

SILICON COMPOSERS INC

FAST Forth Native-Language Embedded Computers

DUP

>R
R>

Harris RTX 2000'"' l&bit Forth Chip ~ ~ 3 2 ' " ' 32-bit Forth Microprocessor
*8 or 10 MHz operation and 15 MIPS speed. 08 or 10 MHz operation and 15 MIPS speed.
01-cycle 16 x 16 = 32-bi multiply. 1 -clock cycle instruction execution.
*l -cycle 14-prioritized interrupts. *Contiguous 16 GB data and 2 GB code space.
*two 256-word stack memories. -Stack depths limited only by available memory.
*&channel I/O bus & 3 timer/counters. *Bus request/bus grant lines with on-chip tristate.

SC/FOX PCS (Parallel Coprocessor System) SC/FOX SBC32 (Single Board Computer32)
*RTX 2000 industrial PGA CPU; 8 & 10 MHz. 032-bit SC32 industrial grade Forth PGA CPU.
.System speed options: 8 or 10 MHz. *System speed options: 8 or 10 MHz.
032 KB to 1 MB 0-wait-state static RAM. -32 KB to 512 KB 0-wait-state static RAM.
*Full-length PC/XT/AT plug-in (&layer) board. 100mm x 160mm Eurocard size (4-layer) board.

SC/FOX VME SBC (Single Board Computer) SC/FOX PCS32 (parallel Coprocessor Sys)
*RTX 2000 industrial PGA CPU; 8, 10, 12 MHz. -32-bit SC32 industrial grade Forth PGA CPU.
*Bus Master, System Controller, or Bus Slave. *System speed options: 8 or 10 MHz.
*Up to 640 KB @wait-state static RAM. 064 KB to 1 MB 0-wait-state static RAM.
*233mm x 160mm 6U size (&layer) board. -Full-length PC/XT/AT plug-in (&layer) board.

SC/FOX CUB (Single Board Computer) SC/FOX SBC (Single Board Computer)
*RTX 2000 PLCC or 2001A PLCC chip. *RTX 2000 industrial grade PGA CPU.
*System speed options: 8, 10, or 12 MHz. -System speed options: 8, 10, or 12 MHz.
032 KB to 256 KB 0-wait-state SRAM. 032 KB to 51 2 KB 0-wait-state static RAM.
*100mm x 1 OOmm size (&layer) board. 100mm x 160mm Eurocard size (Clayer) board.

For additional product information and OEM pricing, please contact us at:
SILICON COMPOSERS INC 655 W. Evelyn Ave. #7, Mountain View, CA 94041 (415) 961-8778

Features

Garbage Collection in Forth Jim Schneider 8 ,e ,S Forth memory allocation wordset is a good start toward a standard method of garbage
collection, but it's only a start-and this author ran into some of its shortcomings. He says,
"Although I don't admire LISP's irritating syntactic quirks, I do like the fact that it keeps track
of memory items and will discard memory that's no longer needed. I think a Forth garbage
collection utility would be invaluable. The code in this article is a first step in that direction."

1 1 Back to Forth:
An Object-Oriented Forth Anatole L. Medyntsev
This article describes an experimental object-oriented Forth system for MS Windows. Certain
ideas are based on the author's experience in FoxPro 2.5, Visual C++, MS Access, Visual BASIC,
and Delphi for database development in the financial field. In his opinion, a combination of
an interpreted object-oriented language and the usual C or Pascal is best for database
applications development. Unlike other options, Forth is not a monolithic language, and it
provides a simpler, more flexible, and more open technology.

Zen Floating Point C. H. Ting 15 Less is more, especially with the '486's free FPU-its floating-point registers are arranged as
a stack. But its instruction set is unnecessarily complicated because it allows the registers to
be accessed as a regular register set. So even less is even more: if we eliminate the register-
addressing instructions, a floating-point package can be built very simply and elegantly.

19 A Stack-Based
Dataflow Operating System Barry Kauler
"Visual programming" can offer high productivity, and can be used by people who know little
about conventional text-based languages-but this comes at a very high price. The visual
dataflow paradigm intrigued the author, as did operating systems for embedded applications.
He conceived a dataflow OS targeting real-time embedded applications.

22 Can POSIX Threads Be Used as a Standard
Forth Multi-tasker? Dr. Everett F ("Skip") Carter, Jr.
Threads are multiple processes running in the same memory image-like multiple Forth
virtual machines running simultaneously i.n the same dictionary and data space. The POSIX
threads API consists of a set of calls that maps very closely to that of a traditional Forth
cooperative multi-tasker. This similarity could be used to leverage an ANS Forth multi-tasker
via conformance to the international POSIX standard.

Departments I

4 Editorial 24 FORML Report Experimenting with
ANS Forth.

5 OfficeNews
27 Stretching Forth Squareroot and

6 Writer's Guide Golden Ratio

23 Advertisers Index 30 Forthware Closing the Loop -
PID Controllers

Forth Dimensions 3 January 1997 February

Forth Dimensions
Volume XVIII, Number 5
January 1997 February

Published by the
Forth Interest Group

Editor
Marlin Ouverson

It would b e remiss of me to let this issue pass without special acknowledgments. It
is possible, even probable, that the average reader of Forth Dimensions is primarily a
subscriber only, one who notes with some casual interest but little personal involvement
the affairs of the Forth Interest Group. For example, the growing impact of ANS Forth
is becoming more apparent each month but very few will recall that it was conceived at
a working group held years ago at the FORML Conference or that it gestated for several
years in the hearts and minds of hard-working committee members. And the FIG
presence at last year's Embedded Systems Conference was important for both the
language and the organization as a whole, but it was made possible by a FIG Chapter
in coordination with a Forth vendor.

One thousand-and-one details drive any organization, and the people who manage
them are rarely noticed-because they d o their job, and more, so well. Not-for-profit
businesses, in particular, rely o n the good will and generous spirits of volunteers and of
paid employees who often end by volunteering more than they are paid. I t isn't fair, but
it's a fact and a widespread one, at that.

Even as I write this, FIG is completing a peaceful change of guard. John Hall, a long-
term member, served as FIG President until recently and then continued in charge of
business operations. He dedicated a considerable percentage of his time and his home
to our collective, corporate needs. And when FIG needed someone to handle circulation
and the mail-order business, he found a solution nearby: Frank Hall was a newly retired
postal employee when his brother asked if he would lend a hand. Frank graciously
accepted the challenge, adopting FIG and putting in more hours than any part-time, post-
retirement position has a right to ask. His help and amiable presence proved invaluable.

We are very grateful to John Hall and Frank Hall for their years of service and
friendship to FIG and to its members. They dealt with all the stressful details, political
and organizational, that groups like ours tend to generate, enabling the rest of us to enjoy
the publications and conferences and meetings with little heed to their work behind the
scenes. John and Frank have our collective thanks.

Now the new team is hard at work. Trace Carter and her husband, FIG President Skip
Carter, are headquartered near FORML's conference facility, where they have ably
shouldered FIG'S business operations (in addition to Skip's contributions to this
magazine, to the Forth Scientific Library project, and to other endeavors). It is a very real
pleasure to welcome them both.

Call for Articles
Like a good conversation, this magazine requires input from every participant. So,

once again, w e must remind our loyal readers and authors that we need your written
contributions. Authors who are more proficient in Forth than in English will receive an
editor's friendly assistance, and those who lack confidence in their Forth skills can rest
assured that their material will receive technical review before it is published. Anyone
intimidated by the thought of writing for Forth Dimensions should remember that our
readers have varying levels of expertise-for each expert interested in advanced or
experimental articles, there is someone else who needs a tutorial on POSTPONE or
CATCH and THROW, tips on writing readable code, and explanation of the differences
between Forth implementation techniques; plus, everyone enjoys stories about applica-
tions, large or small, created in Forth. (See the writer's guide on page six of this issue.)

We always look forward to hearing from our readers, but never more so than when
our desks have been cleared and we are planning for upcoming issues. Write soon!

-Marlin Ouverson, editor@forth.olg
January 1997 February 4

Circulation/Order Desk
Trace Carter

Forth Dimensions welcomes edi-
torial material, letters to the editor,
and comments from its readers.
No responsibility is assumed for
accuracy of submissions.

Subscription to Forth Dimensions
is inc1"ded with membership in
the Forth Interest Group at $45
per year ($53 Canada/Mexico, $60
overseas air). For membership,
change of address, and to submit
items for publication, the address
is: Forth Interest Group, 100 Dolores
Street, suite 183, Carmel, California
93923. Adrmnistrative offices:
408-37-FORTH (408-373-6784),
Fax: 408-373-2845

Copyright Q 1997 by Forth Interest
Group, Inc. The material contained
in this periodical (but not the code)
is copyrighted by the individual
authors of the articles and by Forth
Interest Group, Inc., respectively.
Any reproduction or use of this
periodical as it is compiled or the
articles, except reproductions for
non-commercial purposes, with-
out the written permission of Forth
Interest Group, Inc. is a violation
of the Copyright Laws. Any code
bearing a copyright notice, how-
ever, can be used only with per-
mission of the copyright holder.

The Forth lnterest Group
The Forth Interest Group is the
association of programmers, man-
agers, and engineers who create
practical, Forth-based solutions to
real-world needs. FIG provides a
climate of intellectual exchange
and benefits intended to assist
each of its members. Publications,
conferences, seminars, telecom-
munications, and area chapter
meetings are among its activities.

" FotthDimions(1SSN 0884-0822)
is published bimonthly for $45/
53/60 per year by the Forth Interest
Group, 100 Dolores Street, suite
183, Carmel, California 93923.
Second-class postage paid at
Oakland, CA. P o m a m ~ : Send
address changes to Forth
Dimensions, 100 Dolores Street,
suite 183, Carmel, California 93923."

6% Forth Dimensions

Doug Hammed entertains a visitor to the FIG booth at the recent Embedded Systems Conference in San Jose,
California. The booth, provided by FORTH, Inc., attracted nearly 100 visitors during the three-day conference.

operational as you read this. 1 adminstrative foundation that currently exists in the FIG

The physical move of the Business and Sales office of
the Forth Interest Group is now complete. We are still in
the process of reorganizing and unpacking, but will be

- It's exciting.to begin this particular new project. I've (office, on which we can build.

and for your participation. It's also appropriate to offer a
special thank you to John Hall for his long stewardship of
the business office, and to Frank Hall for the solid

been in offices and have worked in administration and (
management for the last 18 years. My hope is that, with this 1
experience, I can serve the Forth community so that each (Trace Carter

what you need is for you to communicate to me how you 100 Dolores Street, Suite 183
feel the office can be of greatest service to you--e.g., Carmel, California 93923 USA

member will feel that he/she is getting what they need
from the main office. The best way to ensure that you get

member recruitment, member benefits, chapter set-up, phone: 408-37-FORTH fax: 408-373-2845
job referral, educational literature and, of course, book e-mail: office@forth.org

Administrative Manager
Forth Interest Group Business & Sales Office

sales just begin the list
FIG is a member-supported organization and, as such,

Forth Dimensions 5 January 1997 February

its greatest assets are its members. You, as members, make
un the heart and soul of FIG and now is the ideal time to
make it your FIG. Let me know what we in the main office
can do to help. From time to time, I'll write again with
"news and updates" from the FIG office to let you know
what exciting new things are happening.

So, thank you in advance for your palience as we

dot-quote
1

"If YOU can't crash if ,
who's driving?"

-Rick Hohensee
from comp.lang. forth

unpack, for your ideas and action as we grow and change,

Writing for Forth Dimensions
I once received an author's manual from another

technical magazine. It was 26 pages of intimidating
restrictions, rules, and regulations. You got the impression
that, even if you managed to learn and obey all those
constraints, the editors would be doing you a big favor if
they deigned to publish your work.

Our guidelines, by contrast, are meant to encourage
you. They are minimal, in order to accommodate different
kinds of writing (scholarly/academic, anecdotal, philo-
sophical, editorial, how-to, tutorial, etc.) and so as not to
discourage anyone from sharing their Forth knowledge
and experience.

Being published in the most widely read Forth periodi-
cal brings both personal and prfessional benefits. And the

What Makes a Good FD Article
We'd like to hear your suggestions. If y ou feel a subject is
important, interesting, befiddling or helpful, chances are
good that many of your fellow readers of FD will agree.
Here are just a few ideas from our list of editorial wishes:

Tutorials about fundamental Forth techniques like fac-
toring, minimizing stack juggling, and readability.
Description of interesting details ofANS Forth that differ
from previous practice.
Application stories that show Forth in action. Describe
the challenges, tell how you arrived at a solution, and
share the final results.
Classical programming problems demonstrated in Forth
(e.g., sorts, filters, date routines) and efficient Forth

Forth community's vitality springs from good ideas, well
communicated, circulating through many interesting and
informed minds. We encourage you to write, and we hope
that, like our other authors, you will be pleasedwhen your
article appears and will want to write often.

