

SILICON COMPOSERS INC

FAST Forth Native-Language Embedded Computers

Harris RTX 2000~'" l&bit Forth Chip SC32''" 32-bit Forth Microprocessor
98 or 10 MHz operation and 15 MIPS speed. -8 or 10 MHz operation and 15 MIPS speed.
*l-cycle 16 x 16 = 32-bit multiply. 1 -clock cycle instruction execution.
el-cycle 1 Gprioritized interrupts. *Contiguous 16 GB data and 2 GB code space.
*two 256-word stack memories. *Stack depths limited only by available memory.
*&channel I/O bus & 3 timer/counters. *Bus request/bus grant lines with on-chip tristate.

SC/FOX PCS (Parallel Coprocessor System) SC/FOX SBC32 (Single Board Computer32)
*RTX 2000 industrial PGA CPU; 8 & 10 MHz. 032-bit SC32 industrial grade Forth PGA CPU.
*System speed options: 8 or 10 MHz. *System speed options: 8 or 10 MHz.
*32 KB to 1 MB &wait-state static RAM. 032 KB to 512 KB 0-wait-state static RAM.
-Full-length PC/XT/AT plug-in (Slayer) board. *100mm x 160mm Eurocard size (4-layer) board.

SC/FOX VME SBC (Single Board Computer) SC/FOX PCS32 (Parallel Coprocessor Sys)
*RTX 2000 industrial PGA CPU; 8, 10, 12 MHz. -32-bit SC32 industrial grade Forth PGA CPU.
*Bus Master, System Controller, or Bus Slave. .System speed options: 8 or 10 MHz.
*Up to 640 KB 0-wait-state static RAM. 964 KB to 1 MB 0-wait-state static RAM.
0233mm x 160mm 6U size (&layer) board. *Full-length PC/XT/AT plug-in (&layer) board.

SC/FOX CUB (Single Board Computer)
*RTX 2000 PLCC or 2001A PLCC chip.
*System speed options: 8, 10, or 12 MHz.
-32 KB to 256 KB 0-wait-state SRAM.
*100mm x l m m m size (&layer) board.

SC/FOX SBC (Single Board Computer)
-RTX 2000 industrial grade PGA CPU.
*System speed options: 8, 10, or 12 MHz.
-32 KB to 512 KB 0-wait-state static RAM.
100mm x 160mm Eurocard size (Clayer) board.

For additional product information and OEM pricing, please contact us at:
SILICON COMPOSERS INC 655 W. Evelyn Ave. #7, Mountain View, CA 94041 (415) 961-8778

A Forth Memoir by John Nangreaves
There are at least as many Forth stories as there are Forth users, and each sheds light on Forth and on
how it fits into the toolbox of the working professional. In this case, after coding assembler (in hex,
even) for a year and a half, the author concluded there had to be a better way. So this story begins ...

A Simple Implementation of the Kermit Protocol in Pygmy Forth by Frank Sergeant
In the preceding article, John Nangreaves gives more than a passing nod to the public spirit of the
Forth community, especially to individuals who distribute useful tools and generously continue to
support them. A case in point is Frank Sergeant, whose Pygmy Forth has a following among those
who appreciate Forth in its lean-and-mean aspect. Here, he implements Kermit in Pygmy Forth.

Transportable Control Structures by Randy Leberknight
ANS Forth formalizes an aspect of Forth's extensibility: the creation of new types of control structure
words without writing any new words in assembler. For example, both I F and W H I L E perform a
conditional forward branch at run time; that common behavior can be factored out and shared. In a
production environment, this ability can shave time off the development cycle.

Working Comments (long)? by Julian V. Noble
Code fragments can be tested prior to compilation to determine their effect on the data and return
stacks, without risking system crashes or hidden bugs. Code for a preliminary version is given, to-
gether with discussion of possible improvements, should that prove desirable. A fine example of
creative work spawned by a casual remark on comp.lang.forth.

Standardizing OOF Extensions by Anton Ertl
Andrew McKewan argued in the last issue that we need to agree on a model to start building an
object-oriented library. This author's is the reverse: write a good object-oriented library that everyone
wants to use, and the object model on which that library is based will become the standard.

, DEPARTMENTS . .
A A

4 EDITORIAL
Smooth integration:
working in Forth, working with others.

5 LETTERS TO THE EDITOR
Deja vu: the wheel all over again.

6 OFFICE NEWS
Behind-the-scene routines, new business.

%

6 CHAPTER NEWS
A FIG chapter takes stock.

7 NEWS FROM EUROPE
German Forth Tagung.

7 OFF THE NET
Forth on campus, conference URLs.

9 FREEWARE & SHAREWARE
Transputer Forth

16 BACKWARD REFERENCE
Mining the contents of Volume XI

26 TOOL BELT
Get It Up - six one-liners

28 THE VIEW FROM GOAT HILL
Speed It Up - improved string-processing speed

37 STRETCHING STANDARD FORTH
International Standard 32-bit CRC

RAIN
CHECK! FORTHWARE

Skip Carter will return next time, with more about
Forth and digital filters.

30 McKewan's OOF code continues...

35 MPE's coding style standard continues...

I I

Forth Dimensions XlWl 3

W elcome to a new volume of Forth Dimensions, and to a new design. Magazines remake
themselves, now and then, for many reasons. In our case, it was time to remind our-

selves of the dynamism that change itself can bring. Forth is good at adapting to new situ-
ations, and so should we also strive for adaptability as a character trait.

We think the new design is easy on the eyes, but makes a stronger statement on the
page. The new display type (Myriad) is easier to read, leaner and much less strident than the
tired Helvetica variants we used. The new typeface for body text (Stone Serif) performs
better at small point sizes, and fits more text on the page. This will enable us to conserve
pages while retaining the same quantity of content or, equally, to provide more content at
no additional expense in paper, printing, and postage. Of course, to expand content, we
must convince more of you that your written contributions are both welcome and needed!

An early respondee to our recent on-line call for authors is Neil Bawd, whose work has
been well-received at several FORML Conferences (this year's event-for the first time-is not
being held on the U.S.A. holiday of Thanksgiving; see back cover). Other plans are in devel-
opment, and we encourage you to consider how your contribution might add value to our
pages. We welcome participation-in fact, we thrive on it!

A flexible design is one thing; in the professional arena, of course, adaptability means
fulfilling a job's requirements in ways appropriate to the job and to the satisfaction of

management, a customer, or both. Sometimes that means falling short of an imagined
ideal, or taking an approach we would not choose if we were working alone, with unlimited
time and the resources of our own choosing. At other times, we can argue convincingly for
a more-elegant solution, if we have the rhetoric, the facts, and the kindly disposition of the
powers-that-be-and if the schedule permits. Or maybe it just takes the nerve to try John
Nangreaves' tactic (see his article, "A Forth Memoir"), which seemed borderline-smart-aleck
on first reading, but it apparently worked for him.

The tradeoffs we make for a paying job differ from those we make (or refuse to make) on
amateur projects. Paying jobs have budgets and deadlines, and usually involve working
with other individuals, with their preconceptions and preferences. Sometimes, instead of
insisting, "But we can use Forth to do all that," the political response is, "Sure, I can do this
part most efficiently in Forth, and it will be no problem to interface to the rest of the
system. Here's how ..." Then let the smooth integration of your Forth code, and its reliabil-
ity and performance, inspire management to take a second look and ask, "What additional
pieces can we do in Forth?"

But forging ahead in this work isn't always a matter of convincing non-believers. Work-
ing for a Forth company or department can mean conforming to coding styles that might
seem foreign to us, even cumbersome when we just want to produce working code. Some-
times it means hammering out compromise with fellow users who don't share the same
tradeoff preferences, which is how standards are conceived and one reason they are so
difficult to arrive at.

A working environment doesn't offer the luxury of endless philosophical debate. We have
to produce working code and deliverable product; to get lost in the nuances of a single battle
is to lose the war. Fortunately, the Forth approach to writing programs is conducive to this
environment: its interactive write, test, revise cycle means that functioning code that meets
specs-and compromises where compromise is required--can be produced in less time, with
fewer programmers and fewer demands on resources. Indeed, one commercial interest in
Europe recently told me that, while the user-group factions seems to suffer from perennial
gloom, his business quietly delivers products regularly to a significant and profitable cus-

, tomer base.

Forth Dimensions
Volume XIX, Number 1

May 1997 June

Published by the
Forth lnterest Group

Editor
Marlin Ouverson

Circulation/Order Desk
Trace Carter

Forth Dimensions welcomes editorial ma-
terial,letters to the editor,and comments
from its readers. No responsibility is as-
sumed for accuracy of submissions.

Subscription to Forth Dimensions is in-
cluded with membership in the Forth In-
terest Groupat $45 per year ($53 Canada1
Mexico, $60 overseas air). For member-
ship, change of address, and to submit
items for publication, the address is:

Forth lnterest Group
100 Dolores Street,suite 183
Carmel, California 93923
Administrative offices:
408-37-FORTH Fax: 408-373-2845

Copyright 0 1997 by Forth lnterest
Group,lnc.The material contained in this
periodical (but not the code) is copy-
righted by the individual authorsof the
articlesand by Forth lnterestGroup,Inc.,
respectively. Any reproduction or use of
this periodical as it is compiled or the
articles, except reproductions for non-
commercial purposes,without the writ-
ten permission of Forth lnterest Group,
Inc.is a violation of the Copyright Laws.
Any code bearing a copyright notice,
however,can be used only with permis-
sion of the copyright holder.

The Forth lnterest Group
The Forth lnterest Group is the associa-
tion of programmers, managers, and
engineers who create practical, Forth-
based solutions to real-world needs.
FIG provides a climate of intellectual
exchange and benefits intended to as-
sist each of its members. Publications.
conferences, seminars, telecommuni-
cationsand area chapter meetings are
among its activities.

FORTH DIMENSIONS (ISSN 0884-0822)
is published bimonthly for $45/53/60
per year by Forth lnterest Group at
1340 Munras Avenue, Suite 314,
Monterey CA 93940. Periodicals post-
age rates paid at Monterey CA and at
additional mailing offices.

POSTMASTER: Send address changes to
FORTH DIMENSIONS, 100 Dolores Street,
Suite 183, Carmel CA 93923-8665.

Forth Dimensions XlWl

Figure One.

FORTH-WORDLIST CONSTANT 4TH (A convenient abbreviation.)

: GENERAL 4TH 1 SET-ORDER 4TH SET-CURRENT ; (-- 1

WORDLIST CONSTANT IMP (For implementation words.)

: PRIVATE 4TH IMP 2 SET-ORDER IMP SET-CURRENT ; (--)

: PUBLIC 4TH IMP 2 SET-ORDER 4TH SET-CURRENT ; (--)

Figure Two.

: GENERAL ONLY FORTH (ALSO) DEFINITIONS ;
: PRIVATE ONLY FORTH ALSO IMPLEMENTATION DEFINITIONS ;
: PUBLIC ONLY FORTH ALSO IMPLEMENTAT97-05-17
ALSO FORTH DEFINITIONS PREVIOUS ;

Figure Three.

PRIVATE
VARIABLE SEED

PUBLIC
: SRAND SEED ! ; 1 SRAND (n - -)

PRIVATE
312748364721 CONSTANT MULTIPLIER
: SCi7AMBLE MULTIPLIER * 1t ; (n -- n')

PUBLIC
: RAND SEEC @ SCRAMBLE DUP SEED ! ; (-- n)

GENERAL

Figure Four.

PRIVATE ORGER
Search Order (f irsi to last) : IMPLEMENTATION FOXTH
Current : IMPLEIvlENTATION

PUBLIC ORDER
Search Order (first to last) : IMPLEMENTATION FORTH
Current : FORTH

GENERAL ORDER
Search Order (first to last) : FORTH
Current: FORTH
or
Search Order (first to last) : FORTH FORTH
Current: FORTH

%

PRIVATE WORDS
SCRAMBLE MUI.,TI PLIZR SEED

PUBLIC WORDS
SCRAMBLE MULTIPLIER SEED

GENERAL WORDS
RAND SRAND PUBLIC PRIVATE
GENERAL IMPLEMENTATION etcetera

PRIVATE ... PUBLIC ... GENERAL

In "Yet Another Modest Proposal," (FD
XVII116, 1997), RICHARD ASTLE proposes
patching the dictionary structure to hide
words used for implementation from the
end user.

In the early 1980s, VAL SHORRE proposed
INTERNAL ... EXTERNAL ... MODULE for what
Dr. ASTLE calls PRIVATE ... PUBLIC ... END-
MODULE.

Dr. SHORRE did this like Dr. ASTLE, by
patching the dictionary structure.

Patching the dictionary structure is not
portable, and often is not possible.

Standard Forth recognizes what ASTLE
and SHORRE have done as search orders, and
can define them accordingly. As a search
order, GENERAL is a better name than MOD-
ULE 01 END-MODULE.

Portable standard code is given in Fig-
ure One. This code can be modified for
more than one implementation wordlist.

If ONLY ... ALSO is used, first define vo-
cabulary IMPLEMENTATION and then the
words in Figure Two.

An elaborated mini-example is given in
Figure Three.

In GENERAL, the implementation words
won't be available. Any names used in the
implementation that were previously de-
fined are still valid, with their original
meaning.

Some reports appear in Figure Four.

P.S. In the Forth Scientific Library, IMP, GEN-
ERAL, PUBLIC, and PRIVATE are named hid-
den-wordlist,Reset-Search-Order--
lic :, and Private :, but otherwise with
identical definitions.

Wil Baden Costa Mesa, California
wilbaden@netcom.com

Richard Astle replies:
1. I should have been more careful.

Although I took pains to indicate-by
citing other languages (Modula-2, Ada,
etc.)-that the MODULE idea was not my
own, 1 was not aware of Val Shorre's
proposal for Forth, or if 1 was 1 had
forgotten it. My first exposure to the
technique of patching the dictionary
structure came from Bob LaQuey in the
early 80s, who used it in an implemen-
tation of a code overlay mechanism in
an Apple figForth. If the dictionary

Continued on page 19

Forth Dimensions XlWl

As usual, a lot is happening here at the Administrative
and Sales Office. One of the most exciting milestones is that,
finally, much of what needs to be done here is becoming rou-
tine! There is a definite feeling of security and comfort when
things are no longer being done for the first time. We now
routinely renew memberships, add new members, fill orders
and, yes, even bulk mail Forth Dimensions to you! What relief
it was when you all started reporting that you really did re-
ceive your MarchIApril issue-Julie and I celebrated!

As you probably realize, much goes on behind the scenes
to enable an oganization to keep running. Sometimes we make
mistakes; your communication to us when you spot these
and bring them to our attention is greatly valued. Our busi-

12 years, and now is working to put the right people and the
right positions together. We hope he can be of help to you.
And thank you, Kevin, for your support of the Forth Interest
Group and Forth Dimensions.

Let us know what we can do to better serve your needs.
Cheers 'ti1 next time!

Trace Carter
Forth Interest Group, Administrative & Sales Office
100 Dolores Street, Suite 183
Carmel, California 93923 U.S.A.
408-373-6784 (voice)
408-373-2845 (fax)

i ness her; at the Administrative and Sales Office, in addition
j to the obvious, is one of communication and support for you,

the members. Trace Carter Monterey, California

In this issue, you'll find a new advertiser, Kevin Martin of
Management Recruiters. He's been in the tech business for

Taking stock:

Southern Ontario FIG Chapter
Minutes of Meeting: Saturday April 5,1997
Ryerson Polytechnic University

2:00 Informal conversation
3:00 Meeting convened
5:00 Meeting adjourned

After some preliminary soul-searching, the following points
were discussed:

Objectives
Suggested objectives were: newslinformation about Forth-re-
lated issues; networking (some of us are contractors or con-
sultants); peer review of our work and ideas; education; re-
source pool (for information, and possibly programmers);
social event for members.

less it falls on a long weekend, when it will move to the sec-
ond weekend. A speaker will be scheduled for every second
meeting, other meetings will be open discussion sessions on
Forth-related topics. Robert McDonald will make a list of meet-
ing dates for the next year. Permission to hold regular meet-
ings at Ryerson has not been received yet; Robert McDonald
will contact our Ryerson liason with the proposed schedule.
Ken Kupisz will investigate the possibility of meeting at the
Ontario Hydro office building; other potential locations sug-
gested included libraries, other schools, and newspaper audi-
toriums (similar to that of the Hamilton Spectator).

Chapter Web Page
Nicholas Solntseff will set up a web page for the chapter, and
a link will be requested from www.forth.org. Meeting sched-
ule will be posted on the web page.

Chapter Coordinator & FIG Liason
Robert McDonald will do this for the next year

Library .
Its status and fate were questioned: the files are on disk at
McMaster University; Brad Rodriguez has a set of diskettes of
the library, and indicated that the entire collection is a sub-
set of the software available on ftp.forth.org, so it is redun-
dant; a somewhat less up-to-date copy of the forth.org col-
lection is available on CD-ROM from Mountain View Press.

Meeting Frequency And Location
Robin Ziolkowski suggested that we meet more frequently; it
was agreed to meet every second month, on even-numbered
months. Meetings will be the first Saturday of the month, un-

Programs
Member presentations; presentations by invited guests; tuto-
rials-at various levels, for members and guests; open days/
exhibitions (we should participate in local computer fairs, etc.,
space may be available free of charge for groups like FIG). The
Suggestion that we go to dinner together after meetings met
with general approval; details to be arranged after each meet-
ing. Look out for parking lots that charge a premium if you
stay late! We should be providing speakers to other groups.

Meeting Notices
It was noted that we should ensure that required approvals
are obtained for posters placed at Ryerson, so they will not
be removed. Meetings notices should be published in Toronto
Computes and The ComputerPaper. There are program-specific

6 Forth Dimensions XIWl

campus news groups where meetings could be announced.
John Verne says an auto-posting program exists that could
be used to post meeting notices on the Usenet. Toronto com-
puter user groups should be notified of meetings.

Other
Members are interested in holding a joint m~eting with the
Detroit chapter of FIG. It was noted that London (Ontario)
would be a good site, as it is halfway from Toronto to Detroit.
The Detroit chapter has not yet been contacted about this.

The Rochester Forth Conference is June 25-28, in Rochester
this year.

It was suggested that the August meeting be a BBQIsocial
event. This met with approval, and several members offered
to host the event. No details were worked out.

