

>

SILICON COMPOSERS INC

FAST Forth Native-Language Embedded Computers

DUP

>R
R>

Harris RTX 200dm 16-bit Forth Chip SC32'm 32-bit Forth Microprocessor
-8 or 10 MHz operation and 15 MIPS speed. 08 or 10 MHz operation and 15 MIPS speed.
1-cycle 16 x 16 = 32-bi multiply. 1 -clock cycle instruction execution.
1 -cycle 1 &prioritized interrupts. *Contiguous 16 GB data and 2 GB code space.

-two 256-word stack memories. *Stack depths limited only by available memory.
-8channel 1/0 bus & 3 timer/counters. *Bus request/bus grant lines with on-chip tristate.

SC/FOX PCS (Parallel Coprocessor System) SC/FOX SBC32 (Single Board Computer32)
-RTX 2000 industrial PGA CPU; 8 & 10 MHz. * 3 2 M SC32 industrial grade Forth PGA CPU.
-System speed options: 8 or 10 MHz. *System speed options: 8 or 10 MHz.
032 KB to 1 MB 0-wait-state static RAM. -32 KB to 512 KB 0-wait-state static RAM.
-Full-length PC/XT/AT plug-in (&layer) board. e100mm x 160mm Eurocard size (Clayer) board.

SC/FOX VME SBC (Single Board Computer) SC/FOX PCS32 (Parallel Coprocessor Sys)
*RTX 2000 industrial PGA CPU; 8, 10, 12 MHz. *32-bi SC32 industrial grade Forth PGA CPU.
*Bus Master, System Controller, or Bus Slave. *System speed options: 8 or 10 MHz.
.Up to 640 KB 0-wait-state static RAM. -64 KB to 1 MB 0-wait-state static RAM.
e233mm x 160mm 6U size (Slayer) board. .Full-length PC/XT/AT plug-in (&layer) board.

SC/FOX CUB (Single Board Computer) SC/FOX SBC (Single Board Computer)
*RTX 2000 PLCC or 2001A PLCC chip. *RTX 2000 industrial grade PGA CPU.
*System speed options: 8, 10, or 12 MHz. *System speed options: 8, 10, or 12 MHz.
-32 KB to 256 KB 0-wait-state SRAM. -32 KB to 512 KB 0-wait-state static RAM.
-100mm x l m m m size (Clayer) board. -100mm x 160mm Eurocard size (Clayer) board.

For additional product information and OEM pricing, please contact us at:
SILICON COMPOSERS INC 655 W. Evelyn Ave. #7, Mountain View, CA 94041 (415) 961-8778

Features

a 5 Towards a Discipline of ANS Forth Programming
M. Edward Borasky
Recent on-line discussion about structured programming, multiple entries and exits, finite state
machines, and other issues of Forth programming style-including readability and, especially,
enhancing the ANS Forth control structures-inspired the author. In this article, he implements
the Dijkstra guarded command control structures.

7 5 C-Styk Arrays in Forth
M. L. Gassanenko
A feature of modern processors that is rarely utilized in Forth is based indexedaddressing. This
paper proposes a relevant notation for cell array indexing in Forth. The proposed syntax for
the indexed access operations was inspired by C and Algol-68. It supports multi-dimensional
arrays, and a similar syntax can be used for bit or double-cell arrays. The paper also shows
how analysis of possible name conflicts should be performed.

22 Forth in Control - A Window interface
Ken Merk
In his last article, the author showed how to build a parallel-printer-port interface with a series
of LEDs representing the state of each bit on the port. In this article, he shows how to control
that display using Microsoft Windows as the platform. The code builds a graphical user
interface-arrays of buttons which can be activated by the mouse to control peripheral
devices. This point-and-click environment makes it easy to manipulate the output port.

Departments /
4 Editorial

4 dot-quote

27 Stretching Forth Filters and sponges.

33 Forthware Measuring frequency and sampling time-dependent signals.

Advertisers Index I
The Computer Journal 42 Forth Interest Group ... centerfold

FORML Conference 44 Miller Microcomputer
................................... Services 14

............................. FORTH, Inc. 17
Silicon Composers 2

Forth Dimensions 3 November 1996 December

Forth Dimensions
Volume XVIII, Number 4

November 1996 December

USENM, the world-wide UNIX user association, gave a Lifetime Achievement award

this year to Wil Baden for "Major Contributions to Software Tools." This is for work Wil

did from 1976 - 1981. Wil's involvement with Forth began in 1979. We congratulate Wil

and thank him for his ongoing contributions in our own arena, not least of which is

his Stretching Forth column in this magazine.

I also want to take this opportunity to thank the world-wide Forth community for

its collective contributions to Forth Dimensions. Your support-as responsive readers,

as writers providing technical content, and as innovators using and refining the

language-has ensured its survival even when times have been tough for small, special-

interest publications in general.

As editor, I let the collective experience and needs of our writers and subscribers

determine the direction and content of the publication. Feedback is very important if

we are to keep on track, so let us know how we are doing. We hope you will participate

in the magazine, share it with others, and encourage them to join us.

We especially welcome your written contributions to upcoming issues: articles,

news, tutorials, and press releases about Forth-related products and events. With your

continuing participation, we can look forward to maintaining high quality and to

serving the diverse Forth community.

-Marlin Ouverson
editor@forth.oyp

ouversonm@aol.com

I dot-quote I
Maybe this i s the problem: Forth programmers are too independent.
Instead of agreeing on a standard and then helping each other work
around the parts of the standard they don't like, everyone wants to
design their own standard. This isn't necesarily a bad thing, but if Forth
i s to become more widespread, Forth programmers need to start
thinking about working together instead of going off on their own
tangents.

Look at C++ ... I don't care for it at all, but it's "successful" because the
people who use it as their language of choice are willing to work with
the limitations of the language (in order to maintain a standard) and
write applications instead of trying to write a better version of C++
every month.

-Ken Deboy
glockr@delphi.com

Published by the
Forth Interest Group

Editor
Marlin Ouverson

Circulation/Order Desk
Frank Hall

Forih Dimensions welcomes edi-
torial material, letters to the editor,
and comments from its readers.
No responsibility is assumed for
accuracy of submissions.

Subscription to Forth Dimensions
is included with membership in
the Forth Interest Group at $45
per year ($53 CanadaiMexico, $60
overseas air). For membership,
change of address, and to submit
i tem for publication, the address
is: Forth Interest Group, 100 Dolores
St., suite 183, Camel, California
93923. Administrative offices:
510-89-FORTH Fax: 510-535-1295

Copyright O 19% by Forth Interest
Group, Inc. The material contained
in this periodical (but not the code)
is copyrighted by the individual
authors of the articles and by Forth

I Interest Group, Inc., respectively.
I Any reproduction or use of this
I periolcal as it is compiled or the
I ankles, except reproductions for

non-commercial purposes, with-
out the written permission of Forth
Interest Group, Inc. is a violation
of the Copyright Laws. Any code
bearing a copyright notice, how-
ever, can be used only with per-
mission of the copyright holder.

1
The Forth Interest Group

The Forth Interest Group is the
association of programmers, man-
agers, and engineers who create
practical, Forth-based solutions to
real-world needs. FIG provides a
climate of intellectual exchange
and benefits intended to assist
each of its members. Publications,
conferences, seminars, telecom-
munications, and area chapter
meetings are among its activities.

"Forth DimemionsOSSN 0884-0822)
is published bimonthly for $45/
53/60per yearby theFonh Interest
Group, 100 Dolores St., suite 183,
Carmel, CA 93923. Second-class
postage paid at Oakland, CA.
POSIMASTER: Send address changes
to Forth Dimensions, 100 Dolores
St., suite 183, Carmel, CA 93923."

November 1996 December 4 43 Forth Dimensions

ANS FORTH

Towards a Discipline of
ANS Forth Programming

I M. Edward Borasky
Bea verton, Oregon

1. Motivation
Recently, there has been a fair amount of discussion in

comp.kanglfoeb about structured programming, multiple
entries and exits, finite state machines, and other issues of
Forth programming style. Concerns about readability seem
to be foremost, and a number of attempts to enhance the
ANS Forth collection of control structures have been posted.
The draft proposed ANS standard a21, sectionA.3.2.2, pages
136-138) gives an excellent description of the control flow
stack and techniques for designing your own control
structures, as does Jack Woehr in chapter six of [31. As an
exercise to learn about this useful capability of ANS Forth,
and as my contribution to the debate, I have implemented
the Dijkstra guarded command control structures in hForth.

2. Structured Programming and the
Dijkstra Guarded Command Control Structures
In the early to mid 1970s, there was an explosion of

interest in structured programming and the exciting possi-
bility that one could actually prove mathematically that
programs were correct. The latter efforts, pioneered by
British computer scientist C.A.R. (Tony) Hoare and Dutch
computer scientist Edsger W. Dijkstra, grew into a new
subfield of computer science, now a major branch of Formal
Semantics of Programming Languages. While much of this
material is academically oriented and not readable by most
working programmers and managers, Dijkstra's A Dbci-
pline of Pmgramming ([I]) is a happy exception.

The concept of proving one's programs correct in
general, and this book in particular, made a profound
impression on me. Unfortunately, I don't have space to go
into much detail about 111 or the mini-language Dijkstra
created to illustrate the concepts. Nor do I have the time
to translate the entire book into ANS Forth, although I'm
convinced that it would be easier for ANS Forth than for
most other languages. Instead, I will focus on the guarded
command control structures and my implementation of
them in Wonyong Koh's hForth. If you can find a copy of
[I], you will find it very rewarding.

The basic syntax of Dijkstra's mini-language is similar
to that of Algol and its descendants, such as Pascal. For

I example, to set the variables x and y to 3 and 5, Dijkstra

would write:

using the semicolon as a statement separator. This is read
x becomes 3, then y becomes 5. This is, of course,

in Forth.
We will define the control structures from the bottom

up. At the lowest level we have a guarded command. This
is simply a Boolean expression followed by a right-arrow
followed by one or more statements separated by semico-
lons. In Dijkstra's language, an example would be:

which is read, vxisgreaterthan y, thenx becomesx minus
y. A Forth programmer would write:

x @ y @ > IF y @ NEGATE x + ! THEN

In the Dijkstra syntax, the statements after the right-
arrow are executed only if the condition before the right-
arrow, which is called the guard, is true. Some variant of
this construct appears in nearly all modern programming
languages, including Forth as we have just seen. This is the
basic building block of the Dijkstra constructs. Figure One
shows the flowchart of this simple guarded command.

Next, Dijkstra defines a guarded command set. This is
a series of guarded commands separated by bars. For
example, Dijksua would write

The key word in this definition is set. This is a set in the
mathematical sense; ordering of the alternatives is not
defined. This is an intermediate step on our way to larger
constructs, so I will not show a flowchart or a Forth
translation.

Now we're ready to define our first real construct. We

Forth Dimensions 5 November 1996 December

Figure One. Flowchart for single guarded command. I I Figure Two. Flowchart for 'if . .. fi' construct. I
I I I

which, as written, has a serious flaw!
The exact semantics of this construct are as follows:

Select one of the true guards and execute the corre-
sponding statements. If none of the guards are true, abort.
If more than one guard is true, only one will be selected,
but the programmer will not be able to predict or control
which one it is!

So, what's the flaw? This program will abort if x and y
are equal! This seems fair enough; the programmer should
have known that equality was possible and planned for it.

This construct, as Dijkstra defined it, is nondeterministic.
The nondeterminacy is convenient in theoretical work but
for most practical programming it is a nuisance. The
programmer can, of course, prevent nondeterminacy by
assuring that the guards are mutually exclusive. But, as we
will see shortly, a different approach is usually taken.

This construct, in its full nondeterministic form, is not
present in the widely used programming languages of
today. It has, however, been used in academic program-
ming languages. A form of it appeared in the Occam
language. The common usage is the sequentialsemantics:

Test the guards in the order written and execute the
statements corresponding to the first true one found.

November 1996 December 6 Forth Dimensions

This form was used in Per Brinch Hansen's little-known
Edison language ([GI, pages 28-31) and is the form I have
implemented.

Figure Two shows the flowchart of the sequential if.. .

fi: construct.
Before moving on, let's manually translate the above

flawed example into standard ANS Forth using only Core
words and the sequential semantics:

x @ y @ > I F
y @ NEGATE x +!

ELSE
y @ x @ > I F

x @ NEGATE y + !
THEN

THEN

What happens when x and y are equal? Nothing; the
programmer isn't informed that he forgot that possibility.
In addition, this code is ugly. Even if you factor out the
tests and statements, replacing them with single-word
equivalents, it is still a sequence of nested I F ... ELSE ...
THEN constructs. And the depth of nesting grows with the
number of elements in the guarded command set!

This is exactly the kind of ugliness that the posters in
comp.langfortb are complaining about, and rightly so. As
a preview of things to come, here's how you would write
this in my implementation of the Dijkstra constructs:
I I F

x @ y @ > I F > y @ NEGATE x + !
l I F l

y @ x @ > I F > x @ NEGATE y + !

F I 1

It's still flawed, but
1. It's not as ugly. There is a pleasing symmetry to the

construct. Moreover, no matter how many alternatives
there are, nesting is only one level deep.

2. If x and y are equal, my implementation will, in fact,
abort.

The final construct is syntactically similar but semanti-
cally opposite. Instead of if.. . fi our brackets are do . . . od
and the construct is a loop:
do

x > y - > x : = x - y

I
y > x - > y : = y - x

od

1 Not only is this program correct, it actually does something
useful! Can you guess what it does?

The semantics are:

If none of the guards are true, d o nothing and
terminate normally. Otherwise, select one of the true
guards nondeterministically and execute the correspond-
ing statements. Then go back to the do and repeat the
process until none of the guards are true.

Once again, most practical implementations, including
mine, test the guards in the order written and execute the
statements corresponding to the first true one found.

By being clever with the ANS standard words BEGIN,
UNTIL, WHILE, I F , THEN, and others, I'm sure it's
possible to duplicate the operation of the sequential form
of this construct, just as we were able to duplicate the if
. . . fi construct. Even for this simple example, the code is

G r e Three. Flowchart for 'do . . . od' construct. /

ugly enough that I gave up trying to do it and implemented
my own compiling words using a more readable syntax:
(DO

x @ y @ > DO> y @ NEGATE x + !
I D 0 l

y @ x @ > DO> x @ NEGATE y + !
OD I

Have you guessed what it does yet? Here's a hint: start with
5 1 1 * x ! 5 1 9 * y !

and simulate it on paper. Remember, the loop terminates
when xand yare equal. Figure Three shows the flowchart

Forth Dimensions 7 November 7996 December

of the sequential do . . . od construct.

3. ANS Forth Control Flow Took
First, let's see how ANS Forth compiles our simplest

construct, the guarded command. As you will recall, our
example is

: GUARDED-COMMAND (-)

x @ y @ > I F \ x i s l a r g e r t h a n y
y @ NEGATE x + !

