

SILICON COMPOSERS INC

FAST Forth Native-Language Embedded Computers

DUP

>R

Harris RTX 2000"" I &bit Forth Chip SC32'"' 32-bit Forth Microprocessor
98 or 10 MHz operation and 15 MIPS speed. 08 or 10 MHz operation and 15 MIPS speed.
1 -cycle 16 x 16 = 32-bit multiply. I-clock cycle instruction execution.
1 -cycle 1 Cprioritized interrupts. -Contiguous 16 GB data and 2 GB code space.

*two 256-word stack memories. -Stack depths limited only by available memory.
*&channel 1/0 bus & 3 timer/counters. *Bus requestlbus grant lines with on-chip tristate.

SC/FOX PCS (Parallel Coprocessor System) SC/FOX SBC32 (Single Board Computer32)
*RTX 2000 industrial PGA CPU; 8 & 10 MHz. 032-bit SC32 industrial grade Forth PGA CPU.
*System speed options: 8 or 10 MHz. *System speed options: 8 or 10 MHz.
032 KB to 1 MB 0-wait-state static RAM. -32 KB to 512 KB 0-wait-state static RAM.
*Full-length PC/XT/AT plug-in (6-layer) board. -100mm x 160mm Eurocard size (Clayer) board.

SC/FOX VME SBC (Single Board Computer) SC/FOX PCS32 (parallel Coprocessor Sys)
*RTX 2000 industrial PGA CPU; 8, 10, 12 MHz. -32-bit SC32 industrial grade Forth PGA CPU.
*Bus Master, System Controller, or Bus Slave. *System speed options: 8 or 10 MHz.
*Up to 640 KB 0-wait-state static RAM. 064 KB to I MB 0-wait-state static RAM.
-233mm x 160mm 6U size (&layer) board. *Full-length PC/XT/AT plug-in (&layer) board.

SC/FOX CUB (Single Board Computer)
*RTX 2000 PLCC or 2001A PLCC chip.
*System speed options: 8, 10, or 12 MHz.
032 KB to 256 KB 0-wait-state SRAM.
*100mm x 100mm size (4-layer) board.

SC/FOX S6C (Single Board Computer)
*RTX 2000 industrial grade PGA CPU.
*System speed options: 8, 10, or 12 MHz.
032 KB to 512 KB 0-wait-state static RAM.
-100mm x l6Omm Eurocard size (4-layer) board.

For additional product information and OEM pricing, please contact us at:
SILICON COMPOSERS INC 655 W. Evelyn Ave. #7, Mountain View, CA 94041 (415) 961-8778

Features

B 6 Development Aids for New Micros Richard W Fergus
The author uses popular New Micros products, but wanted to enhance the facilities
provided--to the point that his platform would have a significantly enhanced "feel." He shares
how he attacked downloading and terminal emulation, separated RAM variables, Motorola S19
record output, Brodie's MAKE-DOER, multitasking, and a logging function in the terminal
emulation mode to copy the S19 records.

P I f
The Elephant Who Refuses to Be Bagged C. H. Ting
When attempting to use a compression algorithm in Forth that had been presented at a
conference, the new data presented new challenges. The accompanying code documents the
thorny trail of discovery, analysis, and "resolution."

1 '* 4tH, an Experiment in C Hans Bezemer
4tH is a different Forth implementation. It contains much of Forth, but is translated to C. Yes,
it has two interpreters, but they behave differently. It is token-threaded, but has no dictionary.
It is a Forth using conventional compiler technology, but it isn't a standalone compiler-it is
a library. One result: 4tH produces bytecode, like Java, which can be used without any
modification on every platform to which is has been ported.

31 FIG Board Increases Member Benefits Elizabeth Rather
The Bord of Directors of the Forth Interest Group met at the recent Rochester Forth
Conference. It was the second official meeting of the currently constituted board. Major actions
included instituting additional benefits for FIG members, clarification of benefits for corporate
members, review of Forth Dimensions advertising rates, planning of promotional activities,
and review of plans for managing the FIG office and activities.

33 Rochester Forth Conference Nick Solntseff
Canada's first Forth conference successfully presented papers on a wide-ranging variety of
contemporary issues. "Rochester-in-Toronto" marked the first time the esteemed Rochester
Forth Conference was held outside New York and, as this reporter comments, signs of Forth's
vitality were well represented.

Departments I
4 Editorial

4 dot-quote

..................... 5 Letters What ANS Forth needs now.

23 Stretching Forth Breaking Code: Forth solves 150-year-old problem

......... 32 Chapter News Southern Ontario hosts Rochester Conference

............... 34 Forthware Digital input and synchronous I/O

Forth Dimensions 3 September 1996 October

Forth Dimensions
Volume XVIII, Number 3

September 1996 October

In case you missed my past polemics about Forth on-line, the FIG Board report
contained in this issue will provide a reminder: there are substantial benefits to joining the
on-line Forth community, especially if you are a FIG member. The Board continues to
enhance the rewards of FIG membership, on-line or off, as it also works to improve the
organization's ability to present Forth's contemporary advantages to the rest of the world.

Java, of course, is the recent headline-grabber. It's also the latest recipient of the oft-
recited "Why didn't they use Forth?" and "Forth could do that" laments. This year's Rochester
Conference had a workshop on the subject and, synchronistically, the article on 4tH this
month profiles an experimental system that generates bytecode for maximum portability.

We hope you enjoy this issue, even as we prepare for the next and the one after. Please
consider being part of our upcoming publication plans-FD is looking for articles about
interesting projects, problems solved, managing large teams and reams of code,
overcoming resistance to Forth, ANS Forth (see "Letters") at both micro and macro levels,
portability, embedded systems, tutorials, and-you get the idea. Write soon!

-Marlin Ouverson, Editor

dot-quote

I first read about ~or th in 1975, but was too green to understand its underlying
simplicity, and how easy it would be to at least partially implement a Forth. Just doing
away with variables and using the stack and a primitive address interpreter is orders
of magnitude better than "classical development." (Do people still use those mucho-
insertion-force chips that have to sunbathe under UV for half an hour every time you
make a change?)

Havinggotten so much mileage from a 7TY connection, F83 on my host system, and
a bare address interpreter, I sometimes wonder if it is even right to call Forth a language.
It's both far more and far less. It's a way of thinking about programmingthat i s so simple
and workable, it feels almost as compelling as using integer math to count.

I think too much fussing over the 'syntactic sugaring' can obscure the real value
of the Forth paradigm, So can concern over ever fancier and more powerful Forths.
Even more so than Unix, Forth realizes the power of simplicity. Lao Tzu says, "That
which i s without substance can enter where there is no room." This also strikes me
as very Forth-like. So, beingNwithout substanceM-that is, without a lot of intellectual
baggageof nodirect applicability-Forth lends itself to implementation in things like
microcontrol lers.

Forth may be the most transparent tool I have ever seen, in anydomain. It is whatever
you make of it. Certainly there is value to having some common definition of Forth
available, it makes sharing ideas and code easier. However, it strikes me as a kind of
idolatry to try to standardize Forth as one would C. The essence of Forth i s in its
malleability and its lack of artificial boundaries between the user and the hardware.

-David Kenny (dk@winternet.com)
Adapted from comp. lang. forth

September 1996 October 4

Published by the
Forth Interest Group

Editor
Marlin Ouverson I

Circulation/Order Desk
Frank Hall

Forth Dimensions welcomes edi-
torial material, letters to the editor,
and comments from its readers.
No responsibility is assumed for
accuracy of submissions.

Subscription to Forth Dimensions
is included with membership in
the Forth Interest Group at $45
per year ($53 Cana&/Mexico, $60
overseas air). For membership,
change of address, and to submit
items for publication, the address
is: Forth Interest Group, P.O. Box
2154, Oakland, California 94621.
Administrative offices:
510-89-FORTH Fax: 510-535-1295

Copyright Q 1996 by ForthInterest
Group, Inc. The material contained
in this periodical (but not the code)
is copyrighted by the individual
authors of the articles and by Forth
Interest Group, Inc., respectively.
Any reproduction or use of this
periodical as it is compiled or the
articles, except reproductions for
non-commercial purposes, with-
out the written permission of Forth
Interest Group, Inc. is a violation
of the Copyright Laws. Any code
bearing a copyright notice, how-
ever, can be used only with per-
mission of the copyright holder.

The Forth Interest Group
The Forth Interest Group is the
association of programmers, man-
agers, and engineers who create
practical, Forth-based solutions to
real-world needs. Many research
hardware and softwaredesigns that
will advance the general state of
the an. FIG provides a climate of
intellectual exchange and benefits
intended to assist each of its rnem-
bers. Publications, conferences,
seminars, telecommunications, and
area chapter meetings are among
its activities.

"Forth Dimensions(ISSN 0884-0822)
is published bimonthly for $45/
53/60per year by the Forth Interest
Group, 4800 Allendale Ave.,
Oakland, CA 94619. Second-class
postage paid at Oakland, CA.
POSTMASTER: Send address changes
to Forth Dimensions, P.O. Box
2154, Oakland, CA 94621-0054."

4% Forth Dimensions

Sendyourfeedback, questions, criticisms, andotherresponses
to editor@forth. org or to the editor in care of Forth Dimensions,
P.O. Box 2154, Oakland, California 94621. Letters may be
edited for clarify and length.

What ANS Forth Needs Now
Dear Marlin,

I noted with interest the article on hFORTH in FD
XVIII/2. I acquired a copy of that system but have essentially
no documentation for ANS Forth. Wonyong Koh's article
is a nice overview, but is hardly adequate documentation
for a new user of ANS Forth. This missing link still concerns
me and, I hope, other members of FIG.

It has occurred to me that this void might be filled by a
team effort devoted to producing readable documentation
of ANS Forth which could be published in one or more
issues of FDdevoted entirely to that subject. Surely it would
not be too much to ask of those knowledgeable members
who participated in the development of the standard to join
forces once again to provide usable documentation for
those who wish to support the standard but have no real
knowledge of it. I do not mean to underestimate the task,
but rather to emphasize its importance to the survival of
Forth. Without a usable and supported standard, it seems to
me, Forth has nowhere at all to go.

Speaking for myself, I have not used F-PC (an excellent
system for which Tom Zimmer is to be congratulated for
producing) for several years, because effort spent in im-
proving my skills on a non-standard system seems to me to
be wasted. Now that we have a standard, we must use it or
lose it and, frankly, I have all but despaired of having a
chance to learn ANS Forth, much less use it. My 70 years do
not leave much room for procrastination!

To put it rather bluntly, my membership renewal is due
in a month or so, and I wish to know whether renewal is
worthwhile for me.

Sincerely,
Bernard H. Geyer
bgeyer@smtp.northlink.com

Some feel that, because ANS Forth gives latitude to
system implementors, mostForth users shouldsimply learn
individual systems-i.e., that attempting to understand
the ANS document can be lefl to implementors. The thor-
oughness oftbe systemsJ manuals would, as usual, be left
to each implementor.

From where Isit, yourpoint is well taken. We definitely
needauthors willing to write aboutparticularaspects ofANS
Forth. Additionally, I~encourage a cooperative effort such as
the one you propose-if it were carried out via e-mail, it
would only require a moderator and on-line team, care fully
defining and parceling out the material, with patience,
persistence, accuracy, and diplomacy.

Any takers? This could contribute to the wider under-
standing and adoption ofANS Forth. -Editor

Forth Dimensions

NOW from FORTH,
Inc

...g ive you the easiest-
to-use programming
software for the
easiest-to-use PCs!

Power MacForth for fast, optimized native Power PC code
Full Mac Toolbox support, including System I'PPC
interface
Powerful multitasking support
Integrated source editor, trace & debugging tools
High-level graphics and floating point libraries
Wealth of demo programs, source code & examples
Extensive documentation, including online Glossary
Turnkey capability for royalty-free distribution of
programs

FORTH, Inc.
11 1 N. Sepulveda Blvd, #300
Manhattan Beach, CA 90266
800-55-FORTH 31 0-372-8493
FAX 310-31 8-7130 forthsales@forth.com
hnp://www.forth.com

Total control
with [MI FORTHTM
For Programming Professionals:
an expanding family of compatible, high-
performance, compilers for microcomputers

For Development:
Interactive Forth-83 Interpreter/Compilers
for MS-DOS, 80386 32-bit protected mode,
and Microsoft WindowsTM

Editor and assembler included - Uses standard operatrng system files
= 500 page manual written in plain English

Support for graphics, float~ng point, natrve code generation

- Comprles compact ROMable or disk-based applications . Excellent error handling
Produces headerless code, compiles from intermediate states,
and performs conditional compilation
Cross-compiles to 8080, Z-80, 64180, 680x0 family, 80x86 family,
80x96197 familv. 8051131 familv. 6303, 6809, 68HC11 , ~ I - No license fee or royalty for compiled applications 1

Laboratory Microsystems Incorporated
Post Office Box 10430, Manna Del Rey, CA 90295

Phone Credit Card Orders to: (3 10) 306-74 12
r Fax: (310) 30 1-0761

5 September 1996 October

Development Aids

Richard W Fergus
Lombard, lllinois

The New Micros company produces a line of single-
board computers based on the Motorola 68HCll micro-
processor. This processor includes multiple ADC chan-
nels, several free-running timing registers, and flexible
interrupts, which makes it a good candidate for many
embedded real-time applications. In addition, New Micros
includes a Forth dialect-MaxForth-in the CPU ROM.
The hardware design of these boards is good, but I find the
software and documentation lacking with regard to writing
application software. After several years and numerous
applications, a development platform has been assembled
which is the subject of this article.

