

SILICON COMPOSERS INC

FAST Forth Native-Language Embedded Computers

DUP

>R
R>

Harris RTX 2000'"' l&bit Forth Chip ~ ~ 3 2 ' " ' 32-bit Forth Microprocessor
*8 or 10 MHz operation and 15 MIPS speed. 08 or 10 MHz operation and 15 MIPS speed.
01-cycle 16 x 16 = 32-bi multiply. 1 -clock cycle instruction execution.
*l -cycle 14-prioritized interrupts. *Contiguous 16 GB data and 2 GB code space.
*two 256-word stack memories. -Stack depths limited only by available memory.
*&channel I/O bus & 3 timer/counters. *Bus request/bus grant lines with on-chip tristate.

SC/FOX PCS (Parallel Coprocessor System) SC/FOX SBC32 (Single Board Computer32)
*RTX 2000 industrial PGA CPU; 8 & 10 MHz. 032-bit SC32 industrial grade Forth PGA CPU.
.System speed options: 8 or 10 MHz. *System speed options: 8 or 10 MHz.
032 KB to 1 MB 0-wait-state static RAM. -32 KB to 512 KB 0-wait-state static RAM.
*Full-length PC/XT/AT plug-in (&layer) board. 100mm x 160mm Eurocard size (4-layer) board.

SC/FOX VME SBC (Single Board Computer) SC/FOX PCS32 (parallel Coprocessor Sys)
*RTX 2000 industrial PGA CPU; 8, 10, 12 MHz. -32-bit SC32 industrial grade Forth PGA CPU.
*Bus Master, System Controller, or Bus Slave. *System speed options: 8 or 10 MHz.
*Up to 640 KB @wait-state static RAM. 064 KB to 1 MB 0-wait-state static RAM.
*233mm x 160mm 6U size (&layer) board. -Full-length PC/XT/AT plug-in (&layer) board.

SC/FOX CUB (Single Board Computer) SC/FOX SBC (Single Board Computer)
*RTX 2000 PLCC or 2001A PLCC chip. *RTX 2000 industrial grade PGA CPU.
*System speed options: 8, 10, or 12 MHz. -System speed options: 8, 10, or 12 MHz.
032 KB to 256 KB 0-wait-state SRAM. 032 KB to 51 2 KB 0-wait-state static RAM.
*100mm x 1 OOmm size (&layer) board. 100mm x 160mm Eurocard size (Clayer) board.

For additional product information and OEM pricing, please contact us at:
SILICON COMPOSERS INC 655 W. Evelyn Ave. #7, Mountain View, CA 94041 (415) 961-8778

Features I

6 Fuzzy Forth -
ANS-compliant Extension Rick VanNorman
Fuzzy logic remains popular fodder for experiementation and discussion. Its controversy does
not detract from its advantages, and many products provide programmers with fuzzy logic
interfaces-but rarely do these packages come with source code which can be examined and
understood by the programmer. This paper presents an overview of fuzzy logic, a set of ANS-
compliant source code extensions to Forth to implement a fuzzy logic inference engine, and
a simple example of a Fuzzy Forth control program.

t 14 Object-Oriented Programming
in ANS Forth Andrew McKewan

@ Programming on today's resource-rich platforms amounts, to a large extent, to managing
complexity. Looking for a way to tame this complexity, the author's study led him to adopt
Yerk's underlying (and quite general) class/object/message ideas. He first ported these to
Win32Forth, a public-domain Forth system for Windows NT and Windows 95. But his goal
was much more general-to provide any ANS Forth system with the ability to use the object-
oriented syntax and programming style. Success will mean the ability to begin developing a
library of ANS Forth objects.

Sidebar: methods of achieving object orientation in Forth. Many have tried, and many have
succeeded-to some degree. A Forth programmer can use object-oriented programming to
supplement normal Forth programming, treating it as just another tool in the toolbox; or can use
the technology or everything.

30 Yet Another Modest Proposal Richard Astle
Thus far, there has been no consensus about object-oriented programming in Forlh-other
languages also evidence disparate ways of serving u p object technology. But instead of waiting

V

for a standard or new wordset, we can steal some of the thunder from object technology. A
related topic, not talked often mentioned and far from standardized, is modules of source code
containing implementation and interface parts, private and public definitions. It promotes
modularity, results in fewer headers cluttering things, and permits reuse of names. In fact, the
author has stopped using the vocabulary/wordset concept!

32 MPE'S Forth Coding Style
This Forth layout standard covers the layout of Forth source code in text files. It covers the
layout of code and comments, along with the use of the file, and the reasons for a standard,
and the reasons for certain decisions and recommendations in the standard. This document
reflects current programming practice at MPE

36 A Gentle introduction to Digital Filters Skip Carter
Digital filters provide a means to condition a digital signal in order to achieve a variety of
purposes. Depending on the problem, a filter may reduce unwanted noise, isolate or reject
a piece of a signal, or enhance certain components of a signal. What makes digital filtering
hard to master is that creating a proper filter takes a bit of calculus-usually in the complex
plan. What makes this intimidating is the degree to which various authors handle the calculus.
Here you will find the math-but starting at the shallow end of the pool.

Forth Dimensions 3 March 1997 April

Forth Dimensions
Volume XVIII, Number 6

March 1997 April

Coding conventions is one of those topics that catalyzes contrasting opinions and
justifications in a roomful of Forth programmers, any two of whom will have at least three
different ways of looking at it. Everyone agrees it is a good idea but no one would dare
enforce it via compiler requirements, which would be something like trying to elevate
civil law to the status of natural law.

Then there's the difference between what we say in public, what we believe about
ourselves, and what we practice. For a reminder (and a test), dig out some unmemorable
code you wrote more than a year ago. What do you make of it? What would you make
of it in five years? Would a stranger find in it not only understanding, but also a good
example or two by which to improve his own code? Is any of it reusable?

Of course, codng conventions assume their greatest importance, if not their only one, for
programming teams. With the relative freedom of style and technique that Forth in particular
provides, an individual's code can become as, well, individual and as recognizable as his
hairstyle or her posture. In the extreme this can, of course, lead to personality-based code
conflicts in which two routines simply will not function correctly in the same program
together. Then come, in due course, the arbitration skills of an integrator (possibly even a
small team) with a bag full of tricks and experience; or a manager with seemingly arbitrary
decisions which, elegant and reasonable or not, keep the project moving forward.

Sometimes the greatest success of the code integrator is getting the team members to
share a new way of looking at the project, or to agree at a philosophical level on the merit
of a Forth technique or tradeoff, or simply to back off a bit and remember the big picture.
Then, code-level decisions spring from a common mindset and clashes are avoided
entirely, or at least are defused sooner, before becoming entrenched in opposition.

Under a production schedule, every bit of this that arises is felt as a blow to the budget
and timeline, and as more internal personal pressure. It definitely hinders one's pleasure in

Published by the
Forth Interest Croup

Editor
Marlin Ouverson

Circulation/Order Desk
Trace Carter

Forth Dimensions welcomes edi-
torial material, letters to the editor,
and comments from its readers.
No responsibility is assumed for
accuracy of submissions.

Subscription to Forfh Dimensions
is included with membership in
the Forth Interest Group at $45
per year ($53 Canada/Mexico, $60
overseas air). For membership,
change of address, and to submit
items for publication, the address
is: ForthInterest Group, I00 Dolores
Street, suite 183, Carmel, California
93923. Administrative offices:
408-37-FORTH Fax: 408-373-2845

Copyright Q 1997 by Forth Interest
Group, 1nc.Thematerial contained
in this periodical (but not the code)
is copyrighted by the individual
authors of the artides and by Fonh
Interest Grouo. lnc.. resoectivclv.

So the voluntary price we pay-for the posterity of our code and the longevity of our jobs
and to generally play nicely and get along with others--is to adopt a set of coding guidelines
and follow it closely. It becomes part of the personal aesthetic by which we judge the quality
of our code; and because we know how real life works on the job, we don't treat these
conventions as cosmetics to be applied as a last iteration in the development process.

In the end, all this becomes second nature-your code can still be distinctly your own,
but it will fall within a carefully defined intersection of functional compatibility, general
readability, and style. Like handwriting. (You could, in fact, write gibberish and still adhere
to the conventions, but that doesn't argue against their suitability.)

Coding conventions are a social construct that, like traffic laws, everyone with a little
urging can be convinced is a good thing. It's in the details that it gets thorny, so we don't have
a generally endorsed document that demonstrates good style. We have a few words here and
there. A rare paper or article. A short discussion about phrasing and indentation and whether
to give the semi-colon a line of its own. How many hyphens in your stack diagrams?

Steve Pelc of England's hlPE has generously contributed his company's official,
documented coding standard for publication in Forth D i m m i o m We will see over time
(because space permits us to publish it only serially) that such a document must have a
breadth of philosophy encoded in its details. Topdown design, bottom-up writing.

And there are many details. This demonstrates, in an admittedly non-glamorous way, the
amount of conventional wisdom there is about how to write Forth. Not everyone will agree
with the way the particulars are handled, but most will agree that (a) the particulars are
important, and 01) a team of any size that is going to work together successfully on a project
of any scope will have to adopt some kind of formatting guide. MPEForlh Layoutstandard
version 4.00.003 (2 July 195%) is one such that has evolved over time and which exemplifies
the important issues and how this company's management and staff addresses them.

-Marlin Ouuerson
edilor@Jorth .org

the job and may even lead to serious functional defects and the dreaded last-minute surprise.
periodical as it is compiled or the
articles, except reproductions for
non-commercial purposes, with-
out the written permission of Forth
Interest Group, lnc. is a violation
of the Copyright Iaws. Any code
bearing a copyright notice, how-
ever, can be uscd only with per-
mission of the copyright holder.

., 3 1 I ~ n y reproduction or use of this (

The Forth Interest Group
The Forth Interest Group is the
association of programmers, man-
agers, and engineers who create
practical, Forth-based solutions to
real-world needs. FIG provides a
climate of m~ellectual exchange
and benefits intended to assist
each of its members. Publications,
conferences, seminars, telecom-
munications, and area chapter
meetings are among its activities.

"ForfhDimerrsions(lSSN 08840822)
is published bimonthly for $451
53/60per year by the Fonh Interest
Group, 100 Dolores Sueet, suite
183, Carmel, California 93923.
Second-class postage paid at
Seaside, CA. POSTMASTER: Send

I address changes to Forth
Dimensions, 100 Dolores Street,

, suite l83,Carmel, California93923."

March 1997 April 4% Forth Dimensions

It's been an exciting start to 1997 here at the FIG main
office. As I write, we're surrounded by the boxes of
inventory we hauled from Oakland on the first weekend
of February. With the help of our new office assistant, Julie
Stone, we're fast on the track to getting it all organized.
We've been able to fill orders for product from this office,
and the next issue of Forth Dimensions will be bundled
and sorted and shipped from here. Wish us luck!

Our office hours have changed a bit; you can usually
find Julie or myself here from 9:00 a.m. - 1:30 p.m. Don't
t>e fooled though-as you probably realize, many hours
are put in during the afternoons, evenings, and on the
weekend (as some of you who have called during those
times have found out). However, we try to personally
answer the phones during the hours noted above; at other
times, you may get the answering machine. Please leave
your message, we will get back to you. I want to thank you
again all for your patience and good humor as we become
more efficient in processing your needs.

During the first six weeks of 1997, we had 47 new-

member requests from the Internet. 25 of those requests
originated outside of the U.S., from countries like Malay-
sia, Hong Kong, the Ukraine, Russia, Brazil, Germany,
Singapore, South Korea, the Netherlands, Indonesia, and
Sweden. The Forth Interest Group is truly international!

In the coming months, we hope to be able to provide
support for those of you who are interested in re-starting
a FIG Chapter. Let us know what you need, w e will try to
provide it. If you've got time or energy or interest to
volunteer, let us know and during this coming year we will
use you. Thanks again for being such a great group, it
makes all the work feel worthwhile.

Trace Carter
Forth Interest Group, Administrative & Sales Office
100 Dolores Street, Suite 183
Carmel, California 93923 U.S.A.
408-373-6784 (voice)
408-373-2845 (fax)
office@forth.org (e-mail)

Support for older systems
Hands-on hardware and software

Computing on the Small Scale
Since 1983

Subscriptions
1 year $24 - 2 years $44

All Back Issues available.

TCJ
The Computer Journal

P.O. Box 3900
Citrus Heights, CA 9561 1-3900

800-424-8825 / 91 6-722-4970
Fax: 91 6-722-7480
BBS: 91 6-722-5799

Forth Dimensions

/ NOW from FORTH, PT

...g ive you the easiest-
to-use programming
software for the
easiest-to-use PCs!

Power MacForth for fast, optimized native Power PC code
Full Mac Toolbox support, including System 7 PPC
interface
Powerful multitasking support
Integrated source editor, trace & debugging tools
High-level graphics and floating point libraries
Wealth of demo programs, source code & examples
Extensive documentation, including online Glossary
Turnkey capability for royalty-free distribution of
programs

FORTH, Inc.
1 11 N. Sepulveda Blvd, #300
Manhattan Beach, CA 90266
800-55-FORTH 31 0-372-8493
FAX 31 0-31 8-71 30 forthsales@forth.com
http://www.forth.com

5 March 1997 April

Adapted from a paper presented at the annual Rochester Forth Conference

Fuzzy Forth
An A NS-Compliant Extension

Rick VanNorman
Manhattan Beach, California

March 1997 April 6 Forth Dimensions

Fuzzy logic is still a popular topic in the computer and
electronics field. The controversy surrounding it does not
detract from its advantages as an implementation tech-
nique. Many products are sold which provide program-
mers with fuzzy logic interfaces for their programs, but
rarely do these packages come with source code which
can be examined and understood by the programmer.

This paper presents an overview of fuzzy logic, a set of
ANS-compliant source code extensions to Forth to imple-
ment a fuzzy logic inference engine, and a simple example
of a Fuzzy Forth control program.

Introduction
Most programming languages in use today deal with

issues of true and false, on and off, black and white. Fuzzy
logic is a technique for allowing a program on a digital
computer to deal with the shades of gray found in most
real-world situations.

Fuzzy logic, by itself, is simply the realization that an
apple with one bite taken out of it is still at least 90% of
an apple, and that it doesn't completely cease to be an
apple until it is completely gone. Fuzzy logic, as applied
to computer programming is a realization of this logic in
a series of discrete steps: input (or fuzzification), rule
evaluation, and conclusions (or de-fuzzification). Fuzzy
Forth is an ANS-compliant toolkit for Forth which allows
the user to easily define sets for input and fuzzification of
crisp or measured values, rules for reasoning about the
inputs, and a simple specification of the output ranges for
converting the results of the rules into usable control
values. Fuzzy Forth defines two basic data structures, one
each for input and output.

Input (Fuzzification)
Fuzzification is the act of classifying a measured value

(called a crisp) into a set of fuzzy values. For example, a
real-world temperature of 68 degrees could be classified
as (cold=lO% true), (warm=70% true), and (hot=O% true).
These values represent the fuzzy memberships of the crisp
value on the fuzzy variable. Each fuzzy variable has a
lower bound, below which the membership is zero; an
upper bound, above which it is zero; and a body in which

the membership varies from 0% to 100%. This body is
normally shaped like a trapezoid or a triangle. In a system
of multiple inputs, each input would have its own set of
fuzzy membership functions, each requiring evaluation at
each iteration of the program.

The input data structure consists of the input, or crisp
variable, and a set of membership sets which span the
range of the input.

Input values are evaluated for membership in each of
the sets in the input's linked list, and each membership is
assigned a ,fuzzy value in the range (0-256) which
corresponds to the nominal range of 0-100%. This is called
"fuzzification."

Each membership set has a body defined by four points:

lm The left-most point of the body. Every value less
than this assumes the fuzzy value of 0.

It The left-top corner of the body. Values which are
between LM and LT are assigned a fuzzy value
based on the slope of the line between LM and LT.

rt The right-top corner of the body. Values between LT
and RT are assigned the fuzzy value of 100% (256).

rm The right-most point of the body. All values greater
than this are given the fuzzy value 0.

The words INPUT and MEMBER define and build the
structure shown in Figure One.