THEN

,

Figure Four. Guarded command before 'IF'.]

Figure Five. Guarded command after 'IF'. I

X

@

Y

@

>

branch if 0 to ?

The compiler, started by the colon, starts a dictionaryentry
for the new word GUARDED-COMMAND. It then compiles
each word it encounters in an implementation-defined
manner. Figure Four shows schematically what this dictio-
nary entry looks like just after the compiler has finished
processing the >.

Then the compiler encounters the I F . We are now
inside the diamond on the flowchart (Figure One).

IF is an immediate, compile-only word. So the com-
piler executes the I F . What IF does here is compile a
conditional branch after the >. This branch will look at the
flag on top of the stack at run time and, if it is F A L S E (all
bits zero), the branch will be taken to the point in the code
just after the THEN. This corresponds to the down-arrow
labeled F . If the flag is TRUE (any bits non-zero), the
branch will not be taken and execution will continue with
the words after the I F , in this case the code to subtract y
from x. This corresponds to the right-arrow labeled T.

But how does the compiler know where the THEN is
located? How does it know how far to branch when the

) ?

flag is FALSE? It doesn't. So it compiles the branch with
an empty spot reserved for the branch target, and places
a token called an orig, short for "origin," on the control
flow stack. This orig tells the compiler where to place the
branch target when it does find the matching THEN. Figure
Five shows the dictionary entry for GUARDED-COMMAND

after the compiler has executed the IF.
Compilation continues normally until the compiler

reads the THEN. THEN, like I F , is an immediate compile-
only word. What does THEN have to do? It doesn't have to
generate any code. All it has to do is fill in the target
address in the open branch placed in the dictionary by IF,

so that the branch points to the current location. How does
it know where to find the branch? It gets this information
from the orig on the control flow stack. This orig was
placed there by the IF for just this purpose. This process
of filling in the branch address and consuming the orig is
called resolving the orig. Figure Six shows the completed
guarded command.

Now let's look at another component we'll need:
AHEAD. AHEAD is similar to I F ; it compiles an open
forward branch into the dictionary when encountered by
the compiler, and places an orig onto the control flow
stack for a subsequent THEN to resolve. However, instead
of the conditional branch of I F , AHEAD compiles an
unconditional branch. We will see AHEAD again, when we
November 1996 December

look at the code for I I F I . In summary, we have a forward
conditional branch, I F ; a forward unconditional branch,
AHEAD; and a word that resolves either, THEN.

How does ANS Forth compile loops? We first need a
word to mark where the top of the loop is. That word is
BEGIN. B E G I N simply puts a token, called a dest for
"destination," onto the control flow stack. Subsequent
branches back to the B E G I N will use this dest to know
where the target of the backward branch is. Two basic
backward branches complete the loop construction set.
The unconditional branch is called AGAIN. AGAIN gener-
ates an unconditional branch back to the location given by
the deston top of the control flow stack, then removes the
dest. This process is called resolving the dest.

The conditional backward branch is called UNTIL .
Like I F , the conditional branch is a branch if the flag is
FALSE: all zeroes. If the flag is TRUE, the branch is not
taken. And like AGAIN, the branch is back to the BEGIN,
marked by the dest on top of the control flow stack. In
summary, we have one word, BEGIN, that creates a dest;
and two, AGAIN and U N T I L , that resolve one. When we
examine my implementation of the Dijkstra constructs, we
will see I F , THEN, AHEAD, BEGIN, and AGAIN in action.

Before we walk through the implementation, there are
two more words we will need. As we've seen, the ANS

8 Forth Dimensions

Figure Six. Guarded command after 'THEN' I

~

X

@

Y

@

>

branch i f 0 t o #

Y

@

NEGATE

X

+ !

...

-

flowchart (Figure Two).
First, we define the opening bracket. Dijkstra calls it iJ;

which already has a meaning in ANS Forth. Moreover, I
wanted something that looked like a bracketing operator,
so I picked (IF, pronounced "brace-if." As we will see, the
(IF ... FI } construct will generate an arbitrary number
of unresolved origs on the control flow stack which don't
get resolved until the closing FI 1 is seen. This means we
need to count them. All (I F does is place a zero on the
data stack for this counter.

Now let's look at the right-arrow operator. -> has a
meaning already, so that's out. In addition, I wanted
something that reinforced the construct type in the reader's
mind, so I picked IF> , pronounced "if-arrow." If you're
following along on the flowchart, we're inside one of the
diamonds corresponding to a guard. At run time, a flag will
be on the stack. The IF> needs to open u p a new
conditional branch, just like the standard Forth I F . And it
needs to count that branch. If the flag is FALSE, our branch
will skip over the code that follows the I F > and proceed
to the next guard. Just like the IF in the guarded command,
this is the down-arrow labeled F. If the flag is TRUE, we
will take the right-arrow labeled T and execute the code
following the IF>. We won't know the target of this
branch until we see the next I IF I or the closing F I 1 .

Since, in ANS Forth, the control flow stack may or may
not be the data stack, we have to write code that will work
either way. So we increment the counter on top of the data
stack, move it to the return stack, then insert the desired
branch with a POSTPONE I F operation. This puts an orig
on the control flow stack for a later THEN to resolve. Then

standard uses a special stack, called the control flow stack,
to keep track of all these orig and dest tokens. In stack
diagrams, this stack is denoted by C : . Sometimes, we will
need to rearrange these tokens at compile time. The words
that do this are CS-PICK and CS-ROLL. They are
analogous to PICK and ROLL on the data stack.

4. Worth Implementation
of the Dijkstra Constructs

hForth (141) is a public-domain, extended subset of ANS
Forth. The version I used is available from the Taygeta
Scientific Web page (ftp://ftp.taygeta.com/pub/Forth/Re-
viewedhf86~037.zip). This is version 0.9.7 of hForth, and
runs on any 8086 DOS system; I used the HPlOOLX Palmtop
PC ([51). With minor modifications, this code should run on
any ANS Forth system that includes the control flow stack
words. In the spirit of Forth, my implementation is a set of
compiling words; they extend the Forth compiler to compile
these control structures as written.

hForth does not define the control flow stack operators
CS-PICK and CS-ROLL. However, hForth uses the data
stack as the control flow stack during compilation. As a
result, we can define themsimply [see listingl. Because the
control stack may or may not be the same as the data stack
on various Forths, we need to be careful to write the code
so it will work either way. We will look at the i j ' . . . Ji
construct first. You may want to follow along on the

Forth Dimensions

we bring the count back to the data stack.
The barfor { IF ... FI 1 , written I I F I and pronounced

"if-bar," has to do two things. The I IF I marks the end of
the code associated with the previous guard and the
beginning of the next guard. First, we need to compile in
an unconditional branch to the end of the construct, which
is marked by an as-yet-unseen FI 1 . If you're following
along on the flowchart, this is the arrow coming out of the
right of the statements box. This is an unconditional branch
forward to an unknown location, a job for POSTPONE
AHEAD.

Next, we need to resolve the open conditional branch of
the previous guard, so that if the guard is false, control will
end up just after the unconditional branch we just compiled.
That way, we'll be ready to execute the code for the next
guard which follows the I IF I .This is the arrow coming out
of the bottom of the previous guard's diamond; the branch
was compiled in by the preceding IF>. There's one small
problem-the POSTPONE AHEAD covered up the orig we
need with a new orig. 1 CS-ROLL fixes this, and a
POSTPONE THEN resolves the open IF. Since a new orig
is created and an old one is resolved, the count does.not
change. However, we do need to save and restore it.

Now we need to define the closing bracket FI I ,
pronounced "fie-brace." As noted earlier, if none of the
guards are true for the { IF ... FI 1 , we consider it a
programming error and want to abort. In hForth, we have
CATCH and THROW from the ANS Exception Handling

9 November 1996 December

word set. So I defined a word BAD { I F ... F I) ("bad-if-fie"),
which will do the aborting. I used -22 for the THROW code;
this stands for control structure mismatch.

So what does FI) need to do? As usual, we first save
the count of open branches that need to be resolved on the
return stack. Next, like I IF 1 , we have to insert a forward
branch to the end of the construct to wrap u p processing
of the code following a true guard. As usual, this is done
with POSTPONE AHEAD.

Next, we need to resolve the open forward branch
generated by the last guard's IF>. As before, this is done
with 1 CS-ROLL POSTPONE THEN. If you're following
along on the flowchart, we're on the false branch out of
the bottom diamond. Here is where we want to abort,
which we d o with POSTPONE BAD { I F ... F I 1.

Remember all those POSTPONE AHEAD operations?All
those unconditional branches to the F I) that we compiled
in after the code executed following a true guard? All those
origssitting on the control flow stack? All of them are now
resolved to point to the present location, just after the
abort. We retrieve the count from the return stack, then 0
?DO POSTPONE THEN LOOP does exactly the right num-
ber of POSTPONE THEN operations!

For the {DO ... OD) construct, it turns out that we will
not need to count open branches; each is resolved by the
separating I DO I or the closing OD 1. But we do need to
place a dest on the control flow stack so we know where
to branch back to. {DO, pronounced "brace-do," does this
with a POSTPONE BEGIN operation.

The right-arrow for the {DO ... OD 1 construct doesn't
have to deal with the count, but there is a dest on top of the
control flow stack. We want to keep it on top so we always
know where it is. Like IF>, DO> ("do-arrow") has to open
up a conditional branch with POSTPONE IF. Then we use
1 CS-ROLL > to bring the destback to the top of the control
flow stack. On the flowchart (Figure Three), we're in the
diamond corresponding to a guard, just like IF>.

The barfor the { DO ... OD 1 construct, I DO I ("do-bar")
is very much different from its cousin I I F I . Since I DO I
follows code that was executed after a true guard, we will
be repeating the loop. On the flowchart, we're on the
right-arrow coming out of a statements box. We will make
an unconditional branch back to the {DO. In ANS Forth
terminology, we resolve the deston top of the control flow
stack with POSTPONE AGAIN.

There are two tricky parts. First, we need to copy the
dest; we'll need it again for subsequent I DO I operations.
0 CS-PICK makes the copy. Second, hForth keeps track
of control structure balance; since we're creating a copy of
the dest to resolve, we must use the hForth word dest+
to notify the hForth compiler of the extra operator.

Like I I F I , when we get to I DO I there is an open orig
that needs to be resolved so a false guard will send control
to the next guard. We resolve this orig with a POSTPONE
THEN and everything is done.

Finally, let's look at OD) ("odd-brace"). We only have
to do two things. First, the OD) marks the end of the code
following the last guard, so we have to compile an
unconditional branch back to the {DO just like we did for
November 1996 December

I DO I . POSTPONE AGAIN does this. Since this is the end
of the construct, we don't need to copy the dest; this time,
we want to consume it. Second, we have to fill in the target
address of the conditional branch compiled by the last
Do>. Like F I) , all the guards being false will cause a chain
of conditional branches that ends u p where we are now.
POSTPONE THEN resolves the last Orig, and we're done.

Whew!

5. Testing/Demos
After all this work, we will perform some simple tests to

demonstrate our code. First, let's look at a simple example
of a correct { I F ... F I) : TEST1. This test simply compares
the top two numbers on the stack and prints the comparison
that was true. Next, let's see what happens ifwe accidentally
forget that two numbers can be equal: TEST2.

And we close by executing our useful example {DO ...
OD 1 loop: USEFUL.

If you haven't guessed yet, USEFUL is Euclid's algorithm
for computing the greatest common divisor of x and y!

6 . Summary
We have seen that it is easy to create custom control

structures in ANS Forth. As a practical example, I devel-
oped an implementation of the Dijkstra guarded com-
mand control structures. These suffice for most of my own
control structure needs beyond the ones already provided
by ANS Forth. The Dijkstra structures are far more readable
than the equivalent code done in terms of the existing ANS
Forth control flow operators. And the Dijkstra constructs
are an elegant way to express algorithms, as the simple
code for the greatest common divisor shows.

I consider this a necessary first step towards the goal of
being able to prove Forth programs correct: the ideal is to
develop the correctness proof and the code together. An
even more ambitious goal is a system for automatically
translating specifications into correct Forth code. The
supporting academic work has been done, almost always
using simple functional programming languages rather
than complex real-world languages like C++, Fortran 90,
or Common LISP. It seems to me that Forth's simple syntax
and semantics provide an opportunity for such a system
unavailable to the other languages in common use.

7. References

[ll Dijkstra, Edsger W. (1976), A Discipline of Program-
ming, Prentice-Hall, Englewood Cliffs, NJ, ISBN 0-13-
215871-X

121 ANSI (1993), Dra) Proposed American National Stan-
dard Forth (X3J14 dpANS-6), American National Stan-
dards Institute, New York

[31 Woehr, Jack (1792), Forth: TheNewModel, M&T Books,
San Mateo, CA, ISBN 1-55851-277-2

[41 Koh, Wonyong (1996), "hForth: A Small, Portable ANS
Forth," Forth Dimensions, Volume XVIII, Number 2

10 Forth Dimensions

[61 Hansen, Per Brinch (1982), Programming a Personal
Computer, Prentice-Hall, Englewood Cliffs, NJ, ISBN 0-13-
730283-5

M. E~WG 8oiasky is an applied mathematician and computer scientist who
has written software for machines ranging from programmable calculators to
massively parallel supercomputers. His interests include cmputer music,
computational finance, computer system performanceanalysis and, of course,
the Forth language. Hecurrently works for a major vendor of turnkey business
computers as a UNlX performance guru. Although his desk has been declared
a Forth-free zone, his palmtop PC has been granted an exemption. He can be
reached at znmebk2teleport.com or at http://www.teleport.com/-znmeb (his
home Web page).

1 Listing. discp.f: Dijkstra's guarded command control structures. 1
\ D i j k s t r a Guarded Command C o n t r o l S t r u c t u r e s
\ M . Edward Borasky
\ 03-AUG-96
\
\ T h i s code h a s been t e s t e d w i t h b o t h h F o r t h 0 . 9 . 7 and ZENForth.
\ To compi le f o r h F o r t h , t y p e
\
\ 0 CONSTANT ZENForth
\
\ To compi le f o r ZENForth, t y p e
\
\ 1 CONSTANT ZENForth
\
\ Then t y p e
\
\ BL PARSE D1SCP.F INCLUDED
\
\ These words w e r e d e s i g n e d u s i n g Wonyong Koh's h F o r t h 0 . 9 . 7 ,
\ They s h o u l d work w i t h minor m o d i f i c a t i o n s on any ANS F o r t h
\ s y s t e m p r o v i d i n g t h e words l i s t e d below.

