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USENM, the world-wide UNIX user association, gave a Lifetime Achievement award 

this year to Wil Baden for "Major Contributions to Software Tools." This is for work Wil 

did from 1976 - 1981. Wil's involvement with Forth began in 1979. We congratulate Wil 

and thank him for his ongoing contributions in our own arena, not least of which is 

his Stretching Forth column in this magazine. 

I also want to take this opportunity to thank the world-wide Forth community for 

its collective contributions to Forth Dimensions. Your support-as responsive readers, 

as writers providing technical content, and as innovators using and refining the 

language-has ensured its survival even when times have been tough for small, special- 

interest publications in general. 

As editor, I let the collective experience and needs of our writers and subscribers 

determine the direction and content of the publication. Feedback is very important if 

we are to keep on track, so  let us know how we are doing. We hope you will participate 

in the magazine, share it with others, and encourage them to join us. 

We especially welcome your written contributions to upcoming issues: articles, 

news, tutorials, and press releases about Forth-related products and events. With your 

continuing participation, we can look forward to maintaining high quality and to 

serving the diverse Forth community. 

-Marlin Ouverson 
editor@forth.oyp 

ouversonm@aol.com 

I dot-quote I 
Maybe this i s  the problem: Forth programmers are too independent. 
Instead of agreeing on a standard and then helping each other work 
around the parts of the standard they don't like, everyone wants to 
design their own standard. This isn't necesarily a bad thing, but if Forth 
i s  to become more widespread, Forth programmers need to start 
thinking about working together instead of going off on their own 
tangents. 

Look at C++ ... I don't care for it at all, but it's "successful" because the 
people who use it as their language of choice are willing to work with 
the limitations of the language (in order to maintain a standard) and 
write applications instead of trying to write a better version of C++ 
every month. 

-Ken Deboy 
glockr@delphi.com 
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ANS FORTH 

Towards a Discipline of 
ANS Forth Programming 

I M. Edward Borasky 
Bea verton, Oregon 

1. Motivation 
Recently, there has been a fair amount of discussion in 

comp.kanglfoeb about structured programming, multiple 
entries and exits, finite state machines, and other issues of 
Forth programming style. Concerns about readability seem 
to be foremost, and a number of attempts to enhance the 
ANS Forth collection of control structures have been posted. 
The draft proposed ANS standard a21, sectionA.3.2.2, pages 
136-138) gives an excellent description of the control flow 
stack and techniques for designing your own control 
structures, as does Jack Woehr in chapter six of [31. As an 
exercise to learn about this useful capability of ANS Forth, 
and as my contribution to the debate, I have implemented 
the Dijkstra guarded command control structures in hForth. 

2. Structured Programming and the 
Dijkstra Guarded Command Control Structures 
In the early to mid 1970s, there was an explosion of 

interest in structured programming and the exciting possi- 
bility that one could actually prove mathematically that 
programs were correct. The latter efforts, pioneered by 
British computer scientist C.A.R. (Tony) Hoare and Dutch 
computer scientist Edsger W. Dijkstra, grew into a new 
subfield of computer science, now a major branch of Formal 
Semantics of Programming Languages. While much of this 
material is academically oriented and not readable by most 
working programmers and managers, Dijkstra's A Dbci- 
pline of Pmgramming ([I]) is a happy exception. 

The concept of proving one's programs correct in 
general, and this book in particular, made a profound 
impression on me. Unfortunately, I don't have space to go 
into much detail about 111 or the mini-language Dijkstra 
created to illustrate the concepts. Nor do  I have the time 
to translate the entire book into ANS Forth, although I'm 
convinced that it would be easier for ANS Forth than for 
most other languages. Instead, I will focus on the guarded 
command control structures and my implementation of 
them in Wonyong Koh's hForth. If you can find a copy of 
[I], you will find it very rewarding. 

The basic syntax of Dijkstra's mini-language is similar 
to that of Algol and its descendants, such as Pascal. For 

I example, to set the variables x and y to 3 and 5, Dijkstra 

would write: 

using the semicolon as a statement separator. This is read 
x becomes 3, then y becomes 5. This is, of course, 

in Forth. 
We will define the control structures from the bottom 

up. At the lowest level we  have a guarded command. This 
is simply a Boolean expression followed by a right-arrow 
followed by one or more statements separated by semico- 
lons. In Dijkstra's language, an example would be: 

which is read, vxisgreaterthan y, thenx becomesx minus 
y. A Forth programmer would write: 

x @ y @ > IF y @ NEGATE x + !  THEN 

In the Dijkstra syntax, the statements after the right- 
arrow are executed only if the condition before the right- 
arrow, which is called the guard, is true. Some variant of 
this construct appears in nearly all modern programming 
languages, including Forth as we have just seen. This is the 
basic building block of the Dijkstra constructs. Figure One 
shows the flowchart of this simple guarded command. 

Next, Dijkstra defines a guarded command set. This is 
a series of guarded commands separated by bars. For 
example, Dijksua would write 

The key word in this definition is set. This is a set in the 
mathematical sense; ordering of the alternatives is not 
defined. This is an intermediate step on our way to larger 
constructs, so I will not show a flowchart or a Forth 
translation. 

Now we're ready to define our first real construct. We 
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Figure One. Flowchart for single guarded command. I I Figure Two. Flowchart for 'if . .. fi' construct. I 
I I I 

which, as written, has a serious flaw! 
The exact semantics of this construct are as follows: 

Select one of the true guards and execute the corre- 
sponding statements. If none of the guards are true, abort. 
If more than one guard is true, only one will be selected, 
but the programmer will not be able to predict or control 
which one it is! 

So, what's the flaw? This program will abort if x and y 
are equal! This seems fair enough; the programmer should 
have known that equality was possible and planned for it. 

This construct, as Dijkstra defined it, is nondeterministic. 
The nondeterminacy is convenient in theoretical work but 
for most practical programming it is a nuisance. The 
programmer can, of course, prevent nondeterminacy by 
assuring that the guards are mutually exclusive. But, as we 
will see shortly, a different approach is usually taken. 

This construct, in its full nondeterministic form, is not 
present in the widely used programming languages of 
today. It has, however, been used in academic program- 
ming languages. A form of it appeared in the Occam 
language. The common usage is the sequentialsemantics: 

Test the guards in the order written and execute the 
statements corresponding to the first true one found. 
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This form was used in Per Brinch Hansen's little-known 
Edison language ([GI, pages 28-31) and is the form I have 
implemented. 

Figure Two shows the flowchart of the sequential if.. . 

fi: construct. 
Before moving on, let's manually translate the above 

flawed example into standard ANS Forth using only Core 
words and the sequential semantics: 



x @ y @ > I F  
y @ NEGATE x +!  

ELSE 
y @ x @ > I F  

x @ NEGATE y + !  
THEN 

THEN 

What happens when x and y are equal? Nothing; the 
programmer isn't informed that he forgot that possibility. 
In addition, this code is ugly. Even if you factor out the 
tests and statements, replacing them with single-word 
equivalents, it is still a sequence of nested I F  ... ELSE ... 
THEN constructs. And the depth of nesting grows with the 
number of elements in the guarded command set! 

This is exactly the kind of ugliness that the posters in 
comp.langfortb are complaining about, and rightly so. As 
a preview of things to come, here's how you would write 
this in my implementation of the Dijkstra constructs: 
I I F  

x @ y @ > I F >  y @ NEGATE x + !  
l I F  l 

y @ x @ > I F >  x @ NEGATE y + !  

F I  1 

It's still flawed, but 
1. It's not as ugly. There is a pleasing symmetry to the 

construct. Moreover, no matter how many alternatives 
there are, nesting is only one level deep. 

2. If x and y are equal, my implementation will, in fact, 
abort. 

The final construct is syntactically similar but semanti- 
cally opposite. Instead of if.. . fi our brackets are do . . . od 
and the construct is a loop: 
do 

x > y - > x : = x - y  

I 
y > x - > y  : = y - x  

od 

1 Not only is this program correct, it actually does something 
useful! Can you guess what it does? 

The semantics are: 

If none of the guards are true, d o  nothing and 
terminate normally. Otherwise, select one of the true 
guards nondeterministically and execute the correspond- 
ing statements. Then go back to the do and repeat the 
process until none of the guards are true. 

Once again, most practical implementations, including 
mine, test the guards in the order written and execute the 
statements corresponding to the first true one found. 

By being clever with the ANS standard words BEGIN, 
UNTIL,  WHILE, I F ,  THEN, and others, I'm sure it's 
possible to duplicate the operation of the sequential form 
of this construct, just as we were able to duplicate the if 
. . . fi construct. Even for this simple example, the code is 

G r e  Three. Flowchart for 'do . . . od' construct. / 

ugly enough that I gave up trying to do it and implemented 
my own compiling words using a more readable syntax: 
(DO 

x @ y @ > DO> y @ NEGATE x + !  
I D 0  l 

y @ x @ > DO> x @ NEGATE y + !  
OD I 

Have you guessed what it does yet? Here's a hint: start with 
5 1 1 * x ! 5 1 9 * y !  

and simulate it on paper. Remember, the loop terminates 
when xand yare equal. Figure Three shows the flowchart 
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of the sequential do . . . od construct. 

3. ANS Forth Control Flow Took  
First, let's see how ANS Forth compiles our simplest 

construct, the guarded command. As you will recall, our 
example is 

: GUARDED-COMMAND ( - ) 

x @ y @ > I F  \ x i s  l a r g e r  t h a n  y 
y @ NEGATE x + !  

THEN 

, 

Figure Four. Guarded command before 'IF'. ] 

Figure Five. Guarded command after 'IF'. I 

X 

@ 

Y 

@ 

> 

branch if 0 to ? 

The compiler, started by the colon, starts a dictionaryentry 
for the new word GUARDED-COMMAND. It then compiles 
each word it encounters in an implementation-defined 
manner. Figure Four shows schematically what this dictio- 
nary entry looks like just after the compiler has finished 
processing the >. 

Then the compiler encounters the I F .  We are now 
inside the diamond on the flowchart (Figure One). 

IF is an immediate, compile-only word. So the com- 
piler executes the I F .  What IF does here is compile a 
conditional branch after the >. This branch will look at the 
flag on top of the stack at run time and, if it is F A L S E  (all 
bits zero), the branch will be taken to the point in the code 
just after the THEN. This corresponds to the down-arrow 
labeled F .  If the flag is TRUE (any bits non-zero), the 
branch will not be taken and execution will continue with 
the words after the I F ,  in this case the code to subtract y 
from x. This corresponds to the right-arrow labeled T.  

But how does the compiler know where the THEN is 
located? How does it know how far to branch when the 

) ?  

flag is FALSE?  It doesn't. So it compiles the branch with 
an empty spot reserved for the branch target, and places 
a token called an orig, short for "origin," on the control 
flow stack. This orig tells the compiler where to place the 
branch target when it does find the matching THEN. Figure 
Five shows the dictionary entry for GUARDED-COMMAND 

after the compiler has executed the IF. 
Compilation continues normally until the compiler 

reads the THEN. THEN, like I F ,  is an immediate compile- 
only word. What does THEN have to do? It doesn't have to 
generate any code. All it has to do  is fill in the target 
address in the open branch placed in the dictionary by IF, 

so  that the branch points to the current location. How does 
it know where to find the branch? It gets this information 
from the orig on the control flow stack. This orig was 
placed there by the IF for just this purpose. This process 
of filling in the branch address and consuming the orig is 
called resolving the orig. Figure Six shows the completed 
guarded command. 

Now let's look at another component we'll need: 
AHEAD. AHEAD is similar to I F ;  it compiles an open 
forward branch into the dictionary when encountered by 
the compiler, and places an orig onto the control flow 
stack for a subsequent THEN to resolve. However, instead 
of the conditional branch of I F ,  AHEAD compiles an 
unconditional branch. We will see AHEAD again, when we 
November 1996 December 

look at the code for I I F  I .  In summary, we have a forward 
conditional branch, I F ;  a forward unconditional branch, 
AHEAD; and a word that resolves either, THEN. 

How does ANS Forth compile loops? We first need a 
word to mark where the top of the loop is. That word is 
BEGIN.  B E G I N  simply puts a token, called a dest for 
"destination," onto the control flow stack. Subsequent 
branches back to the B E G I N  will use this dest to know 
where the target of the backward branch is. Two basic 
backward branches complete the loop construction set. 
The unconditional branch is called AGAIN. AGAIN gener- 
ates an unconditional branch back to the location given by 
the deston top of the control flow stack, then removes the 
dest. This process is called resolving the dest. 

The conditional backward branch is called UNTIL .  
Like I F ,  the conditional branch is a branch if the flag is 
FALSE:  all zeroes. If the flag is TRUE, the branch is not 
taken. And like AGAIN, the branch is back to the BEGIN,  
marked by the dest on top of the control flow stack. In 
summary, we have one word, BEGIN,  that creates a dest; 
and two, AGAIN and U N T I L ,  that resolve one. When we 
examine my implementation of the Dijkstra constructs, we 
will see I F ,  THEN, AHEAD, BEGIN,  and AGAIN in action. 

Before we walk through the implementation, there are 
two more words we will need. As we've seen, the ANS 
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Figure Six. Guarded command after 'THEN' I 
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flowchart (Figure Two). 
First, we define the opening bracket. Dijkstra calls it iJ; 

which already has a meaning in ANS Forth. Moreover, I 
wanted something that looked like a bracketing operator, 
so I picked ( IF, pronounced "brace-if." As we will see, the 
( IF ... FI } construct will generate an arbitrary number 
of unresolved origs on the control flow stack which don't 
get resolved until the closing FI 1 is seen. This means we 
need to count them. All ( I F  does is place a zero on the 
data stack for this counter. 

Now let's look at the right-arrow operator. -> has a 
meaning already, so that's out. In addition, I wanted 
something that reinforced the construct type in the reader's 
mind, so  I picked IF> ,  pronounced "if-arrow." If you're 
following along on the flowchart, we're inside one of the 
diamonds corresponding to a guard. At run time, a flag will 
be  on the stack. The IF>  needs to open u p  a new 
conditional branch, just like the standard Forth I F .  And it 
needs to count that branch. If the flag is FALSE, our branch 
will skip over the code that follows the I F >  and proceed 
to the next guard. Just like the IF in the guarded command, 
this is the down-arrow labeled F. If the flag is TRUE, we 
will take the right-arrow labeled T and execute the code 
following the IF>. We won't know the target of this 
branch until we see the next I IF I or the closing F I  1 .  