Next Meeting
Speaker Robin Ziolkowski
Topic: Fuzzy Logic

In appreciation of the time Claus Vogt (clv@clvpoint.forth-ev.de) and
Wolf Wejgaard spent sending me their notes from the recent Forth con-
ference in Ludwigshafen, I have constructed an English version, and
would like to share them with others who might be interested. -HV

Our European Forth friends have been getting my short
reports about the Silicon Valley Forth Interest Group Chapter's
monthly meetings, and now 1 have a report back from Ger-
many, about the recent Forth Tagung in Ludwigshafen. I think
it is reassuring to know that Forth lives and that Forthers work
on similar projects around the world, so let me pass forth my
best interpretation of what I have received.

The meeting for the German Forth Society (April 25-27)
was organized by Ewald Rieger, who controls robots for a
chemical company in Ludwigshafen. Contrary to the wishes
of higher management, these robots do not speak other lan-
guages, but do their chemical analyses in Forth, since there
are no better alternatives.

Ewald was one of the more than 20 speakers. More than
30 people attended overall. Now, the other speakers ...

Klaus Schleisiek was there and showed his ultimate multi-
tasker.

Bernd Paysan brought a Visual Forth that is a complement
to his BigForth, with which he can operate similarly to Visual
Basic or Delphi. Bernd Paysan and Jens Wilke also told about
their last-minute "red-eye" project: porting Gforth to MISC
(Minimal Instruction Set Comvuter) in two davs. (There is a

ous possibilities of tying Forth into Delphi. Egmont took
Win32 as the basis and demonstrated how Forth functions
can be addressed in other programming systems (DLLs).

Ulrich Hoffmann has ported Forth onto the PIC (a mini-
mal computer with a few hundred bytes of memory). He also
showed the group how Forth exists on the Internet.

Heinrich Moeller develops software for database and man-
agement applications for the medical profession. His present
product is a "huge" system written in Win32Forth, but he
finds it superior to the previous one, which was done in
ProForth. Compliments to Tom Zimmer!

Anton Ertl spoke about optimization of stack code, and
showed his Gray parser.

Manfred Mahlow has a context-oriented Forth system, in
which blocks are used in a clever way to maintain modular-
ity of control.

Arndt Klingelnberg spoke about Forth and the CAN bus.
Wolf Wejgaard (the author of HolonForth) kindled the

philosophical discussions about Forth and the future. It is
his opinion that the computer scientists cannot see Forth,
because they are so formally oriented that Forth simply
doesn't fit in their picture.

*A sample issue of Forth Magazin Vierte Dimension may be or-
dered from Forth-Gesellschaft,
PF 11 10, -85701 UnterschleiBheim, Germany
httv://www.informatik.uni-kiel.de/-uho/VD

University of California - Santa Cruz
% Computer Engineering,

Programming Language Proficiency
"Students must show proficiency in some programming lan-
guage other than C or assembly language. This proficiency
can be demonstrated by advanced placement or transfer credit
for Pascal, or an approved transfer credit course in languages
such as Cobol, Fortran, Lisp, Prolog, C++, Modula2, Forth, or
an assembly language different from that of course 121. For
students who lack applicable transfer credit, this proficiency
can be shown by passing Computer Science 109, 112, or 115
as an upper-division elective, or by doing a substantial re-
search or development project in a different language."

Rochester Forth Conference
RFC:
http://cis.paisley.ac.uk/forth/rfc/index.html

RFC '97:
http://cis.paisley.ac.uk/forth/rfc/rfc97.html

euroFORTH Conference
EuroForth:
http://cis.paisley.ac.uk/forth/euro/index.html

EuroForth '97:
http://cis.paisley.ac.uk/forth/euro/ef97.html

- - -- pp - -

Forth Dimensions XlWl 7

F orth? I had been coding assembler, in hex even, for about
a year and a half. Intel, Motorola, and the infamous 280;

mostly multiple-processor boards-some had as many as eight
Z80s. I remember the first 68000, and the very not politically
correct expression I uttered when I first saw one. I am not a
programmer, I'm a technologist; the effect the 68000 had on
me was profound. Too many opcodes, too little time. I was
the master of the 8085, and the feeling of obsolescence was
looming. Typing hex codes into a PC is really no way to get
any work done. There had to be a better way.

The next job seemed simple at first: decode a serial stream
from an RF receiver, and hand the codes to a serial port. I took
the job before they told me the clocks from the transmitters
(passive tags) were e 5 % , and I discovered they had a tendency
to suddenly stop transmitting. A parity bit would have been
almost as helpful as a stop bit but, because the tags were al-
ready built, I was stuck with making a receiver to suit them.

engine, either, although I did try, on occasion.
I used several revisions and generations of SBCs, in a wide

variety of applications-from cheap and dirty, to big, com-
plicated, and expensive. It got to the point where half the
equipment in the shop was either based on or connected to
an SBC. In 1988, I had a programmable pseudo-random sig-
nal generator with a record feature; an SBC with DIA and
AID; a function generator; and a few K of Forth. Only one on
the block. And the projects kept getting bigger, faster, and
more complex. I eventually had to stick to hardware-level
programming, or there wouldn't be enough hardware to pro-
gram. So I converted a C programmer ... which was not very
hard. I did the hardware and hardlsoft interface, he did the
application, and (with a little help from Vesta) the accelera-
tion took us to critical velocity in no time.

All good things come to a change. I left that position for
another, but took my expertise (not to mention my SBCs)

What 1 needed was a small computer ,, . with me. I soon had more applications
with a real-time, interactive operating .. . : than resources. Time to leave the nest.
system so 1 could fool around with the .,-: The boards I was using just did not
code on the fly and see what worked or, fit the application. Too much this, not
more importantly, what didn't. The enough that. So 1'11 just design my own.
thought of all that assembly, compiling, testing, and revising
almost drove me to drink. Surely this is a common situation,
I thought, so what do big companies do? A little research
showed me the two common options, neither of which was
appealing: use a desktop, or do it the hard way. A viable solu-
tion must exist; this is 1987, after all!

May the Forth Be With You
The solution was an OEM single-board computer, or SBC,

and Vesta Technology (Wheat Ridge, Colorado) had one with
my name on it. I owe a big part of my career to Stephen Sarns
and Jack Woehr, who told me what I needed to know.

"Read this book." They encouraged me to read Leo Brodie's
Starting Forth, which seems to have been the standard start-
ing point for aspiring Forth programmers for years.

"Use this board." They sent me all the documentation,
software, and boards I needed.

Jack even sent occasional chunks of code to answer ques-
tions I sent him. That old 1200 baud modem spent a lot of
time on the RCFB (Real-time Control and Forth BBS). I later
learned that this is typical in the Forth community: I help..
you, you help me, they help us, we help them, and every-
body benefits.

For a hardware designer, I sure churned out a lot of code.
Forth fit almost everything I had to do; I never had to use a
different language again, although I did have to learn C to
decide I liked Forth better! I never used a PC as an application's

- .
The processor decision was the hardest part. I needed all the
hardware specifications to fit, but I also needed an operating
system. A little research and a few questions turned me to an
8051-type micro and F51.1 then found a book and software
(through FIG, I might add) on how to make your own 8051
Forth development system. So I did. Thanks to Bill Payne and
Henry Neugass and, indirectly, Sandia National Laboratories.

My very own SBC was designed to operate autonomous,
remote-sensing systems, including controlling instruments, log-
ging, telemetry, and diagnostics, when needed. It had to be
smart, fast, low power, reliable, inexpensive, small, and adapt-
able. Everything every SBC should be. And it is. And it wasn't
really very hard to do, either, although a big chunk of it (the
Forth operating and development system software) came in
the mail. The operating system needed fine-tuning, as would
be expected because of the differences in hardware, and I added
a bunch of hardware-support code and some high-level words
I was used to. All our current products that have a micro use it.

I am presently working on replacing our SBC with PIC,
microcontrollers, where it's feasible. Hopefully, the source will
port easily (a relative term) to whatever Forth 1 use for the
PIC I choose. Been there, done that, doing it for the last time
again. I suppose if technology and demand were not ever
increasing, I would be out of a job, or at least bored.

Go Forth...
After dozens of prototypes and systems, I realize I have a

stow to tell, and this is it. Many of you will find it familiar, if

Forth Dimensions XIXt1

about everywhere. It's most common, or should I say visible,
in the scientific and military communities, but it cannot be
avoided in modern life; your car may run on Forth, and your
microwave almost surely does. Mundane things like space
shuttles, satellites, observatories, telecommunications net-
works, industrial robots, and missiles run on Forth, not to
mention high-tech things like your building's environmen-
tal control and telephone systems. And a variety of consumer
electronics too long to recite (look inside your camera; see
that micro?). Used to be that just about anything with an
alphanumeric LCD module had a Forth history. You cannot
deny its per-unit volume, you just can't see it.

It would be different if Borland had Forth++ or Bill had MS-
Forth (rumor has it MS does use Forth, but I haven't seen any
discussion traffic). Or if they taught Forth in university. One
local university gives it an honorable mention, "For those of
you who will work in embedded systems, you will encounter

Transputer Forth

micro running a lift at a mine, autonomously controlling the
motor torque directly via sensor feedback, as well as schedul-
ing, logging, weighing ... essentially a big, embedded Forth
system. PIC micros are going into everything from pens to
planes now. Application-specific, or custom-microprocessor
and microcontroller-based, boards and systems are popping
up everywhere in everything. OEM SBCs still hold the niche
between PCs (too big) and custom (too involved). And this
little group of dedicated professionals using an "obscure" lan-
guage are mostly responsible for this embedded revolution.
The reason: because we could do what wasn't feasible in other
soft environments.

The Forth Interest Group and its members are mostly re-
sponsible for keeping Forth alive, although credit ultimately
must go to the creators of hardware and software components
that make it all tangible. If you have a job to do, they make the
tools. I have also found they usually support products, which

comp.lang.forth-and probably foind your answer without
posting the question?

Forth shines like the sun whenembedded. 1 saw a Sun

Looking for an easy way to program a transputer?
Six years ago, a huge amount of money was needed to

acquire one of the famous OCCAM development kits for the
then much-advertised INMOS transputer family. Why should
it always be OCCAM, I thought, why not Forth? There was
no transputer Forth available at that time-at least none I
was willing to spend money for. So I started my own devel-
opment kit, in Forth, for the T80x family. I'm now releasing
the first version, F-TP 1.00. Here are some of its features:

Forth-83 with almost all of the ANS Forth core integrated.
Trigonometric functions,
Metacompiler written in Turbo-Forth, operating from the DOS
host as a cross-metacompiler (Turbo-Forth is a DOS-filesystem-
based, 16-bit Forth for IBM compatibles, developed by Marc
Petremann and the French Forth Group in 1989 and later).
Automated metacompilation, also for multisystems.
Parallel processing, similar to the method employed with
OCCAMZ, ada~ ted to Forth.

- -

Theauthor is cu&tly~enlor~echnologistat ~ a ~ n e t o Indiiaive
~ y ~ t ~ ~ ~ t d ~ (~ o r r e ~ r o ~ t i a n t i c ~ t d) *

Multisystem option (several transputer Forth systems kept
in the same transputer RAM, with access to the respective
stacks from any subsystem).
DOSKEY emulation (FORTHKEY, invoked by hotkeys).
Collecting characters and strings from screen via hotkeys.
DEBUG (step-by-step tracing).
Disassembler DIS (also disassembles transputer code fragments
residing in transputer RAM, such as OCCAM object code).
Decompiler SEE (integrated disassembler for code definitions).
Assembler in UPN, fully Forth-like usage, structured (IF
THEN ELSE, etc.).
Easy calling of any DOS command or program: Dos <name>.
All source.
Server from host, written in Turbo-Forth.
Assembling, PEEKing, POKEing, disassembling, DuMPing (also
from server, in case the transputer Forth system breaks down).
Easy, interactive, menu-driven modification of link adapter
port addresses: CONFIG.BAT.
On-line modification of end-of-system address (increasing

Continued on oaae 25

an obscure language called Forth; they often are giving away, bet-
I've heard good things about it, ter than most that typically are
but ..." ANS Forth is a step in the paid for. Pride seems to be a
right direction, but mainstream higher level of incentive than
use requires mainstream market- money. We choose to use Forth

i
\

Forth Dimensions XlWl 9

ing. Until this happens, Forth will have to be looked for, be-
cause it is not going to "start you up" on prime-time TV (did 1
mention TVs and VCRs use such micros?).

For those of you using desktop machines, Forth will get
anything you need done running, at least equal to any other
language. The support base is the whole Forth community,
which seems to have taken up a comfortable residency on
the Internet, so there really is no excuse not to use it. Besides,
how much time have you spent listening to Muzak on the 1-
900-so-called-support line, when you could have browsed

because it does what we need it to do, as well as, if not better
than, other environments. We also choose to help each other
when we can, because we are a small, but unusually signifi-
cant, community, and we are content to stay that way.

When someone asked me why 1 use Forth (in that certain
tone), I replied simply, "You obviously don't." He walked away
puzzled. He later told me he had no idea Forth was so prolific,
and he felt it was the exact tool for the job. It seems 1 com-
pelled him to look it up. It has since become my standard re-
ply to that question.

10 Forth Dimensions XlWl

K ermit is not only the name of Henson Associates Inc.'s
famous frog, but is also the name of an extensive, com-

plex, file-transfer and remote-computer-access application-
written by Columbia University and/or volunteers, as 1 un-
derstand it-sold and distributed by Columbia University[l].
The name Kermit is also used to refer to the family of file-
transfer protocols used in Columbia University's Kermit and
by many modem programs. As I use the term throughout the
rest of this article, it refers to the Kermit protocols, particu-
larly the simplest form, implemented here in Pygmy Forth.

My Forth applications sometimes need to transfer files with
other systems via modem. I felt I needed to implement one
or more of the following protocols: XMODEM, YMODEM,
Kermit, and ZMODEM. The basic XMODEM protocol doesn't
have much respect these days, as it does not transmit exact
file lengths, but rounds up to the nearest block size (128 bytes).
Enhanced versions of XMODEM, such as YMODEM, over-
come this. Kermit is well thought of, and is widely available.
ZMODEM is usually considered to be the best, although there
seem to be arguments between the Kermit and ZMODEM
camps as to which is the better, faster protocol under various
circumstances. I, personally, found the ZMODEM arguments
more persuasive, but I don't really care about minor differ-
ences. I wanted something that works reasonably well and is
fairly easy to implement. Looking over the Kermit and
ZMODEM protocols, I decided that a simple form of Kermit
would be slightly easier to program. Later, I hope to imple-
ment ZMODEM, as well.

Why Write My Own
You may well ask, why insist on writing a version instead

of using an existing product. We have experimented some
with other products, and have been severely disappointed.
For example, we have had a lot of trouble trying to get
PCAnywhere configured correctly under DOS. On some cli-
ent systems, we were unable to configure it by changing the
configuration file in the directory from which PCAnywhere
would be run. Instead, we had to resort to a Rube Goldberg
(i.e., extremely cumbersome): We had to modify the batch
file temporarily (so it would not call the PCAnywhere script),
run the application and let it shell out to PCAnywhere, change
and save the settings, and again modify the batch file so it
would run the script. We never found why we could config-
ure it in some offices without going through this tedious pro-
cess, but not in most; but it was enough to make us hate
PCAnywhere.

Further, while the modem scripts would run under DOS,
PCAnywhere was too slow. Also, we could not make the DOS
versions of the scripts run under the Windows 95 version of
PCAnywhere. Also, it was not free, so we had to fool with

getting each client to purchase PCAnywhere. Similarly, the
use of Columbia University's Kermit product would have re-
quired each customer to purchase a license for it (yes, it is not
free). Ditto for the Oman Technologies ZMODEM product.
So, to hell with the third-party products. We will just write
our own and have full control, simpler installation, and a
faster user interface. Were this running under Unix/Linux,
we would have used the built-in, freely distributable
ZMODEM.

The Kermit Protocol
My main guide for the Kermit protocol was CProgrammer's

Guide to Serial Communications by Joe Campbell[2]. Note, there
are some errors in Campbell's examples.

Files are transferred in Kermit by exchanging ffames be-
tween the sender and the receiver. Every frame begins with
an SOH (start of header) character, and ends with a carriage
return. Between them are the following five fields: length,
sequence, type, data, and checksum. Each field, except for
the data field, is a single character in printable form. The
process of converting a number, say for the length field, into
a character, is called character-ization and is done by adding
the value of the space character to the number. Thus, the
number zero becomes $20 and prints as a space. The number
thirty-seven (i.e., $25) becomes $45 and prints as the letter
"El" and so forth. I use the words CHAR and UNCHAR to con-
vert between the two formats. Note that this requirement of
fitting numbers into a single byte as a printable character
limits the numbers to the range 0-94, and limits the size of
frames that can be transmitted. Various extensions to the basic
Kermit protocol allow longer frames, but not the simple form
described here.

The frame types used are S to initiate a file-transfer ses-
sion, F to send a filename, D to send a data frame, Z to indi-
cate end of file, B to indicate end of transmission, E to indi-
cate a fatal error, A to send file attributes (we do not use this
one), Y to ack a frame, and N to nak a frame. No single bytes
are exchanged between the sender and receiver, only whole
frames. The length field indicates the number of bytes to fol-
low the length field, up to and including the checksum field,
but not the carriage return.

To transfer a file, the sender waits for an N-frame (a nega-
tive acknowledgment), then sends an S-frame to tell the re-
ceiver what values it wants to use for various protocol pa-
rameters, such as maximum frame length, the repeat charac-
ter, the escape character, etc. The receiver then sends a Y-
frame (an acknowledgment), with its preferred values for these
parameters. The word COMPROMISE takes the more conserva-
tive value for each of the parameters. This single exchange of
frames sets the protocol parameters for the session. In the S-
frame and its Y-frame, the values of the parameters are sent

attempting a transfer, unless it is canceled by the user or it code appears in the next issue...
receives an E-frame, indicating a fatal error. -. I

tioned, for converting numbers. The other is controlification,
to flip a bit in a control character to turn it into a printable
character. Numbers, as such, are expected in the length, se-
quence, and checksum fields, but never in the data field (ex-
cept during the initial S- and Y-frames that establish the pro-
tocol parameters). Kermit would allow for transmitting seven-
bit data bytes by escaping, with an ampersand, each byte with
a high bit set and then clearing that high bit: but we do not
do this. We assume the availability of an eight-bit channel.
Kermit does insist, though, on escaping control characters
(with "#"), and at least some implementations insist on com-
pressing data by run-length encoding repeated bytes. # and -
characters, when appearing in the data as themselves, must be
escaped. Thus a single # would appear in the data field as ##.