APPLYing a crisp value to an INPUT generates a set of
fuzzy MEMBERship values. The functional use of an input
variable is:
(n) DERROR APPLY

which takes the value n and calculates its fuzzy value in
each of the membership sets of the fuzzy input DERROR. An
input must be evaluated via APPLY before any niles can be
executed. When an INPUT is invoked by name, it returns
the address of the data structure where its crisp input value
is stored. When a MEMBER is executed, it returns the value
calculated by APPLY for the crisp value in its parent INPUT.

A typical membership function.
Note that points LT and RT can be equal,
resulting in a triangle, and that
LM:LT and RTRM could be equal,
resulting in a step function.

LM <= LT <= RT <= RM

Figure One. The input function and its data structures.

-100 100 INPUT DERROR A typical input function,
-100 -100 -30 0 MEMBER D.NS with a diagram of the structure that
-30 0 0 30 MEMBER D.ZE words INPUT and MEMBER build.
0 30 9 9 ~ ~ M E M B E R D . P S The member D . ZE forms a triangle,

the members D . PS and D.NS form
trapeziods, each with a
single vertical edge

1
applied to the fuzzy variables. For
example, one rule might be "if the
temperature is cold and the hu-
midity is high, then the fan-speed
is fast." The act of evaluating this
rule requires that we determine
the fuzzy value of the tempera-
ture in the membership function
"cold" and combine it with the
fuzzy value of the humidity in the
membership function "high "
Since each of these memberships
has a strict numeric value which
may range from zero to loo%, we
need to combine them with the
fuzzy operator AND which is typi-
cally implemented as the rninl-
mum of the two values. This
results in answers that carry the
lowest common value, or weight,
of the inputs. So, if TEMP. COLD
is 10% true and HUMIDITY. HIGH

Rule evaluation is simply logic 1

is 40% true, the result of ANDing
thcm together is 10% true. 'I'liis

1 .L / result is typically ac~umulated into /
a fuzzy output variable, e.g., keep-
ing the overall maximum value of
all the fan-speed rule evaluations.

The generalization of this rule
evaluation method might be
summed up as: for each rule,
take the smallest input, because
this is the limit of how much this
rule matters; then, remember
only the largest effect to each

This stnicture makes rule building and evaluation simpler.

Rule Evaluation
The rulebase is the mechanism that ties INPUTS to

OUTPUTS. Forth simplifies rule specification because it
allows the definition of a language extension which can deal
with fuzzy logic in a user-defined manner instead of trying to
create a set of fuzzy logic tools in an existing syntax.

A ruleis a statement of condition with at least one input
and one consequence. Multiple inputs may be combined
with fuzzy operators which resemble conventional logic,
such as AND or OR, and may be negated with NOT. Rules
are of the form
xyz abc & =r ddd

which says "take the minimum of the membership functions
as evaluated by the MEMBER words XYZ and ABC, leaving
the result on the stack to be absorbed by the SINGLETON
definition DDD (a fuzzy output accumulator). Valid opera-
tions are AND (&), OR (I) , and NOT (-), with each "logical"
value in the range 0-256. The chosen convention for fuzzy
logical operators in Fuzzy Forth is shown in Figure Three.

Forth Dimensions

output, since if one rule evalu-
ated to more than another, it must have more influence on
the output. This technique is called the min-max rule and
is only one of many rule evaluation schemes proposed by
the fuzzy logic theorists.

Rulebases are typically built from FAMs (Fuzzy Asso-
ciative Memories). A rulebase in Fuzzy Forth shown in
Figure Four.

Conclusions (De-Fuzzification)
After fuzzifying the inputs and evaluating the rules, we

have accumulated a fuzzy truth value for each of the
output membership functions. This is equivalent to the
fuzzy input memberships that we calculated from the crisp
inputs. This fuzzy truth value is then converted to a crisp
value for output by the word CONCLUDE. Its use is:
SPEED CONCLUDE (n)

which traverses the list of SINGLETONS associated with
SPEED, calculating the center of mass of the function
described by their fuzzy values and weights.

For example, w e might have concluded that
FAN-SPEED . SLOW was 40% true and FWSPEED . FAST

7 March 1997A~r i l

Figure Two. The output function
and its data structures.

A typical output function,
s h o w n as a set of singletons on t h e
number line. E a c h singleton has a
w e i g h t of I , w h i c h is scaled b y rule
eva lua t i on .

OUTPUT SPEED

-128 SINGLETON S.NM T h e OUTPUT defines t h e
-50 SINGLETON S . N S root of t h e structure, and

0 SINGLETON S . Z E ~ ~ C ~ S I N G L E T O N adds
50 SINGLETON S . P S a node to t h e l inked list.

127 SINGLETON S . P M

Figure Three. Logical operators in Fuzzy Forth.
I

& , fuzl, fuzz fuz3 Fuzzy logic AND. Returns the
minimum of the two inputs.

I .fuzl .fuz2 --.fuz3 Fuzzy Logic OR. Returns the
maximum of the two inputs.

- ,fuzl --,fuz2 Fuzzy logic NOT. Returns
the eight-bit compliment of
the input.

=> ,fuzl -- fuzl Syntactic sugar, read as
"implies."

Arulesuchas E.NM D.NS & => S.PM isread,"A
negative medium error AND a negative small delta-
error implies a small positive motor speed."

Figure Four. A Fuzzy Associative Memory
rulebase for a thermostat.

was 20% true, but this does not tell us how fast to run the fan.
To make the fuzzy outputs useful, we must evaluate each

A rulebase for describing a
fuzzy controller which generates a correction in
speed. Inputs are ERROR
and DERROR, output is SPEED.

n m = negative medium
n s = negative small
z e = zero
ps = positive small
p m = positive medium

functions, as weighted by their fuzzy truth values. There are / SINGLETON is the "fuzzy accumulator," storing the maxi-

fuzzy accumulator and calculate a crisp value for each output.
This is done by taking the center of mass of the output

INPUT, consisting of a root, which is the output variable,
and a linked list of SINGLETONS. (See Figure Two.) A

nique used in Fuzzy Forth is singletons, or unit masses, / to scale the weight of its fixed mass. (By default, SINGLETONS

many different methods, each with its own merits, of re-
combining the fuzzy outputs into crisp values. The tech-

chosen for its simplicity of implementation and speed of I have a mass of one; extensions to Fuzzy Forth could allow

mum value of any rule of which it was the target. This value
is considered the truth value of the SINGLETON and is used

execution. The next most common technique uses area for other masses, resulting in smoother output functions.)
masses, which allows for a wider output function and results The value of the OUTPUT is determined after all the n~ le s
in somewhat smoother results (but is computationally (have fired by calculating the center of mass of its scaled
slower). Kosko and others have shown that the singleton is / SINGLETONS

apart to achieve the overall output mass density desired. 1 singletons (which are taken to be point sources whose

adequate to represent virtually all output functions by
simply placing the unit masses closer together or further

The structure of an OUTPUT is similar to that of an / weight was accun~ulated by the rule ;valuations). Dividing

To generate a conclusion, we accumulate a sum ofarea
(SOA) and a sum ofproducts (SOI-') term for each set of

March 1997 April 8 Forth Dimensions

SOP by SOA results in the center of mass of the point
sources, which we take to be the de-fuzzified value of the
output variable.

Summary
In summary, Forth can be extended to incorporate a fuzzy

logic inference engine, with memory- and speed-efficient
data structures. The resulting language provides a simple and
natural interface for building applications using fuzzy logic.

Fuzzy logic has been used in various real-world sce-
narios where the input parameters vary greatly, and a
continuously varying output is desired. Examples of this
include: deciding the shift points for automatic transmis-
sions, elevator demand scheduling, thermostats, and pat-
tern recognition. Many control problems which are difficult

a pole, but some hearty researchers have even demon-
strated a segmented-pole-balancing fuzzy controller.

Fuzzy logic is not an answer to every problem, but can
simplify the implementation of some control problems by
allowing a degree of imprecision in their specification. Fuzzy
Forth provides a toolkit for the use of fuzzy logic in Forth.

References
Jamshidi, M., N. Vadiee, T. J. Ross, editors. Fuzzy Logic

and Control. New Jersey: PTR Prentice-Hall, 1993.
Kosko, B. Fuzzy Thinking: 7he New Science o f Fuzzy

Logic. New York: Hyperion, 1993.
Kosko, B. NeuralNetwork and Fuzzy Systems: A Dynami-

cal Systems Approach to Machine Intelligence. New
Jersey: Prentice-Hall, 1992.

in standard are much more 1 Rick VanNorman has been programming in Forth professionally since 1979, 1
addressed by fuzzy logic. For instance, the favorite ''toy" and currentlv works for FORTH. Inc. He earned a dearee in cornwter science
problem of fuzzy logic theorists is balancing an upright pole
on a two-axis controller. This is akin to balancing an upright
I>rooin on your fingertip. Fuzzy Logic can not only balance

1 Listing One. The Fuzzy Forth language extension. 1

in 1982, and has worked with Forth In lndustr~al confrol, manufacturing, "star
wars" research, and electronic payment systems. R~ck was a member of the
Harris RTX team and was part of the infamous "Binar" design group. He can be
reached by e-mail at the rickathunder-ink.com address.

\ Fuzzy Forth, (C) 1993, 1994, 1997 Rick VanNorman

\ store two entries in the dictionary
: 2, (n l n2 --)

SWAP , , ;

\ division by zero is allowed, and results in a zero returned
: DIV (nl n2 -- n3)

dup if / else nip then ;

\ calculate the slope between xl=p2 and x2=pl, assuming ONE = 65536 and that
\ the yl=0 and y2=ONE. if xl=x2, the slope is properly infinity, but
\ we only apply the calculated slope where we know there -is- a slope.
\ FUZZIFY will trap this condition.

: SLOPE (P2 P1 -- N)

- 65536. ROT ?DUP IF UM/MOD NIP ABS ELSE 2DROP 0 THEN ;

VARIABLE MLINK \ Temp value for member links

: LINK, \ store a link in the current definition
HERE MLINK @ ! HERE MLINK ! 0 , ;

\ -----

\ input variable and membership function definition

\ name a "crisp" input, specifying its range
: INPUT (low high "name" --)

CREATE
0 , \ Crisp storage
HERE MLINK ! 0 , \ Initial link
2, ; \ the low and high ranges

\ Set the slope of the membership function being defined. The slope
\ is calculated at compile time for run-time efficiency.

Forth Dimensions 9 March 1997 April

: SET-SLOPE (ilink --)

>R R@ 1 CELLS + 2 @ SLOPE R@ 5 CELLS + !
R@ 3 CELLS + 2@ SLOPE R> 6 CELLS + ! ;

\ Name a membership function associated with the current crisp input.
\ The values {lm It rt rm) define the curve under which the function
\ is active.
: MEMBER (lm It rt rm "name" --)

CREATE
0 , LINK, \ fuzzy value and link to prev
2>R 2, 2R> 2, 0 0 2, \ store points, left to right
MLINK @ SET-SLOPE \ calculate slopes of the edges

DOES> @ ; \ return the fuzzy value

\ -----
\ output variable and de-fuzzification set definition

\ Name a fuzzy output function. Outputs are associated with a
\ list of SINGLETON fuzzy accumulators.
: OUTPUT

CREATE
0 , \ CRISP STORAGE
HERE MLINK ! 0 , ; \ INITIAL LINK

\ Name a singleton and associate it with the output function being
\ defined. The value of the singleton is its ordinal position based
\ solely on the output range desired.
: SINGLETON (value "name" --)

CREATE
0 , LINK, \ fuzzy value and link to prev
(value) , \ and the singleton value itself

DOES> DUP @ ROT MAX SWAP ! ; \ accumulate rule evaluations

\ initialize an output set

: CLEAR-OUTPUT (addr --)

CELL+ BEGIN
@ ?DUP WHILE 0 OVER CELL- !

REPEAT ;

\ RULE EVALUATION
\ -----

: & MIN ;
: I M A X ;
: - 256 SWAP - ;

: => ; IMMEDIATE

\ conclusions after rule evaluation
\ -----

VARIABLE SOA \ sum of area
VARIABLE SOP \ sum of products

: CONCLUDE (OVAR -- CRISP)

\
\ following the links, write 0s
\ to the fuzzy accumulators

March 1997 April 10 Forth Dimensions

0 SOA ! 0 SOP !
DUP >R
CELL+ BEGIN

@ ?DUP WHILE
DUP CELL- @ DUP
OVER CELL+ @
* SOP + !

REPEAT
SOP @ SOA @ DIV
DUP R> ! ;

\ CLEAR SUM OF AREA, SUM OF PRODUCT TERMS
\ save the address of the output var
\ and pointing to the singleton's link
\ repeat while not at the end of the list

SOA + ! \ SOA is the sum of all fuzzy values
\ SOP is sum of all (fuzzy * weight) values
\
\
\ divide SOP by SOA, giving the center of mass
\ which we interpret as the de-fuzzification

\ fuzzify the inputs
\ -----

\
\ we fuzzify the inputs by applying the crisp value to each of the
\ membership functions and evaluating its position in the membership
\

\ fuzzyfiy the crisp value on the left edge of the membership (ie region B)
\ via the slope of that line segment and its X position relative to the
\ start of the line segment.

: FUZLEFT (CRISP MEMBER -- FUZZY)

DUP>R @ - R> 4CELLS + @256 * / A B S ;

\ fuzzyfiy the crisp value on the right edge of the membership (ie region D)
\ via the slope of that line segment and its X position relative to the
\ start of the line segment.

: FUZRIGHT (CRISP MEMBER -- FUZZY)

DUP >R 3 CELLS + @ SWAP - R> 5 CELLS + @ 256 * / ABS ;

\ given a crisp number, a membership function, and a cell offset, return
\ the crisp value and the range point for comparison

: IN (crisp member n -- crisp member crisp range)

>R 2DUP R> CELLS + @ ;

\ given a crisp value and a pointer to the membership points, figure out
\ where the crisp value falls (left to right) and assign a membership
\ value for it. membership values are in the range (0--256)

: FUZZIFY (CRISP MEMBER -- FUZZY)

0 IN < IF (BELOW LEFTMOST) 2DROP 0 EXIT THEN (is zero)
1 IN < IF (LM <= C <= LT) FUZLEFT EXIT THEN (is calculated)
2 IN <= IF (LT <= C <= RT) 2DROP 256 EXIT THEN (is "one")
3 IN <= IF (RT <= C <= RM) FUZRIGHT EXIT THEN (is calculated)

(ABOVE RIGHTMOST) 2DROP 0 (is zero)

\ evaluate the crisp value in the specified membership function. the
\ result is stored in the first cell. the address of the member passed
\ to this routine is the a pointer to its link field.

: APPLIES (crisp member --)

TUCK CELL+ FUZZIFY SWAP CELL- ! ;

Forth Dimensions 11 March 1997 April

\ apply the crisp input to the specified fuzzy input variable

: APPLY (crisp input --)

2DUP ! CELL+ BEGIN \ keep the original crisp value
@ ?DUP WHILE \ and scan through each of the memberships
(CRISP LINK) 2DUP APPLIES \ applying the crisp to them

REPEAT DROP ;

Listing Two. An example in Fuzzy Forth which implements a thermostat.