Introduction
On first inspection, it appears that MaxForth is ready to

use for application development. There are EDITOR, LOAD,
LIST, etc. words. This is misleading, since the EDITOR
vocabulary is empty, and the LOAD and LIST words are
non-functional. The documentation infers that a standard
communication program or dumb terminal can be used.
This is possible but awkward. My goal has been a platform
which would give to program development for New Micros
boards a "feel" similar to the other Forth systems, e.g.,
similar editor, block-oriented file structure, and load screens.

This involved adding several words to a host Forth
system which handles the downloading and provides
terminal emulation. Since most embedded applications
should be PROMable, provisions were included for sepa-
rated RAM variables and Motorola S19 record output for
PROM burning. I also added a personal favorite: a MAKE-
DOER function from Brodie's Thinking Forth, including a
CHORE DOER in the keyboard loop for crude multitasking.

Host Additions
In addition to terminal emulation, two functions were

added to the host Forth. One word, $LOAD, sends a host
string variable plus CR to the target (the New Micros
board). Similarly, BLOAD sends a full host block (1024
bytes) to the target. Both words wait for a CR response
from the target before echoing the complete target re-
sponse. I also added a logging function in the terminal
emulation mode to copy the S19 records. The logging

function could be done with most communication pack-
ages. This word usage will be described in more detail
when the companion target functions are discussed.

I have not included a listing of these host words with
this article, since the definitions are somewhat system and
dialect dependent. I can supply a listing for either Uniforth
or Pygmy dialects.

Target Alterations
One way to simplify the load/interpret sequence is to

map the input buffer of 1024 bytes and change the number
of characters QUERY^^ to 1024 so that a full block can be
transferred and interpreted. To the host Forth, this func-
tion can look very similar to a standard load. Since this load
function is a word in the host Forth, a load screen is written
in the host system which calls other host screens to be sent
(loaded) to the target system. All screens are developed
with the host editor. Other than switching between
terminal emulation (target system) and the host system,
one would think they are dealing with one system.

The following programs assume the New Micros board
is equipped with MaxForth version 3.5 and 8K x 8 RAMS in
U2-U3 with base addresses of 2000 and 8000, respectively.
The RAM in U2 can be replaced with a PROM after the
program is developed. The MAKE-DOER as shown will not
function with the earlier MaxForth version (3.3) because of
a change in the <BUILDS -DOES> construct. For those who
still have some version 3.3 boards, modifications for the
MAKE-DOER code and other changes, including correcting
the D M I N word, are included in the text.

Host-to-Target Load
Screen 1-This screen, when called (1 LOAD) on the

host, reconfigures the target input buffer, dictionary, etc.,
then sends the remaining screens to the target as target
load screens. In MaxForth, the C / L variable sets the
 QUERY^^ characters (not traditional usage). After the last
screen is loaded, a "Done" is prompted and the terminal

, emulation (TT) is called. Obviously, the first screen is
' written in the host dialect, while the remaining screens are

written in the target dialect.
VAR$ is a host word which defines a counted string

September 1996 October 6 Forth Dimensions

variable. Lines two and three define string variables which
set the input buffer address and QUERY size. Until the
input buffer is reset, the command strings must be limited
in length (80 and 16 bytes for version 3.5 and 3.3,
respectively). Lines six and seven define a long string
which sets the dictionary pointer, "forgetsn TASK, and
relocates both stack pointers and PAD. TASK, a null word
defined in low RAM, is "forgotten," thereby eliminating
any dictionary reference to low memory.

. - 1 1 2 7 BLOAD 8 BLOAD 9 BLOAD (S y s t e m s e t u p) I prompt, and calling the termi-

The first three of the above strings are sent by line eight,
which uses the host $LOAD to send a counted string
variable, add a CR, wait for the target response, then echo
the target's response on the host CRT screen.

BLOAD is used to send the listed screens to the target
for loading and interpretation. After each screen is sent to
the target, the echo from the target will be displayed on the
host display. The echo includes the screen as sent by the
host (straight text with no CRs or LFs), errors that may have

1 0 2 BLOAD 3 BLOAD 4 BLOAD 5 BLOAD (NMI A d d i t i o n s / m o d s)
11 6 BLOAD I y (s R e c o r d \

13 VARS SET APPEND COLD"
1 4 SET $LOAD FORGET TB (A p p e n d n e w , reset, & host fo rge t)

15 CR ." D o n e " CR TT ; S (P r o m p t a n d goto ta rge t)

words defined on the host load
screen, displaying the "Done"

SCR # 2

0 (FORTH WORDS REDO)
1 FORTH DEFINITIONS HEX
2 : CODE (---) [COMPILE] CODE-SUB ; (R e d o CODE)
3 : END-CODE (---) 3 9 C, [COMPILE] END-CODE ; (R e d o END-CODE)
4
5 : BEEP (---) 7 EMIT ; (S o u n d B e l l)
6 : LOAD (---) BEEP ; (B e e p a n d d isable MAX LOAD)
7 : L I S T (---) BEEP ; (B e e p a n d d isable MAX L I S T)

8
9 CODE I> (---) 0 7 C , 9 7 8 3 , OF C , END-CODE (S t o p / s a v e IRQ)

1 0 CODE >I (---) 9 6 8 3 , 0 6 C, END-CODE (R e s t o r e IRQ m a s k)

11 : EC! (C ADDR ---) (R e d o E E C ! - - s t o r e o n l y i f d i f f e r e n t)

1 2 OVER F F AND OVER C@ - I F (D i f f e r e n t ?)

13 I > EEC! > I ELSE 2DROP THEN ; (D i s a b l e / e n a b l e IRQ)

1 4 : EN! (N A D D R - - -) (S t o r e N i n EEPROM)

15 OVER >< OVER EC! 1+ EC! ; DECIMAL ;

occurred in the target interpre-

SCR # 3

0 (SEPARATED RAM AND EEPROM VARIABLES)
1 HEX FORTH DEFINITIONS
2 : I S (N ---) CONSTANT ; (R e n a m e CONSTANT f o r easy r e a d i n g)

3 8 4 IS 'RAM (RAM address tab le)

4 : RAM (N --- ADDR) (S e p a r a t e d RAM var iab les)
5 'RAM @ SWAP 'RAM +! ; (G e t address & set n e x t adr)

6 8 6 I S ' E R O M (EROM address t ab l e)
7 : EROM (N --- ADDR) (S e p a r a t e d EEPROM v a r i a b l e s)
8 'EROM @ SWAP 'EROM +! ; (G e t address & se t n e x t adr)

9 8 8 'RAM ! B 7 0 0 'EROM ! (S e t i n i t i a l p o i n t e r s)

1 0 : K I L L (---) [COMPILE] UNDO ; (R e n a m e Max. UNDO)

11 (C o m p i l e " h e a d e r l e s s " w o r d s)

1 2 : O ! (N -) [FDD6 ,] ; : 0 (- N) [F 6 5 A , 1 ;
1 3 : 1 (- N) [F 6 5 6 , 1 ; : 2 (- N) [F 6 5 2 ,] ;
1 4 : 3 (- N) [F 6 4 E ,] ; : 4 (- N) [F 6 4 A , 1 ;
15 DECIMAL ; S

SCR # 1
0 (MAX SETUP LOAD SCREEN)
1 FORTH DEFINITIONS DECIMAL (Reconf igure New M i c r o s)

2 VAR$ T B HEX 4 0 0 1 E ! " (I n c r e a s e QUERY * * C / L ~ ~)
3 VAR$ TB+ 9A80 IC ! " (Move b u f f e r TIB)
4 (D i c t p t r -TASK SO RO PAD S P !)
6 VAR$ I N T 2 0 0 4 DP ! E6BE 3 8 ! 9A7F 1 0 ! 9 F 0 0 OE ! 9 F 8 0 2 2 ! F 5 7 C
7 EXECUTE DECIMAL"
8 TB $LOAD TB+ $LOAD I N T $LOAD (S e n d a b o v e)
n

Forth Dimensions 7

tation, and the final "OKn
prompt. When the last screen
t ran~mi~~ion completed, the
string SET is sent to reset the
target dictionary pointers (AP -
PEND) and a cold reset (COLD)
iScalled.

The load process is com-
pleted by forgetting the host

nal emulation TT.

MaxForth Additions
Screen 2-Several conve-

nience words are defined on
this screen. Lines two and three
redefine CODE / END-CODE to
be more compatible with simi-
lar words used in other dialects.

Accidental use of the
MaxForth LOAD or L I S T will
disrupt the system, therefore
lines six and seven redefine
these words to sound a "beep"
as a reminder.

Lines nine through 15 are
included to improve the
EEPROM storage function, es-
pecially if EEPROM storage is
required during program op-
eration. Both byte (EC !) and
word (EN !) EEPROM storage
words are available. All
EEPROM storage is restricted
to only changes, in an effort to
increase EEPROM life if con-
tinuous updating is needed.
I> and >I control the inter-
rupt functions which must be

1 stopped during the EEPROM
I storage sequence.

Screen 3-Lines two
through six provide for
PROMable code with variables
located in a separate RAM area.
A similar format is used for

, EEPROM variables. Obviously,
Se~tember 1996 October

I S has the same function as CONSTANT but it is added to
make the RAM/EROM variable assignment more readable.
Both RAM and EEPROM variables follow the same assign-
ment format, e.g.:
<# of bytes> RAM(ER0M) I S <var iable n a m e >

The RAM pointer (I RAM) is initialized in low RAM with
room for about 175 (50 in ver. 3.3) variables. The pointer
can be reset to high RAM if more space is required.

The remainder of the screen renames MaxForth's UNDO

(which will be used in the MAKE-DOER construct) to
KILL, and restores headers for several words which were
headerless. With a little squeezing, the following lines can
be added to this screen for version 3.3 operation:
: D L I T E R A L (D -) [E A 9 F , 1 ;
: @ @ (ADR -) [F E 0 7 ,] ;

: DMIN (D l D 2 - D)

(O r i g i n a l DMIN i n c o r r e c t)

2 0 V E R 2 0 V E R D< O = I F 2SWAP THEN 2DROP ;

MAKE -DOER

Screen 6 1 seldom see reference to the MAKE-DOER

construct, which I have found very useful. MAKE-DOER

performs a vectored execution which can be used to modify
functionality without complicated decision strings. It can
also be used for deferred defini-

installed in the KEY loop. With this DOER installed, CHORE

is called each cycle of the KEY loop as the processor waits
for a keypress. Most of my real-time applications use
interrupt routines for process control and data collection.
For periodic data handling, alert messages, etc., a flag will
be set which will be sensed by the CHORE DOER code. Any
CHORE action will inhibit the KEY function until the
CHORE action is completed.

Motorola Sl9 Record
Screen G-A standard S19 text record can be generated

for any memory range with the S . R E C word. This record
can be read by many EPROM burners and converted to the
original binary image for EPROM duplication. The primary
purpose is for transferring the developed program from
the RAM at 2000h to an EPROM. The text string generated
is sent via the serial port to the host; therefore, the host
should provide a logging function. If this is not the case,
most communications programs contain a logging func-
tion which can be used to save this record.

Dictionary Setup
Screen FA11 dictionary and RAM/EROM pointers

have complementary variables which become "constantn
1 when the program is transferred to EPROM. APPEND, to

tion functions. Words defined
as DOERS initially do nothing. A
MAKE sequence modifies the
named DOER to execute the
code following the M A K E

<DOER>. Word definitions may
contain multiple MAKE state-
ments. There is no limit to the
number of DOER variations by
multiple MAKE definitions. A
DOER can be changed dynami-
cally, e.g., a MAKE <DOER> X-

quence within a called DOER

can redefine the DOER for the
next call. If needed, UNDO

<DOER> resets the word to do
nothing. For more detailed de-
scription, see Brodie's irhinking
Forth.

The following modifications
are required for version 3.3
operation:
Line 5, change . . . @ 2+ @ . . .

to: @ 4 + @

Line 9, change . . . @ @ . . .
to: @ 2+ @

Line 12, change. .. @ @ . . .
to: @ 2 + @

Screen 5-A special DOER

called CHORE is defined and
September 1996 October

SCR # 4

0 (DOER MAKE)
1 HEX 2 RAM I S MARKER (STARTING FORTH p 2 7 6 - - r e t u r n s t k p o s t - i n c)
2 : DOER <BUILDS F 8 9 1 'RAM @ DUP , ! 2 'RAM +! (EXIT d e f a u l t)

3 DOES> @ @ 2- >R ; (G e t CFA f r o m RAM)

4 : (MAKE) (---) (V e c t o r DOER)

5 R> 2+ DUP 2+ DUP 2+ SWAP @ 2+ @ ! (R e t u r n s t k t o n e x t)

6 @ ?DUP I F 2 - >R THEN ; (C o n t i n u e o v e r i f MARKER n o t z e r o)
7 : MAKE (---) STATE @ I F (C o m p i l i n g)

8 COMPILE (MAKE) HERE MARKER ! 0 , (S e t MARKER adr a n d f l g)
9 ELSE HERE [COMPILE] ' @ @ ! (I n t e r p r e t i n g)

1 0 LATEST C@ 2 0 XOR LATEST C! [COMPILE]] THEN ; IMMEDIATE
11 : ;AND (---) COMPILE ; S HERE MARKER @ ! ; IMMEDIATE
1 2 : (UN) (n ---) F 8 9 1 SWAP @ @ ! ; (R e s t o r e EXIT v e c t o r)

13 : UNDO (---) [COMPILE] ' (D i s a b l e DOER f u n c t i o n)
1 4 STATE @ I F COMPILE (UN) ELSE (UN) THEN ; IMMEDIATE
1 5 DECIMAL ; S

SCR # 5
0 (CHORE 1
1 FORTH DEFINITIONS HEX DOER CHORE
2
3 CREATE KEY' (---) (I n c l u d e CHORE i n k e y b o a r d l o o p)

4 CC C, ' CHORE C F A , (L o a d D w i t h CHORE f o r e x e c u t i o n)

5 BD C, AT04 , (C a l l as s u b r o u t i n e)

6
7 DE04 , EEOC , 3 C C, (P o i n t t o I n p u t b l o c k KEY-BC-PTR)
8 EEOO , E 6 0 0 , (G e t s t a t u s)
9 3 8 C, E 4 0 2 , E 8 0 3 , (AND/OR b i t s)

1 0 27EA , (L o o p i f n o t h i n g f r o m k e y b o a r d)
11 7E C, F8DB , (G e t character a n d r e t u r n)

1 2
13
1 4 7E B 7 F 2 EC! FECO B 7 F 3 EN! (A s s u r e I l l e g a l Op i n t e r r u p t)

1 5 DECIMAL ; S

8 Forth Dimensions

- - - -

6
(S RECORD
FORTH DEFINITIONS HEX
: 2HX (b ---) DUP SCR +!