To keep things simple, we never compress the data when
we are sending a file. UIlf~rt~nately, not all implementations
of Kermit respect the request not to Use repeat Counts. There-
fore, we must be prepared to handle compressed data when
receiving a file. (Since our main purpose in using Kermit is to
transmit zip files, it doesn't look like We would gain much
speed by compressing the data we send.)

Kermit allows various types of checksums, ranging from a
single byte to three bytes. Our main use will be to transmit
zipped files, with the zip file itself providing an additional
level of data integrity verification with its 32-bit CRC; there-
fore1 I am content to use a one-b~te the
form Kermit allows.

The V-frame
We invent a special input frame and assign it type V. A

V-frame is never actually sent. Instead, whenever a timeout
OCCUrS, K S E R - I N terminates (and terminates its caller
GETFRAME) and returns a V-frame. This way, a timeout is not
a special case, but just an ordinary "frame."

What Else Can Go Wrong
In addition to a timeout, a frame with a bad checksum

might be received. In this case, we send an N-frame to alert
the sender to try again. If we are receiving and a frame is lost,
the V-frame alerts us to the missing frame and we, again, send
an N-frame to request a repeat. When sending, if a frame is
lost or its Y-frame is lost, either a timeout or receipt of an N-
frame alerts us to the need to resend that frame. When we
receive a duplicate frame (perhaps because Our Y-frame never
reached the sender), we basically ignore it- However, we do
acknowledge it, so the sender will be free to continue. The
progress of a file transfer is indicated on screen by printing a 1 dot for each frame transferred. Our code will wait forever,

The Environment Frank Sergeant, on the"thirty-year plan," received his Master
This implementation expects the SER-lN, SER-OUT, and of Science in Comouter Science from Soutliwest Texas State

The Kermit code presented here should work, regardless
of which form of serial handling is used.

How to Transfer Files
Assuming the modem connection has been made and the

other end is expecting to send or receive the file using Kermit,
type filename.zip SEND to send a file, or type RECEIVE to re-
ceive a file. The RECEIVE routine is capable of receiving mul-
tiple files. The SEND routine transmits a single file. Since
Pygmy 1 .S accepts instructions from the command line, you
could type

PYGMY l1 filename . zip" SEND BYE

on the DOS command line, or in a batch file, etc. In our ap-
plication, we have a menu and a terminal mode, with PgUp
and PgDn keys invoking the SEND and RECEIVE routines.
You can see a clue as to how we use this in the definition of
KSER-IN (block 12007), where a user abort of the file trans-
fer executes the DEFER'^ word MYMENU to put the user back
at the application menu.

Conclusion
 hi^ code has been used successfully at a number of client

sites but, remember, it uses only a very basic version of the
Kermit protocol. It very well could have problems transfer-
ring between certain sites. If you try it, please let me know
your results. For your downloading convenience, I have
zipped the Kermit source and shadow blocks, along with a
copy of this article, and a preliminary version of PYGMY.COM
that contains the multi-tasking version of the serial port
words, and have placed this on my web site.

References
[I] "Kermit: A File-transfer Protocol for Universities," parts 1
and 2. Frank da Cruz and Bill Catchings, June and July, 1984,
BYTE.

[2] c Programmerfs Guide to Serial Communications, Joe
Campbell. Howard W. Sams & Company, 1987, ISBN 0-672-
22584-0, pp. 98-1 13. (Note: there are some errors in
Campbell's examples.)

[3] "XT Corner: The PC Serial Port in Forth," Frank Sergeant.
The Computer Journal, issue 79, Fall 1996, pp. 5-10. My web
page (http://-w.eskimo.com/-pygmy) contains a link to
TC/'~ web page.

related words that allow transmitting to, and receiving from,
the serial port connected to a modem. "The PC Serial Port in
ForthN[3] describes one approach to handling the serial port
on a PC, using interrupts.

My current approach does not use interrupts. Instead, it

Forth Dimensions XIXI1 11

University. The degree and his 4.0 G P ~ were hard won.~is the-
sis was entitled,,Calculating the Crust of a Set of Points in C++,,,
and has nothing to do with Forth except to help illustrate that

computational geometry i s easier in Forth than in C++.
/ uses the new multi-tasking ability of the upcoming Pygmy
: version 1.5. The serial input is serviced by a separate task,
I thus greatly simplifying the serial port code.

i

~ ~ ~ p ~ / / w w w . e S & j m O ~ c O m / U P Y 9 m Y / f o ~ ~ /
kermitzip

- - - - - - -
Control Structure Salad Bar

Transportable Control Structures

12 Forth Dimensions XlWl

structures in other systems, I figured I should try that this
time. What I did not realize, until later, was that ANS Forth
actually specifies this feature of Forth's extensible nature.
(Please note that the standard's example CASE is only for dem-
onstrating the reuse of control structure words. It is not rec-
ommended for actual use in a system. Most systems would
actually use a more efficient implementation.)

The Case for CASE
First, let's provide some background into the history of

the CASE statement in Forth. In the good old days, the entire
Forth kernel fit in eight 1 K blocks. Real programmers invented
whatever control structures they needed, if and when they
needed them, and nary a byte was wasted. The thought of
having a CASE control structure built into every system was
considered heretical (if it was considered at all), for two rea-
sons. The first was that a given program might not need a
CASE statement. Making the standard system carry around
the baggage for one, just so some other programmer could
use it in another program, was considered a terrible waste.

The second reason for not automatically including a CASE
statement in every system was that the statement might not
be optimized for the particular situation in which it was to
be used. Sometimes we need to optimize for speed, other times
we need to optimize to minimize memory usage. Some situ-
ations call for special handling of default cases, such as not
allowing them at all, or expecting the selector to be consumed
by a programmer-supplied default action.

Some years have passed, and typical computer resources
are much greater now. In desktop systems, we have on-chip
caches with more memory than whole computer systems used
to have, and the common units of measurement for proces-
sor speed are megahertz and MIPS. I assure you, this does not
mean we can forget the whole concept of efficiency, and per-
haps I can take on that issue at another time. Nevertheless, it
does mean that, except in certain special cases, we don't worry
so much about memory usage or CPU cycles. Instead, these
days we worry more about how long it takes programmers to
write and, especially, maintain programs. Therefore, we in-

Figure One.

: (--)
c a s e

70 o f d o - t h i s - s t u f f endof
80 o f d o - t h i s - s t u f f endof

I Standard Structures
The extensibility of the Forth language has long been one

of its most popular features. Now ANS Forth has set in print
one aspect of this concept which many of us have enjoyed
using for years: the idea of creating new types of control strut-
ture words without writing any new words in assembler. Ob-
viously, if one is to perform a transfer of control (such as the
conditional forward branch in an IF), there will some ma-
chine code involved in changing the value of the interpreter
pointer. Typically, the compiler directive (IF, in this case) will
compile a reference to a word written in machine language
to accomplish this. Potentially, every similar control struc-
ture directive could be written in machine language. How-
ever, as the standard points out, it is not necessary to do this
for all of them. Some of these words have some behavior in
common. For example, both I F and WHILE perform a condi-
tional forward branch at run time. Their common run-time
behavior can be factored out and shared.

The ANSI Forth Standard proposes a minimum wordset of
IF, THEN, BEGIN, AGAIN, and UNTIL (very old friends) plus
(these are a little newer) AHEAD (unconditional forward branch),
CS-PICK (control stack pick), and CS-ROLL (control stackroll).
With these tools, we can build all the structures we are used to
(such as WHILE and REPEAT), plus whatever new ones occur to
us. The standard goes on to show how to implement one type
of CASE statement with these tools. I think it is fair to say that
many Forth programmers have written their own version of
the CASE statement, so creating yet another CASE could be a
stale topic for the more advanced programmers. However, even
those who have written Forth compilers might benefit from
an occasional reminder of how much freedom and flexibility
this language gives us. I recently had an occasion to add a
feature to the CASE statement which is a part of the Open Firm-
ware system we are putting in the PowerPC systems here at
Motorola Computer Group in Tempe, Arizona.

The point of this discussion is that I was able to add the
modification quite easily, using existing assembler routines,
because the system is designed to allow that. I knew I did not
want to spend a lot of time writing new assembler routines. I
also knew that, when using other Forth systems in the past I
have, on a couple of occasions, taken advantage of this con-
cept to add CASE statements to systems which did not have
them. In each of these instances, a CASE statement was needed-
in a Forth environment which had no CASE and was running
on a microprocessor for which we had not implemented
machine language primitives for CASE. Furthermore, it was
not considered important enough to learn the new proces-
sors instruction set just to add this one feature.

Because I had been able to add the CASE structure by com-
piling references to existing assembler routines for control

90 o f d o - t h i s - s t u f f endof
99 o f d o - t h i s - s t u f f endof

100 o f do-some-other-stuff endof

Figure Two.

: sample (selector --)

case
70 over = IF drop do-this-stuff endof
80 over = IF drop do-this-stuff endof
90 over = IF drop do-this;stuff endof
99 over = IF drop do-this-stuff endof

100 of do-some-other-stuff endof
103 of do-quite-a-different-thing endof

endcase
r

Figure Three.

: sample (selector --)

case
70 over = (selector flag)

over 80 = or (selector flag)

over 90 = or (selector flag)

over 99 = or (selector flag)
IF drop do-this-stuff endof

100 of do-some-other-stuff endof
103 of do-quite-a-different-thing

endof
endcase

clude a CASE statement which is easy to use and easy to read.
If it needs a feature added, we add it at the highest level pos-
sible and go on with our lives. As always, we stay aware of
our needs and, when we need blinding speed, we may switch
to assembler after careful analysis of the problem.

Having described the background, let's consider what came
up in this case. It seems that some programmers here had
some code which used CASE statements, but the same behav-
ior was needed for several cases. This produced code like that
in Figure One.

They were bothered by the repetition involved here, and I
didn't really blame them. After a little discussion, one person
suggested he had used the concept of a set in the past, so I
decided to have a try at implementing that idea. The first try
was easy, short, and had a really ugly syntax. I include it here
not as an example of a nice structural syntax (it isn't nice), but
as an example of how flexible these structures really are. In
particular, it demonstrates that OF is syntactically equivalent
to an IF with a DROP in the body to discard the selector if this
path is taken. ENDOF is similar to an ELSE whose target is the
ENDCASE. In our Open Firmware system, the primitives are
done in assembler for speed, but the behaviors are as I describe
them. That means the above phrase could be replaced with
the contents of Figure Two.

Therefore, we could combine all the Booleans into one IF
clause by using OR to combine flags (Figure Three).

Now make a word which handles the housekeeping for
the stack effects (Figure Four).

Add what some may call syntactic sugar (Figure Five) and
we see the etymology of the ugly in-set syntax. While we

\ set[marks the beginning of a set of numbers to be
\ compared as a group in a CASE statement. If any of
\ the group match the selector, the following case
\ path is taken.

I

\ return false as a seed for ORing Booleans:
: set[(-- false) false ;

are-not goingto keep the-ugly syntax, we

\ in-set compiles a test for each member of the group,
\ and ORs the test result with an existing flag.
: in-set (selector1 flag1 value -- selector1 flag2)

2 pick = or
r

: sample (selector --)

case
set[70 in-set

80 in-set
90 in-set
99 in-set

IF drop do-this-stuff endof

Figure Four.

100 of do-some-other-stuff endof
103 of do-quite-a-different-thing endof

endcase
I

did learn a lot about mixing and matching
control structure words along the way,

The final change was to remove the need
for in-set. The easy way is to require the
programmer to tell how many items will be
tested in the set. This has the same problem
as in-set: we are asking the programmer to
do work the compiler could do instead. If we
intend to leave it all up to the programmer,
just let the programmer say (n) over =

I F drop. Instead, I decided to figure out how
many items were on the stack. Just let set[
call depth, and pass the stack depth to I set-
of. Unfortunately, we cannot just call depth
in set[and expect to retrieve the value from
the data stack later, because we will not know
how far down on the stack the depth value
is. That's why we are calling depth in the first
place, to find out how many parameters are
passed to] set-of.

One way of sneaking information between
two routines is to hide it on the return stack.
This is not something 1 generally recommend,
because it's both ugly and dangerous. In par-
ticular, it violates one of the most basic fac-
toring rules, that words should be able to func-
tion as standalone units. Depending on data
passed via the return stack binds these words
so that they must always be used as a pair.
However, control structure words are gener- , ally meant to be used that way. Now, set[

I 1
Forth Dimensions XlWl 13

becomes as shown in Figure Six.
Note that we steal the return ad-

dress which sea needs, put the data
we are passing on the return stack,
and then restore set['S return ad-
dress just prior to exiting set[.

All the routines are more com-
plicated now. Ned Conklin (one of
the founders of Forth, Inc.) once told
me that "complexity is conserved."
Which is to say that effort spent in
understanding problems leads to
simpler code later. If we don't spend
energy understanding the problem,
we spend energy coding around our
ignorance. It also applies in a differ-
ent way here. We remove the com-
plexity of i n - s e t from the

Figure Five.

\]set-of terminates a set of numbers to be compared as a
\ group in a CASE statement.
: I set-of (--)

(runtime effect: selector flag -- selector I null)

posqpone if postpone drop ; immediate

: sample (selector --)

case
set[70 in-set

80 in-set
90 in-set
99 in-set

]set-of do-this-stuff endof

programmer's view, and the com-
plexity reappears (as does i n - s e t)
in the internals. The new version of
in-set will be called in a loop com-

Figure Six.

100 of do-some-other-stuff endof
103 of do-quite-a-different-thing endof

endcase

piled by 1 set -of (Figure seven-a). I ;
Set-of has to compile so much

: set[(selector --) (r: selector depth)

r> \ get ret-addr (selector ret-addr (r: 1-short)
swap >r \ save selector on return stack (ret-addr) (r:selector)

depth >r \ save stack depth (ret-addr) (r: selector stack-depth)

>r \ restore ret-addr () (r: selector stack-depth ret-addr)
I () (r: selector stack-depth)

that we factor it out into (se tof) , as in Figure Seven-b.
I added a default phrase for the test, and put in visible stubs

Figure Seven-a.

Here are the results of running the test. (Note that we can
interpret Do loops at the Open Firmware command line. I

: in-set (xu. ..xl selectorl flagl -- xu . . . x2 selectorl flag2)

over (xu . . . xl selector1 flag1 selector1)

3 roll (xu . . . x2 selector1 flag1 selector1 n-top)
- - or (xu . . . x2 selector1 flag2)

I

for the sample behaviors. The final usage looks like Figure Eight. like that.)

Figure Seven-b.

: (set-of) (xu. . 1 --) (r: selector depthu return-addr --)

r> (xu . . . xl my-ret) (r: selector depthu --)

depth r> - (xu . . . xl my-ret number-of-items-to-check) (

r:selector)

swap r> swap >r (xu...xl #-of-items-to-check selector) (

r :I' restored")
false rot (xu. ..xl selector false number-items)

0 do in-set loop
I

:]set-of (-- addr) \ terminates a set in a CASE statement
compile (set-of) [compile1 if compile drop

; immediate
I

14 Forth Dimensions XlWl

ok 110 60 do i sample loop
60 default
61 default
62 default
63 default
64 default
65 default
66 default
67 default
68 default
69 default
did-this-stuff
71 default
72 default
73 default
74 default
75 default
76 default
77 default
78 default
79 default
did-this-stuff
81 default
82 default
83 default
84 default
85 default
86 default
87 default
88 default
89 default
did-this-stuff
91 default

92 default
93 default
94 default
95 default
96 default
97 default
98 default
did-this-stuff
did-some-other-stuff
101 default
102 default
did-quite-a-different-thing
104 default
105 default
106 default
107 default
108 default
109 default

The final version you see here was pasted to the inter-
preter, and the results were pasted back to my editor. An in-
terpreter with a windowing system is a nice combination!

Perhaps this is another case of a programmer with too
much time on his hands. However the need was real, and the
actual code didn't take long to write. It's not going to have
blinding speed but, if the need for speed appears, we will fill
it at that time. In the meantime, this is an example of how
flexible the Forth control structures can be if you understand
how they work.

Randy Leberknight's interest in Forth is naturakfor
19 years, he has been working in areas where hard-
ware and software mix. First, he spent 1 1 years at
a company which made and used software for
printed circuit board layout-using software to
help make hardware.Then he spent about seven
years at Forth, lnc., learning Forth, teaching Forth,
using Forth,and helping to create new Forths.For
the past year, he has been at Motorola Computer
Group, in Tempe, Arizona, working on Open Firm-
ware for PowerPC-based systems. He says one of
his favorite parts of the job is "...using the
interpreter's debugging facilities to help bring up
new Rarc!ware.lt is gratifying to have the engineer
who designed the board ask me to show him how
I figured out which part was not working!"

Figure Eight.

: do-this-stuff
." did-this-stuff " cr ;

: do-some-other-stuff
." did-some-other-stuff' cr ;

: do-quite-a-different-thing
." did-quite-a-different-thing" cr ; ..

: sample (selector --)

case
set[70 80 90 99]set-of do-this-stuff endol

100 of do-some-other-stuff endof

I 103 of do-quite-a-different-thing endof

dup . ." default " cr
endcase

Forth Dimensions XlWl 15

S o you have some spare time on your hands, and you've
decided to write a multiprocessor-based, multi-tasking,

real-time expert system which offers local variables, a set of
8250 UART words, access to 16 Mbytes of PC memory, and
linkage to externally assembled programs. Are you nuts? No,
you've got a copy of Forth Dimensions Volume XI, where these
concepts are all discussed and illustrated.

Okay, so you don't need something quite so lofty. You'd
just like to write a more useful memory dump routine for your
system. Well, you'll also find that and more in Volume XI.
What? You don't have Volume XI in your personal library?
You're in luck. The FIG office still has a few copies in stock.
Here is a brief review of the papers you'll find in Volume XI.

lssue Number 1
Allen Anway presents his "VVDUMP" Extended Byte

Dump application. Tired of having to enter an address and
count for every region of memory he wants to examine, Allen
writes a memory browser which can move forward and back-
ward through memory. He also revises the display of memory,
printing the ASCII representation of each byte directly below
its hex value, making the dump far more readable. Last, Allen
gives us all the rope we need to hang ourselves, by adding
the ability to enter values directly into memory. A well-writ-
ten and useful paper, the only thing I would change is to
display the dump with the memory addresses increasing up
the page rather than down.

