rest
of the system (D-cache and
main memory). Therefore,

CHAR " P A R S E CPU" ENVIRONMENT? DROP
CHAR " P A R S E 8 0 8 6 " COMPARE
[IF] DROP

CODE D-
B X D X M O V , A X P O P , B X P O P , C X P O P , A X C X S U B ,
cx PUSH, DX BX SBB, NEXT,

END-CODE
[ELSE]

: D- DNEGATE D+ ;
[THEN]

Figure Seven

u D e b u g l d r r 0 , = A d d r T r a p f p c
l d r r l , [r O]
c m p s r1 , fpc ; c o m p a r e t h e s to red address w i t h

; t h e address w e r re about t o ge t t h e
; n e x t x t f r o m

l d r n e pc, [fpcl , # C E L L L ; n o t t h e t r a p address, so we' re done
add r 1, fpc, # C E L L L ; n e x t t i m e t r a p o n t h e n e x t x t
s t r r l , [r O]
l d r pc, [f p c] , # C E L L L ; m a k e debugger T R A P a t t h i s address

whenever a value is written
into memory and that value
is to be used as an opcode,
the coherence of the caches
must be enforced under soft-
ware control. This has two
well-known consequences:

self-modifying code
requires careful attention
after loading a new
executable image into
memory, the caches must
be flushed before the
code can be executed

Forth can be regarded as
a special case of self-modify-
ing code, in the sense that an
image that is executing
makes additions to its own
code space. When hForth is
running, the only opcode
generated is the BL DOLIST
at the start of a definition.

This is generated by x t , and so, for the ARM port, x t , was
modified by the addition of a call to ID£ lushline. The func-
tion of IDflushline is to take an address and to force cache
coherence at that address. The SA-110 has a write-through
data cache and, therefore, the sequence performed by
ID£ lushline is:

clean D-cache entry at this address (force dirty data line
to main memory)
flush I-cache entry (force a cache miss at this address)

Subsequently, an opcode fetch from the address will cause
the I-cache to miss and force the opcode to be fetched from
main memory.

For a system without caches, or where I-cache coherence
is enforced in hardware, IDf lushline can simply be DROP.

3.3.2 Cache utilisation
Consider what happens when the colon definition of

DOUBLE is executed for the first time. Recall that the defini-
tion occupies 16 bytes:

[BL DOLIST] [XT-DUP] [XT-+I [XT-EXIT]

To start execution of the word, the SA-I 10's program counter
is loaded with the address of the BL DoLIST. The SA-110 checks
the 1-cache to see if a value for this address is present, and
cache misses. A cache miss is serviced by loading a naturally
aligned block of eight 32-bit words from main memory into
the cache (in this case, the I-cache). The size of the block is
called the line size, and results in seven other 32-bit words be-
ing read into the I-cache. Depending upon the alignment of
WUBLE in memory, some of these words may be part of the
definition of D ~ U B L E or they may be values associated with
earlier or later definitions in memory. Once the cache-miss
data has been loaded, the SA-110 executes the BL and branches
to the inner interpreter which will generate a fetch from the
address at which [XT-DUP] is stored. This is a data fetch, so
the SA-110 checks the Dcache and, again, cache misses. Again,
the miss is serviced by loading a naturally aligned block of
eight 32-bit words into the Dcache. Often, these will be ex-
actly the same eight words already stored in the I-cache.

This example shows that intermingling code and data leads
to low cache utilisation; the I-cache is polluted with execu-
tion tokens that can only be used as data and, to a lesser
extent, the D-cache is polluted with branches to DOLIST,
which can only be executed as instructions.

Cache utilisation is a "figure of merit" for a piece of code;
it is calculated as the proportion of values that, having been
loaded into a cache line, are subsequently used at least once
before being discarded to make way for some other value.
Low cache utilisation reduces performance for two reasons:.

The processor is stalled whilst the cache line is loaded;
loading values that never get used wastes processing cycles.
Compared with an ideal system (one with full cache
utilisation), the system performs as though it had a cache
that is only a fraction of its actual size.

Intermingled code and data would be more appropriate
for a system with a unified cache, but this architecture is rarely
used in high-performance systems, because a modified
Harvard architecture is an easy way of increasing the instruc-
tionldata bandwidth into a processor core.

For the SA-110, the cache utilisation could be improved dra-

matically by changing from a direct-threaded code to a subrou-
tine-threaded code implementation. This would eliminate the
BL DoLIST at the start of each definition, and change the list of
execution tokens in a definition to a list of BL instructions. The
design of the compiler and decompiler would be complicated
slightly, but the whole thing probably could be factored effi-
ciently and incorporated into hForth as a build-time option.

4. Applications of hForth
My use of hForth on SAl lO-based target systems has been

for testing and debugging hardware. Since the ARM port was
released, there have been a few sightings of its use elsewhere,
including modifications to the build procedure to support
the use of the GNU ARM assembler/linker.

5.Other projects in progress
The frustration of having to use AWK scripts to preprocess

the assembler source file led me to start thinking about other
ways to generate an executable image. Several Forth imple-
mentations have successfully used C as a source environment,
but I was reluctant to go down that path, because the exist-
ing structure of hForth makes it suitable for processors for
which no C compiler is available.

The logical solution is to metacompile hForth and thereby
do away with any external tool problems. I have a prototype
system running on pfe (a 32-bit ANS Forth compiler) under
Linux. After loading two ANS programs (an ARM assembler
and the metacompiler), it is possible to read the hForth source
(somewhat modified, since the source is now entirely ex-
pressed in Forth) and spit out an ARM binary. More about
that in another article.. .

6. Conclusions
hForth lived up to its author's goal of being easily portable

to other processors. If you want a publicdomain Forth that runs
on an embedded target, it is worthy of serious consideration.

A. Acknowledgments
I am grateful for Dr. Koh's timely responses to numerous

e-mails when I asked questions about various aspects of his
implementation that were unclear to me. We should be grate-
ful that Dr. Koh was kind enough to take comments and code
fragments from many people and use them to improve the
clarity and portability of his source code.

Most of the work I did on porting hForth to the SA-110 was
done in my private time. However, some of it was also sup-
ported by my then-employer, and I am grateful to acknowledge
Digital Semiconductor's permission to place all this work in the
public domain under the same restrictions as Dr. Koh's original
work: all commercial and non-cornmerical uses are granted.

6. Download
hForth packages for the 8086, 280, and StrongARM are

on-line at:
http://www.taygeta.com/forthcomp.html or
fip://ftp.taygeta.com/pub/Forth/Compile~~/native/d~s/hForth

These packages include an HTML version of Dr. Koh's article
from FD XVIII.2.

C. References
[I] "hForth: a Small, Portable ANS Forth" Wonyong Koh, FD
XVIII.2.

Forth Dimensions XX.3

Forth Dimensions XX.3 11

My toilet has developed a stuttering problem. While per- Context switching is thus reduced to switching from one
forming the foreground process of flushing, the background processor to the other, one or two clock ticks. There are, how-
process of refilling the tank proceeds in a noisy, stuttering ever, some consequences to this design:
manner. However, the tank still fills in a reasonable time
frame. So, being a software kind of guy, I'm willing to live 1. The flushing and refilling time of the background

processor is determined by the mix of instructions
My toilet's current mode of operation is rather much like running in the foreground processor. In the worst case,

the answer to a question asked of me some fifteen years ago, none of the previous state will be saved before the next
or rather, the answer I should have come up with fifteen context switch. However, this is the same overhead as
years ago. The question I was asked was how to build the on conventional processors.
context-switching part of a Forth engine. At the time, I was
focussed on optimizing the time-wasting stack-shuffling 2. At least one hardware instruction must be a multi-cycle
operations. My theory is that the ideal computer-in-the-sky instruction.
will always have its data available. Time spent finding and
getting the data is time wasted! I had come up with a method 3. Programming such a system will include optimizing
of buffering the top three items on the stack and perform- tradeoffs, such as using D I V I D E rather than SHIFT or
ing stack shuffling in parallel with other operations. Task throwing in NOOP instructions to allow the background
switching, however, had not yet shown up on my radar and processor time to flush and refill. A small, tightly
the question brought my pattern-matching processor to a optimized process could actually degrade performance

by interfering with background context switching!
Fifteen years of mulling over the problem produced this

Pattern-matching computers, such as the human brain,
are orders of magnitude slower than digital computers at se-

1. Internally, the processor contains two identical proces- quential processing. Given enough time, however, they can
sors. (Stop throwing things at me! 1 am not reinventing
the Pentium!)

come up with solutions that, like my toilet's current mode of
operating, are elegantly just good enough.

2. While the foreground
processor is running, the
background processor is

Arrows show the multiple data paths necessary to read, write, and shuffle
the top three stack items.These are going to be five port RAM!

suppressed, except
during excessively long
instructions, such as
DIVIDE. During such
instructions, the back-
ground processor flushes
the prior process and
loads the next process.

3. If a context switch
happens before the
background processor
has completed loading
the next process, the
loading of the next
process will proceed at
full speed, followed by
running the next process. Buss

7

Association of Disabled Sailors (http:/w.ips.net/personality/
baads/baads+htrnl) and the slaue of a 3 1/2 poundcalico cat.

12 Forth Dimensions XX.3

Problem statement ing equation is x(ax + b) + c, and the multiplications by x
I am building a profiling temperature controller for a small require normalizing divisions. Raw thermocouple data are in

oven that is used for enameling and the preparation of in- tables with one degree increments that give the signal to the
vestment casting molds. One of the necessary details is a way nearest microvolt. I use a spreadsheet to interpolate the tem-
to read a thermocouple that is to indicate temperature in perature values from the table and to calculate the coefficients.
degrees F and be suitable for use in a control loop. Thermo- They are then used in a Forth table.
couples are only slightly nonlinear. Nevertheless, a simple Tables One and Two are examples of the work. The first
way to linearize them also works well with functions that column is the count from the converter. The second shows
have much greater nonlinearity, and I present it here. the corresponding millivolts. The next three columns are read

Function approximation is often done by expanding a from the table and entered by hand; highest temperature not
polynomial. The polynomial can require many terms, even if exceeding the millivolt column, millivolts at that tempera-
the function is only modestly nonlinear, and determining ture, and millivolts one degree higher. The next columns are
the best coefficients can be time consuming. (Thermocouple the interpolated temperature, four times that, rounded to an
polynomials are typically ninth order.) Evaluating the poly- integer (eight times for Celsius), and the calculated coeffi-
nomial at run time may take too long, especially on the small, cients. (The column marked "4T (c)" shows temperatures at
slow processors used in many embedded systems. For these the end and midpoint of segments. These are all needed for
systems, a good routine will execute in few cycles using fixed- subsequent calculations, but only the endpoint values are
point arithmetic, and will have adequate accuracy and reso- coefficients.) Working code is also shown.
lution for the job at hand. It may be important that the reso-
lution be greater than the accuracy. Control systems usually Implementation details
need to differentiate the approximated result, and smooth
differentiation requires high resolution.

Polynomial approximations require more terms as the
range of the function increases. The technique described di-
vides the function into segments small enough that each seg-
ment is adequately characterized by a parabola. For each seg-
ment, we must calculate ax2 + bx + c. The programmer's task
is to determine the proper form of x, and the values of a and
b. Errors can be minimized by proper choice of the end points
of the segments and the internal value at which the error
becomes zero. The method I use here is devoid of subtlety; I
simply use some of the leading bits- in this case, three-to
define the segment, and construe the rest as a fraction 0 < f 5
1. I make the end points exact, and force the error to zero
also at the midpoint of the segment. With such a "tame" curve
as a thermocouple's, more sophistication gives no better re-
sults, not even for continuity of slope. To achieve smooth
control in the intended application, I want to read to the
nearest degree F. I therefore calculate temperature times four.

Design method
My measurements come from a 12-bit converter, making

the full range 4096 counts. This corresponds to 50 mv., given '
the gain of the converter system, and represents 2250 de-
grees F. After dividing to identify one of eight segments, the
remainder is up to 511. The variable x now takes the form
[remainder/512], and c is evidently the temperature of the
beginning of the segment. It is fairly easy to see what a and b
must be. The temperature at the end of the segment is a + b +
c, and the middle temperature is a14 + b/2 + c. The comput-

Since the error is forced to zero (within the accuracy of the
coefficients) at the ends and at the middle of each segment,
the obvious places to look for errors are the one- and three-
quarter points. I have found no erlor exceeding " degree, the
best that could be expected. Since it is unlikely that any given
thermocouple will give a reading closer than two degrees of
the reference value, the approximation is clearly better than
necessary. It might seem that four segments would be adequate.
There is good reason to retain eight, and little incentive to
reduce the number. (Naturally, it is desirable to make the num-
ber of segments a power of two.) The computation time would
be the same in either case, and only 12 cells would be saved.
However, the effect on the computation would be drastic. The
maximum x (before normalization) would double, b would
double, and a would quadruple. It would not then be possible
to control round-off. Notice the rounding step in the second
line of interpolate, adding 256 to the product: 2@ ROT *
256 + 512 / + . That keeps the error from being one-sided
over the range. In order to do that, * / cannot be used, so the
multiplication must be kept in bounds. With only four seg-
ments, that couldn't be done in single precision. The net re-
sult would be going from unnecessarily good to unacceptably
poor. Without additional tricks, there is nothing in between.
Such tricks aren't warranted here.

