

to live up to in that year. Also, someone once said to me that teer job list, we may be able to do that. Keep watching the
when you do have a set of goals, they're easier to achieve than FIG web site for this.

The beginning of a new year is a great time to set forth
(okay, somebody had to say it!) resolutions and goals you plan

when you don't. Here are the resolutions and goals of the Forth
Interest Group's Business and Administration office.

there are members with time and ambition, and we want to
be able to utilize that time for the best of all. With a volun-

1998 Resolutions and Goals for the
FIG Business and Administration Office

1. Process membership renewals and new member requests
within a week of receiving them. As we hit the road running
last year and tried to learn everything as we went along, this
was not always possible. However, in 1998, the new office is
now better organized-it isn't so new anymore and the sys-
tems in place are helping us to handle renewals and new
member requests faster and more efficiently. Now that doesn't
mean that occasionally one won't slip through the cracks,
but we've definitely got a better handle on it this year.

2. Increase our cash flow. To do this, we need your help!
(You see, that's the other thing about publishing our goals: if
we're lucky, we might get your help along the way.) There are
several ways we can increase cash flow; we need:

a. Members (both standard and benefactor status). The
Forth lnterest Group survives on your generous membership
dues and contribution. Your membership and contribution
goes to finance the editing, printing, and distribution of Forth
Dimensions, in addition to helping pay the overhead of the
business and administrative office.

b. Corporate/company members. We are proud of this new
category of membership. It means that businesses making
their living using Forth are willing to make known their sup-
port of the Forth Interest Group. We'd like to see more-we
know there are more of you out there. Please help to support
us if you can.

c. Additional advertising in Forth Dimensions. If we have
more corporate advertising, it will help to defray the costs of
bringing this wonderful source of Forth information to you.
A magazine should be able to finance itself through its adver-
tising. We hope to see more advertising this coming year.

d. Sales of products from our mail-order catalog. When
was the last time you took a good look at the mail-order cata-
log? 1s there a back volume you need? Have you considered
that they may not always be available? We're very low on
some years, and also of the FORML Proceedings. Each year we
print a small number-once those are gone, we don't reprint
them. If there is something you've been wanting, you might
want to get it now, because another goal of mine for 1998 is:

e. Reduction of back inventory. As we try to run with a
leaner overhead, reducing our need for storage of back in-
ventory will help. The word for 1998, if you see it in the Mail
Order Catalog and you've always wanted it, get it now!

3. Semi-weekly postings to comp.lang.forth. Nothing big,
just general information about memberships, office business,
and anything that happens a little out of the ordinary. Tid-
bits that will keep the Forth Interest Group mentioned in
places where we might attract new members. (See 2a and 2b!)

4. Volunteer job list. This idea came up last year: often

5. Increased participation in FORML. This year, we had
three sponsors of FORML: FORTH, Inc.; Taygeta Scientific,
Incorporated; and, as an individual benefactor sponsor, John
D. and Jae H. Hall. Thank you to each for your increased fi-
nancial support. Next year, we'd like to see even more!

This list can go on and on. We have a great organization
here, with the foundation to be able to grow and do more
things. The reason we have an organization is because of the
support and determination of our members and our Board of
Directors. The reason we can grow is because of the dona-
tions of time and materials by these same people.

1998 is our year to grow and prosper-may it be the same
for all of you! Good health, good wealth, and take good care.

Cheers,
Trace Carter
Forth Interest Group
100 Dolores Street, Suite 183
Carmel, California 93923

LEVELS OF MEMBERSHIP
Your standard membership in the Forth lnterest Group brings
Forth Dimensions and participation in FIG'S activities-like
members-only sections of our web site, discounts, special
interest groups, and more. But we hope you will consider join-
ing the growing number of members who choose to show their
increased support of FIG'S mission and of Forth itself.

Ask about our special incentives for corporate and library
members, or become an individual benefactor!

CompanyICorporate - $1 25
Library - $1 25
Benefactor - $1 25
Standard - $45 (add $1 5 for non-US delivery)

Forth lnterest Group
See contact info on mail-order form, or send e-mail to:

officeQforth.org

2 Forth Dimensions XIX.5

Adventures in Debugging a Mix of New Hardware and Software
by Randy Leberknight
Debugging new software or new hardware can be a challenge at any time. However, it is particularly
challenging when the software is the firmware for the new hardware. In many cases, the presence of
new hardware necessitates new firmware, and we must test them both at once. Some of the features of
Open Firmware which help us deal with these challenges are discussed here.

Easy Target Compilation by Dave Taliaferro
Custom macro languages are easy to create in Forth. Building on techniques from his last article (FD
XIX.3, "Approaching CREATE DOES>"), the author demonstrates how simple it is to write custom
compilers and assemblers using Forth. Best of all, the new languages retain the unique interpretive
and compiling characteristics of Forth.

Forth Profiling Utility by Marcel Hendrix
LPROFILER counts the number of times a source code line is executed. Although not measuring the
exact run time of a program line, LPROFILER provides a good start when hunting for performance
bottlenecks. Once the most promising candidates for optimization are known, the word .TIMEu can
be used to time the execution performance of individual Forth phrases. A fringe benefit of LPROFILER
is that it shows lines of code that are not visited at all: it points out incompletely tested applications.

Manipulating Input Source Contexts in ANS Forth by M.L. Gassanenko
This paper presents a method of manipulating contexts, a technique which may be useful for pro-
grammers who have to switch contexts, e.g., when binding together two languages. The particular
problem solved in this paper is to change the current input source parameters, having no special
construct to do this or to establish a new input source context with the desired parameters. Doing it
in ANS Forth is compared to approaches in non-standard Forth.

2 OFFICE NEWS

4 EDITORIAL

26 STRETCHING STANDARD FORTH
Forth Programmer's Handbook

27 STANDARD FORTH TOOL BELT
Iterated Interpretation

5 LETTERS 34 FORTHWARE
A CASE for avoiding defining words Adaptive PID, part one
Vocabulary vs. wordlist-what's in a name?

39 SPONSORS & BENEFACTORS

Forth Dimensions XIX.5 3

I've been engaged in an ongoing quest for knowledge of a particular kind. To obtain it I Circulation/Order Desk

-- -- - -

Forth Dimensions
Volume XIX, Number 5

requires me to ask fundamental questions. This seems especially appropriate when trying
to understand the barriers to Forth's acceptance generally and for specific projects to which
it is eminently well suited. Some reasons have been expressed, good ones, but I don't think
I've heard The Reason and maybe there isn't one. Maybe the search for a meta-rationale, or
just the continual pressure to deliver goods and services, can blind us to the importance of
the small things we are so accustomed to doing (or to doing without) and lead us to greatly

Beginner's Mind

underrate their importance to the uninitiated.
A colleague recently explained at length why single-steppers aren't needed in Forth-

you know: bottom-up, incremental development of well-tested modules eliminates the need;
the challenge of providing them in certain environments; etc. It all made sense and I left
with head nodding. But after a couple of weeks focusing on the concerns of people new to
Forth, I wasn't so sure any more. And when I read Randy Leberknight's contribution to this
issue, I saw that even a sophisticated Forth development team might include such tools in
its arsenal.

So I revisited that earlier conversation with a different ear. It's an exercise I recommend
to anyone trying to move Forth. The explanations still make sense, but they often aren't as
convincing. Like when a potential customer approaches a sales counter and explains what
he is looking for; if the clerk says, "No, you don't need that, you really need this," the
customer is most likely to reply, "uh-huh" and leave to find a store willing to sell what he
wants. We could instead meet the new user's initial expectations and let him find that, as
one's aptitude increases, reliance on the add-on decreases. It seems to me that the alterna-
tive is to require them to commit to a whole new way of programming before they wet their
feet in Forth waters (or, at least, before they become willing to pay in money or time to do
so), even though most people only appreciate the Forth approach after some time spent
using it and being exposed to good examples.

This is a micro-topic in a macro-discussion but, not having found The Reason, we should
focus on reasons and solve them. Skip Carter's FORML paper, reprinted in our preceding
issue, delineates causes of resistance to Forth's use for large-scale projects and I hope the
community will address his points. Marcel Hendix's article in this issue may provide a good
start. That it is related to these overall concerns is demonstrated by one of his concluding
remarks, "The new generation of users may ask for new features and their must-haves will be
different from present-day requirements."

That might be a tactful way of saying, "Adapt or go extinct." Fortunately, Forth's mallea-
bility will allow it to make whatever transition is required, and without losing its funda-
mentally important characteristics. I have some personal objections about the direction
programming in general has taken over the last decade or so, but as Forth perseveres-even
if it must do so as a wolf in sheep's clothing-it will be ready when conditions are right and
when we address the needs of the wider marketplace as the marketplace perceives its own
needs to be.

January 1998 February

Publ~shed by the
Forth lnterest Group

Editor
M a r l ~ n Ouverson

Errata
Anton Ertl (anton@mips.complang.tuwien.ac.at) reports, "There is a serious bug in my

structures package in Forth Dimensions XIX.3, pages 13-16. It can be fixed by replacing the
definition of CREATE-FIELD with:
: create-field (align1 offset1 align size "name" -- align2 offset2)

create swap rot over nalign dup , (alignl size align offset)

rot t >r nalign r> ;

The author thanks Jack Brien for discovering this bug.

Trace Carter

Forth Dimensions welcomes editorial ma-
teria1,letters to the editor,and comments
from its readers. No responsibility is as-
sumed for accuracy of submissions.

Subscription to Forth Dimensions is in-
cluded with membership in the Forth In-
terest Group at $45 per year (U.S.) $60
(international).For membership,change
of addressand to submit items for pub-
lication,the address is:

Forth lnterest Group
100 Dolores Street, suite 183
Carmel,California 93923
Administrative offices:
408-37-FORTH Fax: 408-373-2845

Copyright O 1998 by Forth lnterest
Group,Inc.The material contained in this
periodical (but not the code) is copy-
righted by the individual authors of the
articlesand by Forth lnterest Group,Inc.,
respectively.Any reproduction or useof
this periodical as it is compiled or the
articles, except reproductions for non-
commercial purposes,withoutthe writ-
ten permission of Forth lnterest Group,
Inc. is a violation of the Copyright Laws.
Any code bearing a copyright notice,
however,can be used only with permis-
sion of the copyright holder.

The Forth lnterest Group
The Forth lnterest Group is the associa-
tion of programmers, managers, and
engineers who create practical, Forth-
based solutions to real-world needs.
FIG provides a climate of intellectual
exchange and benefits intended to as-
sist each of its members. Publications,
conferences, seminars, telecommuni-
cationsand area chapter meetings are
among its activities.

FORTH DIMENSIONS (iSSN 0884-0822)
is published bimonthly for $45160 per
year by Forth lnterest Group at 1340
Munras Avenue, Suite 314, Monterey
CA 93940. Periodicals postage rates
paid at Monterey CA and at additional
mailing offices.

POSTMASTER: Send address changes to
FORTH DIMENSIONS, 100 Dolores Street,
Suite 183,Carmel CA 93923-8665.

4 Forth Dimensions XIX.5

Forth Dimensions XIX.5 5

A CASE for avoiding defining words
In regard to Randy Leberknight's article, "Transportable

Control Structures" in Forth Dimensions XIX.1, I would like
to point out an alternative approach for extending CASE, This
alternative does not require the use of any compiling words.
(This approach surfaced during a rather heated argument at
one of the ANS Forth meetings some years ago, in response
to a criticism that CASE was too limited.)

The basic idea is to use OF as-is, preceding it with a new
word whose output is fed to OF.

For example, suppose you want to test for inclusion within
a range of numbers, as with WITHIN; i.e. you would like to be
able to write:

: FOO (selector --)

CASE
3 O F this E N D O F

5 9 RANGE O F that ENDOF
1 O F the-other ENDOF

ENDCASE

Recognizing that O F will execute its predicate if and only
if the two numbers on top of the stack are the same, the stack
diagram for RANGE must be:

RANGE (selector low high -- selector x)

where x is the same as selector if the selector is within range,
and something else otherwise.

Here is one solution:

: RANGE (selector low high -- selector x)

2 > R DUP DUP 2R> W I T H I N
O= IF INVERT THEN

This technique can, of course, be applied to other kinds of
tests in addition to inclusion within a range. It depends only
upon the semantics of the particular CASE statement, and
not upon its implementation details.

-Mitch Bradley (wmb@FirmWorks.com)

The author replies:
I like it! One part of the definition of elegance is more

bang for less buck, and this certainly has that. I am especially
attracted to how easy is would be to include this definition
any time you felt the need. I might be reluctant to add the
case statement with the compiling words if it was only going
to be used once; it would feel like I was adding more compli-
cation than I was removing. However, this approach is simple
enough to justify its addition with just one use.

Nice to hear from you!

-Randy Leberknight (RandyL@phx.mcd.mot.com)

An addendum from the correspondent:
I forgot to point out one other advantage: the non-com-

piling version doesn't confuse decompilers.

The compiling version is probably marginally faster at run
time but, as you point out, small scalar differences in execu-
tion speed rarely make much difference in this era of CPUs
with five-nanosecond cycle times attached to 110 buses with
400 nanosecond (or more) access times.

-Mitch

The author's final response:
I didn't want to get too crazy with the philosophical stuff,

however, since you point out that decompiler issue ...
It is, of course, common knowledge that one of the good

things about Forth is the ability to extend the compiler. This
can become the proverbial combined blessing and curse. The
advanced user might consider it a routine exercise to extend
the compiler, and think nothing of it. However, it is good to
keep in mind that extending the compiler is really a different
class of operation (as opposed to just adding a word). There-
fore, there is a new class of issues to consider, such as the
effect on a decompiler.

As usual, there are tradeoffs. If you demand speed, you
can add the compiling word, code its run-time behavior,
and extend the decompiler. I doubt that all that is needed
in most cases.

Vocabulary vs. wordlist - what's in a name?
In a footnote to his "Working Comments (long)" article in
Forth Dimensions XIX.l, Julian Noble poses the question:

It [VOCABULARY] is now called a WORDLIST in ANS
Forth, for reasons that I cannot fathom- what was wrong
with VOCABULARY?

The answer is almost given in the rationale section of the
standard, where it says:

Search-order specification and control mechanisms vary
widely. The FIG-Forth, Forth-79, polyFORTH, and Forth-83
vocabulary and search order mechanisms are all mutually
incompatible.. . .