This issue contains three papers on local variables: one by
Jyrki Yli-Nokari, one by John Hayes, and one by Jose Betancourt.
Yli-Nokari is a man after my own heart. Of the three imple-
mentations, his is the simplest. It's also the easiest to convert
for your own Forth system, since it's built from only three blocks
of source code! (And one of those is a load block!) Hayes' imple-
mentation, based on the concept of scopes, has a somewhat
more complex syntax, but offers the added feature of named
locals, where a local variable's name is declared within the defi-
nition of its use. Of course, this added capability has a cost,
requiring the slight modification of the Forth system's dictio-
nary-search-and-management words. Betancourt's implemen-
tation also provides for named locals, but uses a set of prefix
operators to find them at compile time. This technique is more
portable than Hayes', but makes for a somewhat less readable
syntax. If your ~ o r t h system doesn't recompile itself from source
code, this technique may be the easiest way for you to imple-
ment named locals. Interestingly, the three authors offer these
comments: "Finally, it seems that local variables are not very
useful in everyday work, since we already have the stack for
temporary values." (Yli-Nokari); "Many Forth definitions are
simple enough that nothing would be gained by using local
variables." (Hayes); "Local variables may not be required if defi-

nitions are kept short and the stack is kept shallow."
[Betancourt). Keep this in mind. Should you find yourself des-
perately in need of locals, you've probably solved your prob-
lem wrong. Of course, there are always those days when you
just can't seem to get the problem properly decomposed, and
Dn those days, until you can return and rethink the problem,
locals can come in handy.

In his paper, Ayman Abu Mostafa asserts that Forth needs
three more stacks. Dissatisfied with the traditional Forth use
of the return stack for temporary and index storage, he pro-
vides a separate auxiliary stack for this use. Next, to provide
for the interpretive use of I F ... ELSE ... THEN constructs, he
creates the condition stack. Fortunately for us, our now-stan-
dard [IF] ... [ELSE] ... [THEN] system has proved to be far
simpler to implement and use than the modifications required
by his system. Last, he provides a case stack for the interpre-
tive use of CASE statements. While his paper is interesting
from an academic standpoint, his premise that using the re-
turn stack for "...storing indexes and limits of Do loops, and
for temporary storage ... is bad programming" has, in my ex-
perience, yet to be proven in a production environment.

Last, Brian Fox found the limits of his Forth system when
he needed to write a high-speed, serial interface to control a
video tape recorder. A true Forther, he dauntlessly develops a
beautifully decomposed lexicon to control the PC's 8250
UART. Brian is another man after my heart, saying things
like, "...it occurred to me that the English words we use... are
perfect Forth syntax." Emphasizing the style and techniques
that give Forth its real power, and providing a widely needed
utility, this nicely written paper is a must-read for the novice
and experienced Forther alike.

lssue Number 2
Robert Garian presents a paper and wordset for drawing

ovals on the PC's monitor in graphics mode. Robert states,
"Ovals have a certain aesthetic appeal that I find a relief from
all of the straight lines and rectangles we usually see on com-
puter screens."

Do you like your ovals filled? Zbigniew Szkaradnik pre-
sents a paper describing two filling algorithms. The first is
designed to fill a closed outline which has already been dis-
played on the monitor. The second is designed to draw and
fill a polygon defined by a list of vertex coordinates. Zbigniew's
descriptions of the algorithms are straightforward, and the
included source code is surprisingly concise. His use of nested
loops will keep you on your toes for at least a few minutes,
should you need to reverse-engineer his code.

Frans Van Duinen presents his PDE (Program Development
Environment) editor. A block editor, this system is chock-full
of features: editing any number of files concurrently, copy-
ing and pasting between files, a single-stepper taking its in-
put directly from the editing screen (point-and-step, you
might say), from-the-screen SEE (decompiler) and V I E W
(source code locator) functions, source code loading from the

Forth Dimensions XIXI1

screen, and a scrolling debug window. Written to load over
F83, this editor may require a bit of modification to run within
your Forth system, but it may be well worth the effort.

Still working within the confines of a PC-based, 16-bit Forth?
Richard F. Olivo provides a set of words for aicessing up to 16

, Mb of the PC's extended memory through BIOS interrupt 15h.
Interestingly, he wrote these words while working with a DT
frame grabber. I went through this very same process about six
months later, when I too was learning to use the very same
frame grabber. Had I been a FIG member when this issue came
out, I could have saved myself some time and effort. FIG mem-
bership really can pay off! Richard's explanatory text is very
well written and easy to follow. The source code occupies (get
this) only two blocks! That's a huge payoff for so little code.

Marcos Cruz offers his SISIFOrth expert system toolkit. This
is a set of words you can use to develop your very own expert
system. The code is fairly straightforward, and appears to be
pretty portable. Some of Marcos' code is written with a very
assembler-like style, so if you, like me, are a very traditional

haps it's just the projects he gets to work on, but Brad's papers
always seem to tackle deep subjects that come in very handy.
His Multiprocessor Forth Kernel in this issue is no exception.
In it, he describes a Forth kernel that doesn't just multi-task,
but can do so across an arbitrary number of processors. There
are a lot of great, new ideas on kernel, operating system, and
real-time system architecture in this paper. As always, Brad's
writing is clear, concise, and well thought out. This paper is a
must-read for anyone writing his own Forth system. I'm sure
I'll be stealing ideas from it for some time.

Chester Page presents an architecture and small lexicon for
setting vocabulary search orders. The new lexicon eliminates
ONLY and ALSO, and replaces them with two new words. Chester
doesn't offer a comparison between his new lexicon and other
techniques, so it's hard to say whether or not he's actually got
something here. Find out for yourself. The small (about 2 Kb)
source listing is easy to understand and re-implement.

Issue Number 4 1
(Chuck suggests the term, classic) Forther, you may want to I Nathaniel Grossman presents his Fibonacci Random Num-
keep a bottle of aspirin handy. ber Generator (FRNG). There
Marcos also includes an example This is less than mystical, are a number of techniques for
expert system, clearly illustrat-

being of surprising length. generating pseudo-random
ing the use of his toolkit. numbers. This one ranks

Shades of my old Fortran
days, but in reverse! Darryl C. Olivier shows us how to link to
an externally assembled program-by enveloping it within our
Forth memory image! Noting that a large machine code rou-
tine or subsystem can sometimes be written more easily using
a full-blown macro assembler than by using the assembler in
our Forth systems, Darryl shows us how to pull an externally
assembled program into our Forth executable image, jump to
it at run time, and return back to our Forth system. His well-
written text deftly explains what is otherwise a rather deep
subject, and the four blocks (!) of code required to accomplish
this can be understood by any more experienced Forther.

lssue Number 3
Dave Edwards provides a set of powerful timing words

which can be usedin time-critical applications. ~ h e s e words
provide a lexicon making it easy to make, say, a routine that
runs every 20 milliseconds, or perhaps another that measures
its own elapsed execution timeor that times an external event.
Dave must have decomposed this problem well, because the
basic words can be used to construct all kinds of higher-level
timing words. The source code is only about 3 Kbytes long,
and should port to nearly any system. Dave also provides 5
plethora of examples showing these words in use.

Examples of engineering and scientific applications of Forth
are appallingly few and far between, so 1 was overjoyed to see
Antonio Lara-Feria's and Joan Verdaguer-Codina's paper on a
Quaternion Rotation Calculation. Unfortunately, the authors

' have offered no explanation of the quaternion technique itself
(what a bummer, that would have been fun!), and also say little
about the accompanying source code. While the code is written
in a straightforward fashion, it's not trivial (17 blocks), and may
require a math text for its reverse engineering and application.

among the more complex, both
in theory and implementation. Making the complexity seem
worthwhile, Nathaniel points out that, by combining a FRNG
with a linear, congruential generator, we can build a genera-
tor which passes all known tests for randomness. Unfortu-
nately, he doesn't show us how to actually combine the two.
While Nathaniel walks us step-by-step through the process
of realizing the generator in code, his very mathematician-
like writing style can make the going slow at times.

J.B. Ho, P.Y. Kokate, M. Huda, R. Haskell, and N.K. Loh
present an application of Forth in Optimal Control. In the
paper, they show how a linear quadratic regulator (LQR) can
be written in Forth, and applied to the control of a statically
unstable system (the old ball-on-a-moving-hill problem).
Unfortunately, their explanation of the theory behind the
LQR assume; that the reader has a background in Control
Theory. Their accompanying source code is a bit cryptic, with
word names like TSTH. CCF. Luckily, there are only 12 blocks
of code (six for a PC implementation, and six for a 68HCll
implementation), making the necessary study and reverse-
engineering of the system feasible.

bf historical interest, Howard Rogers shows how to in-
crease the useful Forth dictionary space of a TI 99/4A com-
puter by moving array and heap storage out into the RAM of
the video display processor. What's that? You're still using
one of these machines? Can I interest you in a slightly used
Data General Nova? Anyway, the text and source code are
both easy to read, so have fun.

Mike Elola, like many of us who have written production
software, is stuck by Forth's lack (actually, all programming
languages suffer at the foot of this problem) of numeric in-
put routines. Mike's solution to the problem is good, provid-
ing a small set of words that will satisfy most of our needs.

I I I

Forth Dimensions XIXI1 17

I've enjoyed Brad Rodriguez' papers ever since1-saw him
present at my first Rochester Forth Conference (1990). Per-

what's really special about this paper, though, is that Mike
takes us along on his quest to find The Simple Solution, as he

tries a number of tacks in an effort to identify The Real Prob-
lem. The numeric input problem is a tough one to surmount,
and Mike's well-written narrative of his trip through solu-
tion-land is highly educational. It's a vitally important facet
of the programming process which more of us need to in-
clude in our papers. Well done, Mike.

lssue Number 5
J.J. Martens provides us with a Double Entry Bookkeeping

application. While he doesn't get deeply into the actual me-
chanics of bookkeeping, he does provide a short description
of his system and its embodying source code. His coding style
is traditional and straightforward, and the system occupies a
total of 15 blocks (plus 15 shadow blocks of documentation).
While that size makes the system nontrivial, the code is de-
composed very nicely, and is easy to understand. If I were to
meet J.J., I'm sure I'd like him. He says things like, "Screen 18
is my favorite.. . It may not look like much, but it may be where
I learned the meaning of iteration. Early versions used up to
three screens." Yep, that's Forth. It stays out of your way, so

feeling as if Forth may be something special, perhaps even
mystical. (Those who know me will tell you that I disagree.)
Jack also includes the source code listing for his SC32 assem-
bler. This is less than mystical, being of surprising length (I'd
say about 20 Kbytes of source code). The code itself appears
simple enough, however, and may not be very difficult to un-
derstand, should you decide to delve into it.

lssue Number 6
Thinking about designing your own Forth processor? Then

you won't want to miss this issue.
Phil Koopman presents a wonderful paper offering a his-

torical, as well as technical, perspective of his tenure as a Forth
processor designer. In the paper, he describes the process he
went through from the time he began his first design, the
WISC 16 (for Glen Haydon's WISC Technologies), through
his development of the Harris RTX 32P (which, I believe, even--
tually became the RTX 4000). He also discusses some of the
important design decisions and tradeoffs which need to be
considered during the Forth hardware design process. This

not familiar, so it's difficult (without spending a lot of time) for
me to say just how easy this code will be to port. That said, each
of the three versions of Chester's stepper occupies about four
blocks, so there aren't volumes of code to reverse engineer. I
have found single-steppers to come in handy on occasion (I've
written two in production development environments), so you
may want to look into this paper yourself.

Tim Hendtlass is another one of my favorite authors. His
paper on Multitasking and Controlling Regular Events is, for
the most part, a very well-written tutorial on the Forth coopera-
tive multitasker. Using his paper, any novice would be able to
write a task, link it into the chain, start it, and stop it. Tim also
includes a short tutorial on defining words, clearly explaining
how the CREATE ... WES> construct works. Interestingly, this
paper's most significant contribution occurs in the first few para-
graphs, where Tim offers an architecture and tiny little lexicon
for making task execution time-dependent. For me, this is yet
another paper from which I will be stealing ideas.

Do you work with databases? Then David Arnold's Binary
Table Search could come in handy. By doing a recursive bisec-
tion of a numerically fielded, ordered table, David's binaryT
search can provide an order-of-magnitude performance increase
over a typical, sequential search. If your system has a lot of
tables in it, then including the binary search as a low-level
tool could give your system quite a performance boost. David's
explanation of the search technique, and of his code, is well
written and very clear. The business end of his code occupies
only four blocks, making it easy to port to your system. David
also provides an example application for even more clarity.

I Last, Jack Woehr waxes eloquently about Forth and its real-
ization in hardware in his paper, Seeing Forth. The third chap-
ter of his book by the same name, the short text leaves you

18

DaDer offers something verv I

16 com~lished. It's a must-read for 1

son alike. 1
John Hayes describes the design of the SC32, one of the

many Forth processors which he and his team designed at
the Johns Hopkins Applied Physics Laboratory. While John
does a great job of explaining many of the internals of the
SC32, he also provides a deft discussion of the reasoning be-
hind, and implementation techniques used in, native Forth
processors. John's discussion of the SC32 is so clear and simple
that it could be used as a primer on processors for the novice
programmer. After reading the paper, I was impressed by the
team's insights, particularly their multiple-reuse of certain in-
structions, providing a number of different Forth operations
from a single (!) instruction. This is a very interesting paper
on a very interesting processor.

C.H. Ting presents his Phase ANgle Difference Analyzer
(PANDA). Ting shows us how a very simple algorithm can be
used to determine the phase difference of a signal received
by two separate sensors. The phase difference can then be
converted into an angle of arrival, indicating the direction to
the source of the signal. Ting then shows how he implemented
this system on a Novix NC4000, providing an accuracy of
0.05 degrees over a frequency range from 20 Hz to 20 kHz.
Ting's source code for the system (written in cmForth, still
my favorite Forth system) is about 10 Kbytes long and, as
always, is clear, well decomposed, and well thought-out. Ting's
discussion of the difference algorithm does a good job of ex-
plaining a fairly complex subject. However, you'll still have
to exercise the old noggin a bit to keep up.

Wondering how to use some of the new ANS Forth words?
John Hayes shows how some of the new words can be used to
write code which is portable across machines of differing data
and address sizes. I expect this paper will be particularly en-
lightening to those who have only worked on PCs, or to those

I

Forth Dimensions XIW1

who have looked at the ANS Forth memory access words ask-
ing, "Why?" Here is why, and how. Note that he wrote this
paper long before the standard was cast in stone. I didn't note
any significant differences between the words as he used them
and as they appear today but, as always, your mileage may vary.

Epilogue
"There, I am done. Whew, that was hard work."

-Ed Norton
The Honeymooners

Writing this review required about eight hours of work per
issue, making for a total of about 48 hours. Why did I do it? At
first, it was because Skip and Trace Carter are my friends, and
they asked me to do it. However, shortly after starting the project,
I began to realize that 1 was getting something out of it myself-
an exposure to all this great work others had done. Lately, with
my limited free time, 1 rarely get to read my Forth Dimensions
cover-to-cover. For the review, however, I read each issue care-
fully and thoroughly, learning a lot of great things in the pro-
cess. On top of that, I really feel I've provided a service to the
Forth community, and I'm pretty happy with the results.

1 guess my point is this: don't be afraid to donate your time
and energy to FIG. In the end, you'll find it pays off as much
for you as it does for others.

FIG has reserved 100 complete sets of
FD Volume XI

Available on a first-come, first-served basis while supplies last.

For a little less than a year's memberhsip, you can have all this Forth
knowledge on your bookshelf, for immediate reference or leisurely
study. Your member discount applies, naturally.The total member
price of just $39.50 includes shipping and handling (non-members
pay 542.50;California residents add the amount of sales tax for your
area before the shipping and handling-see the mail-order form).

Forth Interest Group
100 Dolores Street, Suite 183 Carmel, California 93923

voice:408-373-6784 fax: 408-373-2845
e-mail: offke@forth.orq

"Letters,"continued from page 5
patching mechanism was not original with Bob, 1 don't
know where he got it, but he was using it by 1983.

2. My point was not to propose something new, but rather
to re-propose something old, of clear usefulness, and
familiar enough that we could all accept it.

3. I believe 1 have a healthy regard for the ANSI Forth
Standard. My feeling is that, if something can be done
in a standard way, it should be; but if I need something
the standard doesn't provide, I'm not going to deprive
myself of it on purist grounds. My word RETRY, which is
central to my coding style, is a case in point.

4. 1 agree that the technique of dictionary patching with
which I implement the M ~ D U L E idea is not portable,
though I'm assured that the idea can also be implemented
with hashed headers. In any case, it probably cannot be
implemented in a standard way, at least not with the
design goals I had in mind. These design goals are:
i. To keep the implementation part of a module private

and localized. In particular, I wanted to prevent the __
user (me) from opening the private part later and
adding to the private part. This has to do with
keeping things clean.

ii. To not only hide the headers, but also to throw them
away and reclaim the space.

iii. To make these modules nestable.
Wil's implementation of GENERAL and PRIVATE, if 1 un-

derstand it, while interesting, meets none of these goals and
would have been of no use to me in the project where 1 needed
my implementation. Which brings me to my last point:
5. I often wonder, when I see neat new Forth ideas,

whether they've been implemented just because the
implementor could, or whether they meet an actual
need in an actual product. When I was first exposed to
Mitch Bradley's implementation of LISP's CATCH and
THROW by Mike Perry at the tail end of a FORML session
several years ago, 1 adopted it immediately. I may have
been among the top ten users of these words in the
Forth world before ANS Forth, because they met a need
for me (not error handling, by the way, but menu
navigation). (All right, CATCH and THROW are cute, too,
and I liked that.) RETRY and my MODULE implementa-
tion have also received extensive use-hundreds,
thousands of uses in the unfortunately now-defunct
food service application I used to tend.. . I had two
versions of my MODULE implementation words (the
second being the one that uses EXPORTS) because the
first, which just patches the dictionary, didn't meet the
needs of my actual practice. On the other hand, I've
never had any use for local variables, and thus have not
spent any energy developing clever implementations of
them, standard or otherwise.

Finally, I apologize to Val Shorre for not knowing his work,
and I apologize to all to whom 1 may have seemed to be tak-
ing credit for something I didn't mean to take credit for. Again,
my intent was to try to get a useful idea used, not to stake out
territory.