If you have an idea but aren't sure if it would make an
appropriate article, or if you have any other questions,
please feel free to contact me. It will be my pleasure to
assist in any way I can.

-Marlin Ouverson, Editor
edito?@forth.otg

d o Forth Dimensions
100 Dolores Street, Suite 183

Camel, California 93923 USA

versions of useful features found in other languages
(e.g., strings 5. la Snobol, grep from C).
Human-interest profiles of successful Forth vendors,
corporate users, implementors, and innovators.
Hardware-related pieces about, for example, Forth chips,
embedded systems, robotics, and data acquisition. Such
articles are most useful if they include "how-to" info.
Experimental work that charts new directions for Forth
or that addresses perceived deficiencies.
Work that consolidates previously published material or
that builds on or subtantially improves earlier articles.
Ways to improve Forth's visibility and acceptance.

' Academic papers, including Computer Science perspec-

, tives, are welcome although FDis not formally refereed.

Thinking too critically or analytically while writing can
dry you up. If this happens, just relax and jot down all
your important points without regard for logic, format,
spelling, etc. This is the brain-dump phase, and no one
but you will see it. Later, simply re-write and organize
for clarity, focus, conciseness, organization, and com-
pleteness.

Tips for New Writers - and getting rid of "blocks"

Challenge the reader. When you take a stand or issue a
challenge, readers tend to get involved, thinking and

January 1997 February

Every writer in an individual, so what encourages one
may inhibit another. But ifyou can't seem togetstarte&
or tofinisb-one of these ideas might help.

Plan your article. Try top-down design and bottom-up
writing: Start with your subject, make an outline, and
check the logical flow of the information. Write the sub-
sections, then work on smooth transitions between
them. Add a motivational introduction and overview,
then write a conclusion with observations, suggestions,
and a summary.

Ask for help. Often there are people at work, at the local
FIG Chapter, or at on-line Forth venues who are happy
to critique your ideas or even to co-author an article.

acting on their own-a worthy goal of many writers. So
provoke readers to improve upon or extend your work,
and to test it in their own environments; and encourage
them to report their findings to FD in an article or letter
to the editor.

Have a beta test. Ask a friend or co-worker to read your
article, or present it at a local FIG Chapter meeting to see
if it communicates as well as you hope and to elicit
useful feedback. Accept advice that makes your code or
technique or article better (and tactfully ignore the rest).

Finally, learn when to let go. No one ever feels com-
pletely ready to deliver that code or manuscript. Like
many an application program, an article is subject to
endless revision, refinement, and improvement until it
ships. If it communicates well enough, is complete
enough, and is accurate, ship it and move on!

6 Forth Dimensions

What to include
Ll Your name as you wish it to appear in print.
O Your city, state (or province), and nation of residence.
Ll Brief autobiographical information to share with read-

ers-such as education, relevant employment, your
introduction to and use of Forth, current projects, and
other interests.

O Your e-mail address for publication, so interested
readers can contact you. If you have a personal Web
site, you can include that URL as well.

C1 If your article depends on a specific Forth dialect or
implementation, be sure to specify it (e.g., ANS Forth,
Forth-83,

O Your complete mailing address, so we can mail com-
plimentary contributor's copies of the issue in which
your work appears.

C1 Permission to post your code, in the form you have sent
it to us, on one or more FTP sites so readers can
download it; and/or include the URL of an FTP site
where you will post the code.

Ll Daytime and evening telephone numbers and a fax
number (if any). These will not be published, and will
be used only if we have questions or problems during
the editing process.

Ll If you send hard-copy manuscript, artwork, or disks that
need to be returned to you, include a self-addressed
envelope with adequate postage affixed to it.

/ How to Submit Your Work
If in doubt, just as&we can work out the details.

E-mail
The fastest, most convenient way for us to receive your
material is via e-mail to the editor@forth.org address.
Binary (e.g., formatted text) files must be uuencoded to be
sent as e-mail, but ASCII files can be sent as-is.

"Snail" mail
Or, mail a hard copy with PC or Mac diskettes containing
your material to FD Editor, c/o the Forth Interest Group.

File formats
If your article includes equations or other items highly
dependent on your particular software and/or fonts,
include a Postscript file, if submitting electronically, so we
can generate a reliable hard copy for proofing. Formatted
files that can be read by MS Word are acceptable (e.g., RTF,
Wordperfect, and many others); or just send the text as
ASCII-you can indicate any critical formatting with
informal tags, e.g., <italic>like HTML<end-italic>.

Illustrations
Figures are black-and-white and can be vector (Postscript)
or bitmapped. They likely will be re-drawn for clarity,
style, and compatibility.

Author Recognition Program
To recognize and reward authors ofForth-related urticles,
the Forth Interest Group (FIG) has adopted the following
Author Recognition Program.

Articles Letters to the Editor
The author of any Forth-related article published in a Letters to the editor are, in effect, short articles, and

periodical or in the proceedings of a non-Forth conference so deserve recognition. The author of a Forth-related
is awarded one year's membership in the Forth Interest letter to an editor published in any magazine except
Group, subject to these conditions: Forth Dimensions is awarded $10 credit toward FIG

a. The membership awarded is for the membership membership dues, subject to these conditions:
year following the one during which the article was a. The credit applies only to membership dues for
published. the membership year following the one in which

b. Only one membership per person is awarded in any the letter was published.
year, regardless of the number of articles the person b. The maximum award in any year to one person
published in that year. will not exceed the full cost of the FIG member-

c. The article's length must be one page or more in the ship dues for the following year.
magazine in which it appeared. c. The author must submit to the Forth Interest

d. The author must submit the printed article (photo- Group a photocopy of the printed letter, includ-
copies are accepted) to the Forth Interest Group, ing identification of the magazine and issue in
including identification of the magazine and issue in which it appeared, within sixty days of publica-
which it appeared, within sixty days of publication. tion. A coupon worth $10 toward the following
In return, the author will be sent a coupon good for year's membership will then be sent to the author.
the following year's membership. d. If the original letter was published in a language

e. If the original article was published in a language other than English, the letter must be accompa-
other than English, the article must be accompanied nied by an English translation or summary.
by an Engish translation or summary.

Forth Dimensions 7 Januaiy 1997 February

ANS F o ~ m

Garbage Collection
in Forth
Jim Schneider
Campbell, California

One of the most agonizing things about Forth is the lack
of decent memory management. The steps taken by the
ANS Forth Technical Committee to standardize a memory
allocation wordset is good start, but it's only a start.
Recently, when I was writing a fairly complex string
processing library, I ran into some of the wordset's short-
comings. Since the words could return strings that were in
either ALLOTted memory or ALLOCATE^ memory, it was
very awkward to keep track of which regions of memory
needed to be explicitly FREE^.

Although I don't admire LISP's irritating syntactic quirks,
I do like the fact that it keeps track of memory items and will
discard memory that's no longer needed. I think a Forth
garbage collection utility would be invaluable. The code in
this article is a first step in that direction.

To use the garbage collection functionality, compile
Listing Two into your Forth system. Then, when you want to
be able to allocate temporary scratch space and then forget
where you put it, invoke START-SCOPE. This will return a
single cell scope token which is used to keep track of when
to do garbage collection. Allocate and resize away with the
functions GC-ALLOC and GC-RES I ZE. When you are done,
make sure the scope token is on top of the stack, and invoke
END-SCOPE. This frees all memory allocated by the GC-
ALLOC function since the most recent START-SCOPE.

The program contained in Listing Two is an ANS Forth
program requiring the memory allocation and search order
wordsets, ALSO and PREVIOUS from the search order
extension wordset, and code equivalent to that found in
Listing One (which defines the word VOCABULARY).

Note: Do not free or resize memory allocated with GC-
ALLOC or GC-RESIZE with the standard words FREE or
RESIZE! Ignore this warning at your own peril.

Listing One. I
(vocab. f)

(An ANS FORTH vocabulary mechanism)

: VOCABULARY (create a named wordlist)

WORDLIST CREATE , DOES>
>R GET-ORDER SWAP DROP R> @ SWAP

SET-ORDER ;

Glossary
BLOCKLIST (-- a-addr)

A variable that holds the address of a linked list of allocated
blocks. The blocks are allocated for use by DRAW-NODE
(and its implementation factor EXTEND-FREELIST) in
creating and maintaining the free-list.

CUR-SCOPE (-- a-addr)

A variable that holds the address of a linked list of pointers
to the memory allocated by GC-ALLOC. The address of the
linked list is referred to as a scope-t in the listing.

DISCARD-NODE (node-t --)

Returns a node to the free-list. The name comes from an
allusion to cards. When you want a new card, you "draw"
one. When you want to get rid of a card, you "discard" it.
I think this is a much better naming choice than the
unfortunate "new" and "delete" that C++ is stuck with.

DRAW-NODE (-- node-t)

No, this won't make a picture of a node on your display
device! This takes a node from the free-list, after first
making sure that the free-list has some nodes to take.

END-SCOPE (scope-t --)

Recovers all memory allocated via GC-ALLOC since the
most recent START-SCOPE. Restores the previous scope
designated by scope-t.

EXTEND-FREELIST (--)

Adds 3eh (that's 62 decimal) nodes to the free-list, if
possible. I chose 62 nodes because several memory
allocators are more efficient if the number of bytes
allocated is close to, but less than, a power of two. On a
16-bit machine with two-byte cells (e.g., CELL returns 2),
this would be 250 bytes allocated at a whack; while on a
32-bit machine with four-byte cells, this would be 500
bytes allocated at once. Notice that there are still three cells
left for the allocation routine to use, before the size
overflows a power of two.

FREELIST (-- a-addr)

A variable that holds the address of a linked list of two cell
nodes. These nodes are used to keep track of allocated
memory in all currently aciive scopes.

January 1997 February 8 Forth Dimensions

Listing Two. I
I

(gc.f
(scope tracking and garbage collection)

(placed in the public domain by Jim Schneider, 17 September 1996)

VOCABULARY GC-HIDDEN ALSO GC-HIDDEN (Avoid namespace clutter)
GET-CURRENT DEFINITIONS VALUE OLD-CURRENT
BASE @ VALUE OLD-BASE HEX

: RESTORE-STATE (return the system to the original base & search order)
OLD-BASE ?DUP IF BASE ! 0 TO OLD-BASE THEN
OLD-CURRENT ?DUP IF SET-CURRENT PREVIOUS 0 TO OLD-CURRENT THEN ;

VARIABLE FREELIST 0 FREELIST !
VARIABLE BLOCKLIST 0 BLOCKLIST !

: XALLOC (Allocate memory or die)

(size -- a-addr)
ALLOCATE ABORT" Can't allocate memory" ;

: XRESIZE (Resize an allocation or die)
(a-addr \ size -- a-addr')

RESIZE
ABORT" Can't resize memory or attempted to resize a bogus block"

: EXTEND-FREELIST (Add 3eh nodes to the free list)

(--)
7D CELLS XALLOC BLOCKLIST @ OVER ! DUP BLOCKLIST ! CELL+
FREELIST @ OVER FREELIST ! SWAP 3E 0
D 0

DUP CELL+ CELL+ OVER ! CELL+ CELL+
LOOP
CELL- CELL- ! ;

: DRAW-NODE (Draw a node from the freelist)
(-- node-t)

FREELIST @ ?DUP O=
IF

EXTEND-FREELIST FREELIST @
THEN
DUP @ FREELIST ! 0 OVER ! 0 OVER CELL+ ! ;

: DISCARD-NODE (Return a node to the freelist)

(node-t --)
FREELIST @ OVER ! 0 OVER CELL+ ! FREELIST ! ;

VARIABLE CUR-SCOPE 0 CUR-SCOPE !

OLD-CURRENT SET-CURRENT

: START-SCOPE (Start a scope for garbage collection)

(-- scope-t)
CUR-SCOPE @ 0 CUR-SCOPE ! ;

: GC-ALLOC (Allocate memory, track it in the current scope)

(size -- a-addr)
DRAW-NODE SWAP CELL+ XALLOC 2DUP ! SWAP 2DUP CELL+ ! CUR-SCOPE @
OVER ! CUR-SCOPE ! CELL+ ;

: GC-RESIZE (Resize a previously allocated region of memory)

! (a-addr \ len -- a-addr')
CELL+ SWAP CELL- DUP @ SWAP ROT XRESIZE 2DUP ! DUP ROT CELL+ ! CELL+ ;

: GC-FREE (Free a previously allocated block)

(a-addr --) (Continued.)

Forth Dimensions 9 January 1997 February

CELL- 0 OVER @ CELL+ ! FREE DROP ;

: END-SCOPE (End the current scope, discard its storage)

(scope-t --)
CUR-SCOPE @ SWAP CUR-SCOPE !
BEGIN

?DUP
WHILE

DUP CELL+ @ ?DUP IF FREE DROP THEN @
REPEAT

RESTORE-STATE

GC-ALLOC (size -- a-addr)

Allocates size address units of memory, returning its
address. This is done safely, in that the address of the
allocated memory cannot be lost, once it is available.
Notice that DRAW-NODE is executed before the XALLOC
that allocates the memory. This is because if DRAW-NODE
fails, it will abort, and if the address was already on the
stack, it would be lost. At most, one node could be lost
from the free-list. Even this could be recovered fairly
simply, although I haven't written the routine to do so.

loading and don't remove it on the same line. It doesn't
cause an error, but it clutters the screen. Those of you with
a HIDDEN vocabulary might want to create this value there
once and for all, and just assign numbers to it periodically
(i.e., change line six of Listing Two to: BASE @ TO OLD-
BASE HEX).