We could get by with four segments if the precision were
limited to one degree; fine for display and adequate for pro-
portional control, but skimpy for the derivative. However,
the raw converter data could be used for that. The sensitivity
of the thermocouple varies between 20 and 24 microvolts
(1.6 to 2 counts) per degree over the range, a variation of +lo

The author held positionsat RCA Laboratories'David Sarnoff Research
Center, New Brunswick Scientific, and others before retiring in t 987.

percent. In some cases, the gain Table One. Fahrenheit coefficient calculation 1
variation in the derivative

actually be less obiec- Count Millivolts T lower mV lower mV upper 'f PI! (c) a b I
tionable than the inevitable
staircasing of the linearized
value. Clearly, we can't read 10

degree with a 12-bit converter.
What we can do is, given a
count, report accurately the
temperature that would pro-
duce it. Table Two shows the
(unimplemented) calculated
coefficients to return 8x Celsius
temperature directly. I have no
reason to believe that its per-
formance would be inferior.

A few variations make it
possible to use this two-step in-
terpolation method with more
difficult functions. Increasing
the number of segments is the
most obvious. There is much
less to be gained by moving the
end points off the true curve
than with segmented (piece-
wise) linear interpolation, but
moving the internal point of
no error from the midpoint to-
ward a region of greater curva-
ture can sometimes halve the
maximum error in the seg-
ment. That complicates the
computation of the a's and bps,
but not inordinately. The end-
~ o i n t remains a + b + c, but the

Table Two. Celsius coefficient calculation

Count Millivolts T lower mV lower
0 0.000 0 0.000

256 3.125 7 6 3.100
512 6.250 152 6.218
768 9.375 230 9.341
1024 12.500 307 12.498
1280 15.625 381 15.594
1536 18.750 455 18.725
1792 21.875 52 8 21.834
2048 25.000 603 24.987
2304 28.125 67 6 28.12
2560 31.250 750 31.214
2816 34.375 82 6 34.339
3072 37.500 904 34.484

mV upper T 8T (c) a b
,---------------------------------

0.050 0.00 0 -8 1230
3.141 76.61 613
6.258 152.80 1222 -32 1266
9.381 230.85 1847
12.539 307.05 2456 -14 1203
15.636 381.74 3054
18.768 455.58 3645 14 1167
21.876 528.98 4232
25.029 603.31 4826 30 1151
28.162 676.12 5409
31.256 750.86 6007 34 1199
34.380 826.88 6615
37.524 904.99 7240 36 1238

internal point of no error be- 332 8 4 0 -625 983 40.605 40.645 983.50 7868
comes a/n2 + bln + c, in which 358 43 - 50 1064 43.739 43.777 1064.29 8514 38 1305

n is the point in the segment 3840 46.875 1147 46.873 46.910 1147.05 9176
4096 50.000 1232 49.998 50.024 1232.08 9857

where the error is to be re-
moved, expressed as a fraction
of the segment size. Segmented third-order interpolation
would probably handle the most difficult cases encountered
in practice.

Common practice might place interpolate as a WES>
in fahrenhei t. Separating them allows more than one table
to use the same code, provided that the segment sizes are the
same. There are two reasons why interpolate does not sepa-
rate the argument into index and remainder: the address of
the table is already on the stack when it begins, complicating
the stack, and there may be a need to adjust the index before
using it for tables which do not start from zero.

Another example
The rough-and-ready sinelcosine generator shown in List-

ing Two, with the calculations in Table Three, is another ex-
ample of what this interpolation method can do. It has
roughly slide-rule accuracy, enough for many purposes. As
written, the routines work for angles of any size, positive or
negative. In the application described, this generality is un-
necessary. It is merely a side effect of the 8181 AND needed
for cosine to work, and of the cyclic nature of the function.

I have a two-phase incremental rotation encoder with 2048

pulses per turn on each phase. Such encoders can produce er-
rors if they move (or vibrate) around a single transition, and
my (patented) circuit to prevent that automatically provides
double or quadruple resolution. It is not magic: the four states
of the two phases already contain the extra information. This
is not the place for hardware discussion, but I will be happy to
respond privately to any who want to know how to do this
with two XOR gates in front of the a counter, or with software.

Some day, this encoder may be used in a robot arm, where
trigonometry would be needed to calculate the hand posi-
tion. It will be convenient to get sines and cosines directly,
rather than to determine the quadrant as a preliminary. I
therefore generate the values over a full turn, with the count
of 8192 representing 360 degrees. The values returned are 512
times actual, allowing nine bits of precision, about three deci-
mal digits; that is as much as can be had without modifying
interpolate. interpolate also dictates segments of 512

I counts spanning 22.5 degrees, so that one turn requires six-
teen of them.

The computed table entries make the error zero at the ten- ' ter of the segment, and no significant improvement seems 1 possible, at least as far as I have investigated. The "corrected"

Forth Dimensions XX.3

table entries in the listing slightly increase the average error
over the entire segment, but provide better continuity of slope
at the peaks.

Listing One

: interpolate (rem index adr -- value)
SWAP 3 cells * + 2DUP (rem adr rem adr)
2 @ ROT * 2 5 6 + 5 1 2 / + (rem adr partial)
ROT 5 1 2 * / (adr offset)
SWAP 2 cells + @ + ; (n*temperature)

CREATE fahrenheit (-- adr) - 8 I

- 2 6 ,
(4 times actual temperature) -14 ,

- 2 I

1 4 ,
2 0 1

2 6 1

3 6 .
: >temp (n -- 4*temperature)

5 1 2 /MOD DUP 0 8 WITHIN
IF fahrenheit interpolate
ELSE ABORT" Out of range."

\Real code will shut down.
THEN ;

\ Words for testing:

: c >temp 4 /mod 1 .R ASCII . EMIT 2 5 * . ;
: t m v c ;

Listing Two

CREATE sine-table (-- adr)

-8 1

- 2 0 ,
-34 ,

(Corrected segment) -37 ,
\ Computed segment - 3 8 ,

(Corrected segment) - 3 9 ,
\ Computed segment - 3 8 ,

-34 ,
- 2 0 ,

- 8 ,
8 r

2 0 1

3 4 I

(Corrected segment) 3 7 I

\ Computed segment 3 8 I

(Corrected sesment) 3 8 .
\ Computed segment 3 9 , 0 , -51'2 ,

3 4 , 7 7 , - 4 7 3 ,
2 0 , 1 4 6 , - 3 6 2 ,

8 , 1 8 8 , - 1 9 6 ,

: sin (n -- 512*sine)
8 1 9 1 AND
5 1 2 /MOD
sine-table interpolate ;

: cos (n -- 512*cosine) 2 0 4 8 + sin ;

Table Three. Sinecoefficient calculation

D e g r e e s

0 . 0 0
1 1 . 2 5
2 2 . 5 0
3 3 . 7 5
4 5 . 0 0
5 6 . 2 5
6 7 . 5 0
7 8 . 7 5
9 0 . 0 0

1 0 1 . 2 5
1 1 2 . 5 0
1 2 3 . 7 5
1 3 5 . 0 0
1 4 6 . 2 5
1 5 7 . 5 0
1 6 8 . 7 5
1 8 0 . 0 0
1 9 1 . 2 5
2 0 2 . 5 0
2 1 3 . 7 5
2 2 5 . 0 0
2 3 6 . 2 5
2 4 7 . 5 0
2 5 8 . 7 5
2 7 0 . 0 0
2 8 1 . 2 5
2 9 2 . 5 0
3 0 3 . 7 5
3 1 5 . 0 0
3 2 6 . 2 5
3 3 7 . 5 0
3 4 8 . 7 5
3 6 0 . 0 0

C o u n t
.-------

0
2 5 6
5 1 2
7 6 8

1 0 2 4
1 2 8 0
1 5 3 6
1 7 9 2
2 0 4 8
2 3 0 4
2 5 6 0
2 8 1 6
3 0 7 2
3 3 2 8
3 5 8 4
3 8 4 0
4 0 9 6
4 3 5 2
4 6 0 8
4 8 6 4
5 1 2 0
5 3 7 6
5 6 3 2
5 8 8 8
6 1 4 4
6 4 0 0
6 6 5 6
6 9 1 2
7 1 6 8
7 4 2 4
7 6 8 0
7 9 3 6
8 1 9 2

Sine (c) a

0 - 8
1 0 0
1 9 6 - 2 0
2 8 4
3 6 2 -34
4 2 6
4 7 3 -38
5 0 2
5 1 2 - 3 8
5 0 2
4 7 3 - 3 4
4 2 6
3 6 2 -20
2 8 4
1 9 6 - 8
1 0 0

0 8
- 1 0 0
- 1 9 6 2 0
- 2 8 4
- 3 6 2 3 4
- 4 2 6
- 4 7 3 3 8
- 5 0 2
- 5 1 2 3 8
- 5 0 2
- 4 7 3 3 4
- 4 2 6
- 3 6 2 2 0
- 2 8 4
- 1 9 6 8
- 1 0 0

0

Summary
This is a useful (but not earthshaking) way to produce arbi-

trary functions by segmented second-order interpolation. The
accuracy is modest, but enough for many applications, and
can approach all that can be expected from integer calcula-
tion. Computation time is much less than for ordinary poly-
nomial expansions of the same accuracy (which usually need
many more terms), especially on processors without cell-wide
hardware multipliers. The examples shown are for 16- bit sys-
tems. Of course, 32-bit systems can directly extend the method
to much higher precision, but they need more segments to
attain it. I have shown that even with 16 bits, the method
provides as much accuracy as is useful for thermometry, and
accurate enough trigonometry for most control applications.

Acknowledgments: sorry!
The idea of making interpolate a separate word came

from reading Julian V. Noble's recent "Finite State Machines in
Forth" (Forth Dimensions XX.2). I invented the rest about 15
years ago out of necessity, for use on a 12 MHz 8086 that would
not otherwise have been fast enough, despite its built-in as-
sembly-coded polynomial evaluator. I need to use it again, and
polished it out of pride of craftsmanship. It has likely been
done many times by many others, but I don't know who or
when. Priority is hereby ceded to all who wish to claim it.

14 Forth Dimensions XX.3

Stacks
A crossword by
Neal Bridges nbridges@interlog.com
www.interlog.com/-nbridgesl

Across
3 . (x l x2 x3 x4 -- x3 x4 x l x2)

4 . (x - -)
5 . (x l x2 --)

7 . (x l x2 -- x2 x l x2)

8 . (x l x2 -- x l x2 x l)

1 . (x l x2 -- x2)

2 . (x l x2 -- x2 x l)

x l x2 x3 -- x2 x3 x l)

Hands-on hardware and software
Computing on the Small Scale

Since 1983

Subscriptions
~ 1 year $24 - 2 years $44

I All Back Issues available.

I

I

The Computer Journal
P.O. Box 3900

Citrus Heights, CA 9561 1-3900
800-424-8825 1 91 6-722-4970

Fax: 91 6-722-7480

Forth Dimensions XX.3 15

It has been some time since your president has written to
you, and a lot has happened, so now is a good time to update
you on where things are and where they are going.

I think 1998 ended on a downside for pretty much every-
body. This includes FIG. We started the year with a steadily
growing membership, starting with just under 900 members.
However, at the end of the year the membership dropped
substantially and is now about 700. In order to improve this
situation, the FIG Board of Directors has decided upon sev-
eral changes that we hope will help. But remember, FIG is a
member-driven organization; if you want FIG to go in a cer-
tain direction, please tell us and we will do what we can.

First, the Board itself has changed. Jeff Fox and Nick
Solntseff are no longer on the Board, and new member Randy
Leberknight has been added. This new Board membership,
and the long interval since the last Board elections, has
prompted the current Board to call for new elections. The
Forth Interest Group will hold elections for a new Board qf
Directors, consisting of nine members, in June 1999. The
NovemberIDecember issue of Forth Dimensions will codtain
the official announcement of the elections and the date. The
Board has appointed a nominating committee to select nine
nominees. In addition to the nominees that the committee
submits, you, the members of FIG, can also nominate some-
one. The requirements are that the candidate be a current

member of FIG and obtain 25 signatures of other FIG mem-
bers in a nominating petition which must be delivered to the
FIG office 90 days before the election.