Richard Astle Del Dios, California
rastle@bigfoot.com
rastle@ix.netcom.com

Forth Dimensions XIX/I 19

Abstract-This note describes the genesis of a (possibly) use-
ful Forth tool. Code fragments can be tested prior to compi-
lation to determine their effect on the data and return stacks,
without risking system crashes or hidden bugs. Code for a
preliminary version is given, together with discussion of pos-
sible improvements, should that prove desirable.

T he newsgroup comp.lang.forth is, as everyone knows, a
wonderful sector of cyberspace. Not only is it inhabited

by some of the most helpful and well-mannered folks one is
likely to encounter anywhere, it is often a fertile source of ideas.

The title of this article was the subject heading of a con-
versation that took place in comp.lang.forth late last sum-
mer (1996). M. Jean-Fran~ois Brouillet, a relative newcomer
to the newsgroup, inquired whether anyone else had been
troubled by the problem of manipulating deep stacks (and
losing track of them). I quote (with permission) excerpts from
M. Brouillet's post:

Subject: Working Comments (long)?
From: verec@micronet.fr (Jean-Francois Brouillet)
Date: 1996/08/3 1 Newsgroups: comp.lang.forth

[introductory remarks deleted]
a) the situation: I find myself too often lost with an untractable

series ofstack operations in a row, and,even i f lput stackcomments
line by line, I have to make sure they reflect correctly what is hap-
pening on the stack. This means I have to do the check twice:one for
the correct sequence of DUPs, OVERS, NIPS, etc.. . . the other to make
sure the stack comment really reflects what's going on.

So it occurred to me that, since keeping track of the stack state
required that stack comments be written, why not then write only
stack comments, and make them work instead of the correspond-
ing sequence of stack operators?'

b) the goa1:make (a b c d -- b d) actually work.
C) limitation: nothing but stack items already on the stack can be

expected to be on the stack after completion. In other words, I don't
want to include a full language within the permutation operation.

d) extension: handle the return stack, too.

[syntactic notations deleted1
[poten rial implementation strategies deleted I

Comments, anyone ?
Jean-Francois Brouillet, verec@micronet.fr
Macintosh Software Developer

I

tlrouillet's complaint reminds me of how I came to write a FORmula
TRANslator [I] and a finite state machine compiler [2]. I was appending
formulaic comments to programs that evaluated mathematical expres-
sions, and state transition table comments to programs that used the finite
state machine style of programming. At some point in each case, it
belatedly occurred to me the computer could do much of the work, by
compiling such comments into Forth code.

My reply:
Subject: Re: Working Comments (long)?
From: jvn@faraday.clas.Virginia.EDU (Julian K Noble)
Date: 1996/09/02 Newsgroups: comp.lang. forth

verec@micronet.fr writes:
[deleted]

> d) extension :handle the return stack too.
[more deleted I

> Comments, anyone ?

You would certainly have to include the return stack, since the
stack picture

(a b c d - - b d)
is ambiguous. That is, there are several ways to get this result, each
with different program consequences:

:2nip nip r o t d r o p ; (a b c d - - b d)
.-shuffle-off-to-buffalo swap >r rot >r ;
:something-else YOUR CODE GOES HERE ;

I frankly don't think the stack picture compiler is very useful.
However,you might want to considera stack-picture producer-

thatmight be a usefulinteractive tool.Thatis,confronted with some-
thing like:

SP" tuck >r 4 roll swap"

it might respond with
tuck >r 4 roll swap
assumes 5 arguments
leaves 1 argument on return stack
(n4n3n2n l no--n3n2nOn1 n4)(c--no)

Julian K Noble, jvn@virginia.edu

(Before anyone hastens to point out that the word
shuffle-off-to-buffalo
is a system-crasher, let me assure everyone I knew this when
I posted it.)

Were I to re-post my reply today, I would add that a stack-
picture compiler would require much more time to implement
than I initially surmised, as it is impossible. ("The difficult takes
us a while; the impossible a little longer."-motto of the Seabees.)
The reason is implicit in my first answer: the mapping from
code to stack picture is many-to-one, hence there is no unique
way-short of telepathy or clairvoyance-to reconstruct the in-
tended code. On the other hand, s i m p l i i g programs and elimi-
nating bugs are always worthwhile goals, hence my counter-
proposal for a code tester-a tool that would reveal the stack
effect of a code sequence without crashing the system.

The main question in my mind was whether such a tool
was useful enough to justify the effort of its creation. Forth
practitioners already know how to simplify their code: factor,
factor, factor. By breaking programs into short, telegraphically

20 Forth Dimensions XlWl

FORTH INTEREST GROUP
MAIL ORDER FORM
HOW TO ORDER: Complete form on back page and send with payment to the Forth Interest Group. All items
have one price. Enter price on order form and calculate shipping & handling based on location and total.

1994-1995 FORML PROCEEDINGS (in one volume!) 325 - $50 4

A volume consists of the six issuesfrom the volume year (May-April).

Volume 1 Forth Dimensions (1979-80) -$35

Introduction to FIG, threaded code, TO variables, fig-Forth.

Volume 6 Forth Dimensions (1984-85) 106 - $35

Interactive editors, anonymous variables, list handling, integer
solutions, control structures, debugging techniques, recursion,
semaphores, simple V0 words, Quicksort, high-level packet
communications, China FORML.

Volume 7 Forth Dimensions (1985-86) 107 - $35

Generic sort, Forth spreadsheet, control structures, pseudo-
interrupts, number edlting, Atari Forth, pretty printing, code
modules, universal stack word, polynomial evaluation, F83
strings.

Volume 8 Forth Dimensions (1986-87) 108 - $35

Interrupt-driven serial input, data-base functions, TI 99/4A,
XMODEM, on-line documentation, dual CFAs, random
numbers, arrays, file query, Batcher's sort, screenless Forth,
classes in Forth, Bresenham line-drawing algorithm, unsigned
division, DOS file U0.

Volume 9 Forth Dimensions (1987-88) 109 - $35

Fractal landscapes, stackerrorchecking, perpetual date routines,
headless compiler, execution security, ANS-Forth meeting,
computer-aided instruction, local variables, transcendental func-
tions, education, relocatable Forth for 68000.

110-$35 Volume 10 Forth Dimensions (1988-89)

dBase file access, strin handling, local variables, datastructures,
object-oriented~orth~nearautomata,stand-aloneapplications,
8250 drivers, serial data compression.

Volume 11 Forth Dimensions (1989-90) 111-$35

Local variables, graphic filling algorithms, 80286 extended
memory, expert systems, quaternion rotation calculation,
multi rocessor Forth, double-entry bookkeeping, binary table
searcf: phase-angle differential analyzer, sort contest.

Volume 12 Forth Dimensions (1990-91) 112 - $35

Floored division, stack variables, embedded control, AtariForth,
optimizing compiler, dynamic memory allocation, smart RAM,
extended-precision math, interrupt handling, neural nets, Soviet
Forth, arrays, inetacompilation.

7-

Volume 13 Forth Dimensions (1991-92) 113 - $35

Volume 14 Forth Dimensions (1992-93) 114 - $35

Volume 15 Forth Dimensions (1993-94) 1 1 5 4 3 5

Volume 16 Forth Dimensions (1994-95) L16 -$35

Volume 17 Forth Dimensions (1995-96) 117 - $35

FORML (Forth Modification Laboratory) is an educational forum for
sharing and discussing new or unproven proposals intended to
benefit Forth, and is an educational forum for discussion of the
technical aspects of applications in Forth. Proceedings are a
com ilation of the papers and abstracts presented at the annual
conzrence. FORML is part of the Forth Interest Group.

1981 FORML PROCEEDINGS 31 1 - $45
CODE-less Forth machine, quadruple-precision arithmetic,
overlays, executable vocabulary stack, data typing in Forth,
vectored data structures, using Forth in a classroom, pyramid
files, BASIC, LOGO, automatic cueing language for multimedia,
NEXOS-a ROM-based multitasking operating system. 655pp.

1982 FORML PROCEEDINGS 312 - $30
RockwellForthprocessor, virtualexecution, 32-bit Forth, ONLY
for vocabularies, non-IMMEDIATE looping words, number-
input wordset, I/0 vectoring, recursive data structures, prog-
rammable-logic compiler. 295 pp.

1983 FORML PROCEEDINGS 313 - $30
Non-Von Neuman machines, Forth instruction set, Chinese
Forth, F83, compiler& interpreterco-routines, log &exponential
function, rational arithmetic, transcendental functions invariable-
precision Forth, portable file-system interface, Forth coding
conventions, expert systems. 352 pp.

1984 FORML PROCEEDINGS 314 - $30
Forth expert systems, consequent-reasoning inference engine,
Zen floating point, portable graphics wordset, 32-bit Forth,
HP7IB Forth, NEON--object-onented programming, decom-
piler design, arrays and stack variables. 378pp .

1986 FORML PROCEEDINGS 316 - $30
Threading techniques, Prolog, VLSI Forth microprocessor.
natural-language interface, expert system shell, inference engine,
multiple-inhentance system, automatic programming environ-
ment. 323 pp.

1988 FORML PROCEEDINGS 318 - $40
Includes 1988 Australian FORML. Human interfaces, simple
robotics kernel, MODUL Forth, parallel processing,
rogrammable controllers, Prolog, simulations, language topics,

Eardware, ~ i l ' s workings & ~ i n ~ ' s philosophy, ~ o r t h hardware
applications, ANS Forth session, future of Forth in A1
applications. 310 pp.

1989 FORML PROCEEDINGS 319 - $40
Includes papers from '89 euroFORML. Pascal to Forth,
extensible optimizer for compiling, 3D measurement with object-
orientedForth, CRCpolynomials, F-PC, Hanis Ccross-compiler,
modular approach to robotic control, RTX recompiler for on-
line maintenance, modules, trainable neural nets. 433 pp.

1992 FORML PROCEEDINGS 322 - $40
Object-oriented Forth based on classes rather than prototypes,
color vision sizing processor, virtual file systems, transparent
target.develoqment. S i g n a l r i n g pattern classification,
optlmlzation in low-level orth, local variables, embedded
Forth, auto dis lay of digital images, graphics package for F-
PC, B-tree in L r t h 200pp.

1993 FORML PROCEEDINGS 323 - $45
Includes papers from '92 euroForth and '93 euroForth
Conferences. Forth in 32-Bit protected mode, HDTV format
converter, graphing functions, MIPS eForth, umbilical
com ilation ortable Forth engine, formal specifications of
~ortt?, writinggetter ~ o r t h , ~ o l o n - w new way o f~or th , FOSM,
aForth string matcher, Logo in Forth, programming pioductivity.
509 pp.

ALL ABOUT FORTH, 3rd ed., June 1990, Glen B. Haydon 201 - $90

Annotated glossary of most Forth words in common usage,
including Forth-79, Forth-83, F-PC, MVP-Forth. Implementa-
tion examples in high-level Forth andlor 8086188 assembler.
Useful commentary given for each entry. 504pp.

/ eFORTH IMPLEMENTATION GUIDE. C.H. Ting 215 - $25

eForth is the name of a Forth model designed to be portable to
a large number of the newer, more powerful processors availab-
le now and becoming available in the near future. 54 pp. (wl
disk)

I Embedded Controller FORTH, 8051, William H. Payne 216 - $76

Describes the implementation of an 8051 versionof Forth. More
than half of this book contains source listings (wldisks C050)
511 pp.

I F83 SOURCE. Henry Laxen & Michael Perry 217 - $20

A complete listing of F83, including source and shadow screens.
Includes introduction on getting started. 208 pp.

/ THE FIRST COURSE, C.H. Ting 223 - $25

This tutorial's goal is to expose you to the very minimum set of
Forth instructions you need to use Forth to solve practical
problems in the shortest possible time. "... This tutorial was
developed to complement The Forth Course which skims too
fast on the elementary Forth lnstructlons and d ~ v e s too quickly
in the advanced topics ,in a upper level college microcomputer
laboratory ..." A runnlng F-PC Forth system would be very
useful. 44 pp.

I THE FORTH COURSE. Richard E. Haskell 225 - $25

This set of 11 lessons, called The Forth Course, is designed to
make it easy for you to learn Forth. The material was developed
over several years of teaching Forth as part of a seniorlgraduate
course in design of embedded software computer systems at
Oakland University in Rochester, Michigan. 156pp. (wldisk)

I FORTH NOTEBOOK. Dr. C.H. Ting 232 - $25

Good examples and applications. Great learning aid. poly-
FORTH is thedialect used. Someconversion advice is included.
Code is well documented. 286 pp.

/ FORTH NOTEBOOK 11, Dr. C.H. Ting 232a - $25

Collection of research papers on various topics, such as image
processing, parallel processing,and miscellaneous applications.
237pp.

Users manual to the public-domain Forth system optimized for
IBM PCIXTIAT computers. A fat, fast system with many tools.
143 pp.

/ F-PC TECHNICAL REFERENCE MANUAL 351 - $30

/ A must if you need to know theinner workings of F-PC. 269pp.

1 INSIDE F-83, Dr. C.H. Ting 235 - $25

1 Invaluable for those using F-83.226 pp.

I OBJECT-ORIENTED FORTH, Dick Pountain 242 - $37

Implementation of data structures. First book to make object-
oriented programming available to users of even very small
home computers. I18 pp.

1 STARTING FORTH (2nd ed.). Leo Brodie 245 - $37

In this edition of Sturting Forth-the most popular and complete
introduction to Forth-syntax has been expanded to include the
Forth-83 Standard. 346 pp.

I THINKING FORTH, Leo Brodie 255 - $30

BACK BY POPULAR DEMAND! The bestselling author of
Stctrting Forth is back again with the first guide to using Forth
to program applications. This book captures the philosophy of
the lan~uage to show users how to write more readable, better
maintamable applications. Both beginning and experienced
pro rammers will gain a better understanding and mastery of
suck topics: Forth style and conventions, decomposition,
factoring, handlin data, simplifying control structures. And, to
give you an idea ofhow these concepts can be applied, Thinking
Forthcontainsrevealinginterviews with real-life usersand with
Forth's creator Charles H. Moore. To program intelligently, you
must first think intelligently, and that's where Thinking Forrh
comes in. Reprint of original, 272pp.

WRITE YOUR OWN PROGRAMMING LANGUAGE
USING C++, Norman Smith 270- $16

This book is about an application language. More specifically,
it is about how to write your own custom application language.
The book contains the tools necessary to begin the rocess and
a complete sample language implementation. (tuess what
language!) Includes disk with complete source. 108pp.

/ WRITING FCODE PROGRAMS 252 - $52

This manual is written for designers of SBus interface cards and
other devices that use the FCode interface language. It assumes
familiarity with SBus card design requirements and Forth
rfamming.Thematerid covered discusses SBus development
or 0th OpenBoot l .O and 2.0 systems. 414pp.

Forth Dimensions Article Reference 151 - $4
An index of Fforth articles, by keyword, from Forrh Dirtlensions
Volumes 1-1 5 (1 978-94).

FORML Article Reference 152 - $4
~n ' index of Forth articles by keyword, author, and date from the
FORML Conference Proceedings (1980-92).

authoi as public domain, shareware, or use with some restrictions.
This library does not contain "For Sale" applications. To submityour
own contributions, send them to the FIG Publications Committee.

,

The "Contributions from the Forth Community" disk library contains
author-submitted donations, generally including source, for a
variety of computers & disk formats. Each file is determined by the

1 FLOAT4th.BLK V 1.4 Robert L. Smith COO1 - $8

F-PC V3.6 & TCOM 2.5, Tom Zimmer C200 - $30
A full Forth system with pull-down menus, sequential files,
editor. forward assembler, metacompiler, floating point.
Complete source and help files. Manual for V3.5 available
separately (items 350 & 35 I). Base for other F-PC applications.

IRM HD. 83.3.SMh

Software floating-point for fig-, poly-, 79-Std., 83-Std.
Forths. IEEE short 32-bit, four standard functions, square
root and log. *** IBM, 190Kb, F83

Games in Forth COO2 - $6
Misc. games, Go, TETRA, Life ... Source.

IBM,760Kb

A Forth Spreadsheet, Craig Lindley COO3 - $6
This model spreadsheet first appeared in Forth Dimensions
V11/1,2. Those issues contain docs & source.

* IBM, 100Kb

Automatic Structure Charts, Kim Harris COO4 - $8
Tools for analysis of large Forth programs, first presented
at FORML conference. Full source; docs incl. in 1985
FORML Proceedings. ** IBM, 114Kb

A Simple Inference Engine, Martin Tracy COO5 - $8
Based on inf. engine in Winston & Horn's book on LISP,
takes you from pattern variables to complete unification
algorithm, with running commentary on Forth philosophy
& style. Incl. source. ** IBM, 1 6 2 K b

The Math Box, Nathaniel Grossman COO6 - $10
Routines by foremost math author in Forth. Extended
double-precision arithmetic, complete 32-bit fixed-point
math, & auto-ranging text. Incl. graphics. Utilities for
rapid polynomial evaluation, continued fractions &Monte
Carlo factorization. Incl. source & docs.

** IBM, 118 K b

AstroForth & AstroOKO Demos, I.R. Agumirsian COO7 - $6
AstroForth is the 83-Std. Russian version of Forth. Incl.
window interface, full-screen editor, dynamic assembler
& a great demo. AstroOKO, an astronavigation system in
AstroForth, calculates sky position of several objects from
different earth positions. Demos only.

* lBM,700 K b

Forth List Handler, Martin Tracy COO8 - $8
List primitives extend Forth to provide a flexible, high-
speed environment for AI. Incl. ELISA and Winston &
Horn's micro-LISP as examples. Incl. source & docs. ** IBM, 170 K b

8051 Embedded Forth, William Payne COSO - $20
8051 ROMmable Forth operating system. 8086-to-8051
target compiler. Incl. source. Docs are in the book Embedded
Controller Forthfir the 8051 Family. Included with item
#216 *** IBM HD, 4.3 M b

%

68HCl l Collection C060 - $16
Collection of Forths, tools and floating-point routines for
the 68HC11 controller. *** IBM HD, 2.5 M b

F83 V2.01, Mike Perry & Henry Laxen ClOO - $20
The newest version, ported to a variety of machines.
Editor, assembler, decompiler, metacompiler. Source and
shadow screens. Manual available separately (items 217 &
235). Base for other F83 applications. * IBM, 83,490 K b

F-PC TEACH V3.5, Lessons 0-7 Jack Brown C201- $8
Forth classroom on disk. First seven lessons on learning Forth,
from Jack Brown of B.C. Institute of Technology. * IBM HD, F-PC, 790 K b

VP-Planner Float for F-PC, V1.01 Jack Brown C202 - $8
Software floating-point engine behind the VP-Planner
spreadsheet. 80-bit (temporary-real) routines with transcen-
dental functions, number VO support, vectors to support numeric
co-processor overlay & user NAN checking.