OLD-CURRENT (-- x)

A value used to contain the result of GET-CURRENT at the
beginning of Listing Two. See the remarks under OLD-
BASE. I also hate gratuitous search order trashing.

GC-FREE (a-addr --)

Frees memory allocated via GC-ALLOC or modified via
GC-RES IZE. Although this function isn't really necessary,

RESTORE-STATE (--)

Restores the previous search order and base.

sometimes it is convenient to be able to free memory
immediately, without waiting for garbage collection.

START-SCOPE (-- scope-t)

Starts a new scope for memory allocation tracking. Returns

GC-HIDDEN (--)

Changes the search order so that the GC-HIDDEN wordlist

OLD-BASE (-- x)

A value used lo contain the valuc of the varial)lc BASE at
the beginning of 1.isting 'I'wo. This is hcrc because I hate

a token describing the enclosing scope (actually a pointer
to a linked list of pointers to allocated blocks).

is the first in the search order. This is included because I
really hate cluttering UP my main wordlist. As it is written,
Listing TWO only adds five words to the CURRENT wordlist,
out of a total of 16 words. I tend to use a lot of "HIDDEN"
vocabularies for my implementation details. If your system
already has a HIDDEN vocabulary, move the definition
of GC-HIDDEN, and replace all occurrences of it with
HIDDEN. If YOU do this, Listing TWO will only add four
words to the CURRENT wordlist.

GC-RESIZE (a-addr \ size -- a-addr')

Resizes a previously allocated region of memory. Note that
the address passed to GC-RESIZE must have been
previously returnedfromeitherGC-ALLOC o~GC-RESIZE.
GC-RESIZE may be used on any block of nlcmoV
returned from GC-ALLOC Or GC-RESIZE, as long as i t is
still valid. This means you can do this:
START-SCOPE 1000 GC-ALLOC
START-SCOPE SWAP 2000 GC-RESIZE SWAP
END-SCOPE

XALLOC (size -- a-addr)

Attempts to allocate sizebytes of memory from the system.
Raises an exception (via ABORT") if this isn't possible, I
use this because I don't care why I can't allocate
memory, but the only reasonable response to a failed
request is to abort. If your system provides the exception
wordlist and the ior returned by ALLOCATE is meaning-
ful, the ABORTII should be replaced by THROW,

XRESIZE (a-addr \ size -- a-addr')

Attempts to resize a previously allocated block to sizebytes.
Raises an exception (via ABORT n) if this isn't possible,
There are two possible causes for failure: There isn'tenough
memory (in which case an abort is usually appropriate) or
the address wasn't allocated via ALLOCATE or RESIZE (in
which case there's a bug, and an abort is definitely
appropriate). As above, if your system provides the excep-
tion wordlist and the ior returned by RESIZE is meaning-
ful, the ABORT" should be replaced by THROW.

January 1997 February 10 Forth Dimensions

and expect it to work.

bashing, and the ~ ~ ~ t h system I use most
often complains if I put something o n the stack during

about half his life. He wrote the assembler distributed with ~ n d r e w McKewan
and Tom Zimmer's 32-bit Forth for Windows 95 and NT. He is currently doing
virus research lor a major AV and security products vendor.

Back to Forth
An Object-Oriented Forth
Anatole L. Medyntsev
St. Petersburg, Russia

Forth Dimensions 11 January 1997 February

1. Preface
This article describes an experimental object-oriented

Forth system for MS Windows. Certain ideas implemented
in the system are based on the author's experience in
FoxPro 2.5, Visual C++, MS Access, Visual BASIC, and
Delphi for database development in the financial field. In
my opinion, a combination of an interpreted object-
oriented language and the usual C or Pascal is the best
environment for database applications development. Cer-
tainly, many languages can be used (and are used now) as
that interpreted language (Smalltalk, Visual BASIC, or
Prolog, for instance). But, unlike others, Forth is not a
monolithic language (many basic elements of the Ian-
guage can be changed at the user level), and it provides
a simpler, more flexible, and more open technology.

1.1 The tool we need for database development.
In short, the tool we need would be similar to Delphi

or Visual BASIC, but with such dynamic features as run-
time macro substitution, late binding, etc. Why are the
dynamic mechanisms necessary? For example:
1. A real business application has many options (param-

eters) which can be modified by a user. These options
are usually saved in files (databases). They might be
not only simple numeric or string values, but more
complex values such as arithmetic expression, for
instance.

2. In some cases, the ability to save the names of called
procedures, or even the procedures themselves, in a
database is very useful (for instance, data-validation
rules). Besides, this ability is necessary in order to add
object-oriented features to the usual relational data-
base.

3. Moreover, an experienced application user should be
allowed to modify the code or to add simple routines.
Certainly, the core of any system should be protected
from user errors; however, some programming facili-
ties (like BASIC in MS Word and MS Excel) should be
present in many applications at the user level.

4. Context-dependent behavior: Sometimes, the behavior
of an object (instance) should depend on the environ-
ment in which the objectis created (unlike the traditional

approach, where it depends only on the environment
where the object's class is defined). Late binding is
necessary to support this feature.

5. Run-time class generation: Usually, special classes (for
instance, DBTable and DBField in Delphi) are used to
provide database access. If a database structure is
unknown at design time, it is impossible to define the
appropriate classes (because the field descriptions are
unknown). In this case, the class for the database
should be generated automatically at run time.

Certainly, features like these can be implemented in
classic languages. For instance, some dynamic facilities
are accessible in Delphi through a special directive ("pub-
lished") which provides run-time information (the names
of methods and properties) so that the methods and fields
of any object can be accessed by name at run time. But it
is not sufficient. I think the Forth architecture is potentially
more suitable in such cases.

1.2 What changes are necessary?
The situation in which Forth is used as a shell for a high-

level operating system environment (MS Windows, for
instance) differs cardinally from the usual situation, where
Forth is used as a portable shell for a low-level, hardware-
closed environment. So, many words from the standard
"standalone" vocabulary are unnecessary. But many new
words are necessary to work in an event-handled environ-
ment such as MS Windows. (It would be better if the
"operating system" vocabulary were portable among vari-
ous operating systems, in the same way the "standalone"
vocabulary is portable among various processor architec-
tures. But this problem is beyond the scope of this article.)

The following features should be present, too:
object-oriented possibilities;
run-time type checking (like Visual BASIC). This is very
useful for automatic typecasting, for instance;
no application crashes (general protection errors, etc.)
are allowed. The user should be protected from such
errors;
Forth programs are not very readable because of the
standard Forth parameter-passing mechanism, which

makes the flow of data invisible. It causes dumb errors.
Thus, local variables and explicit parameter-passing (as,
for instance, in C, Pascal, BASIC, etc.) should b e
implemented.

2. The object-oriented Forth system: basic mecha-
nisms and language description.

This system does not follow any Forth standards. In
fact, there are two unusual, basic mechanisms:

vocabularies are replaced by modules;
run-time type checking.

In addition, the system provides two levels o f syntax:
At the system level, standard Forth syntax is used
(parameters are passed only via the stack).
At the user level, there are local variables and explicit
parameter passing, run-time stack-checking, and the
traditional syntax for expressions (no reverse Polish
notation).

2.1 Modules, classes, and vocabularies.
Modules are the basic elements of this Forth system.

They are like C++ or Object Pascal classes. In fact, there
is no difference between a module and a class in the Forth
system. (I use "class" and "module" as synonyms here.)

A module consists of:
1. Entry-points table-analogous to a Virtual Method

Table (VMT) and the classic Forth vocabulary. Each
element of the table has a fixed format and contains:

the name of the word;
a pointer to the handler procedure which processes
messages;
a reference to the threaded code (for colon defini-
tions) or to memory (for variables);
any additional parameters required for the handler.
(The generated threaded code contains indexes, not
addresses, of elements in the entry-points tables.)

2. Static variables and bodies of colon definitions. Indi-
rect-threaded code is used.

3. A module can contain a constructor and a destructor
(optional). The constructor is executed when a new
instance of the module is generated. (Destructors are
not yet implemented.)

4. A module (class) can contain a reference to its parent
class (only one parent class is allowed). All words (i.e.,
procedures and variables) are virtual and can be
redefined in a child class (no private, public, or
protected directives are yet implemented).

Each module (class) is compiled as a separate unit. Not
only backward references, as in standard Forth, but also
forward references are allowed inside a module. All words
in a module can be accessed only when the module is
compiled and an instance of the module is created.

2.2 Instances. The dynamic context tree.
An instance of a class contains a header and memory

for non-static variables. The g e n func~ion creates an
instance of a module (equivalent to "ncw" in C++). Whcn
January 1997 February

an instance is created, memory for the header and non-
static objects is allocated, and the constructor is executed.
Multiple instances of the same module are allowed.

The global variable C u r r e n t c o n t e x t points to the
instance from which a word name's search starts. Nor-
mally, C u r r e n t c o n t e x t contains reference to the last-
created instance of a module. However, it is possible to
assign any instance reference to C u r r e n t c o n t e x t . Each
instance has a parent instance, which is defined by the
value of C u r r e n t c o n t e x t (when the instance is cre-
ated). Thus, there is a tree of module instances. The tree
is used for searching, as in standard Forth. However,
unlike the usual, static dictionary tree, this tree of instances
is created dynamically. This feature, with the late-binding
mechanism, supports the context-dependent behavior of
objects.

2.3 Names scope. Binding.
There are three sorts of names:

global (public)
These are contained in a special global, entry-point
table. They are visible from everywhere. The special
word registration is used to add new names to the table
(compile-time binding).
local (private)
These are defined in the same module (compile-time
binding).
dynamic
These are searched through the dynamic context tree at
run-time (late binding). (Syntactically, the first letter of
a dynamic name is capitalized, but the first letter of a
non-dynamic name is not.)

2.4 Data types. Stack structure.
The system suppbrts run-time data type checking. Run-

time automatic type conversion is supported, too.
The set of types includes: char, int, long, var, string,

procedure, object (instance), char*, int*, long*, v a f ; nu-
meric types are the same as in C. Var is like Variant in
Visual BASIC, its structure is the same as the structure of
the element of the stack (see below); object refers to an
instance; procedure refers to any word in some instance;
the name of a module can be used as a type, too.

An element o n the stack has the following structure:
word type type of data;
word count for a pointer, determines the limit u p to

which the pointer may be advanced (i.e.,
the amount of memory before reaching
the end of the memory area);

long value holds the whole object (if it fits), or a
pointer to the object.

2.5Poinlers.
Pointers are typed. A pointer structure contains not

only the address, but size, too. Only special words can be
used to work with pointers.

>> (p o i n t e r n -- p o i n t e r)

Move the pointer by n positions.
12 Forth Dimensions

<<< (p o i n t e r -- p o i n t e r)

Set backward direction for moving the pointer.

>>> (p o i n t e r -- p o i n t e r)

Set forward direction.

Arithmetic operations cannot b e used with pointers. Thus,
it is impossible for a user to have illegal access to memory.

2.6 Examples
1 0 i n t s A
Define array, named A, of I0 integers.

A 2 > > @
Get the third element of array A.

A <<< @
Get the last (tenth) element of array A.

A <<< 1 >> @
Get the ninth element of array A (i.e., the second element
from the end of the array in the backward direction).

A <<< d u p @ swap >>> t!
Adds the value of the last element of A to the first element.

2.7 Method invocation.
A method of any class can be invoked with the words

-> and =>. Static invocation (compile-time binding):
< o b j e c t > -> <name o f a m e t h o d >

Dynamic invocation (dynamic searching by name):
< o b j e c t > => <name o f a m e t h o d >

tains about 5000 lines in C and about 500 lines in Forth.
Certainly, the C version of Forth is not very fast-about

30,000 steps/sec (on a '486 DX, 50 MHz), sufficient to work
with databases and to operate with Windows through MS
Windows API.

4. Discussion.
Some areas where this Forth system is potentially

useful are described here.

4.1 Forth as the database-server language.
At present, many database servers (such as Oracle,

Sybase, Microsoft SQL Server, and InterBase) are based o n
using SQL as the language for client/server conversation.
Universal APIs such as ODBC (from Microsoft) and IDAPI
(from Borland) support SQL technology, too, but I think
there are some restrictions in the approach:
1. The power of SQL is not sufficient, and some proce-

dural extensions are usually added to SQL by the server
producer. I think that architecture is fairly odd. In my
opinion, the approach where SQL is implemented as an
extension of any powerful procedural language is
more suitable (as it is in FoxPro, for instance).