In particular, many or most pre-ANS Forth systems already
had a word named VOCABULARY. Existing VOCABULARYs all
addressed the same problem, but were mutually incompat-
ible. I believe that we identified at least five different behav-
iors of words named VOCABULARY. The committee tried many
times to come to an agreement on precise semantics for VO-
CABULARY, but always ran afoul of the problem that any choice
we tried angered 75% of the contingents, rendering their sys-
tems and their existing programs non-standard.

As in other areas of similar controversy (e.g., NOT), the
committee was able to achieve consensus only by picking a
new neutral name. It is my personal opinion that, from a
practical standpoint, this is a fine approach, allowing peace-
ful coexistence between old and new programs. It is relatively
easy to add ANS Forth extensions to an existing system if the
names don't conflict.

-Mitch Bradley
ANS Forth Committee Member

Debugging new software or new hardware can be a chal-
lenge at any time. However, it is particularly challenging when
the software is the firmware for the new hardware. In many
cases, the presence of new hardware necessitates new firm-
ware, and we must test them both at once. Some of the fea-
tures of Open Firmware which help us deal with these chal-
lenges are discussed here.

Introduction
As the scene opens, we see a lab bench on which lays the

patient-a freshly minted board which is an early version of
the Viper. Various cables, reminiscent of I.V. lines, link it to
power, a serial port, a keyboard, and a monitor. The flash
socket contains the new firmware, which is supposed to work
with this new hardware. The part in the socket has a hand-
written label with today's date on it, in the barely legible
scribble used by the software engineer who just carried the
part into the lab. In fact, both the hardware and the firm-
ware are quite new, and we don't actually know yet if either
of them work.

Power is applied.. .
The CPU fan starts up, various people hold their collec-

tive breaths.. .
Don't you wish you were there? I, for one, am sure that

most engineers live for that magical moment when a new
piece of hardware meets a new piece of software, and the
deathly silence coming from the apparently lifeless machine
is more than made up for by the voices of the various people
pointing fingers around the room.. .

In reality, I have not heard many finger-pointing argu-
ments here at Motorola Computer Group. However, I have
been involved in a number of occasions when we needed to
know why something wasn't working, and it wasn't clear if
the trouble was due to hardware, software, or both. I would
like to describe an occasion on which that occurred, to dem-
onstrate some of the features of Open Firmware which help
us to debug a wide variety of problems.

In the scene above, we were not greeted with total dead
silence. Instead, the system displayed a cryptic (to the unini-
tiated) message before it died. "Tried to access instance spe-
cific data with no current instance" was the helpful tidbit we
were offered before the machine took a left turn into the
weeds. At first, we had no idea who was saying it, or why. In
an hour or so, we were able to point to a particular bit of a
memory device which was stuck, causing the mysterious
message. A connector with a bent pin was replaced, and the
system worked fine.

In order to explain how we were able to do this, a little
background is needed. First, it would be helpful to know some

of the responsibilities of the firmware, and how the firmware
fulfills them. Then we can talk about some of the debugging
capabilities which are built into the firmware, and how we
used them to solve this problem.

Initialization of devices
One of the primary responsibilities of the firmware is to

initialize various devices such as memory, 110 devices, and
bridge chips. For our purposes at this moment, we just need
to know that the first part is done by machine-language code,
and the second part is done by high-level code.

Tools
The first debugging tool is a flag called Stand-init-de-

bug? which can be turned on at compile time. This flag causes
in-line assembly of routines which emit a single character
out a serial port at strategic times during the system power-up.
This is a delicate time in the life of a system, because there are
not many resources available for reporting problems. However,
if we see a string of characters normally displayed, such as $ #%,
and in the problem case the system stops after #, we know the
trouble occurred after some primitive 110 initialization, and
before we finished the routine which initializes certain sys-
tem data structures. This tool is handy for giving a clue about
where we are during the early parts of the initialization, but
it has two obvious limitations. First, it has to be activated at
compile time, so a new ROM must be placed in the system
being debugged. Second, it's not very descriptive about where
the trouble occurred. The programmer must peruse the source
to find out who printed the last character, and who should
have printed the next one. Still, since trouble doesn't occur
very often at this level, this tool serves its purpose.

The second interesting tool is a progress report like the
first, but uses high-level Forth and runs after we have rou-
tines in place which can conveniently check Stand- init -
debug? and print whole strings if it is true. This happens
during an initialization process called stand-init. It is a
chain of routines. The first one just does its job. The second
routine calls the previously existing routine and, on return-
ing, does the initialization it wants to do. The third one calls
the second (which calls the first ...) and when the first two
are done, the third does its job. The purpose of this chain is
to allow a programmer writing code for a device to write the
initialization code with the rest of the driver code, and in-
voke a compiler routine which automatically hooks the init
code into a chain that will happen at power-up.

There is a debugging feature associated with this chain.
The programmer can specify a string at the time the code is
hooked into the chain. At run time, if Stand-init-debug?
is true, the string will be printed. Here is what is seen on the

6 Forth Dimensions XIX.5

First stand-init:
Calibrate
CIF buffers

110 device when this occurs:
Type 'i' to interrupt stand-init sequence

memory node
Instruction cache on
Decrementer
Enable machine check exceptions
Set Memory Map
Client memory allocator
MMU
Real mode CIF
Root node
Data cache on
Fast CPU mode
PC1 host bridge
CPU nodes
interrupt controller
isa
Power
SuperI/O
SIO Real-Time Clock
Audio chip
Probing memory
Toolbox Flash ROM

The decompiler
We used the decompiler to see probe-rom:

ok see probe-rom
: probe-rom

" /rom" " probe" execute-device-method drop

The device tree
This means go to the /rom node and execute the method

there called probe. The scoping mechanisms make it so that
the routines which are in the individual device drivers are
not normally visible outside the driver. However, we have
ways of accessing them. What we do here is:
ok dev /rom
ok debug probe
Stepper keys: <space> Down Up Continue Forth
Go Help ? See String Quit
ok device-end
ok

This means go to the /rom node and set a breakpoint on
probe. Then exit the device-node context. When we enter
resume, the system will continue booting, but will stop when
it gets to the probe method we just marked. Upon arriving
at the marked code, the debugger was invoked, and an-

Forth Dimensions XIX.5 7

You can see here 23 steps, during which we could encoun-
ter trouble-with software or hardware-and crash, or print
an error message. Knowing what init routine was running at
the time is a great help in narrowing down the reason for the
problem. This information alone is often enough to enable
us to find and fix a bug. However, much more can be done.
Note the first line, "Type 'i' to interrupt stand-init sequence."
By pressing the i key on the serial port before, or just after,
this message appears, we can get to the Forth interpreter which
is built into Open Firmware. The interpreter gives US a host
of options, including running routines one at a time by typ-
ing their names, or setting breakpoints and invoking the high-
level, single-stepping debugger.

The process
Breakpoints & single-stepping

The first routine to be called after the stand-init chain is
called startup. startup probes devices for FCode drivers,
sets the default console device, prints a banner, looks for a
key-chord, and either boots the operating system or invokes
a user interface. These are all places where trouble can occur.
Therefore, if the system prints the stand-init chain and then.
stops, we usually "press i to interrupt," set a breakpoint at
startup, and tell the system to resume. We can then step
through each routine startup call, optionally nesting into
any high-level routines we encounter.

In the problem case described above, after we installed a
ROM with the debug option turned on, we saw all the stand-
init chain announcements. We therefore set a breakpoint at
startup. By stepping through startup, we found that the
system was issuing the error message during a routine called
probe-rom.

nounced that it was in probe, about to execute open. By
pressing the space bar, we told it to go ahead and run that
routine. Each time we press the space bar, the next routine
runs, and the contents of the stack are printed, so we can see
what parameters are passed between routines.

Here is a section of what we see when debugging probe:
: probe (ffOOb6dO)

open (ff00b6d0 ffffffff)

drop (ff00b6d0)

ram-base (ffOOb6dO ffOOOOOO)

/mat-ram (ff00b6d0 ffOOOOOO 400000)

bounds (ff00b6d0 ff400000 ffOOOOO0)

? do (ff00b6d0)

i (ff00b6d0 ffOOOOOO)

f code? (ffOOb6dO 0)

if (ff00b6dO)

1000 (ff00b6dO 1000)

+loop (ff 00b6d0)

i (ff00b6d0 if001000)

fcode? (ff00b6d0 0)

if (ff00b6d0)

1 o o o (ffOOb6dO 1000)

+loop

This told us that we were running a loop which would
search through four megabytes of ROM space checking for
the presence of FCode tokens at 4K boundaries. We didn't
feel like single-stepping though 1024 loops waiting for trouble,
so we hooked the serial output to an exterm window with a big
buffer, and told the debugger to continue printing, without paus-
ing (the command is c). When we looked at the result, we found
that the system found FCode, but the FCode seemed to contain
bad commands. The question then became: is the toolbox ROM
bad, or are we reading it incorrectly?

Forth assem

recommendation

($5 U.S./Canada surface;
$20 air & overseas)

11 1 N. Sepulveda Blvd.
Manhattan Beach, CA
800.55.FORTH 310.3
FAX 310.318.7130
forthsales@forth.com www.forth.com

For programmers and engineers using ANS Forth systems:

Forth Programmer's
Handbook

The answer revealed
We saved the dump results to a file, moved the Toolbox to a

different system and dumped it from there as well. A file com-
parison showed that the results were different. Close examina-
tion showed that a particular data bit was stuck in one position.
When the connector for the Toolbox was examined, bent pins
were found. After it was replaced, the board worked fine.

Mini-programs-interactively

interpreter The next which step was would to write dump a the couple contents lines of of the code ROM at the to
the screen, in the suspect area. We don't even have to leave
the debugger to do this. Just enter f, and the interpreter is at

New features
Since this debugging session took place, we have enhanced

the debugging features of the system in two ways. First, we can
use a non-volatile RAM (Nv-RAM) configuration variable to tell
the system that we want the Stand-init-debug? flag turned
on, allowing us to interrupt the system without giving it a
new flash part. This does not turn on the single-character
progress reports which come from the earliest initialization
code, so we still need a special PROM to turn those on, be-
cause they are assembled conditionally.

Second, there is a sort of dead-man (dead-board?) switch
built into the system now. A flag is set in NV-RAM before the
stand-init chain is called. This flag means, "I died last time."
The flag is reset after we successfully negotiate most of the
initialization code. Therefore, if we wake up and find the flag
set, we know the system hung on a previous boot attempt.
This signals us to turn on the debug switch. This is very help-
ful, because there can be cases where the system is not healthy
enough for us to manually turn it on before the system dies.

1 Conclusion

by Edward K. Conklin and Elizabeth D. Rather
ISBN 0-9662156-0-5 I

1 While this case turned out to be a hardware problem, we

our fingertips. Type resume, and we are debugging again.

1 have also used these techniques to ferret out software bugs as
well. The combination of the progress re-

I ports, the interrupt feature, the single step-

mail: send your check or money order in U.S. dollars to: I

This classic is no longer out of print!

Poor Man's Explanation of
Kalman Filtering
or, How I Stopped Worrying and
Learned to Love Matrix Inversion

by Roger M. du Plessis

$1 9.95 plus shipping and
handling (2.75 for surface U.S.
4.50 for surface international) For in format ion about

other publications offered

You can order in several ways: aygeta Scientific Inc., you
can call our 24-hour message

e-mail: kalman@taygeta.com line at 408-641 -0647. For your
fax: 408-641 -0647 convenience, we accept Master-
voice: 408-641 -0645 Card and VISA.

Taygeta Scientific Inc. 1340 Munraa Avenue, Ste. 314 Monterey, CA 93940 1

per, and the ~ o r t h interpreter provide-a
great deal of flexibility when a machine
sticks its feet in the air, or when we detect
that familiar smell of ozone.

I I

8 Forth Dimensions XIX.5

Custom macro languages are easy to create in Forth. Build-
ing on techniques from my last article (FD XIX.3, "Approach-
ing CREATE DOES>"), I will demonstrate how simple it is to
write custom compilers and assemblers using Forth. Best of
all, the new languages will retain the unique interpretive and
compiling characteristics of Forth.

A common definition of a macro language is one that is
built into a program, such as a spreadsheet or word proces-
sor, that allows it to be automated in some way. Microsoft
Word and AutoCAD are some well-known applications that
contain built-in scripting languages. Forth itself can be linked
into a C application and used to interactively call the appli-
cation functions; PFE for UNIX and Until for DOSIUNIX are
two Forth systems written in C that can be dropped into an
application or used by themselves for software development.

In this article, I will be describing a macro language in the
context of embedded systems, specifically related to hostltarget
communication and development. By this, 1 mean the ability
to use a host computer to interactively develop programs on a
target computer that may have a completely different instruc-
tion set. The target instruction set will be defined on the host
Forth and, when executed by the host, will build the program
on the target through some kind of communication link, such
as a serial port. The target program can then be initiated by the
host.

This trick can be used to provide a scripting interface to
an embedded processor or remote computer that has some
kind of externally accessible command set. If the target con-
tains at least a Forth inner interpreter and virtual machine,
the level of remote control is constrained only by the physi-
cal resources of the target. More often, the system will have a
debugger or set of operating commands that talks through a
serial link.

To demonstrate this, I am going to present an example of
a macro language for an embedded device that has a limited
command set and some means to load binary programs into
memory and execute them. A language for this imaginary

, device will be defined that compiles commands and data into
a buffer that can be transmitted into the device memory for
execution. I am using this simple example to expose some of
the raw Forth techniques that are used to develop a custom.
language.

Spawning little languages in Forth
Compiler design is typically considered a very advanced

topic in computer science. How then, can it be so easy in
Forth? Part of the answer is that the source code for a Forth
custom language is executed by Forth; each token in the new
language is itself a Forth word and, when executed, it per-
forms the act of compiling. Another reason is that the Forth

outer interpreter is already available to parse the language
source stream and execute it. The means to interpret the source
from text files, or interactively, is part of Forth-you don't
have to spend any time developing it. In a couple of dozen
lines of code, you can write a special-purpose scripting lan-
guage that can interpret and execute new programs from ASCII
source files.

An assembler compiles mnemonics that represent machine
instructions and data into a file that can be executed by a
computer; a con~piler compiles high-level language source
code into machine instructions and data that can also be ex-
ecuted. An assembler or compiler can be written in Forth
merely by creating defining words that allow production of
words that compile instructions or data into a target memory
structure. Forth interprets source text using the word [(named
"left-bracket"), which puts Forth in interpretation mode. To
write a custom compiler, CREATE DOES> is used to produce
target compiling words, and [is used to interpret those words.
A custom compiler is simply [used in a definition with some
other words that set up the memory structure and other de-
tails particular to the target. When the source stream ends,
Forth returns to compilation mode through the word I ("right-
bracket").