Since, in ANS Forth, the control flow stack may or may 
not be the data stack, we have to write code that will work 
either way. So we increment the counter on  top of the data 
stack, move it to the return stack, then insert the desired 
branch with a POSTPONE I F  operation. This puts an orig 
on the control flow stack for a later THEN to resolve. Then 

standard uses a special stack, called the control flow stack, 
to keep track of all these orig and dest tokens. In stack 
diagrams, this stack is denoted by C : . Sometimes, we will 
need to rearrange these tokens at compile time. The words 
that do  this are CS-PICK and CS-ROLL. They are 
analogous to PICK and ROLL on the data stack. 

4. Worth Implementation 
of the Dijkstra Constructs 

hForth (141) is a public-domain, extended subset of ANS 
Forth. The version I used is available from the Taygeta 
Scientific Web page (ftp://ftp.taygeta.com/pub/Forth/Re- 
viewedhf86~037.zip). This is version 0.9.7 of hForth, and 
runs on any 8086 DOS system; I used the HPlOOLX Palmtop 
PC ([51). With minor modifications, this code should run on 
any ANS Forth system that includes the control flow stack 
words. In the spirit of Forth, my implementation is a set of 
compiling words; they extend the Forth compiler to compile 
these control structures as  written. 

hForth does not define the control flow stack operators 
CS-PICK and CS-ROLL. However, hForth uses the data 
stack as the control flow stack during compilation. As a 
result, we can define themsimply [see listingl. Because the 
control stack may or may not be the same as the data stack 
on various Forths, we need to be careful to write the code 
so  it will work either way. We will look at the i j ' .  . . Ji 
construct first. You may want to follow along on the 
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we bring the count back to the data stack. 
The barfor { IF ... FI 1 ,  written I I F  I and pronounced 

"if-bar," has to do two things. The I IF I marks the end of 
the code associated with the previous guard and the 
beginning of the next guard. First, we need to compile in 
an unconditional branch to the end of the construct, which 
is marked by an as-yet-unseen FI 1 .  If you're following 
along on the flowchart, this is the arrow coming out of the 
right of the statements box. This is an unconditional branch 
forward to an unknown location, a job for POSTPONE 
AHEAD. 

Next, we need to resolve the open conditional branch of 
the previous guard, so  that if the guard is false, control will 
end up  just after the unconditional branch we just compiled. 
That way, we'll be ready to execute the code for the next 
guard which follows the I IF I .This is the arrow coming out 
of the bottom of the previous guard's diamond; the branch 
was compiled in by the preceding IF>. There's one small 
problem-the POSTPONE AHEAD covered up  the orig we 
need with a new orig. 1 CS-ROLL fixes this, and a 
POSTPONE THEN resolves the open IF. Since a new orig 
is created and an old one is resolved, the count does.not 
change. However, we do need to save and restore it. 

Now we need to define the closing bracket FI I ,  
pronounced "fie-brace." As noted earlier, if none of the 
guards are true for the { IF ... FI 1 ,  we consider it a 
programming error and want to abort. In hForth, we have 
CATCH and THROW from the ANS Exception Handling 
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word set. So I defined a word BAD { I F  ... F I ) ("bad-if-fie"), 
which will do  the aborting. I used -22 for the THROW code; 
this stands for control structure mismatch. 

So what does FI ) need to do? As usual, we first save 
the count of open branches that need to be resolved on the 
return stack. Next, like I IF 1 ,  we have to insert a forward 
branch to the end of the construct to wrap u p  processing 
of the code following a true guard. As usual, this is done 
with POSTPONE AHEAD. 

Next, we need to resolve the open forward branch 
generated by the last guard's IF>. As before, this is done 
with 1 CS-ROLL POSTPONE THEN. If you're following 
along on the flowchart, we're on the false branch out of 
the bottom diamond. Here is where we want to abort, 
which we d o  with POSTPONE BAD { I F  ... F I 1. 

Remember all those POSTPONE AHEAD operations?All 
those unconditional branches to the F I  ) that we compiled 
in after the code executed following a true guard? All those 
origssitting on the control flow stack? All of them are now 
resolved to point to the present location, just after the 
abort. We retrieve the count from the return stack, then 0 
?DO POSTPONE THEN LOOP does exactly the right num- 
ber of POSTPONE THEN operations! 

For the {DO ... OD ) construct, it turns out that we will 
not need to count open branches; each is resolved by the 
separating I DO I or the closing OD 1. But we do  need to 
place a dest on the control flow stack so we know where 
to branch back to. {DO, pronounced "brace-do," does this 
with a POSTPONE BEGIN operation. 

The right-arrow for the {DO ... OD 1 construct doesn't 
have to deal with the count, but there is a dest on top of the 
control flow stack. We want to keep it on top so we always 
know where it is. Like IF>, DO> ("do-arrow") has to open 
up a conditional branch with POSTPONE IF.  Then we use 
1 CS-ROLL > to bring the destback to the top of the control 
flow stack. On the flowchart (Figure Three), we're in the 
diamond corresponding to a guard, just like IF>. 

The barfor the { DO ... OD 1 construct, I DO I ("do-bar") 
is very much different from its cousin I I F  I .  Since I DO I 
follows code that was executed after a true guard, we will 
be repeating the loop. On the flowchart, we're on the 
right-arrow coming out of a statements box. We will make 
an unconditional branch back to the {DO. In ANS Forth 
terminology, we resolve the deston top of the control flow 
stack with POSTPONE AGAIN. 

There are two tricky parts. First, we need to copy the 
dest; we'll need it again for subsequent I DO I operations. 
0 CS-PICK makes the copy. Second, hForth keeps track 
of control structure balance; since we're creating a copy of 
the dest to resolve, we must use the hForth word dest+ 
to notify the hForth compiler of the extra operator. 

Like I I F  I ,  when we get to I DO I there is an open orig 
that needs to be resolved so a false guard will send control 
to the next guard. We resolve this orig with a POSTPONE 
THEN and everything is done. 

Finally, let's look at OD ) ("odd-brace"). We only have 
to do  two things. First, the OD ) marks the end of the code 
following the last guard, so we have to compile an 
unconditional branch back to the {DO just like we did for 
November 1996 December 

I DO I . POSTPONE AGAIN does this. Since this is the end 
of the construct, we don't need to copy the dest; this time, 
we want to consume it. Second, we have to fill in the target 
address of the conditional branch compiled by the last 
Do>. Like F I  ) , all the guards being false will cause a chain 
of conditional branches that ends u p  where we are now. 
POSTPONE THEN resolves the last Orig, and we're done. 

Whew! 

5. Testing/Demos 
After all this work, we will perform some simple tests to 

demonstrate our code. First, let's look at a simple example 
of a correct { I F  ... F I  ) : TEST1. This test simply compares 
the top two numbers on the stack and prints the comparison 
that was true. Next, let's see what happens ifwe accidentally 
forget that two numbers can be equal: TEST2. 

And we close by executing our useful example {DO ... 
OD 1 loop: USEFUL. 

If you haven't guessed yet, USEFUL is Euclid's algorithm 
for computing the greatest common divisor of x and y! 

6 .  Summary 
We have seen that it is easy to create custom control 

structures in ANS Forth. As a practical example, I devel- 
oped an implementation of the Dijkstra guarded com- 
mand control structures. These suffice for most of my own 
control structure needs beyond the ones already provided 
by ANS Forth. The Dijkstra structures are far more readable 
than the equivalent code done in terms of the existing ANS 
Forth control flow operators. And the Dijkstra constructs 
are an elegant way to express algorithms, as the simple 
code for the greatest common divisor shows. 

I consider this a necessary first step towards the goal of 
being able to prove Forth programs correct: the ideal is to 
develop the correctness proof and the code together. An 
even more ambitious goal is a system for automatically 
translating specifications into correct Forth code. The 
supporting academic work has been done, almost always 
using simple functional programming languages rather 
than complex real-world languages like C++, Fortran 90, 
or Common LISP. It seems to me that Forth's simple syntax 
and semantics provide an opportunity for such a system 
unavailable to the other languages in common use. 
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1 Listing. discp.f: Dijkstra's guarded command control structures. 1 
\ D i j k s t r a  Guarded Command C o n t r o l  S t r u c t u r e s  
\ M .  Edward Borasky  
\ 03-AUG-96 
\ 
\ T h i s  code  h a s  been  t e s t e d  w i t h  b o t h  h F o r t h  0 . 9 . 7  and  ZENForth. 
\ To compi le  f o r  h F o r t h ,  t y p e  
\ 
\ 0  CONSTANT ZENForth 
\ 
\ To compi le  f o r  ZENForth, t y p e  
\ 
\ 1 CONSTANT ZENForth 
\ 
\ Then t y p e  
\ 
\ BL PARSE D1SCP.F INCLUDED 
\ 
\ These  words w e r e  d e s i g n e d  u s i n g  Wonyong Koh's h F o r t h  0 . 9 . 7 ,  
\ They s h o u l d  work w i t h  minor  m o d i f i c a t i o n s  on any ANS F o r t h  
\ s y s t e m  p r o v i d i n g  t h e  words l i s t e d  below.  

\ Envi ronmenta l  d e p e n d e n c i e s :  
\ 
\ R e q u i r e s  AGAIN f rom t h e  CORE EXT word se t  
\ R e q u i r e s  AHEAD from t h e  TOOLS EXT word set 
\ R e q u i r e s  CS-PICK from t h e  TOOLS EXT word set 
\ R e q u i r e s  CS-ROLL from t h e  TOOLS EXT word set 
\ R e q u i r e s  PICK f rom t h e  CORE EXT word set 
\ R e q u i r e s  ROLL f rom t h e  CORE EXT word set 
\ R e q u i r e s  THROW f rom t h e  EXCEPTION word set 
\ R e q u i r e s  h F o r t h  word d e s t +  o r  e q u i v a l e n t  
\ R e q u i r e s  h F o r t h  word COMPILE-ONLY o r  e q u i v a l e n t  
\ R e q u i r e s  . (  f rom CORE EXT word set ( tes t  sequence  o n l y )  

\ h F o r t h  d o e s  n o t  have  CS-PICK o r  CS-ROLL. However, h F o r t h  
\ u s e s  t h e  d a t a  s t a c k  a s  c o n t r o l  f low s t a c k ,  s o  t h e y  c a n  be  
\ d e f i n e d  s i m p l y :  

: CS-PICK PICK ; 

I : CS-ROLL ROLL ; 

\ h F o r t h  h a s  t h e  c a p a b i l i t y  t o  f l a g  a  word COMPILE-ONLY. On o t h e r  sys tems ,  
\ COMPILE-ONLY c a n  b e  i g n o r e d  by d e f i n i n g  it a s  f o l l o w s :  (Continues on nertpage.) 
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ZENForth [IF] \ ZENForth c o m p a t i b i l i t y  
: COMPILE-ONLY ; 

[THEN] 

: {IF \ s t a r t  a  c o n d i t i o n a l  
( - - 0 )  

0 \ p u t  c o u n t e r  on s t a c k  
; COMPILE-ONLY IMMEDIATE 

: IF> \ r i g h t - a r r o w  f o r  {IF ... FI) 
( c o u n t  -- c o u n t + l  
( C: -- o r i g l  1 

1+ >R \ inc rement  and  s a v e  c o u n t  
POSTPONE IF \ c r e a t e  o r i g l  
R> \ r e s t o r e  coun t  

; COMPILE-ONLY IMMEDIATE 

: IIFJ \ b a r  f o r  {IF . . .  FI) 
( c o u n t  -- coun t  ) 

( C: o r i g  . . .  o r i g l  -- o r i g  . . .  o r i g 2  ) 

>R \ s a v e  coun t  
POSTPONE AHEAD \ new o r i g  
1 CS-ROLL \ o l d  o r i g  t o  t o p  of  CFStack 
POSTPONE THEN \ r e s o l v e  o l d  o r i g  
R> \ r e s t o r e  c o u n t  

; COMPILE-ONLY IMMEDIATE 

: BADIIF . . .  FI) \ a b o r t  i f  t h e r e  i s  no TRUE c o n d i t i o n  
( -- ) 

CR ." {IF . . .  FI): no TRUE c o n d i t i o n "  CR \ e r r o r  message 
-22 THROW \ ' c o n t r o l  s t r u c t u r e  mismatch'  

, 

: FI) \ e n d  o f  c o n d i t i o n a l  
( c o u n t  -- ) 
( C: o r i g l  . . . o r i g n  -- ) 

>R \ s a v e  coun t  
POSTPONE AHEAD \ new o r i g  
1 CS-ROLL \ o l d  o r i g  
POSTPONE THEN \ r e s o l v e  o l d  o r i g  

\ i f  w e  g o t  h e r e ,  none o f  t h e  g u a r d s  w e r e  TRUE 
\ s o  a b o r t  
POSTPONE BAD{IF ... FI) \ compile  t h e  a b o r t  
R> \ r e s t o r e  coun t  

0 ?DO \ r e s o l v e  a l l  r emain ing  o r i g s  
POSTPONE THEN 

LOOP 
; COMPILE-ONLY IMMEDIATE 
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: {DO \ s t a r t  a  l oop  
( C: -- d e s t  

POSTPONE BEGIN \ c r e a t e  des t  
; COMPILE-ONLY IMMEDIATE 

: DO> \ r i g h t  arrow f o r  {DO . . . OD) 
( C: d e s t  -- o r i g l  d e s t  ) 

POSTPONE IF \ c r e a t e  o r i g  
1 CS-ROLL \ b r i n g  d e s t  back t o  t o p  of CFStack 

; COMPILE-ONLY IMMEDIATE 

\ hForth u se s  t h e  word ' d e s t + '  t o  count open d e s t i n a t i o n s .  For o t h e r  environments,  
\ t h e r e  may be  a  s i m i l a r  word. 

