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SILICON COMPOSERS INC
FAST Forth Native-Language Embedded Computers
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Harris RTX 2000'"™ 16-bit Forth Chip
+8 or 10 MHz operation and 15 MIPS speed.
+1-cycle 16 x 16 = 32-bit multiply.
«1-cycle 14-prioritized interrupts.
-two 256-word stack memories.
«8-channel 1/0 bus & 3 timer/counters.

SC/FOX PCS (Parallel Coprocessor System)
+RTX 2000 industrial PGA CPU; 8 & 10 MHz.
+System speed options: 8 or 10 MHz.
+32 KB to 1 MB O-wait-state static RAM.
«Full-length PC/XT/AT plug-in (6-layer) board.

SC/FOX VME SBC (Single Board Computer)
«RTX 2000 industrial PGA CPU; 8, 10, 12 MHz.
«Bus Master, System Controller, or Bus Slave.
+Up to 640 KB O-wait-state static RAM.
+233mm x 160mm 6U size (6-layer) board.

SC/FOX CUB (Single Board Computer)
*RTX 2000 PLCC or 2001A PLCC chip.
+System speed options: 8, 10, or 12 MHz,
+32 KB to 256 KB O-wait-state SRAM.
+100mm x 100mm size (4-layer) board.

SC32™ 32-bit Forth Microprocessor
8 or 10 MHz operation and 15 MIPS speed.
+1-clock cycle instruction execution.
+Contiguous 16 GB data and 2 GB code space.
«Stack depths limited only by available memory.
+Bus request/bus grant lines with on-chip tristate.

SC/FOX SBC32 (Single Board Computer32)
+32-bit SC32 industrial grade Forth PGA CPU.
+System speed options: 8 or 10 MHz.
+32 KB to 512 KB O-wait-state static RAM.
+100mm x 160mm Eurocard size (4-layer) board.

SC/FOX PCS32 (Parallel Coprocessor Sys)
+32-bit SC32 industrial grade Forth PGA CPU.
+System speed options: 8 or 10 MHz.

*64 KB to 1 MB O-wait-state static RAM.
+Full-length PC/XT /AT plug-in (6-layer) board.

SC/FOX SBC (Single Board Computer)
+RTX 2000 industrial grade PGA CPU.
+System speed options: 8, 10, or 12 MHz.
+32 KB to 512 KB O-wait-state static RAM.
+100mm x 160mm Eurocard size (4-layer) board.

For additional product information and OEM pricing, please contact us at:
SILICON COMPOSERS INC 655 W. Evelyn Ave. #7, Mountain View, CA 94041 (415) 961-8778
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Editekiall

USENIX, the world-wide UNIX user association, gave a Lifetime Achievement award
this year to Wil Baden for “Major Contributions to Software Tools.” This is for work Wil
did from 1976 — 1981. Wil’s involvement with Forth began in 1979. We congratulate Wil
and thank him for his ongoing contributions in our own arena, not least of which is
his Stretching Forth column in this magazine.

I also want to take this opportunity to thank the world-wide Forth community for
its collective contributions to Forth Dimensions. Your support—as responsive readers,
as writers providing technical content, and as innovators using and refining the
language—has ensured its survival even when times have been tough for small, special-
interest publications in general.

As editor, 1 let the collective experience and needs of our writers and subscribers
determine the direction and content of the publication. Feedback is very important if
we are to keep on track, so let us know how we are doing. We hope you will participate
in the magazine, share it with others, and encourage them to join us.

We especially welcome your written contributions to upcoming issues: articles,
news, tutorials, and press releases about Forth-related products and events. With your
continuing participation, we can look forward to maintaining high quality and to
serving the diverse Forth community.

—Marlin Quverson
editor@forth.org
ouversonm@aol.com

dot-quote I

Maybe this is the problem: Forth programmers are too independent.
Instead of agreeing on a standard and then helping each other work
around the parts of the standard they don'’t like, everyone wants to
design their own standard. This isnt necesarily a bad thing, but if Forth
is to become more widespread, Forth programmers need to start
thinking about working together instead of going off on their own
tangents.

Look at C++... I don’t care for it atall, but it’s “successful” because the
people who use it as their language of choice are willing to work with
the limitations of the language (in order to maintain a standard) and

write applications instead of trying to write a better version of C++
every month.

—Ken Deboy
glockr@delphi.com
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ANS FortH

M. Edward Borasky
Beaverton, Oregon

1. Motivation

Recently, there has been a fair amount of discussion in
comp.lang forth about structured programming, multiple
entries and exits, finite state machines, and other issues of
Forth programming style. Concerns about readability seem
to be foremost, and a number of attempts to enhance the
ANS Forth collection of control structures have been posted.
The draft proposed ANS standard (2], section A.3.2.2, pages
136-138) gives an excellent description of the control flow
stack and techniques for designing your own control
structures, as does Jack Woehr in chapter six of [3]. As an
exercise to learn about this useful capability of ANS Forth,
and as my contribution to the debate, I have implemented
the Dijkstra guarded command control structures in hForth.

2. Structured Programming and the

Dijkstra Guarded Command Control Structures

In the early to mid 1970s, there was an explosion of
interest in structured programming and the exciting possi-
bility that one could actually prove mathematically that
programs were correct. The latter efforts, pioneered by
British computer scientist C.A.R. (Tony) Hoare and Dutch
computer scientist Edsger W. Dijkstra, grew into a new
subfield of computer science, now a major branch of Formal
Semantics of Programming Languages. While much of this
material is academically oriented and not readable by most
working programmers and managers, Dijkstra's A Disci-
pline of Programming (1) is a happy exception.

The concept of proving one’s programs correct in
general, and this book in particular, made a profound
impression on me. Unfortunately, I don’t have space to go
into much detail about [1) or the mini-language Dijkstra
created to illustrate the concepts. Nor do 1 have the time
to translate the entire book into ANS Forth, although I'm
convinced that it would be easier for ANS Forth than for
most other languages. Instead, I will focus on the guarded
command control structures and my implementation of
them in Wonyong Koh's hForth. If you can find a copy of
(1], you will find it very rewarding,

The basic syntax of Dijkstra’s mini-language is similar
to that of Algol and its descendants, such as Pascal. For
example, to set the variables x and y to 3 and 5, Dijkstra
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would write:
x = 3; y :=5

using the semicolon as a statement separator. This is read
x becomes 3, then y becomes 5. This is, of course,

3x !5 y!

in Forth.

We will define the control structures from the bottom
up. Atthe lowest level we have a guarded command. This
is simply a2 Boolean expression followed by a right-arrow
followed by one or more statements separated by semico-
lons. In Dijkstra’s language, an example would be:

which is read, ifxis greaterthany, then x becomes x minus
y. A Forth programmer would write:

x @ y @ > IF y @ NEGATE x +! THEN

In the Dijkstra syntax, the statements after the right-
arrow are executed only if the condition before the right-
arrow, which is called the guard, is true. Some variant of
this construct appears in nearly all modern programming
languages, including Forth as we have just seen. This is the
basic building block of the Dijkstra constructs. Figure One
shows the flowchart of this simple guarded command.

Next, Dijkstra defines a guarded command set. This is
a series of guarded commands separated by bars. For
example, Dijkstra would write
X >y ~>X =X -y |ly>%x->y =y -Xx
The key word in this definition is set. This is a set in the
mathematical sense; ordering of the alternatives is not
defined. This is an intermediate step on our way to larger
constructs, so [ will not show a flowchart or a Forth
translation.

Now we're ready to define our first real construct. We

November 1996 December



Figure One. Flowchart for single guarded command.

Figure Two. Flowchart for ‘i ... fi’ construct. |

Statements

will enclose a guarded command set in a pair of if... fi
brackets:
if

i

X >y > X

y > X =->y
fi

which, as written, has a serious flaw!
The exact semantics of this construct are as follows:

Select one of the true guards and execute the corre-
sponding statements. If none of the guards are true, abort.
If more than one guard is true, only one will be selected,
but the programmer will not be able to predict or control
which one it is!

So, what's the flaw? This program will abort if x and y
are equal! This seems fair enough; the programmer should
have known that equality was possible and planned for it.

This construct, as Dijkstra defined it, is nondeterministic.
The nondeterminacy is convenient in theoretical work but
for most practical programming it is a nuisance. The
programmer can, of course, prevent nondeterminacy by
assuring that the guards are mutually exclusive. But, as we
will see shortly, a different approach is usually taken.

This construct, in its full nondeterministic form, is not
present in the widely used programming languages of
today. It has, however, been used in academic program-
ming languages. A form of it appeared in the Occam
language. The common usage is the sequential semantics:

Test the guards in the order written and execute the
statements corresponding to the first true one found.

This form was used in Per Brinch Hansen’s little-known
Edison language (6], pages 28-31) and is the form I have
implemented.

Figure Two shows the flowchart of the sequential if ...
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Abort

i construct.

Before moving on, let's manually translate the above
flawed example into standard ANS Forth using only Core
words and the sequential semantics:
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x @y @>1IF
y @ NEGATE x +!
ELSE
vy @ x @ > IF
x @ NEGATE y +!
THEN
THEN

What happens when x and y are equal? Nothing; the
programmer isn't informed that he forgot that possibility.
In addition, this code is ugly. Even if you factor out the
tests and statements, replacing them with single-word
equivalents, it is still a sequence of nested IF .. ELSE ..
THEN constructs. And the depth of nesting grows with the
number of elements in the guarded command set!

This is exactly the kind of ugliness that the posters in
comp.lang forth are complaining about, and rightly so. As
a preview of things to come, here’s how you would write
this in my implementation of the Dijkstra constructs:
{IF

x @y @ > IF> y @ NEGATE x +!
| IF |

y @ x @ > IF> x @ NEGATE y +!
FI}

1t's still flawed, but

1. It’s not as ugly. There is a pleasing symmetry to the
construct. Moreover, no matter how many alternatives
there are, nesting is only one level deep.

2. If x and y are equal, my implementation will, in fact,
abort.

The final construct is syntactically similar but semanti-
cally opposite. Instead of if... fiour brackets are do ... od
and the construct is a loop:
do

X >y =-> X

1
»
I

y > x >y =
od

Not only is this program correct, it actually does something
useful! Can you guess what it does?
The semantics are:

If none of the guards are true, do nothing and
terminate normally. Otherwise, select one of the true
guards nondeterministically and execute the correspond-
ing statements. Then go back to the do and repeat the
process until none of the guards are true.

Once again, most practical implementations, including
mine, test the guards in the order written and execute the
statements corresponding to the first true one found.

By being clever with the ANS standard words BEGIN,
UNTIL, WHILE, IF, THEN, and others, I'm sure it's
possible to duplicate the operation of the sequential form
of this construct, just as we were able to duplicate the if
... fi construct. Even for this simple example, the code is

Forth Dimensions

Figure Three. Flowchart for ‘do ... od’ construct.

Statements 1

Statements 2

Statements n

ugly enough that I gave up trying to do it and implemented
my own compiling words using a more readable syntax:
{DO

X @ y @ > DO> y @ NEGATE x +!
{DO|

y @ x @ > DO> x @ NEGATE y +!
oD}

Have you guessed what it does yet? Here’s a hint: start with
511 * x ' 5 19 * y !

and simulate it on paper. Remember, the loop terminates

when xand yare equal. Figure Three shows the flowchart
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of the sequential do ... od construct.

3. ANS Forth Control Flow Tools
First, let's see how ANS Forth compiles our simplest
construct, the guarded command. As you will recall, our
example is

GUARDED-COMMAND ( — )
x @y @ > IF \ x is larger than y
y @ NEGATE x +!
THEN

The compiler, started by the colon, starts a dictionary entry
for the new word GUARDED~-CGOMMAND. It then compiles
each word it encounters in an implementation-defined
manner. Figure Four shows schematically what this dictio-
nary entry looks like just after the compiler has finished
processing the >.

Then the compiler encounters the IF. We are now
inside the diamond on the flowchart (Figure One).

IF is an immediate, compile-only word. So the com-
piler executes the IF. What IF does here is compile a
conditional branch after the >. This branch will look at the
flag on top of the stack at run time and, if it is FALSE (all
bits zero), the branch will be taken to the point in the code
just after the THEN. This corresponds to the down-arrow
labeled F. If the flag is TRUE (any bits non-zero), the
branch will not be taken and execution will continue with
the words after the IF, in this case the code to subtract y
from x. This corresponds to the right-arrow labeled T.

But how does the compiler know where the THEN is
located? How does it know how far to branch when the
flag is FALSE? It doesn't. So it compiles the branch with
an empty spot reserved for the branch target, and places
a token called an orig, short for “origin,” on the control
flow stack. This orig tells the compiler where to place the
branch target when it does find the matching THEN. Figure
Five shows the dictionary entry for GUARDED-COMMAND
after the compiler has executed the IF.

Compilation continues normally until the compiler
reads the THEN. THEN, like IF, is an immediate compile-
only word. What does THEN have to do? It doesn’t have to
generate any code. All it has to do is fill in the target
address in the open branch placed in the dictionary by IF,
so that the branch points to the current location. How does
it know where to find the branch? It gets this information
from the orig on the control flow stack. This orig was
placed there by the IF for just this purpose. This process
of filling in the branch address and consuming the orig is
called resolving the orig. Figure Six shows the completed
guarded command.