Essentially the new compiler will look like this :

: BEGIN-TARGETCOMPILING
CREATE-TARGET-PROGRAM-AND-BEHAVIOR [] ;

: END-TARGETCOMPILING
CLEANUP-DATA-STRUCTURES ;

This may sound a little confusing-Forth entering inter-
pretation mode to perform target compilation and returning
to compilation mode when finished. Forth interprets the
source code to your new language, whose symbols compile
data into a target buffer.] is used in the definition of the
target compiler when it is being compiled by Forth.

The confusion can be a path to greater understanding of
the language. Forth models the English language so closely
that, at times, one will have flashes of insight that can both
thrill and disturb. You can reach a new level of Forth knowl-
edge and feel as if you really don't get it at all. It is difficult to
write about these abstractions, because a correct statement of
a Forth concept can often sound like it is being defined by
the concept itself.

Enough Zen. Plod forward and become a compiler writer
so you can brag about i t at the coffee machine. A couple of
good one-liners for this situation are :

"You can write u compiler in three lines o f Forth code,"
followed by a thoughtful supping noise at your coffee mug.

Forth Dimensions XIX.5 9

Or,
"A Forth program is a language model of the application

problem domain."

Here is a nutshell method for writing a compiler :

1. Define the target memory data structures and location
pointers:
Create a buffer or storage area that will hold the compile^
program.
Create memory access words to adjust location pointer
in the target buffer.

2. Define the language:
Create defining words that a l l o ~ v production of languag
symbols.
Create a set of conditional, loop, and branch instruction
such as IF, WHILE, ERANCH, and DO ... LOOP.

3. Define the compiler:
Create a compiler that can execute the language symbc
and conditional stream from a text file or other interfacc

For simplicity, I am glossing over a couple of finer points n
garding dictionaries and literals. To complete a target compile
a separate dictionary needs to be created to hold target wor
definitions that may be duplicates of host word definitions.

Figure One

: TARGET-ROUTINE
CREATE , DOES> @ COMPILE>TARGET ;

: CREATE-TARGET-PROGRAM-AND-BEHAVIOR
CREATE (associate data with program)

DOES> (associate action with program)

: T: CREATE-TARGET-PROGRAM-AND-BEHAVIOR
INIT-TARGET-MEM [] ;

: T; CLEANUP-TARGET-MEM ;

Figure One is a bare-bones example of a target compiler i
Forth. TARGET-ROUTINE is a defining word used to produc
target compiling words. Given a buffer in memory and poin
ers t o access the buffer, COMPILE>TARGET will take the da-
in a TARGET-ROUTINE word and compile it into the buff€
The compiling takes place when a TARGET-ROUTINE word
executed. Here are some example TARGET-ROUTINES for
make-believe embedded system that has routines in R 0 1

1 whose addresses begin at the example hex addresses:
I

A000 TARGET-ROUTINE LOAD-PROGRAM
AOlC TARGET-ROUTINE RUN-PROGRAM
A02B TARGET-ROUTINE STOP-PROGRAM

In CREATE-TARGET-PROGRAM-AND-BEHAVIOR, We are
lefining programs in the new language. These programs will
hemselves be executable words in the host Forth dictionary.
The behavior of the "program" depends on the application.
:or an interactive target compiler linked to an embedded Forth
lucleus, we could cause the contents of the target buffer to
)e transmitted to the target Forth dictionary during target
:ompilation. This would give transparency to program down-
oading, always a bane when writing embedded code. When
he program word is executed on the host, it could transmit a
:ode address to the target Forth which would call the newly
2mbedded routine.

T: and T; implement the compiler. Programs in the new
anguage are written just like Forth:

r : MY - PRO GRAM
TARGETBUFFER B600 LOAD-PROGRAM
RUN-PROGRAM
BEGIN EKEY? UNTIL
STOP-PROGRAM

r ;

With some additional programming, one could write a
language whose syntax is like traditional prefix procedural
languages.

Notice that, not only are we compiling into the target buffer,
we are using host Forth words (BEGIN EKEY? UNTIL) in our
new routine. A Forth target compiler can mix host and target
words in the same definition. When MY -PROGRAM executes on
the host, it will load a program into B600 on the target and
execute it, then loop until a key is pressed on the host, causing
the target program to terminate. We have moved the user in-
terface from the target to the host, where the full power of the
host PC is available for data collection and testing.

Example: A tiny target compiler
I encountered a need for a custom compiler during my

last contract, when I discovered that the engineers were hand
assembling machine sequence opcodes for a proprietary em-
bedded controller. Basically, the embedded controller would
receive a table of hex instructions for port read and write com-
mands, followed by a second table of command offsets in the
first table to use for branching and sequencing. This would
allow a limited amount of programmability in the controller
for test automation. This method was a little weird, and to
write a sequence program one had to hand assemble the table,
count byte offsets, and manually enter the table data into a
program to calculate the CRCs, which was then appended to
the data using a text editor. I was able to write a quick target
compiler in Forth to automate this with a natural language
interface. Of course, if they had used Forth in the embedded
controller in the first place ...

I was going to use that program for this article, but de-
cided the branching and sequencing scheme was a bit too
convoluted to use, so I have written an example macro lan-
guage that demonstates a couple of the tricks. The example is
somewhat useless, since it merely assembles hypothetical
opcodes and data into a target memory structure. The opcodes
could be machine instructions for a hypothetical processor,
or 110 instructions for a specialized controller.

Forth Dimensions XIX.5

Defining the target memory
data structures and location pointers:

The structure of a target buffer and the buffer-access words
depends on the application. For this example, a small byte
array, TARGETBUFFER, is suitable-the language symbols will
compile 16-bit values into the buffer.

Choice of location pointers is also application dependent;
there are a number of things you may want to do with the
compiled data-such as transmitting it to the target or mak-
ing a ROM image-that would require additional pointers. In
the example, to keep track of the "location counter" for the
next free buffer element that will be compiled into, a pointer
called THERE is defined (meaning "target HERE"). This is ini-
tialized to the value of TARGETBUFFER, and is incremented
by two bytes (the value of TARGETCELL) each time a compil-
ing word executes.

Memory-access words are not always necessary, but are
convenient. To compile a two-byte value into the location
pointed to by THERE, the word THERE! ++ stores the value
and increments the pointer.

I defined a couple of pointers that keep track of the target's
memory space, corresponding to the image we are building
on the host: TORG and TWHERE. TORG is the beginning ad-
dress of target code memory that the compiled data will be
loaded into. TWHERE is the target's equivalent to THERE, the
location counter.

Defining the language:
The example supposes a target controller that has routines

in ROM, along with an interpreter to execute those routines
if given the address. We will also suppose that we can build a
table of these addresses that can be loaded into the target to

the buffer when the macro language program, MYPROGRAM,
executes :

I be interpreted. A defining word to implement the language
only needs the target routine code address and THERE ! ++ to
create a language symbol to compile the code address into
TARGETBUFFER. The definition for this defining word is:

: TARGET-ROUTINE
CREATE , DOES> @ THERE!++ ;

/ Creation of conditional, loop, and branch instructions may
/ seem a little tricky, but in Forth it is very simple. For a loop

instruction, we need to have an address to loop back to when
we reach an end-loop symbol. This is the address in the target
buffer where we encountered a start-loop symbol. By saving
this address when we hit a start-loop symbol, and compiling
it into the buffer when we hit an end-loop symbol, forward
referencing is accomplished. We are also assuming that a tar-
get branch routine exists, which in the example is called
UBRANCH. Its behavior is to branch to the address contained

1 in the next memory location.

: START-LOOP THERE?
TARGETBUFFER - TORG @ + START-ADDRESS ! ;

: END-LOOP
UBRANCH START-ADDRESS @ THERE!++ ;

Our IF: symbol works in a similar fashion. A test instruc-
tion is also assumed on the target interpreter that can test
the value at an address and branch to a forward location if it
false. This is called TARGET-IF. Observe the byte dump of

EOOO : COlO 1000 B610 B647 0170 C040 E014 0000
E008 : C020 2000 0045 C040 EOlC 0000 C030 EOOO

TARGET START : EOOO TWHERE : EOlC

The forward references have been taken care of. Note the
E014 and EOlC addresses compiled after C040, the address
for TARGET-IF. These addresses are the values of the location
counter when the ENDIF: symbol is interpreted by Forth.
Note also that the last 16-bit value in the buffer is E000, pre-
ceded by C030, the address for UBRANCH, which causes it to
loop back to the beginning of the program. If it still seems
confusing, study the hForth source for its conditional and
branch instructions-most are only one line of code.

Finally, to define the compiler:
A defining word is needed to name a program in the new

language and associate some behavior with it. For our ex-
ample, the behavior is simply to dump the contents of the
target buffer.

: DEFINE-PROGRAM-NAME
CREATE THERE? , DOES> @ BYTEDUMP ;

Our custom compiler is just a word to start the interpreta-
tion of our new language-symbol-compiling words. It first
calls DEFINE-PROGRAM-NAME to give a name to our custom
language program, and then enters interpretion mode. When
the input stream is exhausted, Forth returns to compilation
mode.

: BEGIN-PROGRAM
DEFINE-PROGRAM-NAME [] ;

To end the process, we may need a word to clean up the
target memory buffer on the host, transmit the new definition
to the target, or some other housekeeping. For our example,
no action is necessary, so we define a dummy word for ap-
pearances:

: END-PROGRAM ;

Well, not bad: a custom language in about two pages of
code, including an example program in the new language.
Forth experts will notice that some deeper issues have been
omitted, but these require little additional code. I will touch
upon them in the next article.

Here are some links to more detailed treatments of meta-
compilation and target compilation. "Meta" and "target" are
used interchangeably by different authors; most imply that
it is a matter of personal taste.

Forth assemblers are examples of target compilation. Start-
ing Forth, by Leo Brodie, contains an example Forth assem-
bler, and shareware Forths such as Win32Forth and hForth
come with assembler sources that are useful for study. Leo
also discusses custom languages in Thinking Forth; both his
books are available from the Forth Interest Group (FIG).

I 1 I

Forth Dimensions XIX.5 11

Jeff Fox has a Forth metacompilation tutorial on his web
site (http://www.dnai.com/-jfox/meta.html). I think it was
Jeff's eForth source code (about five pages) for an MuP21
metacompiler that caused me to embark on writing my own
target compiler.

Brad Rodriguez wrote a three-part series for Forth Dirnen-
sions (volume XIV) titled, "Principles of Metacompilation."
Reprints can be ordered from FIG.

The registered version of Pygmy by Frank Sergeant con-
tains source code and tutorial for a metacompiler. Pygmy costs
only $15, and would make an excellent platform for a DOS-
based remote target compiler (http://www.eskimo.com/
-pygmy/forth.html).

I wrote a poor man's Motorola 56002 DSP target compiler
using the techniques described here. My system used the
Motorola macro assembler to create the target nucleus and

for interactive development of assembly object words. A real
Forth target compiler would include a Forth target assembler
that could be used to generate the embeddable target nucleus,
as well as a complete debugging and ROMing toolset. If you
are interested in the source code, send me an e-mail request.

Forth, Inc. (http://www.forth.com) and MPE, Ltd. (http:/
/www.mpeltd.demon.co.uk/) sell commercial-quality target
compilers for embedded firmware development.

Towards a target compiler for an embedded DSP
My next article will describe the 56002 target compiler. To

get it working, I had to solve a number of interesting problems
that are common to remote target development systems. Be-
cause Forth makes it easy, solving these issues and being able
to devise other tools is within the reach of any programmer.

In other words, if I can do it, you can do it.

\ typing " . ." will reinterpret this file
S" FTASK" DROP 1- F I N D N I P [I F] FTASK [THEN] MARKER FTASK
: . . [' 1 FTASK EXECUTE S" TINYTCOM.FW INCLUDED ;

\

CLS CR . (A Tiny Target Compiler) CR
\

CR . (1> define the target memory data structures)

2 CONSTANT TARGETCELL

CREATE TARGETBUFFER 3 2 0 ALLOT \ a buffer to compile into

VARIABLE THERE \ target here - target buffer location pointer
VARIABLE TWHERE \ start of target program
VARIABLE TORG \ start of target code in rom

VARIABLE START-ADDRESS
VARIABLE 1F:ADDRESS

VARIABLE TMP

\ ...

CR . (define the target memory access words)
\ ...

: THERE? THERE @ ;

: THERE! THERE ! ;

\ store stack item at there, increment there 2 cells
: T H E R E ! + + THERE? ! THERE? TARGETCELL + THERE! TWHERE @ TARGETCELL + TWHERE ! ;

\ ------ utility routines -------------

\ display location pointers on terminal . . .
: WELL? CR ." TARGET START : " TORG @ . ." TWHERE : " TWHERE @ . 2 SPACES CR ;

\ initialize target buffer
: I N I T - T TWHERE ! TARGETBUFFER DUP 3 2 0 0 F I L L THERE! ;

\ ...
CR CR . (2 > create the defining words that allows production of language symbols)

12 Forth Dimensions XIX.5

: TARGET-ROUTINE CREATE , DOES> @ THERE!++ ;

\
CR . (define the language symbols)
\

HEX

COlO TARGET-ROUTINE READPORT
C020 TARGET-ROUTINE WRITEPORT
C030 TARGET-ROUTINE UBRANCH
C040 TARGET-ROUTINE TARGET-IF
B600 TARGET-ROUTINE STOP
B610 TARGET-ROUTINE CALCTEMP
B647 TARGET-ROUTINE DISPLAY
B69A TARGET-ROUTINE CALCERROR

\ ...
CR . (define conditional, branch, and loop instructions)
\ ...

\ store an address to branch to from an END-LOOP
: START-LOOP THERE? TARGETBUFFER - TORG @ + START-ADDRESS ! ;

\ compile the START-LOOP address into target memory
: END-LOOP UBRANCH START-ADDRESS @ THERE!++ ;

: IF: TARGET-IF THERE? DUP IF-ADDRESS ! 2 + THERE ! ;

: ENDIF: THERE? TARGETBUFFER - TORG @ + IF-ADDRESS @ ! ;

\ create a target constant defining word . . .
\ when the child word is executed it compiles the constant value
\ into target memory space

: TCONSTANT CREATE , DOES> @ THERE ! ++ ;

CR CR . (3> define the compiler) CR
\
\ this just displays the buffer contents; in a real application one might
\ transmit a code address to the target associated with the created name
\ on the host
: BYTEDUMP CR TORG @ TMP !