S->D <# # # #> TYPE ;

1
: S.REC (from to ---)

SWAP BASE @ >R HEX
." S00600004844521B" CR

SCR
0
1
2
3

5
6

7

)

(Add to checksum)
(Send ASCII hex byte)

(Change base)
(Header record)

*

12 SCR @ NOT 2HX CR (Check sum)

13 2DUP = UNTIL 2DROP (Continue)
14 ." S9030000FC" CR R> BASE ! ; (End record)
15 DECIMAL ;S

be described, copies the pointer
values from the developed pro-
gram to these variable loca-
tions, thus saving the dictionary
Stn,ICtUreS. During reset, the
SET . D IC word transfers the
pointers to the appropriate RAM
locations.

8 BEGIN ." S1" SCR O! (Use SCR for checksum)
9 2DUP - 20 MIN DUP 3 + 2HX (Record byte count)
10 OVER 100 / 2HX OVER FF AND 2HX (Starting address)

11 0 DO DUP C@ 2HX 1+ LOOP (DO bvtes

SCR # 7
0 (SETUP VARIABLES
1 FORTH DEFINITIONS HEX
9

Setup
Screen &A turnkey system

can be provided with a two-

L

3
4
5 VARIABLE 'DP VARIABLE 'EDP (Initial dictionary pointers)

6 VARIABLE 'FTH VARIABLE 'ED (for PROM program "constants")

7 VARIABLE 'ASM
8 VARIABLE *RAM VARIABLE *EROM (Separated variable pointers)

step autostart sequence. The
first step (SETUP) initializes
the stack pointers, dictionaries,
installs the CHORE DOER, and
sets the vector for the second
autostartword Oocated in RAM).
A variable (PROM "constantn)
contains the CFA of a second
autostart word. This word must
end in QUIT and is set to a
QUIT default by line three dur-
ing initial load. The two
autostart sequences were sepa-

rated to allow for a thorough

.

14 *EROM @ ' EROM ! (Separated EROM)
15 'DP @ 4A ! ; DECIMAL ;S (Set FENCE)

9
10 : SET.DIC (---)
11 'EDP @ 30 ! 'ED @ 3E ! (EEPROM-EDITOR dictionary)

12 'FTH @ 38 ! 'ASM @ 44 ! (FORTH-ASSEMBLER dictionary)
13 *RAM @ 'RAM ! (Separated RAM 1

, SCR # 8

evaluation of the program be-
fore committ ing the last
autostart sequence: If the sys-
tem bombs with the last
autostart in place, it may be
difficult to regain control, since
each reboot will produce the
same condition. The second

0 (SYSTEM SETUP)

1 FORTH DEFINITIONS HEX
2 VARIABLE 'AUTO (Autostart word CFA
3 ' QUIT CFA 'AUTO ! (Autostart default is QUIT)

4 (* * * * NOTE * * * * Autostart word must end with QUIT)

autostart can be tested by the
command:

<autostart word>
CFA EXECUTE <CR>

5 : SETUP (---)

6 9FFF O E ! 9F00 2 2 ! (R~~~~~ stack R~--PAD)
7 9B80 1C ! 400 1E ! (Input buffer ~1~--length C/L)

8 9B7F 10 ! (Parameter stack SO)
9 F891 [I CHORE CFA 4 + @] LITERAL ! (CHORE to EXIT)

10 KEY' 16 ! (Install CHORE
11 8004 DP ! (Dictionary pointer HERE)
12 SET .DIC (Other dictionaries-RAM-EROM)

13 A55A 8000 ! 'AUTO @ 8002 ! (Startup word)
14 [COMPILE] FORTH [COMPILE] DEFINITIONS
15 [F57C , 1 ; DECIMAL ; S (COMP ILE,, SP !)

SCR # 9
0 (APPEND-RESTORE)

1 FORTH DEFINITIONS HEX
2 : WARM (---) 'DP @ DP ! (Reset to "PROM" dictionary)
3 UNDO CHORE SET.DIC (Cancel CHORE-reset pointers)
4 ' QUIT CFA 'AUTO ! ; (Restore autostart default)

5 : APPEND (---) (Mark end)

6 38 @ 'FTH ! 3E @ 'ED ! (Save pointers)

7 44 @ 'ASM !
8 30 @ 'EDP! HERE 'DP !

After program evaluation,
the autostart is activated with
the command:
' <autostart word>
CFA 'AUTO ! <cR>.

Boot Control
Screen %Several words

have been included to control
the boot process and allow for
program development. APPEND
is used at the end of a screen
load to save dictionary and RAM/
FROM pointers, This data is
used by SETUP to reproduce
the system conditions during
boot. UNSET is used while de-
bugging to disableboth autostart
sequences (with RAM program).
Only the second autostart vec-

Forth Dimensions 9 Se~ternber 1996 October

tor will be disabled if a PROM program is in place.
When the program is completed and ready to be

committed to EPROM, PGM . S 1 9 can be used to generate
the appropriate Motorola S19 record.

Development Procedure
Application development with this host/target arrange-

ment is not radically different from a single system. Once
the screens are written, the load-debug process does
involve a few extra keypresses to switch between host and
target. Multiple screens can be loaded with a host load
screen, or a single screen can be loaded from the host with
the BLOAD word. Otherwise, the host/target processes
appear similar to the user. From my experience, the most
troublesome feature is awareness of which system is
connected to the keyboard/CRT. My host systems prompt
with a lowercase "ok," while the New Micros prompts with
an uppercase "OKn-which is helpful, but I don't always
pay attention!

The host screen file will consist of a host load screen and
multiple target screens. The first host load screen can be
common between different applications, with only the target
load list modified for each target application screen set.

Minimal and Droppoint Boards
The limited memory maps of the minimal and dmp-

point boards do not allow for an extended input buffer.
For those not familiar with the minimal and drop-point
boards, only the MC68HCll chip (with MaxForth in
PROM) and necessary glue chips are provided on the
board. All programming must be contained in the CPU
RAM and EEPROM (.5K each). In these cases, the word
definitions can be loaded as short text strings using the
host $LOAD. Host screens are written which define these
strings and the following load
sequence. Screen ten is an ex-
ample of this technique. The
word definitions are shown in
a standard form as remarks
followed by the definition of a
character string which will de-
fine the word in the target sys-
tem. Obviously, because of the
limited memory, the target
words are as abbreviated as
possible.

Other Boards
Other Forth systems may be

a bit more involved to modify
than MaxForth with the non-
standard use of C/L. It does
require some familiarity with
the system's memory mapping
and facility to modify the source
code. In a traditional Forth, the
user variable SO defines the
address for the top of the pa-
rameter stack, which is directly
September 1996 October

below the input buffer. The SO variable and input buffer
user variable (TIB) must be moved to a lower address to
provide for at least 1024 bytes for the input buffer.
Changing the QUERYed characters can be more challeng-
ing. Generally, the QUERYed number is a literal in the
QUERY word. Dumping the QUERY word code and locat-
ing the CFA of L I T should locate the QuERYed number
(next two bytes) which should be changed to 400 hex.

Conclusion
This technique has provided a smooth development

process for a number of New Micro projects. In addition
to the New Micros boards, I use several other Forth
packages with the same host. Adjusting for the dialect
variances is frustrating enough without adjusting for a
different editor or loading procedure.

R.W. "Dick" Fergus (rfergus@delphi.com) first decided to use Forth about
twelve years ago, while developing radiation-monitoring equipment based on
the RCA 1802 for a national laboratory. After looking for a while, he finally wrote
his own and, later, wrote another for the Motorola 6800. He has also used New
Micros' MaxForth and Harris RTX packages in a number of applications.

Now retired, Mr. Fergus is heavily involved in a personal severe weather
(tornado) warning project which monitors electrical activity from weather fronts.
Several of his Forth-based systems (RCA 1802, Motorola 6800, New Micros
HCl 1 or HC16, Harris RTX2001, and Pygmy Forth) continuously collect and
analyze data.

Mr. Fergus' development platform consists of Pygmy Forth configuredasa host
for theother Forth packages. He says, "I like the interactive control and limited
restrictions of Forth. It allows me to build a program (language) as I see fit.
There seems to be a tendency to demand an 'easier-to-uselanguage.' I like the
ability to build an efficient product which might require some 'effort'on my part."

9 'RAM @ *RAM ! (Separated RAM-EROM)

1 0 'EROM @ "EROM !
11 A 4 4 A 2 0 0 0 ! (E n a b l e SETUP)

1 2 [' SETUP CFA] L I T E R A L 2 0 0 2 ! ;
13 : UNSET (---) FF 2 0 0 0 C ! FF 8 0 0 0 C ! ; (D i s a b l e AUTOSTART)

1 4 : P G M . S l 9 (---) 2 0 0 0 ' D P @ S . R E C ; (Save "PROM p r o g r a m ")

15 DECIMAL ;S

SCR # 1 0
0 \ HV CONTROL--READ COUNTERS
1
2 \ : V (n - - -) V -> HV S e t h igh vol tage
3 \ B 0 1 8 ! ; Se t h igh vol tage (OC2)
4 VARS HV : V B018 ! ;" \ n = v * 6 5 5 3 6 / 5 . 0
5
6 \ : C (- - -) C -> CNTS R e a d c o u n t e r s & t i m e r
7 \ C C 2 @ D . R e a d A c o u n t e r a n d s e n d
8 \ D O 2 @ D . R e a d B c o u n t e r a n d s e n d
9 \ D 4 2 @ D . : R e a d t i m e r a n d s e n d

1 0 VAR$ CNTS : C CC 2 @ D. DO 2 @ D. D4 2 @ D. ;"
11 VAR$ (EWORD EEWORD"
1 2 : EEWORD (---) (EWORD $LOAD ; \ M o v e MAX d e f i n i t i o n t o EEPROM
13 HV $LOAD EEWORD
1 4 CNTS $LOAD EEWORD
15 ; S

10 Forth Dimensions

The Elephant Who
Refuses to Be Bagged

/ C.H. Ting

Editor's note: For further details about the Lempel-Ziv
algorithm and an update to Wil Baden's work with it in
Forth, refer to Forth Dimensions XVUG (1995).

The data compression algorithm known as LZ77' is a
very simple and elegant method to compress data files. It
saves the last 4096 bytes in a circular buffer, and encodes
repeating patterns (up to 18 bytes) from the input file with
two-byte codes consisting of a 12-bit address and a four-
bit byte count. It is very effective and compresses text files
to less than one-third the original size.

Wil Baden published a Forth implementation in an
earlier FORML proceeding^.^ It worked quite well for text
files containing 10K bytes. However, when I used it to
compress image files 32K bytes long, the decompressed
images showed streaks of noise not present in the original
image. This was very perplexing, because the noise
seemed to be quite random and, apparently, data depen-
dent. If the compression/decompression algorithms were
defective, one would have expected the decompressed
image to be totally broken. However, the image frame was
intact, and contained occasional horizontal streaks in
random locations.

Careful analysis of the algorithm and the decom-
pressed images led to the conclusion that the encoding
and decoding processes were correct, but that some data
stored in the circular buffer was disturbed before being

retrieved during decompression. The solution was to
impose very rigid management discipline when writing to
the circular buffer and retrieving data from it, so that the
integrity of the circular buffer is maintained throughout
the encoding and decoding processes.

The revised algorithm is shown in the accompanying
listing.

Wil coded his implementation completely in high-level
Forth for portability. I need this compression routine to
run as fast as possible on a PC, and thus recoded some of
the critical routines in assembly. Optimizing the two
words MATCHES and SCAN speeds up the compression by
a factor of four.

References
1. J. Ziv and A. Lempel, "A Universal Algorithm for

Sequential Data Compression," IEEE Transactions on
Information 7heory, 233, 337-343, 1977.

2. Wil Baden, "How to Pack an Elephant into a Shopping
Bag," 1992 FORML Conference Proceedings, p 87-92,
1332.

C.H. Ting (tingch8ccmail.apldbio.com) was trained as a chemist specializing
in molecular spectroscopy. He abandoned chemistry after discovering his
calling in Forth. His most recent interests are real, virtual, and imaginary Forth
engines and their applications. These interests leave him very little time for his
other hobbies, including the game of Go and Each's organ music.