Now let’s look at another component we'll need:
AHEAD. AHEAD is similar to IF; it compiles an open
forward branch into the dictionary when encountered by
the compiler, and places an orig onto the control flow
stack for a subsequent THEN to resolve. However, instead
of the conditional branch of IF, AHEAD compiles an
unconditional branch. We will see AHEAD again, when we
November 1996 December

Figure Four. Guarded command before 'IF". |

Figure Five. Guarded command after ‘IF’.

>

>

branch if 0 to ?

look at the code for | IF |. In summary, we have a forward
conditional branch, IF; a forward unconditional branch,
AHEAD; and a word that resolves either, THEN.

How does ANS Forth compile loops? We first need a
word to mark where the top of the loop is. That word is
BEGIN. BEGIN simply puts a token, called a dest for
“destination,” onto the control flow stack. Subsequent
branches back to the BEGIN will use this dest to know
where the target of the backward branch is. Two basic
backward branches complete the loop construction set.
The unconditional branch is called AGAIN. AGAIN gener-
ates an unconditional branch back to the location given by
the deston top of the control flow stack, then removes the
dest. This process is called resolving the dest.

The conditional backward branch is called UNTIL.
Like IF, the conditional branch is a branch if the flag is
FALSE: all zeroes. If the flag is TRUE, the branch is not
taken. And like AGAIN, the branch is back to the BEGIN,
marked by the dest on top of the control flow stack. In
summary, we have one word, BEGIN, that creates a dest;
and two, AGAIN and UNTIL, that resolve one. When we
examine my implementation of the Dijkstra constructs, we
will see IF, THEN, AHEAD, BEGIN, and AGAIN in action.

Before we walk through the implementation, there are
two more words we will need. As we've seen, the ANS

Forth Dimensions



Figure Six. Guarded command after ‘THEN’. J

>

branch if 0 to #

y

@

NEGATE

X

+!

<

standard uses a special stack, called the control flow stack,
to keep track of all these orig and dest tokens. In stack
diagrams, this stack is denoted by C:. Sometimes, we will
need to rearrange these tokens at compile time. The words
that do this are CS-PICK and CS-ROLL. They are
analogous to PICK and ROLL on the data stack.

4. hForth Implementation
of the Dijkstra Constructs

hForth ([4]) is a public-domain, extended subset of ANS
Forth. The version 1 used is available from the Taygeta
Scientific Web page (fip://ftp.taygeta.com/pub/Forth/Re-
viewed/hf86v097.zip). This is version 0.9.7 of hForth, and
runs on any 8086 DOS system; T used the HP100LX Palmtop
PC (I5D. With minor modifications, this code should run on
any ANS Forth system that includes the control flow stack
words. In the spirit of Forth, my implementation is a set of
compiling words, they extend the Forth compiler to compile
these control structures as written.

hForth does not define the control flow stack operators
CS-PICK and CS~ROLL. However, hForth uses the data
stack as the control flow stack during compilation. As a
result, we can define them simply [see listing]. Because the
control stack may or may not be the same as the data stack
on various Forths, we need to be careful to write the code
so it will work either way. We will look at the if ... fi
construct first. You may want to follow along on the
Forth Dimensions

flowchart (Figure Two).

First, we define the opening bracket. Dijkstra calls it if]
which already has a meaning in ANS Forth. Moreover, 1
wanted something that looked like a bracketing operator,
solpicked { IF, pronounced “brace-if.” As we will see, the
{IF .. FI} construct will generate an arbitrary number
of unresolved origs on the control flow stack which don’t
get resolved until the closing FI} is seen. This means we
need to count them. All { IF does is place a zero on the
data stack for this counter.

Now let’s look at the right-arrow operator. —> has a
meaning already, so that's out. In addition, I wanted
something that reinforced the construct type in the reader’s
mind, so I picked IF>, pronounced “if-arrow.” If you're
following along on the flowchart, we're inside one of the
diamonds corresponding to a guard. Atrun time, a flag will
be on the stack. The IF> needs to open up a new
conditional branch, just like the standard Forth IF. And it
needs to count that branch. Ifthe flagis FALSE, ourbranch
will skip over the code that follows the IF> and proceed
to the next guard. Justlike the IF in the guarded command,
this is the down-arrow labeled F. If the flag is TRUE, we
will take the right-arrow labeled T and execute the code
following the IF>. We won't know the target of this
branch until we see the next | IF | or the closing FI}.

Since, in ANS Forth, the control flow stack may or may
not be the data stack, we have to write code that will work
either way. So we increment the counter on top of the data
stack, move it to the return stack, then insert the desired
branch with a POSTPONE IF operation. This puts an orig
on the control flow stack for a later THEN to resolve. Then
we bring the count back to the data stack.

The barfor {IF .. F1}, written | IF | and pronounced
“if-bar,” has to do two things. The | IF | marks the end of
the code associated with the previous guard and the
beginning of the next guard. First, we need to compile in
an unconditional branch to the end of the construct, which
is marked by an as-yet-unseen FI}. If you're following
along on the flowchart, this is the arrow coming out of the
right of the statements box. This is an unconditional branch
forward to an unknown location, a job for POSTPONE
AHEAD.

Next, we need to resolve the open conditional branch of
the previous guard, so that if the guard is false, control will
end upjustafier the unconditional branch we just compiled.
That way, we'll be ready to execute the code for the next
guard which follows the | IF |. This is the arrow coming out
of the bottom of the previous guard’s diamond; the branch
was compiled in by the preceding IF>. There’s one small
problem—the POSTPONE AHEAD covered up the orig we
neced with a new orig 1 CS-ROLL fixes this, and a
POSTPONE THEN resolves the open IF. Since a new orig
is created and an old one is resolved, the count does not
change. However, we do need to save and restore it.

Now we need to define the closing bracket FI},
pronounced “fie-brace.” As noted earlier, if none of the
guards are true for the {IF .. FI}, we consider it a
programming error and want to abort. In hForth, we have
CATCH and THROW from the ANS Exception Handling
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word set. So I defined a word BAD { IF..FI} (“bad-if-fie”),
which will do the aborting. I used -22 for the THROW code;
this stands for control structure mismatch.

So what does FI} need to do? As usual, we first save
the count of open branches that need to be resolved on the
return stack. Next, like | IF |, we have to insert a forward
branch to the end of the construct to wrap up processing
of the code following a true guard. As usual, this is done
with POSTPONE AHEAD,

Next, we need to resolve the open forward branch
generated by the last guard’s IF>. As before, this is done
with 1 CS-ROLL POSTPONE THEN. If you're following
along on the flowchart, we're on the false branch out of
the bottom diamond. Here is where we want to abort,
which we do with POSTPONE BAD{IF..FI}.

Remember all those POSTPONE AHEAD operations? All
those unconditional branches tothe FI} that we compiled
in after the code executed following a true guard? All those
origs sitting on the control flow stack? All of them are now
resolved to point to the present location, just after the
abort. We retrieve the count from the return stack, then 0
?DO POSTPONE THEN LOOP does exactly the right num-
ber of POSTPONE THEN operations!

For the {DO .. OD} construct, it turns out that we will
not need to count open branches; each is resolved by the
separating |DO | or the closing OD}. But we do need to
place a dest on the control flow stack so we know where
to branch back to. {DO, pronounced “brace-do,” does this
with a POSTPONE BEGIN operation.

The right-arrow for the {DO .. OD} construct doesn't
have to deal with the count, but there is a dest on top of the
control flow stack. We want to keep it on top so we always
know where it is. Like IF>, DO> (“do-arrow”) has to open
up 2 conditional branch with POSTPONE IF. Then we use
1 CS-ROLL > to bring the destback to the top of the control
flow stack. On the flowchart (Figure Three), we're in the
diamond corresponding to a guard, just like IF>.

The barforthe {DO .. OD} construct, |DO | (“do-bar”)
is very much different from its cousin | IF |. Since |DO|
follows code that was executed after a true guard, we will
be repeating the loop. On the flowchart, we're on the
right-arrow coming out of a statementsbox. We will make
an unconditional branch back to the {DO. In ANS Forth
terminology, we resolve the dest on top of the control flow
stack with POSTPONE AGAIN.

There are two tricky parts. First, we need to copy the
dest, we'll need it again for subsequent |DO | operations.
0 CS-PICK makes the copy. Second, hForth keeps track
of control structure balance; since we're creating a copy of
the dest to resolve, we must use the hForth word dest +
to notify the hForth compiler of the extra operator.

Like | IF |, when we getto |DO| there is an open orig
that needs to be resolved so a false guard will send control
to the next guard. We resolve this orig with a POSTPONE
THEN and everything is done.

Finally, let’s look at OD} (“odd-brace™. We only have
to do two things. First, the 0D} marks the end of the code
following the last guard, so we have to compile an
unconditional branch back to the {DO just like we did for
November 1996 December

{DO|. POSTPONE AGAIN does this. Since this is the end
of the construct, we don’t need to copy the dest; this time,
we want to consume it. Second, we have to fill in the target
address of the conditional branch compiled by the last
DO>. Like F11, all the guards being false will cause a chain
of conditional branches that ends up where we are now.
POSTPONE THEN resolves the last orig, and we're done.
Whew!

5. Testing/Demos

After all this work, we will perform some simple tests to
demonstrate our code. First, let’s look at a simple example
ofa correct {IF .. FI}: TEST1. This test simply compares
the top two numbers on the stack and prints the comparison
that was true. Next, let's see what happens if we accidentally
forget that two numbers can be equal: TEST2.

And we close by executing our useful example {DO ..
OD} loop: USEFUL.

If you haven't guessed yet, USEFUL is Euclid’s algorithm
for computing the greatest common divisor of x and 3/

6. Summary

We have seen that it is easy to create custom control
structures in ANS Forth. As a practical example, 1 devel-
oped an implementation of the Dijkstra guarded com-
mand control structures. These suffice for most of my own
control structure needs beyond the ones already provided
by ANS Forth. The Dijkstra structures are far more readable
than the equivalent code done in terms of the existing ANS
Forth control flow operators. And the Dijkstra constructs
are an elegant way to express algorithms, as the simple
code for the greatest common divisor shows.

I consider this a necessary first step towards the goal of
being able to prove Forth programs correct: the ideal is to
develop the correctness proof and the code together. An
even more ambitious goal is a system for automatically
translating specifications into correct Forth code. The
supporting academic work has been done, almost always
using simple functional programming languages rather
than complex real-world languages like C++, Fortran 90,
or Common LISP. It seems to me that Forth’s simple syntax
and semantics provide an opportunity for such a system
unavailable to the other languages in common use.
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Listing. discp.f: Dijkstra’s guarded command control structures. J

M. Edward Borasky

03-AUG-96

To compile for hForth, type
0 CONSTANT ZENForth

To compile for ZENForth, type

1 CONSTANT ZENForth

Then type

BL PARSE DISCP.F INCLUDED

P A T T T T T T T T s S

Environmental dependencies:

Requires
Requires
Requires
Requires
Requires
Requires
Requires
Requires
Requires
Requires

PP G A S

.{ from CORE EXT word set

—~

defined simply:
CS-PICK PICK ;

CS-ROLL ROLL ;

Dijkstra Guarded Command Control Structures

This code has been tested with both hForth 0.9.7 and ZENForth.

These words were designed using Wonyong Koh's hForth 0.9.7,
They should work with minor modifications on any ANS Forth
system providing the words listed below.

AGAIN from the CORE EXT word set
AHEAD from the TOOLS EXT word set
CS-PICK from the TOOLS EXT word set
CS-ROLL from the TOOLS EXT word set
PICK from the CORE EXT word set
ROLL from the CORE EXT word set
THROW from the EXCEPTION word set
hForth word dest+ or equivalent
hForth word COMPILE-ONLY or equivalent

(test sequence only)

hForth does not have CS-PICK or CS-ROLL.
uses the data stack as control flow stack,

hForth has the capability to flag a word COMPILE-ONLY.
COMPILE-ONLY can be ignored by defining it as follows:

However, hForth
so they can be

On other systems,

(Continues on next page.)