THERE? SWAP - 2 / TARGETBUFFER SWAP
8 / O D O

T M P @ D U P . ." : " 8 + TMP !
8 0 DO DUP C@ >R DUP 1 + C@ R> SWAP \ . . . remove swap if not intel
8 LSHIFT SWAP OR 0 < # # # # # #> TYPE SPACE 2 + LOOP CR

LOOP DROP ;

: DEFINE-PROGRAM-NAME CREATE THERE? ,
DOES> @ BYTEDUMP ;

\ compiler
: BEGIN-PROGRAM DEFINE-PROGRAM-NAME [] ;

: END-PROGRAM ;

Forth Dimensions XIX.5 13

CR . (Compile an example program in the new language) CR
\ ..

EOOO DUP TORG ! INIT-T I
BEGIN-PROGRAM MY PROGRAM I

1000 TCONSTANT TEMPSENSOR
2000 TCONSTANT HEATER1
175 TCONSTANT SETPOINT
170 TCONSTANT LOWTEMP
45 TCONSTANT TIMEOUT

START-LOO P
READPORT TEMPSENSOR
CALCTEMP
DISPLAY

LOWTEMP IF: CALCERROR WRITEPORT HEATER1
ENDIF:

TIMEOUT IF: STOP
ENDIF:

END-LOOP \ compiles jump instruction to addr from start-loop 1
END-PROGRAM

CR . (Execute the target program :) CR

MYPROGRAM WELL? CR

Support for older systems
Hands-on hardware and software

Computing on the Small Scale
Since 1983

Subscriptions
1 year $24 - 2 years $44

All Back Issues available.

TCJ
The Computer Journal

P.O. Box 3900
Citrus Heights, CA 95611 -3900
800-424-8825 1 91 6-722-4970

Fax: 91 6-722-7480
BBS: 91 6-722-5799

Forth Dimensions XIX.5

I LPROFILER counts the number of times a source code line / used to be ten times faster than BASIC, current BASICS have I
is executed. Although not measuring the exact run time of a
program line, LPROFILER provides a good start when hunt-
ing for performance bottlenecks. Once the most promising
candidates for optimization are known, the word . TIME" can
be used to time the execution performance of individual Forth
phrases. A fringe benefit of LPROFILER is that it shows lines
of code that are not visited at all: it points out incompletely
tested applications.

Because LPROFILER works like a text filter, it is not neces-
sary to edit or modify source code in order to have it profiled.

The code is tested with Gforth and iForth. LPROFILER is
not strictly ANS, in that it requires a system variable pointing
to the source line currently being interpreted. Text in screen
files cannot be profiled.

Use of the profiling utility is demonstrated with several
rewrites of a prime number filter program.

Introduction
This is a utility I wrote in 1993 to introduce ANS Forth to

readers of Het Vijgeblad, the periodical of the Dutch FIG.
LPROFILER is inspired by "Column 1: Profilers" from Jon
Bentley's book More Programming Pearls, Confessions of a Coder
(ISBN 0-201-11889-0). Bentley worked at AT&T Bell Labora-
tories and started his famous columns for Communications of
the Association for Computirzg Machinery (CACM) in 1986. In
his columns, he discussed the daily practice of high-octane
programming. As Bentley himself put it in the introduction
to his book:

"Computer programming is fun. Sometimes programming
is elegant science. It's also building and using new software
tools. Programming is about people too: What problem does
my customer really want to solve? How can I make it easy for
users to communicate with my program? Programming has
led me to learn about topics ranging from organic chemistry

! to Napoleon's campaigns. This book describes all these
aspects o f programming, and many more."

The first columns from MPPCC describe common program-
ming techniques. One of them is analyzing the dynamic ex-
ecution behavior of programs. My translation of this process
can be defined as: How many times, and under which cir-
cumstances, does code described in a certain part of the source
program execute?

What is profiling?
When discussing run-time efficiency of programs, it is

common to (hesitantly) admit that current non-commercial
Forths are not implemented very efficiently. Although Forth

steadily improved while Forth, as we all know, only gets re-
invented. A test I did while researching this article shows that
MS-DOS QBASIC 1.0 (1991) is about five times slower than
Win32Forth 3.4 (1997) on the Sieve ofEratosthenes benchmark.
So far, so good. However, when the source is fed to good old
BASCOM (1987), the BASIC Sieve suddenly runs seven times
faster than Win32Forth. Without changing one single char-
acter in the source.

The standard reply to this rather unpopular fact is to state
that in Forth it is very easy to find the words responsible for
the bulk of the run time. These words can then be rewritten
in assembler (converted to CODE words).

The resident Forth assembler is, of course, a big asset. But
it is hard to believe that to have a significant effect (like a
factor of seven speedup), it will suffice to rewrite just one of
the kernel words with the assembler. To begin with, these
words will be written in assembly language already (and if,
for instance, F-PC is a typical case, it will be very smartly
written assembly language indeed). What we can hope for is
that our source code contains one or more strings of serially
connected, simple CODE words. Although each of the com-
ponent words is written optimally, it will have the full over-
head of the inner interpreter-ranging from insignificant in
an optimizing subroutine-threaded Forth to gruesome in a

, token-threaded implementation.
' The implicit assumption, that in every larger program only

very few statements are responsible for the bulk of the run
time, is seldom proved. Jon Bentley gives examples that make
it likely for C code. Let's see if it is true for Forth.

Source code overview
This article provides a tool to search for efficiency bottle-

necks in existing Forth programs. This is the actual profiler. A
second tool is able to measure the execution time of given
Forth words: Word A executing a million times but taking
only a microsecond each time is okay, while word B execut-
ing 10,000 times and taking 10 milliseconds is a disaster.

Only the source code for the above two utilities is shown.
Several different approaches to implementing a prime num-
ber sieve show that interesting results can be arrived at. (For
in-depth treatment, the interested reader is advised to study
Jon Bentley's book.)

The programs were tested with two very different ANS Forth
implementations: iForth (subroutine-threaded and optimizing)
and Gforth (direct-threaded). The results of the profiling ses-
sions will be markedly different on your own system. The tim-
ings given in this article are true for iForth 1.07 running on
an Intel Pentium-166 under Windows NT 4.0.

Forth Dimensions XIX.5 15

Run-time speed of a Forth word
To measure the execution speed of single Forth words, e.g.,

DROP, I originally came up with the following user interface:
.TIMEn DROP" (0.12 microseconds/iteration)

In practice, this is not okay. To time DROP, it will have to
execute at least once. Because, normally, the parameter stack
is empty, the likely result of the test will be a stack underflow
error. The only way to prevent the stack error is to give . TIME"
knowledge about the stack effect of each tested word and to
push or pop sufficient numbers to keep the stack manager
happy. This is too complex and extremely inelegant.

A second problem is that executing the test words only
once gives very inaccurate results. Most system timers won't
have sufficient resolution to time sub-microsecond events.

The final implementation requires that the phrase to be
tested has a neutral stack effect. The above example becomes:

.TIMEn 1 DROP" (0.30 microseconds/iteration)

Obviously, the code to prepare and clean up the stack is
also being timed, decreasing the accuracy of the measurement.
In practice, this is only a problem when testing kernel or CODE
words (as demonstrated above).

The resolution problem is solved by making a temporary
definition where the tested phrase is put inside a DO LOOP. This
temporary definition is executed a variable number of times,
until at least a full second of run time has elapsed. After cor-
recting the elapsed time for DO LOOP overhead (1 don't do that
in practice), we divide by the number of loop iterations.

When the tested phrase does not have the required neu-
tral stack effect, the internal DO LOOP makes sure nasty things
will happen.

An interesting side-effect of the chosen solution is that it
is valid to test the following phrase:
.TIMEu 2 0 I F 1+ ELSE 2- THEN DROP"

This is so because the string inside the quotes is compiled
before it gets executed.

Let's proceed to the implementation. The temporary defi-
nition for the above reads:
:NONAME (--)

TIMER-RESET
/checks 0 DO

2 0 I F 1t ELSE 2 - THEN DROP
LOOP

TIMER-STOP ; (-- xt) TO "secret*

The execution token for the nameless definition is saved
in a secret VALUE. The timer word sets up /checks calls to
EXECUTE with the secret xt, trying to make sure at least one
second goes by:
: CHECK-OUT

1 0 TO /checks \ initialize /checks
BEGIN
secret EXECUTE \ do phrase
TIMER-READ 1 0 0 0 < \ b u s y for 1 0 0 0 msecs?

WHILE \ no, ten times more
/checks 1 0 * TO /checks

REPEAT
.RESULT ; \ time in milliseconds..

\ ..divide b y /checks and print

The definitions of TIMER-RESET, TIMER-READ, and TIMER-
:TOP might be a problem for some Forth systems. This can
Je solved with the ANS Forth word TIME&DATE, which re-
?arts times with a one-second granularity. To get sufficient
.esolution, the running time of the test phrase must be in-
zreased to at least 100 seconds. (Fortunately, one of Gforth's
jevelopers helped me write a new primitive to make timing
practical for this Forth. Waiting 100 seconds for a result is a
real burden for someone as impatient as me.)

Finally, the approach to building a temporary definition.
[implemented this by splicing together three strings and
EVALUATEing the result. String1 is
:NONAME TIMER-RESET /checks 0 DO

String2 is the phrase to be tested, and string3 is
LOOP TIMER-STOP ; TO *secret* CHECK-OUT

When the Forth system has string-manipulation words, this
is a simple operation, e.g., in F-PC one can use PLACE and
PLACE+. I used an approach in which the strings are copied
character-by-character to the nowbuf buffer. With nowbuf
COUNT EVALUATE we then ask the Forth compiler to build the
temporary code. When finished with . TIME", the compiled
code is automatically removed by the word FORGET-TEMP.

The profiler
A design requirement for the profiler was that it shouldn't

be necessary to manually change already working and tested
code. Existing and well-known tricks to extend : with code
to first increment a counter are not suitable, because it does
not allow one to profile each line of a definition-unless it is
a one-liner.

In the end, I chose the solution in which each line of the
source file is read in, prefixed with a special immediate Forth
word, and is copied out to a temporary disk file. This special
Forth word is called A and its execution-time action is to do
nothing. During compilation, however, A compiles code to
increment a specific counter in an array of counters. The in-
dex of the chosen counter n corresponds with the line in the
file currently being interpreted that caused A to start compil-
ing. In order for this to work, it is necessary that A can ask
the Forth system to tell it this line number. iForth and Gforth
provide such a word. By carefully engineered miracle, both
call it SOURCELINE# (-- n) .

Using the profiler, therefore, requires preparing a file. This
is done with PROFILE i name> . The new file is always called
! ! ! ! ! ! ! ! . $ $ $. Immediately after building this file, PROFILE
reads it again and compiles it.

P R O I N I T can be used t o reset the counter array. This is
not always a useful action, therefore PROFILE doesn't do it
automatically.

After normally executing the prepared program, the re-
sults can be studied with . PROFILE. This word prints the
source file text, indicating the execution count of a line in
the left margin. [See Figure One.]

The word ? F I L E is a standard ANS ior return value han-
dler. A possible implementation is:
: ?FILE ABORT" File error" :

WAIT? tests for keypresses. If yes, the key is read. When it
is the Esc key, WAIT? returns a true flag; if not, it waits for the

Forth Dimensions XIX.5

Figure One.

109890 + : prime local n TRUE \ <n> -- <bool>
109890 + n 2 ?do

8582420 + n i mod
8582420 + O= if

91410 + invert leave
I then

8491013 + loop ;

Figure Two.

109890 + : prime local n TRUE \ <n> -- <bool>
109890 + n 2 ?do

8582420 + n i mod
8582420 + O= if

91410 + invert leave
I then

8491010 + loop ;
I
I

110 + : P1 /n 1+ 2 ?do \ o -- o
109890 + i prime if
18480 + i .result
18480 + endif

109890 + loop ;

Figure Three

109890 + : prim2 local n TRUE \ <n> -- <boob
109890 + 2 n iroot > if exit then
109670 + n 2 ?do
599940 + n i mod
599940 + O= if
91410 + invert leave

then
i n iroot > if

leave
then

loop ;

/ n 1+ 2 ?do \ o -- o
i prim2 if

i .result
endif

loop ;

next keypress and tests for Esc again. This obscure textual
description simply means that pressing Esc stops the listing
action of . PROFILE immediately. Any other key, presumably
the space bar, starts and stops the listing temporarily.

The following line:
1 [SOURCELINE#] L I T E R A L probes+!

compiles the counter code. probes is a 2000-cell array with
line counters. Larger files than this should not be very com-
mon in regular Forth practice.

PROFILE expects to find the full name of the file to be

profiled in the input stream. The name is fetched with BL
WORD. After creating ! ! ! ! ! ! ! ! . $$$, we call EDIT-FILE, close
both files, and read ! ! ! ! ! ! ! ! . $ $ $ for interpretation. The
call to EDIT-FILE is embedded in a CATCH THROW construct
to take care that, after an internal error, the two files are closed
correctly.

EDIT-FILE reads a line from the file with the source code
to be profiled into a buffer with the fixed prefix text " A

11

This complete buffer is copied to ! ! ! ! ! ! ! ! . $$$. When the
new line gets interpreted (through I N C L U D E D in PROFILE),
the IMMEDIATE word " will, when we're compiling, generate

Forth Dimensions XIX.5 17

i
1 Figure Four.
I

1 1 0 8 8 9 0 + : p r i m 3 l o c a l n TRUE \ < n > -- < b o o 0
1 1 0 8 8 9 0 t n i r o o t I t
1 1 0 8 8 9 0 + 2 ? d o
5869680 + n i mod
5 8 6 9 6 8 0 + O= i f

922410 + i n v e r t l e a v e

I t h e n
4947270 + l o o p ;

I

/ n I+ 2 ? d o \ <> -- <>
i p r i m 3 i f

i . r e s u l t
e n d i f

l o o p ;

code to increment the correct counter in ' p r o b e s .
. PROFILE reads the still-existing file ! ! ! ! ! ! ! ! . $ $ $ line

by line, and removes the " A " strings. Instead of the
prefix, we print the contents of the ' p r o b e s array that corre-
sponds to the current line (that's why there is a line# index
in (. P R O F I L E)). We print as much of the source text as will
fit on the remainder of the line (C /L gives the number of
columns the terminal can handle). Again we use a CATCH

THROW to close the file correctly, in case of an 110 error.