Elephant Listing 1
\ 0KCOMPRS.SEQ compress .bmp image to .p21 format, 25sep94cht

comment :

07oct 94cht
Use a circular buffer (A000-AFFF) for 1ookBackBuf.
Do 4078-byte searching from current position+l8.
Compression ratio is restored to about 4:l.

06oct94cht compresl.seq

Forth Dimensions 11 September 1996 October

C o r r e c t MatchBackBuf##, a v o i d p a t t e r n s b e i n g o v e r w r i t t e n .
Compress r a t i o i s reduced t o 3 :1 , b u t works c o r r e c t l y .

Oloc t94ch t
C o r r e c t MATCHES-. There i s s t i l l s t r e a k i n g i n t h e r e c o v e r e d p i c t u r e s .
U s e 2 /STRING t o s c a n n e x t match, s t r e a k s gone b u t w h i t e d o t s i n h a i r .
BLANK o r ERASE i n s e t u p . ERASE changes b l u e background.
B u i l d demolc, demoZc, demo3c and demo4c, v e r i f i e d on P21.

28sep94cht
Add c o n v e r s i o n program t o c o n v e r t VGA c o l o r t o P21 c o l o r

conver tToP21 \vpic\demole.bmp temp.xxx
compress temp.xxx demole.pZ1

Scan 4096-18 b y t e s t o f i n d match ing p a t t e r n . P21 u s e s a t r u e
c i r c u l a r 4096 b y t e b u f f e r , and d o e s n o t a l l o w o v e r f l o w .

lOsep94cht
copy f rom LZ77.SEQ Image compress /decompress
s t r i p .bmp h e a d e r of 118 b y t e s .
w r i t e t o .p21 f i l e , usage :

compress \vpic\demolc.bmp demolc.pZ1
compress \vpic\demole.bmp demole.pZ1

20sep94cht
Recode SCAN, OUNT and MATCHES

Compress t h i s f i l e , o r i g i n a l 1277 t o o k 20 s e c o n d s .
A f t e r r e c o d i n g SCAN, OUNT and MATCHES, 4 s e c o n d s . 21sep94cht
SCAN- s e a r c h e s a 1 6 - b i t p a t t e r n i n s t e a d of an 8 - b i t p a t t e r n .
OUNT r e s t o r e d t o h i g h l e v e l , 5 seconds
MATCHES r e s t o r e d t o h i g h l e v e l , 8 seconds

16 jun88ch t
Copy f rom COPYFILE.SEQ Copy one f i l e t o a n o t h e r
Copy f rom BLKTOSEQ.SEQ by Tom Z i m m e r .

The o u t p u t f i l e u s e s a h a n d l e d e f i n e d a s OUTHCB. The i n p u t f i l e opens a h a n d l e on
t o p of t h e h a n d l e s t a c k by SEQUP, because t h e LINEREAD r o u t i n e i n s i s t s on r e a d i n g
t h e f i l e whose h a n d l e i s p o i n t e d t o by SHNDL, on t o p o f t h e h a n d l e s t a c k . A t t h e
end of COPYFILE, t h i s h a n d l e i s dropped by SEQDOWN.

Algor i thm:
J . Ziv and A Lempel, "A U n i v e r s a l Algor i thm f o r S e q u e n t i a l Data Compress ion," IEEE
T r a n s a c t i o n s on I n f o r m a t i o n Theory, 23: 3, 337-343, 1977
W i l Baden, "How t o Pack a n E lephan t i n t o a Shopping Bag," 1992
FORML Confe rence P r o c e e d i n g s , p 87-92, 19 92.

comment ; I
empty d e c i m a l I
h a n d l e o u t h c b

2+ a l i a s CELL+
: /CELL 2 ;

: +UNDER (n l n2 n3 -- n l + n 3 n2)

ROT + SWAP

\ o u t p u t f i l e

September 1996 October 12 Forth Dimensions

4096 CONSTANT lookBack# 18 CONSTANT lookAhead#
3 CONSTANT breakEven#

$9FFE constant 1ookBackBuf (circular buffer from A000 to AFFF)

VARIABLE 1ookAheadBuf lookAhead# ALLOT
VARIABLE holding 17 ALLOT
VARIABLE phraseFlag

I \ : OUNT (a -- a+CELL a@) DUP @ /CELL +UNDER ;

code OUNT (a -- a+CELL a@)
mov dx, si
POP s i
cld
lods w
push si
push ax
mov si, dx
next
end-code

\ comment:
: MATCHES (location# address length -- location# matched)

2>R 0 (location# matched)
R> R@ + R> DO (location# matched)

2DUP + C@ I C@ -
IF LEAVE THEN
1 +

LOOP
,

\ comment;

code MATCHES- cld
MOV DX, SI POP CX
POP DI POP SI

CX<>O IF PUSH ES
MOV ES, SSEG
REP2 CMPSB
O<> IF inc cx THEN
POP ES

THEN
MOV SI, DX
sub bx, cx
PUSH bx
NEXT END-CODE

MOV BX, CX
PUSH SI

CODE SCAN2 (addr len n -- addr' lenl)
\ Scan for n through addr for len, returning addrl and len' of n.
\ addr must be between A000-AFFF

POP AX POP CX
JCXZ 0 $
POP DI
MOV DX, ES MOV ES, SSEG
cld

1 $: S C ~ S W

j e 2 $
dec di \ backup address
and di, SAFFF # \ circular buffer

Forth Dimensions September 1996 October

END-CODE

l o o p 1 $
2 $: MOV ES, DX

j c x z 3 $
DEC D I dec d i
a n d d i , $AFFF #

3 $:
PUSH D I PUSH CX
NEXT

0 $: PUSH CX NEXT

\ change VGA c o l o r code t o P21 c o l o r code
hex
c r e a t e p a l e t t e

O c , 2 c , 4 c , 6 c , l c , 3 c , 5 c , 7 c ,
8 c , O a c , O c c , O e c , 0 9 c , O b c , O d c , Of C,

: c h a n g e c o l o r (n -- n ')

dup OF and p a l e t t e + C@
swap u16/ OF and p a l e t t e + c @
8* 2* +
t

de c ima 1

: c h a n g e l b y t e
pad 1 s e q h a n d l e h r e a d
i f p a d c@ c h a n g e c o l o r

pad c !
pad 1 o u t h c b h w r i t e d r o p

else c l o s e A l l
1 a b o r t " Convers ion done."

t h e n
,

: conver tToP21 (s o u r c e F i l e d e s t F i l e --)

SequP \ I n i t i a l i z e a new h a n d l e on t h e
\ h a n d l e s t a c k .

s e q h a n d l e !hcb \ i n p u t f i l e s p e c
o u t h c b ! h c b \ o u t p u t f i l e s p e c
c r ." C o n v e r t i n g f rom " s e q h a n d l e c o u n t t y p e \ announce c o p y i n g

." t o " o u t h c b c o u n t t y p e
c r s e q h a n d l e hopen a b o r t " Open f i l e e r r o r " \ open i n p u t f i l e
o u t h c b h c r e a t e a b o r t " C r e a t e f i l e e r r o r " \ make o u t p u t f i l e
0 .0 o u t h c b movepo in te r \ reset f i l e p o i n t e r

pad 118 s e q h a n d l e h r e a d d r o p \ s k i p .bmp h e a d e r
pad 118 o u t h c b h w r i t e d r o p
b e g i n c h a n g e l b y t e
a g a i n

: s e t u p (s e t u p < i n p u t f i l e > < o u t p u t f i l e > < r e t u r n >)

SequP \ I n i t i a l i z e a new h a n d l e on t h e
\ h a n d l e s t a c k .

s e q h a n d l e !hcb \ i n p u t f i l e s p e c
o u t h c b !hcb \ o u t p u t f i l e s p e c
c r ." Read f rom " s e q h a n d l e c o u n t t y p e \ announce copy ing

." , w r i t e t o " o u t h c b c o u n t t y p e
c r s e q h a n d l e hopen a b o r t " Open f i l e e r r o r " \ open i n p u t f i l e

September 1996 October 14 Forth Dimensions

I

I

outhcb hcreate abort" Create file error" \ make output file
0.0 outhcb movepointer \ reset file pointer

118. seqhandle movepointer \ skip .bmp header

0 1ookBackBuf !
1ookBackBuf CELL+ lookBack# lookAhead# + 1- BLANK
lookAhead# 1ookAheadBuf !
0 holding CELL+ C!
1 holding !
128 phraseFlag !

: runout (--)
holding OUNT outhcb hwrite
holding @ - ABORT" Write file error"
0 holding CELL+ C!
1 holding !
128 phraseFlag !

: ReadAhead (unmatched -- lookAheadBuf@)
>R
1ookAheadBuf OUNT
R@ /STRING seqhandle hread
DUP O= IF CR ." Read file end" THEN
R> + (lookAheadBuf@) DUP 1ookAheadBuf !

: MatchLookBack## (-- location matched)
1ookBackBuf OUNT + 18 + (location to start searching)
DUP 2 (breakEven# I-) 2>R
4078 (location length)
BEGIN (location length)

1ookAheadBuf CELL+ @ SCAN2
\ 1ookAheadBuf CELL+ C@ SCAN

DUP
WHILE

2DUP (. . location length)
1ookAheadBuf OUNT ROT MIN
MATCHES- (. . location matched)
DUP R@ > IF

2R> 2DROP 2DUP 2>R
DUP 1ookAheadBuf @ = IF

2DROP 2DROP ()

2R> (location matched)
EXIT (. . location matched)

THEN

1 THEN 2DROP (location length)
2 /STRING SWAP SAFFF AND SWAP 1 REPEAT 2DROP 2R>

: PutMatchingPhraseCode (location matched -- matched)
DUP breakEven# < IF

2DROP ()
1ookAheadBuf CELL+ C@ holding OUNT + C!
1 holding + !
1 (matched) >R

Forth Dimensions
--

September 1996 October

ELSE (location matched)
>R (location) (1ookBackBuf CELL+ - (position)
4095 AND
R@ breakEven# - 4096 * + FLIP
holding OUNT + ! (r)
2 holding + !
phraseFlag @ holding CELL+ C@ OR holding CELL+ C!

THEN ()
phraseFlag @ 2 / (phraseFlag@)
?DUP IF phraseFlag !
ELSE () RunOut THEN
R> (matched)
,

: UpdateLookBackBuf! (matched --)
1ookAheadBuf CELL+ DUP +UNDER DO ()

I C@ 1ookBackBuf OUNT + C!
1ookBackBuf @ (n)
DUP lookAhead# 1- < IF

I C@ 1ookBackBuf OUNT + lookBack# + C! (n)
THEN

1+ dup lookBack# >=
if ." ."
then
SAFFF AND 1ookBackBuf ! ()

LOOP
,

: ShiftLookAheadBuf (matched -- unmatched)
>R ()
1ookAheadBuf OUNT (address lookAheadBuf@)
R> /STRING (address unmatched)
>R (address)
1ookAheadBuf CELL+ R@ CMOVE ()
R> (unmatched)

: compress
setup
0 (unmatched)
BEGIN

ReadAhead (lookAheadBuf@)
WHILE ()

MatchLookBack## (location matched)
PutMatchingPhraseCode (matched)
DUP UpdateLookBackBuf!
ShiftLookAheadBuf (unmatched)

REPEAT ()

RunOut
closeAll
CR ." Compress done."
,

Decompression is to reverse the compression process.
Read a phraseFlag byte
Repeat 8 times:

If phraseBit is 0, read next byte
Append byte to output file
Append byte to 1ookBackBuf

September 1996 October 16 Forth Dimensions

Else read next word and decompose it to address and length
Find string in 1ookBackBuf
Append string to output file
Append string to 1ookBackBuf

Repeat until done

comment ;

: getc (-- c)

PAD 1 seqhandle hread
O= ABORT" End of read file."
PAD C@

: OutputByte (--)
getc
1ookBackBuf OUNT + C!
PAD 1 outhcb hwrite
O= ABORT" Write file error."
1ookBackBuf @ (n)
DUP lookAhead# 1- < IF

PAD C@ 1ookBackBuf OUNT + lookBack# + C! (n)
THEN

1+ dup lookBack# >=
if ." ." then
SAFFF AND lookBackBuf ! (1
r

: Outputstring (--)

getc dup 16 / breakEven# + >R (length)
15 AND 256 * (high nibble of address)
getc + lookBackBuf CELL+ + R> (address length)

I 2DUP outhcb hwrite drop (write to output file)
OVER + SWAP DO

I C@ 1ookBackBuf OUNT + C!
lookBackBuf @ (n)
DUP lookAhead# 1- < IF

I C@ 1ookBackBuf OUNT + lookBack# + C! (n)
THEN

1+ dup lookBack# >=
if ." ." then

I SAFFF AND lookBackBuf ! ()
LOOP

: decompress (--)

setup
BEGIN PAD 1 seqhandle hread
WHILE PAD C@ (get phraseFlag)

8 0 DO
DUP 128 AND
IF outputstring
Else OutputByte
THEN
2"

LOOP
DROP (discard phraseFlag)

REPEAT
closeall
CR ." Decompression done."
I

Forth Dimensions 17 September 1996 October

4tH, an Experiment in C

Hans Bezemer
The Hague, Netherlands

,
!