Moreover, in many cases, not only a database server
but an application-oriented server is necessary. This
means that, not SQL, but an application-dependent
language (or remote procedures) should be used for
client/server interaction s o that the server can deal not
only with database files, but with the entire operating
system environment (such as COM ports, for instance).
This is impossible without a powerful, procedural
server language.

2.8 Small examples (extended syntax).
In the examples in Figure One (page 14), the word ,

(comma) is used to mark the end of an expression, and the
word ' (tick) is used to mark a function call.

(I use an extended "user-level" syntax in these
examples; some standard Forth words are not available on
this level-, for instance. Thus, I use the same names, but
the semantics is different.)

3. Implementation remarks.
This system is implemented in C. By virtue of this, new

words implemented in C or Pascal-procedures from any
static or dynamic (DL13 library, for instance-can be
added easily to the system dictionary. Only small C
functions should b e implemented in the Forth system
environment to call a function from any library.

The current version includes:
Forth classes to work with Windows (implemented),
classes to work with databases (implemented partially),
DDE support (not finished), and
interactive debugger (draft version, not finished).

The size of the .EXE file (with Windows and database
support) is about 250K. The source code of the core of the
system (without Windows and databases support) con-

Forth Dimensions

2. Not only relational databases, but network databases
(db-Vista from RAIMA Co., for instance) are used now.
Moreover, in many cases, the network paradigm is
used to work with relational databases (where a unique
automatically generated key, like ROWID in Oracle, is
used to address records). SQL is often fairly good at
working with the network representation (for large
report generation, for instance), but I think the native,
pointer-oriented approach should be considered as the
basic level in this case, and this basic level should be
available to client applications.

3. The default optimization strategy of an SQL server is
often fairly good. But, sometimes, explicit optimization
of SQL requests is required, too. It is necessary to
understand the very complex basic optimization mecha-
nisms of the SQL server to optimize SQL requests, and
this is not easy. I think the navigation (xBase) approach
provides a simpler way for explicit optimization.

4. Logically, there are no differences between database
access and interprocess communication (in the same
way that, in Prolog there is no difference between the
database-based stream and the procedure-generated

(Text continues on page 26.)

13 January 1997 February

Figure One. (See section 2.8 for syntax notes.) 1

Factorial
module test

/ / factorial
/ / I I : ~ W - in a procedure header separates input and output parameters
: fact (in:out) (

loc in1
in if (

inl=in-1,
fact(in1:out)
out=out *in,

)else{
out=l,

1 endif
I ;
/ / constructor, () - no input or output parameters

: init () { loc out ' fact (8 :out) MsgBox (out) 1 ;
end
/ / Create an instance of last compiled module
genLast

Rectangle drawing
/ / Point and Rectangle class definitions ;

class Point
base RootClass / / parent class reference (RootClass - default ancestor)
int X
int Y
//Cleaning the variables

: init () (X=O, Y=O, 1 ;
end
class Rectangle

base Root
Point TopLeft
Point BottomRight

: Draw 0 (
/ / Draw rectangle

' Line (TopLeft->XI TopLeft->Y, BottomRight->X, TopLeft->Y)

' Line (BottomRight ->XI TopLeft->Y, ~ottomRight->XI BottomRight->Y)
' Line(BottomRight->X,~~ttomRight->Y,TopLeft->X,B~ttomR~ght->Y)
' ~ i n e (Top~ef t->XI Bottom~ight->Y,TopLeft->XI TopLeft->Y)

1 ;
end
module test
Rectangle rect

//Coordinates setting
: init () (rect->BottomRight->X = 9 ,

rect->Bottom~ight->Y = 25 ,
rect->Draw //Draw rectangle

1 ;
end
/ / Create an instance of the last compiled module
genLast

January 1997 February 14 Forth Dimensions

ANS FORW

Zen Floating Point

C.H. Ting
San Mateo, California

I operations were floating, unless the compiler decided I FPU instructions are simple enough that we can enter

When I was young and innocent, I learned program-
ming in Fortran. The world was simple. You operated a
punch card machine, submitted a card deck to the
computing center, and waited for the printout. All num-
bers were floating unless they were prefixed with I-M. All

otherwise.
Then came mini-computers. The simple world was

turned upside-down. All numbers were integers, without
exception. To get back to the more familiar floating-point

Most of the FPU machine instructions can be easily
transcribed into simple Forth code words. We do not even
need a floating-point instruction assembler, although it is
not difficult to implement by extending the 80x86 Forth
assembler, as done in the HFLOAT package in F-PC. The

them into the code definitions using their binary codes.
Here we define a special defining word FPU to take care
of all these simple cases. Only a few special cases need to
be handled explicitly in assembly code.

which generally did not work very well. Or you could
spend $50,000 to buy a floating-point processor and hook
it u p to your mini. You would be lucky if the system

I numbers, you had to buy a big and slow Fortran compiler, I

actually worked.
Now, you buy a '486 PC and a floating-point unit (FPU)

is included free of charge. I am much older and, hopefully,
wiser since learning Forth. What can I do with the FPU?

Martin Tracy published a floating-point package in his

If w e strip out the register-
addressing instructions,
a floating-point package can be
built very simply and elegantly.

ZenForth to provide some elementary floating-point capa-
bility to an integer Forth system. This ZFPC package
follows his design concept, but gives the user the full
power of an industry standard floating-point processor.

Limiting our access to the top two numbers on the
floating-point stack, the 80x87 instruction set can be
greatly simplified. This implementation gives you all the
power of 80x87 with very simple Forth syntax. You can
use it interactively as a powerful, high-precision scientific
calculator, or write elaborate programs to d o scientific and
engineering computations.

This package is aligned to the optional floating-point
wordset in A N S Forth.

1 I Code begins on next page.
The most obvious approach is to have a simple floating-
point package in Forth which allows me to access the FPU
interactively.

The '486 FPU was designed to be used in Forth,
1 because the floating-point registers therein are arranged as I

a stack. The floating-point operations merge naturally into
the Forth framework. The '486 FPU instruction set is
unnecessarily complicated because Intel designers al-
lowed the registers to be accessed as a regular register set.
If we strip out these register-addressing instructions, a
floating-point package can be built very simply and
elegantly.

Dr. C.H. Ting has long been a noteworthy figure in the Forthcommunity. He has
been very active in the Silicon Valley FIG Chapter and owns Offete Enterprises.

Forth Dimensions 15 January 1997 February

I Zen floatins ~ o i n t I

empty c l e a r - a l l - l a b e l s
c r e a t e £ B u f f e r 100 a l l o t
2 v a r i a b l e dTemp
hex

D9 EO FPU FCHS (F: r -- -r , change s i g n)

D9 E l FPU FABS (F: r -- Irl , a b s o l u t e v a l u e)

D9 EE FPU FLDZ (F: -- 0 . 0 , l o a d 0 . 0)

D9 E8 FPU FLDl (F: -- 1 . 0 , l o a d 1 . 0)

D 9 E9 FPU FLDL2T (F: -- l o g 2 / 1 0 / , l o a d l o g b a s e 2 of 1 0)

D9 EA FPU FLDL2E (F: -- l o g 2 / e / , l o a d l o g b a s e 2 o f e)

D9 EB FPU FLDPI (F: -- p i , l o a d p i)

D9 EC FPU FLDLG2 (F: -- l o g 1 0 / 2 / , l o a d l o g b a s e 10 of 2)

D9 EE FPU FLDLN2 (F: -- l o g e / 2 / , l o a d l o g b a s e e o f 2)

D9 E A FPU FSQRT (F : r -- \ / r , s q u a r e r o o t)

DE C1 F+ (F: r l r 2 -- r l + f 2 , add)

DE C9 F* (F: r l r 2 -- r l * f 2 , m u l t i p l y)

DE E9 F- (F: r l r 2 -- r l - £ 2 , s u b t r a c t)

DE CE F-R (F: r l r 2 -- r 2 - r l , r e v e r s e d s u b t r a c t)

DE F9 F/ (F: r l r 2 -- r l / f 2 , d i v i d e)

DE F1 F/R (F: r l r 2 -- r 2 / r l , r e v e r s e d d i v i d e)

D9 CO FDUP (F: r l -- r l r l)

D9 D9 FDROP (F: r -- 1
D 9 C9 FSWAP (F : r l r 2 -- r 2 r l)

D 9 C1 FOVER (F: r l r 2 -- r l r 2 r l)

D9 FF FCOS (F: r -- c o s [r])

D9 FE FSIN (F: r -- s i n [r])

D 9 FB FSINCOS (F: r -- c o s s i n)

D 9 F2 FPTAN (F: r -- y x , y / x = t a n r)

D9 F3 FPATAN (F: y x -- r , r = a r c t a n y/x)

D9 FD FSCALE (F: r l r 2 -- r l r 2 * 2 * * r l , s c a l e r 2 by 2**r1)

DB E3 (FINIT) (-- , hardware i n i t i a t i o n)

I

\ m i s c e l l a n e o u s o p e r a t i o n s I

: FPU (b l b2 -- , d e f i n i n g word t o c r e a t e FPU code words)
a s s e m b l e r CODE SWAP C, C,
NEXT END-CODE

code FO< (f : f -- f , -- f l a g)

D9 c , E 4 c , \ FTST
DF C , EO C , \ FSTSW AX

and ax, 4700 # \ g e t c o n d i t i o n
cmp ax , 100 # \ FO< ?

j z 1 $
x o r ax , a x
push a x
n e x t

1 $: mov ax , -1 #
push a x
n e x t end-code

code F< (f : £1 £ 2 -- £ 1 f2; -- f l a g)

D8 c , D l c , \ FCOM ST(1)
DF c , EO c , \ FSTSW AX

I I

January 1997 February 16 Forth Dimensions

and ax , 4700 # \ g e t c o n d i t i o n
cmp ax , 100 # \ F< ?

j z 2 $
x o r ax , a x
push a x
n e x t

2 $: mov ax , -1 #
push a x
n e x t end-code

code FO= (f : f -- f ; -- f l a g)

D9 c , E4 c , \ FTST
D F c , E O C , \ FSTSW AX
and ax , 4700 # \ g e t c o n d i t i o n
cmp ax , 4000 # \ FO= ?

j z 3 $
x o r ax , a x
push a x
n e x t

3 $: mov a x , -1 #
push a x
n e x t end-code

code F@ (f : -- f; a --) \ I n t e l t emp- rea l 80 b i t s

POP b x
DB C , 2F C , \ FLD 0 [B X]
n e x t end-code

code F! (f : f -- ; a --) \ I n t e l t emp- rea l 80 b i t s

POP b x
D B c , 3 F c , \ FSTP 0 [BX]
n e x t end-code

code (D>F) (f : -- f)

DB C , 0 6 c , \ FILD l o n g - i n t e g e r
dTemp ,
n e x t end-code

swap \ r e o r d e r b y t e s
dTemp 2 ! (D>F) ;

code (F>D) (f : f --)

DB C , 1 6 c , \ FIST l o n g - i n t e g e r
dTemp ,
n e x t end-code

: F>D (- - d ; f : f - -)

(F>D) dTemp 2 @
swap ; \ r e o r d e r b y t e s

\ f l o a t i n g - p o i n t number i n p u t and o u t p u t

dec imal
v a r i a b l e f s i g n
v a r i a b l e £exponent
v a r i a b l e £ d i g i t s (Continued.)

I I
Forth Dimensions 17 January 1997 February

: P R E C I S I O N (-- n) f d i g i t s @ ;

: S E T - P R E C I S I O N (n --) f d i g i t s ! ;

5 s e t - p r e c i s i o n

: j u s t i f y (f : 1 0 . 0 £ 1 - 1 0 . 0 £ 2 , 1 . 0 < = £ 2 < 1 0 . 0)

FO< i f FABS -1 else 0 t h e n f s i g n !
0 f e x p o n e n t !
F <
i f begin FOVER F * F<

w h i l e -1 f e x p o n e n t + !
repeat
FOVER F /

else b e g i n FOVER F / F <
1 f e x p o n e n t + !
u n t i l

t h e n ;

: F . (f : f --)

FO=
i f ." 0 . 0 " FDROP e x i t t h e n
1 0 . D>F FSWAP
j u s t i f y
f s i g n @
i f ." -" else space t h e n
f d i g i t s @ 0
do FOVER F * l o o p
F>D <# f d i g i t s @ 0 do # loop A S C I I . ho ld # S #> t ype
f e x p o n e n t @ ? d u p
i f ." E" 1 . R t h e n
FDROP FDROP ;

: FLOAT (d --; f: -- f) \ 0 . 0 0 1 2 3 4 , 1 2 3 4 . 5 6 7 8 a s i n f i u t
1 0 . D>F \ base
D>F
DPL @ 0
do FOVER F / loop
FSWAP FDROP ;

code FSAVE (--)

DD c , 3 6 c, \ FSAVE £ B u f f e r
f B u f fer ,
next end-code

code FRSTOR (--)

D D c , 3 E c , \ FRSTOR £ B u f f e r
£ B u f f e r ,
next e n d - c o d e

: FDUMP (--)

FSAVE CR
£ B u f f e r 1 4 +
8 0 do d u p F @ F

1 0 +
loop drop
FRSTOR ;

: F I N I T (F I N I T)
8 0 do 0 . f l o a t loop ;

January 1997 February 18 Forth Dimensions

A Stack-Based Dataflow
Operating System
Barry Kauler
Joondalup, WA, Australia

Dataflow and CASE
For a couple of years now, I've been using a program-

ming language, called Labview, that is a 100% visual
dataflow programming environment for Windows ma-
chines, Macs, and Sun Workstations. A "hello world"
program developed in LabView won't even fit on a 1.44
Mb floppy disk, and it runs incredibly slowiy. I t does,
however, offer a high level of programmer productivity,
and can be used by people who know little about
conventional text-basedlanguages. Itwas thevisual data$'ow
paradigm that greatly intrigued me and started me on an
investigation of dataflow software design techniques.