Primes, an example
All of Jon Bentley's profiler examples concern finding

prime numbers less than a predefined value. The first naive
implementation is the word P1 (Jon obviously is a C pro-
grammer). Shown together with the profiler output, we get
the results in Figure Two.

PI tests all odd numbers less than or equal to n for prime-
ness. The word that does the actual testing is called prime.
This word simply computes n modulus all prime candidates.
By definition, this modulus will never be zero if rz is prime. (A

We can do even better by pre-testing for divisibility by 2,
3, or 5 before starting the main loop [see Figure Five].

It is seen that in prim4 the number of loops goes down
dramatically, with nice results: . TIMEn P4" says 3.24 milli-
seconds per iteration, which is 70'W) faster with respect to P3.
This is an unexpected result (at least to me), which shows
that loops should be avoided at all costs. The "sweet spot" in
P4 is the fragment n 1 mod 0= i f where the "if" part is
almost never taken. Rewriting the fragment with the resident
assembler is not difficult, and may lead to between three and
five times faster execution.'

The last program, P5, blows our bubble: a new algorithm,
the Sieve ofEratosthenes, shrinks execution time by a factor of
four to a mere 0.945 milliseconds per iteration. Be sure to do
your homework before starting to code.. . [see Figure Six].

Our profiler tells us the phrase DUP s i z e U< runs very
often. The whole BEGIN W H I L E REPEAT loop needs attention.
It begs to be rewritten as a DO +LOOP. Again, we'll leave this as
an exercise to the reader.

1 prime number can only be divided by itself or by dne. Note Concluding remarks 1
that two is prime.)

Division, and thus also MOD, is a very slow operation. Us-
ing . TIME" PI" I found a run time of 55 milliseconds with n
= 1000. We see that MOD is called a whopping 8,582,420 times
(/ c h e c k s seems to be 110).

The first improvement, P2, tests only up to a maximum of
dn, because a possible divider of n will never be any greater
[see Figure Three].

Indeed, the number of MOD calls falls to a mere 599,940
(fourteen t imes less). Unfortunately, we also need
109890+508530 calls to iroot, which is a floating-point word.
In Jon Bentley's example, the root extraction proved to be
abysmally slow, and P2 was much slower than P I . Using iForth
(hardware floating-point), I found a run time of 10.6 milli-
seconds per iteration: P2 is five times faster than P I .

, In the next improvement, the iroot call is moved outside

A profiler is a useful tool for the serious Forth program-
mer. Of course, at the moment Forth is not trying to compete
head-on with languages like Pascal or C for system-level pro-
gramming. However, as ANS Forth now allows us to write
such programs, comparisons will inevitably be done. The new
generation of users may ask for new features and their must-
haves will be different from present-day requirements.

I hope to have shown that it is not difficult to build one's
own profiling toolkit. You won't need to bug your friendly
Forth vendor for it, given system documentation that has at
least a certain minimum standard.

Code follows, and can be downloaded by FTP from
ftp://ftp.forth.org/pub/Forth/FD/1998/Profiler.zip

/ the loou in arim3 rsee Figure Fourl. I 1

18 Forth Dimensions XIX.5

. . u

~h~ result is, again, quite a lot iaster: . TIME,, P3,, reports
5.5 milliseconds per iteration.

1. 1 could not test this because Gforth for Linux does not have a resident
assembler and iForth already generates optimal machine code for the
above fragment.

Figure Five.

I -- p4 ...
1108890 + : prim4 local n \ <n> -- <bool>
1108890 + TRUE n 2 = n 3 = or n 5 = or if

3330 t exit

1 then
1105560 t INVERT (faise)

1105560 + n 2 mod 0= if exit endif
551670 + n 3 mod 0= if exit endif
367410 t n 5 mod 0= if exit endif
294150 + INVERT (true)

294150 + n iroot 1+ 7 max
294150 + 7 ?do
1698300 + n i mod
1698300 t O= if
111000 + invert leave

I then
1587300 + 2 +loop ; \ only test the odd

I
I

/ n 1+ 2 ?do \ <> -- o
i prim4 if

i .result
endi f

loop ;

Figure Six

I -- p5 ...

I -- search primes between 2 and 2 * size Note: 2 is prime!
I

/n 2/ local size \ <> -- <>
size 2+ chars allocate ?allocate
(addr) local flags
2 .result \ 2 is a prime
flags size 1 FILL

size 0 DO
flags I +
C@ IF

I DUP t 3 t

DUP .result
DUP I t
BEGIN

DUP size <
WHILE

0 OVER flags + C!
OVER +

RE PEAT
2DROP

ENDIF
LOOP

flags free ?allocate ;

Forth Dimensions XIX.5 19

Listing One. Lprofile.frt

\ Some small changes to Gforth to unify the source code . . .

0 CONSTANT native (1 == iForth, 0 == Gforth)

native
[IF] (iForth)

: TIMER-START TIMER-RESET ;
: TIMER-STOP (.TO) 2DROP ;
: READ-TIMER diffO @ ;

[ELSE]

\ Gforth, ref. Jens Wilke
\ add the next 7 lines to file "primitives", below ms (tabs are significant):
\
\ timeusec -- nusec nsec new
\ struct timeval tv;
\ struct timezone zonel;
\ gettimeofday(&tv,&zonel);
\ nusec=tv. tv - usec;
\ nsec=tv.tv - sec;

2VARIABLE tstart
VARIABLE diffO
: TIMER-START timeusec tstart 2 ! ;
: TIMER-STOP tstart 2@ timeusec rot - -rot swap -

dup 0< IF 1000000 + swap 1- swap THEN
(sec usec)
1000 / swap 1000 * + diffO ! ;

: READ-TIMER diffO @ ; \ o --- ims>

: PRIVATE ;
: DEPRIVE ;
: ?ALLOCATE THROW ;
: ?FILE THROW ;
. -- POSTPONE \ ; IMMEDIATE

9 CONSTANT "I
CHAR A CONSTANT ' " '
CHAR " CONSTANT ""
CHAR . CONSTANT ' . '
27 CONSTANT ESC

: BREAK? KEY ESC = ; \ <> --- <bool> accepts ESC only

: WAIT? KEY? DUP IF DROP BREAK? \ <> --- <boob
DUP O= IF DROP BREAK?

ENDIF
ENDIF ;

: S>F (n --) (F: -- r) S>D D>F ;
: F>S (-- n) (F: r --) F>D DROP ;
: 2 + 2 + ;

FORM CONSTANT C/L DROP

: NEEDS POSTPONE \ ; IMMEDIATE
: PRIVATES POSTPONE \ ; IMMEDIATE
: REVISION POSTPONE \ ; IMMEDIATE

: SCAN-$ 2>R \ <addr> <cnt> --- < >
BEGIN BEGIN BL WORD COUNT DUP O= (eol or eof. .)

WHILE 2DROP REFILL O= IF 2R> 2DROP EXIT
ENDIF

REPEAT
2R@ COMPARE O=

UNTIL
2R> 2DROP ;

20 Forth Dimensions XIX.5

ST, *) $ 7 SCAN-$; IMMEDIATE
S" ENDDOC" SCAN-$; IMMEDIATE

-- Below this line the code is almost standard
(*
* LANGUAGE : ANS Forth
* PROJECT : Forth Environments
* DESCRIPTION : Inspired by Jon Bentley's "More Programming Pearls"
* CATEGORY : Tools
* AUTHOR : Marcel Hendrix
* LAST CHANGE : May 26, 1997, Marcel Hendrix general butchering for publication
* LAST CHANGE : September 8, 1995, Marcel Hendrix removed ARRAY
* LAST CHANGE : September 8, 1993, Marcel Hendrix redefined :
* LAST CHANGE : March 8, 1993, Marcel Hendrix
*)

I NEEDS -miscutil

I REVISION -1profile "fff Forth Line Profiler Version 1.12 fff"

I PRIVATES

DOC Line Profiler
(*
Profiling?

Sometimes it is useful to know where a program is spending its runtime. Although schemes exist
where : and ; get redefined to compile counters, there is no direct link to the source code
with this solution. ' Editing in a special word in the source is very flexible -- it limits output to just the words
and constructs you're interested in. However, sometimes the exact troublespot is unknown.
Furthermore, some programmers hate it to have to modify the source code by hand after it is
finished and debugged.

The solution presented here is to have the profiler read in the source and write a modified
version of it to a temporary file. The latter is then included. The modifications made allow
one to list the original source with an execution count in the left margin.

1

Regrettably the idea will not work on all ANS Forth systems. The main stumbling block will be
the availability of the variable #LINES , counting the lines compiled.

There could be problems with the use of TAB'S and the IBM-PC character set
but they should be easy to solve.

Implementation

The source file is read in line by line. Each line is prepended by the string " ^ " (The
caret character plus a TAB). The word ' ^ ' is immediate and does nothing in execute mode. How
ever, when compiling it compiles code to increment a counter in the array PROBES , at the
position corresponding to the line where it executes (is: compiles). The modified lines are
copied to the file ! ! ! ! ! ! ! ! . $ $ $, which is subsequently included (in that way executing /
compiling ^ for every line).

With .PROFILE the file ! ! ! ! ! ! ! ! . $ $ $ is read in and displayed without the prepended " ^

string. Instead of this string the contents of the corresponding counter in PROBES are displayed.
This is of course only meaningful when the words in this file have been executed at least once.

The counters can be reset with the word PROINIT (not automatic!)

DOC Timing
(*
Timing individual words

Apart from its execution frequency, the speed of execution of a word is important. The words
TIMER-RESET and .ELAPSED are almost always sufficient for this task, however some (kernel)
words are so fast that you will appreciate the word .TIME" string " which times with microsec
ond resolution. It does this by placing string in a loop and executing the result a suffi
cient number of times (sufficient for the wanted resolution).

Forth Dimensions XIX.5

The words to be tested may not change any stack. This means words must be added to string to
assure this. Likewise, loop overhead is not automatically subtracted out as the optimizer makes
this overhead difficult to predict. But you can do this yourself easily. Let's see how you
would test DUP :

.TIMEv 4 DUP 2DROP" <cr> xxx microseconds / iteration

.TIMEn 4 4 2DROP" <cr> yyy microseconds / iteration

Subtracting xxx and yyy gives a reasonable approximation to the DUP speed.

CAREFUL !
11 1, 1, 1, 11 11 11 11

Do not time words from a file that is being profiled. Nothing will break, but the words are
MUCH slower than without the profiler code, so completely wrong conclusions could be drawn.

*)
ENDDOC

BASE @ DECIMAL

(The timing tool)

0 VALUE *secret* (can not be private)

CREATE nowbuf PRIVATE 257 CHARS ALLOT

: clear.NB 0 nowbuf C! ; PRIVATE clear.NB

: @NOW nowbuf COUNT + C! \ <char> --- i >
nowbuf C@ CHAR+ DUP nowbuf C!
254 >= ABORT" NOW buffer overflow" ; PRIVATE

: $>NOW 0 ?DO COUNT c>NOW LOOP DROP ; \ <c-addr> <u> --- <>
PRIVATE

\ Forget the temporary definition, -secret is a MARKER
: FORGET-TEMP S" -secret1' EVALUATE ; PRIVATE

0 VALUE /checks (cannot be invisible, see :NONAME)

: .RESULT READ-TIMER 1000 /checks * /MOD
BASE @ >R DECIMAL

0 .R ' . ' EMIT
1000 /checks * / . ." microseconds / iteration."
R> BASE ! ; PRIVATE

\ The string to be timed MAY NOT HAVE any stack effects.

: CHECK-OUT 10 TO /checks
BEGIN * secret* EXECUTE

READ-TIMER 1000 U<
WHILE /checks 10 * TO /checks
RE PEAT
.RESULT FORGET-TEMP ;

: . TIME" clear. NB
S" MARKER -secret :NONAME TIMER-START /checks 0 DO " $>NOW
1 1 1 1 WORD COUNT $>NOW
S" LOOP TIMER-STOP ; TO *secret* CHECK-OUT " $>NOW
nowbuf COUNT EVALUATE :

(The profiler tool)

2000 CONSTANT /maxlines PRIVATE \ maximum number of lines in source file
/maxlines CELLS ALLOCATE ?ALLOCATE CONSTANT 'probes

: probes@ (ix -- n) CELLS 'probes + @ ; PRIVATE
: probes+! (n ix --) CELLS 'probes + + ! ; PRIVATE
: PROINIT (--) 'probes /maxlines CELLS ERASE ; PROINIT

Forth Dimensions XIX.5

native [IF] :NONAME (pfa --) DROP 'probes FREE DROP ; IS-FORGET probes@ [THEN]

\ User marker: probe this line if compiling, else do nothing.
\ Note that ' : I must be redefined too, but let's delay that . . .

STATE @ O= IF EXIT ENDIF
1 POSTPONE LITERAL

SOURCELINE# 1- DUP /maxlines U> ABORT" array bounds exceeded"
POSTPONE LITERAL

POSTPONE probes+ ! ; IMMEDIATE

1 \ The strings to type start with I t ^ " , which we'll throw away.
I I

: TTYPE 2 /STRING 0 LOCALS I pos I \ <addr> <u> ---
0 ?DO

COUNT DUP ^I = IF DROP 8 pos 8 MOD - DUP
ELSE EMIT 1

ENDIF pos + TO pos
pOS C/L 14 - U> IF LEAVE

ENDIF
LOOP DROP ; PRIVATE

<>

SPACES

1 CREATE ^I1 buf PRIVATE ^ C, ^I C, 256 CHARS ALLOT I
: EDIT-FILE LOCALS1 hof hif I \ <infile> <outfile> --- < >

BEGIN " ^"buf 2+ 256 hif READ-LINE ?FILE
WHILE " ̂ " buf SWAP 2+ hof WRITE-LINE ?FILE
REPEAT DROP ; PRIVATE

\ Instead of INCLUDE name , IN name , S" name" INCLUDED etcetera

: PROFILE BL WORD COUNT R/O OPEN-FILE \ #<filename># --- <>
?FILE LOCALS1 handle-if I
S" ! ! ! ! ! ! ! ! . $ $ $ " W/O CREATE-FILE
?FILE LOCALS1 handle-of I

handle-if handle-of
[' 1 EDIT-FILE CATCH IF 2DROP ." oeps!"