History
The first time I encountered Forth was back in the

eighties, when 1 was using a Sinclair ZX Spectrum, the
European equivalent of the Timex TS2000. In those days,
I was into learning as many computer languages as I could.
Fortunately, most were available for the Spectrum, includ-
ing Forth. The only drawback was that many compilers did
not leave much room for code, since they filled most of the
available RAM. Except Forth. Forth was a very small, but
very complete programming environment. There were
some serious drawbacks, too. It had pretty bad docurnenta-
tion (so I didn't understand too much about the language),
the editor was awkward to use on a 32 x 21 display, and
it wrote blocks to tape.

Later, I bought myself a real floppy-disk drive. The only
problem was that Forth didn't support that device. So I
disassembled the entire Forth compiler and rewrote the
I/O routines. To my own surprise, Forth ran as if it was

designed for disk. And I slowly developed a taste for this
strange, but powerful, language. It was very easy to
interface assembly with Forth. One could decompile the
code. And, since I could write Forth programs in an
external 64-character-wide editor, that problem was also
taken care of.

After my Spectrum was shelved, I had an occasional
look at Forth but didn't write any serious programs in the
language anymore. I rather wrote them in C. But Forth was
not dead yet. I would return through the back door.

It all began with a function that could evaluate a simple
arithmetic expression. Since I wanted a small and compact
program, I used Reverse Polish Notation. It worked fine
until I ran into a problem that it couldn't handle. I needed
something far more powerful. I thought about it for quite
a while, but I just didn't get the right ideas. I ran into other
scripting languages, but they were not quite what I
wanted. I wanted a small package with a very simple API
and flexible memory management. It should be highly
portable and easy to program. Finally, it shouldn't crash
when a programming error was made. Instead, it should
return to the calling program with the appropriate error
code and the location where the error was detected.

There were several reasons why I finally came up with

September 1996 October

a Forth-like implementation. First, parsing Forth is pretty
straightforward. It's easy to write and easy to maintain.
Second, Forth is quite fast and doesn't require a lot of
memory. Third, Forth requires only a handful of primi-
tives, and I could catch all errors there and then. Finally,
Forth is a well-documented language and users can tap
from these sources.

It took me eighteen months to come up with a toolkit
that met most of these requirements. The first version had
a very primitive parser that required a non-standard
implementation of the . " word. Source and object had to
remain in memory concurrently, and it was not possible to
save object code. Apart from . ", this version of 4tH had
no string capabilities. A special word allowed the user to
input numbers. All output was generated by p r i n t f ()
calls. A single routine resolved all branching, but although
it was small and didn't require a stack, it had a lot of
drawbacks. First, the syntax had to be non-standard to
make it work. Second, it required a second pass. Third, it
was unable to detect all syntax errors. The implementation
of HEX, DECIMAL, and OCTAL was outright clumsy. It was
loosely based on the Forth-79 Standard.

The second version had limited string capabilities, and
object code could be saved. Because it merely dumped
chunks of memory, the object code was not portable.
However, it completely mimicked the way Forth generates
and outputs numbers, and all output was channelled
through a function called e m i t () . The implementation of
HEX, DECIMAL, and OCTAL was quite solid now.

The third version, which is described here, had a very
intelligent parser, which made a fully Forth-compatible
implementation of . " possible. Furthermore, it resolved
branching in the same way Forth does, thus eliminating
the second pass. The object code was saved in a machine-
independent format, making it portable across virtually all
platforms. The string capabilities were further enhanced.
Finally, most of the Core Wordset of ANS Forth was
supported.

What is 4tH?
4tH is very different from all other Forth implemen-

tations. One might find some of its characteristics in other

18 Forth Dimensions

I Forths, but this combination is unique.
4tH contains a lot of Forth, although it is translated

to C. 4tH contains two interpreters, just like ordinary
Forth, but they behave quite differently. 4tH can be
called token-threaded, but it has no dictionary.

In fact, 4tH is a Forth using conventional com-
piler technology. It is fast, compact, and highly
portable. 4tH is completely written in C and has so
far been ported to MS-DOS, MS-Windows, and
several Unixes without any problems.

Before you turn away in disgust, note that 4tH has
some interesting properties. 4tH isn't a standalone
compiler-it is a library, designed to be called from
a C program. But if you want to make a compiler,
you can do that in a few lines of C . 4tH produces
bytecode (like Java) which can be used without any
modification on every platform 4tH has been ported
to. 4tH supports both the Forth-79 Standard and ANS
Forth, although some deviations from these stan-

L

Hcode header
-

string
segment

dards were necessary in order to simplify the language.

How Does it Work?
Forth usually has two interpreters, the text interpreter

and the address interpreter. The text interpreter passes
strings from the terminal or from mass storage and looks up
each word in the dictionary. When a word is found, it is
executedby invoking the second level, the address interpret-
er. Some Forth words change mode from interpreting to
compiling, or vice versa. Others always execute.

4tH works fundamentally differently. The text inter-
preter essentially just compiles. The only words executed
there are the words that always execute, called IMMEDI-
ATE words. Everything else is simply compiled.Therefore,
the text interpreter is called the compiler. The address
interpreter works just like Forth, although there are no
words that can d o any compiling. It will be referred to as
the interpreter.

4tH source can be stored in files, environment vari-
ables, static strings, etc. As a matter of fact, 4tH can
compile anything that can be converted to a string stored
in dynamic memory. Each compilation creates a standalone
structure in memory that can be reused, discarded, or
swapped to mass storage.

The API, which will be discussed in more depth later
on, is therefore very simple. Pass a string to the compiler
and it will return a pointer to a structure, which is called
H-code. You can pass this pointer to several other func-
tions that will either interpret it, save it to mass storage, free
it from memory, or decompile it.

The compiler first calls a pre-parser. This replaces all
white space with null characters, and counts the number
of words and the number of strings. This information is
used by 4tH to allocate its resources. Since 4tH is kept as
small and simple as possible, no word uses more than a
single token. And, while 4tH now knows how many words
there are, it can safely allocate its token space.

The compiler also uses a symbol table. This is set to a
minimal size in order to allow small programs to compile

Forth Dimensions

code
segment

- L

without any errors. After that, the number of words
determines how large the symbol table will actually be. A
special stack is created for all flow control; since the size
of this stack depends only on the level of nesting required,
the size is fixed.

Strings are handled in a special way. They remain in the
memory allocated to the 4tH source, but are shifted to the
front during compilation. After compilation, the symbol
table and the branch stack are discarded, and the token
space and string space are shrunk to their actual size. Note
that all of this is fully transparent to the programmer.

The interpreter is even simpler. It just matches the
tokens with the corresponding piece of C code, and
executes until there are no more tokens left to execute. It
returns the top of the stack to the calling C program. C
variables and constants can be transferred to the inter-
preter. Inside 4tH, they appear as 4tH variables which can
be used like any other 4tH variable.

4tH is fast. It compiles up to 50,000 lines per minute on
a humble Intel 80486/33 MHz. Benchmarks prove it ex-
ecutes code up to four times faster than conventional C-
based Forths. 4tH uses very little memory. With only 40K
memory to spare, it compiles 20K ofsource andstill has 10K
left free when all resources are allocated. The resulting H-
code takes up no more than 10K, even under the worst
alignment possible. 4tH is compact. The same 20K source
is compiled and saved to mass storage as a 7K binary file.

H-code
H-code is a very complex, three-part structure. First,

the header: The header describes the run-time environ-
ment (created by the interpreter), the tokenspace, and
stringspace. When H-code is created (e.g., by the com-
piler), a pointer to the header is returned.

Second, the token space, which is called the Code
Segment. A 4tH token is also a structure. It consists of the
actual token and an optional argument. E.g., the token is
a BRANCH instruction and the argument is the address it
has to jump to. Since about 50% of the tokens require an
argument, overhead is kept to a minimum.

19 September 1996 October

Finally, the string space, which consists of ASCII2
strings and is called the String Segment. The argument of
the corresponding token is simply an offset to the begin-
ning of the String Segment.

Another major format used by the 4tH toolkit is called
the H-code executable or HX file. An HX file is not simply
an image of the structure in memory. Since there are many
different compilers and machine architectures, HX files
would not be portable. In fact, they are portable. A 4tH
source file can be compiled to by a 4tH compiler running
under Unix and the resulting HX file can be run by the MS-
Windows version of the 4tH interpreter.

An HX file contains all information about the 4tH
environment, including version and release information.
This prevents incompatible HX files from being read by
the wrong application. The Code Segment is packed. All
numbers are saved in a machine-independent way. The
String Segment is saved as is.

The Run-Time Environment
The interpreter creates two more segments. First, the

Integer Segment, which is divided into two major areas.
The Stack Area contains both the Return and the Data
Stack. The Data Stack grows upward and the Return Stack
grows downward. This means application programs with
different requirements can run without having to modify
the interpreter.

The Integer Segment also contains the Variable Area.
All variables and values are stored here. To the application
programmer, it is fully transparent whether a variable is
predefined, preloaded, or created by the application
program. The same words are used to access them.

The second segment is called the Character Segment
and contains the TIB, PAD, and allocated memory. This is
the place where strings, buffers, and such can be found.

When the program has executed, these segments are
freed. Only the final value on the stack is returned to the
calling C program. A program can terminate because there
are no more tokens to execute or because an error
occurred. 4tH checks everything: output, storing, fetching,
stack. In theory, no application can bring it to its knees.

The Language
Although 4tH's architecture differs a lot from any

classic Forth implementation, the language is much the
same. Deviations from the standard were reluctantly
made, and only when necessary. But 4tH had to be easy
to use, too. And Standard Forth has-at least in the view
of the author-some hard-to-understand constructs.

A user wants to create his program. He doesn't want to
be bothered with whether a number is greater than 65,535.
When he programs in standard Forth and such is the case,
he has to switch to the double-word set. If he alters his
program, he might have to rewrite a considerable portion
of it!

set. If one is needed, it has to be added to 4tH.
You also won't find a <BUILDS DOES> construct. The

reason for this is twofold. First, it would make the compiler
far more complicated. Second, a poll among members of
the Dutch Forth User Group showed that, although most
users know about its existence, few are able to apply it
properly! So why bother? If necessary, it can be emulated
anyway.

In order to accommodate 4tH's segmented structure,
some modifications had to be made. Every segment has its
own fetch, store, and allocate commands. The segments
created by the compiler are read-only. The following table
shows which words act on which segment.

String Code Integer Character

Fetch: COPY ' @ @ C @

Store: N/A N/A I C!
In 4tH, signed 32-bit numbers are used. Nothing else.

There is no double-word set or mixed-word set. If I AUocate: N/A N/A ALLOT ALLOCATE I
Se~tember 1996 October 20 Forth Dimensions

conversion is necessary (like offsets or characters), it is
done transparently. There is also no floating-point word The word ' @ is used to fetch the argument of constants

.
1

character segment

i

allocated
memory

PAD

TI B

b e g i n
times @ 1- dup times !

u n t i l

This will compile into:
[621 CR (01
[63] VARIABLE (2)

1641 @ (0 1
[65] 1- (0 1
1661 DUP (0 1
1671 VARIABLE (2)
[681 ! (0)
[69] OBRANCH (62)

The bracketed numbers represent the offset in the Code
Segment, followed by the name of the token and the

arrays in the Code Segment. Constant arrays are created by
the word CREATE, e.g.,
CREATE LIMITS 220 , 340 , 100 , 190 ,

me is the only allowed use of the word CREATE. TO

fetch the second element of LIMITS one has to write:
LIMITS 1 + '@

Arrays of variables are created by issuing:
VARIABLE SPEED 10 CELLS ALLOT

The second element of SPEED can be initialized by:
15 SPEED 1 CELLS + !

Which is quite natural to native Forth users. But note that
words like CELLS and CHARS are just dummies, added to
make porting 4tH code easier. m i s may raise some
eyebrows:
80 ALLOCATE CONSTANT A STRING -

The word ALLOCATE allocates a number of bytes in the
Character Segment and leaves the starting address of the
space allocated on the stack. Thus, A-STRING points to
the beginning ofan 80-character string. 4tH allows you to
write something like this:
CREATE A-STRING 80 CHARS ALLOT

But this will not d o what a die-hard Forth programmer
might expect. In fact, it will create a constant A-STRING
that points to the offset in the Code Segment where it was
compiled and add 80 more variables to the last-defined
variable or value.

Finally, deep stack manipulators or CASE constructs
are not implemented, since the author considers it bad
style. Leo Brodie agrees!

A Peek Under the Hood
The key to this is the compiler, which tries to mimic

Forth but works very differently. Let's take a look at this
small piece of sourcecode:
cr

Forth Dimensions 2

argument within parentheses. It shows that compilation of
this particular piece of code startedat offset62 in the Code
Segment. The variable TIMES is the third compiled
variable. And although it seems that OBRANCH branches
back to offset 62, it doesn't. After the Instruction Pointer

Set to 62, it will be incremented, So it will actually branch
to offset 63. Why? Because it made the interpreter faster
without adding too much overhead to the compiler.
Remember, it is a single-pass compiler!

All defining words, like : , VARIABLE, VALUE, CON-
STANT, etc., add an entry to the symbol table. The symbol
table is a very simple structure, containing nothing but the

the token, 2nd its argument. When the name is
encountered, it is simply replaced by the token and the
argument. CONSTANT will add an entry containing the
LITERAL token and its value. VARIABLE will add an
enwy containing the VARIABLE token and the current
number of variables. ALLOT simply increases the number
of variables. The total number of variables will be saved
in the header, so the interpreter will know the size of the
Variable Area it has to create.