ZENForth [IF] 
: d e s t +  1 b a l  +!  ; 

[THEN] 

: ID01 \ b a r  f o r  {DO ... OD) 
( C: o r i g l  d e s t  -- d e s t  ) 

0 CS-PICK \ copy t h e  d e s t  
POSTPONE AGAIN \ r e s o l v e  t h e  copy 
d e s t +  \ hForth c o n t r o l  s t r u c t u r e  ope ra t i on  
1 CS-ROLL \ o l d  o r i g  
POSTPONE THEN \ r e s o l v e  o l d  o r i g  

; COMPILE-ONLY IMMEDIATE 

: OD) \ end of loop  
( C: o r i g  d e s t  -- ) 

POSTPONE AGAIN \ r e s o l v e  d e s t  
POSTPONE THEN \ r e so lve  o r i g  

; COMPILE-ONLY IMMEDIATE 

\ Simple test  words 

: TESTl \ p r i n t  t h e  r e l a t i o n s h i p  between 'x' and ' y '  
( x y - - 1  

\ execute  TESTl f o r  a l l  t h r e e  combinations 

CR . ( 5 0 TESTl ) 

5 0 TESTl 

CR . ( 5 5 TESTl ) 

5 5 TESTl 
(Continues o n  nextpage.) I 
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CR . ( 0 5 T E S T l  ) 

0 5 T E S T l  

: T E S T 2  \ de l ibera te ly  e r r o n e o u s  test case -- ' e q u a l '  case l e f t  o u t !  
( x y - - 1  

CR . (  S i n c e  T E S T 2  abor t s  i f  ' x '  a n d  ' y '  a r e  e q u a l ,  we  w i l l  ) 

CR . (  test T E S T 2  l a t e r ;  f i r s t  w e  w i l l  c o m p i l e  and test  USEFUL ) 

\ define a r g u m e n t s  
VARIABLE x 5 6 5 5 3  * x ! 
VARIABLE y 6 5 5 1  5 * y ! 

: USEFUL \ sets b o t h  ' x '  a n d  ' y '  t o  G C D ( x ,  y )  
( -- 1 

I DO 
x @ y @ > DO> y @ NEGATE x + !  

ID01 
y @ x @ > DO> x @ NEGATE y + !  

OD 1 

CR . (  B e f o r e :  x, y = ) x @ 
CR . ( USEFUL ) USEFUL 
CR . ( A f t e r :  x ,  y = )  x @  

CR . ( Now w e  '11 tes t  TEST2 ) 

\ T h a t ' s  a l l ,  f o l k s !  ! 

I THIRTY-DAY FREE OFFER - Frea MMSFORTH 
GAMES DISK worth $39 95 wlth purchase of MMSFORTH 
System CRYPTOOLJOTE HELPER OTHELLO BREAK- 

~ R ~ ~ ~ s  FORTH and others 
61 Lake Shora RONT. N%tW, MA O77W 

iSWS34It2&. 9 am - e om1 C s l l b r b w b m d m m . ~ h t f a f f ~ b . b L  
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C-Style Arrays in Forth 

M. L. Gassanenko 
St. Petersburg, Russia 

Abstract 
This paper proposes a C-like notation for cell array 

indexing in Forth. Although the idea is not new, the 
notation seems to be  felicitous and might be included in 
the next standard. It can support multi-dimensional arrays, 
and a similar syntax may be used for bit or double-cell 
arrays. The paper also shows how analysis of possible 
name conflicts should be  performed. 

Introduction 
One feature of (not too) modern processors that is 

rarely utilized by (even modern) Forth is based indexed 
addressing. There have been several approaches to array 
accessing but, so far, none of them has been considered 
felicitous enough to b e  included in the standard. 

Array elements are usually accessed via 2 * + @ (unless 
the programmer prefers to resort to assembler). There is 
also a traditional array implementation in which the 
operation of indexing is bound with and hidden in the 
array name (an array is a function that takes indexes from 
the stack and leaves the address of an element), but it has 
not become a de facto standard. The third way, also no de 
facto standard, uses words like [ I  CELL and the only 
difference of the proposed syntax from it is in better 
naming. This paper shows how one can implement multi- 
dimensional arrays using this idea. 

The proposed syntax for the indexed access operations 
was inspired by (almost borrowed from) C andAlgol48. One 
is only sorry that this syntax did not appear 15 years ago. 

Specifications 

[ 1 ( n a-addr -- x ) "brackets" 
EXPERIMENTAL 
x i s  the value stored into the nth cell of the cell array 
starting at a-addr. The array cells are numbered 
starting from zero. Semantically equivalent to: 
SWAPCELLS + @ 

[ I ! ( x n a-addr -- ) "brackets-store" 
EXPERIMENTAL 
Store the value x into the nth cell of the cell array 
starting at a-addt: The array cells are numbered 

starting from zero. Semantically equivalent to: 
SWAPCELLS + ! 

[ 1 A ( n a-addrl -- a-addr2 ) "brackets-pointer" 
EXPERIMENTAL 
Add the size in address units of n cells to a-addrl, 
giving a-addr2. Semantically equivalent to: 
SWAP CELLS + 

Note: This is a proposal for the next Forth standard. 

Implementation 
What follows is an F-PC implementation of these words: 

CODE [ I  ( i n d e x  a r r a y  -- value  ) 

POP bx 
pop d i  
s h l  d i  
p u s h  0 [ b x + d i l  
nex t  c ;  

CODE [ I  ! ( v a l u e  i n d e x  a r r a y  -- ) 

POP bx 
pop d i  
s h l  d i  
pop 0 [ b x + d i ]  
nex t  c; 

CODE [ I A  ( i n d e x  a r r a y  -- address ) 

POP bx 
pop d i  
s h l  d i  

add bx, d i  
p u s h  bx 
next  c ;  

On a '386 Forth that uses in-lining and keeps the data 
stack top in EBX, the code substituted for [ 1 may look like 
this: 

POP EAX 
MOV EBX, [EBX] [4*EAX] 
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which is much better than the: 

XCHG EBX, [ESP] \ SWAP 
SHL EBX, # 2  \ CELLS 
POP EAX \ + 
ADD EBX, EAX \ +, cont inued  
MOV EBX, [EBX] \ @ 

which we would have as the result of substituting SWAP 
CELLS + @ in line. 

Multi-Dimensional Arrays 
This sectionshows that multi-dimensional arrays equally 

can be implemented this way. 
A multi-dimensional array is implemented as an array of 

arrays. Fetching, storing, and pointing to a two-dimensional 
array element look like this: 

j  i X [ I  [ I  \ X [ i l  [ j l  
... j  i X [I [ I !  \ X [ i l [ j l  = . . .  

j i X [ I  [I * \ &X[i l  [ j l  

Here, X i s  an array containing addresses of arrays of 
cells. These cell arrays should not necessarily be of the 
same size. No index range checking is performed, though. 
The word ARRAY, creates an array of n elements xO . . . 
xln-11 and returns its address: 
: a r r a y ,  ( xO x l  . . . x[n-11 n  -- addr  ) 

( a l i g n  ) he re  >r 
? dup 
i f  

0  swap 1- 
do 

i r o l l  , 
-1 +loop 

then  
r> 

Although the usefulness of this word is restricted by the 
maximal stack depth, it enables us to create arrays of 
(sub)arrays, and these subarrays may have different lengths. 

Once the subarrays can have different lengthes, we may 
wish to be able to determine them. Provided that all the 
subarrays are created by ARRAY, immediately--one after 
another-and that the last top-level array element is fol- 
lowed by a "dummy" pointer, the word [ I LEN ( i a -- 1 ) 
given below returns the length of the ith subarray of the t o p  
level array a 
code [lien ( l i n d e x  a r r a y  -- 2length  ) 

POP bx 

follows the last array element. We can consider it a zero- 
length subarray. If it is missed, the word [ ] LEN will not 
calculate the length of the last subarray. 

Assessing the Multi-Dimensional 
Array Implementation 

Here we compare the array-of-arrays implementation 
with the more traditonal one where index calculation 
involves multiplication by the number of columns. 

The array-of-arrays implementation does not necessar- 
ily require more memory. For example, if we manipulate 
matrixes of a special form, say, symmetric, this technique 
almost halves the amount of memory required. 

This implementation also works faster because, even on 
a '486, multiplication is slower than memory fetch. Probably, 
this consideration is not of too much importance, though. 

Some Examples 
These examples scarcely need comments. The screen 

output is shown in Listing Two. 
: .ARRAY ( a r r a y  l e n  -- ) 

- " [ " 

0 ?DO I OVER [ I  . LOOP 
." ]  " DROP 

: .2ARRAY ( a r r a y  n-rows -- ) 

CR ." [ " 

0 ?DO 
I OVER [ I  I PLUCK []LEN CR .ARRAY 

LOOP 
." ]  '' DROP 

\ The l a s t ,  d e l i m i t e r ,  s t r i n g  of  a r r a y  
\ i s  needed f o r  [ I l e n  t o  c a l c u l a t e  t h e  
\ l e n g t h  p rope r ly  
1 2  3 4 5 5 a r r a y ,  
6 7 8 9  4 a r r a y ,  
10 11 1 2  3 a r r a y ,  

0  a r r a y ,  
4 a r r a y ,  cons t an t  x  

o o x  [ I  [I . 
2 o x  [I [ I  . 
25 1 2  x  [ I  [ I !  
1 2 x  [ I  [I . 
1 2  x  [ I  [ I A  @ . 
0 x  [ l l e n  . 
2 x  [ l l e n  . 
x 3 . 2a r r ay  Uexl continues on page 18.; 

pop d i  
s h l  d i  
mov ax, 2  [bx+di]  \ address  of t h e  ( i + l ) - t h  suba r r ay  
sub ax, 0 [bx+di]  \ minus add re s s  of  t h e  i - t h  suba r r ay  
s h r  ax  \ g i v e s  i - t h  subar ray  l e n g t h  i n  c e l l s  
push ax  
next  c ;  

The "dummyn pointer is the address of the cell that 
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Listing One. arrays.seq I 

\ Arrays f o r  Fo r th  by M.L.Gassanenko 
a u t o e d i t o f f  
CODE [ I  ( index a r r a y  -- va lue  ) 

POP bx 
pop d i  
s h l  d i  

I push 0  [bx+di]  
nex t  c; 

CODE [ I  ! ( v a l u e  index a r r a y  -- ) 

POP bx 
pop d i  
s h l  d i  
pop 0 [bx+di]  
nex t  c ;  

CODE [ I  * ( index a r r a y  -- addres s  ) 

POP bx 
pop d i  
s h l  d i  
add bx, d i  
push bx 
next  c ;  

: a r r a y ,  ( xO x l  . . . x[n-11 n  -- addr  ) 
( a l i g n  ) h e r e  > r  
?dup 
i f  

0 swap 1- 
do 

i r o l l  , 
-1 +loop  

then  

code [ I l e n  ( l i n d e x  a r r a y  -- 21ength ) 

POP bx 
pop d i  
s h l  d i  
mov ax, 2  [bx+di]  
sub ax, 0  [bx+di]  
s h r  ax  
push ax  
next  c ;  

\ \s Aux i l i a ry  t o o l s ,  r a t h e r  examples 
: .ARRAY ( a r r a y  l e n  -- ) 

. " [ " 

0  ?DO I OVER [I 4 . R  SPACE LOOP 
." 1 " DROP 

: -2ARRAY ( a r r a y  p r o w s  -- ) 

CR 6 SPACES ." [ "  
0 
?DO ( a r r a y  

I OVER [ I  ( a r r a y  a r r a y [ i ]  ) 

I PLUCK [ I  LEN ( array array [ i ]  len[ i ]  
CR 9 SPACES .ARRAY 

LOOP 
CR 6 SPACES ." ]  " DROP 

\ \s Some examples 
showlines  
\ The l a s t ,  d e l i m i t i n g ,  suba r r ay  i s  
\ needed f o r  [I l e n  t o  
\ c a l c u l a t e  t h e  l e n g t h  p r o p e r l y  
1 2 3 4 5 5 a r r a y ,  
6 7 8 9  4 a r r a y ,  
10 11 12 3 a r r a y ,  

0 a r r a y ,  
4 a r r a y ,  cons t an t  x  

o o x  [ I  [ I  . 
2 O x  [ I  11 . 
0 2 x  [ I  [I . 
1 2 x  [ I  [I . 
25  1 2  x  [ I  [ I  ! 
1 2 x  [ I  [I . 
1 2  x  [ I  [ I A  @ . 
0  x  [ l l e n  . 
1 x [ l l e n  . 
2  x [ l l e n  . 
x  3 - 2 a r r a y  

o f f >  l i s t v a r  

From NASA space 
systems to package 
tracking for Federal 

...g ives you maximum 
performance, total 
control for embedded 

Total control of target kernel size and content. 
Royalty-free multitasking kernels and libraries. 
Fully configurable for custom hardware. 
Compiles and downloads entire program in seconds. 
Includes all target source, extensive documentation. 
Full 32-bit protected mode host supports interactive 
development from any 386 or better PC. 
Versions for 805 l,80186/88,80196,68HCll, 68HC16, 
68332, TMS320C3 1 and more! 
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Listing Two. Screen output of the F-PC program shown in Listing One. The 
message about [ I  is displayed because [ ] is defined in ~ ~ ~ A S S E M B L E R V O C ~ ~ U ~ ~ ~ ~ .  

[ I  i s n ' t  u n i q u e  
70 \ The l a s t ,  d e l i m i t i n g ,  s u b a r r a y  i s  n e e d e d  f o r  [ l l e n  
7 1  \ t o  c a l c u l a t e  t h e  l e n g t h  p r o p e r l y  
72 1 2 3 4 5 5 a r r a y ,  
7 3 6  7 8 9 4 a r r a y ,  
74 1 0  11 12  3 a r r a y ,  
7 5 0 a r r a y ,  
7 6 4 a r r a y ,  c o n s t a n t  x 
7 7 0 0 x  [ I  [ I  . 1 
7 8 2 0 x [ ] [ ] .  3 
79 0 2 x [ I  [ I  . 1 0  
80 1 2  x [ I  [ I  . 11 
8 1  2 5  1 2 x [ I  [ I !  
82 1 2 x [ I  [ I  . 25  
83  1 2  x [ I  [ I A  @ . 25  
8 4 O x [ ] l e n .  5 
85  1 x [ l l e n  . 4 
86 2 x [lien . 3 
87 x 3 . 2 a r r a y  

[ 
t 1 2 3 4 5 I 
[ 6 7 8 9 1 
[ 10 25  1 2 3  

I 

89  o f f >  l i s t v a r  

Bit, Double-Cell, and Other Arrays 
A similar syntax may be used to handle bit arrays. 

B I T [ ]  ( u  addr -- b )  "bit-brackets" 
EXPERIMENTAL 
b is the value stored into the nth bit of the bit array 
starting at addr. The array bits are numbered starting 
from zero. The most significant bit has the largest 
number. The number of bits in an address unit is 
system dependent. 

B I T [ ] !  ( x u a - a d d r - - )  "bit-brackets-store" 
EXPERIMENTAL 
Store the low bit of x into the nth bit of the bit array 
starting at addr. 

BITS ( u l  -- u2 ) "bits" 
EXPERIMENTAL 
242 is the minimal size in address units of a memory 
area that contains at least n bits. 