ENDIF
handle-of CLOSE-FILE ? FILE
handle-if CLOSE-FILE ?FILE
S" ! ! ! ! ! ! ! ! . $ $ $ I 1 INCLUDED ;

PROFILE) 0 LOCALS1 line# handle 1 \ <handle> --- <>
BEGIN PAD 256 handle READ-LINE ?FILE

WAIT? O= AND
WHILE CR line# probes@ DUP O> IF 9 .R . ,, * ,,

ELSE 9 SPACES ." I "
DROP

ENDIF
PAD SWAP TTYPE
line# 1+ TO line#

REPEAT DROP ; PRIVATE

: .PROFILE S" ! ! ! ! ! ! ! ! . $ $ $ " R/O OPEN-FILE \ #<name># --- <>
?FILE DUP LOCALS1 handle I
[' 1 (.PROFILE) CATCH IF DROP ." oeps!"

ENDIF
handle CLOSE-FILE ?FILE ;

I : : : POSTPONE " ; IMMEDIATE I
: ABOUT CR ." A file to be profiled must be loaded with PROFILE name"

CR ." Execute PROINIT and the main word, then type .PROFILE for a listing."
CR ." Type . TIME" "' ' EMIT ." string " "' ' EMIT ." to time <string>"
C R
CR . " Note that <string> may NOT have any lasting stack effects."
CR ." Example: .TIME1' "" EMIT ." 9 iroot drop " ' " ' EMIT ." (tl)"
CR ." .TIMEw "' ' EMIT ." 9 -opt drop " ' " ' EMIT ." (t2)"

Forth Dimensions XIX.5 23

CR ." Real elapsed time = t2-tl" ;

ABOUT
DEPRIVE

BASE !
(* End of Source *)

/ Listing Two. Ppearls.frt

(*
* LANGUAGE : ANS Forth
* PROJECT : Forth Environments
* DESCRIPTION : Inspired by Jon Bentley's "More Programming Pearls"
* CATEGORY : Publishable Forth
* AUTHOR : Marcel Hendrix
* LAST CHANGE : March 7, 1993, Marcel Hendrix
*

REVISION -ppearls "fff Publishable Forth Version 0.01 f f f "

-- ANSI Forth programs to print all primes less than /n (1000), in order ----

decimal

1000 value /n
0 value /count

\ the number of primes to print
\ how many primes are there?

defer .result

: .resprint cr . ; \ </primes> --- < >
: .rescount drop /count 1+ to /count ; \ </primes> --- < >

: iroot s>f fsqrt f>s ; \ <n> --- <root-n>
-- PI ...
: prime locals1 n I TRUE \ <n> --- <boob

n 2 ?do
n i mod
O= if

invert leave
then

loop ;

/n I+ 2 ?do \ o --- o
i prime if

i .result
endif

loop ;

-- p2 ...
: prim2 locals1 n I TRUE \ <n> --- <bool>

2 n iroot > if exit then
n 2 ?do

n i mod
O= if

invert leave
then
i n iroot > if

leave
then

loop ;

/n 1+ 2 ?do \ o --- o
i prim2 if

i .result
endif

loop ;

- - -

Forth Dimensions XIX.5

-- p3 ...
: prim3 locals1 n I TRUE \ <n> --- <bool>

n iroot 1+
2 ?do

n i mod
O= if

invert leave
then

loop ;

/n 1+ 2 ?do \ o ---
i prim3 if

i .result
endif

loop ;

: prim4 locals1 n I \ <n> --- <bool>
TRUE n 2 = n 3 = o r n 5 = o r if

exit
then

INVERT (false)

n 2 mod 0= if exit endif
n 3 mod 0= if exit endif
n 5 mod 0= if exit endif
INVERT (true)
n iroot 1+ 7 max

7 ?do
n i mod
O= if

invert leave
then

2 +loop ; \ only test the odd ones!

: P4 /n 1+ 2 ?do \ <> --- <>
i prim4 if

i .result
endif

loop ;

-- p5 ...
-- search primes between 2 and 2 * size Note: 2 is prime!

: P5 /n 2/ locals1 size I \ o --- o
size 2+ chars allocate ?allocate
(addr) locals l flags I
2 .result \ 2 is a prime
flags size 1 FILL

size 0 DO
flags I +
C @ IF

I DUP + 3 +
DUP .result
DUP I +
BEGIN

DUP size <
WHILE

0 OVER flags + C!
OVER +

REPEAT
2 DROP

ENDIF
LOOP

flags free ?allocate ;

: ABOUT cr ." Type P1 I P2 I P3 I P4 I P5 to print all primes below " /n dec. ;

ABOUT CR

(* End of Source *)

Forth Dimensions XIX.5

1 Forth Programmer's Handbook

Forth Programmer's Handbook by Edward K. Conklin and
Elizabeth D. Rather is the greatest book on Forth to appear in
several years. Well, it's the only book on Forth to appear in
several years, but it's still great.

It "provides a detailed technical reference for program-
mers and engineers who are developing software using ANS-
compliant versions of Forth provided by FORTH, Inc. or other
vendors." It shows how the major supplier of Forth has
adapted to Standard Forth, and has adapted Standard Forth.

AS a programmer I'm interested in the language, and as a
Forth programmer in the words. And so I plunge into Appen-
dix B: Index to Forth Words.

This is supposed to be an alphabetical index to the Forth
words appearing in the glossaries in the book. In the first
printing the sequence is not quite right, which is a minor
nuisance in finding some words.

As the index is obviously based on the Standard words, I
look for what's different.

The obsolescent words, the Locals word set, and the basic
Search-Order words except for DEFINITIONS are not there.
All the Search-Order ~xtens ion words are there, as well as
VOCABULARY.

COUNT and DECIMAL are also missing, which I suspect is
an oversight-they are required words: HEX, WITHIN, and
[COMPILE] are also missing. COUNT, DECIMAL, and HEX are
used in the body of the book, but not in a glossary. 1 can
easily do without WITHIN and [COMPILE] . ~ n d WITHIN would
be easy to define.

A definition of COUNT is given in an example. It has an
environmental dependency, using 1+ rather than CHAR+ in
the definition. A later example defines a different COUNT as a
constant.

In the later example 500 * COUNT ! is used to change
the value of the constant. In another place [1 without >BODY
is used to change the value of a Zconstant. Thus ticking a
constant does not return an execution token.

BYE is also missing. It doesn't make sense in a dedicated
environment.

Now for the good stuff-words not in the Standard.
VOCABULARY is one. It has a definition that is agreeable with

the result of the definition in the Standard's Rationale. I hope
this will effectively standardize the meaning of VOCABULARY.

Another "new" word is NOT, equivalent to O = -the only
sensible meaning for today's optimizing Forths.

Other old favorites that have re-appeared are c+!, M-, M/,
I T*, and T/. M/ has an ambiguous definition-is it equivalent

to SM/REM NIP or FM/MOD NIP or should dividend and divi-
sor have the same sign for portability?

We can all adopt [DEFINED] and [UNDEFINED].
(My definitions)

: [DEFINED] (<name> -- f l a g)

BL WORD FIND NIP O<> ; IMMEDIATE

: [UNDEFINED] (<name> -- f l a g)

BL WORD FIND NIP O = ; IMMEDIATE

It stands to reason that since Forth words can't have blanks
in them, Forth source filenames shouldn't have blanks in them,
and some systems don't give you a choice. This lets us write
INCLUDE filename instead of st* filenamew INCLUDED,
just like old times.

2+ and 2- are back.
CONTEXT and CURRENT are given as names of addresses

used in manipulating word lists by the Search-Order words.
There isn't anything a user can do with them in Standard
use. Up to eight word lists may exist at any one time.

. I attempts to identify the definition in which an ad-
dress occurs. Thus used after an address, it returns the name
of the nearest definition before the address and the offset of
the address within that definition.

(In the example the execution token of a word is the ad-
dress of the beginning of the definition. In general this doesn't
have to be so.)

The Standard word SEE decompiles or disassembles the fol-
lowing word. Given an address, DASM decompiles the code there.

Also for debugging, if the compiler encounters an error
and aborts, you can go directly to the block (or file) and line
at which the error occurred by typing L. LOCATE will call up
the source code for a command. WHERE (a.k.a. WH) followed
by a name will give all the places where the name is used.

CVARIABLE is provided for one-byte variables. It is typi-
cally available only on embedded systems.

DEFER declares an execution variable. TO is used to assign a
meaning. This is an extension of the Standard TO for value words.

For code routines the formal endings NEXT, END-CODE,
and INTERRUPT are specified. Code routines also have the
basic control-flow words.

/LOOP is like Standard +LOOP but requires the increment
to be positive. It will be much faster because the test to con-
tinue the loop is so much simpler-a test for less.

Now for environmental dependencies-the politically cor-
rect way to adapt the Standard.

Ever since 1983 I have felt the Forth-83 and now Stan-
dard +LOOP to be a ridiculous monstrosity. Sure, it gets the

Continued on page 29

26 Forth Dimensions XIX.5

!

Iterated Interpretation
I

Iterated interpretation is the most useful tool, after Simple
Macros, in the Tool Belt. With it, you insert items or phrases
into a longer phrase, and interpret or compile the longer
phrase for each item or phrase inserted into it.

The syntax is:
/ / <the-beginning> I <the-end> I <item-or-phrase

Examples
Declare three variables.

/ / VARIABLE I I Larry Moe Curly \ \

The result is:
VARIABLE Larry VARIABLE Moe VARIABLE Curly

A function to initialize the variables:
: Init-Stooges / / FALSE I ! I Larry Moe Curly \ \ ;

That becomes:
: Init-Stooges FALSE Larry ! FALSE Moe ! FALSE Curly ! ;

Define some constants for a calendar program.

0 / / DUP CONSTANT I 1+ I SUN MON TUE WED THU FRI SAT \ \ DROP

0 / / 1+ DUP CONSTANT 1 1 (month#)
January February March April May June
July August September October November December

\ \ DRO P

Make a table of sines for 0 to 90 degrees.

ALIGN HERE / / I , I (addr)

: SINE (degs -- 10000*sin) CELLS OUTSIDE LITERAL + @ ; DROP

Spell the digits in a number.

Forth Dimensions XIX.5 27

ALIGN HERE 10 CELLS ALLOT (addr)

D U P / / HERE BL STRING / OVER ! CELL+ I
Zero One Two Three Four Five Six Seven Eight Nine
\ \

DROP

: .UNIT CELLS OUTSIDE LITERAL + @ COUNT TYPE SPACE ; DROP

: .UNITS 0 10 UM/MOD ?DUP ? ? RECURSE .UNIT ;

It can be used interactively to check the values of an ex-
pression you have defined.

Iterated interpretation uses Agenda as the area for a string.
Agenda is Agenda-Limi t characters long. Material between
/ / and I is placed at the beginning of the area. Material be-
tween] and I is moved to the end of the area. Then each
following word or phrase up to \ \ is moved one at a time to
the end of the beginning part, the end part is moved to the
end of this, and the area up to there is evaluated. The end
part is moved back to the end of the area to make room for
the next word or phrase. The length of the end part is kept
on the return stack.

Phrases are delimited by A before them and A at the end.

1 (Iterated Interpretation)

3 (Tool Belt)

4 : PLACE (a1 n l a2 --) 2DUP 2>R CHAR+ SWAP MOVE 2R> C!;
5 : STRING (char "ccc<char>" --)

6 WORD COUNT HERE OVER 1+ CHARS ALLOT PLACE
7 ;
8 MACRO ? ? " IF \ THEN "

10 : NEXT-WORD (-- caddr k)

11 BEGIN BL WORD COUNT (caddr k)
12 D U P O=
13 WHILE REFILL
14 WHILE 2DROP
15 REPEAT THEN
16 ;

18 160 CONSTANT Agenda-Limit
19 CREATE Agenda Agenda-Limit CHARS ALLOT

21 MACRO Agenda-End " Agenda Agenda-Limit R@ - CHARS + "
22 MACRO Agenda-Switch " Agenda COUNT CHARS + "

24 (// do-before-each I do-after-each I word-or-^phraseA . . . \ \)

25 : / / (. . . -- ? ? ?) .

2 6 [CHAR] I PARSE Agenda PLACE
2 7 [CHAR] I PARSE >R Agenda-End R@ MOVE (R: k2)
28 C R
29 BEGIN NEXT-WORD (a k)
30 DUP
31 WHILE 2DUP S" \ \ " COMPARE
32 WHILE 2DUP S" A" COMPARE O=
3 3 IF 2DROP [CHAR] A PARSE THEN
34 DUP Agenda C@ + R@ + Agenda-Limit < NOT
3 5 ABORT" Agenda-Limit is too small. "

28 Forth Dimensions XIX.5

3 6 TUCK Agenda-Switch SWAP MOVE (k)
3 7 Agenda-Switch OVER CHARS +
38 Agenda-End SWAP R@ MOVE
39 Agenda COUNT ROT + (a k t k l)
4 0 2DUP CHARS + R@ SWAP>R + (a k t k l + k 2) (R : k 2 a 2)
4 1 EVALUATE (1
42 R> Agenda-End R@ MOVE (R : k 2)
43 REPEAT THEN (a k)
4 4 R> DROP 2DROP (R:)

45 ; IMMEDIATE

In Starting Forth OUTSIDE is suggested as a way to handle
one-time tables.

Here is a definition of OUTSIDE that I think will work for
all Forths, regardless of where the control-flow stack is or the
size of control-flow stack elements or colon-sys. Any com-
piler security is maintained. Take care to define OUTSIDE when
the stack is empty.

: OUTSIDE [DEPTH] LITERAL PICK ; IMMEDIATE I
Larry, Moe, and C u r l y work as stooges for local variables.

I use one of them in OUTSIDE to guarantee the value of the
literal.

47 DEPTH Larry !
48 : OUTSIDE [DEPTH Larry @ -] LITERAL PICK ; IMMEDIATE

50 (
51 --
52 W i l Baden C o s t a Mesa , C a l i f o r n i a
53)

Continued from page 26
job done, but in a complicated way like no human thought
process. Sometimes I have wondered at the sanity of who-
ever proposed it. The handbook improves performance by
requiring the increment to be evenly divisible into the range
of the loop and thus a simple test for equality can be made.
(Presumably 1 o DO 2 +LOOP will run forever.)

The definition of BEGIN is given:
: BEGIN HERE ; IMMEDIATE

It is explained that "BEGIN is simply an IMMEDIATE ver-
sion of HERE."

This shows that (1) the data stack is used for the control-
flow stack, (2) control-flow stack elements are one cell wide,
and (3) code is compiled into data-space.