\ A simple Fuzzy Forth example
\ -----
\ Adapted for Fuzzy Forth by Rick VanNorman 1993,1994
\
\ taken from
\ -A Fuzzy Two-Axis Mirror Controller for Laser Beam Alignment-
\ by: Richard D. Marchbanks
\ published in
\ -Fuzzy Logic and Control-
\ edited by: Mohammad Jamshidi, Nader Vadiee, and Timothy J. Ross
\ 1993, PTR Prentice Hall, Englewood Cliffs, New Jersey
\ ISBN 0-13-334251-4

\ the input memberships
\ -----

-128 127 INPUT ERROR

-128 -128 -100 -20 MEMBER E.NM
-128 -20 -20 -3 MEMBER E.NS
-20 0 0 20 MEMBER E.ZE
3 20 20 127 MEMBERE.PS
20 100 127 127 MEMBER E.PM

1 -100 100 INPUT DERROR I
-100 -100 -30 0 MEMBER D.NS
-30 0 0 30 MEMBER D.ZE
0 30 99 99MEMBERD.PS

\ the output function, as singletons
\ -----

OUTPUT SPEED

128 SINGLETON S.NM
-50 SINGLETON S.NS
0 SINGLETON S.ZE
50 SINGLETON S.PS
127 SINGLETON S.PM

\ the rulebase
\ -----

March 1997 April 12 Forth Dimensions

\ the rulebase for generating a correction in speed, based on a
\ simple FAM for inputs ERROR and DERROR, output is SPEED
\
\ (error
\ I run ns ze P s PI''
\ derror I-----------------------------
\ ns I pm pm PS ze ns
\ ze I pm PS z e n s nm
\ PS I PS z e ns nm nm
\

: RULES
SPEED CLEAR-OUTPUT

E.NM D.NS & => S.PM E.NM D.ZE & => S.PM E.NM D.PS & => S.PS
E.NS D.NS & => S.PM E.NS D.ZE & => S.PS E.NS D.PS & => S.ZE
E.ZE D.NS & => S.PS E.ZE D.ZE & => S.ZE E.ZE D.PS & => S.NS
E.PS D.NS & => S.ZE E.PS D.ZE & => S.NM E.PS D.PS & => S.NM
E.PM D.NS & => S.NS E.PM D.ZE & => S.NM E.PM D.PS & => S.NM

\ a sample driver to use it all..
\ -----

VARIABLE OLD-ERROR

DEFER INPUT-ERROR (-- error)

DEFER MOTOR (speed --)

: ERROR-TERMS (new -- new delta)

DUP OLD-ERROR @ OVER OLD-ERROR ! - , . \ error derror

: CONTROL (new-error delta-error -- speed)

ERROR-TERMS \ leave ERROR and DERROR on stack
DERROR APPLY \ fuzzyify derror
ERROR APPLY \ fuzzyfiy error
RULES \ execute the rulebase
SPEED CONCLUDE ; \ determine what speed to apply to achieve target

: TEST
BEGIN

INPUT-ERROR ERROR-TERMS CONTROL MOTOR
KEY?

UNTIL ;

\ produce a surface array,
: SURFACE

128 -128 DO
I ERROR APPLY
CR
100 -100 DO

I DERROR APPLY
RULES
SPEED CONCLUDE
5 .R

10 +LOOP
10 +LOOP :

suitable for framing, of the fuzzy function

\ loop over the error range
\ fuzzify the error term
\
\ loop over the derror range
\ and fuzzify the delta error
\ run the rules
\ generate the output
\ and print
\ limit to 20 terms
\

Forth Dimensions 13 March 1997 April

Object-Oriented

in ANS Forth
Andrew McKewan
A us tin, Texas

This article describes the use and implementation of an
object-oriented extension to Forth. The extension follows the
syntax in Yerk and Mops, but is implemented in ANS Forth.

Why I Am Doing This
When I first began programming in Forth for Windows

NT, I became aware of the huge amount of complexity in
the environment. In looking for a way to tame this
complexity, I studied the object-oriented Forth design in
Yerk. Yerk is the Macintosh Forth system that was formerly
marketed as a commercial product under the name Neon.
It implemented an environment that allowed you to write
object-oriented programs for the Macintosh.

While much of Yerk was Macintosh-specific, the un-
derlying class/object/message ideas were quite general. I
ported these to Win32Forth, a public-domain Forth system
for Windows NT and Windows 95. However, in both Yerk
and Win32Forth, much of the core system is written in
assembly language and is very machine-specific. Addi-
tionally, both systems modified the outer interpreter to
adapt to the new syntax.

What I hope to accomplish here is to provide any ANS

Once a class is defined, you can make many objects from
that class. Each object has its own copy of the instance
variables, but shares the method code.

Instance variables are the private data belonging to an
object. Instance variables can be accessed in the methods
of the object, but are not visible outside the object.
Instance variables are themselves objects with their own
private data and public methods.

Methods are the code that is executed in response to a
message. They are similar to normal colon definitions, but
use a special syntax using the words : M and ; M. You can
put any Forth code inside a method, including sending
messages to other objects.

Inheritance allows you to define a class as a subclass
of another class, called the superclass. This new class
"inherits" all the instance variables and methods from the
superclass. You can then add instance variables and
methods to the new class. This can greatly decrease the
amount of code you have to write, if you design the class
hierarchy carefully.

and a few of the features. 1 to any ANS Forth system.. . 1

Forth system with the ability to use the object-oriented
syntax and programming style in these platform-specific
systems. I* doing SO, I have sacrificed some performance

Object-Oriented Concepts
The object-oriented model closely follows Smalltalk. I

will first describe the terminology used in this model:
objects, classes, messages, methods, selectors, instance
variables, and inheritance.

Objectsare the entities used to build programs. Objects
contain private data that is not accessible from outside the
object. The only way to communicate with an object is by
sending it a message.

A message consists of a selector (a name) and argu-
ments. When an object receives the message, it executes
a corresponding method. The arguments and results of
this method are passed on the Forth stack.

A class is a template for creating objects. Classes
describe the instance variables and methods for the object.

I hope to provide object-oriented
syntax and programming style

March 1997 April

How to Define a Class
The example of a P o i n t class illustrates the basic

syntax used to define a class (see Figure One).
The class P o i n t inherits from the class O b j e c t .

O b j e c t is the root of all classes and defines some
common behavior (such as getting the address of an object
or getting its class) but does not have any instance
variables. All classes must inherit from a superclass.

Next we define two instance variables, x and y. Both
of these are instances of class Var. Var is a basic, cell-
sized class similar to a Forth variable. It has the methods
G e t : and P u t : to fetch and store its data.

The G e t : and P u t : methods of class P o i n t access its
data as a pair of integers. They are implemented by

4 Forth Dimensions

1 Fiaure One. Exam~le of a Point class. 1

Var x
Var y

.. I

:M Get: (-- x y) Get: x Get: y ;M
:M Put: (x y --) Put: y Put: x ;M

:Class Point <Super Object

:M Print: (--)

Get: self SWAP . " X = l l . - " Y = " . ;M

This is a common factoring technique in
Forth and is equally applicable here.

:M ClassInit: 1 Put: x 2 Put: y ;M

sending Get : and Put: messages to the instance vari-
ables. Print : prints out the x and y coordinates.

ClassInit : is a special initialization method. When-
ever an object is created, the systemsends it aClassInit :
message. This allows the object to perform any initialization
functions. Here we initialize the variables xand yto a preset
value. Whenever a point is created, it will be initialized to
these values. This is similar to a constructor in C++.

Not all classes need a Classhit : method. If a class
does not define the ClassInit : method, it will inherit
the one in class Ob j ec t that does nothing.

Creating an Instance of a Class
Now that we have defined the Point class, let's create

a point:
Point mypoint

As you can see, Point is a defining word. It creates a Forth
1 definition called mypoint. Let's see what it contains:
Print : mypoint

This should print the text x = 1 y = 2 on the screen. You
can see that the new point has been initialized with the
ClassInit : message.

Now we can modify mypoint and we should see the
new value:
3 4 Put: mypoint
Print: mypoint

Notice that, in the definition of Point, we created two
instance variables of class Var. The object-defining words
are "class smart" and will create instance variables if used
inside a class, and global objects if used outside a class.

Sending a Message to Yourself
In the definition of Print : we used the phrase Get :

self. Here we are sending the Get: message to our-
selves. Self is a name that refers to the current object. The
compiler will compile a call to Point's Get: method.
Similarly, we could have defined ClassInit : like this
:M ClassInit:
1 2 Put: self ;M

Creating a Subclass
Let's say we wanted an object like

mypoint, but which printed itself in a
different format.
:Class NewPoint <Super Point

:M Print: (--)

Get: self SWAP 0 . R
. " @ " . :M

A subclass inherits all the instance variables of its
superclass, and can add new instance variables and
methods of its own, or override methods defined in the
superclass. Now let's try it out:
NewPoint myNewPoint

Print: myNewPoint

This will print 1@2 which is the Smalltalk way of
printing points. We have changed the Print : method,
but have inherited all the other behavior of a Point.

Sending a Message to Your Superclass
In some cases, we do not want to replace a method but

just add something to it. Here's a class that always prints
its value on a new line:
:Class CrPoint <Super NewPoint

:M Print: (--)

CR Print: super ; M

CrPoint myCrPoint
Print: myCrPoint

When we use the phrase Print: super we are telling
the compiler to send the print message that was defined
in our superclass.

Indexed Instance Variables
Class Point had two named instance variables, x and

y. The type and number of named instance variables is
fixed when the class is defined. Objects may also contain
indexed instance variables. These are accessed via a zero-
based index. Each object may define a different number of
indexed instance variables. The size of each variable is
defined in the class header by the word <Indexed.

: I :Class Array <Super Object CELL <Indexed

I ~ t : (index -- value) (At) ;M

Forth Dimensions 15 March 1997 April

To: (value index --) (To) ;M 4 At: myArray . I
We have declared that an Array will have indexed

instance variables that are each CELL bytes wide. To
define an array, put the number of elements before the
class name:
10 Array myArray

This will define an Array with ten elements, numbered
from 0 to 9. We can access the array data with the At : and
To: methods:

6 4 2 To: myArray

Indexed instance variables allow the creation of arrays,
lists, and other collections.

Early vs. Late Binding
In these examples, you may have been thinking, "All of

this message sending must be taking a lot of time." In order
to execute a method, an object must look up the message
in its class, and then its superclass, until it is found.

But if the class of the object is known at con~pile time,
the compiler does the lookup then and compiles the

Programming in Forth

Different Approaches to

Object-Oriented
doing late-bound message sending only when necessary or
desired. This gives the performance advantages of early
binding with the flexibility of message sending. It also has

AISO, if the message selector is a token instead of a name.
we can avoid expensive string comparisons in the search.

The Yerk model is really a combination of the first and
third styles. It will do early binding whenever possible,

There have been many different implementations of
object-oriented programming presented over the years.
I have found over half a dozen in back issues of Forth
Dimensions. There are many different syntaxes, but in
most cases the internals fall into one of three categories.

The first is pure early binding. The Forth vocabulary
mechanism is used to resolve method names at compile
time. Methods are just ordinary Forth words. This
approach is often the simplest and has no run-time
penalty. It is a solution to the name clutter and informa-
tion-hiding problems of large programs, but the system
is not as flexible as ones that use late binding.

The second approach is the virtual method technique.
In this implementation, each object contains a pointer to a
table of functions. A method references a specific offset into
the table. When the method is used, it indexes into the
method table and executes the code there. This technique
has a small but constant overhead in method dispatch. It
also has the advantage that all messages are late-bound and
can be redefined by a subclass. The downside of this is that
a method can only be used on objects that inherit from a
common base class. If two different classes have a "print"
method at a different offset, disaster awaits. This technique,
by itself, does not solve the namespace problem, and so
must be augmented with something usually based on
search-order.

The third approach is a pure message-sending archi-
tecture. Either the objects or the messages are active, but
the message binding is done at run time by some kind
of lookup algorithm The advantage is that a message can
be sent to any object that understands it, regardless of
the inheritance tree. The primary disadvantage is the
run-time overhead of message lookup. This can be
overcome to some degree by using message caching and
only doing a full search if the message is not in the cache.

March 1997 April

a common feature missing in most of the object-oriented
implementations I have seen: named instance variables that
may themselves be objects. I think this is an essential feature
for full use of the object-oriented programming style.

A Forth programmer can use object-oriented program-
ming to supplement a normal Forth programming style,
treating it as just another tool in the toolbox; or can buy into
the technology whole-hog and use it for everything. An
example of the latter is found in Mops, where objects and
classes are used almost exclusively. Even basics such as the
assembler and floating-point libraries are implemented in
classes. Both approaches are useful, and sometimes an
implementation custom-tailored for a specific application is
required. This Forth is putty in our hands!

References
Object-Oriented Forth in Assembly
Andriis Zs6ti.r
FD Volume XVI, Number 6, March/April 1995

Object-oriented Forth
Rick Hoselton
FD Volume X, Number 2, July/August 1988

Yerk Comes to the I'C
Rick Grehan
FD Volume XIII, Number 5 , January/Febn~ary 1992

Object-Oriented Forth
Roger Bicknell
FD Volume XIII, Number 5 , January/Febn~ary 1992

Simple Object-Oriented Forth
Clive Maynard
FD Volume XIII, Number 5, January/February 1992

16 Forth Dimensions

execution token of the method. This is called early
binding. There is still some overhead with calling a
method, but it is quite small. In all the code we have seen
so far, the compiler will do early binding.

There are cases when you do want the lookup to occur
at run time. This is called late binding. An example of this
is when you have a Forth variable that will contain a
pointer to an object, but the class of the object is not
known until run time. The syntax for this is:
VARIABLE o b j p t r mypoint o b j P t r !

P r i n t : I o b j P t r @ I

The expression within the brackets must produce an
object address. The compiler recognizes the brackets and
will do the message lookup at run time.

(Don't worry, I haven't redefined [or I . When a
message selector recognizes the left bracket, it uses
PARSE and EVALUATE to compile the intermediate code,
then compiles a late-bound message send. This also works
in the interpretive state.)

Class Binding
(Dave Boulton called this "promiscuous binding.")
Class binding is an optimization that allows us to get

the performance of early binding when we have object
pointers or objects that are passed on the stack. If we use
a selector with a class name, the compiler will early bind
the method, assuming that an object of that class is on the
stack. So if we write a word to print a point like this,

: . P o i n t (a P o i n t --)

P r i n t : P o i n t ;

it will early bind the call. If you pass anything other than
a P o i n t , you will not get the expected result (it will print
the first two cells of the object, no matter what they are).
This optimization technique should be used with care until
a program is fully debugged.

Creating Objects on the Heap
If a system has dynamic memory allocation, the pro-

grammer may want to create objects on the heap at run
time. This may be the case, for instance, if the programmer
does not know how many objects will be created by the
user of the application.

The syntax for creating an object on the heap is:
Heap> P o i n t o b j P t r !

Heap> will return the address of the new point, which can
be kept on the stack or stored in a variable. To release the
point and free its memory, we use:

o b j P t r @ R e l e a s e

Before the memory is freed, the object will receive a
R e l e a s e : message. It can then do any cleanup necessary
(like releasing other instance variables). This is similar to
a C++ destructor.

Implementation
The address of the current object is stored in the value

"base . (In a native system, this would be a good use for
a processor register.)

The only time you can use " b a s e is inside a method.
Whenever a method is called, "base is saved and loaded
with the address of the object being sent the message.
When the method exits, " b a s e is restored.

Class Structure
All offsets and sizes are in Forth cells.

Ofset Size Name Description
0 8 MFA Method dictionary (eight-way

hashed list)
8 1 IFA Linked-list of instance variables
9 1 DFA Data length of named instance

variables
10 1 XFA Width of indexed instance variables
11 1 SFA Superclass pointer
12 1 TAG Class tag field
13 1 USR User-defined field

The first eight cells are an eight-way hashed list of
methods. Three bits from the method selector are used to
determine which list the method may be in. This cuts
down search time for late-bound messages.

The IFA field is a linked list of named instance
variables. The last two entries in this list are always s e l f
and s u p e r .

The DFA field contains the length of the named
instance variables for an object.

The XFA field actually serves a dual role. For classes
with indexed instance variables, it contains the width of
each element. For non-indexed classes, this field is zero.

The TAG field contains a special value that helps the
compiler determine if a structure really represents a class.
In native implementations, a unique code field is used to
identify classes, but this is not available in ANS Forth.

The USR field is not used by the compiler but is
reserved for a programmer's use. In the future, I may
extend this concept of class variables to allow adding to
the class structure. This field is used in a Windows
implementation to store a list of window messages the
class will respond to.

Object Structure

Offset Size Descrzption
0 1 Pointer to object's class
1 DFA Named instance variable data

DFA+1 1 Number of indexed instance variables
(if indexed)

DFA+2 ? Indexed instance variables (if indexed)

The first field of a global or heap-based object is a
pointer to the object's class. This allows us to do late
binding. Normally, the class field is not stored for an
instance variable. This saves space and is not usually

Forth Dimensions 17 March 1997 April

needed because the compiler knows the class of the which is the parameter field address of the message selector.
instance variable and the instance variable is not visible
outside of the class definition. For indexed classes, the
class pointer is always stored because the class contains
information needed to locate the indexed data.