Moving down to a much lower level, I became inter-
ested in operating systems for embedded applications,
that mesh better with Structured Analysis CASE tools, in
particular the dataflow and conuolflow diagrams.

I conceived of a "tiny" dataflow operating system that

the MuP21 Development System from Dr. Ting.
It occurred to me that dataflow and a stack machine

could be natural partners. In a nutshell, a dataflow system
is just a network of code modules that pass messages
between each other. Each message consists of a header
portion which contains its destination processor, node,
and terminal on the node; and a data portion.

The operating system, again in a nutshell, delivers
messages and fires a node (code module) when its inputs
have all arrived. The system is very elegant, as it automati-
cally takes care of synchronisation between modules, and
distribution of modules over a network of processors can
be taken care of completely transparently.

Anyway, the currently active messages could sit in a
stack and the operating system could examine whatever
is on the stack to determine if any node is ready to fire. If
so, it would pull the messages off the stack or, better still,

targeted real-time embedded
applications, and that took care
of all messaging and synchron-
isation between modules of the
dataflow/controlflow diagram.
I wrote version 1 .O for the 8051
microcontroller family, based
on a new scheduling principle
that I coined Signature Sched-
uling. One of the features of
this scheduling system is that it
has very powerful run-time
control over execution, unlike
more primitive dataflow mod-
els that only have what is called
static scheduling.

Stack Machines
I've been following Forth

machine architectures over the
years, and most recently, of
course, Charles Moore has been
working on the MuP21, F21,
etc. I studied these and was
interested enough to purchase

Forth Dimensions

Figure One. MuP21 I

Program
counter (P)

1

Address
register (A)

ALU

I

19 January 1997 February

TOP
(T) t,

i

Return
stack

A

(R) (S)
Data
stack

just bring them to the top of the stack and fire the node.
To be able to implement my OS efficiently on a stack

machine, I need to be able to rapidly scan through the
active messages, and insert and extract messages. I need
random access; but more than that, if I extract a message,
I need to be able to "close the gap."

MuP21 greatly intrigued me, as it has a split-stack
arrangement, and each half can be independently rotated.

With MuP21, PUSH and POP treat the return and data
stacks as one, while it is possible with certain instructions
to manipulate each half individually. Also (I don't know if
this will stay in future designs), the return and data stacks
each rotate their con ten t s tha t is, the top element wraps
around to the bottom element.

Table Lookup Version o f TERSE51
Version 1.0 of my OS, which I call E R S E (Tiny

Embedded Real-time Software Environment), employs
table lookup techniques and needs three different tables,
one being a scheduling table; another describing all
messages, active or not; and a token table, to flag the status
of each message. Basically, TERSE 1.0 keeps a history of
execution by calculating a "signature" based on all nodes
previously executed, and uses this signature to look in the
scheduling table for a list of nodes that can be scanned as
potential candidates for next-firing.

Then TERSE will scan through the other two tables, and
find which of the eligible nodes has received all input
messages.

I managed all of that in about 600 bytes, but it didn't rest
easy with me. I liked my overall concepts, but not the
implementation. I realised that a complete redesign, based
on a machine like MuP21 with a split stack, could make
TERSE lean and blindingly fast.

However, I also realised that the stack principle is
applicable to conventional architectures, like the 8051-
just as Forth will run on an 8051, but it's nothing like
having the right stack-based CPU!

Stack-Based TERSE, Conventional CPU
So I completely rewrote TERSE for the 8051, based on

keeping the set of currently active messages "floating" in
a stack-frame, and it now weighs in at 300 bytes (including
networking software). The new version is 1.11, and I have
written a description of the background reasoning behind
its development, and an outline of how to use it, in another
article, "A Tiny Microcontroller Dataflow Kernel," pub-
lished in Microprocessors and Microsystems (April 1996,
pp. 105-1 10, Elsevier Science, U.K.).

I also have an anonymous FTP site for TERSE, at http:/
/scorpion.cowan.edu.au/science/terse/index.html, with the
full source code for the 8051 version, and I intend to put
a print-file of the magazine article there as well, pending
copyright permission.

TERSE51 computes a signature, based on the current
set of messages on the stack and on the ordcr of those
messages, giving a measure of execution history, as well as
the current state. The signature is a number that is unique
for each pattern of messages on the stack, and a lookup
January 1997 February

table is required to relate the signature to which node to fire
next. The design is totally deterministic, and no scanning of
nodes is required. It also has a safety-net feature, in that any
wrong permutation of messages on the stack automatically
causes a fall-through to an error handler.

Potential o f Split-Stack Approach
Before TERSE51 calls a node, it extracts all messages

destined for that node from the stack and puts them into
registers RO-R7. On a stack machine with a split stack, the
stack could be rotated and the appropriate messages
pulled out into the other stack. Then, when a node is
called, the messages would be on the stack.

I conceived that MuP21 could keep the currently active
set of messages on the return stack, and TERSE could
rotate it and extract all messages for the node over to the
data stack so, when the node is called, there they are on
the data stack, ready to be used.

Note that my signature technique for version 1.11
requires all messages on the return stack to be kept in the
same order, as a record of execution history, so whatever
algorithm is used to search the messages must not mess u p
that ordering-which is why I like a stack that rotates.

When a node exits, with TERSE51, all a programmer
has to do is push the output messages onto the stack, then
exit. I have used a macro to take care of pushing the
messages with the correct formatting. On a stack machine,
whatever is on the data stack when the node exits
becomes the output messages, and TERSE just PUSHes
them all across to join the others on the return stack.

Here are some further intriguing thoughts:
Although I have suggested that the active set of

messages resides on the return stack and messages to be
delivered to a node be extracted onto the data stack, this
does not prevent a node from fully utilising both stacks-
as long as the node restores them before exiting. This
does, of course, mean that the return stack, in particular,
will have to be quite deep.

I do, however, envisage a paradigm shift in program-
ming philosophy, in that the return stack will not be used
to hold subroutine return addresses-individual code mod-
ules will not have subroutines/procedures/words, as the
nodes are themselves the smallest level of decomposition.
The subroutine/procedure/word concept of being called
from different places is implemented by clone-nodes (ob-
jects) that have different node numbers but are the same
code. Thus, apart from interrupt-saving of registers, there
won't be much on the return stack, other than the messages.

From Easy Concept to Realisation
There's an incredible amount that I haven't explained,

in the limited space of this article. Figure Two illustrates
the natural synergy between a dataflow notation and the
physical system, anda dataflow OS enables direct realisation
of this diagram as code.

I t even allows the OS to automatically take care of the
classical mutual exclusion problem, as represented by two
Nodes 1 and 2, in Processor-3, that access Gizmo-A. Node-
0 is the error-handlers, and I have shown these daisy chained.

20 Forth Dirnens~ons

Figure Two. I
Invitation

These are my ideas. TERSE51
version 1.1 1 uses an eight-bit
signature, which has a problem
with distributed applications,
and I will be moving to a bigger,
maybe 16-bit, signature. In the
immediate future, I'm commit-
ted to further developing the
8051 version, but will be mov-
ing onto the MuP21 "sometime."

TERSE and its principles, such
as signature scheduling, are
public domain and I would like
it to stay that way.

If you find this interesting,
please read my documentation
via FIT. I'd like to see someone
tackle the equivalent ofTERSE51,
but on a stack-based machine,
such as MuP21. This could be

Hands-on hardware and software ...g ive you the easiest-

Computing on the Small Scale to-use programming
software for the

Since 1983 easiest-to-use PCs!

MacForth for all Macs (>1Mb
Subscriptions

1 year $24 - 2 years $44 - Full Mac Toolbox support, including System 7 PPC

All Back Issues available.
Powerful multitasking support
Intcgratcd source editor, trace & debugging tools
High-level graphics and floating point libraries
Wealth of demo programs, source code & examples

The Computer Journal Extensive documentation, including online Glossary

P.O. Box 3900 Turnkey capability for royalty-free distribution of

Citrus Heights, CA 9561 1-3900
800-424-8825 1 91 6-722-4970

Fax: 91 6-722-7480
BBS: 91 6-722-5799

tackled at the basic assembly language level, or the Forth
level. At the time of writing, I haven't actually tried
implementing anything on the MuP21-maybe a reader can
suggest another variation on the above split-stack idea, or
some problem with it, I am also keen to see TERSE ported

CPUs, and hrther
A wild thought is that Charles Moore could design the

signature generator' and maybe of TERSE' into "T32"-
this would then allow ''dataflow utopia," in which dataflow

Forth Dimensions 2 1 January 199; rebruary

is fine graineA-that is, even the smallest operation
becomes a dataflow node, just like LabView, except it will
be compact and fast.

Barry Kauler'snew book, FlowDesign forEmbeddedSystems(ISBNX0-87930-
469-3), is being published by R&D Books (an imprint of Miller Freeman, USA).
It describes his radical, unified approach to embedded-systems design, and
also describes how the TERSE RTOS works, Included with the book will be his
"GOOFEE Diagrammer," a graphical CASE tool for Windows: the author
believes, "It would beextremely interesting lor someone loexplore mapping of
GOOFEE designs to Forth." He welcomesfeedbackto b.kauler@cowan.edu.au.

Can POSlX Threads Be Used as a

Standard Forth
3 Mukiltasker.

Dr. Everett E ("Skip") Carter, Jr.
Monterey California

Firstpresented a t the FORML Conference of 1996. -Ed.
The IEEE Portable Operating System Interface (POSIX)

standard P1003.1~ specifies a model for computing with
"threads." Threads are multiple processes running within
the same memory image. In the Forth vernacular, threads
are multiple Forth virtual machines running simulta-
neously within the same dictionary and data space. The
POSIX threads API consists of a set of calls that maps very
closely to that of a traditional Forth cooperative multi-
tasker. This conceptual similarity could be used to lever-
age a possible ANS Forth multi-tasker by declaring con-
formance to the POSIX standard.

What Are POSE Threads?
The IEEE Portable Operating System Interface (POSIX)

standard P1003.1~ (also known as ISOAEC 3345-l:1330c)
specifies a model for computing with "threads." The Ada
tasking model was the basis of a language-independent
model for "lightweight processes"

the programming world, a description of what threads are
is remarkably familiar to Forth programmers. Threads are so
similar to traditional Forth (cooperative) multi-taskers, that
the practical, negative impact of Forth absorbing the POSIX
threading model appears to be negligible. (See Table One.)

What i s Different?
The POSIXstandard does not specify whether the task-

switching mechanism is cooperative or not, this is u p to
the implementor to decide. This does imply that any calls
10 PAUSE would be implicit.

Another difference is that, although there is an equiva-
lent to Forth USER variables, there is a performance hit
when accessing them, so one is discouraged from making
extensive use of them.

Some Forth multi-taskers can explicitly control the state of
anothertask (through WAKE and SLEEP), but PThreads can
only control themselves. Actions equivalent to Forth's can be

(LWP) in the early 1980s, which ulti-
mately led to threads. This kind of
process is used in contexts where the
standard Unix model of separate co-
operating tasks (generally created
through afork) is overkill and, there-
fore, inefficient. The efficiency is
obtained by allowing the different
LWPs or threads to be essentially
independent program counters or
process smctures running simulta-
neously andwith the same data space.
nere are currently several popular
threading systems (e,g., for O S / ~ ,
Windows-NT, and Solaris, in addi-
tion to P ~ ~ ~ ~) but they are all similar
in their essential aspects. Because the
p0sIX threads are a defined interns-
tional standard, I will focus upon
those here.