\ Envi ronmenta l d e p e n d e n c i e s :
\
\ R e q u i r e s AGAIN f rom t h e CORE EXT word se t
\ R e q u i r e s AHEAD from t h e TOOLS EXT word set
\ R e q u i r e s CS-PICK from t h e TOOLS EXT word set
\ R e q u i r e s CS-ROLL from t h e TOOLS EXT word set
\ R e q u i r e s PICK f rom t h e CORE EXT word set
\ R e q u i r e s ROLL f rom t h e CORE EXT word set
\ R e q u i r e s THROW f rom t h e EXCEPTION word set
\ R e q u i r e s h F o r t h word d e s t + o r e q u i v a l e n t
\ R e q u i r e s h F o r t h word COMPILE-ONLY o r e q u i v a l e n t
\ R e q u i r e s . (f rom CORE EXT word set (tes t sequence o n l y)

\ h F o r t h d o e s n o t have CS-PICK o r CS-ROLL. However, h F o r t h
\ u s e s t h e d a t a s t a c k a s c o n t r o l f low s t a c k , s o t h e y c a n be
\ d e f i n e d s i m p l y :

: CS-PICK PICK ;

I : CS-ROLL ROLL ;

\ h F o r t h h a s t h e c a p a b i l i t y t o f l a g a word COMPILE-ONLY. On o t h e r sys tems ,
\ COMPILE-ONLY c a n b e i g n o r e d by d e f i n i n g it a s f o l l o w s : (Continues on nertpage.)

Forth Dimensions 11 November 1996 December

ZENForth [IF] \ ZENForth c o m p a t i b i l i t y
: COMPILE-ONLY ;

[THEN]

: {IF \ s t a r t a c o n d i t i o n a l
(- - 0)

0 \ p u t c o u n t e r on s t a c k
; COMPILE-ONLY IMMEDIATE

: IF> \ r i g h t - a r r o w f o r {IF ... FI)
(c o u n t -- c o u n t + l
(C: -- o r i g l 1

1+ >R \ inc rement and s a v e c o u n t
POSTPONE IF \ c r e a t e o r i g l
R> \ r e s t o r e coun t

; COMPILE-ONLY IMMEDIATE

: IIFJ \ b a r f o r {IF . . . FI)
(c o u n t -- coun t)

(C: o r i g . . . o r i g l -- o r i g . . . o r i g 2)

>R \ s a v e coun t
POSTPONE AHEAD \ new o r i g
1 CS-ROLL \ o l d o r i g t o t o p of CFStack
POSTPONE THEN \ r e s o l v e o l d o r i g
R> \ r e s t o r e c o u n t

; COMPILE-ONLY IMMEDIATE

: BADIIF . . . FI) \ a b o r t i f t h e r e i s no TRUE c o n d i t i o n
(--)

CR ." {IF . . . FI): no TRUE c o n d i t i o n " CR \ e r r o r message
-22 THROW \ ' c o n t r o l s t r u c t u r e mismatch'

,

: FI) \ e n d o f c o n d i t i o n a l
(c o u n t --)
(C: o r i g l . . . o r i g n --)

>R \ s a v e coun t
POSTPONE AHEAD \ new o r i g
1 CS-ROLL \ o l d o r i g
POSTPONE THEN \ r e s o l v e o l d o r i g

\ i f w e g o t h e r e , none o f t h e g u a r d s w e r e TRUE
\ s o a b o r t
POSTPONE BAD{IF ... FI) \ compile t h e a b o r t
R> \ r e s t o r e coun t

0 ?DO \ r e s o l v e a l l r emain ing o r i g s
POSTPONE THEN

LOOP
; COMPILE-ONLY IMMEDIATE

November 1996 December 12 Forth Dimensions

: {DO \ s t a r t a l oop
(C: -- d e s t

POSTPONE BEGIN \ c r e a t e des t
; COMPILE-ONLY IMMEDIATE

: DO> \ r i g h t arrow f o r {DO . . . OD)
(C: d e s t -- o r i g l d e s t)

POSTPONE IF \ c r e a t e o r i g
1 CS-ROLL \ b r i n g d e s t back t o t o p of CFStack

; COMPILE-ONLY IMMEDIATE

\ hForth u se s t h e word ' d e s t + ' t o count open d e s t i n a t i o n s . For o t h e r environments,
\ t h e r e may be a s i m i l a r word.

ZENForth [IF]
: d e s t + 1 b a l +! ;

[THEN]

: ID01 \ b a r f o r {DO ... OD)
(C: o r i g l d e s t -- d e s t)

0 CS-PICK \ copy t h e d e s t
POSTPONE AGAIN \ r e s o l v e t h e copy
d e s t + \ hForth c o n t r o l s t r u c t u r e ope ra t i on
1 CS-ROLL \ o l d o r i g
POSTPONE THEN \ r e s o l v e o l d o r i g

; COMPILE-ONLY IMMEDIATE

: OD) \ end of loop
(C: o r i g d e s t --)

POSTPONE AGAIN \ r e s o l v e d e s t
POSTPONE THEN \ r e so lve o r i g

; COMPILE-ONLY IMMEDIATE

\ Simple test words

: TESTl \ p r i n t t h e r e l a t i o n s h i p between 'x' and ' y '
(x y - - 1

\ execute TESTl f o r a l l t h r e e combinations

CR . (5 0 TESTl)

5 0 TESTl

CR . (5 5 TESTl)

5 5 TESTl
(Continues o n nextpage.) I

Forth Dimensions 13 November 1996 December

CR . (0 5 T E S T l)

0 5 T E S T l

: T E S T 2 \ de l ibera te ly e r r o n e o u s test case -- ' e q u a l ' case l e f t o u t !
(x y - - 1

CR . (S i n c e T E S T 2 abor t s i f ' x ' a n d ' y ' a r e e q u a l , we w i l l)

CR . (test T E S T 2 l a t e r ; f i r s t w e w i l l c o m p i l e and test USEFUL)

\ define a r g u m e n t s
VARIABLE x 5 6 5 5 3 * x !
VARIABLE y 6 5 5 1 5 * y !

: USEFUL \ sets b o t h ' x ' a n d ' y ' t o G C D (x , y)
(-- 1

I DO
x @ y @ > DO> y @ NEGATE x + !

ID01
y @ x @ > DO> x @ NEGATE y + !

OD 1

CR . (B e f o r e : x, y =) x @
CR . (USEFUL) USEFUL
CR . (A f t e r : x , y =) x @

CR . (Now w e '11 tes t TEST2)

\ T h a t ' s a l l , f o l k s ! !

I THIRTY-DAY FREE OFFER - Frea MMSFORTH
GAMES DISK worth $39 95 wlth purchase of MMSFORTH
System CRYPTOOLJOTE HELPER OTHELLO BREAK-

~ R ~ ~ ~ s FORTH and others
61 Lake Shora RONT. N%tW, MA O77W

iSWS34It2&. 9 am - e om1 C s l l b r b w b m d m m . ~ h t f a f f ~ b . b L

November 1996 December 14 Forth Dimensions

C-Style Arrays in Forth

M. L. Gassanenko
St. Petersburg, Russia

Abstract
This paper proposes a C-like notation for cell array

indexing in Forth. Although the idea is not new, the
notation seems to be felicitous and might be included in
the next standard. It can support multi-dimensional arrays,
and a similar syntax may be used for bit or double-cell
arrays. The paper also shows how analysis of possible
name conflicts should be performed.

Introduction
One feature of (not too) modern processors that is

rarely utilized by (even modern) Forth is based indexed
addressing. There have been several approaches to array
accessing but, so far, none of them has been considered
felicitous enough to b e included in the standard.

Array elements are usually accessed via 2 * + @ (unless
the programmer prefers to resort to assembler). There is
also a traditional array implementation in which the
operation of indexing is bound with and hidden in the
array name (an array is a function that takes indexes from
the stack and leaves the address of an element), but it has
not become a de facto standard. The third way, also no de
facto standard, uses words like [I CELL and the only
difference of the proposed syntax from it is in better
naming. This paper shows how one can implement multi-
dimensional arrays using this idea.

The proposed syntax for the indexed access operations
was inspired by (almost borrowed from) C andAlgol48. One
is only sorry that this syntax did not appear 15 years ago.

Specifications

[1 (n a-addr -- x) "brackets"
EXPERIMENTAL
x i s the value stored into the nth cell of the cell array
starting at a-addr. The array cells are numbered
starting from zero. Semantically equivalent to:
SWAPCELLS + @

[I ! (x n a-addr --) "brackets-store"
EXPERIMENTAL
Store the value x into the nth cell of the cell array
starting at a-addt: The array cells are numbered

starting from zero. Semantically equivalent to:
SWAPCELLS + !

[1 A (n a-addrl -- a-addr2) "brackets-pointer"
EXPERIMENTAL
Add the size in address units of n cells to a-addrl,
giving a-addr2. Semantically equivalent to:
SWAP CELLS +

Note: This is a proposal for the next Forth standard.

Implementation
What follows is an F-PC implementation of these words:

CODE [I (i n d e x a r r a y -- value)

POP bx
pop d i
s h l d i
p u s h 0 [b x + d i l
nex t c ;

CODE [I ! (v a l u e i n d e x a r r a y --)

POP bx
pop d i
s h l d i
pop 0 [b x + d i]
nex t c;

CODE [I A (i n d e x a r r a y -- address)

POP bx
pop d i
s h l d i

add bx, d i
p u s h bx
next c ;

On a '386 Forth that uses in-lining and keeps the data
stack top in EBX, the code substituted for [1 may look like
this:

POP EAX
MOV EBX, [EBX] [4*EAX]

Forth Dimensions 15 November 1996 December

which is much better than the:

XCHG EBX, [ESP] \ SWAP
SHL EBX, # 2 \ CELLS
POP EAX \ +
ADD EBX, EAX \ +, cont inued
MOV EBX, [EBX] \ @

which we would have as the result of substituting SWAP
CELLS + @ in line.

Multi-Dimensional Arrays
This sectionshows that multi-dimensional arrays equally

can be implemented this way.
A multi-dimensional array is implemented as an array of

arrays. Fetching, storing, and pointing to a two-dimensional
array element look like this:

j i X [I [I \ X [i l [j l
... j i X [I [I ! \ X [i l [j l = . . .

j i X [I [I * \ &X[i l [j l

Here, X i s an array containing addresses of arrays of
cells. These cell arrays should not necessarily be of the
same size. No index range checking is performed, though.
The word ARRAY, creates an array of n elements xO . . .
xln-11 and returns its address:
: a r r a y , (xO x l . . . x[n-11 n -- addr)

(a l i g n) he re >r
? dup
i f

0 swap 1-
do

i r o l l ,
-1 +loop

then
r>

Although the usefulness of this word is restricted by the
maximal stack depth, it enables us to create arrays of
(sub)arrays, and these subarrays may have different lengths.

Once the subarrays can have different lengthes, we may
wish to be able to determine them. Provided that all the
subarrays are created by ARRAY, immediately--one after
another-and that the last top-level array element is fol-
lowed by a "dummy" pointer, the word [I LEN (i a -- 1)
given below returns the length of the ith subarray of the t o p
level array a
code [lien (l i n d e x a r r a y -- 2length)

POP bx

follows the last array element. We can consider it a zero-
length subarray. If it is missed, the word [] LEN will not
calculate the length of the last subarray.

Assessing the Multi-Dimensional
Array Implementation

Here we compare the array-of-arrays implementation
with the more traditonal one where index calculation
involves multiplication by the number of columns.

The array-of-arrays implementation does not necessar-
ily require more memory. For example, if we manipulate
matrixes of a special form, say, symmetric, this technique
almost halves the amount of memory required.

This implementation also works faster because, even on
a '486, multiplication is slower than memory fetch. Probably,
this consideration is not of too much importance, though.

Some Examples
These examples scarcely need comments. The screen

output is shown in Listing Two.
: .ARRAY (a r r a y l e n --)

- " ["

0 ?DO I OVER [I . LOOP
."] " DROP

: .2ARRAY (a r r a y n-rows --)

CR ." ["

0 ?DO
I OVER [I I PLUCK []LEN CR .ARRAY

LOOP
."] '' DROP

\ The l a s t , d e l i m i t e r , s t r i n g of a r r a y
\ i s needed f o r [I l e n t o c a l c u l a t e t h e
\ l e n g t h p rope r ly
1 2 3 4 5 5 a r r a y ,
6 7 8 9 4 a r r a y ,
10 11 1 2 3 a r r a y ,

0 a r r a y ,
4 a r r a y , cons t an t x

o o x [I [I .
2 o x [I [I .
25 1 2 x [I [I !
1 2 x [I [I .
1 2 x [I [I A @ .
0 x [l l e n .
2 x [l l e n .
x 3 . 2a r r ay Uexl continues on page 18.;

pop d i
s h l d i
mov ax, 2 [bx+di] \ address of t h e (i + l) - t h suba r r ay
sub ax, 0 [bx+di] \ minus add re s s of t h e i - t h suba r r ay
s h r ax \ g i v e s i - t h subar ray l e n g t h i n c e l l s
push ax
next c ;

The "dummyn pointer is the address of the cell that

November 1996 December 16 Forth Dimensions

Listing One. arrays.seq I

\ Arrays f o r Fo r th by M.L.Gassanenko
a u t o e d i t o f f
CODE [I (index a r r a y -- va lue)

POP bx
pop d i
s h l d i

I push 0 [bx+di]
nex t c;

CODE [I ! (v a l u e index a r r a y --)

POP bx
pop d i
s h l d i
pop 0 [bx+di]
nex t c ;

CODE [I * (index a r r a y -- addres s)

POP bx
pop d i
s h l d i
add bx, d i
push bx
next c ;

: a r r a y , (xO x l . . . x[n-11 n -- addr)
(a l i g n) h e r e > r
?dup
i f

0 swap 1-
do

i r o l l ,
-1 +loop

then

code [I l e n (l i n d e x a r r a y -- 21ength)

POP bx
pop d i
s h l d i
mov ax, 2 [bx+di]
sub ax, 0 [bx+di]
s h r ax
push ax
next c ;

\ \s Aux i l i a ry t o o l s , r a t h e r examples
: .ARRAY (a r r a y l e n --)

. " ["

0 ?DO I OVER [I 4 . R SPACE LOOP
." 1 " DROP

: -2ARRAY (a r r a y p r o w s --)

CR 6 SPACES ." ["
0
?DO (a r r a y

I OVER [I (a r r a y a r r a y [i])

I PLUCK [I LEN (array array [i] len[i]
CR 9 SPACES .ARRAY

LOOP
CR 6 SPACES ."] " DROP

\ \s Some examples
showlines
\ The l a s t , d e l i m i t i n g , suba r r ay i s
\ needed f o r [I l e n t o
\ c a l c u l a t e t h e l e n g t h p r o p e r l y
1 2 3 4 5 5 a r r a y ,
6 7 8 9 4 a r r a y ,
10 11 12 3 a r r a y ,

0 a r r a y ,
4 a r r a y , cons t an t x

o o x [I [I .
2 O x [I 11 .
0 2 x [I [I .
1 2 x [I [I .
25 1 2 x [I [I !
1 2 x [I [I .
1 2 x [I [I A @ .
0 x [l l e n .
1 x [l l e n .
2 x [l l e n .
x 3 - 2 a r r a y

o f f > l i s t v a r

From NASA space
systems to package
tracking for Federal

...g ives you maximum
performance, total
control for embedded

Total control of target kernel size and content.
Royalty-free multitasking kernels and libraries.
Fully configurable for custom hardware.
Compiles and downloads entire program in seconds.
Includes all target source, extensive documentation.
Full 32-bit protected mode host supports interactive
development from any 386 or better PC.
Versions for 805 l,80186/88,80196,68HCll, 68HC16,
68332, TMS320C3 1 and more!