When an object executes, it returns the address of the
first named instance variable. This is what we refer to as
the object address. This field contains the named instance
variable data. Since instance variables are themselves
objects, this structure can be nested indefinitely.

Objects with indexed instance variables have two more
fields. The indexed header contains the number of in-
dexed instance variables. The width of the indexed
variables is stored in the class structure, which is why we
must always store a class pointer for indexed objects.

Following the indexed header is the indexed data. The
size of this area is the product of the indexed width and
the number of elements. There are primitives defined to
access this data area.

Instance Variable Structure

?[,?yet Sire Name Description
0 1 link points to link of next ivar in chain
1 1 name hash value of name
2 1 class pointer to class
3 1 offset offset in object to start of ivar data
4 1 #elem number of elements (indexed ivars

only)

Ofset Size Description
0 1 Link to next method
1 1 Selector
2 1 Method execution token

The code for a method is created with the Forth word
: NONAME. In this implementation, it contains no special
prolog or epilog code. When the method executes, the
current object will be in "base. Method execution is done
by the following word that saves the current object pointer
and loads it from the stack, calls the method, and then
restores the object pointer.
: EXECUTE-METHOD ("obj xt --)

"base >R
SWAP TO "base EXECUTE
R> TO "base ;

When a method is compiled into a definition, the object
and execution token are compiled as literals followed by
EXECUTE-METHOD.

This represents the overhead for calling a method over
a normal colon definition. (This was one of the conces-
sions I made to ANS Forth. In the native versions, a fast
code word at the start and end of a method performed a
similar action, making the overhead negligible.)

When a message is sent to an instance variable, the
method execution token and variable offset are compiled

The link field points to the next instance variable in the
class. The head of this list is the IFA field in the class. When
a new class is created, all the class fields are copied from
the superclass, so the new class starts with all the instance
variables and methods from the superclass.

The name field is a hash value computed from the
name of the instance variable. This could be stored as a
string with a space and compile-time penalty, but with a
good 32-bit hash function, collisions are not common. In
any event, the compiler will abort if you use a name that
collides with a previous name. You can rename your
instance variable, or improve the hash function.

Following the name is a pointer to the class of the
instance variable. The compiler will always early-bind
messages sent to instance variables.

The offset field contains the offset of this instance
variable within the object. When sending a message to an
object, this offset is added to the current object address.

If the instance variable is indexed, the number of
elements is stored next. This fie!d is not used for non-
indexed classes.

Unlike objects, instance variables are not names in the
Forth dictionary. Correspondingly, you cannot execute
them to get their address. You can only send messages to
them. If you need an address, you can use the Addr :
method defined in class Ob j ec t .

Method Structure
Methods are stored in an eight-way linked-list from the

MFA field. Each method is identified by a 32-bit selector
March 1997 April

as literals followed by EXECUTE-IVAR:
: EXECUTE- IVAR (xt offset - -)

"base >R
"base + TO "base EXECUTE
R> TO "base ;

An optimization is made if the offset is zero (for messages
to self and super and the first named instance variable).
Since we do not need to change "base, we just compile
the execution token directly.

Selectors are Special Words
In theyerkimplementation, theinterpreterwaschanged

(by vectoring FIND) so that it automatically recognized
any word ending in : as a message to an object. It
computed a hash value from the message name and used
this as the selector. This kept the dictionary small.

In ANS Forth, there is no way to modify the interpreter
(short of writing a new one). It has also been argued
whether this is a good thing anyway.

In this implementation, message selectors are immedi-
ate Forth words. They are created automatically the first
time they are used in a method definition. Since they are
unique words, we use the parameter field of the word as
the selector.

When the selector executes, it compiles or executes
code to send a message to the object that follows. If used
inside a class, it first looks to see if the word is one of the
named instance variables. If not, it sees if it is a valid object.
Lastly, it sees if it is a class name and does class binding.

18 Forth Dimensions

Yerk also allowed sending messages to values and
local variables, and automatically compiled late-bound
calls. In ANS Forth, we cannot tell anything about these
words from their execution token, so this feature is not
implemented. We can achieve the same effect by using
explicit late binding:
Message: [a v a l u e I

Object Initialization
When an object is created, it must be initialized. The

memory for the object is cleared to zero, and the class
pointer and indexed header are set up. Then each of the
named instance variables is initialized.

This is done with the recursive word ITRAV. It takes
the address of an instance variable structure and an offset,
and follows the chain, initializing each of the named
instance variables in the class andsending it a C l a s s Init :
message. As it goes, it recursively initializes that instance
variable's instance variables, and so on.

Finally, the object is sent a C l a s s Ini t : message. This
same process is followed when an object is created from
the heap.

Example Classes
1 have implemented some simple classes to serve as a

basis for your own class library. These classes have names
and methods similar to the predefined classes in Yerk and
Mops. The code for the class implementation and sample
classes is available from the Forth Interest Group's FTP site:

Conclusions
For me, the primary benefit of using objects is in

managing complexity. Objects are little bundles of data
that understand and act on messages sent by other parts
of the program. By keeping the implementation details
inside the object, it appears simpler to the rest of the
program. Inheritance can help reduce the amount of code
you have to write. If a mature class library is available, you
can often find needed functionallity already there.

If the Forth community could agree on an object-
oriented model, we could begin to assemble an object-
oriented Forth library similar to the Forth Scientific Library
project headed by Skip Carter-code and tools that all
Forth programmers can share. That project had not been
possible before the ANS standardization of floating point
in Forth.

Unfortunately, there are many different ways to add
objects to Forth. Just look at the number of articles on
object-oriented programming that have appeared in Forth
Dimensions over the past ten years. Because Forth is so
easy (and fun) to modify and extend, everybody ends up
doing it their own (different) way.

Andrew McKewan was introduced to Forth in college and was fascinated by it.
He has been using Forth professionally and as a hobby for over ten years, and
works for Finnigan Corporation where he writes instrument-control soltware lor
mass spectrometers. H e can b e reached by e-mail at his
mckewan@austin.f~nnigan.com address.

CLASS.FTH - main implementation file

\ Object-oriented extensions from Yerk/Mops Version 1.0, 4 Feb 1997
\ Andrew McKewan mckewan@austin.finnigan.com 1 DECIMAL
\ ...

\ Misc words. You may already have some of these.

I : HAVE (-- £) BL WORD BIND NIP ;

1 CELLS CONSTANT CELL
: C+! (char addr --) DUP C@ ROT + SWAP C! ;

\ Build link to list head at addr
: LINK (addr --) HERE OVER @ , SWAP ! ;

I : NOOP ;
I : BOUNDS (a n -- limit index) OVER + SWAP ;
HAVE PARSE O= [IF]
: PARSE (-- addr len) BL WORD COUNT ;
[THEN]

\ ..

\ Class Structure.

0 VALUE "Class
0 VALUE newobject
0 VALUE (ClassInit :)

\ pointer to class being defined
\ object being created
\ selector for ClassInit: message

\ The following offsets refer to the ^Class, or Pfa of the class.
\ The first 8 cells are the hashed method dictionary.

Forth Dimensions 19 March 1997 April

: IFA 8 CELLS + ;
: DFA 9 CELLS + ;
: XFA 10 CELLS + ;
: SFA 11 CELLS + ;
: TAG 12 CELLS + ;

\ i v a r d i c t L a t e s t f i e l d
\ da ta l en of named i v a r s
\ width of indexed a r e a , <= 0 i f n o t indexed
\ supe rc l a s s p t r f i e l d
\ c l a s s t a g f i e l d

13 CELLS CONSTANT c l a s s s i z e \ s i z e of c l a s s pfa

CREATE c lassTag \ con ten t s of t a g f i e l d f o r v a l i d c l a s s

: ? i s c l a s s (p f a -- f)
TAG @ c lassTag = ;

\ i s t h i s a v a l i d c l a s s ?

: ? isObj (pfa --) \ i s t h i s a v a l i d o b j e c t ?
@ DUP IF ? i s c l a s s THEN ;

: c l a s s A l l o t (n --)
"Class DFA + ! ;

\ A l l o t space i n t h e c u r r e n t c l a s s

: c l a s sAl ign (--) \ Align c l a s s d a t a s i z e (o p t i o n a l)
"Class DFA @ ALIGNED "Class DFA ! ;

: @width (" c l a s s -- e lwid th) \ r e t u r n t h e indexed element width f o r a c l a s s
XFA @ 0 MAX ;

\ Er ro r i f no t compil ing a new c l a s s d e f i n i t i o n
: ?Class "Class O = ABORT" Not i n s i d e a c l a s s d e f i n i t i o n " ;

\ Objec ts have a p o i n t e r t o t h e i r c l a s s s t o r e d i n t h e f i r s t c e l l o f
\ t h e i r p f a . When t h e y execute , t hey r e t u r n t h e address of t h e c e l l
\ fo l lowing t h e c l a s s p o i n t e r , which i s l o c a t i o n of t h e f i r s t named
\ i n s t a n c e v a r i a b l e .
\
\ Object s t r u c t u r e : 1 ^ c l a s s I named i v a r s I
\
\ I f an o b j e c t i s indexed, an indexed header appears a f t e r t h e d a t a a r e a .
\ This header c o n s i s t s of a c e l l con ta in ing t h e number of e lements .
\ The indexed d a t a fo l lows t h i s header .
\
\ Indexed o b j e c t : 1 " c l a s s I named i v a r s 1 #elems I indexed i v a r s I
\ ...

: (Obj) (--) CREATE DOES> CELL+ ;

: >obj (x t -- "obj)
>BODY CELL+ ;

\ ge t t h e o b j e c t address from t h e execut ion token

: > c l a s s ("obj -- " c l a s s) \ ge t t h e c l a s s of an o b j e c t
CELL - @ ;

\ Methods a r e s t o r e d i n an 8-way l i n k e d - l i s t from t h e MFA f i e l d .
\ Each method i s i d e n t i f i e d by a 32-b i t s e l e c t o r which i s t h e parameter
\ f i e l d of t h e s e l e c t o r . O f f s e t s a r e i n c e l l s .
\
\ Method S t r u c t u r e :
\ 0 l i n k t o next method
\ 1 s e l e c t o r
\ 2 method execut ion token (c a l l e d mcfa below)
\

' \ Find t h e t o p of t h e method l i n k f o r a given s e l e c t o r .
\ The "2/ 2/" below i s t o g e t a b e t t e r d i s t r i b u t i o n i f t h e s e l e c t o r s
\ a r e a l i g n e d v a l u e s .
: MFA (SelID "Class -- SelID MFA)

OVER 2/ 2 / 7 AND CELLS + ;

March 1997 April Forth Dimensions

\ S e a r c h t h r o u g h a l i n k e d - l i s t o f methods f o r t h e g i v e n s e l e c t o r .
: ((FINDM)) (Sel ID MFA -- mcfa t r u e I f a l s e)

BEGIN @ DUP
WHILE 2DUP CELL+ @ = I F 2 CELLS + (mfca) NIP TRUE EXIT THEN
REPEAT NIP ;

: (FINDM) (Sel ID ^ C l a s s -- x t) \ f i n d method i n a c l a s s
MFA ((FINDM)) I F @ EXIT THEN
TRUE ABORT" Message n o t u n d e r s t o o d by c l a s s " ;

: FIND-METHOD (S e l I D " o b j -- " o b j x t) \ f i n d method i n o b j e c t ' s c l a s s
TUCK > c l a s s (FINDM) ;

\ ...

\ Method e x e c u t i o n . The c u r r e n t o b j e c t a d d r e s s i s s t o r e i n t h e v a l u e ^ b a s e .
\ The o b j e c t i s o n l y v a l i d i n s i d e o f a method d e f i n i t i o n . When w e c a l l a
\ method, w e s a v e t h e o l d o b j e c t p o i n t e r and set it t o t h e c u r r e n t o b j e c t .
\ When t h e method r e t u r n s , we r e s t o r e t h e o b j e c t p o i n t e r .

I O Abase
\ p o i n t e r t o c u r r e n t o b j e c t

: EXECUTE-METHOD (^ o b j x t --) \ e x e c u t e method, s a v i n g o b j e c t p o i n t e r
^ b a s e >R SWAP TO ^ b a s e EXECUTE R> TO " b a s e ;

: EXECUTE-IVAR (x t o f f s e t --) \ e x e c u t e i v a r method a t g i v e n o f f s e t
^ b a s e >R " b a s e + TO " b a s e EXECUTE R> TO ^ b a s e ;

\ Wrap c a t c h s o t h a t it p r e s e r v e s t h e c u r r e n t o b j e c t
HAVE CATCH [I F]
: CATCH (-- n) " b a s e >R CATCH R> TO " b a s e ;
[THEN]

\ For l a t e - b o u n d method c a l l s , w e compi le code t o look u p t h e method
\ a t r u n t i m e and e x e c u t e it . The s y n t a x i s :
\
\ S e l e c t o r : [o b j e c t]
\
\ The code between [and] must r e t u r n a n o b j e c t r e f e r e n c e . I f t h e method
\ i s n o t found i n t h e c l a s s o f t h e o b j e c t , a run t ime e r r o r o c c u r s .
\ Because w e u s e PARSE, [and] must be on t h e s a v e s o u r c e l i n e .
\ ...

: (D e f e r) (^ o b j S e l I d --) OVER > c l a s s (FINDM) EXECUTE-METHOD ;
: Defer , (S e l I d --) POSTPONE LITERAL POSTPONE (Defe r) ;

: Defered (S e l I d --) \ Compile o r e x e c u t e a d e f e r e d message s e n d
>R [CHAR]] PARSE EVALUATE R>
STATE @ I F D e f e r , ELSE (D e f e r) THEN ;

\ True i f s t r i n g i s " I " t o s t a r t d e f e r e d message send
: ? i s p a r e n (s t r -- f) 1+ C @ [CHAR] [= ;

\ ...

\ Hash f u n c t i o n f o r i n s t a n c e v a r i a b l e names. The "32 OR" i s f o r
\ c a s e - i n s e n s i t i v e names. The c o m p i l e r w i l l warn you i f you have
\ a h a s h c o l l i s i o n .

: HASH (a d d r l e n -- n)
TUCK BOUNDS ?DO 5 LSHIFT I C @ 32 OR XOR LOOP
DUP O< I F EXIT THEN INVERT ;

: hash> (-- n) BL WORD COUNT HASH ;

\ ...

\ I n s t a n c e v a r i a b l e c o n s i s t s o f f i v e c e l l - s i z e d f i e l d s . The f i f t h f i e l d
\ i s u s e d f o r indexed i v a r s o n l y . O f f s e t s a r e i n c e l l s .
\

Forth Dimensions 2 1 March 1997 April

\ Offse t Name Descr ip t ion
\ - - - - - - - - - -
\ 0 l i n k p o i n t s t o l i n k of next i v a r i n cha in
\ 1 name 32-b i t hash va lue of name
\ 2 c l a s s p o i n t e r t o c l a s s
\ 3 o f f s e t o f f s e t i n o b j e c t t o s t a r t of i v a r d a t a
\ 4 #elem number of elements (indexed i v a r s only)
\
\ In t h e s t ack diagrams, " i v a r " r e f e r s t o t h e s t a r t i n g address of t h i s
\ s t r u c t u r e . The IFA f i e l d of a c l a s s p o i n t s t o t h e f i r s t i v a r .
\ ...

: i c l a s s (i v a r -- ' c l a s s) 2 CELLS + ;
: @IvarOf f s (i v a r -- o f f s e t) 3 CELLS + @ ;
: @IvarElems (i v a r -- #elems) 4 CELLS + @ ;

\ ...

\ Bui ld SUPER and SELF pseudo i v a r s . These a r e always t h e l a s t
\ two i v a r s i n a c l a s s . When we d e f i n e a c l a s s , we w i l l pa tch t h e
\ c l a s s f i e l d s t o t h e a p p r o p r i a t e c l a s s and s u p e r c l a s s .