How POSM Threads Relate
to Forth Multi-tasking

For all their novelty in the rest of

January 1997 February

Table One. Selected POSlX threads functions. /
Pthread function
pthread-create create a new thread of control (TASK)
pthread-equal compare two thread handles for equality
p t read-exit terminate the current thread (STOP)
pth read-join wait for another thread to terminate
pthread-self obtain thread ID of the calling thread
pthread-mutex-init create a semaphore
 thread-mutex-dest r o y remove a semaphore
pt read-mutex-lock block until a semaphore lock is obtained
p t h read-mutex-t r y l o c k as above with blocking
pthread-mutex-unlock release a semaphore lock if owned
pthread-cOnd-init create a "condition" variable
p thread-cond-des t r o y remove a condition variable
p t read-cond-wa it wait on a condition variable
p thread-cond- t imedwa i t as above but with a timeout

- pthread-cond signal a setting for a condition variable
p th r ead -cond -b roadcas t as above, but unblocks allwaiting threads
p th r ead -once assure that a routine is only called once

across all threads
p t h r e a d - g e t s p e c i f i c get the address of a thread-specific (USER)

variable

22 Forth Dimensions

achieved through use of con-
dition variables.

Experimenting with
Threads in Forth

I have made some ex-
ploratory experiments with
implementing a PThreaded
Forth. I used PFE and Until
as testbeds. My conclusions
about these tests are:

It appears that PThreads
is a practical model to
apply to Forth.
Forth's use of implicit
variables via the stack
makes the use of threads
particularly efficient: this
kind of variable access is
not available in other lan-
guages.
Threading would not be
efficient to supply as an
"add-on" to a compiler,
but must be built-in by
the implementor.

Skip Carter - skip@taygeta.com -
1s a scientific and sollware consul\-
ant. He is the leader of the Forlh
Scientific Library project, and matn-
tains the system taygeta on the In-
ternet. Heis also the President of the
Forth Interest Group.

Code. Simple demonstration of a use of POSlX threads. /
VARIABLE i n d e x

: do-increment (--)

6 0 DO i n d e x @ . CR 1 i n d e x + ! 1000 M S LOOP

p t h r e a d - e x i t (--)

: t h r e a d - t e s t (--)

0 i n d e x !
\ s t a r t a t h r e a d

[' I do-increment p t h r e a d - c r e a t e (x t -- t h r e a d f l a g)

." back from t h r e a d c r e a t e " .S CR

ABORT" u n a b l e t o c r e a t e t h r e a d "

1 i n d e x + !

\ w a i t f o r t h a t t h r e a d t o e n d
p t h r e a d - j o i n (t h r e a d -- s t a t u s)

. " j o i n s t a t u s = " . CR

\ f i n a l d i s p l a y v a l u e from t h e v a r i a b l e i n d e x i s 7
. " f i n a l v a l u e of i n d e x = " i n d e x @ . CR

I The Computer Journal . . . 21 /
FORTH, Inc. 21

Forth Interest Group
.... centerfold, back cover

Institute for Applied Forth
Research back cover

Miller Microcomputer
Services 23

Silicon Composers 2
Forth Dimensions 23 January 1997 February

"Experimenting with the ANS Forth Standardyy

FORML f 996

Richard Astle
La Jolla, California

For the thirteenth year in a row I spent Thanksgiving
weekend at Asilomar, a state park and conference center in
Pacific Grove, California, attending the FORML Conference.
This was the eighteenth annual conference: it's a shock to
realize how few I missed. There are other Forth conferences
and events, including the application-oriented Rochester
conference, but this is the big one, the "modification
laboratory," where changes and experiments are discussed,
where Forth is, as far as it can be in public, formed.

That said, attendance could b e described as "off."
Asilomar is hard to get to by plane and o n that weekend
in particular (there was talk of whether to move FORML,
in place or time). One new attendee combined FORML
with another Asilomar conference just after it, avoiding
travel o n Sunday, optimizing frequent flier miles. Rut most
people drove, from the Bay Area, Southern California,
Oklahoma. For me the drive is part of it, leaving San Diego
full of turkey, sleeping at a rest stop, then the empty coast
road in the morning, coffee at Nepenthe past Big Sur, the
view clear to the horizon. I arrived tired, thinking, I'm too
old for this, but I thought that last year, too, and the year
before, and still come that way.

The lobby at Asilomar was less full of familiar faces than
in the past, but to me those who were there were more
familiar, and that made u p for it somewhat. I always expect
some who don't show (where were you, Tom Zimmer?), but
Wil Baden was back, with hugs that break eyeglasses, and
Klaus Schleisiek, who came the furthest. After lunch at the
organizational meeting we found there were almost no
papers to present, and it looked like a disaster in progress.

But FORML always surprises, not only with technical
innovations, but also the energy of the participants. Short
o n formal papers (the two in the notebook were by people
who weren't there), the conference coalesced into themes,
or threads, which surfaced throughout the sessions, from
papers, to impromptu talks to discussion groups.

FORML's not famous for fidelity to theme, and this
year's announced topic was "Experimenting with the ANS
Forth Standard." Nevertheless, several threads touched on
the Standard, which is n o longer a promising horizon but
a working document with enough history to be critiqued

from the point-of-view of practice.
The topic of the Standard was broken down, in the

working group session, into three threads: "fixing," "using,"
and "extending." These threads pervaded the conference,
as did a fourth, that of "documenting." This last concerned
both the traditional sense of explanation, and the more
concrete sense of providing a reference implementation, as
FIG used to d o with fig-Forth, and as Laxen and Perry and
Kelly did with Forth-83. A n ANS reference implementation
would provide a &fact0 answer to questions of interpre-
tation, or at least give those with different interpretations
something concrete to complain about.

The ANS Standard document exists: an official version
can be purchased for about $200 from ANSI by those
serious about defending their own implementations, and
a pre-final draft is available from a number of sources on
the Internet. But the ANS document, while definitive, is
not a tutorial, and in parts is difficult even for experts, as
occasionally shown by discussions in comp.lang.forth. For
the rest of the world there has only been Jack Woehr's (and
where were you, Jax?) now out-of-print Forth: The New
Model, which was based o n a superseded draft of the
Standard. This situation is about to change, however: Wil
Baden announced that he is revising Leo Brodie's Starting
Forth to make it ANS compatible.

As far as anyone at the conference knew, the only
commercial Forth that claims full ANS compatibility is
Power MacForth from FORTH, Inc., though there are
several public domain and/or shareware Forths for vari-
ous platforms that are probably at or near it. The most
popular of these, judging from the number of times it was
mentioned, is Tom Zimmer and Andy McKewan's public-
domain Win32Forth for Windows NT and 95. Win32Forth
comes out of the zip file with little documentation other
than the pre-final draft of the ANS document and a few
examples. In my opinion, most of the trouble people have
with Win32Forth is not with Forth, ANS or otherwise, but
with the Windows API, and there is plenty of documenta-
tion available on this topic: all you need is to know how
to translate a C hnction call to a Forth stack diagram. Still,
Win32For~h, like F-PC before it, is full of all kinds of
wondrous rhings that could bear illumination beyond bare

January 1997 February 24 Forth Dimensions

source code and it was felt by many that, as Windows is,
for good or ill, the currently dominant computer platform,
a documentation project would b e a good thing. One
attendee, Howard Shapiro, even volunteered to coordi-
nate such a project.

The "using" thread got somewhat overwhelmed by the
"documentation" thread, but one theme of it was the
collection and publication of a set of "programming
pearls," clever and/or efficient implementations of things
we all need at some time or another, like the Forth
Scientific Library. Few such pearls were offered, though
w e did get a good Julian date routine. The "pearls" project
will be ongoing, and presented sometime in the future to
the Forth community as a whole.

Beyond or beneath documentation and use were the
questions of the Standard's shortcomings, with respect
both to past practice and to future directions (i.e., "fixing"
and "extending"). These were separate threads, or at least
separate discussions in the working groups session, but
they surfaced throughout the conference, and one person's
bug fix is often another's new feature, s o 1'11 discuss them
together.

POSTPONE was, of course, rehashed, but those i t
makes u*comfortable seemed resigned: at least there was
no loud call for its abolition.

Conference Chairman John Rible pointed out that
WORDLIST was not intended to b e used by itself but was
a compromise, intended as a building block to allow the
implementation of various versions of VOCABULARY (83,
79, fig, etc.), much as INVERT and 0= are included to
allow the two mutually exclusive implementations of NOT.

Despite this explanation, several present said they pre-
ferred WORDLIST to any form of VOCABULARY, but
Andris Zs6tCr noted that the limited number of WORDLI STS
provided in the standard makes the concept useless.

The file access wordset was also designed to be a set
of primitives for implementing more useful, higher-level,
words, but, while WORDLIST is a compromise, Skip Carter
asserted that the lack of higher-level file words (such as
ATOI) was a deficiency, resulting in a proliferation of
disparate solutions to common tasks.

Like the limited number of required WORDLIST slots,
the limited required depth of the optional floating-point
stack was seen as a shortcoming, though Chuck Moore

1 pointed out that requiring too great a depth would
handicap those who implemented Forth in low memory
environments.

In general, though not unanimously, participants seemed
to favor making the floating-point and control stacks the

1 same as the data stack.
Wil Baden pointed out that obsolescent words, such as

#TIB, EXPECT, CGNVERT, etc., are intended to be "read
only," that is, you shouldn't use them, but you should be
able to know what they mean when you see them. Still,
several members of the "fixing" working group asserted that
the inclusion of these words in the Standard was confusing,
and a vote was taken to recommend their removal.

One of the prepared papers from a non-participant
Forth Dimensions

(Chris Jakeman, capably channeled by Guy Grotke) be-
moaned the inability to manipulate return addresses in a
Standard way. >R and R> aren't enough, since there's no
guarantee either that an execution address is a single cell
or that it resides o n the return stack. This is not s o much
a fix as an extension, since in F-PC, for example, though
the execution addresses are on the return stack, they are
two cells wide (segment and offset). O n the other hand,
we used to have the ability to manipulate dictionary
structure, but the Standard has no LATEST or LAST or
anything with equivalent functionality. This means, for
example, you can't find the execution address of a word
while you're defining it, s o that if RECURSE didn't exist it
could not be implemented. I'm particularly interested in
this point, since I can't implement RETRY (see FD, vol.
XVII, number 4) in pure ANS Forth (at least without a
kludge incurring a run-time penalty or reliance o n a tricky
optimizing compiler). I doubt I can get RETRY into the
Standard-it's just too quirky for most folks-but I'd be
happy just to have LATEST back.

Of the pure extensions (ones that could not b e consid-
ered bug fixes), the best received was Skip Carter's
forthcoming proposal to standardize a Forth multi-tasker
with a wordset based on POSIX threads. Other sugges-
tions were for interpretable control structures (as many of
us use for conditional compilation), for a standard array
wordset (probably unnecessary), and for an object orien-
tation wordset. This last seems important, considering the
way much of the rest of the world is going, but Andris
Zsbter pointed out there are just too many ways to d o it
to expect agreement right now. Perhaps the history of
CASE will repeat itself: there were, and still are in practice,
many different CASE statement structures, but one is now
"Standard." This doesn't prevent other CASE structures
from being used, it just means they have to be spelled
differently if they are.

Anolher thread was Forth in hardware, to which one of
the Saturday morning sessions and a working group were
devoted. Dr. Ting presented a couple of chip designs
simulations, Klaus Schliesiek presented a paper o n effi-
cient instruction sets, and Chuck Moore discussed his
current CPU project, the i21, which is the basis of i n ' s
forthcoming lli set-top world wide w e b browser. Chuck
said he was "pleased that hardware restrictions are becom-
ing relevant again, and people are going to have to write
tight code," a sobering thought to those of us used to the
big stack frames that implement CATCH and THROW.

Saturday afternoon the Forth hardware working group,
chaired by John Mart, reported that "Forth is the essence
of the simplest computer that can b e made," and that its
essential elements at the hardware level are stacks, nest-
ing, zero operand instructions, list processor (inner inter-
preter), and a minimal instruction set.

Wine and cheese parties are always a feature of both
conference evenings, time for further discussion and
showing off. A highlight this year was Skip Carter's six-
legged walking robot, which ambled hesitantly about,

25 January 1997 February

guided by sonar, infrared, and mechanical whiskers.
When, with an awkward step, the robot broke a leg, Skip
replaced it with a spare. Afterwards, towards midnight, as
Skip was putting the robot back in his car, two deer,
walking more smoothly but with no more urgency,
ambled out of a motel parking lot across from us and down
the street towards the Asilomar grounds.

Another thread that surfaced throughout the confer-
ence, but mostly o n the last day, concerned jobs. After
years of apparent decline, mirrored in the shrinking FIG
membership, people are talking about career opportuni-
ties, and not just as some hope based on the presumed
future of Forth in hardware.

One direction is towards Open Firmware, a Forth-
based, hardware-independent boot code language pio-
neered at Sun and adopted by IBM, Motorola, and Apple.
Conference attendees Randy Leberknight and John Hall
spoke about working conditions and job possibilities at
Motorola and Apple, respectively.

Forth-in-hardware lives at iTV, which had a significant
presence at FORML. That company's web browser has
already been mentioned. The president of the company,
Gary Langford, came to the last conference session to meet
people and to announce that he hoped to double i n ' s
programming staff in the near future.