Forth Dimensions
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ZENForth [IF] \ ZENForth compatibility
: COMPILE-ONLY :;
[THEN]

{IF \ start a conditional
( -—- 0

0 \ put counter on stack
; COMPILE-ONLY IMMEDIATE

IF> \ right-arrow for {IF ... FI}
( count -- count+l )
({ C: -- origl )

1+ >R \ increment and save count
POSTPONE IF \ create origl
R> \ restore count

; COMPILE-ONLY IMMEDIATE

}IF| \ bar for {IF ... FI}
( count -- count )
( C: orig ... origl -- orig ... orig2 )

>R \ save count
POSTPONE AHEAD \ new orig
1 CS-ROLL \ old orig to top of CFStack
POSTPONE THEN \ resolve old orig
R> \ restore count
; COMPILE~-ONLY IMMEDIATE

BAD{IF...FI} \ abort if there is no TRUE condition
( ~—— )

CR ." {IF ... FI}): no TRUE condition"™ CR \ error message
-22 THROW \ 'control structure mismatch’

FI} \ end of conditional
{ count =-- )
( C: origl ... orign -- )

>R \ save count

POSTPONE AHEAD \ new orig

1 CS-ROLL \ old orig

POSTPONE THEN \ resolve old orig

\ if we got here, none of the guards were TRUE
\ so abort

POSTPONE BAD{IF...FI} \ compile the abort

R> \ restore count

0 ?DO \ resolve all remaining origs
POSTPONE THEN
LOOP
; COMPILE-~-ONLY IMMEDIATE

November 1996 December 12 Forth Dimensions



{DO \ start a loop
( C: -- dest )

POSTPONE BEGIN \ create dest
; COMPILE-ONLY IMMEDIATE

DO> \ right arrow for {DO ... OD}
( C: dest -- origl dest )

POSTPONE IF \ create orig
1 CS-ROLL \ bring dest back to top of CFStack
; COMPILE-ONLY IMMEDIATE

hForth uses the word 'dest+' to count open destinations.
there may be a similar word.

—

ZENForth [IF]
: dest+ 1 bal +! ;
[THEN]

IDO} \ bar for {DO ... OD}
( C: origl dest -- dest )

0 CS-PICK \ copy the dest
POSTPONE AGAIN \ resolve the copy
dest+ \ hForth control structure operation
1 CS-ROLL \ old orig
POSTPONE THEN \ resolve old orig
; COMPILE-ONLY IMMEDIATE

OD} \ end of loop
( C: orig dest --)
POSTPONE AGAIN \ resolve dest
POSTPONE THEN \ resolve orig
; COMPILE-ONLY IMMEDIATE

\ Simple test words

TEST1 \ print the relationship between 'x' and 'y’

(xy -—-)
{IF

2DUP = IF> CR ." = "
| IF |

2DUP > IF> CR ." > ¢
| IF |

2DUP < IF> CR " < ®
FI}
2DROP

\ execute TEST1l for all three combinations

CR .( 5 0 TEST1 )
5 0 TEST1

CR .( 5 5 TEST1 )
5 5 TEST1

For other environments,

(Continues on next page.)

Forth Dimensions 13
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CR .( 0 5 TEST1 )

0 5 TEST1
TEST2 \ deliberately erroneous test case -- 'equal' case left out!
(xy --)
{IF
2DUP < IF> CR ." < "
| IF |
2bup > IF> CR ." > "
FI}
2DROP

CR .{ Since TEST2 aborts if 'x' and 'y' are equal, we will )
CR .( test TEST2 later; first we will compile and test USEFUL )

\ define arguments
VARIABLE x 5 6553 * x !
VARIABLE y 6551 5 * y !

USEFUL \ sets both 'x' and 'y' to GCD(x, y)
( --))

{DO

x @ y @ > DO> y @ NEGATE x +!
IDO|

y @ x @ > DO> x @ NEGATE y +!
oD}

CR .( Before: x, vy =) x @ . y @ . CR
CR .( USEFUL ) USEFUL
CR .( After: x, vy =) x @ . y @ . CR

CR .( Now we'll test TEST2 )

CR .( 5 0 TEST2 )

5 0 TEST2
CR .( 0 5 TEST2 ) "AKEYO"REMCWER mmmw Ciiigent MASF ORI Systom and
0 5 TEST2 TH’NK B’G ~W"“‘ W“mmﬂﬂ&m&g
mwmwngumwmmmmnnm
and TRS-80 modeis 1,3, 4 & 4F)
CR .( 5 5 TEST2 ) FORTFEQ?E%-—W‘WWWWM
5 5 TEST2 with our ng word ing, database handle

\ That's all, folks!'!

machine with sophisticated Forth

camesdﬂnﬂowzmwmpwduew

mm«m&mmmkmwm
m':-z» y

anda%mom!

THIRTY-DAY FREE OFFER — Free MMSFORTH
GAMES DISK worth $39.95, with purchase of MMSFORTH
System. CRYPTOQUOTE HELPER, OTHELLO, BREAK-

MILLER MICROCOMPUTER SERVI FORTH and others.

61 Lake Shore Road, Natick, MA 01760 :

(5087653-8136, 6 am - 9 pm) Call for free brochure, technical info or priciag detells.
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M.L. Gassanenko
St. Petersburg, Russia

Abstract

This paper proposes a C-like notation for cell array
indexing in Forth. Although the idea is not new, the
notation seems to be felicitous and might be included in
the next standard. It can support multi-dimensional arrays,
and a similar syntax may be used for bit or double-cell
arrays. The paper also shows how analysis of possible
name conflicts should be performed.

Introduction

One feature of (not too) modern processors that is
rarely utilized by (even modern) Forth is based indexed
addressing. There have been several approaches to array
accessing but, so far, none of them has been considered
felicitous enough to be included in the standard.

Array elements are usually accessed via 2* + @ (unless
the programmer prefers to resort to assembiler). There is
also a traditional array implementation in which the
operation of indexing is bound with and hidden in the
array name (an array is a function that takes indexes from
the stack and leaves the address of an element), but it has
not become a de facto standard. The third way, also no de
Jacto standard, uses words like []CELL and the only
difference of the proposed syntax from it is in better
naming. This paper shows how one can implement multi-
dimensional arrays using this idea.

The proposed syntax for the indexed access operations
was inspired by (almost borrowed from) C and Algol-68. One

is only sorry that this syntax did not appear 15 years ago.
Specifications
(1 (na-addr--x) “brackets”
EXPERIMENTAL

x is the value stored into the 7th cell of the cell array
starting at a-addr. The array cells are numbered
starting from zero. Semantically equivalent to:
SWAP CELLS + @

t (x na-addr --)
EXPERIMENTAL
Store the value x into the nth cell of the cell array
starting at a-addr. The array cells are numbered

Forth Dimensions

“brackets-store”

C-Style Arrays in Forth

starting from zero. Semantically equivalent to:
SWAP CELLS + !

[1” (n a-addrl -- a-addr2 )
EXPERIMENTAL
Add the size in address units of n cells to a-addrli,
giving a-addr2. Semantically equivalent to:
SWAP CELLS +

“brackets-pointer”

Note: This is a proposal for the next Forth standard.

Implementation
What follows is an F-PC implementation of these words:

CODE [] ( index array -- value )
pop bx
pop di
shl di
push 0
next c;

[bx+di]

CODE []! ( value index array -- )
pop bx

pop di

shl di

pop O [bx+di]

next c;

CODE []” ( index array -- address )
pop bx

pop di

shl di

add bx,
push bx
next c;

di

On a ’386 Forth that uses in-lining and keeps the data
stack top in EBX, the code substituted for [] may look like
this:

POP EAX

MOV EBX, [EBX] [4*EAX]
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which is much better than the:

XCHG EBX, [ESP] \ SWAP

SHL EBX, # 2 \ CELLS

POP EAX \ o+

ADD EBX, EAX \ +, continued
MOV EBX, [EBX] \ @

which we would have as the result of substituting SWAP
CELLS + @ in line.

Multi-Dimensional Arrays
This section shows that multi-dimensional arrays equally
can be implemented this way.
A multi-dimensional array is implemented as an array of
arrays. Fetching, storing, and pointing to a two-dimensional
array element look like this:

Jix 010 \ X[i)[3]
j4 X 01 0 \ X[111031 =
jix (] 01" \ &X[i][3]

.ARRAY ( array len -- )
Here, X is an array containing addresses of arrays of A
cells. These cell arrays should not necessarily be of the 0 ?DO I OVER [] LOOP
same size. No index range checking is performed, though. ." ] " DROP
The word ARRAY, creates an array of n elements x0... | ;
x/n-1] and returns its address: : .2ARRAY ( array n_rows -- )
array, ( x0 x1 x[{n-1] n -- addr ) CR ." [~
( align ) here >r 0 ?DO
?dup I OVER [] I PLUCK []JLEN CR .ARRAY
if LOOP
0 swap 1- ." ] " DROP
do ;
i roll ,

-1 +loop \ The last, delimiter, string of array
then \ is needed for []len to calculate the
r> \ length properly

H 1 2 3 4 5 5 array,
6 7 8 9 4 array,
Although the usefulness of this word is restricted by the | 10 11 12 3 array,
maximal stack depth, it enables us to create arrays of 0 array,
(sub)arrays, and these subarrays may have different lengths. 4 array, constant x
Once the subarrays can have different lengthes, wemay | 0 0 x [] []
wish to be able to determine them. Provided thatallthe | 2 0 x [] [] .
subarrays are created by ARRAY, immediately—one after | 25 1 2 x []1 []!
another—and that the last top-level array elementis fol- | 1 2 x [] [] .
lowed by a “dummy” pointer, the word [JLEN (ia--1) | 1 2 x [] [1~ @
given below returns the length of the #th subarrayofthetop- | 0 x []len
level array a. 2 X [llen
code {]len ( lindex array -- 2length ) x 3 .2array (Text continues on page 18.)
pop bx
pop di
shl di
mov ax, 2 [bx+di] \ address of the (i+1l)-th subarray
sub ax, 0 {bx+di] \ minus address of the i~th subarray
shr ax \ gives i-th subarray length in cells
push ax
next c;

The “dummy” pointer is the address of the cell that
November 1996 December

follows the last array element. We can consider it a zero-
length subarray. If it is missed, the word []LEN will not
calculate the length of the last subarray.

Assessing the Multi-Dimensional
Array Implementation

Here we compare the array-of-arrays implementation
with the more traditonal one where index calculation
involves multiplication by the number of columns.

The array-of-arrays implementation does not necessar-
ily require more memory. For example, if we manipulate
matrixes of a special form, say, symmetric, this technique
almost halves the amount of memory required.

This implementation also works faster because, even on
2’486, multiplication is slower than memory fetch. Probably,
this consideration is not of too much importance, though.

Some Examples
These examples scarcely need comments. The screen
output is shown in Listing Two.

Forth Dimensions



Listing One. arrays.seq |

\ Arrays for Forth by M.L.Gassanenko
autoeditoff
CODE [] ( index array -- value )

pop bx

pop di

shl di

push 0 [bx+di]

next c;
CODE (1! ( value index array -- )
pop bx
pop di
shl di
pop 0 [bx+di]
next c;
CODE []”~ ( index array =-- address )
pop bx
pop di
shl di
add bx,
push bx
next c;

di

array, ( x0 x1
( align ) here >r
2dup
if

Xx[n-1] n -- addr )

0 swap 1-
do
i roll ,
-1 +loop
then
r>

.
’

code []len ( lindex array -- 2length )

pop bx

pop di

shl di

mov ax, 2 [bx+di}

sub ax, 0 f{bx+di}

shr ax

push ax

next c;

\ \s Auxiliary tools, rather examples
.ARRAY ( array len --)
. " [ "
0 ?DO
. L1} ]

I OVER [] 4
" DROP

.R SPACE LooP

.2ARRAY ( array n_rows --— )
CR 6 SPACES ." ("
0
?2D0
I OVER []
I PLUCK []JLEN
CR

( array )

( array array[i] )

( array array[i] len[i] )
9 SPACES .ARRAY

LOOP
CR 6 SPACES ."™ ] " DROP
\ \s Some examples
showlines
\ The last, delimiting, subarray is

\ needed for [}len to
\ calculate the length properly

1 2 3 4 5 S array,

6 7 8 9 4 array,

10 11 12 3 array,
0 array,

4 array, constant x

00 =x [] [

20x (1 0

02 =[] I]

12 x [ (1 .

25 1 2 x [1 (1!

12 x [1 11 .

12=x (1 []~a

0 x {Jlen

1 x [llen

2 x [llen

x 3 .2array

off> listvar

From NASA space

. systems to package
tracking for Federal
Express...

chipFORTH

...gives you maximum
« performance, total
control for embedded
applications!

MhiRan

+ Total control of target kernel size and content.

» Royalty-free multitasking kernels and libraries.

+ Fully configurable for custom hardware.

« Compiles and downloads entire program in seconds.

» Includes all target source, extensive documentation.

» Full 32-bit protected mode host supports interactive
development from any 386 or better PC.

+ Versions for 8051, 80186/88, 80196, 68HC11, 68HC16,
68332, TMS320C31 and more!

Go with the systems the pros use... Call us today!

FORTH,Inc.
111 N. Sepulveda Blvd, #300 lﬂ
?ﬁ==

800-55-FORTH 310-372-8493 ==
FAX 310-318-7130 forthsales@forth.com
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Listing Two. Screen output of the F-PC program shown in Listing One. The
message about [] is displayed because [] is definedinthe ASSEMBLER vocabulary.