The following examples from pages 107-108 show that
compiler security is not checked.
CREATE TENS 1 , 10 , 100 , 1000 , l O O O O ,
: lo** (nl n2 -- n) CELLS TENS + @ * ;

HERE 2 , 4 , 8 , 1 6 , 3 2 , 6 4 ,
: 2** (n n -- n) CELLS LITERAL + @ * ;

The Handbook says that "32-bit versions of Forth use the
circular model" for number representation. This means that
"less than" could be defined : < - 0 < ; and 2,000,000,000
is less than -2,000,000,000. /LOOP range is limited from any-
where to halfway around the number circle.

Besides . anywhere, punctuation characters for numeric
input are , , +, -, /, and : .

As observed above, ticking a constant does not yield an
execution token.

There are some minor errors, which are corrected in new
printings.

Conclusion
The extensions (and restrictions) are very attractive and, I

think, necessary for present-day Forth applications. It pre-
sents a Forth that I would be happy to work in. I'm pleased
that Stretching Forth articles are compatible with it.

Forth Dimensions XIX.5

30 Forth Dimensions XIX.5

This paper presents a method of manipulating contexts, a
technique which may be useful for programmers who have
to switch contexts, e.g., when binding together two languages.

'

The particular problem solved in this paper is to change the
current input source parameters, having no special construct
to do this or to establish a new input source context with the
desired parameters.

Briefly, the following expedients were used:
1. Making a n entity executable (converting data to an

executable format), which permits establishing a
context around it.

2. Changing the parameters of a context from inside it
when we either cannot create a context with the desired
parameters or have to neutralize the effect of some action.

3. Temporary changes in a entity to make some action;
the changes are undone when the action is complete.

4. Create an auxiliary context and export it outside its
original scope, instead of changing the parameters of an
existing context.

5. Use of the context save and restore operations to
export a context outside of its original scope.

Motivation
One of the pitfalls of ANS Forth is that there is no stan-

dard tool to redirect the input stream to an arbitrary string in
memory (which would enable us to process the string using
the standard parsing routines). The word EVALUATE (addr
len --) helps with this only if the first word in the string
specified by addr and len is a Forth word that processes the
rest of the string.

In this paper, we shall show how this pitfall may be com-
pensated, using a program with a negligible environmental
dependency (the first character of the string to which the
input stream must be directed has to be in RAM). At the end
of the paper, we also mention some interesting properties of
input stream manipulations and contexts. The code is given
in Listing One.

A sensible example of usage
Now we can define defining words that get the name of the

new word from the stack rather than from the input stream.
The symbol $addr denotes the address of a counted string.

: Screate (Saddr --)

>r save-input
r> count source!

create
restore-input drop ;

: Sconst (n Saddr --)
$create , does> @ ;

Now we can define a constant, e.g., as

5 c" five" $cons t

(provided that C" leaves a counted string's address on the stack
in interpretation mode). If the name five was followed by a
space and some other text, the text would be ignored, because
CREATE consumes only one name from the input stream.

The testing code, along with the output, is given in List-
ing Two. (The word ? 10 (errcode --) reports an error if
errcode is not 0.)

Caution: This EVALUATE-based implementation of SOURCE !
sets SOURCE-ID to -1 (which means that the input source is a
string), so SOURCE ! cannot be used to restore the input source
specification. Listing Three contains an example of code in
which an attempt is made to save the input stream param-
eters via > I N @ and SOURCE, and to restore them via SOURCE !
and > I N ! . Execution of such code leads to an error in the
text interpreter, which tries to read the next line using the
current S O U R C E - I D (which is expected to contain a file iden-
tifier but is set to -1 by SOURCE !).

We need the word SOURCE-I D ! to restore the input source
parameters this way but, so far, there is no standard defini-
tion of S O U R C E - I D ! . (As a consequence, a standard program
cannot reuse the word REFILL to process an arbitrary text
file.) So use SAVE-INPUT and RESTORE-INPUT to save and
restore the input source state.

Must SOURCE ! modify SOURCE-ID? This depends on what
we want this word to do. If we want it to establish a new
source input context, it must. If we want it to modify the
existing context, it must not. And it must not if we want to
use it in a word that creates a new source input context: the
best choice is to have a separate word (e.g., SOURCE-ID!)
which sets SOURCE-ID to any desired value.

How the code works
The word SOURCE ! performs the following steps:

1. Auxiliary data manipulations (required to get addr and
len above the unpredictable number of elements
produced at step 2).

2. Save the current search order on the stack (the number
of one-cell values in the search order specification is
unpredictable in the general case).

3. Set a search order in which the auxiliary word I may be
found.

4. Prepare a string located at addr to be processed by
EVALUATE (this string contains the word I and is of
length 1).

5. Rearrange the parameters on the stack.
6. EVALUATE the auxiliary word I in the string of length 1

..

Listing One r
\ SOURCE! (addr len --)

\ make (addr,len) the current source; store -1 to SOURCE-ID
\
\ This implementation of SOURCE! modifies memory at addr,
\ and on some ROMed systems this probably will not work.
\ The character at addr is temporarily modified, even if len=O; therefore:
\ changing the character at addr must not crash the system;
\ the character at addr must be in RAM.
\ The variable #TIB gets modified (this is unusual, but
\ the standard does not forbid it).
\ The systen is assumed to store the length of the input buffer
\ to #TIB for any kind of input source.

wordlist constant - source !-

GET-CURRENT

source ! SET-CURRENT - -

: I (order-spec c #tib -- input-specification)

#tib ! \ restore #TIB
0 >in !
source drop c! \ restore char at tib=addr
SET-ORDER \ restore search order
SAVE-INPUT \ leave the input parameters for the string at addr
[compile] \ \ ignore the text in the string

; immediate
SET-CURRENT

: source! (addr len --)

>r >r (R: len addr)

GET-ORDER (order-spec)

source !- 1 SET-ORDER -

r@ c@ (order-spec c) \ a copy of char at addr
[char] I r@ c! \ the word at (addr,l) will be I
r> r> swap 1 (order-spec c len addr 1)

EVALUATE \ evaluate the word I at (addr,l)
(input-spec) \ input parameters for:

\ SOURCE = (addr, len),
\ >IN = 0, SOURCE-ID = -1

RESTORE-INPUT drop

located at addr, thus setting TIB to addr.
7. The word I sets #TIB to Zen, >IN to 0, and restores the

original value of the character at addr. Now the current
input source context is what we wantcd to have: the string
at addr of length Zen, and >IN points to its beginning.

8. The word 1 restores the original search order.
9. The word I executes SAVE- INPUT which leaves the

parameters of the current input source (the string
specified by addr and Zen) on the stack.

10. The word I executes the word \ to make EVALUATE
ignore the rest of the string.

11. RESTORE-INPUT is executed, which sets the input stream
to the beginning of the string specified by addr and len.

Note that this will work even with Zen = 0.

The problems, and how they were solved
1. The visibility of an auxiliary word depends on the

search order.

A special wordlist is used to contain the auxiliary word, and
the search order is set to this wordlist before the auxiliary
word is EVALUATE^.

2. The standard does not provide a word to change the
value of TIB.

EVALUATE is used, and special care is taken to neutralize the
effect of processing the string by the text interpreter.

3. The string specified by addr and Zen does not begin with
I 1 I

Forth Dimensions XIX.5 3 1

1 ListingTwo.The testing code and its output. I
\ testing words
\ Output: (addr len) "contents-of-TIB"
: x cr ." (" source swap . . .") " [char] " emit source type [char] " emit cr

\ Output: (addr len) "contents-of-TIB"
\ f
\ where f is the flag returned by RESTORE-INPUT
: tl save-input s" " source! x restore-input . ;
: t2 save-input s" test#lW source! x restore-input . ;
: t4 save-input s" a" drop 0 source! x restore-input . ;
: t5 save-input s" a" source! x restore-input . ;

: $create >r save-input r> count source! create restore-input ?io ;
: Sconst $create , does> @ ;

(24000065 0) " "
0 1 2
t 5 1 . 2 .

(24000087 1) "a"
0 1 2

5 c" five qwe" $const
five .
5

a word that can process the rest of the input stream. context into the scope of this input source context.

The name of such a word is written to the beginning of the
string at addr. The original contents of the string at addr is
restored when the auxiliary word executes. This imposes a
restriction: addr must not be in ROM.

4. The name of the auxiliary word must be separated by a
space from the rest of the string (that is, one more
character must be written to the beginning of the string,
if len> 1).

The length of the string that is passed to EVALUATE is exactly
1, and the delimiting space is not needed. The proper input
buffer length is stored to #TIB by the auxiliary word, affer it
has been parsed and called.

32 Forth Dimensions XIX.5

Instead, we return the input source specification from the
auxiliary word.

6. When EVALUATE finishes, the original input source
specification (that is, the one that was in effect before
EVALUATE) is restored, while we want it to be changed.

The word within the string being EVALUATE^ performs SAVE-
INPUT, and when EVALUATE finishes, RESTORE- INPUT is per-
formed.

Note that the things that cannot be done "from outside"
a context are done by an auxiliary word working "from in-
side" this context.

5. It is difficult to pass the procedural context (that is, the
rest of the procedure's code and the return stack state)
to the auxiliary word being EVALUATE^ in the string.
We can establish the required input source context
(with EVALUATE), but we cannot import the procedural

Why so complex
Indeed, if we did not want to write an ANS Forth standard

program, we could write

: 'OURCE ! (addr len --)
#TIB ! 'TIB ! 0 >IN ! ;

assuming that TIB is defined as
: TIB (-- addr) 'TIB @ ;

So, 21 lines of formatted standard code have been required
to express what can be done by one line of non-standard code.
As we mentioned in the beginning, this is a pitfall of the

1 standard.

values of which form the input stream context. It is easier to
think in terms of contexts than in terms of arbitrary sets of
parameters. The word "context" means that its components
are inter-related. Usually contexts are thought of as things
that are created automatically; sometimes programming tools
provide operations for savinglrestoring them, while support
for manipulating contexts as a whole is weak.

ListingThree.Test code, and its output, which shows that execution of EVALUATE-based version of SOURCE !
cannot restore the input stream specification.

I

: t3
>in @ source
s" test number 3" source! x
source! >in !
." source-id=" source-id . x

(2400011B D) "test number 3"
source-id=-1
(DOOOFD4 A) "t3 1 . 2 ."
1 2
i/o error 6h, i/o routine xt=242A name= READ-LINE

What is good
The raison d'etre of this paper is to accentuate some inter-

esting properties of manipulating contexts-in particular, of
manipulating the input source context with the restriction
that the nesting of procedural contexts cannot be changed.

1. We have done this by evaluating the text.

We could either dynamically define the first character in the
string as a function (which would pose several other prob-
lems), or change the first character to a predefined value. In
both cases, we make our data executable at run time.

2. We changed the data to let it be interpreted, and later
reversed the change.

3. We have done this by exchanging the contexts.

Indeed, we call EVALUATE which first establishes its proce-
dural context and then its input stream context; then we
modify and save the input stream context; then we leave the
EVALUATE procedural context along with its input stream
context, and finally restore the saved input stream context.

4. Really, we exported the input stream context from within
the procedural context.

5. The operations of context save and restore may be used
to export a context from within another context.

Indeed, we save the input source context from within EVALU-
ATE and restore it when EVALUATE finishes.

6. We had to modify context.

Indeed, everything is done via global variables, the aggregate

Forth Dimensions XIX.5 3 3

7. In our case, the most useful thing would be an opera-
tion of creation of a context with required parameters.

We have emulated such operation via non-elementary op-
erations of:

(a) creation of two contexts (procedural and input
source), interpretation, and restoring the
previous two contexts;

(b) saving the input source context;
(c) restoring that context.

This resembles the use of a cut statement in Prolog to emulate
an if: in both cases, simple things are expressed via complex
things. The good news is that this is possible. The bad news is
that simple notions are noticed when compound notions are
compared.

The final note
I have tried these definitions on Win32For ver. 3.5 and

GForth ver. 0.3.0, and it did not work in either. Win32For1s
RESTORE-INPUT does not leave the flag required by the ANSI
standard; GForth's RESTORE-INPUT throws an exception, "ar-
gument input source different than current input source,"
although (1) there is no reason to do this in cases of string
(via EVALUATE) and terminal input, and (2) this situation must
be indicated by the flag which "is true if the input source
specification cannot be so restored" (cited from the standard).
To correct this, I had to redefine RESTORE-INPUT; but if the
end goal is to implement SOURCE !, it is easier to write a sys-
tem-dependent definition.

This is one more important lesson: even if you write a stan-
dard program, there is no guarantee that the implementors of
ANS Forth systems read the standard enough carefully to un-
derstand all its dim places. We can only wish the next stan-
dard to be easily readable (if it was a program, would you call it
readable?), otherwise such situations will happen.

Introduction
If you have been following the thread of this column, you

will recognize that we now have all the background we need
to create an adaptive PID controller. With this installment
we will proceed with its design. Writing this installment pre-
sented me with a difficult problem. Some of you are aware
that I have been very gentle with the mathematics behind
the topics 1 have covered in the past. From the feedback I
have received, it would seem that, in spite of my efforts to go
easy, this column has a reputation for being a bit challeng-
ing. No matter how much you try to avoid or hide it, under-
standing adaptive controllers involves a lot of math.

As I looked at how to present adaptive controllers, I came
to the conclusion that if you consider where these control-
lers get used (typically machinery, frequently dangerous ma-
chinery), one shouldn't be doing this as if it was from a cook-
book. You really should know the math if you are doing this
stuff. So be forewarned, there is a bit of math in this install-
ment. There is enough here that we will be presenting the
adaptive controller in two parts; this time we will do the math,
and next time we will look at an implementation.