The last session of the conference traditionally includes
awards (leftover bottles of wine), brief impressions of the
conference by first-time and long-time attendees, and a
panel discussion. The panel this year consisted of John
Hall, Lloyd Prentice, and Trace Carter, who spoke from

different perspectives on the non-programming skills
useful to Forth programmers. Trace, who took over the
daily management of FIG from the Hall brothers in
January, suggested that we need to know what we're not
good at (e.g., organizational skills) and to b e able to hire
people to d o those things for us. Lloyd, who runs a small
Forth-based company o n the East Coast, suggested w e had
to hone our communication skills, and to remember we're
selling solutions, not Forth. And John Hall, from his
perspective as a former employee at Sun and a current
employee at Apple, suggested w e had to learn to keep our
individuality in the face of corporate culture. The main
theme of discussion, however, became thal of teamwork
and the Forth programmer: how d o we, who most often
work alone, and quite productively, learn to work to-
gether, as current career opportunities often require?

After Sunday lunch (the traditional turkey pot pie)
many of us were able to extend our stay in the area by a
few hours at Skip and Trace Carter's house in Seaside, just
north of Monterey, where we had food and drink treats,
a visit with another robot and a couple of cats, and the
sight of John Rible and Chuck Moore, among others,
working on a 3-D jigsaw puzzle with a view of Monterey
Bay beyond them.

Richard Astle has been programming in Forth for abouteightyears, mostof that
time developing and maintaining a rather large database-management set of
programs. In the process, he has re-written the underly~ng Forth system more
than once for speed and capacity. He has a bachelors degree in mathematics
from Stanford University, a master's in creative writing from San Francisco
Stale, and a Ph.D. in English literature from the University of California (San
Diego).

(Back to Forth, fmmpage 13.)

stream), and it would b e better to use the same
interface convention in both cases. (I mean, a standard
API, like ODBC or IDAPI, is necessary. In fact, this is
a step towards stream-oriented, or data-flow, program-
ming.) From this point of view, the transaction
mechanism should be supported not only for database
modifications, but for some other, application-depen-
dent actions, too.

In short, not an SQL-centric server, but a procedural
language-centric server is necessary. I think Forth is a
suitable basis for implementation of that approach.

Besides, in this case, the same language-Forth-can
be used for both the client and server parts of an
application.

References.
1. Leo Brodie. Starting Forth. Prentice-Hall, 1981.
2. Dick Pountain. Object-Oriented Forth. Academic Press

Limited, London, 1987.
3. MicrosoJ Visual Basic u 4.0. Programmer's Guide.

Analole Medyntsev - MedyntsevAQNovavox.Ru - learned about Forth in
1985. (Several Forth systems have been implemented in the former USSR,
where Forth remains very popular) He was a software engineer in the Depart-
ment of Computer Science at the St.Pctersburg Electrotechnical University.
While there, he used Forth, among other th~ngs, to implement an efficient.
object-oriented Prolog. The Forth system described in this paper began in
1994, as par1 ofa solution to business-application development in the banking
~ndustry.

?ry 1997 February 26 Forth Dimensions

Squareroot and
Golden Ratio
Wil Baden
Costa Mesa, California

The Stretching Forth article that comes after this one
wants the olden ratio to 32 binary places. The golden
ratio is (2- 1)/2 or - 0.5. This will require taking
the squareroot of a 65-bit value.

The rest of this article will develop practical definitions
for squareroots of single and double numbers, as well as
a special definition to calculate the golden ratio.

My approach is to imitate the pencil-and-paper method
of extracting the squareroot. Using binary arithmetic
rather than decimal arithmetic simplifies the process.

Here is a worksheet for pencil-and-paper extraction of
using decimal arithmetic. If you don't understand

what's being done, skip ahead. Come back to it after
you've read the rest of the article. I did the example to help
me understand what I was trying to do in Forth.

Squaremot of 1.25, using paper-and-
pencil method:

1 . 1 1 8 0 3 . . .

Figure One shows the Forth

Taking BITS /CELL as the number of bits per cell, this
yields the 16-bit squareroot of an unsigned 32-bit integer,
or the eight-bit squareroot of an unsigned 16-bit integer.
Our interest is in 32-bit integers.

There is also a dependency on 2's complement arith-
metic.

While preparing this article I fortuitously came across
the same algorithm written in C (Figure Two).

At first glance these seem to be very different, but a
closer look shows that the Forth could have been derived
in three steps from the C.

Slqb One. Direct transcription.
As the C code is transcribed, we observe that we can

dispense with variable i. (Figure Three.)

Figure One.

32 CONSTANT BITS/CELL

: SQRT (r a d i c a n d -- root)

0 0 (remainder . root)
BITS/CELL 2/ 0 DO (remainder . root)

>R D2* D2* R> \ Shift remainder left 2 bits.
2 * \ Shift root left 1 bit.
2DUP 2* U> IF \ Check for next bit of root.

> R R@ 2* - 1- R > \ Reduce remainder.
1 + \ Add a bit to root.

THEN
LOOP
NIP NIP (root)

Forth Dimensions 27 January 1997 February

Figure Two. The C squareroot code.

/ * Author : Ken Turkowski, Apple Computer * /
uns igned l o n g SquareRoot (u n s i g n e d l o n g v)

u n s i g n e d l o n g r o o t = 0 ; / / s q u a r e r o o t
u n s i g n e d l o n g rernHi = 0 ; / / h i g h p a r t of p a r t i a l r emainder
u n s i g n e d l o n g remLo = v; / / low p a r t of p a r t i a l r emainder
u n s i g n e d l o n g t e s t D i v ;
i n t i;

f o r (i = 1 6 ; i > O --i) / / Loop t h r o u g h t h e 1 6 b i t s of t h e v a l u e
t

remHi = (r e m H i << 2) 1 (remLo >> 3 0) ; / / S h i f t t h e 6 4 - b i t
/ / p a r t i a l remainder l e f t

remLo <<= 2 ;
r o o t <<= 1; / / S h i f t t h e c a l c u l a t e d

/ / r o o t t o make room
t e s t D i v = (r o o t << 1) ;
i f (r e m H i > t e s t D i v)

remHi = r e m H i - t e s t D i v - 1; / / Take e r r o r o u t of t h e
/ / p a r t i a l r emainder

r o o t + + ; / / Add a one b i t t o t h e r o o t
1

I

r e t u r n r o o t ;

}

(r a d i c a n d -- r o o t)

(1

Figure Three. I
VARIABLE r o o t
VARIABLE rem-hi
VARIABLE rem-lo
VARIABLE t e s t - d i v

: s q u a r e - r o o t
rem-lo !
0 rem-hi !
0 r o o t !
16 0 DO

rem-hi @ 2 LSHIFT rem-lo @ 30 RSHIFT OR rem-hi !
rem-lo @ 2 LSHIFT rem-lo !
r o o t @ 1 LSHIFT r o o t !
r o o t @ 1 LSHIFT t e s t - d i v !
t e s t - d i v @ rem-hi @ u< I F

t e s t - d i v @ 1t NEGATE rem-hi t !
1 r o o t +!

THEN

LOOP
r o o t @

-
January 1997 February 28 Forth Dimensions

Figure Four.

VARIABLE rem-hi
VARIABLE rem-lo

: square-root (radicand -- root)
rem-lo ! ()

0 rem-hi !
0 (r o o t)
1 6 0 DO

rem-hi @ 2 LSHIFT rem-lo @ 30 RSHIFT OR rem-hi !
rem-lo @ 2 LSHIFT rem-lo !
1 LSHIFT
DUP 1 LSHIFT rem-hi @ U< IF

DUP 1 LSHIFT 1+ NEGATE rem-hi + !
1+

THEN
LOOP

Figure Five. I
: Q2* (n . . . -- 2n . . .)

(Dependency on 2's complement a r i t h m e t i c .)

D2* >R >R
DUP O< IF

D2* R> 1+ R>
ELSE

D2* R> R>
THEN

: DSQRT (radicand . -- roo t)

0. 0. (radicand . . . roo t .)

BITS/CELL 0 DO (radicand . . . root .)

2>R Q2* Q2* 2R>
D2*
20VER 20VER D2* 2SWAP D< IF

2DUP 2>R D2* D- -1 M+ 2R>
1 M+

THEN
LOOP
DROP NIP NIP NIP NIP (r o o t)

Figure Six.

MARKER NONCE
: golden-ra t io (-- go lden- ra t io)

0 [Ox] 40000000 0. 1.
BITS/CELL 0 DO (radicand . . . root .)

2>R Q2* Q2* 2R>
D2 *
20VER 20VER D2* 2SWAP D< IF

2DUP 2>R D2* D- -1 M+ 2R>
1 M+

THEN
LOOP
2SWAP 2DROP 2SWAP 2DROP (roo t .)

[OX] 80000000 0 D- DROP (golden-ra t io)

golden-ra t io \ 9E3779B9
NONCE

CONSTANT go lden- ra t io

I I

Forth Dimensions 29

Step Two.
Reduce the number of variables.

Next we keep r o o t o n the stack
and d o the trivial computation of
tes t -div as we need it. (Figure
Four.)

Step Three. Eliminate all variables.
Finally w e keep r e m - h i and

rem-lo as a double number o n the
stack. We recognize that the shift
operations involving rem-hi and
rem-lo are just to shift the double
number remainder left two bits.

This gives us SQRT above.
We can now d o squareroots of

single integers. For squareroots of
double integers w e "promote" the
constants and operations in SQRT.

Only one new utility operation
has to be defined: 2 * for quadruple
numbers. (Figure Five.)

We can now take squareroots of
double numbers. With 32-bit cells
we can take squareroots of 64-bit
double numbers. We can see the
pattern to take squareroots of longer
numbers.

Instead of promoting operations
again w e will make a definition to
be used once and thrown away.
This is used to give us the value of
the golden ratio, f i - 0.5 to 32
binary places as a 32-bit integer.
(Figure Six.)

Appendix
[Ox] <hex-number> is how I

get hex literals in a definition.

: [Ox]
S" [HEX] "
PARSE-WORD S+

S" [DECIMAL] "
S +

EVALUATE
r IMMEDIATE

Wil Baden is a professional programmer with an , interest in Forlh, wilbaden@netcom.com

January 1997 February

Using Forth to manipulate the real world I

Closing the Loop -
PID Controllers
Skip Carter
Monterey, California

Introduction
Now that we know how to make measurements from

the outside world and how to generate various control
signals, let's look at how to combine them in order to
regulate a process. An example of the kind of thing we
want to do is controlling the speed of a DC motor. Based
upon a previous column (FD XVIII/2), we know we can
set the motor speed with a PWM control signal. If we had
perfectly calibrated the system so that, say, a 75% duty
cycle produced a motor speed of 1000 RPM, we would
have an open-loop controller. The downfall of an open-
loop controller is dealing with all the real world problems
like inaccurate calibration, variations in supplied power,
or variations in load on the motor. These complicating
factors can only be handled if we actually monitor the
motor's speed and somehow use the difference between
the commanded and actual speed to correct the control
signal. This is a closed-loop controller.

How we actually implement a closed-loop controller
depends upon what we are trying to control (e.g., motor
speed or motor position), and its relationship to what we
are measuring back from the controlled system (e.g.,
motor RPM or motor angular position). As we will see, the
implementation of the controller is also driven by the
behavior we can tolerate when the system is trying to
correct itself when it is suddenly perturbed.

The Proportional Controller
The easiest closed-loop controller scheme is one

where the error signal is fed directly back into the
controller and the new control output is determined by
some fraction of the error.

and is frequently used with good results. The controller
does have a flaw in it: if the system is sitting at the desired
output level (the set point) and it gets perturbed, the
controller has a tendency to respond by oscillating about
the set point. These oscillations cause the system to be at the
set point on average, but it never settles down to stay there.

Improving the Controller
We can reduce the tendency of the control signal to

oscillate about the desired position by giving the control-
ler some memory. We accomplish this by adding a term
that keeps track of the accumulated error over time,

The integral in this equation provides the memory. This
type of controller is known as the proportional-integralor
P-I controller.

Since the integral accumulates the error from the
beginning, there is the possibility of an overflow in this
term, especially if an integer-only implementation is used
and/or the sample rate is high. For integer implementa-
tions, two common tricks are used to reduce the overflow
problem: (i) whenever an overflow is detected, reduce the
accumulated sum by half and increase the gain by two;
and (ii) put limits on the integral term and just stop
accumulating when these bounds are reached.

Another improvement we can add to the basic propor-
tional controller is to make it more responsive to variations
in the control signal. We can do this by adding a term that
is large when the control changes, i.e., we add a derivative
term,

of the error, the difference between the commanded and
measured values, of some quantity (like RPM) instead of
the measured value directly. So we write the above as,

Z = KD&

Unew = Uold + K p &

For closed-loop controllers, it is easiest to think in terms
If we just add the derivative as above, we get the
proponional-derivative,ve, or P-D controller.

d ~ (t) ~ (t) = K ~ E (~) + K~ -
dt

The PID Controller I

January 1997 February 30 Forth Dimensions

where K is the proportional gain, K, is the integral gain, P
and Kd is the differential gain.