The specifications for the double-cell indexing words 
are evident: 
D [ I  ( n a - a d d r  -- d ) 

D [ l  ! ( d n a - a d d r  -- ) 

D [ l A  ( n a - a d d r l  -- a -add r2  ) 

The number nabove is the number of the two-cell array 
element we want to access. 

In systems with 16-bit characters, it may be  desirable to 
have character-array operations as well. 

Implementation of all these words is a good exercise 
for a novice, studying either Forth or assembler. A good 
name for a double-cell [ ] LEN analog is D [ I LEN. 

Consistency 
Jn this section, we ascertain that introduction of the 

proposed new names into the standard does not lead to 
naming problems. 

We have introduced two new language elements: [ I  
"indexing" and A "address." (A sequence, or a set, of 
characters used in a name and having a meaning for 
programmers we call a languageelement; for example, the 
name CHAR+ consists of two language elements: CHAR 
and +). 

The symbol A has not been used in the standard before. 
There is an old tradition to indicate "address" by ' (tick), 
but in the modern standard (tick) means only "execution 
token." 

The symbol [ I  has not yet been used, but [ and I 
usually denote state-switching or immediacy. This does 
not lead to naming conflicts, because [ and I have never 
been used one immediately after another. The only 
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imaginable candidate on  the [ I name is: 

: [ I  ' EXECUTE ; IMMEDIATE 

which we can name [EX] or [EXEC] if we will need it. 
(To illustrate importance of such analysis, we can give 

the following example. In an ANS Forth system we can 
define: 

4 CONSTANT CELL 
: CELLS CELL * ; 
: #CELLS CELL + 1- CELL / ; 

but we cannot define 

1 CONSTANT CHAR 
: CHARS CHAR * ; 
: #CHARS CHAR + 1- CHAR / ; 

and get a standard system, because, according to the 
standard, CHAR means "obtain a character from the input 
stream" while CHARS means "multiply by the size of a 
character. ") 

The name of the word [ I  that may be  used to fetch a 
data address contains no mention of the data size. This 
makes the notation more natural: [ I [ I or [ I D [ I looks 
better than [ 1 CELL [ I  CELL or [ I  CELL [ I  DOUBLE 
because the size of data is mentioned at most once, and 
this is the size of data that we  want to access. The "size 
specifiersn ("D" and "BIT" in D [ 1 and B I T  [ I )  are placed 
before the "operation specifier" [ I to keep the same style 
as in other such words, e.g., C@, C !, and CELL+. Again, 
the "CELL" address specifier is omitted because the size of 
the stack element is the default for operations that move 
data between stack and memory (e.g., @ and ! work with 
one cell, but they are not named CELL@ and CELL !). 

Optional Range Checking 
The most evident approach to this is to store the array 

length into the -1st cell and to redefine the array words to 
use it to perform range checking. This is shown in Listings 
Three and Four. Remember that such redefinition enables 
range checking only for words that get compiled after it; 
already-compiled words will still use the "unprotected 
version. Although the naming issue is always u p  to the 
programmer's taste, it may be recommended to redefine 
the array words locally (within a module vocabulary), and 
to use their original, "unprotected versions under some 
other names. 

Exercises for the Novice 

Although this paper is a proposal, it inspires some 
good exercises for a novice who is already familiar with 
Forth but does not have much practice. 

1. Implement the words [ I ,  [ I  ! ,  [ I * ,  and []LEN in 
Forth. 

2. Implement the word OARRAY, ( n -- addr ) which 
creates an array of n cells, initializing it with zeroes. 
For example, 

4 OARRAY, 

must be equivalent to 

3. Implement the double-cell array words D [ I ,  D [ 1 !, 
D [ I ^, and D [ I LEN and the words DARRAY, and 
ODARRAY, . 

4. Implement the bit array words (in Forth or assembler; 
the latter is easier). 

5. Implement the word BITARRAY, ( bit[n-11 . . . bit[Ol n 
-- addr ) which creates a bit array and initializes it. 

6. Implement range checking for double-cell arrays. 
Double-cell arrays must be accessible as both double- 
or single-cell arrays, and the range checking must 
work in both cases. 

7. Create a range-checking scheme for bit arrays. 

8. Take the array words as a basis and extend the array 
concept to allow arrays with indexes starting from an 
arbitrary number (not necessarily from zero); i.e., it 
must be possible to create, for example, an array for 
which indexes would be numbers -5 . . . 4. You may 
use any approach, but do not redefine the word [ I  
and the others. Be careful to choose good names. 

I 
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Listing Three. Range checking for the arrays. 1 
needs  a r r a y s . s e q  
\ The -1st a r r a y  e lement  c o n t a i n s  t h e  number o f  e l e m e n t s  i n  t h e  a r r a y .  

\ r e d e f i n e  ARRAY, t o  l a y  down such -1st e lement .  
: a r r a y ,  ( a [n-1] . . . a  [O] n  -- ) 

( a l i g n  ) dup , 
a r r a y ,  

\ The check ing  word t o  b e  used  w i t h  [I 
: - ? ( i n d e x  a r r  -- ) \ e n s u r e  t h a t  t h e  index  i s  c o r r e c t  

2dup -1 swap [I < 
i f  o v e r  O <  0= 

i f  e x i t  t h e n  
t h e n  
c r  ." * * *  i n v a l i d  i n d e x  " o v e r  . ." f o r  t h e  a r r a y  a t  " dup u.  c r  

\ To e n a b l e  r a n g e  check ing ,  w e  can e i t h e r  g l o b a l l y  r e d e f i n e  [ ]  , 
\ o r  r e d e f i n e  it i n  t h e  m o d u l e ' s  d i c t i o n a r y ,  
\ o r  f i n d  a  new name (e .g .  / [ ]  ) f o r  t h e  p r o t e c t e d  v e r s i o n  o f  [I , 
\ o r  r e d e f i n e  [ ]  a n d  u s e  / [ ]  f o r  t h e  o r i g i n a l  v e r s i o n  of  [I , 
\ o r  u s e  -? e v e r y  t i m e  w e  need a  check.  
\ 
\ For  example,  w e  can  d e f i n e  
\ : / [ I  -? [ I  ; \ i f  w e  want / [ I  t o  do r a n g e  check ing ,  and 
\ : / [ ]  ?comp compi le  [I ; immediate \ i f  we want it t o  compi le  [ ]  

: [ I l e n  ( index2  2 a r r a y  -- l e n l  ) 

- 
2dup -1 swap [I 1- = 

i f  
c r  ." * * *  []LEN d o e s  n o t  work f o r  t h e  l a s t  ( " o v e r  . 
. " ) s u b a r r a y  (of  a r r a y  a t  " dup u .  . " ) " c r  

t h e n  
[ I l e n  1- 

: [I - ? [I ; 
: [ I  ! - ? [ I !  ; 
: [I A ? [ I A  ; 
\ NB: w e  h a v e  t o  recompi le  .ARRAY and .2ARRAY a s  w e l l ,  
\ u n l e s s  w e  want them t o  show 1 e x t r a  c e l l  beyond e a c h  l i n e .  

\ \s Examples 
showl ines  
\ 1-dimensional  a r r a y :  
11 22 33 4 4  4 a r r a y ,  c o n s t a n t  y  
-1 Y 11 - 
O Y  [ I .  
1 Y  1 1 .  
3 y [ l  
4 y [ l .  

\ 2-dimensional  a r r a y  
\ The l a s t ,  d e l i m i t i n g ,  s u b a r r a y  i s  needed f o r  [ I l e n  t o  c a l c u l a t e  t h e  l e n g t h  p r o p e r l y  
\ NB: w e  u s e  t h e  same s y n t a x  b u t  * d i f f e r e n t *  v e r s i o n s  o f  a r r a y  words.  
1 2  3 4 5  5 a r r a y ,  
6 7 8 9  4 a r r a y ,  
10  11 12  3 a r r a y ,  

0  a r r a y ,  
4  a r r a y ,  c o n s t a n t  x  

o o x t 1  [ I .  
-2 0 x 11  [I . 
0 -2 x  [I [ I  . 
-1 -2 x  [ I  [ I  . 
0 x [ l l e n  . 
-1 x [I l e n  . 
3 x [ l l e n  . 
4 x [ l l e n  . 
o f f >  l i s t v a r  
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The a r r a y  words a r e  r e d e f i n e d  t o  pe r fo rm r a n g e  check ing .  

ARRAY, i s n ' t  u n i q u e  
[]LEN i s n ' t  u n i q u e  
[I i s n ' t  u n i q u e  
[ I  ! i s n ' t  u n i q u e  
[ I  A i s n ' t  u n i q u e  

48 \ 1-d imens iona l  a r r a y :  
49 11 22 33 44 4  a r r a y ,  c o n s t a n t  y  
50 -1 y [ I  . 

* * *  i n v a l i d  i n d e x  -1 f o r  t h e  a r r a y  a t  33595 
4  

51 0  y  [ I  . 11 
52 1 y  [ I  . 22 
53  3  y  [ I  . 44 
54 4 y  [ I  - 

* * *  i n v a l i d  i n d e x  4 f o r  t h e  a r r a y  a t  33595 
-28695 

55 
56 \ 2-dimensional  a r r a y  
57 \ The l a s t ,  d e l i m i t i n g ,  s u b a r r a y  i s  needed f o r  [ I l e n  
58 \ to c a l c u l a t e  t h e  l e n g t h  p r o p e r l y  
59 \ NB: we u s e  t h e  same s y n t a x  b u t  * d i f f e r e n t *  v e r s i o n s  o f  a r r a y  words 
60 1 2  3  4  5  5  a r r a y ,  
6 1 6  7  8  9  4  a r r a y ,  
62 10  11 12 3  a r r a y ,  
63 0 a r r a y ,  
6  4 4 a r r a y ,  c o n s t a n t  x  

X i s n ' t  un ique  
6 5 0 0 x [ ]  [ I .  1 
66 -2 0  x  [ I  [ I  . 

* * *  i n v a l i d  i n d e x  -2 f o r  t h e  a r r a y  a t  33610 
-31941 

67 0  -2 x  [ I  [ I  . 
* * *  i n v a l i d  i n d e x  -2 f o r  t h e  a r r a y  a t  33642 

68 -1 -2 x [ I  [I . 
* * *  i n v a l i d  i n d e x  -2 f o r  t h e  a r r a y  a t  33642 

***  i n v a l i d  i n d e x  -1 f o r  t h e  a r r a y  a t  0  
8238 

69 0  x [ I l e n  . 5  
70 -1 x  [ I l e n  . 

* * *  i n v a l i d  i n d e x  -1 f o r  t h e  a r r a y  a t  33642 
16802 

71 3  x  [ l l e n  . 
* * *  []LEN d o e s  n o t  work for  t h e  l a s t  ( 3  ) s u b a r r a y  (of  a r r a y  a t  33642 ) 

28351 
72 4 x  [ I l e n  . 

* * *  i n v a l i d  i n d e x  4 f o r  t h e  a r r a y  a t  33642 
1226 

7  3  
74 o f f >  l i s t v a r  
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Forth in Control: 
A Window Interface 
Ken Merk 
Langley, British Columbia, Canada 

In my last article, "Forth in Controln (FD XVII/2), we 
built a parallel-printer-port interface using a series of LEDs 
to represent the on/off state of each bit on the port. We 
named all of the eight lines and assigned each a number 
according to its binary weighting on the port. The interface 
simulated a machine controller, so we named each output 
line after the device it was controlling: 

DECLMAL \ Bina y weight 
1 CONSTANT FAN \ OOOOOOOl 
2 CONSTANT DRILL \ ~~~~~~l~ 
4 CONSTANT PUMP \ ~~~~~l~~ 
8 CONSTANT SPRINKLER \ OOOOlOOO 

16 CONSTANT HEATER \ ~~~l~~~~ 
32 CONSTANT LIGHT \ ~~l~~~~~ 
6 4 CONSTANT MOTOR \ OlOOOOOO 

128 CONSTANT VALVE \ l~~~~~~~ 

Tom Zimmer's F-PC was used to make words that 
would control each bit individually, so we could turn on 
or off any device we wanted: 

MOTOR >ON \ turn motor ON 
FAN >OFF \ turn fan OFF 

In this article, we will use the same LED display 
interface attached to the parallel printer port, but we will 
control it using Windows as the platform. LMI's WinForth 
for Microsoft Windows will be used to create a graphical 
interface consisting of two arrays of command buttons 
which can be activated by the mouse to control each 
device. This creates a point-and-click environment, which 
makes it quick and easy to manipulate the output port. 
On/off buttons will be created for each output device, plus 
another button array with special functions to control 
groups of devices. 

WinForth is a 16-bit system, but applications can run 
under Windows 3.1 and Windows 95. A 32-bit version of 
WinForth is currently under development. To test drive 
LMI's WinForth, a shareware version is available from 
Laboratory Microsystems' BBS at 310-306-3530 or from 
some Forth BBSs, one of which is Kenneth O'Heskin's Art 

of Programming at 604-826-9663. This version is equiva- 
lent in capabilities and performance to the retail WinForth, 
except it does not let you create end-user applications. 

DOS vs. Windows 
Most DOS programs consist of code written in a 

sequentially driven manner. Input data must be entered in 
a specific order to match the flow of the program. This puts 
a high priority on the order in which the job must be 
performed. 

Windows is an event-driven operating system which 
allows data to be entered in whatever order seems 
appropriate. Whenever an event occurs, such as a mouse 
click or a keypress, Windows notifies the application 
about the event by sending it a message. A message is a 
16-bit, unsigned value which is assigned to a symbolic 
constant that starts with the letters wM-. A procedure 
within the application intercepts these messages and 
responds to them. This procedure is called a Message 
Handler, in which the programmer can code what action 
has to be taken depending on the message received. 

Source Code Overview 
In the accompanying source code, FCONTROL.4TH, 

we create a pop-up modal dialog box containing two 
keyboards, each with an array of command push-buttons. 
The dialog box will have a caption bar, which makes the 
window movable, and a system menu to close the 
window. A modal dialog box disables the parent window 
and does not allow you to click or type anywhere outside 
the dialog box until it is closed. 

Clicking on the push-buttons with the mouse will send 
WM COMMAND messages to the dialog message handler, 
CONTROLDLGPROC, which will process them through the 
DO. BUTTON case statement to activate the appropriate 
output device. The word MAIN is executed to display the 
dialog and direct all messages resulting from user interac- 
tion with the dialog to the dialog message handler, thus 
running the program. To quit the program, double-click 
the system menu box, click on the Quit push-button, or 
press Esc to close the dialog box. 