We have also decided to add a new membership category,
the e-member. An e-member will have all the benefits of a
regular member, except they do not receive a mailed copy of
Forth Dimensions. Instead, an e-member obtains an electronic
copy of Forth Dimensions (in PDF format) through the web
site. We are working out the logistical details of this now,
look for an announcement in FD and on the web site for
when it becomes available.

We keep enhancing the web and FTP sites, with lots of
help from you. We get an average of 700 accesses (not just

ence. Be professional about it, use a consistent coding style,
provide comments that are useful enough for someone else
(!) to maintain the code, and document both the design and
the implementation.

The Forth Interest Group needs your help in moving for-
ward. Please remember that the FIG office is run by contrib-
uted and volunteer labor-there is no paid staff. This means
that sometimes not everything that needs to be done can
actually get done. Consequently, a major contribution that

, you can make to FIG is to volunteer to help out.

hits) per day from all over the world. The demand for Forth
and information about Forth continues to be quite vigorous.

Interest in Forth will contribute to interest in FIG. Help-
ing keep Forth visible is vital. We desperately need authors.
Not only do we need authors for Forth Dimensions, but also
for other journals (Dr. Dobbs has had a few Forth articles in
the last couple of years, and Embedded Systems Journal has
given Forth the occasional nod). Even more important, we
need Forth books! I can go to my local Borders bookstore and
pick up more books on Rexx than on Forth! This needs to
change. 1 am working on a couple of writing projects and
would be happy to hear of what others are doing. When you
are able to get Forth noticed, make sure it's a positive experi-

16 Forth Dimensions XX.3

,
1
1

I

I

1

\ code to create state machines from tabular representations

\ If needed, : PERFORM @ EXECUTE ;

\ add two xt's to data field
: wide 0 ; \ aesthetic, initial state = 0
: fsm: (width state - -) \ define fsm

CREATE , (state) , (width in double-cells) ;

: ;fsm WES> (x col# adr -- x')
DUP >R 2 @ (x col# width state)

(x col#+width* state)
2* 2 + CELLS (x relative offset)

(x adr[action])

(x adr[action])

PERFORM (x')
R> CELL+ (x' adr[update])
PERFORM (x' state')

(x') \ update state

\ set fsm's state, as in: 0 >state ism-name
: >state POSTPONE defines ; IMMEDIATE (state " ism-name" --)

: state: ("ism-name" -- state) \ get fsm's state
\ get dfa

POSTPONE LITERAL POSTPONE @ ; IMMEDIATE

0 CONSTANT >O 3 CONSTANT >3 6 CONSTANT >6 \ these indicate state
1 CONSTANT >1 4 CONSTANT > 4 7 CONSTANT >7 \ transitions in tabular
2 CONSTANT >2 5 CONSTANT > 5 \ representations
\ end fsm code

The automatic conversion tables are useful but not neces-

\ Automatic conversion tables
: table: (#bytes --)

CREATE HERE OVER ALLOT SWAP 0 FILL.
DOES> + C@ ;

(col# adr char.n char.1 --) \ fast fill
SWAP 1+ SWAP W 2DUP I + C! LOOP 2DROP ;

\ end automatic conversion tables

Forth Dimensions XX.3 17

Errata

Finite State Machines in Forth
I am grateful to Jerry [Avins] for pointing out a la-

cuna in the FSM code that appeared in FD. I hasten to
add the same line is missing from the code that appeared
in JFAR (http://www.jfar.org/article001.html).

Here is how the word ; FSM should actually have
appeared, and my heartfelt apologies to anyone who
was inconvenienced by the error (except Jerry Avins,
who owes me a beer for providing him with a wonder-
ful learning experience .
: ;FSM DOES> (col# adr -)

DUP >R 2@ (- x col# width state)
* + (- x col#+width*state)

2* 2 + CELLS (- x relative offset)

\ the following line was missing
R@ + (- x offset-to-action)

\ I sure am sorry.

DUP > R (- x offset-to-action)

PERFORM (- X I)

D CELL+ (- x' offset-to-update)

PERFORM (- x' state')

D ! ; (x') \ update state

I have separated the wEs> portion from the CREATE
section of the FSM compiler:

: FSM: (width 0 - 1 CREATE , ;

... following a suggestion from Morgenstern in an old FD. (I
think that is the right reference.) It is not necessary to do
this, and the code Jerry sent me keeps this in the FSM: defini-
tion. De gustibus non disputandum est.

-Julian V . Noble jvn@virginia.edu

18 Forth Dimensions XX.3

FORTH INTEREST GROUP MAIL ORDER FORM
HOW TO ORDER: Complete form on back page and send with payment to the Forth lnterest Group. All items
have one price. Enter price on order form and calculate shipping & handling based on location and total.

A volume consists of the six issues from the volume year (May-April).

Volume 1 Forth Dimensions (1 979-80) - $35
Introduction to FIG, threaded code, TO variables, fig-Forth.

Volume 6 Forth Dimensions (1 984-85) 106-$35

Interactive editors, anonymous variables, list handling, integer
solutions, control structures, debugging techn~ ues
recursion. semaphor?~. s,imple I/O words. ~uicksort~zigh:
level packet commun~catlons, China FORML.

Volume 7 Forth Dimensions (1 985-86) 107 - $35
Generic sort, Forth spreadsheet, control structures, pseudo-
interrupts, number editing, Atari Forth, pretty printing, code
modules, universal stack word, polynomial evaluation, F83
strlngs.

Volume 8 Forth Dimensions (1 986-87) 108 - $35
Interrupt-driven serial input, database functions, TI 99/4A,
XMODEM, on-line documentation, dual CFAs, random
numbers, arrays, filequery, Batcher'ssort, screenless Forth,
classes in Forth, Bresenham line-drawingalgorithm, unsigned
division, DOS file I/O.

Volume 9 Forth Dimensions (1 987-88) 1 09 - $35
Fractal landscapes, stack error checking, perpetual date
routines, headless compiler, execution security, ANS-Forth
meeting, computer-a~ded instruction, local variables,
transcendental functions, education, relocatable Forth for
68000.

Volume 10 Forth Dimensions (1 988-89) 'lo - $35
dBase file access, string handlin , local variables, data
structures, object-oriented Forth, fnear automata, stand-
alone applicat~ons, 8250 drivers, serial data compression.

Volume 11 Forth Dimensions (1 989-90) 111 -$35

Local variables, graphic filling algorithms, 80286 extended
memory, expert systems, quaternion rotation calculation.
multiprocessor Forth, double-entry bookkeeping, binary
table search, phase-angle differential analyzer, sort contest.

Volume 12 Forth Dimensions (1 990-91) 112-$35

Floored division, stack variables, embedded control, Atari
Forth, optimizing compiler, dynamic memory allocation,
smart RAM, extended- recision math, interrupt handling,
neural nets. Soviet ~ortE, arrays, metacompilation.

Volume 13 Forth Dimensions (1 991-92) 113-$35

Volume 14 Forth Dimensions (1 992-93) 114-$35

Volume 15 Forth Dimensions (1 993-94) 115-$35

Volume 16 Forth Dimensions (1 994-95) 116-$35

Volume 1 7 Forth Dimensions (1 995-96) 117-$35

Volume 18 Forth Dimensions (1 996-97) 118-$35

FORML (Forth Modification Laboratory) is an educational forum for
sharing and discussing new or unproven proposals intended to benefit
Forth, and is for discussion of technical aspects of applications in Forth.
Proceedings are acompi\ation of the papers and abstracts presented at
the annual conference. FORML is part of the Forth lnterest Group.

1981 FORML PROCEEDINGS 31 1 - $45
CODE-less Forth machine, uadruple-precision arithmetic,
overlays, executable vocabia stack, data typing in Forth,
vectored data structures, using?orth in aclassroom, pyramid
files, BASIC, LOGO, automatic cueing language for
mult~media. NEXOS - a ROM-based multitasking operating
system. 655 pp.

1982 FORML PROCEEDINGS 312 - $30
Rockwell Forth processor, virtual execution, 32-bit Forth,
ONLY for vocabularies, non-IMMEDIATE looping words,
number-input wordset, I/O vectoring, recurslve data
structures, programmable-logic compiler. 295 pp.

1983 FORML PROCEEDINGS 31 3 - $30
Non-Von Neuman machines. Forth instruction set, Chinese
Forth, F83, compiler&interpreterco-routines, I & e m t i a l
funct~on, rat~onal arithmetic, transcenden3 functrons in
variable-precision Forth, portable file-system interface, Forth
codrng convent~ons, expert systems. 352 pp.

1984 FORML PROCEEDINGS 31 4 - $30
Forth expert systems, consequent-reasoni inferenceengine,
Zen floatin point, portable graphics wo9set. 32-bit Forth,
HP7l BFOI?~, NEON-object-oriented pr ramming. decom-
piler design, arrays and stack variables?78 pp,

1986 FORML PROCEEDINGS 31 6 - $30
Threading techniques, Prolog, VLSl Forth microp[ocessor,
natural-Ian uage rnterface, expert system shell, rnference
engine, mugiple-inheritance system, automatic programming
environment. 323 pp.

1988 FORML PROCEEDINGS 31 8 - $40
Includes 1988Australian FORML. Human interfaces, simple
robotics kernel, MODUL Forth, parallel processing,
programmable controllers, Prolog, simulations, language
toplcs, hardware, Wil's workings & Ting's philosoph Forth
hardware applications, ANS Forth sess~on, future of lorth in
Al applications. 370 pp.

1989 FORML PROCEEDINGS 319 - $40
Includes papers from '89 euroFORML. Pascal to Forth,
extensible optimizer for compiling, 3D measurement with
object-oriented Forth. CRC polynomials, F-PC, Harris C
cross-com iler modular approach to robotic control, RTX
recompiler g r oh-line maintenance, modules, trainable neural
nets. 433 pp.

1992 FORML PROCEEDINGS 322 - $40 - Object-oriented Forth based on classes rather than
prototypes, color vision sizing processor, vrrtual file systems,
transparent target develop,ment, signal-processing pattern
classdication, optimization ln low-level Forth, local variables,
embedded Forth, auto displa of di ital images, graphics
package for F-PC, B-tree In Arth 280 pp.

1993 FORML PROCEEDINGS 323 - $45
Includes papers from '92 euroFotth and '93 eurofotth
Conferences. Forth in 32-bit protected mode, HDTV format
converter, graphing functions, MIPS eForth, umbilical
compilation, portable Forth engine, formal specifications of
Forth, writrng bett0r Forth. Holon -,a new way of Forth.
FOSM -a Forth str~ng matcher, Logo In Forth, programmrng
productivity. 509 pp.

1994-1 995 FORML PROCEEDINGS (in one volume!) 325 - $50

FORTH PROGRAMMERS HANDBOOK,
] Edward K. Conklin and Elizabeth D. Rather

ALL ABOUT FORTH. 3rd ed., June 1990, Glen B. Haydon 201 - $90

Annotated glossary of most Forth words in common use,
including Forth-79: Forth-83, F-PC, MVP-Forth. Implementa-
tion examples In h~gh-level Forth and/or 8086/88 assembler.
Useful commentary given for each entry. 504 pp.

eFORTH IMPLEMENTATION GUIDE, C.H. Ting 21 5 - $25

eForth is a Forth model designed to be portable to many of
the newer, more powerful processors available now and
becoming available in the near future. 54 pp. (w/disk)

Embedded Controller FORTH, 8051, William H. Payne 216 - $76

Describes the im lementation of an 8051 version of Forth.
More than half o8his book is composed of source listings
(w/disks C050) 51 1 pp.

F83 SOURCE, Henry Laxen & Michael Perry 217 - $20

A complete listing of F83, including source and shadow
screens. Includes introduction on getting started. 208 pp.

F-PC USERS MANUAL (2nd ed., V3.5) 350 - $20

Users manual to the public-domain Forth system optimized
for IBM PC/XT/ATcomputers. A fat, fast system wlth many
tools. 143 pp.

F-PC TECHNICAL REFERENCE MANUAL 351 - $30

A must if you need to know F-PC's inner workings. 269pp.

THE FIRST COURSE, C.H. Ting 223 - $25

This tutorial goal exposes you to the minimum set of Forth
jnstructions you need to use Forth to solve practical problems
In the shortest ooss~ble t~rne. '...Th~s tutor~al was develo~ed
to como~emed The Forth Course which skims too fasi on
theeleri.lentary Forth instructions and dives too quickly in the
advanced topics In an u per level college microcomputer
laboratory ... A running p-PC Forth system would be very
useful. 44 pp.