For a practical implementation on a digital system, the
above equation is replaced with a discrete time approxi-
mation:

where we have used a rectangle approximation to the
integral and a backward difference approximation for the
derivative. These are rather crude numerical approxima-
tions, but we will generally be able to compensate for this
by making the discrete sampling rate fast andby tuning the
controller. The simple numerics has the great virtue of
being very easy to implement.

Fine-tuning a PID Controller
It is very rare to see a discussion of PID controllers

without also learning how important it is to properly tune
the controller. Much of the literature talks about empirical
tuning of the controller. The PID equation is based upon
an integro-differential equation, and the "gain" factors are
determined by a combination of the desired gain plus the
effect due to numerically approximating the different parts
of the equation.

Part of the preoccupation with empirical tuning PID
controllers is cultural and part of it is practical. I have
noticed that it is a rare engineer (as opposed to scientists)
that actually spends the time to analytically solve differen-
tial equations, and not many scientists or engineers have
the skills in their bag of tricks to solve integro-differential
equations. Fortunately the equations are linear, which
means they are solvable with such techniques as Laplace
transforms. A second reason why PID controllers need to
be empirically tuned is that often, for real-world systems,
the exact equations aren't really known, especially given
the uncertainties inherent in a system containing mechani-
cal devices and noise-prone sensors.

It is also possible to design self-tuning controllers by
adding an adaptive tuning section to the control software.
We will leave the topic of adaptive systems for another time.

the integral gain to 32, and the derivative gain to 10
(effectively, 0.5, 0.25 and 0.08). After the gains are set, a
run of the controller is done by typing,
88 p i d - r u n o u t p u t . 1

This will run the controller, with the current gain settings
for a desired output set point of 88, and send the results
to a file called o u t p u t . 1. The code is set up so the
controller can be continued, with output to another file for
comparison, e.g.,
1 6 0 p i d - r u n o u t p u t . 2

The output is in a form convenient for plotting with the
program g n u p l o t by using a command like,
g n u p l o t > p l o t ' o u t p u t . 1 '
w i t h l i n e s p o i n t s , ' o u t p u t . 2 '
w i t h l i n e s p o i n t s
[Ed. note: the command should be typed on a single line,
it is shown broken for typographical purposes./

If you run the program with different gain settings, you
will see several things going on. First, with just the
proportional gain non-zero, the steady state is an oscillation
around the ratio between the set point and the (fractional)
g a i n (s e t g o i n t @ kp @ 128 */).Also, theoscillations
damp out at a rate that is inversely proportional to the gain.
Consequently, the ability to quickly damp out the oscilla-
tions competes against the ability to reach the desired
output setting. The DC level of the output can be tweaked
by adjusting the initial output value, but simply using the
integral term takes care of that automatically. Setting the P
and I terms to non-zero makes the output actually settle out
at the desiredsetting. If you now add the derivative term (by
setting its gain to non-zero), the controller will respond
more quickly to changes in the set point. The problem with
the derivative term is that it is very sensitive to noise in the
data; it looks pretty helpful if the noise is zero, but it
amplifies the noise if it's not zero.

Play around with different settings and see how the
controller responds. For extra credit, replace my sensor/
controller simulator with the real thing, try replacing the
sensor with the frequency counter from my last column
(measuring the RPM of a motor by counting revolutions)
and the controller with the PWM motor controller from FD
XVIII/2, giving a speed-controlled motor that will auto-
matically adjust for varying loads.

Experimenting With the Sample Code
The code example in Listing One implements an

integer PID controller. The code uses scaled integer
arithmetic, scaled such that 128 is effectively a scaled 1.
This is a useful scaling for eight-bit sampling (by putting
1 in the mid-range). I am simulating the sensor input that
would be coming from, say, a frequency counter measur-
ing motor RPM, This consists of a sensor that
returns a noise-contaminated version of the actual setting
(to turn off the random noise, set no i se - r ange to zero).
One sets the PID gains with a sequence such as:
6 4 32 1 0 g a i n s !

which will set, respectively, the proportional gain to 64,

Conclusion
We have left Out One possible combination, the 1-D

contrO1ler. I have never seen this subset used for any
practical application (perhaps one of our readers has?), so
I will not consider it in this introduction to controllers.

Another which I have the
existence of, is how to make adaptiuePID controllers. This
tYPe of PID controller can actually use the performance of
the Vstem to tune the gains while the controller is
running. These controllers are implemented by combining
aspects of PID controllers with adaptive digital filters. This
is definitely a topic for the future, since it requires an
understanding of digital filtering, something we have so

Forth Dimensions 3 1 January 1997 February

, .
a bit on this request, a full analysis of PID controllers can Scientific Library proiect, and maintains the system taygetaon the Internet. He

1s also the President of the Forth Interest Group.
bevery mathematical). Thank you all for your input. If you
have comments, suggestions and criticisms, please don't
hesitate contacting me through Forth Dimensions or via e-
mail at skip@taygeta.com. I receive about 100 e-mail
messages per day, so I can't individually answer each, but
I do read them all.

Listing One. 1
\ p i d . f t h A P I D c o n t r o l l e r i n F o r t h

\ T h i s i s a n ANS F o r t h p rog ram r e q u i r i n g :
\ 1. The F i l e w o r d s e t
\ 2 . The F o r t h S c i e n t i f i c L i b r a r y ASCII f i l e 1/0 words
\ 3 . The F o r t h S c i e n t i f i c L i b r a r y random number
\ g e n e r a t o r R250 (a l g o r i t h m #23)

\ T h i s c o d e i s r e l e a s e d t o t h e p u b l i c domain November 1996
\ T a y g e t a S c i e n t i f i c I n c .

\ $ A u t h o r : s k i p $
\ $ W o r k f i l e : p i d . f t h $

\ $ R e v i s i o n : 1.1 $
\ $Da te : 11 D e c 1996 08:29:34 $
\ =================Support code f o r t h e simulation===================

: d * ; \ c o m p i l a t i o n s t u b f o r R250, n o t u s e d anywhere
: umd* ; \ d i t t o
: umd/mod ; \ d i t t o

S" / u s r / l o c a l / l i b / f o r t h / f s l - u t i 1 . W INCLUDED
S" /usr/local/lib/forth/£s1/r250.seq" INCLUDED
S" /usr/local/lib/forth/fileio.fth" INCLUDED

-1 VALUE £ o u t \ o u t p u t f i l e h a n d l e

9 CONSTANT t ab -cha r \ t h e TAB c h a r a c t e r I
CREATE c r l f 2 ALLOT
CREATE t a b 1 ALLOT

: p r i n t - e n d l i n e (£ o u t --)

c r l f
1 \ f o r MS-DOS u s e 2 i n s t e a d o f 1
ROT w r i t e - t o k e n

: p r i n t - t a b (f o u t --) 1 t a n
L I

January 1997 February 32 Forth Dimensions

I

ROT write-token

8 VALUE noise-range \ the total range of the noise
\ set to zero for n o noise

100 VALUE max-samples \ number of samples per run

VARIABLE #samples \ the number of samples obtained
VARIABLE setting \ the current sensor input value
VARIABLE tcount \ the "time" count

TRUE VALUE sensor-once?

: sensor-init (--)

0 #samples !

sensor-once? IF \ stuff to do only once
1. r250d-init
-1 tcount !
0 setting !

THEN

FALSE TO sensor-once?

: noise+ (-- x) \ get noise sample +- noise_range/2

noise-range 1 > IF
r250d D>S noise-range MOD

noise-range 2 / -
ELSE

0
THEN

\ the simulated (noisy) sensor
: sensor@ (-- x flag) \ flag is FALSE if no more data

1 #samples + !
#samples @ max-samples > IF

0 FALSE
ELSE
noise+ setting t !

setting @ TRUE
1 tcount + ! \ increment the "time"
THEN

\ the simulated external control system output
: controller! (x --)

1
Forth Dimensions 33 January 1997 February

setting !

tcount @ £out write-int
£out print-tab

setting @ fout write-int
fout print-endline

32000 CONSTANT ulimit
-32000 CONSTANT llimit

1 2 8 CONSTANT scale-factor

VARIABLE kp
VARIABLE ki
VARIABLE kd

\ proportional gain
\ integral gain
\ differential gain

VARIABLE isum \ integral sum
VARIABLE old-err \ previous error value

VARIABLE set-point \ the INPUT control setting

TRUE VALUE pid-once?

: initialize (--

1 0 crlf C! 1 3 crlf 1+ C!
tab - char tab C!

pid - once? IF
0 isum !
0 old-err !

THEN

FALSE TO pid - once?

sensor-init

: gains! (kp ki kd --)

kd !
ki !
kp !

: integrate (err -- sum)

isum @ + \ accumulate the sum

ulimit MIN \ apply limits

January 1997 February 34 Forth Dimensions

l l i m i t MAX

DUP isum !

,

: d i f f e r e n t i a t e (e r r -- d i f f)

DUP o ld -e r r @ -

SWAP o ld -e r r !

\ a n i n t e g e r PID c o n t r o l l e r , u s i n g a s c a l i n g f a c t o r
: p i d (x i n -- x o u t)

\ c a l c u l a t e t h e c u r r e n t e r r o r
s e t - p o i n t @ SWAP - (e r r o r)

DUP kp @ s c a l e - f a c t o r * / (e r r o r p)

OVER i n t e g r a t e k i @ s c a l e - f a c t o r * / + (e r r o r p i)

SWAP d i f f e r e n t i a t e kd @ s c a l e - f a c t o r * / + (p i d

\ Note: set t h e g a i n s , e . g . : 6 4 32 1 0 g a i n s !

\ BEFORE r u n n i n g p id - run

: p i d - r u n (set - - < o u t f i l e > - -) \ g i v e t h e s e t p o i n t a s i n p u t

BL WORD COUNT \ g e t t h e o u t p u t f i l e name

\ open t h e o u t p u t f i l e
W/O CREATE-FILE ABORT" u n a b l e t o open o u t p u t f i l e " TO f o u t

CR

s e t - p o i n t !

i n i t i a l i z e

BEGIN
s e n s o r @ \ g e t t h e s e n s o r d a t a

WHILE
p i d \ a p p l y PID

c o n t r o l l e r ! \ set c o n t r o l l e r
REPEAT

£ o u t CLOSE-FILE DROP

,

Forth Dimensions 35 January 1997 February

Rochester Forth Conference

For more information: Or write:
University of Rochester 716-235-0168(voicelfax) Rochester Forth Conference
June 25-28,1997 Iforsley@jwk.com Box 1261

Annandale, Virginia 22003 USA

Take Advantage ...
You are already entitled to benefits you might not know about!

The Forth Interest Group's aggressive plan of membership benefits is
more than a subscription to the world's most widely read Forth publication.

Membership includes Forth Dimensions-now Forth companies and staff can benefit, too.
here is what else: Keep your Forth team up-to-date and connected to
+ 10% discount on books and software in the extensive the discoveries, explorations, and experience of some of

mail-order catalog of the Forth Interest Group. the best minds you'll find in a n y computing discipline.
+ 10% discount o n advance registration for the FORML Corporate membership ($125 per year) includes all

conference, FIG's annual forum for the study and im- the individual benefits, plus:
provement of the Forth language. + Four extra copies of Forth Dimensio-less need to

+ Full access to the foremost Forth site on the World share copies among staff members.
Wide Web at FIG'S www.forth.org, including: + A fifty-word "Corporate Member" listing in Forth Di-

free Web page free e-mail forwarding your mensions to describe your products or services.
resume on FIG's "programmers" Web page access + 10% discount on advertising rates in Forth Dimensions.
to special interest groups on the "members-only" Web + A link to your Web site from FIG's home page.
page FTP access to FIG's Forth Software Library

+ Discount on FIG's Internet domain registration service. Support your library--or build one.
+ Referral to Forth-related job openings. A Forth reference section is a great asset to any
+ Direct networking with other Forth programmers corporate, public, or academic library. A library

through FIG'S many chapters worldwide. membership in the Forth Interest Group makes it simple
to build your collection of models, techniques, useful
code, tutorials, and aids to program (and programming)

Help yourself to the benefits that best serve efficiency.
you. And remind colleagues and employers to join the Library membership ($125 per year) includes all
Forth Interest Group, too-see the centerfold order the individual benefits, and:
form for details, or contact the FIG office: + An extra set of the year's Forth Dimensions (six is-

sues) at the end of the publishing year.
408-37-FORTH (408-373-6784) + A copy of the FORML Proceedings, the written record

off ice@forth.org of each year's FORML Conference.

te"
ase' FORML Conference Proceedings

1995: "Forth as a Tool for Scientific Applications" 1994: "Interface Building"
Two years' conference contents in one convenient volume.

$50 - or order four FORML volumes and receive the lowest-priced one free ...
Call FIG now for this limited-time offer: 408-37-FORTH (408-373-6784)

(Special offer expires March 3 1 , 1997)