Each control (push-button) within a dialog box will be 
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given its own control ID. This ID number is assigned to a 
symbolic constant that starts with the letters ID-. This 
makes the source code easier to read. Because text 
controls do  not send messages back to the message 
handler, their IDS are set to -1. 

The WM-COMMAND message is sent to the dialog 
message handler by the controls (push-buttons) in the 
dialog box when clicked. The dialog box message handler 
will check WM COMMAND messages for the control identi- 
fier of the pushbutton. When it finds this identifier, which 
is in the message's wParam parameter, the handler knows 
which button was pushed and can carry out the corre- 
sponding task using the DO.  BUTTON case statement. 

WM I N I T D I A L O G  is sent to a dialog box upon the 
box's Tirst activation, but before it is made visible. In 
response to this message, a dialog box procedure will 
initialize each of the dialog box controls to the correct 
initial state. In our case, no initialization is needed, so a 
True is returned-verifying that we  processed the mes- 
sage and causing Windows to set the focus on the first 
button created in the dialog box template (Fan On). 

case statement in DO.  BUTTON, and change the text on the 
buttons accordingly. This will give you a feel of how the 
program works. Load some of the demonstration pro- 
grams that come with WinForth and study their source 
code. 

Read the WinForth programming overviews in the help 
files. WinForth has a built-in "windowing layer" that handles 
many Windows events automatically and hides much of the 
complexity of the Windows API, so you can focus on your 
application and get it completed faster. But, if you choose, 
you can write code using direct calls to the API functions or 
even third-party DLLs using the AP IHOOK function. 

Compiled end-user applications consist of two files, an 
EXE file and an OVL file. When FCONTROL.4TH was 
compiled into turnkey executable files, the total size was 
184K bytes. 

This will give you a good start in Windows program- 
ming, and will demonstrate how you can "Do More With 
Less" using Forth. 

Device Control 

(/I 1-1 

two keyboard arrays of push-buttons. 
clicking on the on/offbuttons will control each output 

device individually. Click on KILL  to turn off all devices, 
click on ALL-ON to turn on all devices, The LED display 

The four preset 
buttons can be programmed to turn on any combination 

father of two girls and lives in Langley, B.C., Canada. He works for Canadian 
Pacific Railway, and is involved in a braking system used on caboose-less 
trains-the caboose is replaced by a black box which monitors many param- 
eters of the train and sends them digitally by radio to the head end. In 
emergencies, a remote radio can trigger braking. Other projects include 
infrared bearing-failure detectors, wind detectors, and mountain-top radio 
communication sites. Merk originally used Forth to learn 8088 assembler, and 
found it a great tool to control electronic hardware. 

of output devices. In this case, 
the preset buttons are pro- 
grammed to drive the four 
phases of a stepper motor. 
Clicking function buttons 1, 2, 
3, and 4 in sequence, and re- 
peating, will step the motor in 
one direction. To reverse mo- 
tor direction, click function 
buttons 4, 3, 2, and 1 in se- 
quence, and repeat. See Skip 
Carter's article "Stepper Mo- 
tors" (FD XVII/5) for an in- 
depthview of theory and inter- 
facing to stepper motors. 

After you ge t  FCON- 
TROL.4TH up and running, 
read through the source code 
and the comments to figure 
out what each section of code 
is doing. Have some fun by 
changing the parameters to see 
what happens. Change the size 
of the buttons. Move them 
around to different locations. 
Patch new functions into the 
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Listing. Parallel port interface. I 

\ FCONTROL.4TH 
\ WINFORTH 

K e n  M e r k  J u n e / 9 6  

ASM \ L o a d s  t h e  F o r t h  assembler  

DECIMAL 

\ L o o k  f o r  a c t i v e  L P T l  p o r t  
\ I f  no p o r t  found t h e n  abor t  

CLS 
2 3  8 GOTOXY . (  P a r a l l e l  p r i n t e r  p o r t  n o t  f o u n d . )  
CLOSE QUIT 

. THEN 

6 4  8 @ L  EQU #PORT 

1 CONSTANT 
2 CONSTANT 
4 CONSTANT 
8 CONSTANT 
1 6  CONSTANT 
3 2  CONSTANT 
64  CONSTANT 
1 2 8  CONSTANT 

\ F i n d  p o r t  addr f o r  p r i n t e r  card 
\ ass ign  t o  c o n s t a n t  #PORT 

FAN \ ass ign  e a c h  D e v i c e  i t s  b ina ry  w e i g h t i n g  
D R I L L  
PUMP 
SPRINKLER 
HEATER 
LIGHT 
MOTOR 
VALVE 

CODE BSET ( b #por t  -- ) \ w i l l  SET e a c h  b i t  i n  # p o r t  t h a t  m a t c h e s  
CX POP \ every  h i g h  b i t  i n  byte  B .  
DX, TOS MOV 
AX, DX I N  
AL, CL OR 
DX, AL OUT 
TOS POP 
NEXT, 
END-CODE 

CODE BRESET ( b # p o r t  -- ) \ w i l l  RESET e a c h  b i t  i n  # p o r t  t h a t  m a t c h e s  
CX POP \ every h igh  b i t  i n  b y t e  b .  
CX NOT 
DX, TOS MOV 
AX, DX I N  
AL, CL AND 
DX, AL OUT 
TOS POP 
NEXT, 
END-CODE 

: >ON ( b  - - )  #PORT BSET \ t u r n  ON device 
: >OFF ( b  - - )  #PORT BRESET ; \ t u r n  OFF device 

: K I L L  ( -- 1 0 0  #PORT pc ! ; \ t u r n  OFF a l l  devices 
: ALL-ON ( -- ) 2 5 5  #PORT pc! ; \ t u r n  ON a l l  devices 
: WRITE-PORT ( b -- ) #PORT pc! ; \ WRITE b y t e  t o  p o r t  

K I L L  \ k i l l  a l l  LEDs  
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200 CONSTANT ID-FANON \ Assign each control an ID number 
201 CONSTANT ID-FANOFF \ which corresponds to a "ID-" constant 
202 CONSTANT ID DRILLON \ to make code easier to follow. 
2 03 CONSTANT IDIDRILLOFF 
204 CONSTANT ID PUMPON 
2 05 CONSTANT ID~PUMPOFF 
206 CONSTANT ID SPRINKON 
207 CONSTANT IDISPRINKOFF 
208 CONSTANT ID HEATERON 
20 9 CONSTANT ID-HEATEROFF 
210 CONSTANT ID~LIGHTON 
211 CONSTANT ID LIGHTOFF 
2 12 CONSTANT ID-MOTORON 
213 CONSTANT IDMOTOROFF 
2 14 CONSTANT ID~VALVEON 
2 15 CONSTANT ID~VALVEOFF 
216 CONSTANT ID-ALLON 
217 CONSTANT ID-KILL 
218 CONSTANT ID-FUNC1 
219 CONSTANT ID FUNC2 
22 0 CONSTANT I D ~ F U N C ~  
221 CONSTANT ID - FUNC4 

" Machine Controller" \ Caption text 
35 10 235 175 WS CAPTION WS-POPUP Dt \ Size and style 

W~SYSMENU D+ DS MODALFRAME D+ \ of dialog box 
DIALOG CONTROLDLG \ Dialog name 

11 I. 12 10 112 143 -1 \ Border around 
WS BORDER WS VISIBLE D+ WS CHILD Dt \ button array1 
SSBLACKFRAME - D+ STATIC; CONTROL 

\ Create button arrayl- Button text, x y position in box, width and height 
\ of button, ID that identifies which button. 

I' Fan On" 20 19 45 14 
" Fan Off" 69 19 45 14 
" Drill On" 20 35 45 14 
" Drill Off" 69 35 45 14 
I' Pump On" 20 51 45 14 
" Pump Off" 69 51 45 14 
" Sprinkler On" 20 67 45 14 
" Sprinkler Off" 69 67 45 14 
'I Heater On" 20  83 45 14 
" Heater Off" 69 83 45 14 
" Light On" 20 99 45 14 
" Light Off" 69 99 45 14 
" Motor On1' 20 115 45 14 
" Motor Off" 69 115 45 14 
" Valve On" 20 131 45 14 
Valve Of fvv 69 131 45 14 

" Device Control" 20 6 51 10 

ID FANON 
ID-F ANOFF 
IDDRILLON 
IDDRILLOFF 
I D-P UMP ON 
ID-PUMPOFF 
ID-SPRINKON 
ID-SPRINKOFF 
ID-HEATERON 
ID-HEATEROFF 
ID-LIGHTON 
ID-LIGHTOFF 
ID-MOTORON 
ID-MOTOROFF 
IDVALVEON 
ID-VALVEOFF - 

- 1 

PUSHBUTTON 
PUSHBUTTON 
PUSHBUTTON 
PUSHBUTTON 
PUSHBUTTON 
PUSHBUTTON 
PUSHBUTTON 
PUSHBUTTON 
PUSHBUTTON 
PUSHBUTTON 
PUSHBUTTON 
PUSHBUTTON 
PUSHBUTTON 
PUSHBUTTON 
PUSHBUTTON 
PUSHBUTTON 
LTEXT 

I (Continues on next page.) 
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\ . . . . . . . . . . . . . . . . . . . . . . . . . . .  Button Array2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
I1 11 135 10 88 143 -1 \ Border around 

WS-BORDER WS-VISIBLE D+ WS CHILD D+ \ button array2 
SS-BLACKFRAME D+ STATICF CONTROL 

\ Create button array2- Button text, x y position in box, width and height 
\ of button, ID that identifies which button. 
" Preset Function #I" 145 19 68 18 ID-FUNC1 PUSHBUTTON 
" Preset Function #2" 145 39 68 18 ID FUNC2 PUSHBUTTON 
" Preset Function #3" 145 59 68 18 ID~FUNC~ PUSHBUTTON 
" Preset Function #4" 145 79 68 18 ID-FUNC4 PUSHBUTTON 
" ALL ON" 145 99 68 18 ID-ALLON PUSHBUTTON 
I' KILL" 145 119 68 26 ID KILL PUSHBUTTON 
Quit I* 173 158 40 14 IDCANCEL PUSHBUTTON 

" Group Control" 145 6 48 10 -1 LTEXT 
END -D IALOG 

\ Case statement takes button ID'S given by the 
\ to determine what action to take. 
: DO.BUTTON 

CASE 
ID FANON OF FAN >ON IDIFANOFF OF FAN >OFF 
ID DRILLON OF DRILL >ON 
IDDRILLOFF OF DRILL >OFF 
I DIP UMP ON OF PUMP >ON 
ID-PUMPOFF 0 F PUMP >OFF 
ID-SPRINKON OF SPRINKLER >ON 
ID-SPRINKOFF OF SPRINKLER >OFF 
ID HEATERON OF HEATER >ON 
ID~HEATEROFF OF HEATER >OFF 
ID-LIGHTON 0 F LIGHT >ON 
ID-LIGHTOFF OF LIGHT >OFF 
ID-MOTORON 0 F MOTOR >ON 
ID-MOTOROFF OF MOTOR >OFF 
ID VALVEON 0 F VALVE >ON 
ID~VALVEOFF OF VALVE >OFF 
ID-ALLON 0 F ALL-ON 
ID KILL 0 F KILL 
IDCANCEL o F o CLOSEDLG 
ID-FUNC1 0 F 5 WRITE-PORT 
ID-FUNC2 OF 9 WRITE-PORT 
ID FUNC3 OF 10 WRITE.PORT 
ID~FUNC 4 0 F 6 WRITE.PORT 

ENDCASE ; 

message handler 

ENDOF 
ENDOF 
ENDOF 
ENDOF 
ENDOF 
ENDOF 
ENDOF 
ENDOF 
ENDOF 
ENDOF 
ENDOF 
ENDOF 
ENDOF 
ENDOF 
ENDOF 
ENDOF 
ENDOF 
ENDOF 
ENDOF 
ENDOF 
ENDOF 
ENDOF 
ENDOF 

\ Dialog box message handler intercepts WM - INITDIALOG and WM-COMMAND 
\ messages and then processes them. 
\ Button ID'S are taken from WM_COMMAND1s wParam and sent to DO-BUTTON 
\ case statement which determines what action to take. 
: CONTROLDLGPROC 

wMsg 
CASE 

WM INITDIALOG OF TRUE ENDOF 
WMICOMMAND OF wP a ram DO. BUTTON TRUE ENDOF 
FALSE SWAP 
ENDCASE ; 

\ Runs the dialog template with the associated dialog message handler 
\ which starts the program. 
: MAIN CONTROLDLG [I] CONTROLDLGPROC RUNDLG DROP ; 
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Filters and Sponges 
I Wil Baden 

Filters 
A filteris a program that takes a file 

as input, and does something to it line- 
by-line or character-by-character, pro- 
ducing output. The output from one 
filter can be "piped" as input to another 
filter, and so  on. 

Or a s  ERIC RAYMOND, 7he New Hacker's 
DictionayOSBN 0-262-26069-6), has it- 

frlter n. [orig. UNYL, now also in M S  
DOSI A program that processes an input 
data stream into an output data stream in 
some well-defined way, and does no I/O 
to anywhere else except possibly on 
error conditions; one designed to be 
used as a stage in a pipeline. 

Filter progt-ams are common and use- 
ful. In this section we show how to make 
them easy to write. 

We'll presume some pet words, defi- 
nitions given in Appendix A. 

OPENED INPUT OUTPUT 
CLOSED REWIND 
checked  needed  
IN OUT INBUF 
PLACE BOUNDS 

These words have already appeared in 
Stretching Forth articles. 

As the first example, we make a filter 
where something doesn't do  anything. 
Lines are simply copied. Call it what you 
like. I call it COPY here. [Figure One.] 

If you can redirect the output from 
TYPE and CR, as can be done in tradi- 
tional Forth systems, that's enough. 
Otherwise, replace TYPE CR by OUT 
WRITE-LINE checked.  [Figure Two.] 

Let's rearrange things so we can 
factor cleanly. [Figure Three.] 

Figure One. 

: COPY ( -- ) 

BEGIN ( ) 

INBUF /COUNTED-STRING 
IN READ-LINE checked  ( u f l a g )  

WHILE 
INBUF SWAP TYPE CR ( ) 

REPEAT ( U )  

DROP ( 1 
IN REWIND 

, 

Figure Two. 