The : add a symbol-table entry containing
the offset in the Code Segment to the definedword and a
CALL CALL token pushes the current value of
the Instruction Pointer on the Return Stack and jumps into
the defined word. In order to prevent the program from
entering the word before it is called, a BRANCH instruction
is compiled that jumps over the defined word. At the end
of the defined word, you will find an EXIT token that
restores the value of the Instruction Pointer. Since the
Instruction Pointer is incremented afterwards, it continues
execution after the CALL token.

This explains why ' NAME EXECUTE works. ' NAME
to a LITERAL token containing the argument

of the symbol table entry of * W E . EXECUTE pushes
the current value of the Instruction Pointer on the Return
Stack, and puts the TOS in the Instruction Pointer. EXIT
never knows the difference. Since all built-in words
cannot be found in the symbol table, you cannot compile:
' +

But:
: + + ; ' - + -

1 September 1996 October

The next thing is to create a source and compile it.
Although the 4tH toolkit provides functions to enable the
programmer to read and compile more complex struc-
tures, this example is kept pretty straightforward:
Compi l an t = comp-4th (s t r d u p (" . \ " H e l l o
wor ld \ " cr")) ;

is perfectly valid.
All compiling is done in memory, so some pretty dirty

tricks can be used. One of them is the literal expression.
A literal expression is simply an expression that compiles
to a LITERAL token. That includes all numbers, all
constants, and expressions like CHAR &, ' name, and 8 0
ALLOCATE. A word like CONSTANT expects a literal
expression, like:
65 CONSTANT MAX-SPEED

The number 65 will compile to a LITERAL token with the
argument containing 65. CONSTANT removes that literal
fromthe compilant anduses it to create the correct symbol
table entry. ALLOCATE also expects a literal expression,
and will compile to a literal expression itself.

This also means that something like:
55 10 + CONSTANT MAX-SPEED

won't compile, since + is not a valid literal expression. Of
course:
CHAR & CONSTANT AMPERSAND

is. The word , (comma) does something similar. It, too,
expects a "literal expression." But instead of erasing the
token from the compilant, it changes it from LITERAL to
NOOP without affecting the argument.

All branching is resolved by the C equivalent of
?PAIRS, BACK, etc. A special stack is created at compile
time. It contains the offset to the corresponding token and
a reference. Nothing special here, except that absolute
offsets are used instead of relative ones.

The API
The first thing that has to be done when using the 4tH

toolkit is including the header file and defining a pointer
to the H-code:
i n c l u d e < 4 t h . h >
Hcode "Compi lant ;

This will compile the classic "Hello world" program. That's
all. The variable Compi l an t now contains a valid pointer
to the compiled program. No cleaning u p is necessary. But

is wrong. There is an string array called E r r L i s t 4 t h
which optionally can be linked in. If E r rNo4 th is used as
an index to E r r L i s t 4 t h , the proper error message will
be selected.

There is a third predefined variable, called E r r L i n 4 th .
It contains the offset to the token in the Code Segment
where things went wrong. All these variables work in all
API functions.

Next, the program has to be executed. Since we're all
experts here, errors are checked. The final value on the
stack is discarded. A single value (100) is transferred to the
interpreter:
i f (! ErrNo4 th) (v o i d) exec-4th
(Compi l an t , 1, (c e l l) 100) ;

This can be executed as many times as needed. The
compilant is still in memory. In order to free the compilanl
this statement is added:
f r e e - 4 t h (C o m p i l a n t) ;

Why no error checking? The function f ree-4th ()

does all checking, so none is needed. Saving, loading, and
decompiling is just as easy.

Why 4tH?
It is clear that 4tH has its own niche. It is not a

replacement for a full-fledged ANS Forth compiler. But if
you need an easy-to-use, fast, safe, and economical
scripting language, 4tH might be your first choice.

The language canbe extended or modified easily. Arrays
of H-code pointers create new possibilities-like compil-
ing, saving, freeing, and reloading 4tH applets as you go, by
simply building a swapping API on top of the existing one.
Or pushing it even further by removing the run-time checks.
Everything is possible with a little imagination.

Most of all, I wanted to show that the combination of
classic compiler technology and Forth technology can
create something that surpasses the limitations of both. If
I fired the imagination of somebody out there, it was all
worthwhile.

4tH will eventually be available for FTP on taygeta.com
but, for the moment, it can be obtained from the author
directly.

- what if has gone Right. If camp ()

couldn't compile a thing, it returns a NULL pointer. If it
could something, it returns that something. B~~
that something might still not be everything..

In order to give the programmer full control, an error
messaging system is It l ~ o k s very much like the
familiar e r r n o . There is a predefined variable called

rNo 4t h. If Er rNo does not something

Hans 'the Beez' Bezemer (hbezemer@sngroep.nI) graduated from college in
1983, with a degree in biology and geography. After a very short carreer in
education, he worked as an application programmer with the Dutch Ministery
of Transport, Public Works, and Water Management. In 1987, he switched to
the VSN groep, a company that provides about 75% of Holland's public transit
se~ices . In 1990, he became that company's Technology and Systems
Management Advisor. Since January 1st. 1996, he took another job, still within
the samecompany: Information Manager of the Finance Department. Privately,
Hans has published some shareware programs, and has been using Forth and
C since the mid-eighties. He was born in 1960 and lives in Den Haag, better
known in English as The Hague (where the international tribunal on former
Yugoslavia is held) in the Netherlands.

September 1996 October 22 Forth Dimensions

I Forth Solves 150- Year-Old Problem:

Breaking Code
I Wil Baden 1 Costa Mesa. California

This month's article describes an unusual application-
unusual for Forth or any other programming language.

I have in my possession a little book, 3% by 5% inches,
136 pages, printed in the early 1850s. It fits easily in most
shirt pockets. Except for the title page and five blank pages,
each page consists of a matrix of 25 numbered lines by 17
numbered columns. On the left-hand pages the elements of
the matrix are filled with a capital letter, a small number, or
a special symbol. On the right-hand pages the elements are
filled with a one-to-three digit number, the letter "Sn, or a

special symbol matching that on the left-hand page. Some-
times a punctuation character is with a letter.

As you have already surmised, the book is written in
code. The code book is a 36-page pamphlet with lists of
numbered words-a list for every letter but "X".

To read the book, you take a letter from the left-hand
page and the number from the corresponding row and
column on the right-hand page, put them together, and
look the result up in the code book. Thus, T24 is "the", 0 2 1
is "of", A74 is "and".

Forth Dimensions September 1996 October

Some of the text runs in columns, top to bottom. On the
same page text also goes in columns, bottom to top, in the
same columns with text going top to bottom. Elsewhere
the text goes in rows, left to right.

This month's article describes the ad hoc tools, written
in Forth, used to decode and make a translation of the book.

I d o not own the book, but it was lent me to make the
translation. Because of the enormous effort to read the
book, it is believed that, after almost 150 years, this is the
first complete translation. Without a computer it is just too
laborious.

Forth is well suited for this application. As I discovered
more and more things about the contents of the book, the
program was modified accordingly. The interactivity and
fast compilation of Forth was vital.

Also, my over-the-counter stock of pet words is de-
signed for this kind of application.

STEP I
Enter the Vocabulary

The first step was to transcribe the vocabulary.
To make it easier, ENTER first opens a file with a single

letter as name for output, and then repeatedly displays the
letter, the next sequence number, a space, the letter again,
and waits for keyboard input. After receiving input every-
thing is echoed to the output file.

t 1 t T a b e r n a c l e

t 2 t ab l e

t 3 t a k e

t 4 t a k e s

t 5 t

(My input underhyphened.)
The first letter is displayed so that all you have to do is

complete the word. With words of high frequency in
English, my fingers would type the first letter anyway, so
ENTER was modified to take care of this. This also let me
capitalize words I felt should be capitalized. Just a Return
by me closes the output file, sets u p for the next list, and
exits.

The filenames were single letters. Before doing ENTER,
I could change the letter by "CHAR n f i rs t - le t ter
C ! " when I wanted.

To see what had been written, I used LISTED.

Figure One. Catenating t h e files.

S " vocabuly" <== OUT
:: S l O U T < < L I S T E D l a b c d e f g h i j k l m n o p q r s t u v w y z
;; CLOSE OUT

STEP n
Load the Vocabulary

Loading the vocabulary places each word into dataspace.
When the initial letter changes, the word's address is put
into WORD-POINTERS so the word can be found by its
first letter and sequence number.

The vocabulary takes 20K of dataspace for 2514 words.
To decode a word, such as "s226.", find where in

dataspace the words with that first letter begin, and do
"COUNT CHARS +" one less than sequence-number times.
(5226 is the worst case.) To the string whose address you
now have, append the rest of of the string you're decoding.

This simple method was chosen because I was impa-
tient to see results. I later revised the method to remember
where each word was, and so have a much faster lookup.
This much more efficient method reduced the time to
translate 30,000 words from eight seconds to six seconds.
Whoopee. So it's not worth bothering with.

TEST was used interactively to test the lookup.
For example,

TEST T 2 4 0 2 1 A 7 4 , T 5 9 S 2 2 6 . ;;

should yield
t h e
of
and,
t o
s i g h t .

STEP III
Decode a Word

The book had to be transcribed. This is what the
transcription looks like.

[P . 8 8 1
[I] N I T I s t T F A G M T C

3 7 7 2 2 4 S 55 4 3 5 6 2 7 4 0 5 9 7 3
[3] T T A 0 T P . - A I

5 9 2 4 51 2 1 25 1 0 - 7 4 7 5
[1 0] C T P . -

6 5 9 1 4 -
Et cetera.

Here is the translation.
I88.11 Now is the 1st time for all good men to
come 188.31 to the aid of their parties.

And it [88.101 came to pass.

Finally, I used the [code in Figure One1 to catenate the
individual files.

September 1996 October

- --

There were approximately 30000 words to transcribe.
This took me ten days. I did a double-page at a time, and
checked the translation after each page. As I discovered

24 Forth Dimensions

for later.
SSKIP and SSCAN are implementation factors of

TOKENIZE. They are like F83's BL SKIP and BL SCAN
except any invisible character is considered instead of just
BL.

PAGE. LINE inserts page and line number in the form

things, the program was modified. I'd type the column or
row number within brackets, a line of letters from the left-
hand page, and the corresponding line of numbers from
the right-hand page. I'd then use Text-to-Speech to proof-
read the numbers. I'd verify that the letters and numbers
were matched one-to-one.

Page numbers were given when the page changed.
Note that columns don't have to be consecutive. There is
a hard-to-see mark to shsw which columns to do.

Any errors I made or that were in the original were
glaringly obvious. Because of the code book, there were
no spelling errors, and a wrong word would show up as
nonsense. (Exception: "Whon for "Whomn in one place.)

I apologize that I am obligated not to reveal any of the
hidden mysteries in the book. After all it was written in
code to keep and conceal them.

The title page in plain English is meant to obfuscate. .

W R I T T E N M N E M O N I C S
IUUSTRATED BY COPIOUS EXAMPLES FROM

Moral Philosophy, Science and Religion

STEP IV
Format Text

The output has to be properly formatted for sentences
and paragraphs. These are typical text-formatting words.

The first version of +TYPE was
: +TYPE DUP MORE TYPE ;

The rest of the definition was added as the need was seen.

STEP V
Parse a Line of Code

The heart of decoding is merging the letters and the
numbers. PARSE-WORD is used to pick u p the numbers
and other codes from the second line. TOKENIZE is used
for the letters and symbols from the first line.

TOKENIZE identifies the next graphic string from a
character string, and leaves the rest of the character suing

DECODE-LINE recognizes the following codes:
n (a number)
S
- or --
. . or * *
X

(added by me for superscripts, etc., in the text)

apparent:

blank line;
remark (a line not beginning with "["I;
page number (a line beginning with "IPn)
a left-hand column (begins with number in brackets);
a right-hand column (line after a left-hand column).

If you have a left-hand column or row, you then read
a right-hand column or row, and merge the two with
DECODE-LINE.

Appendix
In ThisForth the user input device and user output

device are implemented internally as variables for Stan-
dard C Library file pointers. The default values are
standard input and standard output. Forth fileids are
Standard C Library file pointers.

"fileid STREAM" saves the current value and associated
status of the user input device on a short stack, and assigns
fileid for the user input device.

UNSTREAM restores the previous value and status. "0
STREAM" is used to assign standard input. SOURCE-ID
returns the current value for the user input device, with 0
being returned for standard input.

"fileid DISPLAY" assigns fileid for the user output
device. " 0 DISPLAY" assigns standard output for the user
output device.

The following are convenience words for file handling.
: OPENED OPEN-F ILE ABORT 11 Can t t open .t ;

: INPUT R/O OPENED ;
: OUTPUT W/O OPENED ;
: CLOSED ?DUP IF CLOSE-FILE

ABORT" Can't close. " THEN ;

Because STREAM assigns the user input device,
REFILL SOURCE WORD PARSE
PARSE-WORD CHAR

can be used for input from any file. For example, see the
definitions of LISTED and LOAD-VOCABULARY.

DISPLAY gives us formatted output to a file. The
following can all be used:
EMIT TYPE CR . " . U. .R U.R
et Cetera.

I Many stock words in ThisForth are macros. Here are
some useful ones.
? ? a-word
becomes
IF a-word THEN

n TH a-word
becomes
n CELLS a-word +

Step VI
Decode a File

DECODED is the application.
In the transcription there are these kinds of lines

S=
becomes
COMPARE O=
This lets pinhole optimization work.