Forth Dimensions 17 November 1996 December

Listing Two. Screen output of the F-PC program shown in Listing One. The
message about [I is displayed because [] is defined in ~ ~ ~ A S S E M B L E R V O C ~ ~ U ~ ~ ~ ~ .

[I i s n ' t u n i q u e
70 \ The l a s t , d e l i m i t i n g , s u b a r r a y i s n e e d e d f o r [l l e n
7 1 \ t o c a l c u l a t e t h e l e n g t h p r o p e r l y
72 1 2 3 4 5 5 a r r a y ,
7 3 6 7 8 9 4 a r r a y ,
74 1 0 11 12 3 a r r a y ,
7 5 0 a r r a y ,
7 6 4 a r r a y , c o n s t a n t x
7 7 0 0 x [I [I . 1
7 8 2 0 x [] [] . 3
79 0 2 x [I [I . 1 0
80 1 2 x [I [I . 11
8 1 2 5 1 2 x [I [I !
82 1 2 x [I [I . 25
83 1 2 x [I [I A @ . 25
8 4 O x [] l e n . 5
85 1 x [l l e n . 4
86 2 x [lien . 3
87 x 3 . 2 a r r a y

[
t 1 2 3 4 5 I
[6 7 8 9 1
[10 25 1 2 3

I

89 o f f > l i s t v a r

Bit, Double-Cell, and Other Arrays
A similar syntax may be used to handle bit arrays.

B I T [] (u addr -- b) "bit-brackets"
EXPERIMENTAL
b is the value stored into the nth bit of the bit array
starting at addr. The array bits are numbered starting
from zero. The most significant bit has the largest
number. The number of bits in an address unit is
system dependent.

B I T [] ! (x u a - a d d r - -) "bit-brackets-store"
EXPERIMENTAL
Store the low bit of x into the nth bit of the bit array
starting at addr.

BITS (u l -- u2) "bits"
EXPERIMENTAL
242 is the minimal size in address units of a memory
area that contains at least n bits.

The specifications for the double-cell indexing words
are evident:
D [I (n a - a d d r -- d)

D [l ! (d n a - a d d r --)

D [l A (n a - a d d r l -- a -add r2)

The number nabove is the number of the two-cell array
element we want to access.

In systems with 16-bit characters, it may be desirable to
have character-array operations as well.

Implementation of all these words is a good exercise
for a novice, studying either Forth or assembler. A good
name for a double-cell [] LEN analog is D [I LEN.

Consistency
Jn this section, we ascertain that introduction of the

proposed new names into the standard does not lead to
naming problems.

We have introduced two new language elements: [I
"indexing" and A "address." (A sequence, or a set, of
characters used in a name and having a meaning for
programmers we call a languageelement; for example, the
name CHAR+ consists of two language elements: CHAR
and +).

The symbol A has not been used in the standard before.
There is an old tradition to indicate "address" by ' (tick),
but in the modern standard (tick) means only "execution
token."

The symbol [I has not yet been used, but [and I
usually denote state-switching or immediacy. This does
not lead to naming conflicts, because [and I have never
been used one immediately after another. The only

November 1996 December 18 Forth Dimensions

imaginable candidate on the [I name is:

: [I ' EXECUTE ; IMMEDIATE

which we can name [EX] or [EXEC] if we will need it.
(To illustrate importance of such analysis, we can give

the following example. In an ANS Forth system we can
define:

4 CONSTANT CELL
: CELLS CELL * ;
: #CELLS CELL + 1- CELL / ;

but we cannot define

1 CONSTANT CHAR
: CHARS CHAR * ;
: #CHARS CHAR + 1- CHAR / ;

and get a standard system, because, according to the
standard, CHAR means "obtain a character from the input
stream" while CHARS means "multiply by the size of a
character. ")

The name of the word [I that may be used to fetch a
data address contains no mention of the data size. This
makes the notation more natural: [I [I or [I D [I looks
better than [1 CELL [I CELL or [I CELL [I DOUBLE
because the size of data is mentioned at most once, and
this is the size of data that we want to access. The "size
specifiersn ("D" and "BIT" in D [1 and B I T [I) are placed
before the "operation specifier" [I to keep the same style
as in other such words, e.g., C@, C !, and CELL+. Again,
the "CELL" address specifier is omitted because the size of
the stack element is the default for operations that move
data between stack and memory (e.g., @ and ! work with
one cell, but they are not named CELL@ and CELL !).

Optional Range Checking
The most evident approach to this is to store the array

length into the -1st cell and to redefine the array words to
use it to perform range checking. This is shown in Listings
Three and Four. Remember that such redefinition enables
range checking only for words that get compiled after it;
already-compiled words will still use the "unprotected
version. Although the naming issue is always u p to the
programmer's taste, it may be recommended to redefine
the array words locally (within a module vocabulary), and
to use their original, "unprotected versions under some
other names.

Exercises for the Novice

Although this paper is a proposal, it inspires some
good exercises for a novice who is already familiar with
Forth but does not have much practice.

1. Implement the words [I , [I ! , [I * , and []LEN in
Forth.

2. Implement the word OARRAY, (n -- addr) which
creates an array of n cells, initializing it with zeroes.
For example,

4 OARRAY,

must be equivalent to

3. Implement the double-cell array words D [I , D [1 !,
D [I ^, and D [I LEN and the words DARRAY, and
ODARRAY, .

4. Implement the bit array words (in Forth or assembler;
the latter is easier).

5. Implement the word BITARRAY, (bit[n-11 . . . bit[Ol n
-- addr) which creates a bit array and initializes it.

6. Implement range checking for double-cell arrays.
Double-cell arrays must be accessible as both double-
or single-cell arrays, and the range checking must
work in both cases.

7. Create a range-checking scheme for bit arrays.

8. Take the array words as a basis and extend the array
concept to allow arrays with indexes starting from an
arbitrary number (not necessarily from zero); i.e., it
must be possible to create, for example, an array for
which indexes would be numbers -5 . . . 4. You may
use any approach, but do not redefine the word [I
and the others. Be careful to choose good names.

I
Forth Dimensions

Applied ~athernaccs and Control Processes in 1992, a& is now a post-
graduatestudentattheSt. Petersburg Institute of lnformaticsand Automitazation,
at the Russian Academy of Sciences. He can be reached at gmlt2ag.pu.r~ or
at mlgt3iias.spb.s~ via e-rnail.

19 November 1996 December

Listing Three. Range checking for the arrays. 1
needs a r r a y s . s e q
\ The -1st a r r a y e lement c o n t a i n s t h e number o f e l e m e n t s i n t h e a r r a y .

\ r e d e f i n e ARRAY, t o l a y down such -1st e lement .
: a r r a y , (a [n-1] . . . a [O] n --)

(a l i g n) dup ,
a r r a y ,

\ The check ing word t o b e used w i t h [I
: - ? (i n d e x a r r --) \ e n s u r e t h a t t h e index i s c o r r e c t

2dup -1 swap [I <
i f o v e r O < 0=

i f e x i t t h e n
t h e n
c r ." * * * i n v a l i d i n d e x " o v e r . ." f o r t h e a r r a y a t " dup u. c r

\ To e n a b l e r a n g e check ing , w e can e i t h e r g l o b a l l y r e d e f i n e [] ,
\ o r r e d e f i n e it i n t h e m o d u l e ' s d i c t i o n a r y ,
\ o r f i n d a new name (e .g . / []) f o r t h e p r o t e c t e d v e r s i o n o f [I ,
\ o r r e d e f i n e [] a n d u s e / [] f o r t h e o r i g i n a l v e r s i o n of [I ,
\ o r u s e -? e v e r y t i m e w e need a check.
\
\ For example, w e can d e f i n e
\ : / [I -? [I ; \ i f w e want / [I t o do r a n g e check ing , and
\ : / [] ?comp compi le [I ; immediate \ i f we want it t o compi le []

: [I l e n (index2 2 a r r a y -- l e n l)

-
2dup -1 swap [I 1- =

i f
c r ." * * * []LEN d o e s n o t work f o r t h e l a s t (" o v e r .
. ") s u b a r r a y (of a r r a y a t " dup u . . ") " c r

t h e n
[I l e n 1-

: [I - ? [I ;
: [I ! - ? [I ! ;
: [I A ? [I A ;
\ NB: w e h a v e t o recompi le .ARRAY and .2ARRAY a s w e l l ,
\ u n l e s s w e want them t o show 1 e x t r a c e l l beyond e a c h l i n e .

\ \s Examples
showl ines
\ 1-dimensional a r r a y :
11 22 33 4 4 4 a r r a y , c o n s t a n t y
-1 Y 11 -
O Y [I .
1 Y 1 1 .
3 y [l
4 y [l .

\ 2-dimensional a r r a y
\ The l a s t , d e l i m i t i n g , s u b a r r a y i s needed f o r [I l e n t o c a l c u l a t e t h e l e n g t h p r o p e r l y
\ NB: w e u s e t h e same s y n t a x b u t * d i f f e r e n t * v e r s i o n s o f a r r a y words.
1 2 3 4 5 5 a r r a y ,
6 7 8 9 4 a r r a y ,
10 11 12 3 a r r a y ,

0 a r r a y ,
4 a r r a y , c o n s t a n t x

o o x t 1 [I .
-2 0 x 11 [I .
0 -2 x [I [I .
-1 -2 x [I [I .
0 x [l l e n .
-1 x [I l e n .
3 x [l l e n .
4 x [l l e n .
o f f > l i s t v a r

November 1996 December 20 Forth Dimensions

The a r r a y words a r e r e d e f i n e d t o pe r fo rm r a n g e check ing .

ARRAY, i s n ' t u n i q u e
[]LEN i s n ' t u n i q u e
[I i s n ' t u n i q u e
[I ! i s n ' t u n i q u e
[I A i s n ' t u n i q u e

48 \ 1-d imens iona l a r r a y :
49 11 22 33 44 4 a r r a y , c o n s t a n t y
50 -1 y [I .

* * * i n v a l i d i n d e x -1 f o r t h e a r r a y a t 33595
4

51 0 y [I . 11
52 1 y [I . 22
53 3 y [I . 44
54 4 y [I -

* * * i n v a l i d i n d e x 4 f o r t h e a r r a y a t 33595
-28695

55
56 \ 2-dimensional a r r a y
57 \ The l a s t , d e l i m i t i n g , s u b a r r a y i s needed f o r [I l e n
58 \ to c a l c u l a t e t h e l e n g t h p r o p e r l y
59 \ NB: we u s e t h e same s y n t a x b u t * d i f f e r e n t * v e r s i o n s o f a r r a y words
60 1 2 3 4 5 5 a r r a y ,
6 1 6 7 8 9 4 a r r a y ,
62 10 11 12 3 a r r a y ,
63 0 a r r a y ,
6 4 4 a r r a y , c o n s t a n t x

X i s n ' t un ique
6 5 0 0 x [] [I . 1
66 -2 0 x [I [I .

* * * i n v a l i d i n d e x -2 f o r t h e a r r a y a t 33610
-31941

67 0 -2 x [I [I .
* * * i n v a l i d i n d e x -2 f o r t h e a r r a y a t 33642

68 -1 -2 x [I [I .
* * * i n v a l i d i n d e x -2 f o r t h e a r r a y a t 33642

*** i n v a l i d i n d e x -1 f o r t h e a r r a y a t 0
8238

69 0 x [I l e n . 5
70 -1 x [I l e n .

* * * i n v a l i d i n d e x -1 f o r t h e a r r a y a t 33642
16802

71 3 x [l l e n .
* * * []LEN d o e s n o t work for t h e l a s t (3) s u b a r r a y (of a r r a y a t 33642)

28351
72 4 x [I l e n .

* * * i n v a l i d i n d e x 4 f o r t h e a r r a y a t 33642
1226

7 3
74 o f f > l i s t v a r

Forth Dimensions 2 1 November 1996 December

Forth in Control:
A Window Interface
Ken Merk
Langley, British Columbia, Canada

In my last article, "Forth in Controln (FD XVII/2), we
built a parallel-printer-port interface using a series of LEDs
to represent the on/off state of each bit on the port. We
named all of the eight lines and assigned each a number
according to its binary weighting on the port. The interface
simulated a machine controller, so we named each output
line after the device it was controlling:

DECLMAL \ Bina y weight
1 CONSTANT FAN \ OOOOOOOl
2 CONSTANT DRILL \ ~~~~~~l~
4 CONSTANT PUMP \ ~~~~~l~~
8 CONSTANT SPRINKLER \ OOOOlOOO

16 CONSTANT HEATER \ ~~~l~~~~
32 CONSTANT LIGHT \ ~~l~~~~~
6 4 CONSTANT MOTOR \ OlOOOOOO

128 CONSTANT VALVE \ l~~~~~~~

Tom Zimmer's F-PC was used to make words that
would control each bit individually, so we could turn on
or off any device we wanted:

MOTOR >ON \ turn motor ON
FAN >OFF \ turn fan OFF

In this article, we will use the same LED display
interface attached to the parallel printer port, but we will
control it using Windows as the platform. LMI's WinForth
for Microsoft Windows will be used to create a graphical
interface consisting of two arrays of command buttons
which can be activated by the mouse to control each
device. This creates a point-and-click environment, which
makes it quick and easy to manipulate the output port.
On/off buttons will be created for each output device, plus
another button array with special functions to control
groups of devices.

WinForth is a 16-bit system, but applications can run
under Windows 3.1 and Windows 95. A 32-bit version of
WinForth is currently under development. To test drive
LMI's WinForth, a shareware version is available from
Laboratory Microsystems' BBS at 310-306-3530 or from
some Forth BBSs, one of which is Kenneth O'Heskin's Art

of Programming at 604-826-9663. This version is equiva-
lent in capabilities and performance to the retail WinForth,
except it does not let you create end-user applications.

DOS vs. Windows
Most DOS programs consist of code written in a

sequentially driven manner. Input data must be entered in
a specific order to match the flow of the program. This puts
a high priority on the order in which the job must be
performed.

Windows is an event-driven operating system which
allows data to be entered in whatever order seems
appropriate. Whenever an event occurs, such as a mouse
click or a keypress, Windows notifies the application
about the event by sending it a message. A message is a
16-bit, unsigned value which is assigned to a symbolic
constant that starts with the letters wM-. A procedure
within the application intercepts these messages and
responds to them. This procedure is called a Message
Handler, in which the programmer can code what action
has to be taken depending on the message received.