E:\TO-SEND>f arrays.seq ok

[] isn't unique

70 \ The last, delimiting,

89 off> listvar

721 2 3 4 5 5 array,
736 7 8 9 4 array,
74 10 11 12 3 array,
75 0 array,
76 4 array,
77 0 0 x [1 (] 1
78 2 0 x [1 (] . 3
79 0 2 x {1 [1 . 10
80 1 2 x [] [1 . 11
81 25 1 2 x [1 []!
82 1 2 x []1 [1 . 25
831 2=x {1 (1~ @ . 25
84 0 x []len 5
85 1 x []len 4
86 2 x []len 3
87 x 3 .2array
{
{ 1 2 3 4 5 1
[ 6 7 8 % 1]
{ 10 25 12 ]
]
88

subarray is needed for []len
71 \ to calculate the length properly

constant x

Bit, Double-Cell, and Other Arrays
A similar syntax may be used to handle bit arrays.

BIT([] (uaddr--b)
EXPERIMENTAL
b is the value stored into the nth bit of the bit array
starting at addr. The array bits are numbered starting
from zero. The most significant bit has the largest
number. The number of bits in an address unit is
system dependent.

“bit-brackets”

BIT[]! (xua-addr--)
EXPERIMENTAL
Store the low bit of x into the #nth bit of the bit array
starting at adar.

“bit-brackets-store”

BITS (ul --u2)
EXPERIMENTAL
12 is the minimal size in address units of a memory
area that contains at least » bits.

“bits"

The specifications for the double-cell indexing words
are evident:

D[] ( n a-—addr -- d )
D[]! (dn a-addr -- )
D[]" ( n a-addrl -- a-addr2 )

November 1996 December

The number nabove is the number of the two-cell array
element we want to access.

In systems with 16-bit characters, it may be desirable to
have character-array operations as well.

Implementation of all these words is a good exercise
for a novice, studying either Forth or assembler. A good
name for a double-cell []LEN analog is D[] LEN.

Consistency

JIn this section, we ascertain that introduction of the
proposed new names into the standard does not lead to
naming problems.

We have introduced two new language elements: (]
“indexing” and ~ *address.” (A sequence, or a set, of
characters used in a name and having a meaning for
programmers we call a language element, for example, the
name CHAR+ consists of two language elements: CHAR
and +).

The symbol ~ has notbeen used in the standard before.
There is an old tradition to indicate “address” by * (tick),
but in the modern standard ' (tick) means only “execution
token.”

The symbol [] has not yet been used, but [ and ]
usually denote state-switching or immediacy. This does
not lead to naming conflicts, because [ and ] have never
been used one immediately after another. The only

Forth Dimensions




imaginable candidate on the [] name is:

[] ' EXECUTE ; IMMEDIATE

which we can name [EX] or [EXEC] if we will need it.
(Toillustrate importance of such analysis, we can give

the following example. In an ANS Forth system we can

define:

4 CONSTANT CELL
CELLS CELL * ;
#CELLS CELL + 1- CELL / ;

but we cannot define

1 CONSTANT CHAR
CHARS CHAR * ;
#CHARS CHAR + 1~ CHAR / ;

and get a standard system, because, according to the
standard, CHAR means “obtain a character from the input
stream” while CHARS means “multiply by the size of a
character.”)

The name of the word [] that may be used to fetch a
data address contains no mention of the data size. This
makes the notation more natural: {1 (] or (] D{] looks
better than {JCELL [{]JCELL or {JCELL [])DOUBLE
because the size of data is mentioned at most once, and
this is the size of data that we want to access. The “size
specifiers” (“D” and “BIT” inD [} and BIT []) are placed
before the “operation specifier” [] to keep the same style
as in other such words, e.g., CQ, C!, and CELL+. Again,
the “CELL” address specifier is omitted because the size of
the stack element is the default for operations that move
data between stack and memory (e.g., @ and ! work with
one cell, but they are not named CELLQ and CELL!).

Optional Range Checking

The most evident approach to this is to store the array
length into the -1st cell and to redefine the array words to
use it to perform range checking. This is shown in Listings
Three and Four. Remember that such redefinition enables
range checking only for words that get compiled after it;
already-compiled words will still use the “unprotected”
version. Although the naming issue is always up to the
programmer’s taste, it may be recommended to redefine
the array words locally (within a module vocabulary), and
to use their original, “unprotected” versions under some
other names.

Conclusion
The array indexing words presented here enable Forth
to utilize the based indexed addressing present on most
processors. The words [}, []!, and []~ are offered for
inclusion in the next standard.
This syntax should have appeared 10-15 years ago.

Forth Dimensions

Exercises for the Novice

Although this paper is a proposal, it inspires some
good exercises for a novice who is already familiar with
Forth but does not have much practice.

1. Implement the words (3, {1!, (1~, and {1LEN in
Forth.

2. Implement the word 0ARRAY, ( n -- addr ) which
creates an array of 7 cells, initializing it with zeroes.
For example,

4 0ARRAY,
must be equivalent to

0 0 0 0 4 ARRAY,

3. Implement the double-cell array words D[], D[] !,
D[]”, and D[] LEN and the words DARRAY, and
ODARRAY, .

4. Implement the bit array words (in Forth or assembler;
the latter is easier).

5. Implement the word BITARRAY, (bit[n-1] ... bitl0] n
-- addr ) which creates a bit array and initializes it.

Implement range checking for double-cell arrays.
Double-cell arrays must be accessible as both double-
or single-cell arrays, and the range checking must
work in both cases.

7. Create a range-checking scheme for bit arrays.

8. Take the array words as a basis and extend the array
concept to allow arrays with indexes starting from an
arbitrary number (not necessarily from zero); i.e., it
must be possible to create, for example, an array for
which indexes would be numbers -5 ... 4. You may
use any approach, but do not redefine the word []
and the others. Be careful to choose good names.

Code begins on next page...
Downloading: This code can be found as the files

arrays.seq, arrays.|st, acheck.seq, and acheck.Ist at
ftp://ftp forth.org/pub/Forth/FD/1936

M.L. Gassanenko graduated from St. Petersburg University's Department of
Applied Mathematics and Controf Processes in 1992, and is now a post-
graduate studentatthe St. Petersburginstitute of Informatics and Automitazation,
at the Russian Academy of Sciences. He can be reached at gmi@ag.pu.ru or
at mlg@iias.spb.su via e-mail.
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Listing Three. Range checking for the arrays.J

needs arrays.seq
\ The -1st array element contains the number of elements in the array.

\ redefine ARRAY, to lay down such -lst element.

array, ( a[ln-1]...a[0] n --)
{ align ) dup R
array,

~

\ The checking word to be used with []
: _? ( index arr -- ) \ ensure that the index is correct
2dup -1 swap [] <
if over 0< O=
if exit then
then
er ." *** invalid index " over . ." for the array at " dup u. cr

~,

\ To enable range checking, we can either globally redefine [] ,
\ or redefine it in the module's dictionary,
\ or find a new name (e.g. /[] ) for the protected version of (] ,
\ or redefine [] and use /[] for the original version of [] ,
\ or use _? every time we need a check.
\
\ For example, we can define
\ /11 2?2 () ; \ if we want /[] to do range checking, and
\ /[] ?comp compile [] ; immediate \ if we want it to compile []
[llen ( index2 2array —-- lenl )
el
2dup -1 swap [] 1- =
if
cr ." *** [JLEN does not work for the last ( " over
." ) subarray (of array at " dup u. ." )" cr
then
[llen 1-
: [ _2 01
(1t _2 1
[~ _2 11~

\ NB: we have to recompile .ARRAY and .2ARRAY as well,
\ unless we want them to show 1 extra cell beyond each line.

\ \s Examples

showlines

\ l-dimensional array:

11 22 33 44 4 array, constant y

-1y 01
0y (]
1y [l
3y (]
4y Il
\ 2-dimensional array
\ The last, delimiting, subarray is needed for []len to calculate the length properly
\ NB: we use the same syntax but *different* versions of array words.
1 2 3 4 5 5 array,
6 7 8 9 4 array,
10 11 12 3 array,

0 array,

4 array, constant x

00x (] []
-2 0 x {] []
0 -2 x [] [ .
-1 -2 x [] [}
0 x []len
-1 x []len
3 x [llen

4 x []len

off> listvar
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Listing Four. The screen output of the F-PC program shown in Listing Three. J

The array words are redefined to perform range checking.

ARRAY, isn't unique
[JLEN isn't unique
[] isn't unigue
[J! isn't unigue
[1* isn't unique
48 \ 1l-dimensional array:
49 11 22 33 44 4 array, constant y

50 -1 y [}
**+ jnvalid index -1 for the array at 33595
4
510y [ . 11
52 1y {1 . 22
53 3y [1 . 44
54 4 y []
*** invalid index 4 for the array at 33595
~-28695
55
56 \ 2-dimensional array
57 \ The last, delimiting, subarray is needed for []len
58 \ to calculate the length properly
59 \ NB: we use the same syntax but *different* versions of array words.
601 2 3 4 5 5 array,
61 6 7 8 9 4 array,
62 10 11 12 3 array,
63 0 array,
64 4 array, constant x
X isn't unique
65 00 x )] ()] . 1

66 -2 0 x [] []
**% jnvalid index -2 for the array at 33610
-31941

67 0 -2 x [] [}
*%% invalid index -2 for the array at 33642
8397

68 -1 -2 x []1 [] .
*** invalid index -2 for the array at 33642

*** invalid index -1 for the array at 0
8238

69 0 x []Jlen . 5

70 -1 x {llen
***% invalid index -1 for the array at 33642
16802

71 3 x [llen
**x []LEN does not work for the last ( 3 ) subarray (of array at 33642 )
28351

72 4 x []len
*** invalid index 4 for the array at 33642
1226

73

74 off> listvar
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WinFormH

Forth in Control:

Ken Merk
Langley, British Columbia, Canada

In my last article, “Forth in Control” (FD XVII/2), we
built a parallel-printer-port interface using a series of LEDs
to represent the on/off state of each bit on the port. We
named all of the eight lines and assigned each a number
according to its binary weighting on the port. The interface
simulated a machine controller, so we named each output
line after the device it was controlling:

DECIMAL \ Binary weight
1 CONSTANT FAN \ 00000001
2 CONSTANT DRILL \ 00000010
4 CONSTANT PUMP \ 00000100
8 CONSTANT SPRINKLER \ 00001000
16 CONSTANT HEATER \ 00010000
32 CONSTANT LIGHT \ 00100000
64 CONSTANT MOTOR \ 01000000
128 CONSTANT VALVE \ 10000000

Tom Zimmer's F-PC was used to make words that
would control each bit individually, so we could turn on
or off any device we wanted:

MOTOR
FAN

>ON
>OFF

\ turn motor ON
\ turn fan OFF

In this article, we will use the same LED display
interface attached to the parallel printer port, but we will
control it using Windows as the platform. LMI's WinForth
for Microsoft Windows will be used to create a graphical
interface consisting of two arrays of command buttons
which can be activated by the mouse to control each
device. This creates a point-and-click environment, which
makes it quick and easy to manipulate the output port.
On/off buttons will be created for each output device, plus
another button array with special functions to control
groups of devices.

WinForth is a 16-bit system, but applications can run
under Windows 3.1 and Windows 95. A 32-bit version of
WinForth is currently under development. To test drive
LMI's WinForth, a shareware version is available from
Laboratory Microsystems’ BBS at 310-306-3530 or from
some Forth BBSs, one of which is Kenneth O'Heskin’s Art
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of Programming at 604-826-9663. This version is equiva-
lent in capabilities and performance to the retail WinForth,
except it does not let you create end-user applications.

DOS vs. Windows

Most DOS programs consist of code written in a
sequentially driven manner. Input data must be entered in
a specific orderto match the flow of the program. This puts
a high priority on the order in which the job must be
performed.

Windows is an event-driven operating system which
allows data to be entered in whatever order seems
appropriate. Whenever an event occurs, such as a mouse
click or a keypress, Windows notifies the application
about the event by sending it 2 message. A message is a
16-bit, unsigned value which is assigned to a symbolic
constant that starts with the letters WM_. A procedure
within the application intercepts these messages and
responds to them. This procedure is called a Message
Handler, in which the programmer can code what action
has to be taken depending on the message received.

Source Code Overview

In the accompanying source code, FCONTROL.4TH,
we create a pop-up modal dialog box containing two
keyboards, each with an array of command push-buttons.
The dialog box will have a caption bar, which makes the
window movable, and a system menu to close the
window. A modal dialog box disables the parent window
and does not allow you to click or type anywhere outside
the dialog box until it is closed.

Clicking on the push-buttons with the mouse will send
WM COMMAND messages to the dialog message handler,
CONTROLDLGPROC, which will process them through the
DO.BUTTON case statement to activate the appropriate
output device. The word MAIN is executed to display the
dialog and direct all messages resulting from user interac-
tion with the dialog to the dialog message handler, thus
running the program. To quit the program, double-click
the system menu box, click on the Quit push-button, or
press Esc to close the dialog box.

Each control (push-button) within a dialog box will be
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given its own control ID. This ID number is assigned to a
symbolic constant that starts with the letters ID_. This
makes the source code easier to read. Because text
controls do not send messages back to the message
handler, their IDs are set to -1.