** IBM, F-PC, 350 K b

F-PC Graphics V4.6, Mark Smiley C203 - $10
The latest versions of new gnphics routines. including CGA,
EGA, and VGA support, with numerous improvements over
earlier versions created or supported by Mark Smiley.

** IBM HD, F-PC, 605 K b

PocketForth V6.4, Chris Heilman C300- $12
Smallest completeForth forthe Mac. Access to all Mac functions,
events, files, graphics, floating point, macros, create standalone
applications and DAs. Based on fig & Starting Forth. Incl.
source and manual. * MAC, 640 Kb, System 7.01 Compatible.

Kevo V0.9b6, Antero Taivalsaari C360- $ I 0
CompleteForth-likeobject Forth forthe Mac. Object-Prototype
access to all Mac functions, files, graphics, floating point,
macros, create standalone applications. Kernel source included.
extensive demo files, manual. *** MAC, 650 Kb, System 7.01 Compatible.

Yerkes Forth V3.67 C350 - $20
Complete object-oriented Forth forthe Mac. Object access to all
Mac functions, files, graphics, floating point, macros, create
standalone applications. Incl. source, tutorial, assembler &
manual. ** MAC, 2.4Mb, System 7.1 Compatible.

Pygmy V1.4, Frank Sergeant CSOO - $20
A lean, fast Forth with full source code. Incl. full-screen editor,
assembler and metacompiler. Up to 15 files open at a time.

** IBM,320 K b

KForth, Guy Kelly C600 - $20
A full Forth system with windows, mouse, drawing and modem
packages. Incl. source & docs.

** IBM, 83,2.5 M b

Mops V2.6, Michael Hore C710- $20
Closecousin to Yerkesand Neon. Very fast, compilessubroutine-
threaded & native code. Object oriented. Uses F-Pco-processor
if present. Full access to Mac toolbox & system. Supports
System 7 (e.g., AppleEvents). Incl. assembler, manual &source. ** MAC, 3 Mb, System 7.1 Compatible

BBL & Abundance, Roedy Green C800 - $30
BBL public-domain, 32-bit Forth with extensive support of
DOS, meticulously optimized for execution speed. Abundance
is a public-domain database language written in BBL. Incl.
source & docs. / tr* IBM HD, 13.8 Mb, hard disk required

Return the old version with the FIG labels
and get a new version replacement for 112

the current version price. I
I * - Slarling ** -Intermediate *** -Advanced

Volume 18
MuP2 I - programming, demos, eForth 114 pp.

Volume 10 (January 1989) 810-$15
RTX re rints from 1988 Rochester Forth conference, object-
orientefcmtiorth, lesser Forth engines. 87pp.

Volume 11 (July 1989) 811 -$I5
RTX supplement to Footsteps in an Empty Valley, SC32,32-bit
Forth engine, RTX interrupts utility. 93 pp.

Volume 12 (April 1990) 812-$15
ShBoom Chip architecture and instructions, neural computing
module NCM3232, pigForth, binary radix sort on 80286,680 10,
and RTX2000.87 pp.

Volume 13 (October 1990) 813 - $15
PALS of the RTX2000 Mini-BEE, EBForth, AZForth, RTX-
2101,8086 eForth, 8051 eForth. 107pp.

Volume 14 814-$15
RTX Pocket-Scope, eForth for muP20, ShBoom, eForth for
CP/M & 280, XMODEM for eForth. 116 pp.

Volume 15 815 - $15
Moore: new CAD system for chip design, a portrait of the P20;
Rible: QS 1 Forth processor, QS2, RISCing it all; P20 eForth
software simulator/debugger. 94 pp.

Volume 16 816-$15
OK-CAD System. MuP20, eForth system words, 386 eForth,
80386 protected mode operation, FbP 1600 - 16-Bit real time
processor. 104 pp.

Volume 19 819 - $20
More MuP21 - programming, demos, eForth 135 pp.

Volume 20 820 - $20
More MuP21 - programming, demos, F95, Forth Specific
Language Microprocessor Patent 5,070,45 1 126 pp.

Volume 21
MuP21 Kit; My Troubles with This Darn 82C51; CTlOO Lab
Board; Born to Be Free; Laws of Computing; Traffic Controller
and Zen of State Machines; ShBoom Microprocessor;
Programmable Fieldbus Controller 1x1; Logic Des~gn of a 16-
Bit Microprocessor PI6 98pp.

T-shirt, "May the Forth Be With You9' 601 - $18
(Specify size: Small, Medium, Large, X-Large on order form)
wh~te des~gn on a dark blue shirt or green design on tan shirt.

BIBLIOGRAPHY O F FORTH REFERENCES 340-518 1
(3rd ed., January 1987)
Over 1900 references to Forth articles throughol;! computer

I
literature. 104 pp. 5

I

Non-Post Office
deliver~es: Include

Volume 17 817 - $15
P21 chip and specifications; Pic17C42; eForth for 68HCl I,
805 1, Transputer 128 pp.

Annual Forth issues, including code for various Forth applications.

September 1982, September 1983, Sepember 1984 (3 issues) 425 - $10

[7 CHECK ENCLOSED (payable to: Forth Interest Group) sub-total
VISAIMasterCard:

srreer V O I C ~

City fax
Zip StateIProv. email -

/ Card Number
-
exp. date

U.S & lnternat~onal

w U New U Renewal $45153160 1 1 Signature TOTAL 1

magazine Forth ~imensions. FIG also offers its members an on-line date base, a large selection of Forth literature and other services. Cost is $45 per year for U.S.A. & Canada surface; $53 Canada
air mall; all other countries $60 per year. This fee includes $39 for Forlh Dimensions. No sales tax, handling fee, or discount on membersh~p.

$40.01 to $80.00
$80.01 to $150.~)

Above $150.00

When you loin, your flrst issue will arrive in four to six weeks; subsequent issues will be mailed to you every other month as they are published-SIX issues in all. Your membership entltles you to a 10%
d~scount on oublicat~ons and functions of FIG. Dues are not deductible as a charitable contribution for U.S. federal income tax ~ u r ~ o s e s . but mav be deductible as a business ex~ense. I

$10.00
$15.00

10% of Total
40% of Total

- -

PAYMENT MUST ACCOMPANY ALL ORDERS
PRICES: All orders must be prepa~d Prlces are SHIPPING & HANDLING: SHIPPING TIME: *CALIFORNIA SALES TAX BY COUNTY:
subject to change wlthout notlce Cred~t card orders All orders calculate shlpplng Books In stock are shipped w~thln 75% Del , , J ~ ~ ~ ~ , F~~~~~ lmper,al Inyo, ~ ~ d ~ ~ ~ , orange,
will be sent and bllled at current prlces Checks must & handllng based on order seven days of recehptof the order Rverslde, sinla clara, Santa ~ ~ ~ b ~ ~ ~ , sari B ~ ~ -
be ln U S dollars drawnonau S bank A$lOcharge dollar value Speoalhandl~ng SURFACE DELIVERY: nardlno. San D~ego, and San Joaquln. 8.25% Alameda. Contra
wlll be added for returned checks ava~lable on request US 10days Costa. Los Angeles San Mateo. San Franc~sco. San Ben~to and

other: 30-60 days Santa Cruz: 7.25%: other counties.
XVlll-6

And for cases where the subroutine requires many argu-
ments (Brodie, Thinking Forth, p. 204), there are always named

> That's very nice. I would like this function, however1 think it's a
>very complicated/big piece.

VARIABLES, global or local, to simplify the stack. In fact,
M. Brouillet subsequently discovered the LOCALS lexicon of
ANS Forth, and found it to be exactly the tool he was seek-
ing, so he lost interest in a stack-effect compiler.

The discussion would have ended there, but for encour-
agement from Wolfgang Allinger:

On 02 Sep 96, Julian V. Noble) wrote:
fsnipp1

>I frankly don't think the stack picture compiler is very useful.

Well, not so complicated. Here is a preliminary version. It is less
than 2 pages incl. comments. (Don't know what that is in screens,
esp. if made illegible in the usual manner:-)

[Code placed in the Appendix, pp. 22-23 -Ed.]
Let me know ifyou find it useful as is, or if i t needs to output a

full stack description, as in the first Usaqe note.

Subject: Re: Working Comments (long)?
From: All@business.forth-ev.de (Wolfgang Allinger)
Date: 1996/09/03 Newsgroups: comp.1ang.forth

I had the same feeling, so I didn't think on it. But your answer
showed clearly, what I felt. THX.

To do this f i l l stack description needs redefinitions of all Forth
words that use stack, so when executed by EVALUATE they don't re-
ally execute, but just compute what they do to the stack.. .

Not hard,just more tedious than I wanted to do last nite.

>However, you might want to consider a stack-picture
>producer-that might be a useful interactive tool. That is,
>confronted with something like
> SP" tuck >r 4 roll swap"
>
>it might respond with
> tuck >r 4 roll swap
> assumes 5 arguments
> leaves 1 argument on return stack
> (n 4 n 3 n 2 n l no--n3nZnOnl n4)(r:--no)

That's very nice. I would like this function, however I think it's a
very complicated/big piece.

Bye bye by Wolfgang, all@business.forth-ev.de
FORTHing @ work Cheap Fast Good.. .pick any two of them

Herr Allinger's remark, "That's very nice. I would like this
function, however I think it's a very complicated/big piece"
challenged me to create a preliminary version of a stack-ef-
fect tool. It seemed to me the code need not be large, if one
used judiciously the Forth compilation mechanism. So one
of my motivations was to see how small one could make a
working tool that would still be legible, maintainable, and
portable. Another was a wish to respond to oft-posted com-
plaints (in comp.lang.forth) of the scarcity of public-domain
code examples that illustrate the power and beauty of Forth,
as well as good Forth coding practice*-that is, a professor
professes: c'est son mitier.'

Several days after receiving Allinger's challenge (I doubt
he meant it thus, but that's how I took it), I therefore posted
the following:

> Bye bye by Wolfgang, all@business.forth-ev.de
> FORTHing @ work Cheap Fast Good.. .pickany two of them

Well, i t was cheap and fast, anyway. ..
Julian V. Noble, jvn@virginia.edu

Since I have tried to make the code almost self-explana-
tory, it does not need a lot of discussion. The word sp" gets a
string, up to the trailing", and EVALUATES it (i.e., feeds it to
the Forth interpreter). To keep anything untoward from hap-
pening, we redefine some standard words in their own vo-
CABULARY~ SO they can be interpreted by SP" without per-
forming their normal functions. That is, words like DUP, ROT,
etc. that manipulate the data stack can be safely allowed to
do their normal thing; whereas words like >R, R>, or R@ are
manifestly hazardous. If your test application involves . (dot)
or EMIT it is probably a good idea to redefine these, also.

Using the Forth interpreter and eschewing bells and
whistles allowed me to keep the code small. The only signifi-
cant words required (beyond SP" itself) were those defining
the simulated return stack and its display. I also included some
words that make F-PC compatible with the ANS standard, to
facilitate testing by readers without access to a full ANS Forth.

Some final remarks: most good commercial Forths pro-
vide single-stepping for debugging purposes. Moreover, keep-
ing words short and factored, testing them as they are de-
fined, eliminates most stack problems. This is why I never
felt much need for a stack-picture tool.

I can imagine SP" being useful to experienced Forth pro-
grammers in only a few circumstances. One could be having
to program in an environment that prohibits the use of tools
like single-steppers or decompilers, say, through lack of
memory. Another would be to catch errors from unbalanced
return-stack manipulations, before they crash a system. Finally,
try though we might to avoid such tangles, certain algorithms
just seem to demand a stack with more than 1-3 items on it.

All@business.forth-ev.de writes:
[deleted 1

'Many Forth professionals, who could doubtless provide much better
examples than mine, have been frustrated by contractual arrangements
from publishing illustrative samples of Forth at its best.

?This paraphrases what Catherine the Great said when accused of being an
autocrat.

"A FORmula TRANslator for Forth," J. Forth
(1990) 131-156.

[Z] J.V. Noble, "Avoid Decisions," Computers in Physics 5 (1991)
386.

Code begins on next page.

tlt is now called a WORDLIST in ANS Forth, for reasons that 1 cannot
fathom-what was wrong with VOCABULARY?

Forth Dimensions XlWl 2 1

L A . .

ANS-compatible stack-picture tool

\ --preliminary version of 9/9/96
\ --modified for ANS compatibility and bug fixes on 5/24/97
\
\ Author: J.V. Noble jvn@virginia.edu
\
\ (c) Copyright 1996 Julian V. Noble. Permission is granted
\ by the author to use this software for any application
\ provided the copyright notice is preserved.
\
\ Usage
\ SP" tuck >r 4 roll swap"
\ (r : - -)
\ (d : 9 8 7 6 5 4 3 2 1 0)
\ tuck >r 4 roll swap
\ (r: 0)
\ (d : 9 8 7 6 5 3 2 0 4 1) ok

\ ANS compatibility (for F-PC)
2+ alias cell+ 2- alias cell- 2* alias cells

: to state @ if [compile] is else is then ; immediate

\ -- from eval.seq in the file zirnmer.zip
: evaluate (a1 nl ---)

dup
save!> span save!> #tib
save!> 'tib 0 save!> >in
run
restore> >in restore> tib
restore> #tib restore> span ;

' vocabulary alias wordlist
\ --renamed by X3J14 for no reason I can discern!

wordlist stack-pict
stack-pict definitions

\ allows redefining >r, etc.
\ (re)deflns -> stack-pict

CHAR must be (re)defined in the new vocabulary
because F-PC uses DEFERed CHAR for something else.

: char bl word 1+ c@ \ get 1st character of following string
state @ if [compile] literal then ; immediate

\ Code for stack-picture tool begins here

create fake r 10 cells allot \ fake r-stack
fake-r vaiue rp \ fake r-stack pointer
: r-set fake-r to rp ; \ initialize fake r-stack
: >r rp ! rp cell+ to rp ; \ push to fake r-stack
: r@ rp @ ;
: r> rp cell- to rp r@ ; \ pop from fake r-stack
: 2>r >r >r ;
: 2r> r> r> ;

: .r \ display fake r-stack
cr ." (r: "
rp fake-r
2dup cell- <= abort" rstack underflow!) "

22 Forth Dimensions XlWl

- . -

2dup <= if ." --) " 2drop exit then \ empty r-stack
do i @ . space 1 cells +loop
.It)'I ,

depth value old-depth \ place to save current stack depth

: #items depth old-depth - ; (-- #items)

: .S \ display data stack -- note difference from usual .s
cr ." (d: "
i tems ? dup
if (#items) 1- 0 swap (-- 0 n-1)

do i pick . space -1 +loop .") "
else ." --) " then \ nothing on stack

: s-clear #items dup
O> if 0 do drop loop then ;

: ten #Is - O 9 d o i - l + l o o p ; (- - 9 8 7 6 5 4 3 2 1 0)

: initialize stack-pict \ set search order
depth to old-depth \ save present data stack
r-set \ reset fake r-stack
ten - #Is ;

forth forth definitions

: sp" [stack-pict] \ set search order
initialize
.r .s \ display initial stacks
char " word \ get test string
count 2dup (-- c-adr u c-adr u)
cr type \ display string
evaluate \ evaluate test string
.r .s \ display final stacks
s-clear \ clean up
forth forth definitions ;

Forth Dimensions XIXI1 23

Standardizing OOF Extensions

Standardization and Libraries
Andrew McKewan argues that we need to agree on (i.e.,

standardize) one model to start building an object-oriented
library. My view is just the reverse: If someone writes a good
object-oriented library that everyone wants to use, we will all
use the object model on which that library is based; that model
will become a de facto standard and, finally, a de jure standard.

Andrew McKewan uses the Forth Scientific Library (FSL) as
an example. He argues that it was necessary to standardize float-
ing-point math in ANS Forth before the FSL could be written.
Even if that were true (of which I am not convinced), the cases
differ significantly: a floating-point implementation written
in Forth-83 would have been unacceptably slow, for many
purposes; on the other hand, many object-oriented models can
be implemented in standard Forth efficiently enough to be
useful: (By the way, this is a major strength of Forth over many
other languages: C, Pascal, Ada, etc. require language changes
and new compilers to accommodate object-oriented program-
ming; in Forth, every programmer can do it.)

As a counter-exam~le. consider the case of locals: even

The Neon Model
I cannot create a synopsis of the complete discussion,

therefore 1'11 restrict myself to the points relevant to the Neon/
Yerk model (as presented by McKewan3), which is also imple-
mented in Mops, Win32Forth, and in ANS Forth (as presented
by McKewan). This model currently appears to be the most
popular. The points under discussion were:

The Neon model uses a selector object syntax, which
makes it unnatural to pass objects on the stack. This
syntax makes it easy to pass the selector on the stack, but
that is rarely needed.

The Neon model uses the following syntax for dealing
with objects passed on the stack:

selector [code I

code must produce an object reference, which is then
consumed by the whole construction. This syntax
reduces the extensibility (see below), and offers no

L ,

though the committee standard- advantage over the more

ized the syntax LOCALS I this conventional (and, therefore,

r e a d c a n you I , many people easier to learn) syntax

use the syntax { you c a n read code selector

The Neon model allows sending (a message with) any 1 selector to any obiect (let's call such models Smalltalk-

this) . This syntax can be
implemented without performance penalty in standard Forth1
(http://www.complang.tuwien.ac.at/forth/anslocal.fs).

What would such an object-oriented library look like? It
have as few system as possible. This ex-

cludes libraries for dealing with windowing systems, which
appear to be the most popular application of object-oriented
technology in Forth. The library should deal with problems
that are hard enough to make reinventing the wheel unat-
tractive. A look at the standard libraries of other object-ori-
ented languages should provide some inspiration.

Consensus
The major problem with standardizing an object-oriented

model by agreeing on one is that there is no consensus. There
was a discussion of this topic on comp.lang.forth (subject:
Objects for ANS Forth) in August 1996. Rodriguez and
Poehlman2 list 17 object-oriented extensions for Forth, and
this does not include several that were discussed on
comp.lang.forth.

On the other hand, what's so bad about having no stan-
1 dard object model? We don't have a standard array or struc-
1 ture model, either, because we can build what we need when

we need it, at little cost.