CREATE "Self
0 , \ l i n k
hash> s e l f , \ name
0 , \ c l a s s
0 , \ o f f s e t

CREATE "Super
"Self , \ l i n k
hash> super , \ name
0 , \ c l a s s
0 , \ o f f s e t

\ Crea t e a dummy c l a s s t h a t "ob jec t " i n h e r i t s from.

CREATE Meta c l a s s s i z e RESERVE

"Super Meta IFA ! \ l a t e s t i v a r
c lassTag Meta TAG ! \ c l a s s t a g

\ ...

\ Determine i f next word i s an i n s t a n c e v a r .
\ Return p o i n t e r t o c l a s s f i e l d i n i v a r s t r u c t u r e .

: vFind (s t r -- s t r f a l s e 1 " i c l a s s t r u e)
"Class
I F DUP COUNT HASH "Class IFA ((FINDM))

DUP I F ROT DROP THEN
ELSE FALSE
THEN ;

\ send C l a s s I n i t : message t o i v a r on s t ack
: I n i t I v a r (i v a r o f f s e t --)

OVER @Iva rOf f s + newobject + (i v a r addr)
(C l a s s I n i t :) ROT i c l a s s @ (FINDM) EXECUTE-METHOD ;

: C l a s s I n i t (--) \ send C l a s s I n i t : t o newobject
newOb j e c t (C l a s s I n i t :)
newobject > c l a s s (FINDM) EXECUTE-METHOD ;

\ P=PII====I=I=-------ir------T5--5555-555~ ---------- ----E---IPI==II=IIE=P==P-=~ ---
\ ITRAV t r a v e r s e s t h e t r e e of nes t ed i v a r d e f i n i t i o n s i n a c l a s s ,
\ b u i l d i n g necessary c l a s s p o i n t e r s and indexed a r e a headers .

: ITRAV (i v a r o f f s e t --) >R (i v a r --)
BEGIN DUP "Super <>

March 1997 April 22 Forth Dimensions

WHILE DUP i c l a s s @ IFA @
OVER @Iva rOf f s R@ + RECURSE (i n i t i a l i z e i v a r ' s i v a r s)

DUP i c l a s s @ (g e t i v a r c l a s s)
DUP XFA @ (needs c l a s s p o i n t e r ?)
I F OVER @Iva rOf f s R@ + newobject +

(i v a r ^Class ivarAddr --)
2DUP CELL - ! \ s t o r e c l a s s p o i n t e r
OVER @width (indexed?)
I F SWAP DFA @ + \ addr of indexed a r e a

OVER @IvarElems \ Xelems
SWAP ! \ upper a r r a y l i m i t

ELSE 2DROP
THEN

ELSE DROP
THEN
DUP R @ I n i t I v a r \ send C l a s s I n i t :
@

REPEAT R> 2DROP ;
\ next i v a r i n cha in

\ ...

\ Compile an i n s t a n c e v a r i a b l e d i c t i o n a r y e n t r y .

: <Var (#elems ^Class I "Class --)
BL WORD vFind ABORT" Dupl ica te
COUNT HASH
ALIGN "Class IFA LINK ,
DUP ,
DUP XFA @ IF CELL c l a s s A l l o t
"Class DFA @ ,
DUP @width DUP
IF ROT DUP , * CELL+ THEN
SWAP DFA @ + c l a s s A l l o t ;

i n s t a n c e v a r i a b l e "
\ g e t hash va lue of name
\ l i n k & name
\ c l a s s

THEN \ i f indexed, al low f o r c l a s s p t r
\ o f f s e t t o i v a r d a t a

\ #elems, c e l l f o r idx-hdr
\ Account f o r named i v a r l e n g t h s

\ Bui ld an i n s t a n c e of a c l a s s . I f we a r e i n s i d e a c l a s s d e f i n i t i o n ,
\ b u i l d an i n s t a n c e v a r i a b l e . Otherwise b u i l d a g loba l o b j e c t .

\ Compile t h e indexed d a t a header i n t o an o b j e c t
: IDX-HDR (Xelems "Class I "Class -- i nd l en)

@width DUP IF OVER , (l i m i t) * THEN ;

: (Build) (Xelems "Class I ^Clas s --)
^Clas s
IF <Var \ b u i l d an i v a r i f we a r e i n s i d e a c l a s s
ELSE

(Obj) \ c r e a t e o b j e c t
DUP >R , \ s t o r e c l a s s p o i n t e r
HERE TO newobject \ remember c u r r e n t o b j e c t
R@ DFA @ RESERVE \ a l l o t space f o r i v a r s
R@ IDX-HDR RESERVE \ a l l o t space f o r indexed d a t a
R> IFA @ 0 ITRAV \ i n i t i n s t a n c e v a r i a b l e s
C l a s s I n i t \ send CLASSINIT: message

THEN :

\ ...

\ Bui ld a c l a s s header wi th i t s s u p e r c l a s s p o i n t e r .

: :Class (--)
CREATE 0 TO ^Class
DOES> (Build) ;

: <Super (--)
HERE TO ^Class \ save c u r r e n t c l a s s
c l a s s s i z e ALLOT \ r e se rve r e s t of c l a s s d a t a
' >BODY \ pfa of s u p e r c l a s s
DUP "Class c l a s s s i z e MOVE \ copy c l a s s d a t a

Forth Dimensions

March 1997 April

DUP "Class SFA ! \ store pointer to superclass
"Super iclass ! \ store superclass in SUPER
"Class "Self iclass ! ; \ store my class in SELF

: ;Class (- -)
classAlign
0 "Super iclass !
0 "Self iclass !
0 TO "Class ;

\ align class data size (optional)
\ clear out super and self class pointers

\ clear class compiling flag

\ Object Compiler. We rely on being able to classify the type of
\ object from it's execution token. There is no general way to
\ do this in ANS forth for builtin types such as VALUES. So we
\ only allow message sends to objects and classes. In Yerk, the
\ following will send a late-bound message to a object pointer:
\
\ 0 VALUE theobject ' myobject TO theobject
\
\ Message: theobject
\
\ Here we will have to use the following syntax (which does the same
\ this and is also allowed in Yerk):
\
\ Message: [theobject]
\
\ Key to instantiation actions
\ 1 = objType defined as an object
\ 2 = classType as a class
\ 5 = parenType open paren for defer group
\

\ (str -- xt tokenID) Determine type of token referenced by string.
: refToken

DUP ?isparen IF 3 EXIT THEN
FIND O= ABORT" undefined object"
DUP >BODY ?isObj IF 1 EXIT THEN
DUP >BODY ?isclass IF 2 EXIT THEN
TRUE ABORT" Invalid object type" ;

: (ivarRef) (xt offset --) \ compile ivar reference
SWAP POSTPONE LITERAL POSTPONE LITERAL POSTPONE EXECUTE-IVAR ;

: ivarRef (selID "iclass --) \ compile ivar reference
CELL+ FIND-METHOD SWAP @ (xt offset) ?DUP
IF (ivarRef)
ELSE COMPILE, (optimize for offset zero)
THEN ;

: callMethod (xt --) \ compile method call
POSTPONE LITERAL POSTPONE EXECUTE-METHOD ;

: (objRef) (SelID objCfa --) \ compile object reference
>obj FIND-METHOD SWAP (xt "obj)
POSTPONE LITERAL callMethod ;

\ (selID $str --) Build a reference to an object or vector
: objRef

refToken CASE
1 (object) OF (objRef) ENDOF
2 (class) OF >BODY (FINDM) callMethod ENDOF
3 (paren) OF DROP Defered ENDOF

ENDCASE ;

\ (selID Sstr --) Execute using token in stream
: runRef

March 1997 April 24 Forth Dimensions

refToken CASE
1 (o b j e c t) OF >ob j FIND-METHOD ENDOF
2 (c l a s s) OF >BODY (FINDM) ENDOF
3 (paren) OF DROP Defered EXIT ENDOF

ENDCASE EXECUTE-METHOD ;

\ ...

\ S e l e c t o r s a r e immediate words t h a t send a message t o t h e o b j e c t
\ t h a t fo l l ows . The Yerk requirement t h a t s e l e c t o r s end i n ":" i s
\ enforced h e r e but no t o therwise r equ i r ed by t h e implementation.

\ This i s t h e message compiler invoked by us ing a s e l e c t o r .
: message (SelID --)

BL WORD STATE @
IF vFind \ i n s t a n c e v a r i a b l e ?

IF ivarRef \ i v a r r e f e r ence
ELSE objRef \ compile o b j e c t / v e c t o r r e f e r e n c e
THEN

ELSE runRef \ run s t a t e - execute o b j e c t / v e c t o r r e f
THEN ;

: ? i s S e l (s t r -- f l a g) \ t r u e i f word a t addr i s a s e l e c t o r xxx:
DUP DUP C@ CHARS + C@ [CHAR] : = SWAP C@ 1 > AND ;

: ? S e l e c t o r (--) \ Veri fy t h a t fo l lowing word i s v a l i d s e l e c t o r
>IN @ BL WORD ? i s S e l O= ABORT" Not a s e l e c t o r " >IN ! ;

\ Create a s e l e c t o r t h a t sends a message when executed.
: S e l e c t o r (n --) ? S e l e c t o r

CREATE IMMEDIATE DOES> message ;

\ I f t h e s e l e c t o r a l r e a d y e x i s t s , j u s t r e t u r n t h e e x i s t i n g s e l e c t o r ,
\ otherwise c r e a t e a new s e l e c t o r .
: g e t s e l e c t (-- n)

> I N @ BL WORD FIND
IF >BODY NIP (a l r eady de f ined)
ELSE DROP >IN ! S e l e c t o r

HERE
THEN ;

S e l e c t o r C l a s s I n i t : g e t s e l e c t C l a s s I n i t : TO (C l a s s I n i t :)

\ ...

\ Bui ld a methods d i c t i o n a r y e n t r y . : M s t a r t s a method d e f i n i t i o n
\ by adding t o t h e c l a s s method l i s t and s t a r t i n g t h e compiler wi th
\ :NONAME. ; M ends a method and saves t h e method x t .

: : M (- -)
?Class
g e t s e l e c t
DUP "Class MFA ((FINDM)) \ i s method a l r eady de f ined?
IF

\ CR . " Method r ede f ined "
\ HERE COUNT TYPE SPACE
\ "Class BODY> >NAME .ID \ p r i n t c l a s s name

"Class U> ABORT" Method r ede f ined i n same c l a s s "
THEN
ALIGN \ a l i g n method
"Class MFA LINK \ l i n k i n t o method cha in
(SelID) , \ name i s s e l e c t o r ' s hashed va lue
HERE 0 , \ save l o c a t i o n f o r method x t
:NONAME ; \ compile nameless d e f i n i t i o n

: ; M (--) \ end a method d e f i n i t i o n
?Class POSTPONE ; SWAP ! (save x t) ; IMMEDIATE

Forth Dimensions 25 March 1997 April

\ ...

\ Build a new object on t h e heap f o r c l a s s . Use: Heap> className
\ g e t s heap, and re tu rns p t r . Throws an e r r o r i f not enough memory

I HAVE ALLOCATE [I F] I
: ?MEMERR (o r --) ABORT" Memory a l loca t ion e r r o r " ; I

I Selector Release: \ sent t o an object before it i s f r eed I
: allocObj (s i z e c l a s s --) \ a l l o c a t e object and s t o r e i n newobject

OVER CELL+ \ allow f o r c l a s s p t r
ALLOCATE ?MEMERR \ (s i z e c l a s s addr --)
DUP CELL+ TO newobject \ object address

I ! \ c r e a t e t h e c l a s s p t r
newobject SWAP ERASE ; \ c l e a r t o zero

: (heapobj) (telems c l a s s 1 c l a s s -- "obj)
>R (save c l a s s on re turn stack)
R @ DFA @ (i v a r data s i z e)
R@ @width ?DUP
IF \ indexed ob jec t , add s i z e of indexed a rea

\ (Xelems s i z e width --)
2 PICK * + (indexed data) CELL+ (idxHdr)
R@ allocObj
newobject R @ DFA @ + ! (s t o r e telems i n idxHdr)

ELSE
R@ allocObj \ non-indexed object

THEN
R> IFA @ 0 ITRAV \ i n i t i a l i z e ins tance va r i ab les
C lass In i t \ send Class In i t : message t o new object
newobject ; \ re turn object address

: HEAP> (-- addr)
' >BODY DUP ? i s c l a s s O= ABORT" Not a c l a s s "
STATE @
IF POSTPONE LITERAL POSTPONE (heapOb j)
ELSE (heapOb j)
THEN : IMMEDIATE

: RELEASE (Aobj --) \ f r e e heap object
Release: [DUP] \ send Release: message t o object
CELL - FREE ?MEMERR ; \ deal locate it

\ ...

\ Support f o r indexed ins tance va r i ab les . When object of these c l a s s e s
\ a r e defined, t h e number of elements should be on the s tack.

I \ Set a c l a s s and i t s subclasses t o indexed 1
: <Indexed (width --) ?Class "Class XFA ! ;

\ For some c lasses , we always want t h e c l a s s po in te r t o be s to red whenever
\ the object i s an ins tance va r i ab le , so t h a t t h e object can receive l a t e -
\ bound messages. This i s already t h e case f o r indexed c lasses . Here we
\ fake it out by s t o r i n g -1 i n t o t h e indexed f i e l d . This i s t h e reason
\ f o r t h e "0 MAX" i n t h e d e f i n i t i o n of @width.

\ s e l f r e tu rns t h e same address as "base, but i s used f o r l a t e bound c a l l s
\ t o t h e ob jec t , i . e . Se lec to r : [s e l f]

: s e l f (--) ?Class
"Class XFA @ O= ABORT" Class must be <General o r <Indexedo
POSTPONE ^base ; IMMEDIATE

March 1997 April 26 Forth Dimensions

\ ...

\ Indexed primatives. These should be i n code f o r bes t performance.

: idxBase (-- addr) \ get base of idx data a rea
"base DUP > c l a s s DFA @ + CELL+ ;

: l i m i t (- - n) \ get idx l i m i t (#elems)
"base DUP > c l a s s DFA @ + @ ;

I : width (-- n) \ width of an idx element
"base > c l a s s XFA @ ;

: ^elem (index -- addr) \ get addr of idx element
width * idxBase + ;

\ Fast access t o byte and c e l l a r r a y s .
: A t 1 (index -- char) idxBase + C@ ;
: A t 4 (index -- c e l l) CELLS idxBase + @ ;

I : To1 (char index --) idxBase + C! ;

: To4 (c e l l index --) CELLS idxBase t ! ;

: tt1 (char index --) idxBase + C+! ;
: t t 4 (c e l l index --) CELLS idxBase + + ! ;

\ Compute t o t a l length of ob jec t .
\ The length does not include c l a s s pointer .
: objlen (-- obj len)

"base > c l a s s DUP DFA @ (non-indexed data)
SWAP @width ?DUP
IF idxBase CELL - @ (#elems) * + CELL+ THEN ;

\ ...

\ Runtime indexed range checking. Use +range and -range t o t u r n range
\ checking on and o f f .

: ?range (index -- index) \ range check
DUP idxBase CELL - @ (#elems) U< IF EXIT THEN
TRUE ABORT" Index out of range" ;

0 VALUE (? idx) \ execution vector f o r range checking

I : ?idx (? idx) EXECUTE ; I

: +range ['] ?range TO (?idx) ; +range
: -range ['] NOOP TO (? idx) ;

\ ...

\ Primatives f o r ce l l - s i zed ob jec t s .

: M@ (-- n) POSTPONE ^base POSTPONE @ ; IMMEDIATE
: M! (n --) POSTPONE "base POSTPONE ! ; IMMEDIATE

\ ...

\ Define base c l a s s "object" from which a l l o the r c l a s s e s i n h e r i t
\ Some of t h e common indexed methods a r e defined here .

:Class Object <Super Meta

: M Class: "base >c lass ; M \ non-IX - leave c l a s s p t r
:M Addr: ^base ; M \ get object address

\ (-- e n) Return t o t a l length of object
: M Length: obj len ; M

HAVE DUMP [IF]
: M Dump: ^base obj len DUMP ; M

[THEN]

Forth Dimensions 27 March 1997 April

:M Print: . " Object@" "base U. ;M

:M ClassInit: ;M \ null method for object init
:M Release: ; M \ null method for object release

\ Bytes is used as the allocation primitive for basic classes
\ It creates an object of class Object that is n bytes long.
\ You can get the address by sending it an addr: message.