The WM COMMAND message is sent to the dialog
message handler by the controls (push-buttons) in the
dialog box when clicked. The dialog box message handler
will check WM_COMMAND messages for the control identi-
fier of the push button. When it finds this identifier, which
is in the message’s wParam parameter, the handler knows
which button was pushed and can carry out the corre-
sponding task using the DO.BUTTON case statement.

WM_INITDIALOG is sent to a dialog box upon the
box’s first activation, but before it is made visible. In
response to this message, a dialog box procedure will
initialize each of the dialog box controls to the correct
initial state. In our case, no initialization is needed, so a
True is returned—verifying that we processed the mes-
sage and causing Windows to set the focus on the first
button created in the dialog box template (Fan On).

To run WinForth from the Program Manager, click on
File, then on Run. Select the proper path and type
FORTH.EXE, then click on OK. WinForth should load and
run. At the OK prompt, type INCLUDE FCONTROL.4TH
(include path if needed), which will load the file, then type
MAIN to run the program. The dialog box will appear with
two keyboard arrays of push-buttons.

Clicking on the on/off buttons will control each output
device individually. Click on KILL to turn off all devices,
click on ALL-ON to turn on all devices. The LED display
should respond accordingly. The four preset function
buttons can be programmed to turn on any combination
of output devices. In this case,
the preset buttons are pro-
grammed to drive the four
phases of a stepper motor.
Clicking function buttons 1, 2,

=« Device Contro!

case statementin DO . BUTTON, and change the text on the
buttons accordingly. This will give you a feel of how the
program works. Load some of the demonstration pro-
grams that come with WinForth and study their source
code.

Read the WinForth programming overviews in the help
files. WinForth has a built-in “windowing layer” that handles
many Windows events automatically and hides much of the
complexity of the Windows AP, so you can focus on your
application and get it completed faster. But, if you choose,
you can write code using direct calls to the API functions or
even third-party DLLs using the APIHOOK function.

Compiled end-user applications consist of two files, an
EXE file and an OVL file. When FCONTROL.4TH was
compiled into turnkey executable files, the total size was
184K bytes.

This will give you a good start in Windows program-
ming, and will demonstrate how you can “Do More With
Less” using Forth.,

Code begins on next page.
Downloading: The code can be found under the

filenames FCONTROL.4TH, FCONTROL.EXE, and
FCONTROL.OVL atftp://ftp.forth.org/pub/Forth/FD/1996

Ken Merk, who graduated from BCIT as an Electronic Technologist, is a married
father of two girls and lives in Langley, B.C., Canada. He works for Canadian
Pacific Railway, and is involved in a braking system used on caboose-less
trains—the caboose is replaced by a black box which monitors many param-
eters of the train and sends them digitally by radio to the head end. In
emergencies, a remote radio can trigger braking. Other projects include
infrared bearing-failure detectors, wind detectors, and mountain-top radio
communication sites. Merk originally used Forth to learn 8088 assembler, and
found it a great tool to controf electronic hardware.

Machine Controller

3, and 4 in sequence, and re-

= Group Control

peating, will step the motor in

> Fan On
one direction. To reverse mo-

Fan Off Preset Function #1

tor direction, click function

Drill On
buttons 4, 3, 2, and 1 in se-

Drilt Off

Preset Function #2

quence, and repeat. See Skip Pump On

Pump Off

Carter’s article “Stepper Mo-

tors” (FD XVII/5) for an in- Sprinkler On

Sprinkler Off Preset Function #3

depth view of theory and inter-

facing to stepper motors. Heater On

Heater Off Preset Function #4

After you get FCON-

TROL.4TH up and running, Light On

Light Off

read through the source code

ALL ON

and the comments to figure Motor On

Motor Off

out what each section of code

is doing. Have some fun by Valve On

Valve Off KILL

changing the parameters to see
what happens. Change the size
of the buttons. Move them
around to different locations.
Patch new functions into the

Quit
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Listing. Parallel port interface. J

\ FCONTROL.A4TH Ken Merk June/96
\ WINFORTH

\ *kAkkkxkkhkkkkkkkkkk** Parallel Port Interface **kkkkkkkkkkkkkkikkkikk

ASM \ Loads the Forth assembler
DECIMAL
64 8 QL \ Look for active LPT1 port
0= .IF \ If no port found then abort
CLS
23 8 GOTOXY .( Parallel printer port not found.)
CLOSE QUIT
. THEN
64 8 QL EQU #PORT \ Find port addr for printer card
\ assign to constant #PORT
1 CONSTANT FAN \ assign each Device its binary weighting
2 CONSTANT DRILL
4 CONSTANT PUMP
8 CONSTANT SPRINKLER
16 CONSTANT HEATER
32 CONSTANT LIGHT
64 CONSTANT MOTOR
128 CONSTANT VALVE
CODE BSET ( b #port -- ) \ will SET each bit in #port that matches
CX POP \ every high bit in byte B.
DX, TOS MOV
AX, DX IN
AL, CL OR
DX, AL OUT
TOS POP
NEXT,
END-CODE
CODE BRESET ( b #port -- ) \ will RESET each bit in #port that matches
CX POP \ every high bit in byte b.
CX NOT
DX, TOS MOV
AX, DX IN
AL, CL AND
DX, AL OUT
TOS POP
NEXT,
END-CODE
>ON (b --) #PORT BSET ; \ turn ON device
>QFF (b --) #PORT BRESET \ turn OFF device
KILL ( -—) 00 #PORT pc! ; \ turn OFF all devices
ALL-ON ( -- ) 255 #PORT pc! ; \ turn ON all devices
WRITE.PORT (b --) #PORT pc! ; \ WRITE byte to port
KILL \ kill all LEDs
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200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221

35 10

CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT

ID_FANON
ID_FANOFF
ID_DRILLON
ID_DRILLOFF
ID_PUMPON
ID_PUMPOFF

ID SPRINKON

ID SPRINKOF

ID HEATERON

F

ID HEATEROFF

ID_LIGHTON
ID_LIGHTOFF
ID_MOTORON
ID_MOTOROFF
ID_VALVEON
ID_VALVEOFF
ID_ALLON
ID_KILL
ID_FUNC1
ID_FUNC2
ID_FUNC3
ID_FUNC4

" Machine Controller™
235 175 WS_CAPTION WS_POPUP D+
WS_SYSMENU D+

\ Assign each control an ID number

\ AkkkkkkhkhkkkkkkrhkkkAkkk Control Dialog box **kkkkkkkxkkkkkkhkkkkkkkkdhhik

\ which corresponds to a "ID " constant

\ to make code easier to follow.

DIALOG CONTROLDLG

12 10

112 143
WS_BORDER WS_VISIBLE D+ WS_CHILD D+
SS_BLACKFRAME D+

-1

STATIC"

\ Create button arrayl- Button text,
\ of button,

DS _MODALFRAME D+

CONTROL

X y position in box,

ID that identifies which button.

" Fan On" 20
" Fan Off" 69
" Drill On" 20
" Drill Off"™ 69
" Pump On" 20
" Pump Off" 69
" Sprinkler On" 20
" Sprinkler Off" 69
" Heater On" 20
" Heater OQff" 69
" Light On" 20
" Light Off" 69
" Motor On"“ 20
" Motor Off"™ 69
" Valve On" 20
" Valve Off" 69

Device Control"™ 20

19
19
35
35
51
51
67
67
83
83
99
99
115
115
131
131
6

45
45
45
45
45
45
45
45
45
45
45
45
45
45
45
45
51

14
14
14
14
14
14
14
14
14
14
14
14
14
14
14
14
10

ID_FANON
ID_FANOFF
ID DRILLON
ID DRILLOFF
ID PUMPON
ID_PUMPOFF
ID_SPRINKON

ID SPRINKOFF

ID_HEATERON

ID _HEATEROFF

ID LIGHTON

ID_ LIGHTOFF

ID_MOTORON

ID_MOTOROFF

ID_VALVEON

ID_ VALVEOFF
-1

\ Caption text

\ Size and style
\ of dialog box
\ Dialog name

\ RhkkkkkkkARARARAKRRAARRA K KX Button Arrayl *KrAkkkkkxakk Xk kXXX KXXAKKK KX

\ Border around
\ button arrayl

PUSHBUTTON
PUSHBUTTON
PUSHBUTTON
PUSHBUTTON
PUSHBUTTON
PUSHBUTTON
PUSHBUTTON
PUSHBUTTON
PUSHBUTTON
PUSHBUTTON
PUSHBUTTON
PUSHBUTTON
PUSHBUTTON
PUSHBUTTON
PUSHBUTTON
PUSHBUTTON
LTEXT

width and height

(Continues on next page.)
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\
\

. s

END-DIALOG

%k ok k kK Kk Kk ok ok ok sk ok ok k ok ko ok ok ok ok ok ok ok ok ok Button Arrayz * %k Kk d ok k kK Kk ok k ok Kk k ok %k Kk ok k k Kk ok ko kok ok ok ok

" 135 10 88 143 -1 \ Border around
WS_BORDER WS_VISIBLE D+ WS_CHILD D+ \ button array2
SS_BLACKFRAME D+ " STATIC" CONTROL

Create button array2- Button text, x y position in box, width and height
of button, ID that identifies which button.

Preset Function #1" 145 19 68 18 ID_FUNC1 PUSHBUTTON
Preset Function #2" 145 39 68 18 ID_FUNC2 PUSHBUTTON
Preset Function #3"™ 145 59 68 18 ID_FUNC3  PUSHBUTTON
Preset Function #4" 145 79 68 18 1ID_FUNC4 PUSHBUTTON
ALL ON" 145 99 68 18 ID_ALLON PUSHBUTTON
KILL" 145 119 68 26 ID_ KILL PUSHBUTTON
Quit" 173 158 40 14 IDCANCEL PUSHBUTTON
Group Control"™ 145 6 48 10 -1 LTEXT

Case statement takes button ID's given by the message handler
to determine what action to take.

DO.BUTTON
CASE
ID_FANON OF FAN >0ON ENDOF
ID_FANOFF OF FAN >OFF ENDOF
ID DRILLON OF DRILL >0ON ENDOF
ID DRILLOFF OF DRILL >OFF ENDOF
ID_PUMPON OF PUMP >ON ENDOF
ID PUMPOFF OF PUMP >OFF ENDOF
ID_ SPRINKON OF SPRINKLER >ON ENDOF
ID_SPRINKOFF OF SPRINKLER >OFF ENDOF
ID HEATERON OF HEATER >ON ENDOF
ID HEATEROFF OF HEATER >OFF ENDOF
ID LIGHTON OF LIGHT >ON ENDOF
ID_ LIGHTOFF OF LIGHT >OFF ENDOF
ID MOTORON OF MOTOR >ON ENDOF
ID _MOTOROFF OF MOTOR >OFF ENDOF
ID_VALVEON OF VALVE >ON ENDOF
ID_VALVEOFF OF VALVE >OFF ENDOF
ID_ALLON OF ALL-ON ENDOF
ID KILL OF KILL ENDOF
IDCANCEL OF 0 CLOSEDLG ENDOF
ID_FUNC1 OF 5 WRITE.PORT ENDOF
ID_FUNCZ OF 9 WRITE.PORT ENDOF
ID_FUNC3 OF 10 WRITE.PORT ENDOF
ID_FUNC4 OF 6 WRITE.PORT ENDOF
ENDCASE ;
Dialog box message handler intercepts WM_INITDIALOG and WM_COMMAND
messages and then processes them.
Button ID's are taken from WM COMMAND's wParam and sent to DO.BUTTON
case statement which determines what action to take.
CONTROLDLGPROC
wMsg
CASE

WM_INITDIALOG OF TRUE ENDOF

WM_COMMAND OF wParam DO.BUTTON TRUE ENDOF
FALSE SWAP

ENDCASE ;

\ Runs the dialog template with the associated dialog message handler
\ which starts the program.
: MAIN CONTROLDLG ['] CONTROLDLGPROC RUNDLG DROP ;
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Wil Baden
Costa Mesa, California

Filters

A filteris a program that takes a file
as input, and does something to it line-
by-line or character-by-character, pro-
ducing output. The output from one
filter can be “piped” as input to another
filter, and so on.

Or as Eric Raymonp, The New Hacker'’s
Dictionary(ISBN 0-262-26069-6), has it—

filter n. [orig. UNIX, now also in MS-
DOS] A program that processes an input
data stream into an output data stream in
some well-defined way, and does no /O
to anywhere else except possibly on
error conditions; one designed to be
used as a stage in a pipeline.

Filter programs are common and use-
ful. In this section we show how to make
them easy to write.

We'll presume some pet words, defi-
nitions given in Appendix A.

OPENED INPUT OUTPUT
CLOSED REWIND
checked needed

IN OUT INBUF

PLACE BOUNDS

These words have already appeared in
Stretching Forth articles.

As the first example, we make a filter
where something doesn’t do anything.
Lines are simply copied. Call it what you
like. I call it COPY here. [Figure One.]

If you can redirect the output from
TYPE and CR, as can be done in tradi-
tional Forth systems, that’s enough.
Otherwise, replace TYPE CR by OUT
WRITE-LINE checked. [Figure Two.]