Source Code Overview
In the accompanying source code, FCONTROL.4TH,

we create a pop-up modal dialog box containing two
keyboards, each with an array of command push-buttons.
The dialog box will have a caption bar, which makes the
window movable, and a system menu to close the
window. A modal dialog box disables the parent window
and does not allow you to click or type anywhere outside
the dialog box until it is closed.

Clicking on the push-buttons with the mouse will send
WM COMMAND messages to the dialog message handler,
CONTROLDLGPROC, which will process them through the
DO. BUTTON case statement to activate the appropriate
output device. The word MAIN is executed to display the
dialog and direct all messages resulting from user interac-
tion with the dialog to the dialog message handler, thus
running the program. To quit the program, double-click
the system menu box, click on the Quit push-button, or
press Esc to close the dialog box.

Each control (push-button) within a dialog box will be

November 1996 December 22 Forth Dimensions

given its own control ID. This ID number is assigned to a
symbolic constant that starts with the letters ID-. This
makes the source code easier to read. Because text
controls do not send messages back to the message
handler, their IDS are set to -1.

The WM-COMMAND message is sent to the dialog
message handler by the controls (push-buttons) in the
dialog box when clicked. The dialog box message handler
will check WM COMMAND messages for the control identi-
fier of the pushbutton. When it finds this identifier, which
is in the message's wParam parameter, the handler knows
which button was pushed and can carry out the corre-
sponding task using the DO. BUTTON case statement.

WM I N I T D I A L O G is sent to a dialog box upon the
box's Tirst activation, but before it is made visible. In
response to this message, a dialog box procedure will
initialize each of the dialog box controls to the correct
initial state. In our case, no initialization is needed, so a
True is returned-verifying that we processed the mes-
sage and causing Windows to set the focus on the first
button created in the dialog box template (Fan On).

case statement in DO. BUTTON, and change the text on the
buttons accordingly. This will give you a feel of how the
program works. Load some of the demonstration pro-
grams that come with WinForth and study their source
code.

Read the WinForth programming overviews in the help
files. WinForth has a built-in "windowing layer" that handles
many Windows events automatically and hides much of the
complexity of the Windows API, so you can focus on your
application and get it completed faster. But, if you choose,
you can write code using direct calls to the API functions or
even third-party DLLs using the AP IHOOK function.

Compiled end-user applications consist of two files, an
EXE file and an OVL file. When FCONTROL.4TH was
compiled into turnkey executable files, the total size was
184K bytes.

This will give you a good start in Windows program-
ming, and will demonstrate how you can "Do More With
Less" using Forth.

Device Control

(/I 1-1

two keyboard arrays of push-buttons.
clicking on the on/offbuttons will control each output

device individually. Click on KILL to turn off all devices,
click on ALL-ON to turn on all devices, The LED display

The four preset
buttons can be programmed to turn on any combination

father of two girls and lives in Langley, B.C., Canada. He works for Canadian
Pacific Railway, and is involved in a braking system used on caboose-less
trains-the caboose is replaced by a black box which monitors many param-
eters of the train and sends them digitally by radio to the head end. In
emergencies, a remote radio can trigger braking. Other projects include
infrared bearing-failure detectors, wind detectors, and mountain-top radio
communication sites. Merk originally used Forth to learn 8088 assembler, and
found it a great tool to control electronic hardware.

of output devices. In this case,
the preset buttons are pro-
grammed to drive the four
phases of a stepper motor.
Clicking function buttons 1, 2,
3, and 4 in sequence, and re-
peating, will step the motor in
one direction. To reverse mo-
tor direction, click function
buttons 4, 3, 2, and 1 in se-
quence, and repeat. See Skip
Carter's article "Stepper Mo-
tors" (FD XVII/5) for an in-
depthview of theory and inter-
facing to stepper motors.

After you ge t FCON-
TROL.4TH up and running,
read through the source code
and the comments to figure
out what each section of code
is doing. Have some fun by
changing the parameters to see
what happens. Change the size
of the buttons. Move them
around to different locations.
Patch new functions into the

Forth Dimensions 23 November 1996 December

Listing. Parallel port interface. I

\ FCONTROL.4TH
\ WINFORTH

K e n M e r k J u n e / 9 6

ASM \ L o a d s t h e F o r t h assembler

DECIMAL

\ L o o k f o r a c t i v e L P T l p o r t
\ I f no p o r t found t h e n abor t

CLS
2 3 8 GOTOXY . (P a r a l l e l p r i n t e r p o r t n o t f o u n d .)
CLOSE QUIT

. THEN

6 4 8 @ L EQU #PORT

1 CONSTANT
2 CONSTANT
4 CONSTANT
8 CONSTANT
1 6 CONSTANT
3 2 CONSTANT
64 CONSTANT
1 2 8 CONSTANT

\ F i n d p o r t addr f o r p r i n t e r card
\ ass ign t o c o n s t a n t #PORT

FAN \ ass ign e a c h D e v i c e i t s b ina ry w e i g h t i n g
D R I L L
PUMP
SPRINKLER
HEATER
LIGHT
MOTOR
VALVE

CODE BSET (b #por t --) \ w i l l SET e a c h b i t i n # p o r t t h a t m a t c h e s
CX POP \ every h i g h b i t i n byte B .
DX, TOS MOV
AX, DX I N
AL, CL OR
DX, AL OUT
TOS POP
NEXT,
END-CODE

CODE BRESET (b # p o r t --) \ w i l l RESET e a c h b i t i n # p o r t t h a t m a t c h e s
CX POP \ every h igh b i t i n b y t e b .
CX NOT
DX, TOS MOV
AX, DX I N
AL, CL AND
DX, AL OUT
TOS POP
NEXT,
END-CODE

: >ON (b - -) #PORT BSET \ t u r n ON device
: >OFF (b - -) #PORT BRESET ; \ t u r n OFF device

: K I L L (-- 1 0 0 #PORT pc ! ; \ t u r n OFF a l l devices
: ALL-ON (--) 2 5 5 #PORT pc! ; \ t u r n ON a l l devices
: WRITE-PORT (b --) #PORT pc! ; \ WRITE b y t e t o p o r t

K I L L \ k i l l a l l LEDs

November 1996 December 24 Forth Dimensions

200 CONSTANT ID-FANON \ Assign each control an ID number
201 CONSTANT ID-FANOFF \ which corresponds to a "ID-" constant
202 CONSTANT ID DRILLON \ to make code easier to follow.
2 03 CONSTANT IDIDRILLOFF
204 CONSTANT ID PUMPON
2 05 CONSTANT ID~PUMPOFF
206 CONSTANT ID SPRINKON
207 CONSTANT IDISPRINKOFF
208 CONSTANT ID HEATERON
20 9 CONSTANT ID-HEATEROFF
210 CONSTANT ID~LIGHTON
211 CONSTANT ID LIGHTOFF
2 12 CONSTANT ID-MOTORON
213 CONSTANT IDMOTOROFF
2 14 CONSTANT ID~VALVEON
2 15 CONSTANT ID~VALVEOFF
216 CONSTANT ID-ALLON
217 CONSTANT ID-KILL
218 CONSTANT ID-FUNC1
219 CONSTANT ID FUNC2
22 0 CONSTANT I D ~ F U N C ~
221 CONSTANT ID - FUNC4

" Machine Controller" \ Caption text
35 10 235 175 WS CAPTION WS-POPUP Dt \ Size and style

W~SYSMENU D+ DS MODALFRAME D+ \ of dialog box
DIALOG CONTROLDLG \ Dialog name

11 I. 12 10 112 143 -1 \ Border around
WS BORDER WS VISIBLE D+ WS CHILD Dt \ button array1
SSBLACKFRAME - D+ STATIC; CONTROL

\ Create button arrayl- Button text, x y position in box, width and height
\ of button, ID that identifies which button.

I' Fan On" 20 19 45 14
" Fan Off" 69 19 45 14
" Drill On" 20 35 45 14
" Drill Off" 69 35 45 14
I' Pump On" 20 51 45 14
" Pump Off" 69 51 45 14
" Sprinkler On" 20 67 45 14
" Sprinkler Off" 69 67 45 14
'I Heater On" 20 83 45 14
" Heater Off" 69 83 45 14
" Light On" 20 99 45 14
" Light Off" 69 99 45 14
" Motor On1' 20 115 45 14
" Motor Off" 69 115 45 14
" Valve On" 20 131 45 14
Valve Of fvv 69 131 45 14

" Device Control" 20 6 51 10

ID FANON
ID-F ANOFF
IDDRILLON
IDDRILLOFF
I D-P UMP ON
ID-PUMPOFF
ID-SPRINKON
ID-SPRINKOFF
ID-HEATERON
ID-HEATEROFF
ID-LIGHTON
ID-LIGHTOFF
ID-MOTORON
ID-MOTOROFF
IDVALVEON
ID-VALVEOFF -

- 1

PUSHBUTTON
PUSHBUTTON
PUSHBUTTON
PUSHBUTTON
PUSHBUTTON
PUSHBUTTON
PUSHBUTTON
PUSHBUTTON
PUSHBUTTON
PUSHBUTTON
PUSHBUTTON
PUSHBUTTON
PUSHBUTTON
PUSHBUTTON
PUSHBUTTON
PUSHBUTTON
LTEXT

I (Continues on next page.)

Forth Dimensions 25 November 1996 December

\ . Button Array2 .
I1 11 135 10 88 143 -1 \ Border around

WS-BORDER WS-VISIBLE D+ WS CHILD D+ \ button array2
SS-BLACKFRAME D+ STATICF CONTROL

\ Create button array2- Button text, x y position in box, width and height
\ of button, ID that identifies which button.
" Preset Function #I" 145 19 68 18 ID-FUNC1 PUSHBUTTON
" Preset Function #2" 145 39 68 18 ID FUNC2 PUSHBUTTON
" Preset Function #3" 145 59 68 18 ID~FUNC~ PUSHBUTTON
" Preset Function #4" 145 79 68 18 ID-FUNC4 PUSHBUTTON
" ALL ON" 145 99 68 18 ID-ALLON PUSHBUTTON
I' KILL" 145 119 68 26 ID KILL PUSHBUTTON
Quit I* 173 158 40 14 IDCANCEL PUSHBUTTON

" Group Control" 145 6 48 10 -1 LTEXT
END -D IALOG

\ Case statement takes button ID'S given by the
\ to determine what action to take.
: DO.BUTTON

CASE
ID FANON OF FAN >ON IDIFANOFF OF FAN >OFF
ID DRILLON OF DRILL >ON
IDDRILLOFF OF DRILL >OFF
I DIP UMP ON OF PUMP >ON
ID-PUMPOFF 0 F PUMP >OFF
ID-SPRINKON OF SPRINKLER >ON
ID-SPRINKOFF OF SPRINKLER >OFF
ID HEATERON OF HEATER >ON
ID~HEATEROFF OF HEATER >OFF
ID-LIGHTON 0 F LIGHT >ON
ID-LIGHTOFF OF LIGHT >OFF
ID-MOTORON 0 F MOTOR >ON
ID-MOTOROFF OF MOTOR >OFF
ID VALVEON 0 F VALVE >ON
ID~VALVEOFF OF VALVE >OFF
ID-ALLON 0 F ALL-ON
ID KILL 0 F KILL
IDCANCEL o F o CLOSEDLG
ID-FUNC1 0 F 5 WRITE-PORT
ID-FUNC2 OF 9 WRITE-PORT
ID FUNC3 OF 10 WRITE.PORT
ID~FUNC 4 0 F 6 WRITE.PORT

ENDCASE ;

message handler

ENDOF
ENDOF
ENDOF
ENDOF
ENDOF
ENDOF
ENDOF
ENDOF
ENDOF
ENDOF
ENDOF
ENDOF
ENDOF
ENDOF
ENDOF
ENDOF
ENDOF
ENDOF
ENDOF
ENDOF
ENDOF
ENDOF
ENDOF

\ Dialog box message handler intercepts WM - INITDIALOG and WM-COMMAND
\ messages and then processes them.
\ Button ID'S are taken from WM_COMMAND1s wParam and sent to DO-BUTTON
\ case statement which determines what action to take.
: CONTROLDLGPROC

wMsg
CASE

WM INITDIALOG OF TRUE ENDOF
WMICOMMAND OF wP a ram DO. BUTTON TRUE ENDOF
FALSE SWAP
ENDCASE ;

\ Runs the dialog template with the associated dialog message handler
\ which starts the program.
: MAIN CONTROLDLG [I] CONTROLDLGPROC RUNDLG DROP ;

November 1996 December 26 Forth Dimensions

Filters and Sponges
I Wil Baden

Filters
A filteris a program that takes a file

as input, and does something to it line-
by-line or character-by-character, pro-
ducing output. The output from one
filter can be "piped" as input to another
filter, and so on.

Or a s ERIC RAYMOND, 7he New Hacker's
DictionayOSBN 0-262-26069-6), has it-

frlter n. [orig. UNYL, now also in M S
DOSI A program that processes an input
data stream into an output data stream in
some well-defined way, and does no I/O
to anywhere else except possibly on
error conditions; one designed to be
used as a stage in a pipeline.

Filter progt-ams are common and use-
ful. In this section we show how to make
them easy to write.

We'll presume some pet words, defi-
nitions given in Appendix A.

OPENED INPUT OUTPUT
CLOSED REWIND
checked needed
IN OUT INBUF
PLACE BOUNDS

These words have already appeared in
Stretching Forth articles.

As the first example, we make a filter
where something doesn't do anything.
Lines are simply copied. Call it what you
like. I call it COPY here. [Figure One.]

If you can redirect the output from
TYPE and CR, as can be done in tradi-
tional Forth systems, that's enough.
Otherwise, replace TYPE CR by OUT
WRITE-LINE checked. [Figure Two.]

Let's rearrange things so we can
factor cleanly. [Figure Three.]

Figure One.

: COPY (--)

BEGIN ()

INBUF /COUNTED-STRING
IN READ-LINE checked (u f l a g)

WHILE
INBUF SWAP TYPE CR ()

REPEAT (U)

DROP (1
IN REWIND

,

Figure Two.

: COPY (--)

BEGIN ()

INBUF /COUNTED-STRING
IN READ-LINE checked (u f l a g)

WHILE
INBUF SWAP OUT WRITE-LINE checked ()

REPEAT (U)

DROP ()

IN REWIND

Figure Three.

: COPY (--)

BEGIN ()

INBUF /COUNTED-STRING
IN READ-LINE checked (u f l a g)

IF INBUF SWAP (s u) TRUE (s u t r u e)
ELSE DROP () IN REWIND FALSE (f a l s e)
THEN

WHILE (s u)
TYPE CR ()

REPEAT (U)

Forth Dimensions 27 November 1996 December

We factor what's between BEGIN
and WHILE as f i l t e r - r e f i l l in
Listing One. This leaves us with Figure
Four.