: COPY ( -- ) 

BEGIN ( ) 

INBUF /COUNTED-STRING 
IN READ-LINE checked  ( u f l a g )  

WHILE 
INBUF SWAP OUT WRITE-LINE checked  ( ) 

REPEAT ( U )  

DROP ( ) 

IN REWIND 

Figure Three. 

: COPY ( -- ) 

BEGIN ( ) 

INBUF /COUNTED-STRING 
IN READ-LINE checked  ( u f l a g )  

IF INBUF SWAP ( s u )  TRUE ( s u t r u e )  
ELSE DROP ( ) IN REWIND FALSE ( f a l s e )  
THEN 

WHILE ( s u )  
TYPE CR ( ) 

REPEAT ( U )  
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We factor what's between BEGIN 
and WHILE as f i l t e r - r e f i l l  in 
Listing One. This leaves us with Figure 
Four. 

Next we define a macro, using Stan- 
dard Forth EVALUATE. [Figure Five1 

Now we can define our filter. [Fig- 
ure Six1 

For character-by-character filters we 
define another macro, CYPHER, in 
Listing One. CYPHER gets its name 
from cryptography, where it is the 
term for alphabetic substitution. 

As two simple character-by-char- 
acter filters, we have RAISE-CASE 
and ROT 13. [Figure Seven1 

Another example of a filter is the 
program that prints my listings with 
line numbers on the non-blank lines. 

Sponges 
Here are two more definitions from 

The New Hacker's Dictionary. 

sponge n. [UNIXI A special case of a 
filter that reads its entire input before 
writing any output; the canonical ex- 
ample is a sort utility. Unlike most 
filters, a sponge can conveniently over- 
write the input file with the output data 
stream. 

slurp vt. To read a large data file 
entirely into core before working on it. 
This may be contrasted with the strat- 
egy of reading a small piece at a time, 
processing it, and then reading the 
next piece. "This program slurps in a 
1K-by-1K matrix and does an FFT." 

We now make a canonical example 
of a SPONGE. After using F I L T E R  to 
SLURP a file into the HEREAFTER, we 
make an index for the lines of the 
f i l e i m a g e ,  re-order the f i l e i n d e x ,  
and REGURGITATE the file. 

The fileimage is placed in dataspace 
in the HEREAFTER, that is, a given 
distance after HERE. How far from 
HERE isn't important. The f i le index 
is placed after the f i l e i m a g e .  

To re-arrange the lines of a file in 
ASCII collating sequence, 

S"  n a m e - o f - f i l e "  SORTED 

A text editor is often implemented 
as a sponge. 

See Listing Two for SORTED. 
See Appendix B for QSORT. 

Figure Four. 

: COPY ( -- 1 
BEGIN ( 1 

f i l t e r - r e f i l l  
WHILE ( s u )  

TYPE CR ( 1 
REPEAT ( U) 

, 

Figure Five. 

: F I L T E R  
S "  BEGIN f i l t e r - r e f i l l  WHILE " 
EVALUATE ; IMMEDIATE 

- 

Figure Six. 

: COPY F I L T E R  TYPE CR REPEAT ; ( -- ) 

or 

: COPY F I L T E R  OUT WRITE-LINE c h e c k e d  REPEAT ; ( -- ) 

Figure Seven. 

( C o n v e r t  a c h a r a c t e r  t o  upper-case. ) 

: >UPPER ( C h a r  -- CHAR ) 

DUP [CHAR] a - 2 6  U< I F  BL - THEN 

( R o t a t e  l e t t e r  1 3  p o s i t i o n s  i n  t h e  a lphabet .  ) 

: >ROT13 ( C h a r  -- P u n e  ) 

DUP BL OR [CHAR] a - 13 U< 
I F  1 3 +  E X I T  THEN 

DUP BL OR [CHAR] n - 1 3  U< 
I F  1 3 -  E X I T  THEN 

( C o n v e r t  a f i l e  t o  uppercase. ) 

: RAISE-CASE F I L T E R  2DUP CYPHER >UPPER TYPE CR REPEAT ; 

( C o n v e r t  a f i l e  by r o t a t i n g  l e t t e r s  13 p o s i t i o n s .  ) 

: ROT13 F I L T E R  2DUP CYPHER >ROT13 TYPE CR REPEAT ; 

Wil Baden is a professional programmer with an interest in Forth. Send e- 
mail to wilbaden@netcom.com asking for a text-only version of "Filters and 
Sponges." 
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Listing One. I 
1 : f ilter-ref ill ( -- s u true I false ) 

2 INBUF /COUNTED-STRING 
3 IN READ-LINE checked ( u flag) 
4 IF INBUF SWAP ( s u) TRUE ( s u true) 
5 ELSE DROP ( ) IN REWIND FALSE ( false) 
6 THEN ( s u true I false ) 

7 

9 : FILTER S" BEGIN filter-refill WHILE " EVALUATE ; IMMEDIATE 

11 : CYPHER ( s u "word" -- ) 

12 S" CHARS BOUNDS ?DO I C@ " 
13 PARSE-WORD S+ 
14 S" I C! 1 CHARS +LOOP " S+ 
15 EVALUATE 
16 ; IMMEDIATE 

18 \ ( With PLEASE ) 

19 \ : CYPHER PARSE-WORD >PAD PLEASE 
20 \ " CHARS BOUNDS ?DO I C@ - I C! 1 +LOOP " 
21 \ : IMMEDIATE 

S+ is string catenation, and a definition was given in Stretching Forth article "Circular String Buffer" 
(Forth Dimensions XVIII/2). 

If you lack PARSE-WORD you can make do  with- 
: PARSE-WORD BL WORD COUNT ; ( "namev -- s u ) 

Listing Two. I 
1 ( SORTED ) 

1 CREATE filename /COUNTED-STRING 1+ CHARS ALLOT 

1 : HEREAFTER HERE 200 CHARS + ; ( -- c-addr ) 

7 0 VALUE fileimage 
8 0 VALUE fileindex 

1 lo 

VARIABLE tally I 
: check-available-dataspace ( X I - - )  

CHARS fileindex + ALIGNED tally @ CELLS + 
HERE - UNUSED U< NOT ABORT" (Out of Dataspace) " 

: SLURP ( -- 1 
filename COUNT INPUT TO IN 
HEREAFTER TO fileimage 
fileimage TO fileindex 
0 tally ! 
FILTER ( c-addr u) 

DUP 1+ check-available-dataspace 
f ileindex PLACE ( ) 

fileindex COUNT CHARS + TO fileindex 
1 tally + !  (Listing Two continues on next page.) 

Forth Dimensions 29 November 1996 December 



REPEAT 
I N  CLOSED 0 TO I N  

: m a k e - i n d e x  ( -- 1 
f i l e i n d e x  ALIGNED TO f i l e i n d e x  
f i l e i m a g e  t a l l y  @ 0 ?DO ( c-addr) 

DUP I CELLS f i l e i n d e x  + ! 
COUNT CHARS + 

LOOP DROP 

: REGURGITATE ( -- ) 

f i l e n a m e  COUNT OUTPUT TO OUT 
t a l l y  @ 0 ?DO 

I CELLS f i l e i n d e x  + @ COUNT 
OUT WRITE-LINE checked 

LOOP 
OUT CLOSED 0 TO OUT 

SORTED ( c-addr u -- ) 

f i l e n a m e  PLACE 
SLURP 
m a k e - i n d e x  
f i l e i n d e x  t a l l y  @ [ ' I  CCOMPARE QSORT 
REGURGITATE 

Appendix A. 

1 ( S t o c k  Words f o r  F i l t e r s  a n d  S p o n g e s  ) 

3 : OPENED OPEN-FILE ABORT" C a n ' t  o p e n  " ; 
5 : INPUT R / O  OPENED ; ( c-addr u -- f i l e i d  ) 

6 : OUTPUT W/O OPENED ; ( c-addr u -- f i l e i d  ) 

8 : CLOSED ?DUP I F  CLOSE-FILE abort"  C a n ' t  c lose .  " THEN ; 
9 : REWIND ?DUP I F  

1 0  0 0 ROT R E P O S I T I O N - F I L E  ABORT" C a n ' t  r e w i n d .  " 
11 THEN 
1 2  ; 

1 4  : c h e c k e d  ABORT" ( F i l e  A c c e s s  E r r o r )  " ; ( i o r  -- ) 

15 : n e e d e d  ( n - - )  
1 6  DEPTH U< NOT ABORT" N o t  e n o u g h  o n  t h e  s t a c k .  " 
1 7  ; 

1 9  0 VALUE I N  ( G l o b a l  F i l e i d  f o r  I n p u t  ) 

2 0  0 VALUE OUT ( G l o b a l  F i l e i d  f o r  O u t p u t  ) 

22  : PLACE 2DUP 2 > R  CHAR+ SWAP CHARS MOVE 2 R >  C !  ; 

2 4  : BOUNDS OVER + SWAP ; ( a n -- a + n  a ) 

2 6  ( Common I n p u t  B u f f e r  f o r  F i l t e r s  ) 

2 7  2 5 5  CONSTANT /COUNTED-STRING 
2 8  CREATE INBUF /COUNTED-STRING 2 + CHARS ALLOT 

- 
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This is a tidying of my QSORT given in Forth Dimensions XVI/l. Look there for explanation. 
1 ( H o a r e ' s  Q u i c k s o r t  ) (  Non-Recursive ) (  Wil Baden 1967-1993 ) 

2 ( S t a n d a r d  F o r t h  CORE EXT w i t h  NOT ) 

4 ( U s e  y o u r  d e f i n i t i o n  o f  NOT. ) I 1 6 VARIABLE ' i n o r d e r  I / 8 : exchange 2DUP @ >R @ SWAP ! R> SWAP ! ; ( x  y  -- ) I 
o r d e r - t h r e e  ( l o  h i  mid -- l o  h i  mid ) 

>R ( l o  h i )  ( R: mid) 
OVER @ R@ @ ' i n o r d e r  @ EXECUTE O> 

IF OVER R@ exchange THEN 
R@ @ OVER @ ' i n o r d e r  @ EXECUTE O> IF 

R@ OVER exchange 
OVER @ R@ @ ' i n o r d e r  @ EXECUTE O> 

I F  OVER R@ exchange THEN 
THEN 

R> ( l o  h i  mid) ( R: ) 

I 22 VARIABLE g u e s s  I 
24 : s k i p - l o w e r s  ( x y - - x y )  
2 5 >R 
26 BEGIN 
2 7 CELL+ 
2 8 DUP @ GUESS @ ' i n o r d e r  @ EXECUTE O< NOT 
2 9 UNTIL 
3 0 R> 
31 ; 

33 : s k i p - h i g h e r s  ( . Y - - . Y )  
3 4 BEGIN 
3 5 1 CELLS - 
3 6 g u e s s  @ OVER @ ' i n o r d e r  @ EXECUTE O< NOT 
3 7 UNTIL 
38 ; 

40 : p a r t i t i o n  
4 1 2DUP OVER - 2 /  ALIGNED t 
4 2 o r d e r - t h r e e  
4 3 @ g u e s s  ! 
4 4 2DUP 
4 5 BEGIN 
4 6 s k i p - l o w e r s  
4 7 s k i p - h i g h e r s  
4 8 2DUP > NOT 
4 9 WHILE 
5 0 2DUP exchange 
5 1 2DUP 2 CELLS - > 
52 UNTIL 
5 3 >R CELL+ R> 
5 4 1 CELLS - 
5 5 THEN 
5 6 SWAP ROT 
57 ; 

( lo h i  -- lo y  x  h i  ) 

( l o  h i  mid) 

( l o  h i )  
( l o  h i  x  y )  

( l o  y  x  h i )  
(Appendix B continues on nextpage.) 

I I 
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5 9  : smallersection-first ( lo y x hi -- lo y x hi) 
6 0 20VER 20VER SWAP - >R SWAP - R> < 
6 1 I F  2 SWAP THEN 
6 2  ; 

6 4  : hoarify ( x y - -  ... x y) 
6 5 BEGIN 
6 6 2DUP SWAP - 2 CELLS > 
6 7 WHILE 
6 8 partition ( . .. lo y x hi) 
6 9 smallersection-first 
7 0 REPEAT ( . . . 10 hi) 
7 1  ; 

7 3  : order-a-pair ( lo hi -- ) 

7 4 2DUP = NOT I F  
7 5 OVER @ OVER @ 'inorder @ EXECUTE O >  
7 6 I F  2DUP exchange THEN 
7 7 THEN 2DROP 

7 8  ; 

short-order ( lo hi -- ) 

2DUP SWAP - 1 CELLS > I F  
DUP 1 CELLS - ( lo hi mid) 
order-three 
DROP 2DROP 

ELSE 
order-a-pair 

THEN 

QSORT 
inorder ! 

DUP O =  I F  2DROP E X I T  

1- CELLS O V E R +  
DEPTH >R 

BEGIN 
hoarif y 
short-order 
DEPTH R@ < 

UNTIL 
R> DROP 

( a-addr n xt -- ) 

( a-addr n) 
THEN 

( lo ho) 

( . . . lo ho) 
( . .. lo ho) 
( . . . I  

1 0 3  : CCOMPARE ( c-addr c-addr -- - 1 1 0 1 1  ) 

1 0  4 >R COUNT R> COUNT COMPARE 
1 0 5  ; 

I 
November 1996 December 32 Forth Dimensions 



I Using Forth to manipulate the real world 

Measuring Frequency and 
Sampling Time-Dependent Signals 
Skip Carter 
Monterey, California 

Introduction 
This month I'd like to discuss a special kind of input 

signal: time-dependent signals whose frequency is impor- 
tant. We will take a look at how to determine the frequency 
of a digital signal and will consider some of the issues 
involved in getting a useful sample of an analog signal. 

Frequenq Measurement 
Let us first consider the problem of how to measure the 

frequency of a digital signal (i.e., a square wave). Signals 
such as this can come from a digital source or from a 
suitably conditioned analog source. Examples include 
some A/D chips, a voltage-controlled oscillator, or a 
venerable 555 oscillator chip. 

There are two basic ways of making this measurement: 
Period counting. This involves measuring the time 

between successive leading (or trailing) edges of the 
incoming pulses. 
Frequency counting. This is done by counting the 

number of edges that occur within a fixed time interval. 

In either case, one takes several measurements, then 
averages them in order to get a useful measurement. Both 
methods require that the edges come in slow enough for 
the software to respond to their arrivals. This requirement 
makes the high-level code presented here for illustration 
(Listing One), of limited direct usefulness. To get a higher 
maximum frequency in a real system, the edge detection 
would be done in assembler and/or as an ISR. (Notice that 
the period counter changes the hardware timer to run at 
1.1 MHz, instead of the normal 18.2 Hz, so  we get a 
reasonable resolution. This messing around with the 
hardware timer is pretty system dependent; I never got it 
to work from a DOS shell within Windows.) 