Let's rearrange things so we can
factor cleanly. {Figure Three.]

Forth Dimensions

Streteniiit] [FeriDm
Filters and Sponges

Figure One. ]

COPY
BEGIN ()
INBUF /COUNTED-STRING
IN READ-LINE checked
WHILE
INBUF SWAP TYPE CR
REPEAT
DROP
IN REWIND

()
(w
()

Figure Two.

COPY ( -—-)
BEGIN ()
INBUF /COQUNTED-STRING
IN READ-LINE checked
WHILE
INBUF SWAP QOUT WRITE-LINE checked
REPEAT
DROP
IN REWIND

( u flag)

()
( u)
()

Figure Three.—l

COPY { -— )
BEGIN ()
INBUF /COUNTED-STRING
IN READ-LINE checked
IF INBUF SWAP ( s u) TRUE
ELSE DRCP ( ) IN REWIND
THEN
WHILE ( s u)
TYPE CR (
REPEAT

( u flagqg)
( s u true)
FALSE ( false)

27

( u flag)
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We factor what's between BEGIN
and WHILE as filter-refill in
Listing One. This leaves us with Figure
Four.

Next we define a macro, using Stan-
dard Forth EVALUATE. [Figure Fivel

Now we can define our filter. [Fig-
ure Six]

For character-by-character filters we
define another macro, CYPHER, in
Listing One. CYPHER gets its name
from cryptography, where it is the
term for alphabetic substitution.

As two simple character-by-char-
acter filters, we have RAISE-CASE
and ROT13. [Figure Seven]

Another example of a filter is the
program that prints my listings with
line numbers on the non-blank lines.

Sponges
Here are two more definitions from
The New Hacker's Dictionary.

sponge n. [UNIX] A special case of a
filter that reads its entire input before
writing any output; the canonical ex-
ample is a sort utility. Unlike most
filters, a sponge can conveniently over-
write the input file with the output data
stream.

slurp vt. To read a large data file
entirely into core before working on it.
This may be contrasted with the strat-
egy of reading a small piece at a time,
processing it, and then reading the
next piece. “This program slurps in a
1K-by-1K matrix and does an FFT.”

We now make a canonical example
of a SPONGE. After using FILTER to
SLURP a file into the HEREAFTER, we
make an index for the lines of the
fileimage,re-orderthe fileindex,
and REGURGITATE the file.

The fileimage is placed in dataspace
in the HEREAFTER, that is, a given
distance after HERE. How far from
HERE isn’timportant. The fileindex
is placed after the fileimage.

To re-arrange the lines of a file in
ASCII collating sequence,

S" name-of-file"™ SORTED

A text editor is often implemented
as a sponge.

See Listing Two for SORTED.

See Appendix B for QSORT.

November 1996 December

Figure Four.

coprY ( == )
BEGIN ()
filter~-refill
WHILE ( s u)
TYPE CR ()
REPEAT (w

Figure Five.

FILTER
S" BEGIN filter-refill WHILE "
EVALUATE ; IMMEDIATE
Figure Six.
COPY FILTER TYPE CR REPEAT ; ( --)

or

COPY FILTER OUT WRITE-LINE checked REPEAT ; ( —-)

Figure Seven. ]

( Convert a character to upper-case. )
: >UPPER ( Char -- CHAR )
DUP [CHAR] a - THEN

26 U< IF BL -

( Rotate letter 13 positions in the alphabet. )

>ROT13 ({ Char -~ Pune )
DUP BL OR [CHAR] a - 13 U<
IF 13 + EXIT THEN
DUP BL OR [CHAR] n - 13 U<
IF 13 - EXIT THEN

( Convert a file to uppercase. )
RAISE-CASE FILTER 2DUP CYPHER >UPPER TYPE CR REPEAT

( Convert a file by rotating letters 13 positions. )
: ROT13 FILTER 2DUP CYPHER >ROT13 TYPE CR REPEAT

’

’

Wil Baden is a professional programmer with an interest in Forth. Send e-
mail lo wilbaden@netcom.com asking for a text-only version of “Filters and
Sponges.”
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Listing One. |

N oy W

11
12
13
14
15
16

18
19
20
21

~e

\
\
\
\

filter-refill ( ~- s u true | false )
INBUF /COUNTED-STRING
IN READ-LINE checked ( u flag)
IF INBUF SWAP ( s u) TRUE ( s u true)
ELSE DROP ( ) IN REWIND FALSE ( false)
THEN ( s u true | false )

FILTER S"™ BEGIN filter-refill WHILE " EVALUATE ; IMMEDIATE

CYPHER ( s u "word"” --)

S" CHARS BOUNDS ?DO I C@ ™
PARSE-WORD S+

§™ I C! 1 CHARS +LOOP "™ S+
EVALUATE

IMMEDIATE

(

With PLEASE )

CYPHER PARSE-WORD >PAD PLEASE

" CHARS BOUNDS ?DO I C@ ~ I C! 1 +LOOP "
IMMEDIATE

S+ is string catenation, and a definition was given in Stretching Forth article “Circular String Buffer”
(Forth Dimensions XVII1/2).

If you lack PARSE-WORD you can make do with—
PARSE-WORD BL WORD COUNT ; ( "name" -- s u )

Listing Two.

1 ( SORTED )

3 CREATE filename /COUNTED-STRING 1+ CHARS ALLOT

5 : HEREAFTER HERE 200 CHARS + ; ( -- c_addr )

7 0 VALUE fileimage

8 0 VALUE fileindex

10 VARIABLE tally

12 check-available-dataspace (n --)

13 CHARS fileindex + ALIGNED tally @ CELLS +

14 HERE - UNUSED U< NOT ABQORT" (Out of Dataspace) "

15 ;

17 SLURP ( ==

18 filename COUNT INPUT TO IN

19 HEREAFTER TO fileimage

20 fileimage TO fileindex

21 0 tally !

22 FILTER { c_addr u)

23 DUP 1+ check-available-dataspace

24 fileindex PLACE ()

25 fileindex COUNT CHARS + TO fileindex

26 1 tally +! (Listing Two continues on next page.)
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27
28
29

31
32
33
34
35
36
37

39
40
41
42
43
44
45
46

49
50
51
52
53
54
55

REPEAT
IN CLOSED 0 TO IN

make-index (--)
fileindex ALIGNED TO fileindex
fileimage tally @ 0 ?2DO ( c_addr)

DUP I CELLS fileindex + !
COUNT CHARS +
LOOP DROP

REGURGITATE ( -=-)
filename COUNT OUTPUT TO OQUT
tally @ 0 ?DO

I CELLS fileindex + Q@ COUNT
OUT WRITE-LINE checked
LOOP
OUT CLOSED 0 TO oUT

SORTED ( c_addr u -- )
filename PLACE
SLURP
make-index
fileindex tally @ {'] CCOMPARE QSORT
REGURGITATE

’

Appendix A.

1 ( Stock Words for Filters and Sponges )
3 OPENED OPEN-FILE ABORT" Can't open "
5 INPUT R/O OPENED ; ( c_addr u -- fileid )
6 QUTPUT W/O OPENED ; { c_addr u -- fileid )
8 CLOSED <?DUP IF CLOSE-FILE abort™ Can't close. "™ THEN ;
9 REWIND ?2DUP IF
10 0 0 ROT REPOSITION-FILE ABORT" Can't rewind. "
11 THEN
12 ;
14 checked ABORT" (File Access Error) " ; { ior -~ )
15 needed (n -~
16 DEPTH U< NOT ABORT" Not enough on the stack. "
17 ;
19 0 VALUE IN ( Global Fileid for Input )
20 0 VALUE OUT ( Global Fileid for OQutput )
22 PLACE 2DUP 2>R CHAR+ SWAP CHARS MOVE 2R> C! ;
24 BOUNDS OVER + SWAP ; (an-— a+tn a )
26 ( Common Input Buffer for Filters )
27 255 CONSTANT /COUNTED-STRING
28 CREATE INBUF /COUNTED-STRING 2 + CHARS ALLOT
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Appendix B.

This is a tidying of my QSORT given in Forth Dimensions XV1/1. Look there for explanation.
1 ( Hoare's Quicksort ) ( Non-Recursive ) ( Wil Baden 1967-1993 )
( Standard Forth CORE EXT with NOT )

\S]

4 ( Use your definition of NOT. )

6 VARIABLE ‘inorder

8 : exchange 2DUP @ >R @ SWAP ! R> SWAP ! ; (xy -~ )
10 : order-three { 1o hi mid -- lo hi mid )
11 >R ( 1o hi) ( R: mid)

12 OVER @ R@ @ 'inorder @ EXECUTE 0>

13 IF OVER R@ exchange THEN

14 R@ @ OVER Q@ 'inorder @ EXECUTE 0> IF

15 R@ OVER exchange

16 OVER @ R@ Q@ 'inorder @ EXECUTE 0>

17 IF OVER RE@ exchange THEN

18 THEN

19 R> ( 1o hi mid) ( R: )
20 ;

22 VARIABLE guess

24 : skip-lowers (xy-——xy)

25 >R

26 BEGIN

27 CELL+

28 DUP @ GUESS @ 'inorder @ EXECUTE 0< NOT
29 UNTIL

30 R>

31 ;

33 : skip-highers (.v— .vy)

34 BEGIN

35 1 CELLS -

36 guess @ OVER @ 'inorder @ EXECUTE 0< NOT

37 UNTIL

38 ;

40 : partition ( 1o hi -- lo y x hi )
41 2DUP OVER ~ 2/ ALIGNED + ( 1o hi mid)
42 order-three

43 @ guess ! ( 1o hi)

44 2DUP ( 1o hi x y)
45 BEGIN

46 skip-lowers

47 skip-highers

48 2DUP > NOT

49 WHILE

50 2DUP exchange

51 2DUP 2 CELLS - >

52 UNTIL

53 >R CELL+ R>

54 1 CELLS -~

55 THEN

56 SWAP ROT ( lo y x hi)
57 ; (Appendix B continues on next page.)
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59 : smallersection-first ( loy x hi -- lo y x hi)
60 20VER 20VER SWAP ~ >R SWAP - R> <
61 IF 2SWAP THEN
62 ;
64 : hoarify (xy -—— ... X V)
65 BEGIN
66 2DUP SWAP - 2 CELLS >
67 WHILE
68 partition ( ... lo y x hi)
69 smallersection-first
70 REPEAT ( .. lo hi)
71
73 : order-a-pair ( 1o hi --)
74 2DUP = NOT IF
75 OVER @ OVER @ 'inorder @ EXECUTE 0>
76 IF 2DUP exchange THEN
77 THEN 2DROP
78 ;
80 : short-order ( 1o hi --)
81 2DUP SWAP -~ 1 CELLS > IF
82 DUP 1 CELLS - ( lo hi mid)
83 order-three
84 DROP 2DROP
85 ELSE
86 order-a-pair ()
87 THEN
88 ;
90 : QSORT ( a_addr n xt -- )
91 'inorder ! ( a_addr n)
92 DUP 0= IF 2DROP EXIT THEN
93 1- CELLS OVER + ( lo ho)
94 DEPTH >R
95 BEGIN ( lo ho)
96 hoarify ( ... lo ho)
97 short-order ( ...)
98 DEPTH R@ <
99 UNTIL ()
100 R> DROP
101 -
103 : CCOMPARE ( c_addr c_addr -- -1]0[1 )
104 >R COUNT R> COUNT COMPARE
105 ;
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Using Forth to manipulate the real world

Eoktihwalke

Measuring Frequency and
Sampling Time-Dependent Signals

Skip Carter
Monterey, California

Introduction
This month I'd like to discuss a special kind of input
signal: time-dependent signals whose frequency is impor-
tant. We will take a look at how to determine the frequency
of a digital signal and will consider some of the issues
involved in getting a useful sample of an analog signal.

Frequency Measurement
Let us first consider the problem of how to measure the
frequency of a digital signal (i.e., a square wave). Signals
such as this can come from a digital source or from a
suitably conditioned analog source. Examples include
some A/D chips, a voltage-controlled oscillator, or a
venerable 555 oscillator chip.
There are two basic ways of making this measurement:
e Period counting. This involves measuring the time
between successive leading (or trailing) edges of the
incoming pulses.
e Frequency counting. This is done by counting the
number of edges that occur within a fixed time interval.

In either case, one takes several measurements, then
averages them in order to get a useful measurement. Both
methods require that the edges come in slow enough for
the software to respond to their arrivals. This requirement
makes the high-level code presented here for illustration
(Listing One), of limited direct usefulness. To get a higher
maximum frequency in a real system, the edge detection
would be done in assembler and/or as an ISR. (Notice that
the period counter changes the hardware timer (o run at
1.1 MHgz, instead of the normal 182 Hz, so we get a
reasonable resolution. This messing around with the
hardware timer is pretty system dependent; I never got it
to work from a DOS shell within Windows.)