THE FORTH COURSE, Richard E. Haskell 225 - $25

This set of 1 1 lessons is designed to make it easy for you to
leam Forth. The material was developed over several years
of teaching Forth as part of a seniodgraduate course in the
design of embedded softwarecomputer systems at Oakland
University in Rochester, Michigan. 7 56 pp. (w/disk)

FORTH NOTEBOOK, Dr. C.H. Ting 232 - $25

Good examples and applications - a great learning aid.
polyFORTH IS the dialect used, but some conversion advice
IS ncluded. Code a well documented. 286 pp.

FORTH NOTEBOOK II, Dr. C.H. Ting 232a - $25

Collection of research pa ers on various topics, such as
ima e processin , paral~eyprocessin~, and miscellaneous
appjcations. 23Qpp.

This reference book documents all ANS Forth wordsets
with details of more than 250 words), and describes the 1 orthvirtual machine, implementation strategies, the impact
of multitasking on program design, Forth assemblers, and I
coding style rGcommendations. - I

INSIDE F-83, Dr. C.H. ling 235 - $25 I
Invaluable for those using F-83.226 pp. I

OBJECT-ORIENTED FORTH, Dick Pountain 242 - $37 I
Implementation of data structures. First book to make
object-oriented pr ramming available to users of even very
small home comp3ers. 118 pp.

STARTING FORTH (2nd ed.) Limited Reprint, Leo Brodie 245a - $50 I
In this edition of Startin Forth-the most popular and
complete introduction to Porth-s ntax has been expanded
to include the Forth-83 standard: (me ori inal printing, h
now out ?f,stock, but we are ma/u!g avalkble a specrsl,
limited-edition reprint w~th all the original content.) 346 pp.

THINKING FORTH, Leo Brodie 255 - $35 I
Back by popular demand! To rograrn intelligently, you
must first think intelligently, and tRat's where Thinking Forth
comes in. The bestselling author of Starting Forth IS back
again with the first guide to using Forth for applications. This
book captures the philosophy of the language, showing
users how to write more readable, better maintainable

WRITE YOUR OWN PROGRAMMING LANGUAGE USING C++,
Norman Smith 270 - $16

This book is about an application language. More specifically,
it is about how to write your own custom application
language. The book contains the tools necessary to begln
the process and a complete sample language
implementation. (Guess what language!) Includes disk w~th
complete source. 108 pp.

WRITING FCODE PROGRAMS 252 - $52

This manual is for designers of SBus interface cards and
other devices that use the FCode interface language. It
assumes familiarity with SBus card design requlrements
and Forth programmlng. Discusses SBus development for
OpenBoot 1 .O and 2.0 systems. 414 pp.

LEVELS OF MEMBERSHIP
Your standard membership in the Forth Interest Group brings
Forth Dimensions and participation in FIG's activities-like
members-only sections of our web site, discounts, special
interest groups, and more. But we hope you will consider
joining the growing number of members who choose to show
their increased support of FIG's mission and of Forth itself.

I

' Ask about our special incentives for corporate and library
1 members, or become an individual benefactor!

Forth Dimensions, Article Reference 151 -$4
An indexof Forth articles, by keyword, from Forth Dimensions
Volumes 1-1 5 (1 978-94).

FORML, Article Reference 152-$4
An Index of Forth artlcles by keyword, author, and date from
the FORML Conference Proceedings (1980-92).

~enekctor - $1 25
Standard - $45 (add $1 5 for non-US delivery)

Forth Interest Group
See contact info on mail-order form, or send e-mail to:

office@forth.org

author-submitted donations, generally includii~g source, f i r a variety
of computers &disk formats. Each file is designated by the author as
public domain, shareware, or use with some restrictions. This library
does not contain "For Sale" applications. TO submit your own contri-
butions, send them to the FIG Publications Committee.

FLOAT4th.BLK V1.4 Robert L. Smith COO1 - $8
Software floating-point for fig-, poly-, 79-Std.. 83-Std.
Forths. IEEE short 32-bit, four standard functions,
square root and log.
Sr** IBM, 190Kb, F83

A Forth Spreadsheet, Craig Lind!ey COO3 - $6
This model s readsheet first appeared in Forth
~imensionsV11/?,2. hose issuescontain docs &source. * IBM, 100Kb

I
I

Automatic Structure Charts, Kim Harris COO4 - $8
Tools for analysisof large Forth programs, first presented
at FORML conference. Full source; docs included in
1985 FORML Proceedings.
*It IBM, 1 14Kb

Games in Forth COO2 - $6
Misc. games, Go, TETRA, Life ... Source. * IBM, 760Kb

A Simple Inference Engine.,Martin Tracy COO5 - $8
Based on Inference engine In Wlnston & Horn's book
on LISP, takes you from pattern variables to com lete
unification al orlthm, with running commentaryon Porth
philoso hy 8 st le. Incl. source. ** I ~ M , 16Y ~b

The Math Box, Nathaniel Grossman COO6 - $10
Routines by foremost math author in Forth. Extended
double-precision arithmetic, complete 32-bit fixed-point
math & auto-ranging text. Incl. graphics, Utilities for
rapid polynomia! evaluation, continued fractions & Monte
Carlo factorization. Incl. source & docs.
*It IBM, 1 18 Kb

AstroForth & AstroOKO Demos, I.R. Agumirslan COO7 - $6
AstroForth is the 83-Standard Russian version of Forth.
Incl. wlndow Interface, full-screen edltor, dynamlc
assembler & a great demo. AstroOKO, an
astronavi ation system in AstroForth, calculates sky
gosition o?severalobjects fromdifferent earth positions.

emos only. * IBM, 700 Kb

Forth List Handler, Martin Tracy COO8 - $8
Ust primitives extend Forth to provide a flexible, high-
s eed environment for Al. Incl. ELlSA and Winston &
&rnss micro-LISP as examples. Incl. source & dms.

It* IBM, 170 Kb

F

F83 V2.01, Mike Perry & Henry Laxen ~ 1 0 0 - $20
The newest verslon, ported to a variety of machines.
Editor, assembler, decompiler, metacompiler. Source
and shadow screens. Manual available separately (items
217 & 235 Base for other F83 applications. * l B 4 83,490 Kb

8051 Embedded Forth, William Payne C050 - $20
8051 ROMmable Forth operatin system. 8086-to-
8051 target compiler. incl. source.Bocs arein the book
EmbeddedController Forth forthe 8051 Fam~ly. Included
with item #216 *** IBM HD, 4.3 Mb

1

I

F-PC V3.6 & TCOM 2.5. Tom Zimmer C200 - $30
A full Forth system with pull-down menus, se uential
files, editor, forward assembler, metacompiler,?oatin
point. Complete source and help files. Manual for ~ 3 . 8
available separately (items 350 & 351). Base for other
F-PC a lications. * RM HD, 83,3.5Mb

68HC11 Collection C060 - $1 6
Collection of Forths, tools and floating-point routines
for the 68HC11 controller.
kt* IBM HD, 2.5 Mb

F-PC TEACH V3.5, Lessons 0-7 Jack Brown C201 - $8
Forth classroom on disk. First seven lessons on learning
Forth, from Jack Brown of B.C. Institute of Technology. * IBM HD, F-PC, 790 Kb

VP-Planner Float for F-PC, V1.O1, Jack Brown C202 - $8
Software floatin point engine behlnd the VP-Planner
spreadsheet. 80-%it (temporary-real) routines with transcen-
dental functions, number I/O support, vectors to support
numeric co- rocessof overlay & user NAN checking. ** IBM, p-PC, 350 Kb

F-PC Graphics V4.6, Mark Smiley C203 - $1 0
The latest versions of new graphics routines, including CGA,
E q , and VGA support, wlth numerous improvements over
earlier versions created or supported by Mark Sm~ley. *+ IBM HD, F-PC, 605 Kb

PocketForth V6.4, Chris Heilman C300 - $12
Smallest complete Forth for the Mac. Access to all Mac
functions, events, files, graphics, floating int, macros,
creat? standalone applications and DAs. g s e d on fig &
Startin Forth. Incl. source and manual. * %AC, 640 Kb, System 7.01 Compatible.

Kevo V0.9b6, Antero Taivalsaari C360 - $1 0
Complete Forth-like object Forth for the Mac. Object-
Prototype access to all Macfunctions, files, gra h is , floating
point, macros, createstanda~oneap~lications. kernel source
Included, extensive demo files, manual.
t** MAC, 650 Kb, System 7.01 Compatible.

Yerkes Forth V3.67 C350 - $20
Complete object-oriented Forth for the Mac. Object access
to all Mac functions, files, graphics, floating point, macros,
create standalone applications. Incl. source, tutorial,
assembler & manual. ** MAC, 2.4Mb, System 7.1 Compatible.

Pygmy V1.4, Frank Sergeant C500 - $20
A lean, fast Forth with full source code. Incl. full-screen
editor, assembler and metacompiler. Up to 15 files open at
a time. ** IBM, 320Kb

KForth, Gu Kelly C600 - $20
A full Forth system with windows, mouse, drawing and

modem8' ckages. Incl. source & docs. ** I M, 83,2.5 Mb

Mops V2.6. Michael Hore C710 - $20
Close cousin to Yerkes and Neon. Very fast, compiles
subroutine-threaded & native code. Object oriented. Uses
F-P co-processor if present. Full access to Mac toolbox &
system. Supports System 7 (e.g., AppleEvents). Incl.
assembler, manual & source. ** MAC. 3 Mb. System 7.1 Compatible

BBL & Abundance, Roed Green C800 - $30
BBL public:domain, {2-bi! Forth with extensiv? support of
DOS, met~culously optlmjzed for execution speed.
Abundance is a publc-domain database language wntten in
BBL. Incl. source & docs. *** IBM HD. 13.8 Mb. hard disk required

Return the old version with the FIG labels
and get a new version replacement for 112

the current version price. I

I e - • a - Volume 18 818 - $20
MuP21 - programming, demos, eForth 7 14 pp. I

Volume 10 (January 1989) 810-$15
RTXreprintsfrom 1988 Rochester Forth conference, object-
oriented cmForth, lesser Forth engines. 87 pp.

Volume 11 (July 1989) 811 -$I5
RlXsupplement to Footstepsinan Empty Valley. SC32,32-
bit Forth engine, RTX interrupts utility. 93 pp.

Volume 12 (April 1990) 812 - $15
ShBoom Chip architecture and instructions, neural
com utin module NCM3232, pi Forth, binary radix sort on
802f6,6t010, and RTX2000.89 pp.

Volume 13 (October 1990 813-$15
PALS of the RTX2OOh Mini-BEE. EBForth. AZForth, RTX-

Volume 19 819 - $20
More MuP21 - programming, demos, eForth 735 pp.

Volume 20 820 - $20
More MuP2l - programmin demos, F95, Forth Spec~f~c
Language Microprocessor &tent 5.070.451 126 pp.

Volume 2 7
MuP21 Kit; My Troubles with This Darn 82651 ; CT100 Lab
Board; Born to Be Free; Laws of Com uting; Traffic Controller
and Zen of State Machines; ~ h 8 b o m Micro rocessor;
Pro rammable Fieldbus Controller 1x1 ; Logic 'sign of a
16-bit M~croprocessor P I 6 98 pp.

/ 2101.8086 eForth. 8051 eForth. 107 pp. I
Volume 14 814-$15

RlX Pocket-Sco eForth for muP20, ShBoom, eForth for T-shirt, "May the Forth Be With You" 601 - $1 8
CP/M 8 Z80, X ~ D E M for eForth. 176 pp. (S~ecifv size: Small, Medium. Large. X-Large on order form)

I white design on a dark blue shirt orgreen design on tan shirt. 1

1 80386 proiected mode operat~on; FRP 1600 - 16-Bit real
t~me processor. 704 pp.

I

Volume 15 815-$15
Moore: new CAD system for chip design, a ortrait of the
P2O; Rible: OS1 Forth processor. QS2. Rls8ng it all; P20
eForth software s~mulator/debugger. 94 pp.

Volume 16 816-$15
OK-CAD Svstem, MuP20, eForth system words. 386eForth.

Volume 17 817-$15
P21 chi and specifications; Pic1 7C42; eForth for 68HC11,
8051 , f ransputer 128 pp.