In addition, each technique has its own particular 
weaknesses. With period counting, there is the problem of 
what happens when there are missing edges. To illustrate, 
suppose the input signal was a 1 kHz square wave, so  the 
time between leading edges is 1 millisecond. Given the 
normal vagaries of the measurement, we might expect to 
see a variation of, say, f lo%, so  the individual measure- 
ments might vary from 0.9 to 1.1 milliseconds. Averaging 
several measurements will handle this and give us an 
estimate of 1 millisecond with a reasonable degree of 

confidence. But now suppose that, every once in a while, 
we miss an edge--each time this happens, we get a value 
of two milliseconds to fold into our average! This can 
significantly shift our estimated frequency, plus it will have 
a strong effect on the degree of confidence of our 
measurement. An occasional extra pulse can also cause 
problems by giving us two time values that are too short. 
Averaging over a large number of samples helps with this, 
but it might not be practical for the application. 

Another possibility is to sample adaptively. Adaptive 
sampling requires calculating a running mean and vari- 
ance, and the sampling is stopped when the variance 
drops below some acceptance threshold. The problem 
with adaptive sampling is that it will consume significant 
computing resources between each sample. A practical 
period sampling routine will also have a timeout provi- 
sion, otherwise it will wait forever for an edge that never 
happens if the signal stops or is interrupted. 

Frequency counting is not as adversely affected by an 
occasional missing or extra edge. However, frequency 
counting is vulnerable to counter overrun. Even if the 
software can keep u p  with the edges coming in, if the 
sample time is too long the counter that is accumulating 
the edges could overrun. A short sample time helps this, 
since it increases the frequency at which an overrun will 
occur. But if the sample interval is too small, the measure- 
ment has a reduced degree of confidence. One could also 
detect the overrun and handle it in some way (e.g., setting 
an overrun flag, stopping the count, etc.). 

Sampling a Time-Dependent Signal 
The problems involved in handling a more general, 

time-dependent signal-say a digitized acoustic signal- 
are considerably trickier. A primary problem is how to 
make the measurements without high-frequency aliasing 
distorting the result. The problem is that if 2 x n is the 
sample rate, there is no way to distinguish a signal of 
frequency n from a signal of 2n (or any other integer 
multiple of n), because in both cases one sees a full cycle 
in two samples. In the 2n case, there was a whole cycle 
in between our samples that we  missed. This means that, 
if we are sampling at 2 x n, there is a whole range of 
frequencies from n upward that can contaminate our 

1 measurements. This spurious folding of high frequencies 
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Figure One. A low-pass R-C filter. The 3 db 

frequency cutoff is at f = 1/(2&C). 

In R 
D 

interested in learning more about this, Horowitz and Hill 
contains a readable introduction to the topic. The low-pass 
RC filter has the transfer function, 

Here I have used the engineer's notation for the 4 7 ,  j, 
not the scientist's notation, i. The term w is the frequency 
in radians; to get Hertz, divide wby 2n. With this equation, 
we  can get the magnitude response: 

down to a lower one is called aliasing. 
One can reduce this problem somewhat by sampling at 

a high rate, the idea being that it will increase the frequency 
at which aliasing begins to occur, and one hopes there is 
less of the higher frequency around to bother us. The 
problem is that it might not be the case that there is less at 
the higher frequency and, even worse, this solution uses 
more CPU resources. Abetter solution is to prevent the high 
frequencies from getting into your samples in the first place. 
This is done by placing an anti-alimingJilterin the analog 
circuit before the A D  converter. An anti-aliasing filter is just 
a low-pass filter designed to reject frequencies above n. 

Anti-aliasing filters are frequently implemented as simple 
R-C filters like in Figure One. This filter is not that great, as 
filters go: the rate of attenuation of the higher frequencies 
is rather slow. The fraction of the signal passed through the 
filter as a function of frequency is called the magnitude 
response. The magnitude response curve is an important 
measure of the quality and suitability of a filter. Unfortu- 
nately, it is often used as the only measure. 

Another measure that can be just as important to 
consider is the frequency-dependent effect the filter has 
upon the phase of the signal. This is the pbase response. 
~h~ phase response information is most u s e ~ l  in two 
forms, the phase delay and the group delay. The phase 
delay is just a dimensional form of the phase response: it 
gives the amount of time a signal of a given frequency is 
delayed by the filter. The group delay describes something 
slightly different. Suppose our signal is like an FM radio 
signal that is being modulated in frequency around a basic 
frequency. The modulation can be thought of as another 
signal (the envelope) riding on top of the basic frequency 
(the carrier). The phase delay of the envelope is not 
generally the same as the phase delay of the carrier. The 
group delay gives the delay time of the envelope. 

So, to properly judge the suitability of a given filter, we 
really need to check all three functions: the magnitude 
response, the phase delay, and the group delay. As you 
might expect, all filters sacrifice performance in one of 
these three functions in order to gain in another. The best 
compromise depends on your application. 

All these filter characteristics can be derived from the 
filter's transfer function, This is a complex function (that 
is, it contains complex numbers in it) that takes a bit of 
mathematics to be able to derive for an arbitrary filter. I will 
only give results here for the low-pass RC filter. If you are 
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The phase response is: 

O ( W )  = tan-' (;::::;;) 
= t a n - ' ( R c ~ )  

So the phase delay is: 

O ( o )  
G ( W )  = -- 

0 

1 
= --tan-' ( -Re@) 

W 

and the group is: 

do(@) %(a) = -- 
d o  

- - RC 

1 + R ~ C ~ W ~  

With the anti-aliasing filter in place, we still need to 
decide on the Proper sampling rate. You might recall 
reading elsewhere about something called the Nyquist 
sampling theorem. This theorem is what we want-it tells 
US the sample rate must be at least twice the bandwidth of 
the signal in order to avoid aliasing. Notice that I said 
bandwidth, which is the range from the lowest to the 
highest frequency (in the simplest case, where there are no 
gaps) in the signal. The Nyquist theorem is widely mis- 
quoted as stating that we must sample at twice the highest 
f ~ u e n c ~  of the signal. Butthe bandwidth and the highest 
frequency are not the same thing, unless we are dealing 
with a base band (one that has content from a 

zero the UP the highest 
The distinction can be quite Consider the 

following real-life example. In the RAFOS subsurface ocean 
drifter I helped to develop, we navigate the float by listening 
to a tone emitted by a pre-placed acoustic beacon mooring. 
These Output a long that infrequency 
from 258.5 to 261.5 Hz. The bandwidth of this tone is the 
range of the sweep, 3 Hz. So the Nyquist theorem states that 
We need a sampling rate of at least 6 Hertz, not twice the 
highest frequency of 261.5 Hz (523 Hz). As a result, the 
RAFOS float can comfortably oversample the signal at 10 
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Figure Two. The reference chirp signal. The diamonds are the locations of the 128 Hz samples. 
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Hz, using a lowly 6805 microprocessor. Erroneously sam- 
pling at 523 Hz would have required a faster processor, 
which would have required more electrical power, which, 
in turn, would have made the instrument an impractical 
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device (the drifter runs on batteries and has mission times 
measured in months, 48 being our current record). 

If we are uniformly sampling a signal at the Proper rate. 
and if there is no aliased signal contaminating our measure- 
ment, we  can recover the value of the signal at any time. To 
do this* we need do a cOnvO'utiOn Our with 
the s i n c  function (this is the uniform sampling theorem), 
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where is the time we want to reconstruct the at, 
is the interval between samples, and n is the sample index. 
(1 am not going to explain the mahematics behind this 
here. It could provide for several future columns 
to explain it. ~f you want to this on your own, the 
b w k  by Bracewell is highly recommended,) In order to 
make practical use ofthis equation, we will take [he index 



n over the number of data samples, instead of infinity. 
A Forth implementation of the s i n c  function is, 

: SINC ( -- , F: x -- s i n c x  ) 

FDUP FO= IF FDROP 1. OEO 
ELSE FBUP FSIN FSWAP F/ 
THEN 

I 

BY the way, if you look up equations like these in the 
literature, I guarantee you will have a horrible time 
reconciling factors ofx,  2, and (This is generally 
as the x-throwing contest. Where did the n: go?) In the 
mathematics literature, these factors tend to be missing 
from the equations altogeher. In the engineering litera- 
ture, they are in different places in different books. The 
reason is that such factors are immaterial, as far as the 
mathematical theory of all this is concerned-they are just 
normalization and dimensionalization factors. In the engi- 
neering context, there is no one way to do  normalization 
and dimensionalization-they just need to be done self- 
consistently; so one book's version can differ from that of 
another book. 

that we are armed with the uniform 
theorem, we can do  a little experiment to demonstrate 
what I said about sampling a bandlimited signal. Listing 

gensig.ftht is a Program that generate a test 
that starts at One and 'lides to another 

(a "chirpn). I have set things u p  so the simulated signal 
sweeps from lo Hz l2 Hz in 4.5 seconds. When the 
'Onstant is the Output is at  the 
equivalent of 128 samples per second. 

A subsample the Output Of his program is what we 
will be using as data; a plot is shown in Figure Two. This 

has a bandwidth of so the rate 
is 4 Hz. We will oversample and sample at 6.4 Hz. Now, we 
can't just take every 20th sample from the data in Figure 
Two '0 use as Our measurement data; such a 
contain a serious amount of aliasing in it. To make the signal 

we mix it with an Hz and then 
a low-pass filter with a 5 Hz cut-off to the result. 

Why do we do that? From trigonometvl 

2 x sin(x) x cos(y) = sin(x - y) + sin(x + y) 

which means that if we take a signal of one frequency, 
x, and it by another Of frequency, y, we 
end up  with one signal with x- Y and another 
at x + y. So if x is our original signal which sweeps from 
lo l2 Hz, and y is a fixed at l1 Hz, we end u p  
with a signal centered at 0 Hz and another at 22 Hz. The 
one at 0 Hz is the one we want to keep; the other at 22 
Hz we will filter out. 

This technique for shifting the center frequency of a 
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constant SAMPLING? is set to TRUE. 
The output for the sampling case are the simulated 

measurements we want to use the uniform sampling 
theorem on. The code in regen.fth (Listing Three) reads 
the data and applies the theorem to it. Comparing the 
output of r e g e n  with its input, we see the smoother result 
one might expect. In order to see what we  theoretically 
expect, go back and run g e n s i g  with SAMPLING? set to 
FALSE and the minimum and maximum frequencies set to 