In addition, each technique has its own particular
weaknesses. With period counting, there is the problem of
what happens when there are missing edges. To illustrate,
suppose the input signal was a 1 kHz square wave, so the
time between leading edges is 1 millisecond. Given the
normal vagaries of the measurement, we might expect to
see a variation of, say, £10%, so the individual measure-
ments might vary from 0.9 to 1.1 milliseconds. Averaging
several measurements will handle this and give us an
estimate of 1 millisecond with a reasonable degree of
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confidence. But now suppose that, every once in a while,
we miss an edge—each time this happens, we get a value
of two milliseconds to fold into our average! This can
significantly shift our estimated frequency, plus it will have
a strong effect on the degree of confidence of our
measurement. An occasional extra pulse can also cause
problems by giving us two time values that are too short.
Averaging over a large number of samples helps with this,
but it might not be practical for the application.

Another possibility is to sample adaptively. Adaptive
sampling requires calculating a running mean and vari-
ance, and the sampling is stopped when the variance
drops below some acceptance threshold. The problem
with adaptive sampling is that it will consume significant
computing resources between each sample. A practical
period sampling routine will also have a timeout provi-
sion, otherwise it will wait forever for an edge that never
happens if the signal stops or is interrupted.

Frequency counting is not as adversely affected by an
occasional missing or extra edge. However, frequency
counting is vulnerable to counter overrun. Even if the
software can keep up with the edges coming in, if the
sample time is too long the counter that is accumulating
the edges could overrun. A short sample time helps this,
since it increases the frequency at which an overrun will
occur. But if the sample interval is too small, the measure-
ment has a reduced degree of confidence. One could also
detect the overrun and handle it in some way (e.g., setting
an overrun flag, stopping the count, etc.).

Sampling a Time-Dependent Signal

The problems involved in handling a2 more general,
time-dependent signal—say a digitized acoustic signal—
are considerably trickier. A primary problem is how to
make the measurements without high-frequency aliasing
distorting the result. The problem is that if 2 x n is the
sample rate, there is no way 1o distinguish a signal of
frequency 7 from a signal of 2n (or any other integer
multiple of 7), because in both cases one sees a full cycle
in two samples. In the 2n case, there was a whole cycle
in between our samples that we missed. This means that,
if we are sampling at 2 x n, there is 2 whole range of
frequencies from n upward that can contaminate our
measurements. This spurious folding of high frequencies
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Figure One. A low-pass R-C filter. The 3 db
frequency cutoff is at f = 1/(2aRC).

in R Out

L

down to a lower one is called aliasing.

One can reduce this problem somewhat by sampling at
a high rate, the idea being that it will increase the frequency
at which aliasing begins to occur, and one hopes there is
less of the higher frequency around to bother us. The
problem is that it might not be the case that there is less at
the higher frequency and, even worse, this solution uses
more CPU resources. A better solution is to prevent the high
frequencies from getting into your samples in the first place.
This is done by placing an anti-aliasing filterin the analog
circuit before the A/D converter. An anti-aliasing filter is just
a low-pass filter designed to reject frequencies above 7.

Anti-aliasing filters are frequently implemented as simple
R-C filters like in Figure One. This filter is not that great, as
filters go: the rate of attenuation of the higher frequencies
is rather slow. The fraction of the signal passed through the
filter as a function of frequency is called the magnitude
response. The magnitude response curve is an important
measure of the quality and suitability of a filter. Unfortu-
nately, it is often used as the only measure.

Another measure that can be just as important to
consider is the frequency-dependent effect the filter has
upon the phase of the signal. This is the phase response.
The phase response information is most useful in two
forms, the phase delay and the group delay. The phase
delay is just a dimensional form of the phase response: it
gives the amount of time a signal of a given frequency is
delayed by the filter. The group delay describes something
slightly different. Suppose our signal is like an FM radio
signal that is being modulated in frequency around a basic
frequency. The modulation can be thought of as another
signal (the envelope) riding on top of the basic frequency
(the carrier). The phase delay of the envelope is not
generally the same as the phase delay of the carrier. The
group delay gives the delay time of the envelope.

So, to properly judge the suitability of a given filter, we
really need to check all three functions: the magnitude
response, the phase delay, and the group delay. As you
might expect, all filters sacrifice performance in one of
these three functions in order 1o gain in another. The best
compromise depends on your application.

All these filter characteristics can be derived from the
filter's transfer function. This is a complex function (that
is, it contains complex numbers in it) that takes a bit of
mathematics to be able to derive foran arbitrary filter. I will
only give results here for the low-pass RC filter. If you are
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interested in learning more about this, Horowitz and Hill
contains a readable introduction to the topic. The low-pass
RC filter has the transfer function,

1- jRCw
1+ RC*w®
Here I have used the engineer’s notation for the v-1, j,
not the scientist’s notation, i. The term @ is the frequency

in radians; to get Hertz, divide @by 2r. With this equation,
we can get the magnitude response:

1
N
The phase response is:
Im(H(w))
Re(H(w))
= tan " (RCw)

H(w)

|H(w)| =

O(w) = tan”(

)

So the phase delay is:
(w)

»(W) =
|
=——tan" (—RCw)
w

and the group delay is:
db(w)

do
RC

T 1+ RC0?

(W) = -

With the anti-aliasing filter in place, we still need to
decide on the proper sampling rate. You might recall
reading elsewhere about something called the Nyquist
sampling theorem. This theorem is what we want—it tells
us the sample rate must be at least twice the bandwidth of
the signal in order to avoid aliasing. Notice that I said
bandwidth, which is the range from the lowest to the
highest frequency (in the simplest case, where there are no
gaps) in the signal. The Nyquist theorem is widely mis-
quoted as stating that we must sample at twice the highest
Sfrequency of the signal. But the bandwidth and the highest
frequency are not the same thing, unless we are dealing
with a base band signal (one that has content from a
frequency of zero all the way up to the highest frequency).

The distinction can be quite important. Consider the
following real-life example. In the RAFOS subsurface ocean
drifter I helped to develop, we navigate the float by listening
10 a tone emitted by a pre-placed acoustic beacon mooring.
These beacons output a long tone that sweeps in frequency
from 258.5 to 261.5 Hz. The bandwidth of this tone is the
range of the sweep, 3 Hz. So the Nyquist theorem states that
we need a sampling rate of at least 6 Hertz, not twice the
highest frequency of 261.5 Hz (523 Hz). As a result, the
RAFOS float can comfortably oversample the signal at 10
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Figure Two. The reference chirp signal. The diamonds are the locations of the 128 Hz samples.
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Hz, using a lowly 6805 microprocessor. Erroneously sam-

pling at 523 Hz would have required a faster processor,
which would have required more electrical power, which,
in turn, would have made the instrument an impractical

device (the drifter runs on batteries and has mission
measured in months, 48 being our current record).

times

If we are uniformly sampling a signal at the proper rate,
and if there is no aliased signal contaminating our measure-
ment, we can recover the value of the signal at any time. To
do this, we need to do a convolution of our samples with
the sinc function (this is the uniform sampling theorem),
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x(t) = Zx(nT)sinch- (t— nT))

n=—oo

where tis the time we want to reconstruct the signal at, T
is the interval between samples, and 7 is the sample index.
(I am not going to explain the mathematics behind this
here. It could provide material for several future columns
to explain it. If you want to research this on your own, the
book by Bracewell is highly recommended.) In order to
make practical use of this equation, we will take the index
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n over the number of data samples, instead of infinity.
A Forth implementation of the sinc function is,
SINC ( -— , F: x =-- sincx )

FDUP FO= IF FDROP 1.0EQ
ELSE FDUP FSIN FSWAP F/
THEN

By the way, if you look up equations like these in the
literature, 1 guarantee you will have a horrible time
reconciling factors of &, 2, and -1. (This is generally known
as the n-throwing contest. Where did the © go?) In the
mathematics literature, these factors tend to be missing
from the equations altogether. In the engineering litera-
ture, they are in different places in different books. The
reason is that such factors are immaterial, as far as the
mathematical theory of all this is concerned—they are just
normalization and dimensionalization factors. In the engi-
neering context, there is no one way to do normalization
and dimensionalization—they just need to be done self-
consistently; so one book’s version can differ from that of
another book.

Now that we are armed with the uniform sampling
theorem, we can do a little experiment to demonstrate
what I said about sampling a bandlimited signal. Listing
Two, gensig.fth, is a program that will generate a test
signal that starts at one frequency and slides up to another
(a “chirp™. 1 have set things up so the simulated signal
sweeps from 10 Hz to 12 Hz in 4.5 seconds. When the
constant SAMPLING? is FALSE, the output is at the
equivalent of 128 samples per second.

A subsample of the output of this program is what we
will be using as data; a plot is shown in Figure Two. This
signal has a bandwidth of 2 Hz, so the Nyquist sampling rate
is 4 Hz. We will oversample and sample at 6.4 Hz. Now, we
can't just take every 20th sample from the data in Figure
Two to use as our measurement data; such a signal would
contain a serious amount of aliasing in it. To make the signal
usable, we will mix it with an 11 Hz signal and then apply
a low-pass filter with a 5 Hz cut-off to the result.

Why do we do that? From elementary trigonometry,

2 x sin(x) X cos(y) = sin(x — y) +sin(x + y)

which means that if we take a signal of one frequency,
x, and multiply it by another signal of frequency, y, we
end up with one signal with frequency x- yand another
at x + y. So if xis our original signal which sweeps from
10 to 12 Hz, and y is a fixed signal at 11 Hz, we end up
with 2 signal centered at 0 Hz and another at 22 Hz. The
one at 0 Hz is the one we want to keep; the other at 22
Hz we will filter out.

This technique for shifting the center frequency of a
signalis the heart of what is known as a heterodyne mixer.
The special case where we shift to a center frequency of
zero is known as a homodyne mixer. After mixing and
filtering the original signal, we can safely subsample it.
The anti-aliasing filter being used here is a first-order, low-
pass Butterworth filter. There are better choices for the
filter (such as a Bessel filter), but I am using it here because
it is simple and it illustrates a point we will get to later. All
of these operations are in the code gensig.fth when the
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constant SAMPLING? is set to TRUE.

The output for the sampling case are the simulated
measurements we want to use the uniform sampling
theorem on. The code in regen.fth (Listing Three) reads
the data and applies the theorem to it. Comparing the
output of regen with its input, we see the smoother result
one might expect. In order to see what we theoretically
expect, go back and run gensig with SAMPLING? set to
FALSE and the minimum and maximum frequencies set to
-1.0 and 1.0, respectively. Running gensig this way
generates the reference signal without the 11 Hz carrier.

Comparing the carrier-free signal with the recon-
structed signal (Figure Three), we see that we generally do
pretty well. There are two problems we can see with our
reconstruction:

« The end points aren’t that well matched. In this example,
the starting point looks very good, but that is an artifact
of the fact that the signal starts at zero. The end-point
problem is due to the fact that the theorem we are using
assumes there is data on both sides of our estimation
point{and, in fact, an infinite amount of it) but, as we near
the edges, the calculation gets most of its information
from only one side of the point. More data helps here, but
the end points are always going to be a problem.

The reconstruction is slightly phase shifted late. If you
look carefully, you'll notice that the phase shift is in the
measurement data and that the reconstruction has the
same shift. This is because the phase shift is caused by
the anti-aliasing filter. The group delay of the Butterworth
filter being used here is frequency dependent. It starts
at zero and monotonically increases until about 10 Hz;
at 2 Hz, it is about 0.05 seconds. This is a good example
of where the group delay characteristics are more
important than how sharp the high frequency cutoff is.

Conclusion

This installment further extends our ability to handle
data coming in from the outside world. We have just
scratched the surface of the issues involved in dealing with
frequency-dependent data. For more information about
handling time-dependent signals, see the references. The
book by Oppenheim and Schafer is especially thorough,
but it’s not for the mathematically timid.

Next time, we will close the loop between our input
and output handling by looking at how we can modify our
outputs on the basis of the given inputs, in order to
provide stable control of a system.

Please send your comments, suggestions, and criti-
cisms to me through Forth Dimensions or via e-mail at
skip@taygeta.com.

Code begins on page 38.
Downloading: freq.fth, gensig.fth, and regen.fth

are available at ftp://ftp.Forth.org/pub/Forth/FD/1996

Skip Carter is a scientific and software consultant. He is the leader of the Forth
Scientific Library project, and maintains the system taygeta on the Internet. He
is also the President of the Forth Interest Group.
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Figure Three. The sampled and reconstructed signal. The dashed line shows the reference signal without
the carrier—this what is to be reconstructed. The diamonds show the 6.4 Hz samples obtained by mixing,
filtering, and subsampling the reference signal (Figure Two). The pluses show the signal reconstruction

obtained by applying the uniform sampling theorem to the sampled data.
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Listing One. Examples of simple period and frequency counters.

freq.fth Simple implementations of a period and frequency counter
sampling data on the parallel #STATUS port bit 7

\

\

\ This code released to the public domain September 1996 Taygeta Scientific Inc.
\ $Author: skip $

\ SwWorkfile: freq.fth $

\ SRevision: 1.0 $

\ $Dhate: 28 Sep 1996 20:05:14 S

\ === ————= S S S —

HEX

378 CONSTANT #DATA
#DATA 1+ CONSTANT #STATUS
#DATA 2 + CONSTANT #COMMAND
DECIMAL

\ =——=—=========s=c===c=====s========ssss====s=———===s=——————==soooco———amo ==

\ The following two words are adapted from: Hendtlass, T., 1993; Real Time Forth
\ If you don't have it, GET THIS BOOK! contact: tim@brain.physics.swin.oz.au

\ An F-PC specific <read clock>
code <read_clock> ( =-- n )

push ax

mov ax, # 0

int 26

pop ax

push dx

next
end-code

DOWN-COUNTER \ creates a countdown timer
CREATE ( -- )
2 CELLS ALLOT
DOES>

-

set aside 2 slots, user value and read value

<read clock> \ read hardware clock
OVER CELL+ @ \ get last clock value
OVER - \ get the change
2 PICK +! \ update user value

\

OVER CELL+ ! save last read value

’

and then later to restore it back to the standard 18.2 ticks/second

\

\ PC-specific words to set hardware timer to 1193181.667 ticks/second
\

\ Note: this won't work in a Windows DOS shell.