Next we define a macro, using Stan-
dard Forth EVALUATE. [Figure Five1

Now we can define our filter. [Fig-
ure Six1

For character-by-character filters we
define another macro, CYPHER, in
Listing One. CYPHER gets its name
from cryptography, where it is the
term for alphabetic substitution.

As two simple character-by-char-
acter filters, we have RAISE-CASE
and ROT 13. [Figure Seven1

Another example of a filter is the
program that prints my listings with
line numbers on the non-blank lines.

Sponges
Here are two more definitions from

The New Hacker's Dictionary.

sponge n. [UNIXI A special case of a
filter that reads its entire input before
writing any output; the canonical ex-
ample is a sort utility. Unlike most
filters, a sponge can conveniently over-
write the input file with the output data
stream.

slurp vt. To read a large data file
entirely into core before working on it.
This may be contrasted with the strat-
egy of reading a small piece at a time,
processing it, and then reading the
next piece. "This program slurps in a
1K-by-1K matrix and does an FFT."

We now make a canonical example
of a SPONGE. After using F I L T E R to
SLURP a file into the HEREAFTER, we
make an index for the lines of the
f i l e i m a g e , re-order the f i l e i n d e x ,
and REGURGITATE the file.

The fileimage is placed in dataspace
in the HEREAFTER, that is, a given
distance after HERE. How far from
HERE isn't important. The f i le index
is placed after the f i l e i m a g e .

To re-arrange the lines of a file in
ASCII collating sequence,

S" n a m e - o f - f i l e " SORTED

A text editor is often implemented
as a sponge.

See Listing Two for SORTED.
See Appendix B for QSORT.

Figure Four.

: COPY (-- 1
BEGIN (1

f i l t e r - r e f i l l
WHILE (s u)

TYPE CR (1
REPEAT (U)

,

Figure Five.

: F I L T E R
S " BEGIN f i l t e r - r e f i l l WHILE "
EVALUATE ; IMMEDIATE

-

Figure Six.

: COPY F I L T E R TYPE CR REPEAT ; (--)

or

: COPY F I L T E R OUT WRITE-LINE c h e c k e d REPEAT ; (--)

Figure Seven.

(C o n v e r t a c h a r a c t e r t o upper-case.)

: >UPPER (C h a r -- CHAR)

DUP [CHAR] a - 2 6 U< I F BL - THEN

(R o t a t e l e t t e r 1 3 p o s i t i o n s i n t h e a lphabet .)

: >ROT13 (C h a r -- P u n e)

DUP BL OR [CHAR] a - 13 U<
I F 1 3 + E X I T THEN

DUP BL OR [CHAR] n - 1 3 U<
I F 1 3 - E X I T THEN

(C o n v e r t a f i l e t o uppercase.)

: RAISE-CASE F I L T E R 2DUP CYPHER >UPPER TYPE CR REPEAT ;

(C o n v e r t a f i l e by r o t a t i n g l e t t e r s 13 p o s i t i o n s .)

: ROT13 F I L T E R 2DUP CYPHER >ROT13 TYPE CR REPEAT ;

Wil Baden is a professional programmer with an interest in Forth. Send e-
mail to wilbaden@netcom.com asking for a text-only version of "Filters and
Sponges."

November 1996 December 28 Forth Dimensions

Listing One. I
1 : f ilter-ref ill (-- s u true I false)

2 INBUF /COUNTED-STRING
3 IN READ-LINE checked (u flag)
4 IF INBUF SWAP (s u) TRUE (s u true)
5 ELSE DROP () IN REWIND FALSE (false)
6 THEN (s u true I false)

7

9 : FILTER S" BEGIN filter-refill WHILE " EVALUATE ; IMMEDIATE

11 : CYPHER (s u "word" --)

12 S" CHARS BOUNDS ?DO I C@ "
13 PARSE-WORD S+
14 S" I C! 1 CHARS +LOOP " S+
15 EVALUATE
16 ; IMMEDIATE

18 \ (With PLEASE)

19 \ : CYPHER PARSE-WORD >PAD PLEASE
20 \ " CHARS BOUNDS ?DO I C@ - I C! 1 +LOOP "
21 \ : IMMEDIATE

S+ is string catenation, and a definition was given in Stretching Forth article "Circular String Buffer"
(Forth Dimensions XVIII/2).

If you lack PARSE-WORD you can make do with-
: PARSE-WORD BL WORD COUNT ; ("namev -- s u)

Listing Two. I
1 (SORTED)

1 CREATE filename /COUNTED-STRING 1+ CHARS ALLOT

1 : HEREAFTER HERE 200 CHARS + ; (-- c-addr)

7 0 VALUE fileimage
8 0 VALUE fileindex

1 lo

VARIABLE tally I
: check-available-dataspace (X I - -)

CHARS fileindex + ALIGNED tally @ CELLS +
HERE - UNUSED U< NOT ABORT" (Out of Dataspace) "

: SLURP (-- 1
filename COUNT INPUT TO IN
HEREAFTER TO fileimage
fileimage TO fileindex
0 tally !
FILTER (c-addr u)

DUP 1+ check-available-dataspace
f ileindex PLACE ()

fileindex COUNT CHARS + TO fileindex
1 tally + ! (Listing Two continues on next page.)

Forth Dimensions 29 November 1996 December

REPEAT
I N CLOSED 0 TO I N

: m a k e - i n d e x (-- 1
f i l e i n d e x ALIGNED TO f i l e i n d e x
f i l e i m a g e t a l l y @ 0 ?DO (c-addr)

DUP I CELLS f i l e i n d e x + !
COUNT CHARS +

LOOP DROP

: REGURGITATE (--)

f i l e n a m e COUNT OUTPUT TO OUT
t a l l y @ 0 ?DO

I CELLS f i l e i n d e x + @ COUNT
OUT WRITE-LINE checked

LOOP
OUT CLOSED 0 TO OUT

SORTED (c-addr u --)

f i l e n a m e PLACE
SLURP
m a k e - i n d e x
f i l e i n d e x t a l l y @ [' I CCOMPARE QSORT
REGURGITATE

Appendix A.

1 (S t o c k Words f o r F i l t e r s a n d S p o n g e s)

3 : OPENED OPEN-FILE ABORT" C a n ' t o p e n " ;
5 : INPUT R / O OPENED ; (c-addr u -- f i l e i d)

6 : OUTPUT W/O OPENED ; (c-addr u -- f i l e i d)

8 : CLOSED ?DUP I F CLOSE-FILE abort" C a n ' t c lose . " THEN ;
9 : REWIND ?DUP I F

1 0 0 0 ROT R E P O S I T I O N - F I L E ABORT" C a n ' t r e w i n d . "
11 THEN
1 2 ;

1 4 : c h e c k e d ABORT" (F i l e A c c e s s E r r o r) " ; (i o r --)

15 : n e e d e d (n - -)
1 6 DEPTH U< NOT ABORT" N o t e n o u g h o n t h e s t a c k . "
1 7 ;

1 9 0 VALUE I N (G l o b a l F i l e i d f o r I n p u t)

2 0 0 VALUE OUT (G l o b a l F i l e i d f o r O u t p u t)

22 : PLACE 2DUP 2 > R CHAR+ SWAP CHARS MOVE 2 R > C ! ;

2 4 : BOUNDS OVER + SWAP ; (a n -- a + n a)

2 6 (Common I n p u t B u f f e r f o r F i l t e r s)

2 7 2 5 5 CONSTANT /COUNTED-STRING
2 8 CREATE INBUF /COUNTED-STRING 2 + CHARS ALLOT

-
November 1996 December 30 Forth Dimensions

This is a tidying of my QSORT given in Forth Dimensions XVI/l. Look there for explanation.
1 (H o a r e ' s Q u i c k s o r t) (Non-Recursive) (Wil Baden 1967-1993)

2 (S t a n d a r d F o r t h CORE EXT w i t h NOT)

4 (U s e y o u r d e f i n i t i o n o f NOT.) I 1 6 VARIABLE ' i n o r d e r I / 8 : exchange 2DUP @ >R @ SWAP ! R> SWAP ! ; (x y --) I
o r d e r - t h r e e (l o h i mid -- l o h i mid)

>R (l o h i) (R: mid)
OVER @ R@ @ ' i n o r d e r @ EXECUTE O>

IF OVER R@ exchange THEN
R@ @ OVER @ ' i n o r d e r @ EXECUTE O> IF

R@ OVER exchange
OVER @ R@ @ ' i n o r d e r @ EXECUTE O>

I F OVER R@ exchange THEN
THEN

R> (l o h i mid) (R:)

I 22 VARIABLE g u e s s I
24 : s k i p - l o w e r s (x y - - x y)
2 5 >R
26 BEGIN
2 7 CELL+
2 8 DUP @ GUESS @ ' i n o r d e r @ EXECUTE O< NOT
2 9 UNTIL
3 0 R>
31 ;

33 : s k i p - h i g h e r s (. Y - - . Y)
3 4 BEGIN
3 5 1 CELLS -
3 6 g u e s s @ OVER @ ' i n o r d e r @ EXECUTE O< NOT
3 7 UNTIL
38 ;

40 : p a r t i t i o n
4 1 2DUP OVER - 2 / ALIGNED t
4 2 o r d e r - t h r e e
4 3 @ g u e s s !
4 4 2DUP
4 5 BEGIN
4 6 s k i p - l o w e r s
4 7 s k i p - h i g h e r s
4 8 2DUP > NOT
4 9 WHILE
5 0 2DUP exchange
5 1 2DUP 2 CELLS - >
52 UNTIL
5 3 >R CELL+ R>
5 4 1 CELLS -
5 5 THEN
5 6 SWAP ROT
57 ;

(lo h i -- lo y x h i)

(l o h i mid)

(l o h i)
(l o h i x y)

(l o y x h i)
(Appendix B continues on nextpage.)

I I
Forth Dimensions 3 1 November 1996 December

5 9 : smallersection-first (lo y x hi -- lo y x hi)
6 0 20VER 20VER SWAP - >R SWAP - R> <
6 1 I F 2 SWAP THEN
6 2 ;

6 4 : hoarify (x y - - ... x y)
6 5 BEGIN
6 6 2DUP SWAP - 2 CELLS >
6 7 WHILE
6 8 partition (. .. lo y x hi)
6 9 smallersection-first
7 0 REPEAT (. . . 10 hi)
7 1 ;

7 3 : order-a-pair (lo hi --)

7 4 2DUP = NOT I F
7 5 OVER @ OVER @ 'inorder @ EXECUTE O >
7 6 I F 2DUP exchange THEN
7 7 THEN 2DROP

7 8 ;

short-order (lo hi --)

2DUP SWAP - 1 CELLS > I F
DUP 1 CELLS - (lo hi mid)
order-three
DROP 2DROP

ELSE
order-a-pair

THEN

QSORT
inorder !

DUP O = I F 2DROP E X I T

1- CELLS O V E R +
DEPTH >R

BEGIN
hoarif y
short-order
DEPTH R@ <

UNTIL
R> DROP

(a-addr n xt --)

(a-addr n)
THEN

(lo ho)

(. . . lo ho)
(. .. lo ho)
(. . . I

1 0 3 : CCOMPARE (c-addr c-addr -- - 1 1 0 1 1)

1 0 4 >R COUNT R> COUNT COMPARE
1 0 5 ;

I
November 1996 December 32 Forth Dimensions

I Using Forth to manipulate the real world

Measuring Frequency and
Sampling Time-Dependent Signals
Skip Carter
Monterey, California

Introduction
This month I'd like to discuss a special kind of input

signal: time-dependent signals whose frequency is impor-
tant. We will take a look at how to determine the frequency
of a digital signal and will consider some of the issues
involved in getting a useful sample of an analog signal.

Frequenq Measurement
Let us first consider the problem of how to measure the

frequency of a digital signal (i.e., a square wave). Signals
such as this can come from a digital source or from a
suitably conditioned analog source. Examples include
some A/D chips, a voltage-controlled oscillator, or a
venerable 555 oscillator chip.

There are two basic ways of making this measurement:
Period counting. This involves measuring the time

between successive leading (or trailing) edges of the
incoming pulses.
Frequency counting. This is done by counting the

number of edges that occur within a fixed time interval.

In either case, one takes several measurements, then
averages them in order to get a useful measurement. Both
methods require that the edges come in slow enough for
the software to respond to their arrivals. This requirement
makes the high-level code presented here for illustration
(Listing One), of limited direct usefulness. To get a higher
maximum frequency in a real system, the edge detection
would be done in assembler and/or as an ISR. (Notice that
the period counter changes the hardware timer to run at
1.1 MHz, instead of the normal 18.2 Hz, so we get a
reasonable resolution. This messing around with the
hardware timer is pretty system dependent; I never got it
to work from a DOS shell within Windows.)

In addition, each technique has its own particular
weaknesses. With period counting, there is the problem of
what happens when there are missing edges. To illustrate,
suppose the input signal was a 1 kHz square wave, so the
time between leading edges is 1 millisecond. Given the
normal vagaries of the measurement, we might expect to
see a variation of, say, f lo%, so the individual measure-
ments might vary from 0.9 to 1.1 milliseconds. Averaging
several measurements will handle this and give us an
estimate of 1 millisecond with a reasonable degree of

confidence. But now suppose that, every once in a while,
we miss an edge--each time this happens, we get a value
of two milliseconds to fold into our average! This can
significantly shift our estimated frequency, plus it will have
a strong effect on the degree of confidence of our
measurement. An occasional extra pulse can also cause
problems by giving us two time values that are too short.
Averaging over a large number of samples helps with this,
but it might not be practical for the application.

Another possibility is to sample adaptively. Adaptive
sampling requires calculating a running mean and vari-
ance, and the sampling is stopped when the variance
drops below some acceptance threshold. The problem
with adaptive sampling is that it will consume significant
computing resources between each sample. A practical
period sampling routine will also have a timeout provi-
sion, otherwise it will wait forever for an edge that never
happens if the signal stops or is interrupted.

Frequency counting is not as adversely affected by an
occasional missing or extra edge. However, frequency
counting is vulnerable to counter overrun. Even if the
software can keep u p with the edges coming in, if the
sample time is too long the counter that is accumulating
the edges could overrun. A short sample time helps this,
since it increases the frequency at which an overrun will
occur. But if the sample interval is too small, the measure-
ment has a reduced degree of confidence. One could also
detect the overrun and handle it in some way (e.g., setting
an overrun flag, stopping the count, etc.).