- -

BIBLIOGRAPHY OF FORTH REFERENCES 340 - $1 8
3rd ed., January 1987) by er 1900 references to Forth articles throughout computer
literature. 704 pp. Cast 5

I

Annual Forth issues, including code for Forth applications. I
September 1982, September 1983, Sepember 1984 (3 issues)

425 - $10

CHECK ENCLOSED (payable to: Forth Interest Group) sub-total
VISAIMasterCard:

1 Signature

Card Number exp. date

T h m l n t e r e s t Goup (FIG) IS a worldw~de, non-proht,be-poXd organlzatlon wlthover 1.000 members and 10 chapters Your membershlp ~ncludes a subscrlptlon to the bl-monthly
magazlne Forth Drmensrons FIG also offers ~ t s members an on-line data base, a large selection of Forth literature and other servlces Cost 1s $45 per year for U S A, all other countries $60 per year
Thls fee Includes $39 for Forth Drmensrons No sales tax. handllng fee or dlscount on membershlp

.. ,
Shipping and handling (see chart above) 1

Membzrship* inthe Forth Interest Group I

When you]om. your flrst Issue will arrive In four to SIX weeks; subsequent issues will be ma~led to you every other month as they are published-six Issues in all. Your membershlp entitles you to a 10%
discount on publications and functions of FIG. Dues are not deductible as a charitable contribut~on for U.S. federal income tax purposes. but may be deductible as a busmess expense.

PAYMENT MUST ACCOMPANY ALL ORDERS
PRICES: All orders must be prepa~d. Prices are SHIPPING 8 HANDLING: SHIPPING TIME: 'CALIFORNIA SALES TAX BY COUNN.
subject to change without notice. Credit card orders All orders calculate shipp~ng Bwks In stock are shipped w~th~n 7,75%: Nortea F ~ ~ ~ ~ ~ , ~ ~ ~ ~ ~ i ~ l , lnyo, ~ ~ d ~ ~ ~ , orange,
will be sent and billad at current prices. Checks must & handling based on order sevendaysof receipt of theorder. Riverside, sacramento, santa clara, santa ~ ~ ~ b ~ ~ ~ , sari B ~ ~ -
be In U.S. dollars, drawn0naU.S. bank. Aslocharge dollar value. Specialhandling SURFACE DELIVERY: nardino, San Diego. and San Joaquln; 8.25%: Alameda. Contra
will be added for returned checks. available on request. U.S.: 10 days Costa. Los AnoelesSan Mateo. San Franc~sco. San Benlto. and -~ ., ~

other: 3- days Santa Cruz; 7.25%: other counties.
XX.3

The SwiftForth switch structure fulfills all of these require-

execution-time behavior of OF can be optimized
until your system implement sted and performance
will be similar to that of the

Given this, why would

reason was the need for ex- switch (w ~ s g)
tensibility-to be able to de-
fine the base structure and case WM-CREATE:
to extend it at will. The tra- PolyCreateProc (hWnd) ;
ditional CASE statement
does not lend itself to being
extended after it is defined. case WM-MOVE:

PolyRedraw (hWnd) ;

While building this Win-
dows Forth, one of the big- case WM-TIMER:
gest problems was needing PolyDrawBez (hWnd) ;
to define the callback behav-
iors which had to respond to
Windows messages. This is default:
fine if, when you write the return (DefMDIChildProc (hWnd, wMsg, wparam, 1Param)) ;
message handler, you know
all the messages you want to return (01) ;

an interactive environment

extend the message handler

code while compiling the
system or from the keyboard

WM CREATE OF hwnd PolyCreateProc ENDOF
Also, the message handler WM-MOVE OF hwnd PolyRedraw ENDOF

needs to be defined early in WM-TIMER OF hwnd PolyDrawBez ENDOF
a Windows program, while OF hwnd msg wparam lparam DefMdiChildProc ENDOF
the behaviors associated with ENDCASE ;

Forth Dimensions XX.3 19

looks like:

I l i n k I d e f a u l t x t I

The link of this structure points to the last clause associated
with the switch. The switch clauses are built by < SWITCH and
look like:

I l i n k I k e y I m a t c h x t I

where each link points to a previous link and the last link is
zero.

A switch is executed by passing a value to it, and the list
of clauses is traversed looking for a key that matches the value.
If a match is found, the value is discarded and the associated
x t is executed. If no match is found, the value is left on the
stack and the switch's default x t is executed. This permits the
chaining of switches, implementing a kind of inheritance of
behaviors. SWITCHER traverses the list of clauses and executes
appropriately:

: SWITCHER (i * x n h e a d -- j * x)

DUP CELL+ @ > R (save d e f a u l t x t)
BEGIN

LINK@ ? DUP WHILE (n a)
2DUP CELL+ @ = I F (m a t c h)

N I P CELL+ CELL+ @ EXECUTE
R> DROP E X I T

THEN
REPEAT R> EXECUTE ;

A simple example might be:

: ONE (--) ." One" ;

: TWO (--) ." TWO" ;
: THREE (--) ." T h r e e " ;

: MANY (n --) . ." m o r e " ;

' MANY :SWITCH NUMBERS
\ MANY is t h e d e f a u l t f o r s w i t c h NUMBERS

' NUMBERS >BODY
' ONE 1 <SWITCH
' TWO 2 <SWITCH
' THREE 3 <SWITCH

DRO P

The list can be extended at any time by repeating the same
pattern:

: FOUR ." Four" ;
: FIVE ." F i v e " ;

NUMBERS >BODY
FIVE 5 <SWITCH

' FOUR 4 <SWITCH
DROP

Named Forth words are not required:

NUMBERS >BODY

:NONAME ." S i x " ; 6 <SWITCH
:NONAME ." S e v e n " ; 7 <SWITCH

DROP

A previously defined switch may be overwritten, since the
list is searched from newest entry to oldest:

' NUMBERS >BODY
:NONAME ." Uno" ; 1 <SWITCH

DROP

Enhancements
Obvious enhancements to the switch component include:

Error checking during list building. In SwiftForth, a flag is
left on the stack under the switch's address by [SWITCH
which is used by RUNS and RUN: to make sure that the
switch clause is appended to an actual switch.
An optimized version of switch execution procedure.
SWITCHER is presented here in high-level code for
portability; any serious implementation should optimize
it in native code.
Syntactic sugar-automatic parsing for defined words and
: NONAME definitions. The SwiftForth equivalent of the
above toy application would be:

[SWITCH NUMBERS MANY (n --)
1 RUNS ONE
2 RUNS TWO
3 RUNS THREE

SWITCH]

[+SWITCH NUMBERS
5 RUNS F I V E
4 RUNS FOUR
6 RUN: ." S i x " ;

7 RUN: ." S e v e n " ;

1 RUNS ." Uno" ;
SWITCH]

This "sugar" allows very concise and simple extension of
existing switch statements without a tremendous textual
overhead.
[S W I T C H defines a switch with a default behavior.
[+SWITCH extends the existing switch.
RUNS builds a switch item with a predefined action. This is
most useful where a single action will be used for multiple
items or where the action is complex.
RUN: builds a switch item with a : NONAME action. This is
useful for simple, single-use actions.
Housekeeping, which in SwiftForth extends the MARKER
concept to allow the truncation of switch structures by the
user. This is done in SwiftForth by keeping a list of all
switches defined, and extending the behavior of MARKER to
include pruning all items defined after a marker is declared.
More data types for the match response than a simple x t .
One of my favorites is to implement a switch which
returns the address of a string, which makes a very nice
string table.

In Practice
In SwiftForth, all Windows message handling is done via

switches. This means the user interface can be built up in

20 Forth Dimensions XX.3

parts and extended at will. For instance,

MARKER FOO

: ZOT (--)

HWND Z" Caught you!" Z" SwiftForth" MB-OK
MessageBox DROP ;

[+SWITCH MESSAGES
WM LBUTTONDOWN RUNS ZOT

SWITCH]

extends the main SwiftForth Windows message handler to
respond to left mouse button presses with a message box.
The behavior can be typed in at the keyboard, tested interac-

tively, and discarded by executing the marker Foo. This means
that-without reloading, or patching, or anything magic-I
can extend the behavior of my predefined programming en-
vironment. With this technique, I can trivially insert debug
code and monitor what messages and parameters Windows
is sending my application.

Conclusions
The switch construct has been an absolute boon to my

efforts at programming for Windows. With it, I can dynami-
cally define responses to Windows messages, and monitor
their effects.

The values on which a switch acts are very similar to mes-
sages being passed to objects, and we will see more of this
next time.

Listing Three

\ Replace LINK@ and LINK, with your favorite list building words.
\ These are the methods used by SwiftForth.

: LINK@ @REL ;
: LINK, HERE OVER @REL ,REL SWAP !REL ;

\ ...
\ High level implementation of the switch construct

\ SWITCHER searches the linked list from its head for a match to the
\ value N. If a match is found, discard N and execute the associated
\ matched XT. If no match is found, leave N on the stack and execute
\ the default XT.

: SWITCHER (i*x n head -- j*x)

DUP CELL+ @ >R (save default xt)
BEGIN

LINK@ ?DUP WHILE (n a)
2DUP CELL+ @ = IF (match)

NIP CELL+ CELL+ @ EXECUTE
R> DROP EXIT

THEN
REPEAT R> EXECUTE ;

\ Create a code switch whose default behavior is given by XT. Leave the
\ address of the head of its list on the stack.

: :SWITCH (xt -- addr)
-,

CREATE HERE 0 , SWAP , DOES> SWITCHER ;

\ Define a new clause to execute the xt when the key N is matched.
I
: <SWITCH (head xt n -- head)

2 PICK LINK, , , ;

\ ...
\ A little syntactic sugar to make switches with.

\ Define a new switch with its default. Use: [SWITCH name default .
\ The head of the switch is left on the stack for defining clauses.

Forth Dimensions XX.3 21

: [SWITCH (-- head)

CREATE HERE 0 , ' , DOES> SWITCHER ;

\ Return the address of the given switch, leaving the head for
\ clauses to append to.

: [+SWITCH (-- head)

>BODY ;

\ Discard the switch head from the stack. Used after defining clauses.

: SWITCH] (head --)

DROP ;

\ Parse for the xt of a new clause.

: RUNS (head n --)

SWAP <SWITCH ;

\ Define a nameless clause for the given key.
\ this may be non-portable use of :NONAME

: RUN: (head n --)
:NONAME [CHAR] ; PARSE EVALUATE POSTPONE ; (xt) SWAP <SWITCH ;

Listing Four

\ An example of a simple switch

: ONE (--) ." One" ;
: TWO (--) ." TWO" ;
: THREE (--) ." Three" ;

: MANY (n --) . ." more" ;

[SWITCH NUMBERS MANY (n --)

1 RUNS ONE
2 RUNS TWO

SWITCH]

[+SWITCH NUMBERS
3 RUNS THREE
5 RUN: ." Five" ;
4 RUN: ." Four" ;

SWITCH]

[+SWITCH NUMBERS
1 RUN: ." Uno" ;

SWITCH]

22 Forth Dimensions XX.3

: Forth Dimensions XX.3

In today's PC environment, the mouse has become an in- BEGIN loop begins with the lower-right item (largest cursor
tegral part of the system. A pointing device can be very use- values) and continues while either mouse cursor x or y posi-
ful to interface the user with the intricacies of a program. To tion is less than the menu item x or y data (above or right).
supply this function for Forth, the following definitions are On exit, the menu item address is saved (for button action
presented. The definitions were written for my "embellished" reference) and the movement action CFA word is executed if
Pygmy ~ o r t h ' although, with minor modifications, they non-zero.
should be applicable to other Forth dialects. This rather crude cursor comparison does not provide com-

plete freedom of block location. At first, it may be difficult to
comprehend the rules for block definition. The menu scan

To apply "point and do," the computer screen is divided will stop when the current mouse position is between the x,y
into a number of blocks. When the mouse cursor is moved data of the current and prior item in the menu array. There-
into a block, up to three functions are available. First, a move- fore, the item x,y data defines the upper-left block corner,
ment (selection) function is invoked which can be used to and the larger x,y data of the prior item defines the lower-
highlight a command, to display pointed data, etc. (button right block corner.
clicks not required). Separate functions can be called with a If the blocks are arranged in a column-row format, the
single left or right mouse button click. menu listing should start with the lower-right block, through

A set of functions (menu) is listed in an array. Each menu the row items from right to left, and continue similarly with
item is described with five entries: upper-left x cursor posi- the higher row. For block arrangements that are not aligned
tion, upper-left y cursor position, CFA of movement word, in a column-row format, the general rule of "bottom-right to
CFA of left-button word, and CFA of right-button word. A upper-left" should be followed, although some experimenta-
relatively unlimited number of menu arrays may be as- tion may be necessary. This may seem awkward, but I have
sembled. As will be shown, the menu scan always starts with found it to be sufficient for applications to date.
the current menu variable; therefore, a button action in one It should be noted that "dummy" row-columns may be
menu may set a different menu for the next scan. It should necessary to unmark adjacent marked blocks or to provide
be noted that each menu listing requires an appropriate dis- areas of mouse inactivity.