: bytes (n --)
?Class [' I Object >BODY <Var classAllot ;

\ ...

\ Load primative classes and test routines.

S" VAR.FTHW INCLUDED
S" ARRAY.FTH" INCLUDED
S" TEST.FTHW INCLUDED

CR . (Classes loaded)

VAR.FTH - cell-sized classes
I

\ Basic object variables
\ Version 1.0, 4 Feb 1997
\ Andrew McKewan
\ mckewan@austin.finnigan.com

\ ..

\ Define the basic cell-sized variable class. This is a generic superclass
\ that defines the basic access operators.

I CELL bytes Data I
:M Get: (n) M@ ;M
:M Put: (n --) M! ;M

:M Clear: 0 M! ;M
:M Print: M@ . ;M

\ (o b --) copies data from another CellObj
:M ->: @ M! ;M

\ ..
\ Var is for integer data

:Class Var <Super CellObj

:M t: (n --) ^base t! ;M
:M -: (n --) NEGATE "base + ! ;M

:M * : n - - M@ * M! ;M
:M : (n --) M@ SWAP / M! ;M
:M Negate: M@ NEGATE M! ;M

March 1997 April 28 Forth Dimensions

\ ..

\ Bool i s f o r s t o r i n g b o o l e a n s . I t a l w a y s r e t u r n s TRUE o r FALSE.

: C l a s s Bool <Supe r C e l l O b j

\ P u t : a l w a y s s t o r e d F o r t h b o o l e a n f l a g
: M P u t : - -) O = O - M ! ; M

: M S e t : TRUE M! ; M
: M I n v e r t : M@ O= M! ; M

:M P r i n t : M@ I F ." t r u e " ELSE ." f a l s e " THEN ; M
; C l a s s

\ ..

\ ExecVec s t o r e s a n e x e c u t i o n t o k e n .

: C l a s s ExecVec <Supe r C e l l O b j

\ E x e c u t e x t s t o r e d i n v a r i a b l e
: M Exec : (--) M @ EXECUTE ; M

\ I n i t i a l i z e t o d o n o t h i n g
:M C l e a r : [' I NOOP M! ; M
: M C l a s s I n i t : C l e a r : s e l f ; M

\ ..

\ P t r s t o r e s a p o i n t e r t o d y n a m i c a l l y - a l l o c a t e d memory. W e a l s o k e e p t r a c k
\ o f t h e c u r r e n t s i z e o f t h e memory b l o c k .

HAVE ALLOCATE [I F]

: C l a s s P t r < S u p e r C e l l O b j

V a r s i z e \ c u r r e n t s i z e

: M S i z e : (-- n) \ g e t c u r r e n t s i z e
G e t : s i z e ; M

: M R e l e a s e : (--) \ r e l e a s e c u r r e n t memory
M @ I F M@ FREE ?MEMERR 0 M! THEN C l e a r : s i z e ; M

: M N e w : (l e n --) \ c r e a t e a new memory b l o c k
R e l e a s e : s e l f DUP ALLOCATE ?MEMERR M! P u t : s i z e ;M

: M R e s i z e : (l e n --) \ r e s i z e memory b l o c k
M @ OVER RESIZE ?MEMERR M! P u t : s i z e ; M

: M N i l ? : (-- £) \ t r u e i f n o memory h a s b e e n a l l o c a t e d
M @ O= ; M

[THEN]

(Code confinues in the next issue.)

I I
Forth Dimensions 29 March 1997 April

Yet Another
Modest Proposal
Richard Astle
Del Dios, California

There was a lot of talk recently on comp.lang.forth and
at FORML about object-oriented programming and object-
oriented extensions for Forth. The consensus was, as usual
in this community, that there is no consensus, which is
perhaps as it should be: we're nothing if not experimen-
talists, and we're still in the process of that. As is the rest
of the world for that matter, as shown by the disparate
object models of Delphi and Java (both straightforwardly
object-oriented languages, unlike the mixed-breed C++)
among currently popular languages. For myself, in Forth,
I'm quite happy with the Smalltalk/Neon/Yerk-inspired
object model in Win32Forth, which may well become a de
facto standard, or at least a model to compare other
models with.

However, I would like to take a step back, to a time
before inheritance and polymorphism, and reconsider
data hiding, the oldest of the three tines of the object-
oriented fork. I'm certain what I propose here is not an
original idea in the Forth community, but it's not talked
about much, and hasn't been standardized, so I think it's

The consensus was that
there is no consensus,
which is perhaps as it should be.

worth bringing up.
For years, I've been using an idea inherited from

Modula-2, Ada, and similar languages, involving "mod-
ules" of source code containing "implementation" and
"interface" parts, "private" and "public" definitions. This
structure, which will be familiar to many of you, is
orthogonal to the "vocabulary" concept Forth has almost
always had, in that, while VOCABULARY (now WORDSET)
allows partitioning of definitions into separate name
spaces, it does not promote modularization in the sense of
grouping related words together in the source stream. This
scattering of source is useful in some places (for an
ASSEMBLER vocabulary, for example), but it's not very
good packaging, and (since my assembler is only available

in the metacompiler anyway) I've stopped using the
vocabulary/wordset idea entirely.

My MODULE words come in two flavors, and I use both
of them, depending on the situation. First is the set
PRIVATE . . . PUBLIC . . . END-MODULE, used in that order
in the stream of source code. PRIVATE introduces a
section of source which contains definitions that will be
invisible to words defined after the corresponding END-
MODULE. Meanwhile, in the portion of the source code
stream between PUBLIC and END-MODULE, the PRI-
VATE definitions are available, just as though PRIVATE
never happened.

The way this is done, of course, is by nlanipulating
headers: code, list, and data (if you have all those parts and
distinctions) compile as usual. My implementation relies
on manipulating a traditional, linear Forth dictionary
structure (I use a Forth with separated headers and no
hashing), but I'm assured by those who favor it that a
hashing implementation is not difficult to conceive. In my
environment, PRIVATE and PUBLIC are implemented by
manipulating the header dictionary pointer, and END-
MODULE patches a header link. Specifically, PRIVATE
saves the value of HDP and moves it ahead, leaving a gap
of 1K or so (this gap often has to be adjusted, which is an
annoyance and an ugliness in the implementation). Then
names are added as usual until PUBLIC moves HDP back
to where it was just before PRIVATE, without unlinking
the private names. Between PUBLIC and END-MODULE,
names are still added as usual, filling the gap, until END-
MODULE sets the link in the first PUBLIC word to point
to the last header before PRIVATE, effectively sealing off
the headers defined between PRIVATE and PUBLIC.
Since the place where these headers exist is beyond the
current HDP, their space is reclaimed in the normal course
of adding more headers to the dictionary.

With this implementation, modules are nestable: a
module can be placed in the PRIVATE section of another
module, so long as there is still header space left to allow
the header Dp to be moved ahead. I have a large
application, and though my headers share a 64K segment
only with stacks, I have to be careful, fine-tuning the
memory gap PRIVATE implements on a module-by-

March 1997 April 30 Forth Dimensions

module basis. In a 32-bit Forth, things would not have to
be quite so ugly.

My other version of module-defining words is the set
MODULE . . . EXPORTS . . . END-MODULE. MODULE is just a
synonym for PRIVATE-the difference is the word EX-
PORTS. In this version, all definitions in the module come
in the source stream between MODULE (a.k.a. PRIVATE)
and EXPORTS, while between EXPORTS and END-MOD-
ULE appears a list of words to be promoted to public
status. My Forth has a word ALIAS, which creates a new
header for an old word. Since I have separated headers,
all this amounts to is taking the code pointer (it would be
the list pointer in an indirect-threaded implementation)
from the old header and putting it in the appropriate place
in the new header, which means there is no execution-
time speed penalty. EXPORTS executes the functional part
of ALIAS over and over until it reaches END-MODULE.
This method allows public words to be used in the
definition of private words in the module, a feat which
would otherwise require deferred words in a traditional,
single-pass, Forth compilation model.

I came to this technique because I could, of course, but
also because I needed it: I had too many headers, and I
didn't like the technique of storing some of them on disk
(which I inherited from Pierre Moreton) or of limiting

before PRIVATE:

at PRIVATE:

(Header Dictionary Pointer)
during PRIVATE,
before PUBLIC*

during PUBLIC,
before END-MODUw/==

n:tmcs to three or five or eight significmt characters. 13ul
it's not only l~t.;idcr dictionary spa1.e that this tcchniclue I

(conserves, but also my own conceptual space: I can reuse / HDPP 1
meaningful private names and not worry about name
collisions. (My interpreter tells me when I'm redefining
something, and I take steps to eliminate the clash. Redefi-
nition is a time-honored Forth technique, but it can cause
problems I'd rather do without.) When I list the dictionary,

1 it's not cluttered u p with quite so many implementation I I 1 words, given names because they were once convenient (%Even though these headers are still linked together (
factors.

A second advantage of this construction is that it
promotes modularization: related words get clustered
together. I don't find myself defining something in screen

and point back into the main dictionary, they're
abandoned by the system, since nothing points to
them-and HDP will, in due course, march right through
their territory.

/ 5 just so I can use it in screen 500-1 define it in screen 499, 1
where it belongs. Theory aside, this makes things more
manageable: if a word is defined private to a module and
you want to change it, you don't have to do a full-source 1 Came to this technique

I together words defined in distant reaches of source. I 1

search to be sure you won't break something in a distant
part of your code. As I noted earlier, this goes counter to
the way VOCABULARY works, which allows grouping

/ wouldn't propose getting rid of the VOCABULARY or /

because I could, of course,
but also because 1 needed it...

- -

WORDSET idea, but I don't find much use it anymore.
Both of these features are also advantages of fully object-

/ oriented systems, which also have inheritance, polymor- /
phism, and encapsulation (creating new data types along
with the operations on them). Those are not esoteric issues
anymore, but for us they're still under construction. For me,
the usefulness of source code modules as I've described
them here is obvious. I think any reasonably experienced
Forth programmer can implement this construct. If I'm right,
many will, or already have, and it will become a standard
tool-whether it's ever Standard or not.

Richard Astle used Forth for a living for thirteen years, most of that time
develop~ng and maintaining a large planning tool and database-management
system for the food service industry. In the process, he became famil~ar with
many aspects of Forth language and development, some of which have been
reported in these pages. He is now off to adventures with Delphi and Java,
hoping not to forget his roots. He has a bachelors degree in mathematics from
Stanford University, a master's in creative writing from San Franciscostate, and
a Ph.D. in Engllsh literature from the University of California (San Diego).

Forth Dimensions 3 1 March 1997 April

A Case in Point

MPE5 Forth
Coding Style Standard

[Portions of this document, includingparts of some of the
examples, were edited lightly by FD,forpublication in this
format. -Ed.]

Introduction
This Forth layout standard covers the layout of Forth

source code in text files. It covers the layout of code and
comments, along with the use of the file, and the reasons
for a standard, and the reasons for certain decisions and
recommendations in the standard. This document reflects
current programming practice at MPE, and was heavily
influenced by the MartelForth layout specification pro-
duced by Laurie Newell of British Telecom, which is
copyrighted by British Telecommunications, 1987.

This standard presents an approach to thorough cod-
ing and layout. One of its main threads is consistency. The
key features for a standard are:

Consistency from one programmer
Consistency between many programmers
Easy to follow
Easy to understand
Code which is easy to read and understand
Code which is difficult to get wrong because of layout
A layout which is also pleasant
Unambiguous

Why a Standard?
There are several reasons for producing and following

a standard for anything. This standard is produced for the
following reasons.

In any organisation where many programmers use the
same language, they will inevitably share source code, or
work in teams on a given project. If every programmer
writes code to their own standard, then communication
will be difficult, and programmers will tend to prefer to 're-
invent the wheel' rather than try to understand and use
another's code. This is costly, time-consuming, and
unreliable. By following a standard-any standard-code
will be meaningful and maintainable by everyone.

When a programmer starts to learn a language, he or
she will not know how best to either write or lay out the
code being written. Books abound to teach the syntax,

structure and word-sets of Forth, but there is little advice
given on layout and practice. This document seeks to offer
the collected experience of staff at MPE so that other
programmers learn an accepted and clear standard.

However, the standard as presented here should not be
taken as an absolute diktat. If an organisation has its own
specific layout or documentation requirements, these
should not be ignored. A standard is there to help, not
hinder in the production of Forth code.

Implications of Editors, Monitors, Printers
The use of an editor has many implications. One of

these is the amount of code visible on the monitor at any
one time. Another is the use of tabs and spaces in white
space. Yet another is the decision of how the code is
fragmented-how many words on a page or in a file-and
how many files in the application or project.

The number of lines visible on the screen, coupled with
the speed of cursor movement almost dictates the size of
any word or procedure produced. This is of direct relevance
to the style of code eventually written: whether the code is
very vertical with lots of white space, or is very horizontal
with much code on every line. This is discussed later.

The use of tabs to space out code and comments has
a direct relevance to the amount of white space between
elements of the source file. If spaces must be used, there
will be little white space as its production is tedious. If tabs
are used, there may be any amount of white space in the
file, and it will be uniformly laid out, but the layout will be
at the whim of any tool used with the file. A good example
of this is the fact that DOS's tabs are preset to 8 columns
(1,9,17, etc.) for programs such as PRINT and TYPE, but
editors generally have programmable tab-stops.

It is therefore important to consider the tab spacing
used in conjunction with the tools likely to be used with
the source files. If an editor is capable of smart-indenting,
the amount of indent has to be considered. If the indent
is set too deep, very few structures will be easily nestable,

I I I

March 7997 April 32 Forth Dimensions

MicroProcessor Engineering Ltd.
133 Hill Lane - Shirley
Southampton SO1 5 5AF
England

but if the indent is too small, then the indent will not stand
out as such.

The decision of how many words will be placed on one
page or in one file depends on the nature of the compiler

in another file.
The former has the advantage of being parallel to the

code to which it relates whilst the latter reads as consistent
English, or other human language, and is more descrip-
tive. In a text file, both forms of comment may be
supported. Because the page is at least 80 characters wide,
each line may include a good in-line comment. Because
the monitor screen is at least 25 lines deep, a definition
may also have a 'header block' of comment above or
below it. This comment could potentially be in another
file, perhaps a documentation file, but is far more relevant
and useable if it is in the same file, and on the same page
as the code it explains.

Wisdom should be used in the wording in comments.
The comment should not be so trivial that it is pointless
('fetch the contents of the variable'), but should not be so
removed from the code that it conveys no information
('reads data structure'). It should indicate clearly, assisting
the Forth itself ('get the pointer value'):
: EXAMPLE \ - ; comments example

\ pointless . . .

DATA 4 + @ \ get contents of variable
\ no information . . .
\ read data structure
\ useful . . .
\ get the pointer value

@ EXECUTE

I

Comments should provide effective and efficient com-
munication. Be aware of the amount and intention of your
comments.Do not use comments to explain tricky code -
rewrite it instead. Comments are not an alternative to the
code, they should illuminate reason and intention. They are
used by the reader to provide focus and understanding.

It is not necessary to comment every line explicitly, but
all code should be commented.

The Layout of This Document
Within this standard, a description of the requirement of

the standard will be followed by an example. In the
example, the relevant code fragments will be printed in
UPPER CASE and a fixed width font. The comments in the
example will be in lower case. However, the case of the
characters used in real code is not specified. Some compil-
ers may be case-sensitive, others not. Also, different pro-
grammers may have case preferences. The code examples
in this document will assume that the left-hand end of the
line comes directly below the left-hand end of this type of
text. Indented code will be relative to this column position:
\ the beginning of the line

\ indented by one indent

File layout
Definition o f a Page

A page is defined as the characters between Form Feed
characters (ASCII 12d)-called 'Form Feed', but well
known as 'page break'. These are the characters inserted

33 March 1997 April

and editor in use. If the editor can have many windows
onto many files, then many files may be used easily-with

1

,

the code factored out on a per-file basis. However, if the
editor does not support multiple files, then there will be
a tendency to place all code in one file. If the compiler or
editor does not support page-breaks (see later), the source
code will tend to be fairly monolithic, with words simply
in sequence. However, if the tools support paging then the
code will tend to be grouped in pages, and structured
accordingly.