Forth Dimensions 25 September 1996 October

The following are usehl for file handling.

fileid << a-word
becomes
fileid DISPLAY a-word 0 DISPLAY

CLOSE foo
becomes
foo CLOSED 0 TO foo

filename <== foo
becomes
filename CLOSE foo OUTPUT TO foo

Thus, to copy a file:
S" newfile" <== OUT
S" oldfile" OUT << LISTED
CLOSE OUT

To save the output of WORDS:
S wordlist.txt <== OUT
OUT << WORDS CLOSE OUT

==> and >> work similarly for input.

Wil Baden is a professional programmer with an interest in Forth.
wilbadenOnetcom.com

1 (BREAKING CODE Wil Baden 1996

3 (STEP I. Enter the Vocabulary.)

5 VARIABLE line-number 0 line-number !
6 CREATE first-letter [CHAR] a C,
7 0 VALUE OUT (Fileid)

9 : enter (--
10 first-letter 1 <== OUT
11 BEGIN (
12 1 line-number + !
13 first-letter C@ EMIT
14 line-number @ .

1 l6
first-letter C@ EMIT

18 REFILL DROP
19 SOURCE
2 0 DUP
2 1 WHILE
2 2 OUT DISPLAY
2 3 first-letter C@ EMIT
2 4 line-number @ .

OVER C@ BL OR first-letter C@ IF
first-letter C@ EMIT

THEN

TYPE (

CR
0 DISPLAY

REPEAT (S .)

2DROP (

CLOSE OUT
1 first-letter C+!
0 line-number !

4 0 : LISTED 2 needed (filename . --)

4 1 INPUT STREAM (
42 BEGIN REFILL WHILE

September 1996 October 26 Forth Dimensioi

4 3 SOURCE TYPE CR
4 4 REPEAT
4 5 SOURCE-ID UNSTREAM CLOSED
4 6 t

4 9 (S T E P 11. L o a d t h e V o c a b u l a r y)

51 CREATE w o r d - p o i n t e r s 3 2 0 DO 0 , LOOP

53 : to-letter-code 31 AND ;

55 : load-vocabulary (--)

5 6 0 f i rs t - let ter C !
5 7 S" vocabuly" INPUT STREAM
5 8 BEGIN R E F I L L WHILE
5 9 PARSE-WORD (S .)

6 0 OVER C@ to-let ter-code f i rs t - le t ter C@ <> I F
6 1 OVER C@ to-letter-code f i r s t - le t te r C !
6 2 HERE f i rs t - le t ter C@ TH w o r d - p o i n t e r s !
6 3 THEN
6 4 2DROP PARSE-WORD
6 5 S , (1
6 6 REPEAT
6 7 SOURCE-ID UNSTREAM CLOSED
6 8 ;

7 0 LOAD -VOCABULARY

7 2 (S T E P 111. D e c o d e a Word.)

d e c o d e - w o r d (code . -- decode .)

OVER C @ to-let ter-code TH w o r d - p o i n t e r s @
ROT ROT (addr code .)

1 / S T R I N G 0 . 2SWAP >NUMBER (addr n . code .)

2 > R DROP (addr n) (R : code .)
?DUP O = I F

COUNT DROP 1
ELSE

1 ?DO COUNT CHARS + LOOP
COUNT (addr .)

THEN
2 R > S + (decode .) (R:)

88 : tes t please " :: s I d e c o d e - w o r d t y p e crl " ;

9 1 (S T E P I V . F o r m a t T e x t .)

9 3 : i s -d ig i t [CHAR] 0 - 1 0 U< ;
9 4 : i s - l o w e r [CHAR] a - 2 6 U< ;
9 5 : i s -upper [CHAR] A - 2 6 U< ;

9 6 : i s - v i s i b l e [CHAR] ! - 9 4 U< ;

9 7 : t o - l o w e r DUP i s - u p p e r I F BL + THEN ;
9 8 : t o - u p p e r DUP i s - l o w e r I F BL - THEN ;

1 0 0 7 2 VALUE L L (L i n e L e n g t h)

'orth Dimensions 27 September 1996 October

101 VARIABLE col (# Print-Columns Written)

102 VARIABLE CAP (Flag for Capitalization)

104 : end-of-sentence (s . -- flag)
10 5 1- CHARS + C@ (last-char-of-word)
106 CASE [CHAR] . OVER =

107 ORIF [CHAR] : OVER =

10 8 ORIF [CHAR] ? OVER =

109 ORIF [CHAR] ! OVER =

110 THENS NIP
11 1

113 : +CR CR 0 col ! ;
114 : MORE DUP col @ + LL > ? ? +CR col +! ;
11 5 : +TYPE CAP @ IF
11 6 OVER C@ to-upper 2 PICK C!
117 THEN

11 9 2DUP end-of-sentence CAP !

12 1 DUP MORE TYPE (1
122 ,
123 : +SPACE 1 col +! col @ LL < ? ? SPACE ;

125 (STEP V. Parse a Line of Code.)

12 6 : sskip (s n -- s+k n-k)

127 BEGIN
128 DUP ANDIF OVER C@ is-visible NOT THEN
12 9 WHILE
13 o 1 /STRING
131 REPEAT
132

134 : sscan (s n -- s+k n-k)

13 5 BEGIN
136 DUP ANDIF OVER C@ is-visible THEN
137 WHILE
138 1 /STRING
139 REPEAT
14 0

142 : tokenize (s n -- s'+k nu-k s' k)

143 sskip (s1 n')
14 4 2DUP sscan (s" n' sl+k nl-k)
14 5 DUP >R 2SWAP R> - (sl+k nu-k s' k)
146 t

14 8 VARIABLE page-number

15 0 : page.line (-- 1
151 line-number @ 0 <#
152 [CHAR]] HOLD # S [CHAR] . HOLD
153 2DROP page-number @ 0
154 #S [CHAR] [HOLD
155 #> DUP MORE TYPE +SPACE ()

15 6

September 1996 October 28 Forth Dimensions

158 : d e c o d e - l i n e (le t ters . --)

1 5 9 p a g e . l i n e
1 6 0 R E F I L L O = ABORT" *** M I S S I N G NUMBER-LINE * * * "
1 6 1 BEGIN
1 6 2 PARSE-WORD (le t ters . code .)

1 6 3 DUP
1 6 4 WHILE
1 6 5 CASE OVER C@ i s - d i g i t
1 6 6 I F 2 > R t o k e n i z e OVER 1 2R> S +
1 6 7 2SWAP 1 /STRING S t
1 6 8 decode-word +TYPE +SPACE (le t ters .)

E L S E S" S" 20VER S=
I F 2DROP (le t ters .)

t o k e n i z e +TYPE +SPACE

E L S E S" -" 20VER S = O R I F S" --" 20VER S= THEN
I F 2DROP (le t ters .)

t o k e n i z e 2DROP
c o l @ ? ? CR +CR
TRUE CAP !

E L S E S" .." 20VER S= O R I F S" **" 20VER S = THEN
I F 2DROP (l e t t e r s .)

t o k e n i z e (le t ters . t o k e n .)

OVER C@ to - lower 2 P I C K C !
+TYPE +SPACE (le t ters .)

E L S E S" x" 20VER S =
I F 2DROP (le t ters .)

t o k e n i z e +TYPE
c o l @ ? ? CR +CR
TRUE CAP !

E L S E S" #" 20VER S=
I F 2DROP (le t ters .)

t o k e n i z e +TYPE +SPACE
TRUE CAP !

E L S E
TRUE ABORT" * * * ILLEGAL CODE *** "

THENS
REPEAT (l e t t e r s . t o k e n .)

2 0 3 (S T E P V I . Decode a F i l e .)

2 0 5 : decoded (f i l e n a m e . --)

2 0 6 0 c o l !
2 0 7 TRUE CAP !
2 0 8 INPUT STREAM (1
2 0 9 BEGIN R E F I L L WHILE
2 1 0 SOURCE -TRAILING >PAD (S .)

2 1 1 CASE DUP O =
2 1 2 I F (It's a b l a n k l i n e .)

2 1 3 2DROP c o l @ ? ? +CR

Forth Dimensions 29 September 1996 October

2 1 4 TRUE CAP !

ELSE OVER C @ [CHAR] [C>

I F (D o e s n ' t begin w i t h " [" .
(J u s t copy i t .)

C O ~ @ ? ? CR TYPE +CR

2 2 1 E L S E OVER CHAR+ C @ [CHAR] P =

2 2 2 I F (S e c o n d c h a r a c t e r i s " P w .
2 2 3 (S o i t ' s a p a g e - n u m b e r .)

2DROP PARSE-WORD (" [P . 'I)

2DROP PARSE-WORD (" n n] ")
0 . 2SWAP >NUMBER 2DROP (nn 0)

DROP p a g e - n u m b e r ! ()

2 3 0 0 l i n e - n u m b e r !

E L S E OVER CHAR+ C @ i s -d ig i t
I F (I t ' s a l i n e - n u m b e r .)

1 / S T R I N G 0 . 2SWAP >NUMBER (n . s .)

1 / S T R I N G 2SWAP (s . n .)
DROP l i n e - n u m b e r ! (S .)

d e c o d e - l i n e

2 3 9 ELSE
2 4 0 TRUE ABORT" * * * UNKNOWN L I N E TYPE * * * "
2 4 1 THENS
2 4 2 REPEAT
2 4 3 SOURCE-ID UNSTREAM CLOSED
2 4 4 C O ~ @ ? ? CR
2 4 5 ;

2 4 7 CREATE f i l e n a m e 2 5 6 CHARS ALLOT

2 4 8 S " W o r k " f i l e n a m e PLACE

2 5 0 : CK f i l e n a m e COUNT decoded ;

2 5 4 : RUN
2 5 5 S " t o p d o w n " <== OUT
2 5 6 S " over ture" OUT << DECODED CLOSE OUT

2 5 8 S" b o t t o m u p " <== OUT
2 5 9 S " s c e n a r i o " OUT << DECODED CLOSE OUT
2 6 0 ;

2 6 2 \ P r o c e d a m u s i n pace. W i l B a d e n C o s t a M e s a , C a l i f o r n i a

I

September 1996 October 30 Forth Dimensions

I A Report of the Board Meeting June 23-24, 1996

N G Board Moves to
Increase Member Benefits

Elizabeth D. Rather
Manhattan Beach, California

The Forth Interest Group Board of Directors met in
conjunction with the Rochester Forth Conference held in
Toronto, Canada, June 23 and 24.

Major actions include approval of further membership
benefits, clarification of benefits for corporate members,
review of Forth Dimensions advertising rates, planning of
promotional activities, and review of plans for managing
the FIG office and activities.

The new list of member benefits reflects the growing
electronic capabilities of FIG, supplied through FIG Presi-
dent Skip Carter's Taygeta Internet site. The full list now
includes:

Six issues of Fortb Dimensions

Support of the annual FORML conference (proceedings
are available at a discount for members who can't attend)

10% discount on FIG retail items (books, disks, back
issues of FD, etc.)

10% discount for early registration for FORML (prior to
November 1)

The new member benefits
reflect the growing electronic
capabilities of FIG

R6sumC referral service for programmers seeking jobs

Contact with local Forth programmers through local
chapters

Electronic services:
Free personal web page (maximum size 100K)
Free e-mail forwarding service
Discounted domain registration ($25 for members and
$50 for non-members, plus actual Internic registration
charges)
Access to 'Lmember~-~nly" site, with special interest
mail groups and a growing list of other features
RCsumQ posted in the public areas of the site

Vast FTP software library, including the Forth Scientific
Library and much more.

In addition, for only $125 per year, corporate member-
ships include:

Five copies of each issue of Fortb Dimensions, providing
useful Forth information for the whole Forth programming
team.

Free corporate listing, with a 50-word description, in
Forth Dimensions to increase corporate visibility in the
Forth community and to aid in recruiting Forth
programmers.

10% discount on advertising rates for advertising products
and services as well as recruiting ads.

A link from the FIG web site to a designated corporate
web site, for better electronic access.

All other regular member benefits.

The Board hopes individual members will suggest that
their companies sign up as Corporate members. For
example, in the many companies now building Forth
teams developing Open Firmware drivers or Internet-
related products, a corporate membership would provide
an excellent, low-cost opportunity to help support their
new Forth programmers and, at the same time, to increase
company visibility in the Forth community to assist in
recruiting.

For further information on the electronic services listed
above, send e-mail to skip@forth.org. For information
regarding the other benefits, call the FIG office.

Advertising rates were reduced substantially, in order
to increase volume and to encourage new advertisers;
however, the prior liberal discount schedules offered to
some long-time advertisers will be replaced by a 10%
discount offered to corporate members. Thus, existing
advertisers should see little, if any, increase and new
advertisers may be attracted. In addition, a new "ninth
page" format was added. The new rates may be obtained
from board member Jeff Fox (jfox@netcom.com).

Forth Dimensions 31 September 1996 October

A general review of procedures relating to subscription
renewals produced several changes aimed at ensuring that
members are adequately alerted to their renewal dead-
lines. Currently, advance notice of expiration is provided
only on the address inserts in the Forth Dimensions

FIG increases visibility at the
Embedded Systems Conference

envelope; in future, direct postcards will be sent. In
addition, both the address inserts and renewal acknowl-
edgments will feature a clip-out "membership card" to
help members keep track of the member number, because
it now provides valuable access to the "members-only*
web DaQes and other members hi^ benefits.

FIG is planning to increase its visibility at the Embed-
ded Systems Conference this Fall, with an improved booth
offered by FORTH, Inc. and, if possible, sessions on Forth-
related topics such as robotics, Open Firmware, and the
new "Open Terminal Architecture" for smart card transac-
tion terminals in Europe. The booth will be coordinated by
Jeff Fox, with assistance from Mike Elola and Elizabeth
Rather.