HEX

43 CONSTANT TIMER CONTROL
40 CONSTANT TIMER 0

initialize_timer ( -- )
34 TIMER_CONTROL PC!
0 TIMER 0 PC!
0 TIMER 0 PC!

restore_timer ( --)
36 TIMER CONTROL PC!
0 TIMER 0 PC!
0 TIMER 0 PC!
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\ ===cm=—mcccssmmesss==m== = S S —
DECIMAL

wait for low ( -- ) \ wait until #STATUS bit 7 is low
BEGIN
#STATUS pc@ 128 AND 0=
UNTIL

wait_for high ( -- ) \ wait until #STATUS bit 7 is high
BEGIN
#STATUS pc@ 128 AND
UNTIL

edge high? ( -- t/f ) \ return status of #STATUS bit 7
#STATUS pc@ 128 AND

’

VARIABLE accumulate

\ ===============the period counter===s=====ss==sss===ss=====s======
PERIOD (n -— x ) \ n is number of samples, x is average period
0 accumulate !
initialize timer \ run the timer at a fast rate
0 DO
wait_for low \ make sure the level is low first
<read_clock>
wait_for_high \ now poll for a rising edge
<read clock> - \ neglecting rollover
accumulate +!
Loop

restore_timer

accumulate @

\ o mEETS T s the frequency counter:::::::::::==:===:=:====:== ——————————— ===
\ depending upon your hardware, this simple counter is good to up to about 20 Khz
DOWN-COUNTER count_down

FREQUENCY ( n ~- x ) \ n is number of timer cycles, x is average freqg. in Hz
0 accumulate !

wait_for low \ make sure the level is low first
DUP count_down !

BEGIN
edge_high? \ test to see if edge is high
IF 1 accumulate +!
wait for low \ make sure level goes back low
THEN
count _down @ 0 <=
UNTIL
\ convert counts to Hz
10 *
accumulate @
182 ROT */
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Listing Two. The program to generate either the reference signal or the data samples.

\ gensig.fth Generates a reference chirp test signal

\ or, if SAMPLING? is true, generate a sampled signal
\ This is an ANS Forth program requiring:

\ 1. The Floating point word set

\ 2. The conditional compilation words in the

\ PROGRAMMING-TOOLS wordset

\ There is an environmental dependency in that it is assumed

\ that the float stack is separate from the parameter stack

\ This code released to the public domain September 1996 Taygeta Scientific Inc.
\ $Author: skip §

\ SWorkfile: gensig.fth $§

\ $Revision: 1.0 s

\ SDhate: 28 Sep 1996 20:04:22 S

\

FALSE CONSTANT SAMPLING?
10.0E0 FCONSTANT F_MIN
12.0E0 FCONSTANT F_MAX
4.50E0 FCONSTANT SWEEP

\ 10 "Hz" minimum frequency
\ 12 "Hz" maximum frequency
\ the frequency sweep time

FVARIABLE DF

6.283185307E0 FCONSTANT TWO_PI

0.0078125E0 FCONSTANT DT \ 128 "Hz" sample rate

tone ( - , F: t £ -- x )
F* TWO_PI F* FSIN

S>> ((x -- , F:
S>D D>F

-— £x )
SAMPLING? [IF]

\ 16 CONSTANT DECIMATE
20 CONSTANT DECIMATE

\ effective sampling at 8 Hz
\ effective sampling at 6.4 Hz

F_MAX F_MIN F+ 2.0E0 F/ FCONSTANT F_CENTER

: MIX ( -=- , F: x t -~ x' )
F_CENTER F* TWO PI F* FCOS
F*

\ account for loss due to the mixer shifting stuff to both a low and high band
2.0E0Q F*

0.01279E0 FCONSTANT COEF A
-1.65561E0 FCONSTANT COEF B
0.70676E0 FCONSTANT COEF C

FVARIABLE IN 0 0.0E0 IN O F!
FVARIABLE IN 1 0.0E0 IN_1 F!
FVARIABLE IN 2 0.0EQ IN 2 F!
FVARIABLE OUT_ 0 0.0EQ OUT_0 F!
FVARIABLE OUT_1 0.0EQ0 OUT_1 F!
FVARIABLE OUT 2 0.0E0 OUT 2 F!
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\ first order low-pass Butterworth filter

FILTER ( -- , F: x -- x' )
IN 0 F!
IN 0 F@ IN 2 F@ F+

IN_1 F@ 2.0E0 F* F+
COEF_A F*

OUT_1 F@ COEF B F* F-
OUT_2 F@ COEF_C F* F-

FDUP OUT_O0 F!

\ shift data for next time
IN_1 F@ IN_2 F!
IN_ 0 F@ IN_1 F!

OUT_1 F@ OUT 2 F!
OUT_O0 F@ OUT 1 F!

freq ( -, F: t -~ £ )

\ calculate the frequency for this time
FDUP FO0< IF FDROP F_MIN EXIT THEN
SWEEP FOVER F< IF FDROP F_MAX EXIT THEN
SWEEP F/ DF FQ F* F_MIN F+

gensig ( -- , F: maxt =-- )
DT F/ F>D DROP

F_MAX F MIN F- DF F!

CR
0.0E0 \ the time
0 DO

FDUP FDUP freq

tone
FOVER MIX FILTER

I DECIMATE MOD 0= IF
FOVER F. F. CR

Oakland, California 94621-0054

8. Complete mailing address of headquar-
ters or general business office of Publisher:
same as above

9. Publisher: Forth Interest Group, P.O.
Box 2154, Oakland, California 94621-
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[ELSE] ELSE
FDROP
1 CONSTANT DECIMATE THEN
MIX ( == , F: x t -- x ) DT F+
FDROP \ do nothing for ref. signal Loop
; FDROP
FILTER ( -- , F: x -- x ) ; IMMEDIATE ;
[THEN] SWEEP gensig bye
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Listing Three. The program to apply the uniform sampling theorem to the sampled data.

\ regen.fth
\ This is an

reconstructs the original signal from the sampled signal
ANS Forth program requiring:
1. The Floating point word set
2. The File wordset

3. The conditional compilation words in the PROGRAMMING-TOOLS wordset

\

\

\

\ 4. The Forth Scientific Library Array words

\ 5. The Forth Scientific Library ASCII file I/0O words
\ There is an environmental dependency in that it is assumed
\ that the float stack is separate from the parameter stack
\ This code released to the public domain September 1996 Taygeta Scientific Inc.
\ $Author: skip $§

\ $Workfile: regen.fth $

\ SRevision: 1.0 $

\ $Date:

\

28 Sep 1996 20:04:50 $

S"™ /usr/local/lib/forth/fsl-util.fth" INCLUDED

S"™ /usr/local/lib/forth/fileio.fth" INCLUDED

FALSE CONSTANT STANDALONE

-1 VALUE fin \ input file handle

-1 VALUE fout \ output file handle

0.0078125E0 FCONSTANT OUT DT \ 128 "Hz" output rate
0.15625E0 FCONSTANT DT \ 6.4 "Hz" sample rate

3.1415926536E0 FCONSTANT PI
6.283185307E0 FCONSTANT TWO PI
29 CONSTANT NUM_SAMPLES

560 CONSTANT NUM OUTPUT

NUM_SAMPLES FLOAT ARRAY t{

NUM_SAMPLES FLOAT ARRAY x{ \ the samples

CREATE outbuf 32 ALLOT
CREATE CRLF 2 ALLOT

FVARIABLE PI/T
9 CONSTANT TAB CHAR
CREATE TAB 1 ALLOT

\ TAB character

STANDALONE [IF]
variable f index

1 £ index !

: next_file ( -- c-addr u )

f_index @ argc >= if
00

: next _file ( -- c-addr u )
bl word count

’

’

November 1996 December

Support for older systems
Hands-on hardware and software

else Computing on the Small Scale
f_index @ argv Since 1983
1 £ index +!
then .
; Subscriptions
[ELSE] 1 year $24 - 2 years $44

All Back Issues available.

[THEN] TCJ
Sy BT FEmm ) The Computer Journal
; P.O. Box 3900
Jzero (n x -- ) Citrus Heights, CA 95611-3900
SWAP 0 DO 800-424-8825 / 916-722-4970
oo F T 0.0mOE Fax: 916-722-7480
DROP BBS: 916-722-5799
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sinc ( -~ , F: x -- sincx )
FDUP FO= IF FDROP 1.0EQ
ELSE FDUP FSIN FSWAP F/
THEN

~

estimate (( n -~ , F: t -- x )
PI DT F/ PI/T F!
0.0EQ FSWAP ( F: sum t )
0 DO
I S>F DT F*
FOVER FSWAP F- ( F: sum t t-nT )
PI/T FQ@ F¥*
sinc
X{ I } F@ F*
FROT F+
FSWAP
LOOP
FDROP

print_endline ( -- )
CRLF
1 \ for MS-DOS use 2 instead of 1
fout write-token

: print_tab ( -- )
TAB
1
fout write-token

regen ( —--<infile outfile>-- )
10 CRLF C! 13 CRLF 1+ C!
TAB_CHAR TAB C!

next_ file
R/0O OPEN-FILE ABORT" unable to open data file"
TO fin

next_file

\ open the output file

W/0 CREATE-FILE ABORT" unable to open output file" TO fout
CR

NUM_SAMPLES x{ }zero

NUM SAMPLES t{ }zero

NUM_SAMPLES 0 DO
I.
fin get-flocat FDUP F. t{ I } F!

fin get~float FDUP F. x{ I } F!

CR

LOOP

fin CLOSE-FILE DROP

NUM_OUTPUT 0 DO
I S>F OUT_DT F* FDUP outbuf fout write-float
print_tab

NUM SAMPLES estimate
outbuf fout write-float
print_endline
LOOP
fout CLOSE-FILE DROP
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Asilomar

FORML CONFERENCE

The original technical conference for professional Forth programmers and users.

18th annual FORML Forth Modification Laboratory Conference
Following Thanksgiving November 29—December 1, 1996

Asilomar Conference Center
Monterey Peninsula overlooking the Pacific Ocean
Pacific Grove, California, USA

Experimenting with the ANS Forth Standard

The ANS Forth standard has been out for two years, and the review process will start in another two years. FORML,
with it's charter as Forth's "Modification Laboratory,” is the appropriate place to let others know what your experiences
have been as a developer or user while there's time for your ideas to spread.

Papers are sought that report on your experience writing ANS Forth programs and systems. That is, on your
experiments. By calling attention to the successes and the problems now, before the review process begins, others will
repeat your experiments, confirming or refuting your hypotheses.

Please, whether your ANS experiment was one line or a thousand, whether it succeeded or failed, or can be described in
one page or ten, bring it to this year's FORML Conference to share with the world. As always, papers on any Forth-
related topic are welcome.

Mail abstract(s) of approximately 100 words by October 1, 1996 to FORML, PO Box 2154, Oakland, CA 94621 or
e-mail to FORML @ami.vip.best.com. Completed papers are due November 1, 1996.

John Rible, Conference Chairman Robert Reiling, Conference Director

Advance Registration Required * Call FIG Today 510-893-6784

Registration fee for conference attendees includes conference registration, coffee breaks, and notebook of papers
submitted, and for everyone rooms Friday and Saturday, all meals including lunch Friday through lunch Sunday, wine
and cheese parties Friday and Saturday nights, and use of Asilomar facilities.

Conference attendee in double room—$440 * Non-conference guest in same room—3$320 ¢ Children under 18 years old in
same room-—3$190 * Infants under 2 years old in same room—{ree * Conference attendee in single room—$570

The Asilomar Conference Center combines excellent meeting and comfortable living accommodations with secluded
forests on a Pacific Ocean beach. Early registration is recommended, space for this conference is limited.

Forth Interest Group members and their guests are eligible for a ten percent discount on registration
fees.

Registration and membership information available by calling, fax or writing to:

Forth Interest Group, PO Box 2154, Oakland, CA 94621
voice 510-893-6784, fax 510-535-1295

Conference sponsored by the Forth Modification Laboratory, a Forth Interest Group activity.