Operation
Screen 1 describes the menu creation and variable defini-

tions which control the point-and-do function. The M A X and
M ^ Y variables are used to determine mouse movement. An
(ITEM variable is set by a scan of the current menu array and
provides pointers to the selected action words. The (MENU
variable contains the address of the current menu array.

The PNT&W word (Screen 2) fetches the mouse cursor po-
sition (pixels) and button action via M@P/S. If a button click
has occurred, the CFA of the menu action item is fetched and
a loop is entered to wait for the button release. During the
wait loop, the CFA will be zeroed if simultaneous button ac-
tion occurs. On release of the button, the fetched CFA (if non-
zero) will be executed. Since the action CFA is determined
when the button is first clicked, the mouse may be moved to
a new location before release, thus providing a means for
modified actions (drag and drop, etc.).

If a button click has not occurred, the last and current'
cursor position is checked for movement. The movement
check may seem unnecessary, but it was included to elimi-
nate unnecessary screen updating (possible flicker) and to
minimize CPU usage. Any movement will update the last
cursor position and initiate a menu scan. The menu selection

Obviously, the PNT&DO word must be called repeatedly. It
can be inserted in the keyboard query word. Since the full
keyboard function is not required with the PNT& W action, I
usually define a limited keyboard function and include it with
the PNTSW in a RUN word which may also include flag sam-
pling for a real-time applications.

Example
Screens 3,4 ,5 , and 6 are excerpts from an application and

should help demonstrate these functions. This application
displays local weather data in both graphical and numerical
formats, with commands to retrieve selected data from the
data collection hardware.

Several weather parameters are plotted by day (in hour
increments) and by hour (two hours, in minute increments).
The display screen consists of a command section (top), two
graphical sections (left and right center), and a numerical tabu-

'lation (bottom).
When the cursor is on the command section, various com-

mands are highlighted as the cursor is moved. Two commands
save the displayed data to disk (D . SAVE or H . SAVE) when the
left button is clicked. Other commands allow a number
(month, day, hour, or minute) displayed above the command
to be incremented or decremented by clicking the leftlright
button, respectively (H+HR, H-HR, etc.).

severe weather warning project (m.theramp.net/sferics). He ap-
preciates Forth's'interactive control and limited restrictions."

As the cursor is moved on the
center sections, the numerical val-
ues for the pointed plot time (de-
rived from the x cursor position)
will be displayed (HR. PNT or
DY. PNT) at the bottom of the
screen. Clicking the left button on
either data plot will retrieve new
data (GET. DY or GET. HR), as indi-
cated by the displayed timeldate
above the command words. Click-
ing the right button on the daily
plot will retrieve and plot
(GET. D>H) the minute data of the
pointed hour.

The MARK and UN .MARK words
are defined on screen 3. For this
application, the MARK word
unmarks the previous "mark," and
highlights (bright white) six char-
acter positions from the x,y data of
the selected menu item. This x,y
position is also saved for use by
UN .MARK, which will return the
character attributes to normal
white.

Screen 4 builds the menu item
array. Since the mouse position is
reported in pixels, some calcula-
tion is necessary to relate the pixel
and character positions. As men-
tioned previously, the menu array
must start with the lower-
rightmost position and continue
toward the upper-leftmost item.
The x,y position of the last item
must be 0,O to assure the search
loop will exit properly. Two menu
items (lines 6 and 14) are used to
unmark the area above and below
the command labels. Lines 1, 4,
and 15 define areas of "no action."

Screen # 1
0 \ POINT & DO
1
2 \ Each menu item consists of upper left x/y position, cursor
3 \ movement action, left button action, and right button action.
4 \ Menu example (10 bytes per item)
5 \ CREATE xxxxxx (First item lower right most position)

6 \ x , y , [movement] , ' [left] , ' [right] , (Item 1)

7 \ .. , .. , I 1 . . . I ... , ... ,
8 \ 0 , 0 , I['I 1 , I [" I , I[I , (I t e m n)
9 \ (Last item position must be x=O y=O)
10 VARIABLE M ~ X VARIABLE M^Y \ Cursor position
11 VARIABLE (MENU VARIABLE (ITEM \ Current menu/item
12 : MAX@ (--- n) MAX @ ; \ Get x cursor position
13 : MAY@ (--- n) MAY @ ; \ Get y cursor position
14 : MENU! (adr ---) (MENU ! ; \ Set menu
15 : ITEM@ (--- adr) (ITEM @ ; \ Get pointed item

Screen # 2
0 \ MOUSE MENU CONTROL
1 : PNT&DO (---)
2 M@P/S ?DUP IF 2* 4+ ITEM@ + @
3 BEGIN 100 MS M@P/S NIP NIP
4 DUP 2 > IF 2DROP 0 -1 THEN
5 O= UNTIL
6 ? DUP IF EXECUTE THEN 2DROP
7 ELSE OVER MAX@ - OVER MAY@ -
8 OR IF MAY ! MAX !
9 (MENU @ BEGIN
10 DUP @ MAX@ >
11 OVER 2+ @ MAY@ > OR WHILE
12 10 + REPEAT DUP (ITEM !
13 4+ @ ?DUP IF EXECUTE THEN
14 ELSE 2DROP THEN
15 THEN ;

\ Click?--get routine CFA
\ Get button--drop position
\ Cancel if both buttons
\ Wait for button release
\ If not null, do it
\ No click--mouse moved?
\ Save cursor position
\ Scan current menu
\ Compare x's
\ Compare y's
\ Save match item address
\ Movement action?

Screen # 3
0 \ MARK/UNMARK
1 2VARIABLE (MARK
2
3 : UN.MARK (---)
4 M-CUR \ Cursor off
5 (MARK 2@ 6 7 ATTRS \ Normal cursor 6 chars at xy
6 M+CUR ; \ Cursor on
7
8 : MARK (---)
9 UN.MARK M-CUR \ Restore prior "mark"
10 ITEM @ 8 / ITEM @ 2+ @ 16 \ Get current xy and save
11 2DUP (MARK 2! 6 15 ATTRS \ High white attributes
12 M+CUR ; "
13
14
15

Forth Dimensions XX.3

S c r e e n # 4
0 CREATE MENU (---)

1 0 , 3 2 0 , 0 , 0 , 0 , \ B o t t o m
2 600 , 4 1 6 * , 0 , 0 I 0 , \ R i g h t border
3 3 6 0 , 4 1 6 * , ' HR.PNT , ' G E T . H R , 0 , \ H o u r p l o t
4 2 8 0 , 4 1 6 * , 0 , 0 I 0 , \ P l o t c e n t e r
5 4 0 , 4 1 6 * , ' D Y . P N T , ' G E T . D Y , ' G E T . D > H , \ D a y
6 0 , 3 1 6 * , ' UN.MARK, 0 I 0 , \ D i v i d e r
7 6 6 8 * , 2 1 6 * , ' M A R K , ' H . S A V E , 0 , \ D a y save
8 6 1 8 * , 2 1 6 * , ' MARK , ' H+HR , ' H-HR , \ H o u r + - h o u r
9 5 5 8 * , 2 1 6 * , ' MARK , ' H+DAY , ' H-DAY , \ H o u r + - d a y

1 0 49 8 * , 2 1 6 * , ' MARK , ' H+MON , ' H-MON , \ H o u r + - m o n t h
11 2 3 8 * , 2 1 6 * , ' MARK , ' D.SAVE , 0 , \ D a y save
1 2 1 8 8 * , 2 1 6 * , ' MARK , D+DAY , ' D-DAY , \ D a y + - d a y
1 3 1 2 8 * , 2 1 6 * , ' MARK , ' D+MON , ' D-MON , \ D a y + - m o n t h
1 4 0 , 1 6 , ' UN.MARK , 0 , 0 , \ 2 n d l i n e
1 5 0 , 0 I 0 I 0 I 0 , \ T o p l i n e

S c r e e n # 5
0
1 : FORM (- - -) 7 COLOR!
2 1 2 2 SETCUR ." M o n t h " 1 9 2 SETCUR . I 1 Day"
3 2 4 2 SETCUR ." Save"
4 4 9 2 SETCUR ." M o n t h " 5 6 2 SETCUR ." Day"
5 6 1 2 SETCUR ." H o u r " 6 7 2 SETCUR ." Save"
6 7 COLOR! 2 2 3 SETCUR ." T e m p e r a t u r e "
7 6 COLOR! 2 0 2 1 SETCUR ." P r e s s u r e 1 '
8 7 COLOR! 2 2 2 3 SETCUR ." R a i n "
9 5 COLOR! 3 9 2 1 SETCUR ." MPH"

10 1 COLOR! 3 5 2 3 SETCUR ." D i r e c t i o n "
11 4 COLOR! 5 5 2 1 SETCUR ." R e d s k y "
1 2 2 COLOR! 5 5 2 3 SETCUR ." G r e e n s k y "
1 3 3 COLOR! 7 1 2 1 SETCUR ." M a x Ion I"
14 3 COLOR! 7 1 2 3 SETCUR ." M i n I o n I"
1 5 7 COLOR! ;

S c r e e n # 6
0
1 : WX-CMDS (---)
2 HIGPH \ C l e a r s c r e e n - V G A 6 4 0 x 4 8 0
3 MENU MENU! \ S e t m e n u c o m m a n d s
4 FORM ; \ D r a w s c r e e n
5
6 : RUN (---)

7 WX. COMDS \ I n i t i a l s c r e e n d i s p l a y / m e n u
8 BEGIN
9 PNT&DO \ C h e c k m o u s e

1 0 KEY? 2 7 = \ E x i t on ESC
11 UNTIL ;
12 -.
1 3
14
1 5

The corresponding screen display is
generated with the FORM word of
screen 5. Obviously, there must be cor-
relation between the menu x,y loca-
tions and the text positions on the
screen.

This application is initiated with
the RUN word (screen 6), which calls
wx . CMDS and enters a loop with
PNTS DO and KEY? (check for keypress).
The routine is exited with an Esc
keypress. The wx . CMDs, word sets the
.(MENU variable and draws the initial
screen. Although not used in this ap-
plication, other menus can be incor-
porated by calling other setup words
similar to wx . CMDS with a mouse-but-
ton action. The number of additional
menus is limited only by the imagina-
tion and memory available.

Summary
Although the point-and-do func-

tion has some rough edges, I have
found it very useful to provide mouse
action for several monitoring and data
accumulation programs, with a mini-
mum of program overhead. With a
little effort, mouse action can provide
program control while providing an
informative menu for the user.

1. Richard W. Fergus, "Pygmy
Embellishments," Forth Dimen-
sions XIX.3 (Sept-Oct 1997).
Also available at
http://www.theramp.net/sferics
as the file pyg-embl.exe in
"Misc. Downloads."

Forth Dimensions XX.3 25

Number Conversion and Literals
String-to-number conversion

On page 248 of Starting Forth, 2nd edition, there are defi-
nitions of NUMBER? and NUMBER that I take as authoritative.
Here is a transcription to Standard Forth. The numeric punc-
tuation characters have been extended to be those of Forth
Programmer's Handbook .

In Classical Forth, the characters : , - . / can be used
freely in a double number. This lets a social security number
be written 123-45-6789; a telephone number 555-1212 or,
with 32-bit cells, 1-714-546-9894; a date 10/29/98 or 10-
20-98; a time 9:3O or 23:59:59; an ISBN 0-201-89684-2;
and so on. + has been added to that, and zip+four can be
written 92626+6162.

DPL gives the length of the last field, or -1 if there are no

punctuation characters. A number ending with a punctua-
tion character will return 0. This gives the way to tell whether
the number is single or double integer.

With an application, it can be used as a partial check for
validity. With money, you can let whole dollar (or whatever)
amounts be in single-number format and convert.

I have added several lines in lower case. They reject an
empty string, a lone minus sign, a lone punctuation charac-
ter, and two successive punctuation characters.

The code in Starting Forth accepts all of these as valid num-
bers. I consider that shoddy. Others think it's practical and
economical.

If your implementation is case-sensitive, you may have to
change the lower case to upper case.

1 (V a r i a b l e f o r decimal p o i n t l o c a t i o n .)

2 VARIABLE DPL

4 (Numeric Punc tua t ion : + , - . / t e s t .)

5 : PUNCTION? (c -- f l a g) DUP [CHAR] : = SWAP [CHAR] + - 5 U< OR ;

7 (Check t h a t s t r i n g i s a number.)

8 : NUMBER? (str l e n -- num . f l a g)

9 -1 DPL !
10 (R e j e c t empty s t r i n g .)