MPE house rule:
Tabs will be set to eight characters (1,9,17 .. .). Editors

will be set to produce hard tabs. If you cannot discipline
a programmer to set tabs to eight characters, then the
editor must be set to convert tabs to spaces.

HorizontaVVertical Layout: a Discussion
There are two main styles of source-code layout in use.

One is vertical, as used in assembler source, and the other
is horizontal, as used by most C programmers (and others).

Vertical code:
mov ax, bx
add bx, 3
inc di

Horizontal code:
for (i=O; i++, i<<=20) printf ("Bd", I);

The horizontal layout leads to a high code density and
minimal eye movement to read. The vertical layout encour-
ages in-line comments and improved visibility due to white
space. Both have their benefits and disadvantages.

Forth programmers usually prefer in-line comments
alongside the definition of a word. This leads to more
coiliprehensible code as it is both read and written, but
relies on a rather vertical code layout. However, the
novice programmer is likely to extend the vertical layout
to the extreme of a typical assembler layout, and thus lose
the high-level structure and flow of Forth source.

This generally derives from the phrasing of code-
writing meaningful phrases or fragments of code on one
line such that the comment describes the overall effect of
the line, not the actions of individual words such as @ and
+. I'hrasing also helps point out code fragments which
could be written more efficiently by being factored as
separate words.

Making Forth code legible is a compromise between
vertical and horizontal layouts-with code well phrased or
factored, but with structures spread out for easy checking
or modifying. As discussed in the section 'Control Struc-
ture Layout', however, even these are open to debate, as
short bodies within structures are often best on the same
line as the entire structure.

Comments: a Discussion
There have been two standards of Forth source code

comments. One is the in-line comment, the other is an
additional block of comment before or after in the file, or

Forth Dimensions

allows the first page to have a first-line
comment much like all the other pages in the
file. Because a tool often exists to display all
the first-line comments, it is worth the first
page also having one. See the section on

into a file by the 'New page' functions of editors such as
Word Perfect's Program Editor, MPE's TED and WinTED,
or the Forth macros for BRIEF. The text from the start of
the file up to the first page break is called the first page,
not the zeroth page.

First page
The first page of a file should include any copyright,

author, or other specific information. This may also include
project details or other information relevant to the use of the
code. If there are specific hardware dependencies, these
should be outlined on the first page-this page is the one
usually first seen when the file is browsed or edited.

If the compiler is capable of loading specific pages, or
of skipping the remainder of a page, then it may be made
to do so, else, each line of text on the first page will have
to be commented out (with a \ comment word) [see

"Page Layout."

Version Numbering
MPE has adopted the following version-numbering

scheme that allows for the requirements of the office
administration and for the use of automated tools such as
build numbering schemes that increment automatically
whenever the code is recompiled.
Version = X.YY.ZZZ

X is the Major Version which changes for a major
revision of the requirements or design specifications.
For tools, the Major Version should always be incremented
when previous code may be broken.
W i s the Minor Version which changes when a feature
or function is added or removed.
ZZZ is the Release or Build number which changes for
each maintenance release, for example for bug fixes and
documentation improvements.

Change History
It is often very useful to be able to track

all changes to a file. This will be particularly
important where a version control system is
not being used, or where changes have to be
made off-site, for example when commis-
sioning equipment.

Change history at MPE is included on the
first page in the following form
SFPOOl date description

Figure One].
Notice that the first line of the second

example still contains a \ comment. This I Figure One. In-house template for first page. I

PNB002 date description

The first column contains the authors
initials followed by a sequential, three-digit
number. The second contains the date in the
form 27 Jan 75 because this format causes the
least confusion in international projects, and
the third column contains a description of the
changes. Alldates should be in this form. The
code is then commented with these markers
changes \ added PNB002

\ SFPOOl . . . changes start
. . .

\ . . . SFPOOl changes end

The use of a special comment CH\ may
be useful to allow the change history mark-
ers to be stripped out periodically when a
major release is issued. This prevents the
cource code becoming very untidy.

\ Project: Code for Front panel control
\ Customer: xxxxxxxx
\ Project: y~yyyyy
\ Dependencies and requirements

\ (c) MicroProcessor Engineering Ltd and xxxxxxxxx
\ 133 Hill LaneiR>\ Southampton
\ SO15 5 A F

\ Phone (01703) 631441

\ Note: this code requires the z z z z z z z z
\ interface card, and MPE 8031 Cross-compiler
\ and interrupt handling code.
\ Revision history goes here

\ Project: Code for Front panel control
PTO \ skip to next page
Customer: xxxxxxxx
Project: yyyyyyyy
Dependencies and requirements

(c) MicroProcessor Engineering Ltd and xxxxxxxxxxx
133 Hill Lane
Southampton
SO15 5AF

Phone (01703) 631441

Note: this code requires the z z z z z z z z
interface card, and MPE 8031 Cross-compiler
and interrupt handling code.

Revision history goes here

March 1997 April 34 Forth Dimensions

The version number of the software should appear on
all copies of master and issue disks and in any accompa-
nying documentation.

A software package may consist of many components,
which can be separately identified and will retain their
own numbering, However, the package as a whole will
have its own version number, and documentation identi-
fying the components. We use a file called RELEASE.TXT
or RELEASE.DOC for each component (held in separate
directories), and 1'ACKAGE.TXT or PACKAGE.DOC for
the overal package.

Dependencies
A package should identify what is required to build or

run this package, and what versions are required. These
are all the hardware, software, and documentation items
that the package depends on to run.

The Rest
The rest of the file, either the code after the project

information, or the subsequent pages, will contain the
code for the project, or the portion of the project.

It is normal to split the code for an entire system into
several files. These are normally grouped into related
areas: all the data structures in one file, all the serial i/o in
another, and so on. If the project is small enough not to
warrant many source files, then the code areas will be
grouped on different pages: page 2 for data, page 3 for I/
0, etc. This modularisation may be thought of as an impact
of design on coding.

Each page should follow the layout described in detail
in the following section.

If the compiler does not 'understand' pages, then pages
may be simulated within the file. A method of so doing
might be to have a pair of lines:
\ -- End of Page --

word2, and word3--on the page. A block comment with
narrative is also very useful for each group of words.

It will be noted that the stamp is at the beginning of the
line. This simplifies the design of editor functions or
macros which automatically insert the information on the
top line of the page. It is recommended that such an editor
be used-it will save typing.

Base and Numbers
If the number base for the code on a page is important,

the base should be specified at the top of the page.
\ - R.G - 30/10/91 - wordl

HEX

: WORDl

If the base changes again on the page, the new base
should be specified in much the same way:
: WORDl

DECIMAL

A blank line is left either side of the base specification
for reasons of visibility. The code may all be squeezed
together, but part of the reason for having a standard is that
the code might be legible and easy to understand.

Many compilers also allow the base to be specified as
the number is typed:
#lo0 \ decimal 100
$10 0 \ hex 100 = decimal 256
%lo0 \ binary 100 = hex/decimal 4

which are inserted at the end of every "page." It is then
possible to use the editor's search function to find the next
page. We much prefer the use of hard pages rather than
having to simulate page breaks.

Page Layout
The Contents o f a Page

All words defined on a single page should be related
in function or area of the application. This allows the
programmer to look easily at all related functions, without
much need to cursor or search through the file.

First Lirze
The first line of the page should contain the name(s) of

the words defined on the page, and the date/name stamp
of the author. These will be in the form of a whole-line
comment:
\ - R. G . - 3 0 / 10 / 91 - wordl word2 word3

This top-line identifies the author, the date the page was
created or edited, and the names of the words-wordl,

If the compiler to be used supports this feature, then it
is good practice to use it, as there can then be no mistake
which number is meant at any time. If the compiler does
not support the temporary base definition, then it is best
to always prefix a hex number with a zero:
HEX<R>0100 \ hex 100 = decimal 256
OADD \ hex ADD = decimal 2781
ADD \ the word 'ADD'

Debugging faults caused by search order and base
failures can be lengthy and frustrating.

The tendency at MPE is to move away from regular base
changes to the use of the prefix system described above.

MPE house rule
Where the base can be confused, you must use a base

indicator at the start of the code section. Hexadecimal
numbers must be preceded by a leading zero. Use of
numeric literals is deprecated at MPE. Use constants or
equates instead. The code will be much easier to maintain.

(Continued in the next issue.)

Forth Dimensions 3 5 March 1997 April

Using Forth to manipulate the real world 1

A Gentle Introduction to
Digital Filters
Skip Carter
Mon terey, California

The Z Transform
We will start by defining a transform function that, at first,

looks so trivial that it appears it cannot possibly be useful. Let
us assume that data is digitized at a uniform sampling rate.
Say our data consisted of the sequence of points:
x 1 = (1 O , 5 , O , 4 , - 3 , - 6 , O , ...I (1)

Introduction
With this month's column we will take an introductory

look into a topic that many find to be intimidating: digital
filters. Digital filters provide a means to condition a digital
signal in order to achieve a variety of purposes. Depending
upon the problem one is confronted with, a filter may be
needed to solve one or more signal conditioning require-
ments: reduce unwanted noise, isolate or reject a piece of
the signal, enhance certain components of a signal (e.g., its
amplitude or temporal resolution). What makes digital
filtering hard to master is that to create a filter to achieve
your goals takes a bit of calculus (usually in the complex
plane) to do it properly. What makes digital filtering
intimidating is the degree to which various authors handle
the calculus. If they hide the calculus, digital filters take on
the air of a black art. If they just do the calculus, they throw
their readers into the deep end and risk losing a few in the
process. I will try to strike a balance and give you the
math-but starting at the shallow end of the pool.

I learned digital filtering from exploration seismolo-
gists (the people who inject signals into the ground with
various kinds of mechanical vibrators, thumpers, and
explosives, in search of mineral and oil deposits). Other
than notation, the mathematics behind the seismologists'
version of digital filters is the same as the electrical
engineers' version. What is different is that the two groups
approach the subject somewhat differently. We will use
the seismology approach; to the electrical engineers
reading this, it will look odd at first (but not unfamiliar)
but, ultimately, we get to the same end.

If the second signal came in overlapping the first (say, at
time 4), the numbers in the series are a bit messy-looking,
y , = (1 0 , 5 , 0 , 4 , - 8 , - 8 . 5 , 0 , - 2 , 1 . 5 , 3 , 0 , . . . I

Y(Z) = zX@) = 10Z + 5Z2 + OZ3 + 4Z4 - 3Z5 - 6Z" + 02'
+ . . . (3)
which becomes the untransformed series:
y, = (0, 10, 5, 0, 4, -3, -6, 0, . . .)

which is just the original time series delayed by one unit of
time. (Be careful, if you try to look the Z transform up in a
book. In a variation of the pi-throwing contest 1 mentioned
a few columns back, different authors use different sign
conventions on the Z transform polynomial.)

This innocent-looking transform and delay operator turn
out to be very powerful. Consider the following: suppose x,
represents the response of the ground to an explosion (which
we will call the impulse reqonse). If another explosion
occurred ten time units later, the signal we would see is,
y, = (10, 5, 0, 4, -3, -6, 0, 0, 0, 0, 10, 5, 0, 4 , -3, -6, 0, . . .)

which can be represented by,
Y(Z) = X(Z) + Z1('X(Z)

If the second explosion was half the strength of the first,
we'd write,

1
Y(Z) = X(Z) + -ZN'X(Z)

2

If the second was a half-strength implosion, the sign is jusl
reversed,

1
Y(Z) = X(Z) - - Z1('X(Z)

2

but, rest assured, this series can be written out as having
the transform,

This polynomial is called the Z transform of the time

We can represent this data as a polynomial:
X(Z)=10+5Z+OZL+4Z'-3Z4-6Z5+OZ6+ . . . (2)

1
Y(Z) = X(Z) - - 2 4 X(Z)

2

March 1997 April 36 Forth Dimensions

series. The trick with Z transforms is how we interpret
what the Z actually represents. The Z is called the unit
delay o p m t o r because of the following: if we take (2) and
multiply it by Z we get,

L

A Forth function to do this kind of factorization is shown
in Listing One. This code has been contributed to the Forth
Scientific Library and is awaiting review for its acceptance.
(Volunteers to do code reviews are eagerly accepted!)

In general, we can d o this for an arbitrarily complicated
sequence of explosions and implosions, as long as the
response of the earth remains linear (an example of a
nonlinear response would be the state of the ground
within a mile or so of a nuclear explosion). So, suppose
we have a sequence consisting of an explosion at t = 0, a

important, since digital filters can be described in terms of
convolutions. The Z transform version allows us to work
with these filters by merely manipulating polynomials. In
order to see that this is so, I have to reveal one neat fact
about the Z transform. The Z transform we describe above
can be written as,

half-strength implosion at time t= 2, and a quarter-strength
explosion at time t = 3,

then, 1 KZ) = B(Z) X(Z1

Now, without doing any integrals and just manipulating
mials, we have done the convolution theorem,

(8)

Both equations (7) and (8) state that the signal y, is the
convolution of x, and b,, but he Z transform version just
involves simple manipulation of polynomials. Listing Two
provides an implementation of convolution algorithms;
this code is also an unreviewed contribution to the Forth
Scientific Library.

t

which is the definition of the (discrete) Fourier transform!
In other words, the Fourier transform is just the Z
transform evaluated on the unit circle.

One way to interpret (7) is that we can make y be a
series that has a spectrum that is the spectrum of x
modified by the spectrum of 6. So, for example, if we
design b to have a zero at 60 Hz, y will be the signal xwith
60 Hz removed, i.e., we have a notch filter.

In general, we can write a digital filter in the form,
Y(Z) A (Z) = X(Z) B(Z) (1 1)

(6)
1

If this is evaluated on the unit circle in the complex plane,
that i swe let Z = e J y we get

\ c o e f d e t c o e f f i c i e n t d e t e r m i n a t i o n ACM Algor i thm # I 3 1

Convolutions and Digital Filters
ilaving established the convolution theorem is very

\ This r o u t i n e t a k e s two s e t s of power s e r i e s ,
\ H (x) and G (x) , c o e f f i c i e n t s i n t h e form:
\ H(x) = \sum-i=OAN h [i] x A i
\ and r e t u r n s t h e power s e r i e s which i s t h e expans ion of t h e q u o t i e n t
\ H(x) / G(x)

or, written out in the time domain,

Cyl-kak = (1 2)

\ The r e s u l t i s r e t u r n e d i n H .
\ I t i s assumed t h a t g[O] i s nonzero .

Listing One. k = o k = o .,.

\ T h i s i s
\ 1.
\ 2 .
\
\ 3 .
\
\ 5 .
\
\ 6 .
\
\

a n ANS F o r t h program r e q u i r i n g :
The F l o a t i n g - P o i n t word s e t
U s e s words ' P r i v a t e : ' , ' P u b l i c : ' and 'Reset-Search-Order'
t o c o n t r o l t h e v i s i b i l i t y of i n t e r n a l code .
The immediate word ' & ' t o g e t word a d d r e s s e s and I & ! ' t o
a l i a s a r r a y s t o ' D A R R A Y ' .

U s e s t h e words 'FLOAT' and 'DARRAY' t o c r e a t e f l o a t i n g
p o i n t a r r a y s
The c o m p i l a t i o n of t h e t e s t code i s c o n t r o l l e d by t h e
VALUE TEST-CODE? and t h e c o n d i t i o n a l c o m p i l a t i o n words i n
t h e Programming-Tools wordse t

\ C o l l e c t e d Algor i thms f rom ACM, Volume 1 Algor i thms 1-220,
\ 1980; A s s o c i a t i o n f o r Computing Machinery I n c . , New York.
\ ISBN 0-89791-017-6
\ (Note: t h e o r i g i n a l p u b l i c a t i o n had i n d e x i n g e r r o r s , t h e s e a r e
\ c o r r e c t e d i n t h i s c o d e) .
\ (c) Copyr igh t 1994 E v e r e t t F . C a r t e r . P e r m i s s i o n i s g r a n t e d by t h e a u t h o r t o
\ u s e t h i s s o f t w a r e f o r any a p p l i c a t i o n p r o v i d e d t h i s c o p y r i g h t n o t i c e i s
\ p r e s e r v e d .