24 Forth Dimensions XlWl

The bk01-1 model requires that the selector Parse the
input stream (at compile time). This leads to reduced
extensibility, and to bugs that are hard to find.

E.g., suppose, for some reason, you want to tick a selector
to get an execution token that you can EXECUTE or
COMPILE, later. How do you pass the object to that
selector? You cannot use the natural way, which is to
pass it on the stack; instead, you have to manipulate the
input stream.

Once you have managed to deal with the input stream,
the real trouble starts: All selectors defined with
McKewanfs implementation of the Neon model are State
Smart. 1-e.t what they do depends on the contents of
STATE when the selector is invoked. So You have to be
Sure to set STATE right for every place where such a
selector might be invoked. If you fail in that, the result-
ing bug is hard to find-

This should demonstrate the trouble with parsing words
in general and with the N~~~ model in particular. We
could choose to forbid ticking (and p o s ~ p o ~ E i n g)
selectors, or we could choose a model that does not have
this problem.

In contrast, some models (let's call them Java-like) allow
sending only those selectors to an object that were
explicitly defined for the class of the object or its ances-
tor classes. Some also have multiple inheritance or Java-like
interfaces.

In practice, you can program the same things with the
Smalltalk-like and Java-like models. In the Java-like models,
you have to define the selector in a common ancestor class (or
common interface) of all objects that use the selector. If you
fail to do this, and send a message to an object for which the
selector was not defined, the result in a straightforward imple-
mentation of a Java-like model is a crash or the invocation of
an unrelated method; in contrast, with a Smalltalk-like model,
you get a run-time error message not understood.

Concerning implementation, a Java-like model can be
implemented easily and efficiently, using a technique that
C++ implementors call virtual function tables. For a Smalltalk-
like model on an interactive system like Forth, using virtual
function tables is much harder.* Indeed, as far as I know, no
Smalltalk-like Forth extension uses virtual function tables;
they all use searching methods that are significantly slower.

Proponents of Smalltalk-like models argue that most se-
lector lookups can be resolved at compile time, eliminating
the searching overhead. However, studies of programs writ-
ten in full object-oriented style (in other languages) show that
message sends occur every 60 instructions (median), and even
complex analysis algorithms leave a significant number of
them unresolved (usually because the message send actually
does invoke different methods at run time)."

We can make the Neon model standard (after all, we can
still implement the others in plain Forth), but if we do so, we
should be aware of its properties.

References
1. John R. Hayes. "User-defined local variable syntax with

I ANS Forth." SixForth Newsletter, 4 no. 2, 1992.

2. Bradford J. Rodriguez and W.F.S. Poehlman. "A survey of ob-
ject-oriented Forths." SIGPLANNotices, pages 39-42, April 1996.

3. Andrew McKewan. "Object-oriented programming in ANS
Forth." Forth Dimensions, March-April 1997.

4. Jan Vitek and R. Nigel Horspool. "Compact dispatch tables
for dynamically typed object oriented languages." In Tibor
Gyim6thy, editor, Compiler Construction (CC '96), pages 309-
325, Linkoping, 1996. Springer LNCS 1060.

Continued from page 9
or decreasing the size of a running transputer Forth system).

Saving a modified transputer Forth system to the current
DOS drive via SAVE-SYSTEM TFORTH. FYS.
Saving a modified transputer Forth multisystem to the cur-
rent DOS drive via SAVE-MULTI TFORTH. F Y M .
On-line help for all vocabularies: HELP <word>.
Rich documentation in various .doc files.
Saving any transputer Forth RAM area as a DOS file.
Loading the contents of any DOS file to any transputer
Forth RAM area.
Breaking a transputer Forth program any time via [Escl ,
thereby jumping to server in host ...
... resuming such a program via START...
... or immediately exit to DOS BYE-FOR-D3S or[ESCI BYE.
Resuming transputer Forth operation from DOS level via
TRESUME (DOS batch file; data stack contents are preserved).
New loading of the transputer Forth system via LOAD-FTP
(the data stack contents get lost).
New loading of a previously saved multisystem via LOAD-
FTP M (the data stack contents get lost).
DuMPing with screen-forward and screen-back option on
keystroke.
LEARN setup procedure binds the on-line help system to
the respective CONTEXT vocabulary; LEARN comes with Sta-
tistics on words documented, words not found in the docu-
mentation file, and words defined more than once.
Keyboard buffer extension facility KEYBUF128 ! .
String input into keyboard buffer (so parameters to DOS
command calls can be easily transferred).
Loading any transputer Forth program source via INCLUDE
<name. FTH>.
25%) of the system gets metacompiled, the remaining part
is Simply loaded by INCLUDE TCORE [RETI .
KERNEL reduces system to base part of said 25%).
Easy modification of remaining 75% of transputer Forth
system by modifying the source file TCORE.FTH and in-
putting KERNEL INCLUDE TCORE.
Easy inclusion of non-ASCII characters in word names, by
switching from E N G L I S H to GERMAN (during ~ ~ m p i l a t i ~ n ,
a length is placed at the end of the word's name field).
TASSEMBLER acts as cross-assembler in host-resident server.
Assembling and disassembling (e.g., of OCCAM object code)
also from server in host.
DuMPing also from server in host: TDUMP.
Access to any editor via DOS <name> (e.g., Dos EDLIN).
Calling an additional host (Turbo-) Forth system from in-

I
- - / 32-bit data and return stacks, addresses, single-precision in- I

- - - -

5. ~ m e r ~ i w a n , J. Eliot B. Moss, and Kathryn S. McKinley.
"Simple and effective analysis of statically-typed object-oriented
~ro~rams." conference on Object-Oriented Programming System,
Languages &Applications (OOPSLA '96, pages 292-305,1996.

tegers and floating-point numbers (complies with IEEE 754).
64-bit double-precision integers and floating-point num-
bers (in compliance with IEEE 754).

side F-TP: DOS FORTH.
Calling PCTOOLS from inside F-TP: DOS PCTOOLS, etc.
Improved version of allows moving to previous screen, . Ability to mix high-level and low-level words any number
of times while compiling a word.

One could even use F-TP 1.00 by simply mouse-clicking
on the appropriate icon on the Windows 3.11 or Windows
95 desktop; however, there is no use doing so because, e.g.,
the list of words invoked by calling WORDS will creep extremely
slowly over the screen, compared to the enormous speed
achieved by operating F-TP 1.00 from DOS.

Forth Dimensions XlWl 25

Get It Up I

(S i x O n e - L i n e r s)

(A l l d e f i n i t i o n s are i n S t a n d a r d F o r t h CORE a n d CORE-EXT w o r d s .)

: ANEW > I N @ BL WORD F I N D I F EXECUTE ELSE DROP THEN > I N ! MARKER ;
: BOUNDS OVER + SWAP ; (a n -- a+n a)

: HAVING BL WORD F I N D N I P O= I F POSTPONE \ THEN ; IMMEDIATE
: LACKING BL WORD F I N D N I P I F POSTPONE \ THEN ; IMMEDIATE
. S" ANEW NONCE : NONCE-DEF " EVALUATE ; IMMEDIATE t r S" ; NONCE-DEF NONCE " EVALUATE ; IMMEDIATE

0 [IF] COMMENT

ANEW (" < s p a c e s > n a m e " --)

: ANEW (" < s p a c e s > n a m e W --)

> I N @ (> i n)
BL WORD F I N D I F (. e x e c - t o k e n)

EXECUTE (> i n)
ELSE DROP THEN

> I N ! (1
MARKER

Adjust the arguments for a DO-loop. H A V I N G ("<spaces>namel' --)

If name is found, ANEW executes it. name is expected to
have been defined by MARKER. name will forget itself and all
definitions after it.

ANEW then executes: MARKER name.
This defines name again so you can redefine the defini-

tions following it.
Put ANEW m a r k e r - n a m e at the beginning of your source

files.

BOUNDS (a n -- a+n a)

: BOUNDS OVER + SWAP ; (a n -- a+n a)

0 [IF] COMMENT

Comment out documentationusing[IF] [ELSE] [THEN] .

Note that [IF] [ELSE] [THEN] should be kept balanced
or, better, not used between [IF] and [THEN] . This restric-
tion applies within comments and quoted strings as well.

My personal convention is to use 0 [IF1 or 1 [IF] to
select alternative code that should work, FALSE [I FI to com-
ment out code that doesn't work, and 0 [IF] COMMENT to
comment out non-code.

I use \ to comment out code temporarily, and for other
comments I don't want in the final source. That's why you
don't see it much in my code.

I use (for stack state and other comments I want to keep
in the final source.

: HAVING ("<spaces>name" --)

BL WORD FIND NIP O=
I F POSTPONE \ THEN

; IMMEDIATE

Used:
0 [IF] COMMENT
mumble mumble mumble
[THEN]

If n a m e is found, interpret the rest of the line; other-
wise, skip the line. This is IMMEDIATE and can be used in a
definition.

26 Forth Dimensions XlWl

To include more than one line when name is not found:

H A V I N G name 0 [I F]

- whatever-
[T H E N]

LACKING (" <spaces>name" --)

: L A C K I N G ("<spaces>name" --)

B L WORD F I N D N I P
I F POSTPONE \ THEN

; I M M E D I A T E

If name is not found, interpret the rest of the line; other-
wise, skip the line. This is I M M E D I A T E and can be used in a
definition.

L A C K I N G is generally used before defining the name that
is lacking.

Start compiling a nonce word. The same as:

Used extensively for data initialization and testing.
Use ; ; to complete the definition, execute it, and forget it.
Nonce words let you execute loops from the keyboard.

They also allow you to initialize data structures programmati-
cally with no overhead.

Nonce words wouldn't be needed with self-compiling:

I F B E G I N DO ?DO

From the Random House Dictionary:
nonce word, a word coined and used only for the particular

occasion.

Finish compiling a nonce word, execute it, and forget it. If
errors occur, start over or type NONCE to recover. The same as

; NONCE-DEF NONCE

Procedarnus in pace.
Wil Baden

ANEW NONCE : NONCE-DEF / [THEN] [THEN] [T H E N]

Continued from page 29

24 [ELSE]

2 6 CREATE upper-case-map 256 CHARS ALLOT

28 (Initialize the map to change characters into themselves.)

29 : : 256 0 DO I upper-case-map I CHARS + C! LOOP ;;

3 1 (Replace the lower-case letters with upper-case.)

32 : : [CHAR] a 26 BOUNDS DO
3 3 I BL XOR upper-case-map I CHARS + C! LOOP
3 4 . .

I I

3 6 (Convert to upper-case by 'addr + C@ ' inline.)

3 7 : UP-CHAR S" CHARS upper-case-map + C@ " EVALUATE ; IMMEDIATE

3 9 : DOWN-CHAR BL XOR UP-CHAR BL XOR ;

41 [THEN] [THEN] -
43 (Convert string to upper-case.)

44 : UP-STRING (a u - -)
4 5 0 ?DO DUP C@ UP-CHAR OVER C! CHAR+ LOOP DROP
46 ;

48 SEE UP-STRING CR

Neil Bawd Goat Hill, California
"Anywhere is interesting for 15 minutes, except maybe Iowa."

Forth Dimensions XlWl 27

improving String Processing Speed
Before doing anything with this, include Tool Belt #01.
String processing in a high-level language, particularly

Forth, is notoriously slow. Here are ideas to improve the speed
of some Forth definitions.

The example is conversion of a string to upper case.
The first test shows how a competent Forth programmer

coded it. For each character in the string, he calls UP-CHAR,
which calls BETWEEN, which calls WITHIN. It does five to eight,
or more, Forth words besides.

Approximately the following is done for every character.
n e s t DUP l i t lit n e s t 1+ j u m p OVER - >R - R>
U< u n n e s t BL AND XOR u n n e s t

In the second test, five to eight Forth words are compiled
in-line, without any intermediate function calls.

The following is done for every character.
DUP l it - lit U< BL AND XOR

In the third test, two or three Forth words are compiled
in-line, at the expense of a 256-character map.

The following is done for every character.
addr + C @

INCLUDE this file three times to see results. UP-CHAR will
have a different definition each time. The decompilation of
UP-STRING will be different each time, although the source
is the same.

You can set Up-Char-Test to 0 to start over.
ANEW, BOUNDS, LACKING, : :, and ; ; are defined in Tool

Belt #01.
Making code in-line by using macros defined with EVALU-

ATE can often improve performance dramatically.
The first time the file is INCLUDE^, the result is:

VARIABLE Up-Char-Test 0 Up-Char-Test !

ANEW Up-Char-Test-Run

1 Up-Char-Test + ! CR . (Test#) Up-Char-Test ? CR

: BETWEEN 1+ WITHIN ; (x min max -- flag)

: UP-CHAR (c -- C) DUP [CHAR] a [CHAR] z BETWEEN BL AND XOR ;

SEE WITHIN SEE BETWEEN SEE UP-CHAR

(Convert string to upper-case.)
: UP-STRING (a u - -)

0 ?DO DUP C@ UP-CHAR OVER C! CHAR+ LOOP DROP
I

SEE UP-STRING CR

The second time the file is included:
ANEW Up-Char-Test-Run

1 Up-Char-Test + ! CR . (Test#) Up-Chac-Test ? CR

(Eliminate nesting UP-CHAR BETWEEN WITHIN)

: UP-CHAR (c - - C)
S" DUP [CHAR] a - 26 U< BL AND XOR " EVALUATE

; IMMEDIATE

(Convert string to upper-case.)

28 Forth Dimensions XlWl

: UP-STRING (a u - -)
0 ? DO DUP C@ UP-CHAR OVER C! CHAR+ LOOP DROP

SEE UP-STRING CR

The third time the file is included:
ANEW Up-Char-Test-Run

1 Up-Char-Test + ! CR . (Test#) Up-Char-Test ? CR

CREATE upper-case-map 256 CHARS ALLOT

(Initialize the map to change characters into themselves.)

: : 256 0 DO I upper-case-map I CHARS + C! LOOP ;;

(Replace the lower-case letters with upper-case.)

: : [CHAR] a 26 BOUNDS DO
I BL XOR upper-case-map I CHARS + C! LOOP

. . , ,

(Convert to upper-case by 'addr + C@' inline.)

: UP-CHAR S" CHARS upper-case-map + C@ " EVALUATE ; IMMEDIATE

: DOWN-CHAR BL XOR UP-CHAR BL XOR ;

(Convert string to upper-case.)

: UP-STRING (a u - - 1
0 ?DO DUP C@ UP-CHAR OVER C! CHAR+ LOOP DROP

SEE UP-STRING CR

Source Listing

1 LACKING Up-Char-Test VARIABLE Up-Char-Test 0 Up-Char-Test !

3 ANEW Up-Char-Test-Run

/ 5 1 Up-Char-Test + ! CR . (Test#) Up-Char-Test ? CR I
7 Up-Char-Test @ 1 = [IF] I : BETWEEN 1+ WITHIN ; (x m i n m a x -- f l a g)

11 : UP-CHAR (c -- C) DUP [CHAR] a &CHAR] z BETWEEN BL AND XOR ;

1 3 SEE WITHIN SEE BETWEEN SEE UP-CHAR

1 1 5 [ELSE] I
1 7 Up-Char-Test @ 2 = [IF] I
1 9 (E l i m i n a t e n e s t i n g UP-CHAR BETWEEN WITHIN)

2 0 : UP-CHAR (c - - C)
2 1 S" DUP [CHAR] a - 26 U< BL AND XOR " EVALUATE
22 ; IMMEDIATE

Continued on page 27 /
Forth Dimensions XlWl 29

1 ARRAY.FTH - basic array classes

\ Classes for indexed objects Version 1.0, 4 Feb 1997
\ A n d r e w McKewan rnckewan@austin.finnigan.com

\ ..

\ This is the base class for all indexed objects. It provides the
\ primitives that are common to all indexed objects.

:Class IndexedObj <Super Object CELL <Indexed

\ (-- addr) Leave addr of 0th indexed element
:M IxAddr: idxBase ;M

\ (-- limit) Leave max #elements for array
:M Limit: limit ;M

\ (-- e n) leave width of indexed elements
:M Width: width ;M

\ (index -- addr) return then address of an indexed element
:M "Elem: ?idx *elem ; M

\ (--) Indexed Clear: erases indexed area
:M Clear: idxBase width limit * ERASE ;M

\ ..

\ Basic cell array

1 :Class Array <Super IndexedObj CELL <Indexed

:M At: ? idx At4 ;M (index -- val)
:M To: ? idx To4 ;M (val Index --)
:M +To: ? idx ++4 ;M (incVal index --)

\ Fill the array with a value
: 1 (a --) limit 0 DO DUP I To4 LOOP DROP ;M

\ ..

? X-Array can execute its elements.

1 :Class X-Array <Super Array

\ (ind --) execute the cfa at Ind
:M Exec: ?idx At4 DUP O = ABORT" Null xt" EXECUTE ;M
:M ClassInit: ['1 NOOP Fill: self ;M

\ ..

\ Basic byte array. Y.

1 :Class ByteArray <Super IndexedObj 1 <Indexed

i :M At: ? idx At1 ;M (index -- val)

1 :M To: ? idx To1 ;M (val Index --)

I :M +To: ? idx ++1 ;M (incVal index --)

I
I
I

\ Fill the array with a value

1 M Fill: (a --) idxBase limit ROT FILL ;M

30 Forth Dimensions XlWl

TESTER.FTH - Hayes' automated testing program

\ From: John Hayes S1I
\ Subject: tester.fr
\ Date: Mon, 27 Nov 95 13:10:09 PST

\ (C) 1995 JOHNS HOPKINS UNIVERSITY / APPLIL3 ?HYSICS LABORATORY
\ MAY BE DISTRIBUTED FREELY AS LONG AS THIS COPYRIGHT NOTICE REMAINS.
\ VERSION 1.1
HEX

\ SET THE FOLLOWING FLAG TO TRUE FOR MORE VERBOSE OUTPUT; THIS MAY
\ ALLOW YOU TO TELL WHICH TEST CAUSED YOUR SYSTEM TO HANG.
VARIABLE VERBOSE

FALSE VERBOSE !

: EMPTY-STACK \ (. . . --) EMPTY STACK: HANDLES UNDERFLOWED STACK TOO.
DEPTH ?DUP IF DUP O< IF NEGATE 0 DO 0 LOOP ELSE 0 DO DROP LOOP THEN THEN ;

: ERROR \ (C-ADDR U --) DISPLAY AN ERROR MESSAGE FOLLOWED BY
\ THE LINE THAT HAD THE ERROR.