11 dup 0= if false exit then
1 2 OVER C@ [CHAR] - = DUP >R 1 AND /STRING (R: s i g n)
1 3 (R e j e c t l o n e minus s i g n .)

1 4 dup 0= if r> drop false exit then
1 5 (R e j e c t l o n e punc tua t ion .)

1 6 dup 1 = if over c@ punction?
1 7 if r> drop false exit then
1 8 then
1 9 0 0 2SWAP (num . str l e n)
2 0 BEGIN >NUMBER DUP WHILE ' 21 OVER C@ punction?
22 (R e j e c t s u c c e s s i v e punc tua t ions .)

2 3 over dpl @ <> and
24 WHILE 1 /STRING DUP DPL !

25 REPEAT THEN
2 6 NIP ROT ROT R> IF DNEGATE THEN (l e n num .) (R:)

2 7 ROT O= (num . f l a g) 1 2 8 ;

1 30 : NUMBER (str len -- num .) NUMBER? O= ABORT" ? lo ;

26 Forth Dimensions XX.3

Base-coded literals
For cross-development, the following is a popular conven-

tion for binary numbers.
Numbers are prefixed by $ for hex, # for decimal, Q for

octal, and % for binary.

: NUMBER (str len -- nurn .) DUP O = IF FALSE EXIT THEN
BASE @ >R

OVER C@ CASE
[CHAR] $ OF HEX 1 /STRING ENDOF
[CHAR] # OF DECIMAL 1 /STRING ENDOF
[CHAR] @ OF 8 BASE ! 1 /STRING ENDOF
[CHAR] % OF 2 BASE ! 1 /STRING ENDOF
ENDCASE
NUMBER?

R> BASE !
O= ABORT" ? "

The only one I ever can remember is $ for hex. I think the
eforth and Open Firmware approach is better. Precede all lit-
erals by B#, DY, H#, or 01. Then there can't be a conflict with
a defined word or wrong base.

My own practice is to use decimal as the default base value
and HI before each sedecimal number. Decimal is for people;
sedecimal is for machines; I'm people.

1 (Compile o r i n t e r p r e t a number.)
2 : BUILD-NUMBER (l o h a f h i h a f -- l o h a f / l o h a f h i h a f)
3 DPL @ O< IF DROP THEN
4 STATE @ IF
5 DPL @ O< NOT IF SWAP POSTPONE LITERAL THEN
6 POSTPONE LITERAL
7 THEN
8 ;

10 (Define word t o b u i l d a number i n a g i v e n b a s e .)
11 : base# (u "<spaces>newname" --)
1 2 CREATE IMMEDIATE ,
13 DOES> @ BASE PUSH () (R: b a s e)
14 BL WORD COUNT NUMBER (num .)
1 5 BASE POP (R:
1 6 BUILD-NUMBER
1 7 ;

1 9 (B u i l d b i n a r y number.)
20 2 base# B#

22 (B u i l d decimal number.)
23 10 base# D#

25 (B u i l d hex number.)
2 6 16 base# H#

28 (B u i l d o c t a l number.)
29 8 base# O#

The following has been included here to balance BUILD-
NUMBER. They and MJWBER? will be needed with "Simple Ob-
ject Oriented Programming."

(n u m / num .)

Forth Dimensions XX.3 27

31 (Compile or interpret execution token. SOOP)
32 : BUILD-WORD (xt 11-1 -- [???I)
33 O < STATE 8 AND IF COMPILE,
3 4 ELSE EXECUTE
3 5 THEN
36 ;

PAD-free number display and stack dump
This was started when testing a new system before output

formatting was installed. In the last three systems I've worked
with, I like this format better than the system's .S format. For
a very long time . . has been my favorite debug routine.

1 (Recursion for PAD-free number display.)
2 : (. # I (n - - 1
3 0 BASE @ UM/MOD (rem quot) ?DUP IF RECURSE THEN (rem)
4 DUP 9 > 7 AND + [CHAR] 0 + EMIT (1
5 ;

7 (Display number without using PAD. Non-decimal is unsigned.)
8 : .# (n - - 1
9 BASE @ 1 0 = IF

1 0 DUP O< IF NEGATE [CHAR] - EMIT THEN
11 THEN
1 2 (. #) SPACE
13 ;

1 5 (Concise stack dump bracketed by parens.)
1 6 : .X (. . . -- same)
17 - " ("

1 8 DEPTH BEGIN ?DUP WHILE DUP PICK . # 1- REPEAT
1 9 . ") "
20 ;

22 (~estructive stack dump. Nothing printed for empty stack.)
23 : .. (. . . -- none)
24 DEPTH O> IF .X
2 5 DEPTH 0 DO DROP LOOP
2 6 THEN
27 ;

(. I) is interesting because it uses recursion. Here it is with
the recursion removed.

: (. # I (n - - 1
-1 SWAP (-1 n . . .)
BEGIN 0 BASE @ UM/MOD

DUP O=
UNTIL DROP
BEGIN DUP 9 > 7 AND + [CHAR] Q- + EMIT

DUP O<
UNTIL DROP '.(1

Sedecimal output
The base I use is normally decimal. When I want to dis-

play in hex, I change the base to 16, print with any appropri-
ate output word, and change BASE back to decimal. H before
the output word does the base flip-flop. Because my normal
base is decimal, I don't have to save the base, change to hex,
print, and restore the base.

Thus, -1 H u. will give FFPPPFPP with 32-bit cells.

H . works like the old time H. does.
H . s or H .x gives the stack dump in hex.
Of course, if the base is hex, I don't need to do this.
1 : B (n --) S" HEX " EVALUATE
2 BL WORD COUNT EVALUATE
3 S" DECIMAL " EVALUATE
4 ; IMMEDIATE

6 (BYE)

28 Forth Dimensions XX.3

Forth Dimensions XX.3 29

This file establishes a wordlist that initially has only Stan- A name that belongs to a word that is not immediate can
dard definitions. The intent is to give you a bare system you usually be defined in STANDARD as:
can use to check that your application does employ just the : name name ;
Standard words.

To enter this mode: A name that belongs to a word that is immediate can usu-
ONLY STANDARD DEFINITIONS ally be defined in STANDARD as:

: name POSTPONE name ; IMMEDIATE

-1 SET-ORDER DEFINITIONS Standard words that are not defined in your system will
compile, but will display "Undefined." when executed. This

The method is to put definitions into the STANDARD lets you test that the application would be compiled if the
wordlist for all Standard words. It does this by setting current missing word were present.
to STANDARD-WORDLIST when making the definition. Con- The following are Tool Belt words. Eliminate the ones you
text is set to FORTH-WORDLIST. already have.

(Bump v a l u e o f a s t o r e d c h a r a c t e r .)
: C+! (n a d d r --) DUP >R C@ + R> C ! ;

(s tr l e n a d d r PLACE S t o r e c h a r a c t e r s t r i n g a s c o u n t e d s t r i n g .)
: PLACE 2DUP 2>R CHAR+ SWAP CHARS MOVE 2R> C! ;

(s t r l e n a d d r APPEND Append c h a r a c t e r s t r i n g t o c o u n t e d s t r i n g .)

: APPEND 2DUP 2>R COUNT CHARS + SWAP CHARS MOVE 2R> C+! ;

(Conven ien t f a c t o r f o r s e v e r a l Tool-Be1 t D e f i n i t i o n s .)

: PARAMETER BL WORD COUNT EVALUATE ;

(C o n d i t i o n a l l y c o m p i l e t h e n e x t word.)

: ?? S" IF " EVALUATE PARAMETER S" THEN " EVALUATE ; IMMEDIATE

(Nex t Word A c r o s s L i n e B r e a k s a s a C h a r a c t e r S t r i n g)

(Leng th o f s t r i n g i s 0 a t end o f f i l e .)
: NEXT-WORD (-- s t r l e n)

BEGIN BL WORD COUNT (str l e n)
DUP ? ? EXIT
REFILL

WHILE 2 DRO P
RE PEAT (s tr l e n)

Wordlist to be initialized to Standard words only.
1 WORDLIST CONSTANT STANDARD-WORDLIST

3 (V o c a b u l a r y f o r S tandard w o r d l i s t .)

4 : STANDARD
5 GET-ORDER DIJP O= ? ? 1 NIP
6 STANDARD-WORDLIST SWAP
7 SET-ORDER

-,

Wn BADEN, after many years of profane language has getired to Stan-
dard Forth. For a copy of the source far this artiele, send @-mail
requesting Stretching Forth #22:ONLY SEANDAab DEflNmUNS,

b The Standard says POSTPONE TO is ambiguous, so we write
ur own.

10 STANDARD-WORDLIST SET-CURRENT (STANDARD d e f i n i t i o n s .)

I : VALUE CREATE , DOES> @ ; I
: TO

STATE @ IF POSTPONE LITERAL POSTPONE >BODY POSTPONE !
ELSE >BODY !
THEN

; IMMEDIATE
(Counting on ' something' t o be cons tant , bu t al lowing t h e
(body t o depend on where code has been loaded a t t h i s t ime.)

That will fail for local variables. I feel the Standard should
have used TO for VALUE words and - > for locals.

The Standard says sm may have only one buffer, as well as
some other problems. So again we code our own.

FORTH-WORDLIST SET-CURRENT (FORTH d e f i n i t i o n s .) I
12 CREATE SBUF 80 CHARS ALLOT

14 STANDARD-WORDLIST SET-CURRENT (STANDARD d e f i n i t i o n s .) I
: S" [CHAR] " PARSE

STATE @ IF POSTPONE SLITERAL
ELSE 8 0 MIN > R SBUF R@ CHARS MOVE SBUF R>
THEN

; IMMEDIATE

Non-immediate words that do or may affect the return
stack also must be postponed.

: >R
: R>
: R@
: 2>R
: 2R>
: 2R@
: E X I T

: LEAVE

POSTPONE >R ; IMMEDIATE
POSTPONE R> ; IMMEDIATE
POSTPONE R@ ; IMMEDIATE
POSTPONE 2>R ; IMMEDIATE
POSTPONE 2R> ; IMMEDIATE
POSTPONE 2R@ ; IMMEDIATE
POSTPONE EXIT ; IMMEDIATE

-\

POSTPONE LEAVE ; IMMEDIATE

: FORTH (--) STANDARD ;

: ONLY (--) ONLY STANDARD ; I
FORTH-WORDLIST SET-CURRENT (FORTH d e f i n i t i o n s .)

30 Forth Dimensions XX.3

: ORDINARY-WORD (s t r l e n --)
Sll : I1 PAD PLACE
2DUP PAD APPEND
S" " PAD APPEND

PAD APPEND ()
S" ; " PAD APPEND
PAD COUNT EVALUATE

I

: IMMEDIATE-WORD (s t r l e n --)
St' : I' PAD PLACE
2DUP PAD APPEND
S" POSTPONE " PAD APPEND

PAD APPEND ()
S" ; IMMEDIATE " PAD APPEND
PAD COUNT EVALUATE

,

3 4 : .Undefined ." Undefined. " ;

3 6 : UNDEFINED-WORD (str l e n --)

3 7 St' : 1% PAD PLACE
3 8 PAD APPEND ()
39 S" .Undefined " PAD APPEND
4 0 s" ; " PAD APPEND
4 1 PAD COUNT EVALUATE
42 t

44 (Define t h e words t h a t f o l low i n t o STANDARD w o r d l i s t .)
45 : CLONE-THESE-WORDS (--- I
46 STANDARD-WORDLIST SET-CURRENT

4 8 BEGIN NEXT-WORD (s t r l e n)
4 9 2DUP S" \\I' COMPARE
50 WHILE 2DUP FORTH-WORDLIST SEARCH-WORDLIST DUP ? ? NIP

?DUP O= IF UNDEFINED-WORD
ELSE O< IF ORDINARY-WORD
ELSE IMMEDIATE-WORD
THEN THEN

57 REPEAT 2 DROP

5 9 FORTH-WORDLIST SET-CURRENT
60 ;

Words are in reverse-alphabetic sequence so WORDS will show
Standard words in order, except for specially defined words.

62 CLONE-THESE-WORDS

64 1 \ [THEN] [IF]
65 [ELSE] [COMPILE] [CHAR] [' I
66 [XO R WRITE-LINE WRITE-FILE

Forth Dimensions XX.3 31

--

67 WORDS
68 WHILE
69 UPDATE
70 UM/MOD
71 U.R
72 TRUE
73 THRU
74 STATE
75 SOURCE-ID
7 6 SIGN
77 SFALIGN
78 SET-ORDER
79 SEARCH
80 S>D
81 ROLL
82 REPRESENT
83 REFILL
84
85 QUIT
8 6 POSTPONE
8 7 PAD
88 OPEN-FILE
8 9 NEGATE
90 MIN
91 M*/
9 2 LOCALS 1
9 3
94 INVERT
95 IF
9 6 HERE
97 FVARIABLE
98 FSQRT
99 FS.