The importance of being linear
While there is a good deal of mathematics behind adaptive

controllers, it's not particularly hard mathematics. The reason
for this is that traditionally most controllers are linear. We can
take advantage of this linearity to make the equations rela-
tively easy to manipulate. Let's first consider what is means for
a system to be linear. Essentially, linearity means that the sys-
tem obeys a superposition principle. Suppose that f l .) repre-
sents our system and, further, that A and B are two valid but
otherwise arbitrary solutions to f. Then if it is true that,
f(A + B) = f(A) + f(B) (1)

then the system is said to be linear. Many familiar systems
have this property. It is equation (1) that allows us to decom-
pose a periodic signal into frequency bands and calculate a
power spectrum. Potential fields (electric, magnetic, and gravi-
tational) are also linear. The main reason why linear systems
are so familiar, is rrot because they are so ubiquitous (in fact,
one author has pointed out that dividing nature into linear
and nonlinear systems is like having "nonelephant" biology
as a special subfield, and missing the fact that most systems
are not linear), but because equation (1) makes linear sys-
tems solvable. Many nonlinear systems are handled by mak-
ing them approximately linear, e.g.:

I
f (A + B) = f (A) + f (B) + a little bit extra (2)

The work then primarily concentrates on how small that
little bit actually is, and under what circumstances it stays small.
For many nonlinear systems, (2) is a practical approach that
gives useful answers. Systems that can be analyzed this way
generally get described with phrases like "small amplitude," a
dead giveaway that something like (2) was used. A simple ex-
ample of this is the ordinary pendulum. A pendulum is actu-
ally a nonlinear system, but for small amplitude excursions
(say ten degrees), the nonlinear effects are extremely small and
can be ignored for typical applications. Some nonlinear sys-
tems cannot be broken down to something like (2) without
completely missing the real solutions. Any system that has
chaotic behavior is like this, the chaos comes from the
nonlinearity; there are no chaotic systems that are linear.

Many methods have been invented for dealing with lin-
ear systems; one that we will find useful here is the Laplace
transform. For the system F(t) the Laplace transform L(F(t)) is
defined by,

(Strictly speaking this applies only for t > 0.) Two properties
make the Laplace transform particularly suited to our problem:

Like the Fourier transform, it converts a linear differential
equation into a polynomial. (You might not have realized
this, but we can transform-Fourier or Laplace-an
equation, not just a stream of data).
Unlike the Fourier transform, it treats transients effi-
ciently. The Laplace transform is, in fact, the impulse
response function for a system.

It's a bit tedious to do the integrations required to do ei-
ther a forward or an inverse transform by hand, so the Laplace
transform is often done with the help of symbolic integra-
tion software or the use of tables in a handbook. Table One
gives the Laplace transform for several useful mathematical
functions. Combining this with some general transformation
properties, given in Table Two, gives us the ability to deter-
mine the Laplace transform of a large number of useful func-
tions without the need to explicitly solve (3). The forward
Laplace transform is not too difficult to do numerically, but
calculating the inverse transform numerically leads to prob-
lems with the numerical stability of the calculation; this is
not a problem with software that is capable of doing the in-

34 Forth Dimensions XIX.5

Table Two

sin a t

cos a t

sinh a t

cosh at

verse transform symbolically.
We will use the Laplace transform to work out how the

controller will respond to its inputs. We need to do be able
to do this because there is no unique way to set up an adap-
tive controller-a motor speed controller that uses a shaft
angle encoder will be quite different from one that uses a
tachometer.

The controller equations
Recall from "Closing the Loop" (FD XVIII No. 5) that the

equation for a proportional-integral-derivative (PID) controller is:

For an adaptive system, we need to have an additional
equation that describes how the plant behaves so that we
can properly adjust the parameters of the controller. So now
we have two equations to consider, the controller and the
plant. The design of the adaptiveness depends upon the form
of both equations. For our example plant, we will use the sec-
ond order differential equation:

This is a pretty generic model; as an example, this can be
thought of as a damped mass-spring system where a is the
mass, b is the friction, and g is the spring constant. F(x) would
represent the imposed external forces on the system (the in-
put), and the solution to the equation would give the plant's
response to it.

Analyzing the adaptive controller
We will start with the Laplace transform of the plant equa-

tion (5), since it's a little simpler to do. The first step is to
use the linearity property of Laplace transforms, which is
given as the third rule in Table Two. This property allows us
to do the transform of (5) by doing the transform of each
term separately,

controlled system y. In our earlier investigations, we were
not much concerned with the internals of the controlled
system (often called the plant), all we needed was the out-
put signal. Figure One shows a generic schematic of our con-
troller and plant.

where K,, is the proportional gain, Ki is the integral gain, and
K, is the differential gain.

The quantity e is an error signal that is the difference
between the commanded input, x, and the output of the

and further the linearity property allows us to move the con-
stants outside of the transform operation,

d2x dx
L {F(x)) = L{a + L{P + L{p) (6)

Forth Dimensions XIX.5 3 5

(Figure One

Now representing L{x) as f(s), we get,

The transfer function is the ratio of the output response
f(s) to the input forcing L{F(x)], which we get by rearranging
the above equation to get,

Now that we see how we go about doing this, it's a straight-
forward matter to do the same for the PID controller,

(we needed the derivative rule, number four, and the integral
rule, number seven, from Table Two as well as the linearity
rule). Now we have to be careful here, the transfer function is
the ratio of the output to the input. For the PID controller
the error signal, e, is the inpllt, the output is the quantity z .

So the transfer function for the PID controller is,

Now we need to couple the controller and the plant. We
will connect the output of the controller into the plant by
taking the controller output, multiplying it by a plant gain
factor K,,, and using that as the plant input. This is repre-
sented mathematically by multiplying the controller response
by the plant gain and the plant response,

Gc K , G,

We will connect the plant output into the controller at
the negative side of the summing node (to get an error sig-
nal) after multiplying it by a feedback gain factor Kp. The
plant and feedback gains do not really change anything, they
just give us more opportunities to adjust things. The real
change is the fact that the input to the controller is now rein-
terpreted as the output of the summing point (before it was
just "the input," now we care how it relates to the rest of the
system). So now, the system output becomes a portion of the
system input,

We get the full equation by going step at a time through the
diagram (Figure One). At the output of the summing node
we haye,
x - K,,z

then after the controller we get,
(X - KPz)G,

and so, after the plant we have,

The response function is the ratio of the output z to the in-
put x which we can determine by reorganizing the above equa-
tion to get,

36 Forth Dimensions XIX.5

U

now we expand this using (9) for G,, and (11) for Gc. and D = -
simplify, 1 2 7 ~ '

This is the response function of our PID controller with
the plant defined by equation (5). Notice that we managed
to go from a description of how the controller is intercon-
nected (basically Figure One) all the way to its input response
function with nothing more than polynomial manipulations.
If we had not used Laplace transforms, getting the response
function by the direct manipulations of the integro-differen-
tial equation would have been much harder to do.

It is important to recognize that the details of what we
have done are dramatically dependent upon the forms of
equations (4) and (5). However the method we used will apply
as long as the two equations (and how they are coupled) are
linear.

Now that we know how the adaptive controller will re-
spond, how do we adapt it? First we need to understand what
it means for the controller to be optimally adapted. To do
this, we need to consider when the denominator of equation
(14) is zero.

Clearly, we cannot optimally adaptively control an arbi-
trary plant. If a and b don't have opposite signs, the controller
won't even be stable. Also note that there are not enough equa-
tions to give us independently all five gains. The feedback and
plant gains K, and KO are either going to have to be defined to
have fixed (known) values or they will need to be absorbed
into the other gains.

Conclusion, Part One
The next step is to use our knowledge of least-squares

methods to find the minimizing solution to the mean value
of z2. We need to do this while still satisfying the constraints
imposed by the characteristic equation. The stage is set, we
know what to do, but it's going to take several more pages to
do it. Consequently, I will continue this next time.

Feedback
Wil Baden sent me a copy of his version of my least squares

estimator program from last time (Listing One). His version
uses his formula translator, which he has described in his
column. This nice thing about his version is that you can
read the algorithm directly from the expressions in the pro-
gram, leaving expansion of the equations into "traditional"
Forth to the translator.

Please don't hesitate to contact me through Forth Dimen-

(I6) 1 See Listing One on next page.

This equation is called the characteristic eqrlation for the sys-
tem. For the moment we will combine the coefficients,

The locations of the solutions to (16) in the complex plane
can be used to predict the behavior of the controller. For a
given set of coefficients, there will be three solutions called
the roots. If the roots are in the negative half of the plane, the
controller will be stable. If the roots are real but unequal, the
system is overdamped (that is, it will never quite recover from
a suddenly imposed step input). If the roots are imaginary,
the system is underdamped (which will "ring" when it gets a
step input). The optimal response to an imposed step is the
critically damped case; this will happen if the roots are real
and equal.

So our goal is t o adjust the gains (the various K values) so
that the characteristic equation always has real, equal, nega-
tive roots. It turns out that we can achieve all these constraints
provided that in equation (16), A and B have opposite signs
and that

sions or via e-mail if you have any comments or suggestion
about this or any other Forthware column.

References
Boyce, W.E, and R.C. DiPrima, 1969; Elementary Differential
Equations, John Wiley & Sons, New York.

Kaufman, H., I. Barkana, and K. Sobel, 1998; Direct Adaptive
Control Algorithms Theory and Applications, Springer Verlag,
Berlin. ISBN 0-387-94884-8

McKerrow, J.P., 1991; lntroduction to Robotics, Addison-Wesley,
Sydney, ISBN 0-201-18240-8

1
Forth Dimensions XIX.5 37

(Listing One

1 / / WARIABLE I I sumx sumxz sumz sumx2 \ \

: Lsq-Init (--)

O n !
/ / let I = 0: I sumx sumxz sumx2 sumz \ \

: Calc-Det (F: -- d)

let (n @ S>F) * sumx2 - sumx*{ FDUP} :

) : Estimate (F : - - b a)

I let x = (Calc-Det) :

\ Calculate b and a
let (sumx2*sumz - sumx*sumxz) / x, ((n @ S>F) *sumxz - sumx*sumz) / x:

: Lsq (--<infile>--)

Lsq-Init

/ next-file (str len)

R/O OPEN-FILE ABORT" Unable to open input data file. "
TO fin ()

I fin get-int DUP n ! (n)

0 DO ()

I .
let x = (fin get-float} : \ Get X point

x F.
let s u m = sumx + x:
let sumx2 = sumx2 + x*(FDUP) :

let z = { fin get-float) : \ Get Z point
z F.

let sumz = sumz + z:
let sumxz = sumxz + x*z:

CR
LOOP

fin CLOSE-FILE DROP

Estimate (b a)
." slope (a) : " F.
." intercept (b) : " F. CR ()

38 Forth Dimensions XIX.5

The following are corporate sponsors and individual benefactors
whose generous donations are helping, beyond the basic member-
ship levels, to further the work of Forth Dimensions and the Forth In-
terest Group. For information about participating in this program,
please contact the FIG office (office@forth.org).

Corporate Sponsors

Clarity Development, Inc. (http://www.clarity-dev.com) pro-
vides consulting, project management, systems integration,
training, and seminars. We specialize in intranet applications
of Object technologies, and also provide project auditing ser-
vices aimed at venture capitalists who need to protect their
investments. Many of our systems have employed compact
Forth-like engines to implement run-time logic.

Digalog Corp. (www.digalog.com) has supplied control and
instrumentation hardware and software products, systems, and
services for the automotive and aerospace testing industry for
over 20 years. The real-time software for these products is Forth
based. Digalog has offices in Ventura CA, Detroit MI, Chicago
IL, Richmond VA, and Brighton UK.

FORTH, Inc. has provided high-performance software and ser-
vices for real-time applications since 1973. Today, companies in
banking, aerospace, and embedded systems use our powerful
Forth systems for Windows, DOS, Macs, and micro-controllers.
Current developments include token-based architectures, (e.g.,
Open Firmware, Europay's Open Terminal Architecture), ad-
vanced cross-compilers, and industrial control systems.

The iTV Corporation is a vertically integrated computer com-
pany developing low-cost components and information ap-
pliances for the consumer marketplace. iTVc supports the
Forth development community. The iTVc processor instruc-
tion set is based on Forth primitives, and most development
tools, system, and application code are written in Forth.

Keycorp (www.keycorp.com.au) develops innovative hardware
and software solutions for electronic transactions and bank-
ing systems, and smart cards including GSM Subscriber Identi-
fication Modules (SIMs). Keycorp is also a leading developer of
multi-application smart card operating systems such as the
Forth-based OSSCA and MULTOS.

An interactive programming environment for writing
WindowsNT and Windows95 kernel mode device drivers in
Forth.

Silicon Composers (web site address www.silcomp.com) sells
single-board computers using the 16-bit RXT 2000 and the 32-
bit SC32 Forth chips for standalone, PC plug-in, and VME-
based operation. Each SBC comes with Forth development soft-
ware. Our SBCs are designed for use in embedded control, data
acquisition, and computation-intense control applications.

T-Recursive Technology specializes in contract development
of hardware and software for embedded microprocessor sys-
tems. From concept, through hardware design, prototyping,
and software implementation, "doing more with less" is our
goal. We also develop tools for the embedded marketplace
and, on occasion, special-purpose software where "small" and
"fast" are crucial.

Tateno Dennou, Inc. was founded in 1989, and is located in
Ome-city Tokyo. Our business is consulting, developing, and
reselling products by importing from the U.S.A. Our main
field is DSP and high-speed digital.

AS0 Bldg., 5-955 Baigo, Ome,Tokyo 198-0063 Japan
+81-428-77-7000 Fax: +81-428-77-7002

http://www.dsp-tdi.com E-mail: sales@dsp-tdi.com

Taygeta Scientific Incorporated specializes in scientific soft-
ware: data analysis, distributed and parallel software design,
and signal processing. TSI also has expertise in embedded
systems, TCP/IP protocols and custom applications, WWW
and FTP services, and robotics. Taygeta Scientific Incoporated

1340 Munras Avenue, Suite 314 Monterey, CA 93940
408-641-0645, fax 408-641-0647 http://www.taygeta.com

Triangle Digital Services Ltd.-Manufacturer of Industrial Em-
bedded Forth Computers, we offer solutions to low-power,
portable data logging, CAN and control applications.
Optimised performance, yet ever-increasing functionality of
our 16-bit TDS2020 computer and add-on boards offer versa-
tility. Exceptional hardware and software support to devel-
opers make us the choice of the professional.

Individual Benefactors

Everett F. Carter, Jr.
Guy Grotke
John D. Hall
Zvie Liberman
Gary S. Nemeth
Marlin Ouverson

Forth Dimensions XIX.5

FORTH SECRETS REVEALED!

FORTH TECHNOLOGY
AND ITS APPLICATION

Call for Papers

Rochester Forth Conference
June 24th - 27th, 1998

University of Rochester
Rochester, NY

Hosted by the
Institute for Applied Forth Research, Inc.

Sponsored by
FORTH Interest Group
Dash, Find & Associates
Taygeta Scientific, Inc.

Diversity Dynamics

For more information:
Rochester Forth Conference
Lawrence P. G. Forsley, Conference Chairman lpgforsley@aol.com
P.O. Box 1261 Annandale, VA 22003 716-235-0168