TYPE SOURCE TYPE CR \ DISPLAY LINE CORRESPONDING TO ERROR
EMPTY-STACK \ THROW AWAY EVERY THING ELSE

VARIABLE ACTUAL-DEPTH \ STACK RECORD
CREATE ACTUAL-RESULTS 20 CELLS ALLOT

\ (--) SYNTACTIC SUGAR.

: -> \ (. . . --) RECORD DEPTH AND CONTENT OF STACK.
DEPTH DUP ACTUAL-DEPTH ! \ RECORD DEPTH
?DUP IF \ IF THERE IS SOMETHING ON STACK

0 DO ACTUAL-RESULTS I CELLS + ! LOOP \ SAVE THEM
THEN ;

: 1 \ (. . . --) COMPARE STACK (EXPECTED) CONTENTS WITH SAVED
\ (ACTUAL) CONTENTS.

DEPTH ACTUAL-DEPTH @ = IF \ IF DEPTHS MATCH
DEPTH ?DUP IF \ IF THERE IS SOMETHING ON THE STACK

0 DO \ FOR EACH STACK ITEM
ACTUAL-RESULTS I CELLS + D \ COMPARE ACTUAL WITH EXPECTED
<> IF S" INCORRECT RESULT: " ERROR LEAVE THEN

LOOP
THEN

ELSE \ DEPTH MISMATCH
S" WRONG NUMBER OF RESULTS: " ERROR

THEN ;

: TESTING \ (--) TALKING COMMENT. ..
SOURCE VERBOSE @
IF DUP >R TYPE CR R> >IN !
ELSE 21N ! DROP
THEN ;

Forth Dimensions XlWl 31

TEST.FTH - class test suite

\ test. fth -- Class testing Version 1.0, 4 Feb 1997
\ Andrew McKewan mckewan@austin.finnigan.com

HAVE-TEST- [IF] -TEST- [THEN] MARKER-TEST-

S" TESTER.FTHW INCLUDED
TRUE VERBOSE !
DECIMAL
(-> 1
\ ===--- ...
TESTINGOBJECTCREATION

{ Var x ->)
{ 99 Put: x ->)
{ Get: x -> 99)
{ Var y ->)
{ Get: x 1+ Put: y ->)
{ Get: y -> 100)

:T1 Get: x ;
(Tl -> 99)

:Class Point <Superobject

Var x
Var y

:M Get: Get: x Get: y ;M
:M Put: Put: y Put: x ;M

:M Print: Get: self SWAP . . ;M

:M ClassInit: 1 Put: x 2 Put: y ;M

;Class

{ Point p ->)
{ Get: p -> 1 2)
{ 3 4 Put: p ->)
(Get: p -> 3 4)

:Class Pixel <Super Point

Var color

:M Put: (x y color --) Put: color Put: super ;M
:M Get: Get: super Get: color ;M

:M Print: Print: super Print: color ;M

;Class

(Pixel pix ->)
{ 1 2 3 Put: pix ->)
{ Get: pix -> 1 2 3)

TESTINGExecVec

ExecVec ex
(Exec: ex ->)
: NINE 9 ;
NINE Put: ex

{ Exec : ex -> 9)

\ ..
TESTINGLATEBINDING

:Class C1 <Super Object <General

:M Draw: 1 ;M

:M Print: 3 0 DO Draw: [self] LOOP ;M

Forth Dimensions XlWl

{ C 1 01 ->)
{ P r i n t : 01 -> 1 1 1)

:M D r a w : 2 ;M I
{ C2 0 2 ->)
{ P r i n t : 0 2 -> 2 2 2)

...
TESTING OBJECT POINTER

: C l a s s C 3 < S u p e r O b j e c t 1
C 1 p l
C 2 p 2
V a r ppl \ p o i n t e r t o p l
V a r p p 2

: M C l a s s I n i t : A d d r : p l P u t : pp l A d d r : p 2 P u t : p p 2 ;M
:M P r i n t : P r i n t : [G e t : ppl I P r i n t : [G e t : p p 2 I ;M
: M S w i t c h : G e t : p p l G e t : p p 2 P u t : p p l P u t : p p 2 ; M

; C l a s s

{ C3 0 3 ->)
(P r i n t : 0 3 -> 1 1 1 2 2 2)
{ S w i t c h : 0 3 ->)
(P r i n t : 03 -> 2 2 2 1 1 1)

TESTING ARRAY
I

1 0 A r r a y a1
{ 6 2 T o : a1 ->)
(2 A t : a1 -> 6)
{ 9 9 F i l l : a1 ->)
{ 5 A t : a1 -> 9 9)

: C l a s s C 4 < S u p e r O b j e c t

1 0 A r r a y a1

: M A t : (i n d e x - - v a l u e) A t : a1 ;M
:M T o : (value index --) T o : a1 ;M
:M F i l l : F i l l : a1 ;M

; C l a s s

(C 4 0 4 ->)
{ 6 2 T o : 0 4 ->)
{ 2 A t : 0 4 -> 6)
{ 9 9 F i l l : 0 4 ->)
(5 A t : 0 4 -> 9 9)

TESTING X-ARRAY

(1 0 X - A r r a y xa -> 1
: ONE 111 ; -
: TWO 2 2 2 ;
: THREE 3 3 3 ;
{ ' ONE 1 T o : xa ->)
(' TWO 2 T o : xa ->)
{ : T 3 [' I THREE 3 T o : xa ; T 3 ->)
1 E x e c : xa -> 111)

{ 2 E x e c : xa -> 2 2 2)
(3 E x e c : xa -> 333)
{ 4 E x e c : xa ->)

\ ..

HAVE ALLOCATE [I F]
TESTING HEAP OBJECTS

Support for older systems
Hands-on hardware and software

Computing on the Small Scale
Since 1983

Subscriptions
1 year $24 - 2 years $44

All Back Issues available.

TCJ
The Computer Journal ~ P.O. Box 3900

Citrus Heights, CA 95611-3900
800-424-8825 / 91 6-722-4970

Fax: 91 6-722-7480
BBS: 91 6-722-5799

Forth Dimensions XlWl 33

0 VALUE POBJ I
(Heap> Point TO POBJ -> }
{ Get: [POBJ] -> 1 2 }
(3 4 Put: [POBJ] ->I
Get: [POBJ I -2 3 4)

{ POBJ Get: Point -> 3 4) (class binding)
{ POBJ RELEASE ->)

{ 10 Heap> Array TO POBJ -> }
(6 2 To: [POBJ I ->)
(2 At: [POBJ] -> 6)
{ 99 Fill: [POBJ] -> 1
{ 5At: [POBJ] -> 99)
{ POBJ RELEASE -> 1

: TI0 10 Heap> Array TO POBJ ; TI0 ->)
{ : TI1 6 2 TO: [POBJ] ; TI1 -> }
{ : T12 2 At: [POBJ] ; T12 -> 6)
{ : T13 99 Fill: [POBJ] ; T13 ->)
(: TI4 5 At: [POBJ] ; T14 -> 99)
{ : T15 5 POBJ At: Array ; T15 -> 99] (class binding)
{ : T16 POBJ RELEASE ; TI6 ->)

[THEN 1

CR . (Class tests complete)

ANS.TXT - ANS requirements I
ans . txt
Version 0.2 alpha release 8/14/96 Andrew McKewan mckewan@austin.finnigan.com
This program requires the following ANS Standard word sets:

CORE
all

CORE EXT
:NONAME ?DO ERASE CASE OF ENDOF ENDCASE
TRUE FALSE HEX NIP PARSE PICK TO TUCK U> VALUE \

EXCEPTION (optional)
CATCH THROW

FILE (ability to load text files)
INCLUDED

MEMORY ALLOCATION (optional)
ALLOCATE FREE RESIZE

TOOLS
DUMP (optional)

TOOLS EXT
[IF] [ELSE] [THEN]

The words from the EXCEPTION and MEMORY ALLOCATION word sets are optional and will
conditionally compiled using [IF] [ELSE] and [THEN].

No FILE words are used, but the source is distributed in text files so the system must have the
ability to load text files or convert the source to blocks.

34 Forth Dimensions XlWl

MPE's Forth Coding Style Standard

[Portions of this document, including parts of some of the examples,
were edited lightly by FD forpublication in this format.-Ed.]

Headerless words
If there is a requirement to make a word or set of words

internal or external, headered or headerless, then this require-
ment is to be identified before the definition of the word or
words concerned:

\ - R . G . - 3 0 / 1 0 / 9 1 - w o r d l

HEX

INTERNAL
: WORDl
I

EXTERNAL

\ or HEADERLESS

\ o r HEADERS

If the headers are to be removed with a beheading mecha-
nism, this directive should also be clearly identified:

HEADERLESS
: WORDl
I

HEADERS

BEHEAD

Vocabularies
If a vocabulary or context switch is to be made in the source

code, the vocabulary should be the same at the end of a page
as at the beginning. This means that if a new page is inserted
at the end of a page, the search order and defining vocabu-
lary will be known:
\ - R . G . - 3 0 / 1 0 / 9 1 - i o w o r d s

ALSO I0 D E F I N I T I O N S

...
PREVIOUS D E F I N I T I O N S

Definitions
The definitions will then follow on the page. The detailed

layout standard for definitions follows later. There will be a
blank line between the end of the last definition on the page
and the end-of-page marker.

grouped on one page, then the page will be as long as is needed
to accept the whole group of words.

Layout of a definition
It is acknowledged that a Forth definition should be as

short as possible. This may be two or three lines, or it may be
15 or 20 lines. The actual size will depend on circumstances,
but should always be as short as possible. Short words en-
courage the reuse of small code fragments, which leads to
smaller code and to reliable code. It has been said that there
are three types of procedure call:

call by value
call by reference
call by text editor

Call by value means using the actual value required as the
parameter to the word being called. Call by reference means
using a pointer to the data needed for the word being called.
Call by text editor means not making a call at all, but copy-
ing the code in the text editor itself. This last is to be avoided
because

the code gets bigger,
the code is harder to maintain.

Header block comments
One method for writing a lengthy descriptive comment

for a Forth word is to use a header block. This is a block of
comments just above the start of the word, which describes
the function of the word in detail. This is normally detail or
description which would not fit well in the in-line comments
down the right-side of the page:
\ t h i s w o r d . . .
\ . . .
\ . . .
: w o r d 1 \ - ; does . . .
. . . \ . . .

MPE supports a long comment in the form of:
((F u n c t i o n : foo
A u t h o r : S F P
D a t e : 1 9 M a y 9 5
I n p u t s :
O u t p u t s :

A l g o r i t h m s :
C h a n g e s :
D e s c r i p t i o n :

1)

Forth Dimensions XlWl 35

The contents need to be agreed and used. There is noth-
ing worse than than a block comment with the template in-
serted but not filled out. Many users make these comments
easier to find by using lines of asterisks.
((.

The form and contents of header comments need to be
defined centrally within your organisation. See also the sec-
tion on change history.

Name and stack comment
The first line of a definition will consist of the start of the

definition - either a colon (:) or a CODE, label (L: or LBL:),
etc. and the name of the procedure. This will then be fol-
lowed by the stack effect for the word:
: WORD1 \ nl - n2 n3 ; description
. . . \ . . .

: WORD2 (nl - n2 ; description)

. . . \ comment

CODE WORD2 \ nl - n 2 n3 ; description
. . .

END-CODE

L: PROCl \ - ; description
LBL: PROC2 \ - ; description

The : , etc. will start at the very left-hand end of the line.
There will be one space between this and the name of the word.

The stack comment and description will start some way
across the line - but further towards the left and the word
name than the in-line comments. There will always be a stack
comment. Ensure the stack comment is correct. Within the
stack effect, execution will be identified by one of the
recognised marks:

< --<R> ->>

The "-" description is recommended, as formal source-
scanning tools will look for this rather than the others. If it
becomes necessary to also document the return stack effect,
a "++" or "R: " should be used in place of the "-".

It is good practice to follow the stack effect with a short
description of the action of the word - about three or four words:

?.

: D* \ dl d2 - d3 ; double multiply

If there is a short description of the word, it should be
separated from the stack effect by a semi-colon (;) or other
obvious character. This will distinguish the description from
a stack effect consisting of descriptive names for the stack
items. Using a standard semi-colon, other formal tools such
as source analyzers will correctly handle the source code and
the comments.

It is also useful to establish conventions for naming items

in stack comments. Clarity is the objective. For example the
following have been seen to indicate an address and a length
returning nothing:
a 1
a l -
a/l -
addr len - ; the MPE house style

MPE house rule:
All words have stack comments and descriptions on the

name line-no exceptions. Programmers who do not con-
form will be fired. Yes, this rule is important.

lnden ting
The body of the word - the words it calls, or the assembler

mnemonics it uses will be indented from the left hand end
of the line. This indent will be uniform throughout the file,
and will normally be two spaces. This brings the contents of
a word in line below the name of the word. Control struc-
tures will be further indented. This is dealt with later on.
: WORD1 \ nl n2 - n3 ; function to . . .

Phrasing
Each line of code in a definition should constitute a read-

able and meaningful phrase. Forth should not be laid out so
vertically that each line is individually meaningless. A single
phrase will consist of enough code to perform some appro-
priate part of the application:
VAR @ 10 +<R> OVER 4 <<<R> SWAP 3 + BILL + !

Numbers
Many compilers allow the base to be specified as the num-

ber is typed:
#lo0 \ decimal 100
$100 \ hex 100 = decimal 256
%lo0 \ binary 100 = hexldecimal 4

If the compiler to be used supports this feature, then it is
good practice to use it, as there can then be no mistake which
number is meant at any time. If the compiler does not sup-
port the temporary base definition, then it is best to always
prefix a hex number with a zero:
HEX
0100 \ hex 100 = decimal 256
OADD \ hex ADD = decimal 2781
ADD \ the word 'ADD'

To be con tinued.. .
Forth Dimensions XlWl

T he subject of this article is calculation of the International
Standard 32-bit CRC (cyclical redundancy check). It uses

nonce-words, or throw-away definitions, to build a table to
speed it up. The Standard Forth definitions of : :, ; ;, and
ANEW are discusssed in the accompanying articles, "Tool Belt
#01" by WIL BADEN and "The View from Goat Hill #01" by
NEIL BAWD.

[See Figure One.]
u p d a t e - c r c - b y - a - b y t e and CRC are equivalent. How-

ever, CRC will be five to eight times faster. Since you want to
do it to every byte you read or write, the speed is important.

Crc-Table and CRC are the only two permanent defini-
tions. The other words given here are compiled, executed,
and forgotten.

To use CRC-32, set the checksum to TRUE (all bits on) and,
for every byte written or read, use cRc to update the checksum.
Be sure you have set the file-access mode to binary on MS-
DOS type systems.

When you've finished writing, write out the checksum,
low byte to high byte.

When reading, include the last four bytes you read in the
checksum you have been accumulating. If everything has gone
right, the checksum will be 0.

Here is what's printed during compilation.

\ CRC-POLYNOMIAL is EDB88320

CREATE Crc-Table
HEX
00000000 , 77073096 , EEOE612C , 990951BA , 076DC419 ,
706AF48F , E963A535 , 9E6495A3 , OEDB8832 , 79DCB8A4 ,
EOD5E91E , 97D2D988 , 09B64C2B , 7EB17CBD , E7B82D07 ,
90BFlD91 , 1DB71064 , 6AB020F2 , F3B97148 , 84BE41DE ,
lADAD47D , 6DDDE4EB , F4D4B551 , 83D385C7 , 136C9856 ,
646BA8CO , FD62F97A , 8A65C9EC , 14015C4F , 63066CD9 ,
FAOF3D63 , 8D080DF5 , 3B6E20C8 , 4C69105E , D56041E4 ,

Figure One.

: ANEW > I N @ BL WORD F I N D I F EXECUTE ELSE DROP THEN > I N ! MARKER

i S" ANEW NONCE : NONCE-DEE I' EVALUATE ; IMMEDIATE r r S" ; NONCE-DEE NONCE " EVALUATE ; IMMEDIATE

Figure Two.

1 (The In t e rna t iona l Standard 32-bi t CRC.)

3 CREATE Crc-Table 256 CELLS ALLOT

5 MARKER CRC-TABLE-INITIALIZATION

7 (Define CRC-POLYNOMIAL from i t s c o e f f i c i e n t terms.)

8 : : 3 2 2 6 2 3 22 1 6 1 2 11 1 0 8 7 5 4 2 1 0 (. . .)
9 0 BEGIN (. . . p l y)

1 0 SWAP (. . . poly b i t)
11 DUP 32 = NOT ..
12 WHILE
13 3 1 SWAP - 1 SWAP L S H I F T OR (. . . po ly)
1 4 REPEAT (. . . poly b i t)
15 DROP (~ 0 1 ~)
1 6 ;; CONSTANT CRC-POLYNOMIAL ()

18 CR . (\ CRC-POLYNOMIAL i s) CRC-POLYNOMIAL HEX U. DECIMAL CR

Forth Dimensions XlWl 37

New FORML dates ...
... the week before Thanksgiving!

The original technical conference for professional Forth programmers and users.

19th annual FORML Forth Modification Conference
November 21 - 23,1997

Asilomar Conference Center
Monterey Peninsula overlooking the Pacific Ocean

Pacific Grove, California USA

THEME:

""Forth at the Millennium"

What are the challenges for Forth as we reach the Millennium? Will the year 2000 present problems for
existing programs? Many organizations are asking for certification that software will work perfectly as we
move to 2000 and beyond.

FORML is the perfect forum to present and discuss your Forth proposals and experiences with Forth profes-
sionals. As always, papers on any Forth-related topic are welcome.

How will certification be accomplished? Encryption is required for more applications to keep transactions
private. Proposals for incorporating encryption techniques are needed for current and future applications.
Your ideas, expectations, and solutions for the coming Millennium are sought for this conference.

Abstracts are due October 1,1996 Completed papers are due November 1,1997

-

Mail abstract(s) of approximately 100 words to:
FORML, Forth Interest Group 100 Dolores Street, Suite 183 Carmel, California 93923
or send them via e-mail to FORML@forth.org

-
Guy Kelly, Conference Chairman Robert Reiling, Conference Director

The Asilomar Conference Center combines excellent meeting and comfortable living accommodations with
secluded forests on a Pacific Ocean beach. Registration includes use of conference facilities, deluxe rooms,
meals, and nightly wine and cheese parties.

~.
4