I J

Forth Dimensions 3 7 March 1997 April

S" /usr/local/lib/forth/fsL-util-fth" INCLUDED

TRUE TO TEST-CODE?

CR . (COEFDET V1.3 20 August 1994 EFC)

Private :

FLOAT DArray g{
FLOAT DArray h{

Public :

: coefdet (&h &g n --)

>R
& g { & ! \ point to array g
& h{ & ! \ point to array h
R>

1.OEO g { 0 1 F@ F/ \ calculate alpha

DUP 1- 0 DO
FDUPh{ i } F@ F* -1.OEO F* \ calculate beta

\ adjust the later H values
DUP I 1+ DO

FDUP g{ I J - 1 F@ F*

h{ I } DUP F @ F+
F!

LOOP

FDROP
LOOP

\ scale H by alpha
0 DO FDUP h{ I DUP F@ F* F! LOOP

FDROP

Reset-Search-Order

TEST-CODE? [IF] \ test code ...

6 FLOAT ARRAY a {
6 FLOAT ARRAY b (

: ctestl-setup (--)

6 0 Do 0.OEO a{ I 1 F ! 0.0~0 b{ I) F! LOOP

March 1997 April 38 Forth Dimensions

: ctest2-setup (--)

6 0 DO O.OEO a{ I) F! O.OEO b{ I } F! LOOP

: coef-test (--)

ctestl-setup I

a{ b{ 6 coefdet

" A/B (should be 2 0 1.5 0 0 0) : " 6 a{ Ifprint CR I

a{ b{ 5 coefdet

. " A/B (should be 2.0 -1.0 1.5 0 0) : " 5 a{ Ifprint CR

[THEN I

(Code continues on nextpage.)

Forth Dimensions 39 March 1997 April

--

\ c o n v o l v e

If xrepresents the measurement data, and a and bare the
(somehow) known filter coefficients, the above equation
can be reorganized in a way that is more obviously useful,

1 YI = ' [z X ~ - ~ * ~ -&-kak (13)
k=o k=l

This equation is a general formulation of a digital filter. If
the a coefficients beyond a, are non-zero, it is called an
Infinite Impulse Response (11R) filter, because an input
series x consisting of all zeros except at one point will
result in an Output series y that will always contain Some
amount of the original input (for real computers with finite
CELLsizes, the output will actually eventually decay away
because of truncation effects). An example IIR filter is

L i n e a r and C i r c u l a r Convo lu t ion o f a r r a y s

what is known as the leaky integrator,
y, = x, + ay,,

For the special case where the a coefficients beyond
are all zero, the filter is called a Finite Impulse Response
(FIR) filter, because an impulsive input will cause an
output that will eventually settle down to a steady state. A
simple example is the running average,

M

Y,= x b k x (f - k)
k=O

Everything one can know about a digital filter is
contained in the ratio of the elements of A and B,

w-7 ~ (z) = - (14)

\ C a l c u l a t e s t h e c o n v o l u t i o n o f two a r r a y s .
\ L i n e a r c o n v o l u t i o n o f A{O..m-1) a n d B{O..n-1)
\ z { j) = Sum-i=OA{m+n-1) a [i) * b (j - i) ,
\ a t) a n d b [) a r e t a k e n t o b e z e r o o u t s i d e t h e r a n g e o f t h e i r i n d i c e s

4 2)
[Listing Two. 1

\ C i r c u l a r c o n v o l u t i o n o f A[O..n-1) and B{O..n-1)
\ z (j) = Sum-i=OA{n-1) a (i) * b { j - i) ,
\ a t) a n d b {) a r e p e r i o d i c a l l y r e p e a t e d o u t s i d e t h e r a n g e of t h e i r i n d i c e s

\ T h i s code conforms w i t h ANS r e q u i r i n g :
\ 1. The F l o a t i n g - p o i n t word set
\ 2. Uses words ' P r i v a t e : ' , ' P u b l i c : ' and 'Reset-Search-Order ' t o c o n t r o l
\ t h e v i s i b i l i t y o f i n t e r n a l code .
\ 3 . The immediate word ' & ' t o g e t word a d d r e s s e s
\ 4 . The word DArray t o d e f i n e Ar ray p o i n t e r s and t h e word & ! t o s e t them.

\ T h i s a l g o r i t h m i s d e s c r i b e d i n many p l a c e s , s e e e . g .
\ B u r r u s , C.S. a n d T.W. P a r k s , 1985; DFT/FFT and Convo lu t ion
\ A l g o r i t h m s , Theory a n d Implementa t ion , John Wiley & Sons,
\ New York pp. 232, ISBN 0-471-81932-8

\ (c) Copyr igh t 1994 E v e r e t t F . C a r t e r . P e r m i s s i o n i s g r a n t e d by t h e
\ a u t h o r t o u s e t h i s s o f t w a r e f o r any a p p l i c a t i o n p r o v i d e d t h i s
\ c o p y r i g h t n o t i c e i s p r e s e r v e d .

CR . (CONVOLVE V1.0 18 August 1994 EFC)

\ ..

S" / u s r / l o c a l / l i b / f o r t h / f s l - u t i 1 . W INCLUDED

TRUE TO TEST-CODE?

\ ..

P r i v a t e :

FLOAT DArray a {
FLOAT DArray b {
FLOAT DArray z (
P u b l i c :

\ l i n e a r convolution
: convo lve (& a m &b n & z -- , f : --) \ 7 . t) = A t 1 * B I)

& z{ & !
SWAP & b (& !
ROT & a { & !

I OVER OVER + 1-

\ presumes t h a t z{ } i s
\ b i g enough (n+m-1)

March 1997 April 40 Forth Dimensions

0 DO
0. OEO
OVER I 1+ MIN 0 DO

J I - OVER < IF
a{ I 1
b(J I
F* F+

THEN
LOOP

z { I 1 F!
LOOP
DROP DROP

\ circular convolution, note that ALL arrays have n elements
: circ~convolve (&a &b n & z -- , f: --) \ z { } = A{} (*) B { }

\ presumes that z { } is big enough (n)

SWAP & b{ & !
SWAP & a{ & !

DUP 0 DO
0. OEO
DUP SWAP 0 DO

a{ I } F@
J I - DUP O< IF OVER + THEN

b{ SWAP } F@
F* F+

LOOP

z (I J F!
LOOP
DROP

Reset-Search-Order

TEST-CODE? [IF] \ test code ..
5 FLOAT Array f {

4 FLOAT Array g (
7 FLOAT Array z {

(Code ccontznues on nextpage.)

: ctest-initl (--)

2.OEO f{ 0 } F! I

: cvolve-test1 (--)
ctest-initl

Forth Dimensions 4 1 March 1997 Aoril

Call For Papers

The European Forth Conference
euroForth '97: Oxford, England

''Embedded Communications"
September 26-28 1997

euroForth, the annual European Forth Conference, will focus
this year on the increasing use of communications within
applications, ranging from embedded controllers connected to
theoutside world through modems, to Internetpayment engines
delivering secure cash transfers from domestic PCs, and
including the process-control environment which connects
peripherals as diverse as door access controllers, mass
specuometers,commercial laundry controllers, walkingrobots,
and management systems.

All these and many more are the domain of modern Forth
systems, and papers are sought on the following topics:

Embedded networking, including Fieldbusses and embed-
ded TCPIIP
New development environments
Portable software tools
Virtual machines
Formal methods
Any Forth-related topic

Proceedings will be published for the conference, and will be
available immediately after theconference from the Conference
Organiser. They will also be published by the Forth Interest
Group. There is a refereed section of the proceedings for those
who dcsire peer review of their work.

Delegates from all parts of Europe and North America are
expected. euroForth is a friendly conference at which time is
made available for meeting people, for informal discussions,
and for contacts.

euroForth '97 is being held in the lovely setting of St Anne's
College, Oxford. St Anne's was founded in 1879 and was the
first Oxford institution tooffer University education to women.
In 1979, it opened its doors to men as well. This college is
within easy walking distance to the city centre, yet is free from
the crowds of central Oxford.

For further information, please contact:
The Conference Organiser, EuroForth '97
c b Microprocessor Engineering Limited
133 Hill Lane
Southampton SO15 5AF
England

tel: +44 1703 63 1441
fax: +44 1703 339691
net: mpc@mpeltd.demon.co.uk

£ [5 g[3 z[convolve

." f*g = " 7 z{ Ifprint CR

." should be: 2 4 9 10 13 10 8 " CR

. n f(x) = " 3 f{ Ifprint CR

. " g (x) = " 3 g{ Ifprint CR

f{ 3 g{ 3 z { convolve

. " f*g = " 5 z{ }£print CR

. " should be: 1 10 19 18 2 " CR

." f(x) = " 4 f{ Ifprint CR
." g (x) = " 4 g{ Ifprint CR

f{ g{ 4 z { circ-convolve

o w f (*) g = ,, 4 z (}£print CR
. " should be: 12 11.5 10.5 11 " CR

. n f(x) = " 3 f{ }£print CR

. g (x) = " 3 g{ Ifprint CR

ft gI 3 z { circ-convolve

. " f (*)g = " 3 z{ }£print CR

. " should be: 19 12 19 " CR

: convolve-test (--)

: cconvolve-test (--)

[THEN]

March 1997 April 42 Forth Dimensions

which is known as the.filtercharacte~?stic. Foremost is the
power transfer function, which describes what fraction of
energy at a given frequency in the input appears in the
output,
P(Z) = H(Z) H*(Z) (15)

where H* is the complex conjugate (the sign of the
imaginary part is inverted) of H.

In an earlier column, I pointed out that the power
transfer function is only part of the story. One should also
consider what the filter does to the phase of the input. In
general, a filter's effect on the phase is frequency-depen-
dent, so there is a phase transfer function,

\ x ,I

The filter can also have an effect on packets of waves.
These packets are what you get, for example, when you
modulate one frequency by another. The frequency of the
modulation envelope itself becomes a filterable component
with its own transfer function, the group transferfunction,

All of these transfer functions are conventionally com-
puted on the unit complex circle.

The characteristic function for the leaky integrator is,

Converting this to the time domain gives the impulse
response of the filter,

h, = - for t > 0, 0 otherwise (b)'
For the running average filter, the function is,

M

and its impulse response is
h,= b,for t = O...M, 0 otherwise

Certain forms for the polynomials A and B have proven
to be useful and are widely used. For example, the
bandpass Butterworth filter has the coefficients in the form,
B(Z) = MZ4 - 2Z2 + 1) (18)
A(Z) = Z4 + a,ZQ a2Z2 + a,Z + a,,

The Butterworth filter chooses to optimize the flatness of
the bandpass region of P(Z) and, in doing so, gives up
simple forms for @ and G.

Chebyshev filters are designed to give the sharpest
possible transition between the bandpass and bandstop
regions. The filter gets its name because the filter charac-
teristic contains a special polynomial known as a Chebyshev
polynomial, Tn.

I This filter gains in the sharp transition by compromising on
the flatness of the bandpass region.

Elliptical or Cauer filters get even sharper transitions
than Chebyshev filters, but achieve this at the expense of

ripples in both the pass and stop bands. The filter
characteristic looks like the Chebyshev filter, except the
Chebyshev polynomial gets replaced by a Chebyshev
rational function.

Bessel filters are designed with the goal of achieving the
flattest possible group delay. Ths results in a filter that has no
ringing when it receives a step or impulse input. The
characteristic function for the nth order Bessel filter is given by,

where,

(2n - k)!
bk =

2n-k k! (n - k)!

Conclusion
We have barely scratched the surface on digital filters

here. Go to any technical bookstore and you can easily
find five hundred page books on the subject, so don't be
surprised that I left something out. I am listing a few
literature references to provide starting points on other
places to look in order to learn more. In this installment,
I have concentrated on describing the form of digital filters
and not much upon how to design them. However, from
what's been presented so far, it's pretty clear that design-
ing a digital filter involves the manipulation of A(Z) and
B(Z) in order to get the desired effect in H(Z).

Those of you who asked for me to do an article on
adaptive PIDwill eventually get their wish. But before we
can properly understand that topic, we first need to build
a foundation by learning about digital filters, and then
adaptive digital filters. With this column we have taken the
first step with our first look at non-adaptive filters.

Please don't hesitate to contact me through Forth
Dimensions or via e-mail at skip@taygeta.com if you have
any comments or suggestion about this or any other
Forthware column.

References
Bracewell, R.N., 1986; The Fourier Transform and its
Applications, McGraw Hill, New York, 474 pages, ISBN 0-
07-007015-6

Claerbout, J.F., 1985; Fundamentals of Geophysical Data
Processing with Applications to Petroleum Prospecting,
Blackwell Scientific Publications, Pal0 Alto CA, 274 pages,
ISBN 0-86542-305-9

Oppenheim, A.V, and R.W. Schafer, 1975; Digital Signal
Processing, Prentice Hall, Englewood Cliffs NJ, 586 pages,
ISBN 0-13-214635-5

Robinson, E.A. and S. Treitel, 1980; Geophysical Signal
Analysis, Prentice Hall, Englewood Cliffs NJ, 466 pages,
ISBN 0-13-352658-5

Rorabaugh, C.B., 1993; Digital Filter Designer's Handbook,
featuring C routines, McGraw-Hill, New York, 332 pages,
ISBN 0-07-053661-9

Skip Carter is a scientific and software consultant. He is the leader of the Forth
Scientific L~brary project, and maintains the system taygefa on the Internet. He
is also the President of the Forth Interest Group.

Forth Dimensions 43 March 1997 April

Two years' conference contents in one convenient volume.
$50 - or order four FORML volumes and receive the lowest-priced one free...

.
Take Advantage ...

You are already entitled to benefits you might not know about!

The Forth Interest Group's aggressive plan of membership benefits is
more than a subscription to the world's most widely read Forth publication ...

Membership includes Forth Dimensions-now Forth companies and staff can benefit, too.
here is what else: Keep your Forth team up-to-date and connected to
4 10% discount on books and software in the extensive the discoveries, explorations, and experience of some of

mail-order catalog of the Forth Interest Group. the best minds you'll find in any computing discipline.
4 10% discount on advance registration for the FORML Corporate membership ($125 per year) includes all

conference, FIG's annual forum for the study and im- the individual benefits, plus:
provement of the Forth language. 4 Four extra copies of Forth Dimension-less need to

4 Full access to the foremost Forth site on the World share copies among staff members.
Wide Web at FIG'S www.forth.org, including: 4 A fifty-word "Corporate Member" listing in Forth Di-

free Web page free e-mail forwarding your mensions to describe your products or services.
resume on FIG's "programmers" Web page access 4 10Yo discount on advertising rates in Forth Dimensions.
to special interest groups on the "members-only" Web 4 A link to your Web site from FIG's home page.
page FTP access to FIG's Forth Software Library

4 Discount on FIG's Internet domain registration service. Support your library-or build one.
4 Referral to Forth-related job openings. A Forth reference section is a great asset to any
4 Direct networking with other Forth programmers corporate, public, o r academic library. A library

through FIG'S many chapters worldwide. membership in the Forth Interest Group makes it simple
to build your collection of models, techniques, useful
code, tutorials, and aids to program (and programming)

Help yourself to the benefits that best serve efficiency.
you. And remind colleagues and employers to join the Library membership ($125 per year) includes all
Forth Interest Group, too-see the centerfold order the individual benefits, and:
form for details, or contact the FIG office: 4 An extra set of the year's Forth Dimensions (six is-

sues) at the end of the publishing year.
408-37-FORTH (408-373-6784) 4 A copy of the FORML Proceedings, the written record

office@forth.org of each year's FOFWL Conference.

Rochester Forth Conference

Institute for Applied Forth Research, Inc.

For more information: O r write:
University of Rochester 716-235-0168 (voicelfax) Rochester Forth Conference
June 25-28,1997 lforsley@jwk.com Box 1261

Annandale, Virginia 22003 USA