1 0 0 FOVER
101 FNEGATE
1 0 2 FLUSH-FILE
1 0 3 FLOATS
1 0 4 FLITERAL
1 0 5 FILE-SIZE
1 0 6 FE.
1 0 7 FCOSH
1 0 8 FATAN2
1 0 9 FALSE
1 1 0 FACOSH
111 F>D
1 1 2 F/
1 1 3 F**
1 1 4 EXIT
1 1 5 ENVIRONMENT?
11 6 EMIT?
11 7 EKEY>CHAR
1 1 8 DUMP
1 1 9 DO
1 2 0 DFLOATS

WORDLIST WORD
W/O VARIABLE
UNUSED UNTIL
UM* U>
U. TYPE

TIME&DATE
THROW THEN
SPAN SPACES
SOURCE SM/REM
SFLOATS SFLOATt
SF@ SF!
SET-CURRENT SEE
SCR SAVE-INPUT

RSHIFT
RESTORE-INPUT RESIZE-FILE
REPOSITION-FILE REPEAT .
RECURSE READ-LINE

R/W
QUERY PREVIOUS
PICK PARSE
OVER ORDER

OF
MS MOVE
MAX MARKER
M* LSHIFT
LOAD LITERAL
KEY? KEY
INCLUDED INCLUDE-FILE
I HOLD
GET-ORDER GET-CURRENT
FTANH FTAN
FS INH FS INCOS
FROUND FRO T
FORTH-WORDLIST
FMIN FMAX
FLUSH FLOOR
FLOAT+ FLNPl
FIND FILL
FILE-POSITION FEXPMl
FDUP FDROP
FCO S FCONSTANT
FATAN FAS INH
FALOG FAL I G-NE D
FACO S FABS
F< For.
F. F -
F* F!
EXECUTE EVALUATE
ENDOF ENDCASE
EMIT ELSE
EKEY EDITOR
DU< DROP
DNEGATE DMIN
DFLOATt DFALIGNED

WITHIN
VALUE
UNLOO P
u<
TUCK
TIB
SWAP
SPACE
SLITERAL
SFALIGNED
SET-PRECISION
SEARCH-WORDLIST
SAVE-BUFFERS
RO T
RESIZE
RENAME-FILE
READ-FILE
R/O
PRECISION
PAGE
OR
NIP
MO D
Mt
LOOP
LIST
J
IMMEDIATE
HEX
F -
FSWAP
FS IN
FREE
FORGET
FM/MOD
FLOG
FLN
FILE-STATUS
FEXP
FDEPTH
FATANH
FASIN
FAL I GN
F @
FO<
Ft
EXPECT
ERASE
EMPTY-BUFFERS
EKEY?
DU P
DOES>
DMAX
DFALIGN

Forth Dimensions XX.3

121 DF@
122 DEFINITIONS
123 D>F
124 D2*
125 D.
126 CS-PICK
127 COUNT
128 COMPARE
129 CLOSE-FILE
130 CELLS
131 C@
132 BYE
133 BLANK
134 BASE
135 ALSO
136 ALIGN
137 ABS
138 ? DUP
139 >NUMBER
140 >
141 <
142 :
143
144 2DUP
145
146 1-
147 O<>
148 /
149 ."
150 ,
151 * /MOD
152 (

153 #>

DF!
DECIMAL
D=
DO=
D -
CREATE-FILE
CONVERT
CODE
CHARS
CELL+
C,
BUFFER
B L
AT-XY
ALLOT
AHEAD
ABORT''
?DO
>IN
- -
; CODE
2VARIABLE

2 DRO P
2 /
1 +
o<
. S

DEPTH
DABS
D<
DO<
D+
CREATE
CONSTANT
CMOVE>
CHAR+
CATCH
C"
BLOCK
BIN
ASSEMBLER
ALLOCATE
AGAIN
ABORT
?
>FLOAT
<>
,
2 SWAP
20VER
2CONSTANT
2*
o>
/STRING
. R
-TRAILING
+ !
*
#TIB
I

DELETE-FILE
D> S
D2 /
D.R
CS-ROLL
CR
COMPI LEI
CMOVE
CHAR
CASE
C!
BLK
BEGIN
AND
ALIGNED
ACCEPT
'2

+
(LOCAL)
s

Testing
157 : HI (--) ." Welcome to Expanded Forth. " ;

159 ONLY STANDARD DEFINITIONS (STANDARD d e f i n i t i o n s .)

: HI (--) ." Welcome to Standard Forth. " ;
-.

CR HI

-1 SET-ORDER DEFINITIONS (FORTH d e f i n i t i o n s .)

Forth Dimensions XX.3 33

34 Forth Dimensions XX.3

--

The followina are coroorate s o o L s and individual benefactors I .,
whose generous donations are helping, beyond the basic member-
ship levels, to further the work of Forth Dimensions and the Forth In-
terest Group. For information about participating in this program,
please contact the FIG office (office@forth.org).

Corporate Sponsors

AM Research, Inc. specializes in Embedded Control applications us-
ing the language Forth. Over 75 microcontrollers are supported in
three families, 8051,6811 and 8xC16x with both hardware and soft-
ware. We supply development packages, do applications and turn-
key manufacturing.

Clarity Development, Inc. (http://www.clarity-dev.com) provides con-
sulting, project management, systems integration, training, and semi-
nars. We specialize in intranet applications of Object technologies,
and also provide project auditing s e ~ c e s aimed at venture capitalists
who need to protect their investments. Many of our systems have
employed compact Forth-like engines to implement run-time logic.

Computer Solutions, Ltd. (COMSOL to its friends) is Europe's pre-
mier supplier of embedded microprocessor development tools. Us-
ers and developers for 18 years, COMSOL pioneered Forth under
operating systems, and developed the groundbreaking chipFORTH
hotltarget environment. Our consultancy projects range from single
chip to one system with 7000 linked processors. www.computer-
solutions.co.uk.

Digalog Corp. (www.digalog.com) has supplied control and instru-
mentation hardware and software products, systems, and services
for the automotive and aerospace testing industry for over 20 years.
The real-time software for these products is Forth based. Digalog has

MicroProcessor Engineering supplies development tools and
consultancy for real-time programming on PCs and embedded sys-
tems. An emphasis on research has led to a range of modern Forth
systems including ProForth for Windows, cross-compilers for a wide
range of CPUs, and the portable binary system that is the basis of
the Europay Open Terminal Architecture. http://www.mpeltd
.demon.co.uk

Silicon Composers (web site address www.silcomp.com) sells single-
board computers using the 16-bit RXT 2000 and the 32-bit SC32 Forth
chips for standalone, PC plug-in, and VME-based operation. Each SBC
comes with Forth development software. Our SBCs are designed for
use in embedded control, data acquisition, and computation-intense
control applications.

T-Recursive Technology specializes in contract development of hard-
ware and software for embedded microprocessor systems. From con-
cept, through hardware design, prototyping, and software implemen-
tation, "doing more with less" is our goal. We also develop tools for
the embedded marketplace and, on occasion, special-purpose soft-
ware where "small" and "fast" are crucial.

Tateno Dennou, Inc. was founded in 1989, and is located in Ome-
city Tokyo. Our business is consulting, developing, and reselling prod-
ucts by importing from the U.S.A. Our main field is DSP and high-
speed digital.

offices in Ventura CA, Detroit MI, Chicago IL, ~ichmond- and
Brighton UK. AS0 Bldg., 5-955 Baigo, 0me.Tokyo 198-0063 Japan

+81-428-77-7000 Fax: +81-428-77-7002
Forth Engineering has collected Forth experience since 1980. We now
concentrate on research and evolution of the Forth principle of pro-
gramming and provide Holon, a new generation of Forth cross-de-
velopment systems. Forth Engineering, MeggenILucerne, Switzerland
- http://~~~.holonforth.com.

FORTH, Inc. has provided high-performance software and services for
real-time applications since 1973. Today, companies in banking, aero-
space, and embedded systems use our powerful Forth systems for Win-
dows, DOS, Macs, and microcontrollers. Current developments include
token-based architectures, (e.g., Open Firmware, Europay's Open Ter-
minal Architecture), advanced cross-compilers, and industrial control
systems.

The iTV Corporation is a vertically integrated computer company
developing low-cost components and information appliances for the
consumer marketplace. iTVc supports the Forth development com-
munity. The iTVc processor instruction set is based on Forth primi-
tives, and most development tools, system, and application cdde are
written in Forth.

Keycorp (www.keycorp.com.au) develops innovative hardware and
software solutions for electronic transactions and bankinn systems.
and smart cards including GSM Subscriber Identification ~ o d u l e s
(SIMs). Keycorp is also a leading developer of multi-application smart
card operating systems such as the Forth-based OSSCA and MULTOS.

An interactive programming environment for writing Windows NT
and Windows 95 kernel mode device drivers in Forth.

http://www.dsp-tdi.com E-mail: sales@dsp-tdi.com

Taygeta Scientific Incorporated specializes in scientific software: data
analysis, distributed and parallel software design, and signal process-
ing. TSI also has expertise in embedded systems, TCP/IP protocols
and custom applications, WWW and FTP services, and robotics.
Taygeta Scientific Incoporated 1340 Munras Avenue, Suite 314
Monterey, CA 93940 408-641-0645, fax 408-641-0647 http://
www.taygeta.com

Triangle Digital Services Ltd.-Manufacturer of Industrial Embedded
Forth Computers, we offer solutions to low-power, portable data log-
ging, CAN and control applications. Optimised performance, yet ever-
increasing functionality of our 16-bit TDS2020 computer and add-
on boards offer versatility. Exceptional hardware and software sup-
port to developers make ys the choice of the professional.

Individual Benefactors
-

Makoto Akaishi
Everett F. Carter, Jr.
Edward W. Falat
Michael Frain
Guy Grotke
John D. Hall
Guy Kelly
Zvie Liberman

Marty McGowan
Gary S. Nemeth
Marlin Ouverson
John Phillips
Thomas A. Scally
Werner Thie
Richard C. Wagner

Forth Dimensions XX.3 35

Articles
The author of any Forth-related

article published in a periodical or in
the proceedings of a non-Forth con-
ference is awarded one year's mem-
bership in the Forth Interest Group,
subject to these conditions:

a. The membership awarded is for
the membership year following
the one during which the ar-
ticle was published.

b. Only one membership per per-
son is awarded in any year, re-
gardless of the number of ar-
ticles the person published in
that year.

c. The article's length must be
one page or more in the maga-
zinein-which it appeared. -

d. The author must submit the
printed article (photocopies
are accepted) to the Forth
Interest Group, including
identification of the maga-
zine and issue in which it
appeared, within sixty days
of publication. In return,
the author will be sent a
coupon good for the follow-
ing year's membership.

e. If the original article was
published in a language
other than English, the ar-
ticle must be accompanied
by an Engish translation or
summary.

BY THE FORTH INTEREST GROUP
"Silicon Slick" (an alias)

. . .and anu and all Forth
Drogrammers and other

SOITWARE RENEGADES roaming the
range In (lioneer terrltorles.. .
... tounneartidesabout meir

DISCOVERIES & TECHNIQUES,
PERILOUS MISADVEHlURES, and
MYsTIMNG ENCOUNTERS with

!ilRANCE C W C T E R S and with
FORTH M I I R E S obuious and subtle.

REWARD

Letters to the Editor
Letters to the editor are, in effect,

short articles, and so deserve recogni-
tion. The author of a Forth-related let-
ter to an editor published in any maga-
zine except Forth Dimensions is awarded
$10 credit toward FIG membership
dues, subject to these conditions:

a. The credit applies only to mem-
bership dues for the member-
ship year following the one in
which the letter was published.

b. The maximum award in any
year to one person will not ex-
ceed the full cost of the FIG
membership dues for the fol-
lowing year.

c. The author must submit to the
Forth Interest Group a photo-
copy of the printed letter, in-
cluding identification of the
magazine and issue in which it
appeared, within sixty days of
publication. A coupon worth
$10 toward the following year's
membership will then be sent
to the author.

d. If the original letter was pub-

11 c 6 w 4 ~ - * b m e d lished in a ianguage other fhan

artldes, the Forth Intemst Group 0 has adopted
the following Author l&cognltlon Program.

The fastest, most convenient way for us to receive your
material is via e-mail (a vast improvement over the tele-
graph, a.k.a "talking wire") to the editor@forth.org ad-
dress. Binary (e.g., formatted text) files must be
uuencoded to be sent as e-mail, but ASCII files can be
sent as-is.