and respectively, gensig this way 
generates the reference signal without the 11 Hz carrier. 

~~~~~~i~~ he carrier-free signal with the recon- 
structed signal (Figure Three), we see hat we generally do 
pretty well. There are two problems we can see with our 

end points hat well matched. In this example, 
he starting point looks very good, but that is an artifact 
of the fact that the signal at zero. The end-point 
pmblem is due to the fact that he theorem we are using 
assumes there is data on both sides of our estimation 
point (and, in fact, an infinite amount ofit) but, as we near 
the edges, the calculation gets most of its information 
from only one side of the point. More data helps here, but 
the end points are always going to be a problem. 
The reconstruction is slightly phase shifted late. If you 
look carefully, you'll notice that the phase shift is in the 
measurement data and that the reconstruction has the 
same shift. This is because the phase shift is caused by 
the anti-aliasing filter. The group delay of the Butterworth 
filter being used here is frequency dependent. It starts 
at zero and monotonically increases until about 10 Hz; 
at 2 Hz, it is about 0.05 seconds. This is a good example 
of where the group delay characteristics are more 
important than how sharp the high frequency cutoff is. 

Conclusion 
This installment further extends our ability to handle 

data coming in from the world. We have just 
scratched the surface of the issues involved in dealing with 
frequency-dependent data. For more information about 
handling time-dependent signals, see the references. The 
book by Oppenheim and Schafer is especially thorough, 
but it's not for the mathematically timid. 

Next time, we will close the loop between our input 
and output handling by looking at how we can modify our 
outputs on the basis of the given inputs, in order to 
provide stable control of a system. 

Please send your comments, suggestions, and criti- 
cisms to me through Forth Dimensions or via e-mail at 
skip@taygeta,com, 

zero is known as a homodyne mixer. After mixing and 
filtering the original signal, we can safely subsample it. 
The anti-aliasing filter being used here is a first-order, low- 
pass Butterworth filter. There are better choices for the 
filter (such as a Bessel filter), but I am using it here because 
it is and it a point we get to later. Scientific Library project, and maintains the system taygetaon the Internet. He 

signal is the heart of what is known as a heterodyne mixer. 
The special case where we shift to a center frequency of 

of these operations are in the code gensig.fth when the is also the President of the Forth Interest Group. 



Figure Three. The sampled and reconstructed signal. The dashed line shows the reference signal without 
the carrier-this what is to be reconstructed. The diamonds show the 6.4 Hz samples obtained by mixing, 
filtering, and subsampling the reference signal (Figure Two). The pluses show the signal reconstruction 
obtained by applying the uniform sampling theorem to the sampled data. 
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Forth Dimensions 37 

References 
Bracewell, R.N., 1986; 7he Fourier Transform and Its 
Applicatiom(McGraw-Hill, New York, 474 pages, ISBN 0- 
07-0070 15-6) 

November 1996 December 

Oppenheim, A.V. and R.W. Schafer, 1975; Digital Signal 
Processing(Prentice-Hall, Englewood Cliffs NJ, 586 pages, 
ISBN 0-13-214635-5) 



Listing One. Examples of simple period and frequency counters. 

\ freq.fth Simple implementations of a period and frequency counter 
\ sampling data on the parallel #STATUS port bit 7 

\ This code released to the public domain September 1996 Taygeta Scientific Inc. 

\ $Author: skip $ 
\ $Workfile: freq.fth $ 
\ $Revision: 1.0 $ 
\ $Date: 28 Sep 1996 20:05:14 $ 
\ ====----------------------- ........................................................................... 

HEX 
378 CONSTANT #DATA 
#DATA 1+ CONSTANT #STATUS 
#DATA 2 + CONSTANT #COMMAND 
DECIMAL 

\ ............................................................................... 

\ The following two words are adapted from: Hendtlass, T., 1993; Real Time Forth 
\ If you don't have it, GET THIS BOOK! contact: tim@brain.physics.swin.oz.au 

\ An F-PC specific <read-clock> 
code <read-clock> ( -- n ) 

push ax 
mov ax, # 0 
int 26 
POP ax 
push dx 
next 

end-code 

: DOWN-COUNTER \ creates a countdown timer 
CREATE ( -- ) 
2 CELLS ALLOT \ set aside 2 slots, user value and read value 

DOES> 
<read clock> \ read hardware clock 
OVER CELL+ @ \ get last clock value 
OVER - \ get the change 
2 PICK + !  \ update user value 
OVER CELL+ ! \ save last read value 

, 
\ ................................................................. 

\ PC-specific words to set hardware timer to 1193181.667 ticks/second 
\ and then later to restore it back to the standard 18.2 ticks/second 
\ Note: this won't work in a Windows DOS shell. 

HEX 

43 CONSTANT TIMER-CONTROL 
40 CONSTANT TIMER-0 

: initialize-timer ( -- ) 
34 TIMER-CONTROL PC! 
0 TIMER 0 PC! 
o TIMER~O PC ! 

: restore-timer ( -- ) 
36 TIMER CONTROL PC! 
0 TIMER 5 PC! 
o TIMER-o - PC! 
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\ ................................................................. ....................................... 
DECIMAL 

: wait-for-low ( -- ) \ wait until #STATUS bit 7 is low 
BEGIN 

#STATUS pc@ 128 AND O =  
UNTIL 

, 

: wait-for-high ( -- ) \ wait until #STATUS bit 7 is high 
BEGIN 

#STATUS pc@ 128 AND 
UNTIL 

: edge-high? ( -- t/f ) \ return status of #STATUS bit 7 
#STATUS pc@ 128 AND 

VARIABLE accumulate 

\ ===============the period counter================================ 
: PERIOD ( n -- x ) \ n is number of samples, x is average period 

0 accumulate ! 
initialize-timer \ run the timer at a fast rate 

0 DO 
wait-for-low \ make sure the level is low first 
<read-clock> 
wait-for-high \ now poll for a rising edge 
<read-clock> - \ neglecting rollover 
accumulate + ! 

LOOP 

restore-timer 

I accumulate @ 

\ ===============the frequency counter============================================ 

\ depending upon your hardware, this simple counter is good to up to about 20 Khz 
DOWN-COUNTER count - down 

: FREQUENCY ( n -- x ) \ n is number of timer cycles, x is average freq. in Hz 
0 accumulate ! 

wait-f or-low \ make sure the level is low first 
DUP count-down ! 

BEGIN 
edge-high? \ test to see if edge is high 

IF 1 accumulate + !  
wait-for-low \ make sure level goes back low 

THEN 
count-down @ 0 <= 

UNTIL 

\ convert counts to Hz 
10 * 
accumulate @ 
182 ROT * /  
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I Listing Two. The program to generate either the reference signal or the data samples. 1 

\ gensig.fth Generates a reference chirp test signal 
\ or, if SAMPLING? is true, generate a sampled signal 

\ This is an ANS Forth program requiring: 
\ 1. The Floating point word set 
\ 2. The conditional compilation words in the 
\ PROGRAMMING-TOOLS wordset 
\ There is an environmental dependency in that it is assumed 
\ that the float stack is separate from the parameter stack 

I \ This code released to the public domain September 1996 Taygeta Scientific Inc. I 
\ $Author: skip $ 
\ $Workfile: gensig.fth $ 
\ $Revision: 1.0 $ 
\ $Date: 28 Sep 1996 20:04:22 $ 
\ ................................................................ 

FALSE CONSTANT SAMPLING? 
10.OEO FCONSTANT F-MIN \ 10 " H z "  minimum frequency 
12.OEO FCONSTANT F-MAX \ 12 " H z "  maximum frequency 
4.50EO FCONSTANT SWEEP \ the frequency sweep time 

I FVARIABLE DF I 
6.28318530730 FCONSTANT TWO-PI 
0.007812530 FCONSTANT DT \ 128 " H z "  sample rate 

: tone ( -- , F : t f - - x )  
F* TWO-PI F* FSIN 

, 

SAMPLING? [IF] 

\ 16 CONSTANT DECIMATE 
20 CONSTANT DECIMATE 

\ effective sampling at 8 H z  
\ effective sampling at 6.4 H z  

F MAX F MIN F+ 2.0EO F/ FCONSTANT F-CENTER I - 
- 

: MIX ( -- , F: x t -- X' ) 
F - CENTER F* TWO PI F* FCOS - 
F * 

\ account for loss due to the mixer shifting stuff to both a low and high band 
2.OEO F* 

0.0127930 FCONSTANT COEF A 
-1.6556130 FCONSTANT COEF-B 
0.7067630 FCONSTANT COEF-c - 

FVARIABLE IN-0 0.OEO IN-0 F! 
FVARIABLE IN-1 O.oE0 IN 1 F! 
FVARIABLE IN-2 O.OEO 1 ~ 1 2  F! 
FVARIABLE OUT-0 O.OEO OUT-0 F! 
FVARIABLE OUT-1 O.OEO OUT-1 F! 
FVARIABLE OUT-2 O.OEO OUT-2 F! 

I I 
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\ f i r s t  o r d e r  low-pass B u t t e r w o r t h  f i l t e r  
: F I L T E R  ( -- , F :  x -- x '  ) 

I N  0 F !  - 

OUT 1 F @  COEF B  F *  F -  
OUT-2 F @  COEF-c F *  F -  I - 

- 
I FDUP OUT-0 F !  

\ s h i f t  d a t a  f o r  n e x t  t i m e  
I N  1 F @  IN-2 F !  
IN-o - F@ IN-1 F !  

OUT-1 F @  OUT 2 F !  
OUT - o F@ OUT-1 - F!  

, 

[ELSE]  

I 1 CONSTANT DECIMATE 

: f r e q  ( - - ,  F :  t -- f  ) 

\ c a l c u l a t e  t h e  f r e q u e n c y  f o r  t h i s  t i m e  
FDUP FO< I F  FDROP F MIN EXIT THEN 
SWEEP FOVER F< I F  FDROP F* EXIT THEN 
SWEEP F /  DF F @  F*  F MIN F+ - 

: g e n s i g  ( -- , F :  maxt -- ) 
DT F /  F>D DROP 

F MAX F MIN F-  D F  F !  - 

0 .  OEO \ t h e  t i m e  
0 DO 

FDUP FDUP f r e q  
t o n e  

FOVER MIX F I L T E R  

I DECIMATE MOD O= I F  
FOVER F .  F .  CR 

ELSE 
FDROP 

THEN 

: MIX ( -- , F :  x  t -- x ) DT F +  
FDROP \ do n o t h i n g  f o r  r e f .  s i g n a l  I LOOP 

: F I L T E R  ( -- , F :  x -- x ) ; IMMEDIATE I ; FDROP 

1 SWEEP g e n s i g  bye 

- 
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I Listing Three. The program to apply the uniform sampling theorem to the sampled data. I 
\ r egen . f th  r e c o n s t r u c t s  t h e  o r i g i n a l  s i g n a l  f r o m  t h e  s a m p l e d  s i g n a l  
\ T h i s  i s  an ANS F o r t h  p r o g r a m  r e q u i r i n g :  
\ 1. T h e  F l o a t i n g  p o i n t  w o r d  set 
\ 2 .  T h e  F i l e  w o r d s e t  
\ 3. T h e  c o n d i t i o n a l  c o m p i l a t i o n  w o r d s  i n  t h e  PROGRAMMING-TOOLS w o r d s e t  
\ 4 .  T h e  F o r t h  S c i e n t i f i c  L i b r a r y  A r r a y  w o r d s  
\ 5.  T h e  F o r t h  S c i e n t i f i c  L i b r a r y  A S C I I  f i l e  1/0 w o r d s  
\ T h e r e  i s  a n  e n v i r o n m e n t a l  d e p e n d e n c y  i n  t h a t  it i s  a s s u m e d  
\ t h a t  t h e  f l o a t  s t a c k  i s  sepa ra te  f r o m  t h e  p a r a m e t e r  s t a c k  

\ T h i s  code released t o  t h e  p u b l i c  d o m a i n  S e p t e m b e r  1 9 9 6  T a y g e t a  S c i e n t i f i c  I n c .  
\ $ A u t h o r :  s k i p  $ 
\ $ W o r k f i l e :  r e g e n . f t h  $ 
\ $ R e v i s i o n :  1 . 0  $ 
\ $ D a t e :  2 8  S e p  1 9 9 6  2 0 : 0 4 : 5 0  $ 
\ ................................................................ 

S"  / u s r / l o c a l / l i b / f o r t h / f s l - u t i 1 . W  INCLUDED 
S"  /usr/local/lib/forth/fileio.fth" INCLUDED 

FALSE CONSTANT STANDALONE 
-1 VALUE f i n  \ i n p u t  f i l e  h a n d l e  

1 -1 VALUE £ o u t  \ ou tpu t  f i l e  h a n d l e  

0 . 0 0 7 8 1 2 5 3 0  FCONSTANT OUT-DT \ 1 2 8  "Hz" o u t p u t  r a t e  
0 . 1 5 6 2 5 3 0  FCONSTANT DT \ 6 . 4  " H z "  s a m p l e  r a t e  
3 . 1 4 1 5 9 2 6 5 3 6 3 0  FCONSTANT P I  
6 . 2 8 3 1 8 5 3 0 7 3 0  FCONSTANT TWO-PI 
2 9  CONSTANT NUM-SAMPLES 
5 6 0  CONSTANT NUM-OUTPUT 

NUM SAMPLES FLOAT ARRAY t {  
NUM-SAMPLES - FLOAT ARRAY x {  \ t h e  s a m p l e s  

CREATE o u t b u f  3 2  ALLOT 

: nex t - f i l e  ( -- c-addr u  ) 

f - i n d e x  @ argc >= i f  
0  0  

else 
f-index @ argv 
1 f - i n d e x  + !  

t h e n  

CREATE CRLF 2 ALLOT 

FVARIABLE P I / T  
9  CONSTANT TAB CHAR \ TAB c h a r a c t e r  
CREATE TAB 1 ALLOT 

STANDALONE [ I F  ] 
v a r i a b l e  f - i n d e x  1 £ - i n d e x  ! 

[ E L S E ]  
: next  f i l e  ( -- c-addr u ) 

b l - w o r d  c o u n t  

I 
[THEN] 
: S > F  ( x -- , F :  -- f x  ) 

S>D D>F 

: ] z e r o  ( n  x -- ) 
SWAP 0  DO 

DUP I } O.OEO F !  
LOOP 
DROP 
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: sinc ( -- , F: x -- sincx ) 
FDUP FO= I F  FDROP 1.OEO 

E L S E  FDUP F S I N  FSWAP F /  
THEN 

: estimate ( n -- , F :  t -- x ) 
P I  DT F /  P I / T  F !  
0 .  OEO FSWAP ( F: sum t ) 

0 DO 
I S > F  DT F* 

FOVER FSWAP F -  ( F :  sum t t-nT ) 

P I / T  F@ F* 
s inc 

X{ I 1 F@ F *  
FROT F+ 

FSWAP 
LOOP 
FDROP 

: print-endline ( -- ) 

CRLF 
1 \ for MS-DOS use 2 instead of 1 
£out write-token 

, 

: print-tab ( -- ) 
TAB 
1 
£out write-token 

, 

: regen ( --<infile outfile>-- ) 
1 0  CRLF C !  13 CRLF 1+ C !  
TAB-CHAR TAB C !  

next_£ ile 
R/O OPEN-FILE ABORT" unable to open data file" 
TO fin 

next file 
\ open the output file 
W/O CREATE-FILE ABORT" unable to open output file" TO £out 
CR 

NUM SAMPLES x i  )zero 
NUMISAMPLES t I ]zero 
NUM-SAMPLES 0 DO 

I .  
fin get-float FDUP F .  ti I 1 F !  

fin get-float FDUP F .  xi I 1 F! 
CR 

LOOP 
f i n  CLOSE-FILE DROP 

NUM-OUTPUT 0 DO 
I S > F  OUT-DT F* FDUP outbuf £out write-float 

print-tab 

NUM SAMPLES estimate 
outguf f out write-f loat 
print-endline 

LOOP 
£out CLOSE-FILE DROP 
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Asilomar 
FORML CONFERENCE 

The original technical conference for professional Forth programmers and users. 

18th annual FORML Forth Modification Laboratory Conference 
Following Thanksgiving November 29-December 1, 1996 

Asilomar Conference Center 
Monterey Peninsula overlooking the Pacific Ocean 

Pacific Grove, California, USA 

Experimenting with the ANS Forth Standard 
The ANS Forth standard has been out for two years, and the review process will start in another two years. FORML, 
with it's charter as Forth's "Modification Laboratory," is the appropriate place to let others know what your experiences 
have been as a developer or user while there's time for your ideas to spread. 

Papers are sought that report on your experience writing ANS Forth programs and systems. That is, on your 
experiments. By calling attention to the successes and the problems now, before the review process begins, others will 
repeat your experiments, confirming or refuting your hypotheses. 

Please, whether your ANS experiment was one line or a thousand, whether it succeeded or failed, or can be described in 
one page or ten, bring it to this year's FORML Conference to share with the world. As always, papers on any Forth- 
related topic are welcome. 

Mail abstract(s) of approximately 100 words by October 1, 1996 to FORML, PO Box 2154, Oakland, CA 94621 or 
e-mail to FORML@ami.vip.best.com. Completed papers are due November 1, 1996. 

John Rible, Conference Chairman Robert Reiling, Conference Director 

Advance Registration Required Call FIG Today 5 10-893-6784 
Registration fee for conference attendees includes conference registration, coffee breaks, and notebook of papers 
submitted, and for everyone rooms Friday and Saturday, all meals including lunch Friday through lunch Sunday, wine 
and cheese parties Friday and Saturday nights, and use of Asilomar facilities. 

Conference attendee in double room-$440 Non-conference guest in same room-$320 Children under 18 years old in 
same room-$190 Infants under 2 years old in same room-free Conference attendee in single room-$570 

The Asilomar Conference Center combines excellent meeting and comfortable living accommodations with secluded 
forests on a Pacific Ocean beach. Early registration is recommended, space for this conference is limited. 

Forth Interest Group members and their guests are eligible for a ten percent discount on registration 
fees. 

Registration and membership information available by calling, fax or writing to: 
Forth Interest Group, PO Box 2154, Oakland, CA 94621 

voice 510-893-6784, fax 510-535-1295 
Conference sponsored by the Forth Modification Laboratory, a Forth Interest Group activity. 