Sampling a Time-Dependent Signal
The problems involved in handling a more general,

time-dependent signal-say a digitized acoustic signal-
are considerably trickier. A primary problem is how to
make the measurements without high-frequency aliasing
distorting the result. The problem is that if 2 x n is the
sample rate, there is no way to distinguish a signal of
frequency n from a signal of 2n (or any other integer
multiple of n), because in both cases one sees a full cycle
in two samples. In the 2n case, there was a whole cycle
in between our samples that we missed. This means that,
if we are sampling at 2 x n, there is a whole range of
frequencies from n upward that can contaminate our

1 measurements. This spurious folding of high frequencies

Forth Dimensions 33 November 1996 December

Figure One. A low-pass R-C filter. The 3 db

frequency cutoff is at f = 1/(2&C).

In R
D

interested in learning more about this, Horowitz and Hill
contains a readable introduction to the topic. The low-pass
RC filter has the transfer function,

Here I have used the engineer's notation for the 4 7 , j,
not the scientist's notation, i. The term w is the frequency
in radians; to get Hertz, divide wby 2n. With this equation,
we can get the magnitude response:

down to a lower one is called aliasing.
One can reduce this problem somewhat by sampling at

a high rate, the idea being that it will increase the frequency
at which aliasing begins to occur, and one hopes there is
less of the higher frequency around to bother us. The
problem is that it might not be the case that there is less at
the higher frequency and, even worse, this solution uses
more CPU resources. Abetter solution is to prevent the high
frequencies from getting into your samples in the first place.
This is done by placing an anti-alimingJilterin the analog
circuit before the A D converter. An anti-aliasing filter is just
a low-pass filter designed to reject frequencies above n.

Anti-aliasing filters are frequently implemented as simple
R-C filters like in Figure One. This filter is not that great, as
filters go: the rate of attenuation of the higher frequencies
is rather slow. The fraction of the signal passed through the
filter as a function of frequency is called the magnitude
response. The magnitude response curve is an important
measure of the quality and suitability of a filter. Unfortu-
nately, it is often used as the only measure.

Another measure that can be just as important to
consider is the frequency-dependent effect the filter has
upon the phase of the signal. This is the pbase response.
~h~ phase response information is most u s e ~ l in two
forms, the phase delay and the group delay. The phase
delay is just a dimensional form of the phase response: it
gives the amount of time a signal of a given frequency is
delayed by the filter. The group delay describes something
slightly different. Suppose our signal is like an FM radio
signal that is being modulated in frequency around a basic
frequency. The modulation can be thought of as another
signal (the envelope) riding on top of the basic frequency
(the carrier). The phase delay of the envelope is not
generally the same as the phase delay of the carrier. The
group delay gives the delay time of the envelope.

So, to properly judge the suitability of a given filter, we
really need to check all three functions: the magnitude
response, the phase delay, and the group delay. As you
might expect, all filters sacrifice performance in one of
these three functions in order to gain in another. The best
compromise depends on your application.

All these filter characteristics can be derived from the
filter's transfer function, This is a complex function (that
is, it contains complex numbers in it) that takes a bit of
mathematics to be able to derive for an arbitrary filter. I will
only give results here for the low-pass RC filter. If you are

November 1996 December

The phase response is:

O (W) = tan-' (;::::;;)
= t a n - ' (R c ~)

So the phase delay is:

O (o)
G (W) = --

0

1
= --tan-' (-Re@)

W

and the group is:

do(@) %(a) = --
d o

- - RC

1 + R ~ C ~ W ~

With the anti-aliasing filter in place, we still need to
decide on the Proper sampling rate. You might recall
reading elsewhere about something called the Nyquist
sampling theorem. This theorem is what we want-it tells
US the sample rate must be at least twice the bandwidth of
the signal in order to avoid aliasing. Notice that I said
bandwidth, which is the range from the lowest to the
highest frequency (in the simplest case, where there are no
gaps) in the signal. The Nyquist theorem is widely mis-
quoted as stating that we must sample at twice the highest
f ~ u e n c ~ of the signal. Butthe bandwidth and the highest
frequency are not the same thing, unless we are dealing
with a base band (one that has content from a

zero the UP the highest
The distinction can be quite Consider the

following real-life example. In the RAFOS subsurface ocean
drifter I helped to develop, we navigate the float by listening
to a tone emitted by a pre-placed acoustic beacon mooring.
These Output a long that infrequency
from 258.5 to 261.5 Hz. The bandwidth of this tone is the
range of the sweep, 3 Hz. So the Nyquist theorem states that
We need a sampling rate of at least 6 Hertz, not twice the
highest frequency of 261.5 Hz (523 Hz). As a result, the
RAFOS float can comfortably oversample the signal at 10

34 Forth Dimensions

Figure Two. The reference chirp signal. The diamonds are the locations of the 128 Hz samples.

In
e

e

Ln
m

m

Ln
NG

a,
V)
V

E .-
a'-

Ln
v

Ln
0

0 - c9 '9 T c\! 0 ? T '9 C9 -
0 0 0 0 ?

I

? ? ?

Hz, using a lowly 6805 microprocessor. Erroneously sam-
pling at 523 Hz would have required a faster processor,
which would have required more electrical power, which,
in turn, would have made the instrument an impractical

Forth Dimensions

00

x(') = z ~ (~ ~) ~ ~ ~ ~ (F ((- nT))
n=-m

device (the drifter runs on batteries and has mission times
measured in months, 48 being our current record).

If we are uniformly sampling a signal at the Proper rate.
and if there is no aliased signal contaminating our measure-
ment, we can recover the value of the signal at any time. To
do this* we need do a cOnvO'utiOn Our with
the s i n c function (this is the uniform sampling theorem),

November 1996 December

where is the time we want to reconstruct the at,
is the interval between samples, and n is the sample index.
(1 am not going to explain the mahematics behind this
here. It could provide for several future columns
to explain it. ~f you want to this on your own, the
b w k by Bracewell is highly recommended,) In order to
make practical use ofthis equation, we will take [he index

n over the number of data samples, instead of infinity.
A Forth implementation of the s i n c function is,

: SINC (-- , F: x -- s i n c x)

FDUP FO= IF FDROP 1. OEO
ELSE FBUP FSIN FSWAP F/
THEN

I

BY the way, if you look up equations like these in the
literature, I guarantee you will have a horrible time
reconciling factors ofx, 2, and (This is generally
as the x-throwing contest. Where did the n: go?) In the
mathematics literature, these factors tend to be missing
from the equations altogeher. In the engineering litera-
ture, they are in different places in different books. The
reason is that such factors are immaterial, as far as the
mathematical theory of all this is concerned-they are just
normalization and dimensionalization factors. In the engi-
neering context, there is no one way to do normalization
and dimensionalization-they just need to be done self-
consistently; so one book's version can differ from that of
another book.

that we are armed with the uniform
theorem, we can do a little experiment to demonstrate
what I said about sampling a bandlimited signal. Listing

gensig.ftht is a Program that generate a test
that starts at One and 'lides to another

(a "chirpn). I have set things u p so the simulated signal
sweeps from lo Hz l2 Hz in 4.5 seconds. When the
'Onstant is the Output is at the
equivalent of 128 samples per second.

A subsample the Output Of his program is what we
will be using as data; a plot is shown in Figure Two. This

has a bandwidth of so the rate
is 4 Hz. We will oversample and sample at 6.4 Hz. Now, we
can't just take every 20th sample from the data in Figure
Two '0 use as Our measurement data; such a
contain a serious amount of aliasing in it. To make the signal

we mix it with an Hz and then
a low-pass filter with a 5 Hz cut-off to the result.

Why do we do that? From trigonometvl

2 x sin(x) x cos(y) = sin(x - y) + sin(x + y)

which means that if we take a signal of one frequency,
x, and it by another Of frequency, y, we
end up with one signal with x- Y and another
at x + y. So if x is our original signal which sweeps from
lo l2 Hz, and y is a fixed at l1 Hz, we end u p
with a signal centered at 0 Hz and another at 22 Hz. The
one at 0 Hz is the one we want to keep; the other at 22
Hz we will filter out.

This technique for shifting the center frequency of a

November 1996 December 36 Forth Dimensions

constant SAMPLING? is set to TRUE.
The output for the sampling case are the simulated

measurements we want to use the uniform sampling
theorem on. The code in regen.fth (Listing Three) reads
the data and applies the theorem to it. Comparing the
output of r e g e n with its input, we see the smoother result
one might expect. In order to see what we theoretically
expect, go back and run g e n s i g with SAMPLING? set to
FALSE and the minimum and maximum frequencies set to

and respectively, gensig this way
generates the reference signal without the 11 Hz carrier.

~~~~~~i~~ he carrier-free signal with the recon- 
structed signal (Figure Three), we see hat we generally do 
pretty well. There are two problems we can see with our 

end points hat well matched. In this example, 
he starting point looks very good, but that is an artifact 
of the fact that the signal at zero. The end-point 
pmblem is due to the fact that he theorem we are using 
assumes there is data on both sides of our estimation 
point (and, in fact, an infinite amount ofit) but, as we near 
the edges, the calculation gets most of its information 
from only one side of the point. More data helps here, but 
the end points are always going to be a problem. 
The reconstruction is slightly phase shifted late. If you 
look carefully, you'll notice that the phase shift is in the 
measurement data and that the reconstruction has the 
same shift. This is because the phase shift is caused by 
the anti-aliasing filter. The group delay of the Butterworth 
filter being used here is frequency dependent. It starts 
at zero and monotonically increases until about 10 Hz; 
at 2 Hz, it is about 0.05 seconds. This is a good example 
of where the group delay characteristics are more 
important than how sharp the high frequency cutoff is. 

Conclusion 
This installment further extends our ability to handle 

data coming in from the world. We have just 
scratched the surface of the issues involved in dealing with 
frequency-dependent data. For more information about 
handling time-dependent signals, see the references. The 
book by Oppenheim and Schafer is especially thorough, 
but it's not for the mathematically timid. 

Next time, we will close the loop between our input 
and output handling by looking at how we can modify our 
outputs on the basis of the given inputs, in order to 
provide stable control of a system. 

Please send your comments, suggestions, and criti- 
cisms to me through Forth Dimensions or via e-mail at 
skip@taygeta,com, 

zero is known as a homodyne mixer. After mixing and 
filtering the original signal, we can safely subsample it. 
The anti-aliasing filter being used here is a first-order, low- 
pass Butterworth filter. There are better choices for the 
filter (such as a Bessel filter), but I am using it here because 
it is and it a point we get to later. Scientific Library project, and maintains the system taygetaon the Internet. He 

signal is the heart of what is known as a heterodyne mixer. 
The special case where we shift to a center frequency of 

of these operations are in the code gensig.fth when the is also the President of the Forth Interest Group. 



Figure Three. The sampled and reconstructed signal. The dashed line shows the reference signal without 
the carrier-this what is to be reconstructed. The diamonds show the 6.4 Hz samples obtained by mixing, 
filtering, and subsampling the reference signal (Figure Two). The pluses show the signal reconstruction 
obtained by applying the uniform sampling theorem to the sampled data. 

Horowitz, P. and W. Hill, 1980; The Art of Electronics 
(Cambridge University Press, Cambridge, 716 pages, ISBN 
0-521-23151-5) 

Forth Dimensions 37 

References 
Bracewell, R.N., 1986; 7he Fourier Transform and Its 
Applicatiom(McGraw-Hill, New York, 474 pages, ISBN 0- 
07-0070 15-6) 

November 1996 December 

Oppenheim, A.V. and R.W. Schafer, 1975; Digital Signal 
Processing(Prentice-Hall, Englewood Cliffs NJ, 586 pages, 
ISBN 0-13-214635-5) 



Listing One. Examples of simple period and frequency counters. 

\ freq.fth Simple implementations of a period and frequency counter 
\ sampling data on the parallel #STATUS port bit 7 

\ This code released to the public domain September 1996 Taygeta Scientific Inc. 

\ $Author: skip $ 
\ $Workfile: freq.fth $ 
\ $Revision: 1.0 $ 
\ $Date: 28 Sep 1996 20:05:14 $ 
\ ====----------------------- ........................................................................... 

HEX 
378 CONSTANT #DATA 
#DATA 1+ CONSTANT #STATUS 
#DATA 2 + CONSTANT #COMMAND 
DECIMAL 

\ ............................................................................... 

\ The following two words are adapted from: Hendtlass, T., 1993; Real Time Forth 
\ If you don't have it, GET THIS BOOK! contact: tim@brain.physics.swin.oz.au 

\ An F-PC specific <read-clock> 
code <read-clock> ( -- n ) 

push ax 
mov ax, # 0 
int 26 
POP ax 
push dx 
next 

end-code 

: DOWN-COUNTER \ creates a countdown timer 
CREATE ( -- ) 
2 CELLS ALLOT \ set aside 2 slots, user value and read value 

DOES> 
<read clock> \ read hardware clock 
OVER CELL+ @ \ get last clock value 
OVER - \ get the change 
2 PICK + !  \ update user value 
OVER CELL+ ! \ save last read value 

, 
\ ................................................................. 

\ PC-specific words to set hardware timer to 1193181.667 ticks/second 
\ and then later to restore it back to the standard 18.2 ticks/second 
\ Note: this won't work in a Windows DOS shell. 

HEX 

43 CONSTANT TIMER-CONTROL 
40 CONSTANT TIMER-0 

: initialize-timer ( -- ) 
34 TIMER-CONTROL PC! 
0 TIMER 0 PC! 
o TIMER~O PC ! 

: restore-timer ( -- ) 
36 TIMER CONTROL PC! 
0 TIMER 5 PC! 
o TIMER-o - PC! 

November 1996 December 38 Forth Dimensions 



\ ................................................................. ....................................... 
DECIMAL 

: wait-for-low ( -- ) \ wait until #STATUS bit 7 is low 
BEGIN 

#STATUS pc@ 128 AND O =  
UNTIL 

, 

: wait-for-high ( -- ) \ wait until #STATUS bit 7 is high 
BEGIN 

#STATUS pc@ 128 AND 
UNTIL 

: edge-high? ( -- t/f ) \ return status of #STATUS bit 7 
#STATUS pc@ 128 AND 

VARIABLE accumulate 

\ ===============the period counter================================ 
: PERIOD ( n -- x ) \ n is number of samples, x is average period 

0 accumulate ! 
initialize-timer \ run the timer at a fast rate 

0 DO 
wait-for-low \ make sure the level is low first 
<read-clock> 
wait-for-high \ now poll for a rising edge 
<read-clock> - \ neglecting rollover 
accumulate + ! 

LOOP 

restore-timer 

I accumulate @ 

\ ===============the frequency counter============================================ 

\ depending upon your hardware, this simple counter is good to up to about 20 Khz 
DOWN-COUNTER count - down 

: FREQUENCY ( n -- x ) \ n is number of timer cycles, x is average freq. in Hz 
0 accumulate ! 

wait-f or-low \ make sure the level is low first 
DUP count-down ! 

BEGIN 
edge-high? \ test to see if edge is high 

IF 1 accumulate + !  
wait-for-low \ make sure level goes back low 

THEN 
count-down @ 0 <= 

UNTIL 

\ convert counts to Hz 
10 * 
accumulate @ 
182 ROT * /  

Forth Dimensions 39 November 1996 December 



I Listing Two. The program to generate either the reference signal or the data samples. 1 

\ gensig.fth Generates a reference chirp test signal 
\ or, if SAMPLING? is true, generate a sampled signal 

\ This is an ANS Forth program requiring: 
\ 1. The Floating point word set 
\ 2. The conditional compilation words in the 
\ PROGRAMMING-TOOLS wordset 
\ There is an environmental dependency in that it is assumed 
\ that the float stack is separate from the parameter stack 

I \ This code released to the public domain September 1996 Taygeta Scientific Inc. I 
\ $Author: skip $ 
\ $Workfile: gensig.fth $ 
\ $Revision: 1.0 $ 
\ $Date: 28 Sep 1996 20:04:22 $ 
\ ................................................................ 

FALSE CONSTANT SAMPLING? 
10.OEO FCONSTANT F-MIN \ 10 " H z "  minimum frequency 
12.OEO FCONSTANT F-MAX \ 12 " H z "  maximum frequency 
4.50EO FCONSTANT SWEEP \ the frequency sweep time 

I FVARIABLE DF I 
6.28318530730 FCONSTANT TWO-PI 
0.007812530 FCONSTANT DT \ 128 " H z "  sample rate 

: tone ( -- , F : t f - - x )  
F* TWO-PI F* FSIN 

, 

SAMPLING? [IF] 

\ 16 CONSTANT DECIMATE 
20 CONSTANT DECIMATE 

\ effective sampling at 8 H z  
\ effective sampling at 6.4 H z  

F MAX F MIN F+ 2.0EO F/ FCONSTANT F-CENTER I - 
- 

: MIX ( -- , F: x t -- X' ) 
F - CENTER F* TWO PI F* FCOS - 
F * 

\ account for loss due to the mixer shifting stuff to both a low and high band 
2.OEO F* 

0.0127930 FCONSTANT COEF A 
-1.6556130 FCONSTANT COEF-B 
0.7067630 FCONSTANT COEF-c - 

FVARIABLE IN-0 0.OEO IN-0 F! 
FVARIABLE IN-1 O.oE0 IN 1 F! 
FVARIABLE IN-2 O.OEO 1 ~ 1 2  F! 
FVARIABLE OUT-0 O.OEO OUT-0 F! 
FVARIABLE OUT-1 O.OEO OUT-1 F! 
FVARIABLE OUT-2 O.OEO OUT-2 F! 

I I 

November 1996 December 40 Forth Dimensions 



\ f i r s t  o r d e r  low-pass B u t t e r w o r t h  f i l t e r  
: F I L T E R  ( -- , F :  x -- x '  ) 

I N  0 F !  - 

OUT 1 F @  COEF B  F *  F -  
OUT-2 F @  COEF-c F *  F -  I - 

- 
I FDUP OUT-0 F !  

\ s h i f t  d a t a  f o r  n e x t  t i m e  
I N  1 F @  IN-2 F !  
IN-o - F@ IN-1 F !  

OUT-1 F @  OUT 2 F !  
OUT - o F@ OUT-1 - F!  

, 

[ELSE]  

I 1 CONSTANT DECIMATE 

: f r e q  ( - - ,  F :  t -- f  ) 

\ c a l c u l a t e  t h e  f r e q u e n c y  f o r  t h i s  t i m e  
FDUP FO< I F  FDROP F MIN EXIT THEN 
SWEEP FOVER F< I F  FDROP F* EXIT THEN 
SWEEP F /  DF F @  F*  F MIN F+ - 

: g e n s i g  ( -- , F :  maxt -- ) 
DT F /  F>D DROP 

F MAX F MIN F-  D F  F !  - 

0 .  OEO \ t h e  t i m e  
0 DO 

FDUP FDUP f r e q  
t o n e  

FOVER MIX F I L T E R  

I DECIMATE MOD O= I F  
FOVER F .  F .  CR 

ELSE 
FDROP 

THEN 

: MIX ( -- , F :  x  t -- x ) DT F +  
FDROP \ do n o t h i n g  f o r  r e f .  s i g n a l  I LOOP 

: F I L T E R  ( -- , F :  x -- x ) ; IMMEDIATE I ; FDROP 

1 SWEEP g e n s i g  bye 

- 

Statement of 
Ownership, Management, and Circulation 

1. Publication xtle: Forth Dimensions 
2. Publication No. 0002-191 
3. Filing Date: Sept. 27, 1996 
4. Issue Frequency: bi-monthly 
5. No. of Issues Published Annually: 6 15. Extent and Nature of Circulation: Average No. Copies Actual No. Copies of 
6. Annual Subscription Price: $45 Each Issue During Single Issue Published 
7. Complete mailing address of known of- Preceding 12 Month2 Pearest to Filing Date 

fice of publication: P.O. Box 21 59, a. No. Copies (netpress -1 1200 1200 
Oakland, California 94621-0054 b. Paid and/or Requested Circulation 

8. Complete mailing address of headquar- (1) Sales through Dealers and 

ters or general business office of Publisher: Carriers, Street Vendors, and 

same as above Counter Sales (not mailed) 0 0 
9. Publisher: Forth Interest Group, P.O. (2) Paid or Requested Mail 

Box 2154, Oakland, California 94621- Subscriptions (Include Advertisers' 

0054. Editor: P.O. Box 2154, Oakland, Proof Copies/Exchange Copies) 1020 914 
California 94621-0054. c. Total Paid and/or Requested 

10. Owner: Forth Interest Group (non-profit), 1020 914 
P.O. Box 2154, Oakland, California 94621- d. Free Distribution by Mail 

0054. (Samples, Complimentary, and 
1 1. Known bondholders, mortgagees, and Ofher Free) 10 10 

other security holders owning or holding e. Free Distribution Outside the Mail 
1 percent or more of total amount of (Cam.ersor OtherMeam) 0 0 
bonds, mortgages, or other securities: f. Total Free Distribution 10 10 
none. g. Total Distribution 1040 934 

12. The purpose, function, and nonprofit h. Distributed 
status of this organization and the ex- (1) Office Use, Leftovers, Spoiled 160 266 
empt status for federal income tax (2) Return from News Agents 0 0 
purposes: has not changed during pre- i. Total 1200 1200 
ceding 12 months. Percent Paid and/or Requested 

13. Publication Name: Forth Dimensions Circulation 98.07% 97.85% 
14. Issue Date for Circulation Data Below: Signature and Title of Editor, Publisher, Business Manager, or Owner: 

Nov.-Dec. 1996 John D. Hall, President, September 27, 1996. 

Forth Dimensions 41 November 1996 December 



I Listing Three. The program to apply the uniform sampling theorem to the sampled data. I 
\ r egen . f th  r e c o n s t r u c t s  t h e  o r i g i n a l  s i g n a l  f r o m  t h e  s a m p l e d  s i g n a l  
\ T h i s  i s  an ANS F o r t h  p r o g r a m  r e q u i r i n g :  
\ 1. T h e  F l o a t i n g  p o i n t  w o r d  set 
\ 2 .  T h e  F i l e  w o r d s e t  
\ 3. T h e  c o n d i t i o n a l  c o m p i l a t i o n  w o r d s  i n  t h e  PROGRAMMING-TOOLS w o r d s e t  
\ 4 .  T h e  F o r t h  S c i e n t i f i c  L i b r a r y  A r r a y  w o r d s  
\ 5.  T h e  F o r t h  S c i e n t i f i c  L i b r a r y  A S C I I  f i l e  1/0 w o r d s  
\ T h e r e  i s  a n  e n v i r o n m e n t a l  d e p e n d e n c y  i n  t h a t  it i s  a s s u m e d  
\ t h a t  t h e  f l o a t  s t a c k  i s  sepa ra te  f r o m  t h e  p a r a m e t e r  s t a c k  

\ T h i s  code released t o  t h e  p u b l i c  d o m a i n  S e p t e m b e r  1 9 9 6  T a y g e t a  S c i e n t i f i c  I n c .  
\ $ A u t h o r :  s k i p  $ 
\ $ W o r k f i l e :  r e g e n . f t h  $ 
\ $ R e v i s i o n :  1 . 0  $ 
\ $ D a t e :  2 8  S e p  1 9 9 6  2 0 : 0 4 : 5 0  $ 
\ ................................................................ 

S"  / u s r / l o c a l / l i b / f o r t h / f s l - u t i 1 . W  INCLUDED 
S"  /usr/local/lib/forth/fileio.fth" INCLUDED 

FALSE CONSTANT STANDALONE 
-1 VALUE f i n  \ i n p u t  f i l e  h a n d l e  

1 -1 VALUE £ o u t  \ ou tpu t  f i l e  h a n d l e  

0 . 0 0 7 8 1 2 5 3 0  FCONSTANT OUT-DT \ 1 2 8  "Hz" o u t p u t  r a t e  
0 . 1 5 6 2 5 3 0  FCONSTANT DT \ 6 . 4  " H z "  s a m p l e  r a t e  
3 . 1 4 1 5 9 2 6 5 3 6 3 0  FCONSTANT P I  
6 . 2 8 3 1 8 5 3 0 7 3 0  FCONSTANT TWO-PI 
2 9  CONSTANT NUM-SAMPLES 
5 6 0  CONSTANT NUM-OUTPUT 

NUM SAMPLES FLOAT ARRAY t {  
NUM-SAMPLES - FLOAT ARRAY x {  \ t h e  s a m p l e s  

CREATE o u t b u f  3 2  ALLOT 

: nex t - f i l e  ( -- c-addr u  ) 

f - i n d e x  @ argc >= i f  
0  0  

else 
f-index @ argv 
1 f - i n d e x  + !  

t h e n  

CREATE CRLF 2 ALLOT 

FVARIABLE P I / T  
9  CONSTANT TAB CHAR \ TAB c h a r a c t e r  
CREATE TAB 1 ALLOT 

STANDALONE [ I F  ] 
v a r i a b l e  f - i n d e x  1 £ - i n d e x  ! 

[ E L S E ]  
: next  f i l e  ( -- c-addr u ) 

b l - w o r d  c o u n t  

I 
[THEN] 
: S > F  ( x -- , F :  -- f x  ) 

S>D D>F 

: ] z e r o  ( n  x -- ) 
SWAP 0  DO 

DUP I } O.OEO F !  
LOOP 
DROP 

November 1996 December 

Support for older systems 
Hands-on hardware and software 

Computing on the Small Scale 
Since 1983 

Subscriptions 
1 year $24 - 2 years $44 

All Back Issues available. 

TCJ 
The Computer Journal 

P.O. Box 3900 
Citrus Heights, CA 9561 1-3900 

800-424-8825 1 91 6-722-4970 
Fax: 91 6-722-7480 
BBS: 91 6-722-5799 

42 Forth Dimensions 



: sinc ( -- , F: x -- sincx ) 
FDUP FO= I F  FDROP 1.OEO 

E L S E  FDUP F S I N  FSWAP F /  
THEN 

: estimate ( n -- , F :  t -- x ) 
P I  DT F /  P I / T  F !  
0 .  OEO FSWAP ( F: sum t ) 

0 DO 
I S > F  DT F* 

FOVER FSWAP F -  ( F :  sum t t-nT ) 

P I / T  F@ F* 
s inc 

X{ I 1 F@ F *  
FROT F+ 

FSWAP 
LOOP 
FDROP 

: print-endline ( -- ) 

CRLF 
1 \ for MS-DOS use 2 instead of 1 
£out write-token 

, 

: print-tab ( -- ) 
TAB 
1 
£out write-token 

, 

: regen ( --<infile outfile>-- ) 
1 0  CRLF C !  13 CRLF 1+ C !  
TAB-CHAR TAB C !  

next_£ ile 
R/O OPEN-FILE ABORT" unable to open data file" 
TO fin 

next file 
\ open the output file 
W/O CREATE-FILE ABORT" unable to open output file" TO £out 
CR 

NUM SAMPLES x i  )zero 
NUMISAMPLES t I ]zero 
NUM-SAMPLES 0 DO 

I .  
fin get-float FDUP F .  ti I 1 F !  

fin get-float FDUP F .  xi I 1 F! 
CR 

LOOP 
f i n  CLOSE-FILE DROP 

NUM-OUTPUT 0 DO 
I S > F  OUT-DT F* FDUP outbuf £out write-float 

print-tab 

NUM SAMPLES estimate 
outguf f out write-f loat 
print-endline 

LOOP 
£out CLOSE-FILE DROP 

Forth Dimensions 43 November 1996 December 



Asilomar 
FORML CONFERENCE 

The original technical conference for professional Forth programmers and users. 

18th annual FORML Forth Modification Laboratory Conference 
Following Thanksgiving November 29-December 1, 1996 

Asilomar Conference Center 
Monterey Peninsula overlooking the Pacific Ocean 

Pacific Grove, California, USA 

Experimenting with the ANS Forth Standard 
The ANS Forth standard has been out for two years, and the review process will start in another two years. FORML, 
with it's charter as Forth's "Modification Laboratory," is the appropriate place to let others know what your experiences 
have been as a developer or user while there's time for your ideas to spread. 

Papers are sought that report on your experience writing ANS Forth programs and systems. That is, on your 
experiments. By calling attention to the successes and the problems now, before the review process begins, others will 
repeat your experiments, confirming or refuting your hypotheses. 

Please, whether your ANS experiment was one line or a thousand, whether it succeeded or failed, or can be described in 
one page or ten, bring it to this year's FORML Conference to share with the world. As always, papers on any Forth- 
related topic are welcome. 

Mail abstract(s) of approximately 100 words by October 1, 1996 to FORML, PO Box 2154, Oakland, CA 94621 or 
e-mail to FORML@ami.vip.best.com. Completed papers are due November 1, 1996. 

John Rible, Conference Chairman Robert Reiling, Conference Director 

Advance Registration Required Call FIG Today 5 10-893-6784 
Registration fee for conference attendees includes conference registration, coffee breaks, and notebook of papers 
submitted, and for everyone rooms Friday and Saturday, all meals including lunch Friday through lunch Sunday, wine 
and cheese parties Friday and Saturday nights, and use of Asilomar facilities. 

Conference attendee in double room-$440 Non-conference guest in same room-$320 Children under 18 years old in 
same room-$190 Infants under 2 years old in same room-free Conference attendee in single room-$570 

The Asilomar Conference Center combines excellent meeting and comfortable living accommodations with secluded 
forests on a Pacific Ocean beach. Early registration is recommended, space for this conference is limited. 

Forth Interest Group members and their guests are eligible for a ten percent discount on registration 
fees. 

Registration and membership information available by calling, fax or writing to: 
Forth Interest Group, PO Box 2154, Oakland, CA 94621 

voice 510-893-6784, fax 510-535-1295 
Conference sponsored by the Forth Modification Laboratory, a Forth Interest Group activity. 