Other planned outreach strategies involve improved
chapter coordination, providing brochures vendors can
include in product shipments, and strategies for reaching
the many new Forth programmers involved in the growing
market for Open Firmware, Internet systems, and other
Forth-related embedded systems.

The next Board of Directors meeting is scheduled for
September 14. Members may reach board members with
comments or suggestions via e-mail to figboard@forth.org
or through the FIG office.

GbapDov Mow@
Southern Ontario FIG Chapter

In lieu of our normal quarterly meeting, the Southern
Ontario FIG chapter put on a conference this June-the
1 9 6 Rochester Forth Conference, to be exact. This is the
first time the Forth Institute's annual conference has been
held outside Rochester, New York, and is the first Forth
conference ever held in Canada.

Chapter coordinator Nick Solntseff and member Brad
Rodriguez made this proposal to the Institute's Larry
Forsley at the 1%5 Rochester conference. Nick, as Pro-
gram Chair, solicited papers and tutorials, and will edit the
conference proceedings. Brad, as Facilities Chair, ar-
ranged meeting and residence rooms. Ken
McCracken suggested Ryerson Polytech-
nic University, in the heart of Toronto, as
a venue, and made the initial contact with
Ryerson. Elliott Chapin handled publicity,
Rob McDonald provided Canadian cus-
toms information to the vendors, and Ken
Kupisz assembled a visitor's guide (with
assistance from Walter Elehew). J.D. Verne,
Robin Ziolkowski, and Wendy Rodriguez
provided extra help during the four-day
conference.

Our two invited speakers were Mitch
Bradley, speaking on new developments in
Open Firmware; and Chuck Moore, on
Forth hardware. Twenty-five papers were
presented, including a series of papers on
the Open Terminal Architecture being de-
veloped for European cash cards. For an
extra "draw," we offered nine tutorials:

HTML, H?TP and CGI, Java, Forth Hardware, Robotics,
Forth under Windows, Metacompilation, and two on Open
Firmware. Also, three members of the Ryerson Computer
Science department were invited to participate; they ex-
pressed a fresh interest in Forth after the conference.

We have been invited to have future FIG chapter
meetings at Ryerson. This is fortunate, since our chapter
coordinator, Nick Solntseff, has just retired from McMaster
University (our meeting place for the last several years).
Meetings will continue to be held quarterly, on Saturdays.

-Brad Rodriguez

a n d s ~ m o r r e !
THIRTY-DAY FREE OFFER - Free MMSFORTH
GAMES DISK wonn S39 95 wltn ourcnase of MMSFORTA I
system CRYPTOQUOTE HELP% O%ELLO BREAK-
FORTH and others 1

61 Lake Sham Road. Nsttdc, MA 01780
(-138, e am - 0 pm)

September 1996 October 32 Forth Dimensions

-

Report from "Rochester-in- Toronto "

Rochester Forth

Nicholas Solntseff
Toron to, Ontario, Canada

Editor's note: 7hree majorForth conferences are held each
year. FORML convenes every November at Asilomar, a
woodland facility on the seashore nearMonterey, Califor-
nia. euroForth gathers Forth practitioners to a dgerent
European city annually. 7he Rochester Forth Conference
previously met in Rochester, New York; this year marks its
first move from that city. These conferences are like masters
classes, rich in content and interaction. Theirproceedings
are published and can be orderedfiom the Forth Interest
Group. But much of the value of these conferences is
obtained only in petson, and we encourage you to attend.

The Rochester Forth Conference is alive and well! Not
only has there been an upturn in attendance, while
organizers of other conferences are bemoaning falling
numbers, but the environment of a university in the midst
of graduation ceremonies and a major city just one block
away contributed to an exciting four days. The conference
facilities at Ryerson Polytechnic University proved to be
excellent, which is to be expected of an educational
establishment with a School of Hospitality and Hotel
Management. Ryerson runs a full-scale hotel where some
of the conference attendees stayed. The student resi-
dences were also well-designed, with a private bathroom
shared between two rooms. Air conditioning, although
not really needed because of the generally cool and rainy
weather this year, provided a welcome change from the
slowly decaying Rochester University dormitories where I
have stayed at previous conferences!

The conference ran very smoothly because of the
Ryerson conference services and the work contributed by
Brad Rodriguez and other members of the Southern
Ontario FIG Chapter over the previous six months. As
someone remarked, Larry and Brenda Forsley were seen
for the first time ever at every meal time!

I As for the technical side, I sensed that Forth has finally
I reached a stage in its development that clearly shows that

the world needs Forth, if only because Mitch Bradley's
Open Firmware, Sun's Java Development System, Bernard

, Hodson's software genes, and Europay (a major European
cash-transaction consortium) all involve software that
ultimately runs on a byte-code abstract or virtual machine

to ensure platform independence. This common thread
was recognized in the last session of the conference, and
"Abstract Machines" was chosen as the theme for the 1997
Rochester Forth Conference (again to be held somewhere
outside Rochester).

Mitch Bradley and Chuck Moore were invited speakers
reporting on the latest development in their respective
areas. The Europay work was presented by Elizabeth
Rather, Jon Lee, Stephen Pelc, and Peter Johanes (Europay).
Ten tutorials were offered on topics ranging from HTML,
Java, Open Firmware, Forth hardware, and robotics. The
last was given by Skip Carter, who brought a six-legged
walking robot to Canada, not without a rather difficult

Forth's state of development
clearly shows that
the world needs Forth.

passage through Customs and Immigration!
Working groups were put together as usual and, of the

ones I could attend, I would like to highlight two-
Portable Development Tools and Forth on Java. The
former broke up after an hour with very little achieved
except the realization that no one-practitioner or aca-
demic theoretician-has yet formulated the software-
engineering principles required for this development; the
latter emphasized the fact that Java is a close relative to
Forth, and that there is room to implement a Forth
compiler to Java byte-code instructions.

To summarize: Rochester-in-Toronto proved to be a
worthwhile conference and I uust an even better confer-
ence will be held next year. I hope to see more of you next
time!

Forth Dimensions 33 September 1996 October

Using Forth to manipulate the real world I

Digital Input and
Synchronous I/O
Skip Carter
Monterey, California

Introduction
We now turn to the problems and issues involved with

getting digital data into our application from the outside
world. As before, we begin learning the principles by
using the parallel port on the PC.

The PC Parallel Port Revisited
First, let's take another look at Table One (repeated

from the first column, FD XVII/5).

Table One. The PC parallel port. I
DB-25 Pin Signal Direction Port

1 Strobe* out #Command 0
2 Data, out #Data 0
3 Data, out #Data 1
4 Data, out #Data 2
5 Data, out #Data 3
6 Data, out #Data 4
7 Data, out #Data 5
8 Data, out #Data 6
9 Data, out #Data 7
10 Ack* in #Status 6
11 Busy in #Status 7
12 Paper-out in #Status 5
13 Select-out in #Status 4
14 Auto-Feed* out #Command 1
15 Errol* in #Status 3
16 Init* out #Command 2
17 Select-in* out #Command 3

18 to 25 Ground NA NA NA

So far, we have only concerned ourselves with the #Data
output port lines (and the Busy status input line). We will
now use those other lines. We will presume the lowest
common denominator type of port and that the data
direction of the pins of #Data is fixed to output only. The
five pins of the #Status port are usually fixed to input only.
The four pins of the #Command port are open collector. An
open collector line can be treated somewhat like a bus, with
many devices (also open collector) that can potentially
drive it. The state of an open collector line will be high only
if none of the connected devices are driving it low (a pullup
resistor, typically of a value like 2.2KQ, between the line

and 5 volts, should be used to assure that the line is well
defined when not being pulled low). The open collector
lines can be used as either input or output lines.

A Simple Example: Reading a Switch
Reading a simple switch is just a matter of reading the

port (either #Status or #Command that has the switch
attached to it), see Listing One. There are, of course, a few
minor complications. First, as mentioned above, we should
be sure to use pullup resistors on the open collector lines.
Second, bit 7 of the #Status port is inverted in hardware so
that it reads a zero when the line is high and reads a one
when the line is low; bits 0 , 2 , and 3 of #Command are also
inverted. Further, on an MS-DOS system, if your Forth
reads the I/O ports via calls through the BIOS, bits 3 and
6 of #Status are also inverted. If you are using PFE V0.9.14
and Linux, you might have to make some minor patches
to the source file supp0rt.c (this depends upon the version
of the GNU C compiler you are using; I am using V2.7.0).
If you can properly read the switch only the first time the
"file" to the I/O ports is opened, and you get the same
value for all subsequent reads, you will have to apply a diff
patch [seepage 381 to supp0rt.c and rebuild Forth.

An Elaborate Example:
Synchronous Communication

We will now look at a significantly more complicated
example. The cost of embedded systems is a sensitive
function of the number of chips required to implement
them. The chip count starts climbing rapidly when one
accounts for the CPU, memory, the peripheral devices
themselves, the chip-select logic, and all the miscella-
neous glue logic that is necessary. Even if cost is not a
major concern, a design involving fewer chips is likely to
be more reliable than one with many chips. This is one
reason why highly integrated chips are so popular for such
systems. Highly integrated chips are rather expensive, so
one approach that is often used is to design the peripheral
chips so they can interface directly with the CPU, thus
eliminating all the "glue." With this approach, the number
of pins required to implement the interface becomes a
consideration: the fewer the pins, the better. As a conse-
quence of this, devices that use bit-synchronous serial
communication with a controller have become common.
Several microcontrollers provide support for a synchro-

September 1996 October 34 Forth Dimensions

Listing One. pport.fth I
\ p p o r t . f t h P a r a l l e l P o r t i n p u t f o r t h e PC

\ T h i s i s a n ANS F o r t h program f o r m a n i p u l a t i n g t h e PC
\ p a r a l l e l p o r t under MSDOS o r Linux r e q u i r i n g :
\ 1. The F i l e Access word set
\ 2 . t h e c o n d i t i o n a l c o m p i l a t i o n words i n t h e PROGRAMMING-TOOLS word s e t
\ 3 . For u s e under MSDOS, t h e word
\ : MSDOS ;

\ must b e d e f i n e d b e f o r e l o a d i n g t h i s f i l e
\ 4 . I t i s assumed t h a t t h e i n v e r s e of COUNT i s DROP 1-

\ T h i s code i s r e l e a s e d t o t h e p u b l i c domain J u l y 1996
\ Taygeta S c i e n t i f i c I n c .

\ $Author : s k i p $
\ $Workf i l e : p p o r t . f t h $
\ $ R e v i s i o n : 1.1 $
\ $Date: 1 3 J u l 1996 02:35:08 $

\ a d a p t e d f rom t h e F o r t h S c i e n t i f i c L i b r a r y
\ assumes t h a t t h e i n v e r s e of COUNT i s DROP 1-
\ (t h i s a s sumpt ion c o u l d b e a v o i d e d i f C" was a l l o w e d t o
\ b e i n t e r p r e t e d , b u t o n l y t h e FILE S" i s)

: DEFINED (c-addr u -- t / f) \ r e t u r n s d e f i n i t i o n s t a t u s of
DROP 1- FIND SWAP DROP \ a word, t r u e i f i t ' s t h e r e

S" MSDOS" DEFINED [I F]

S" f c o n t r o l . seq" INCLUDED \ from FD X V I I / ~

: i n i t i a l i z e (--) ; IMMEDIATE \ n o t h i n g t o do h e r e
: c l o s e - p o r t (--) ; IMMEDIATE

l l P O R T

CONSTANT #DATA

[ELSE] \ assume Unix/Linux

S" /usr/local/lib/forth/ports.fth" INCLUDED I
: i n i t i a l i z e (--) \ open up t h e p a r a l l e l 1/0 p o r t

i n i t - p o r t TO #IOPORTS

HEX

I 378

CONSTANT #DATA \ s e t a s a p p r o p r i a t e

I (Listing One continues on nextpage.) I
I I

Forth Dimensions 35 September 1996 October

#DATA 1+ CONSTANT #STATUS
#DATA 2 + CONSTANT #COMMAND

DECIMAL

27 CONSTANT E S C

: . b i n a r y (n --)

BASE @ SWAP
2 BASE !
8 U.R
BASE !

: . h e x (n --)

BASE @ SWAP
HEX
4 U . R
BASE !

\ t h e escape character

\ d i s p l a y i n b i n a r y

\ d i s p l a y i n hex

\ read specified p o r t , repeat ing a t e a c h k e y s t r o k e u n t i l E S C
: t e s t - i n p u t (n --

i n i t i a l i z e

BEGIN
DUP pc@ .b ina ry CR
KEY ESC =

U N T I L

DROP
close-port

: t e s t - s t a tus (--)

CR . " R e a d i n g #STATUS p o r t a t " #STATUS . h e x

#STATUS tes t - input
,

: t e s t - c o m m a n d (--

CR ." R e a d i n g #COMMAND p o r t a t " #COMMAND . h e x

#COMMAND t e s t - i npu t
I

September 1996 October 36 Forth Dimensions

Conclusion
This installment gets us into the basics of digital input.

Next time, we will look at some further aspects of getting
data into our code from the outside world. Please send
your comments, suggestions and criticisms to me through
Forth Dimensions or via e-mail at skip@taygeta.com.

what, otherwise, would just be a simple cable? One place
is inside the hood for the DB-25 connector on one end of
the cable; one just has to provide for a 5 volt source inside
this hood, too. A much more serious problem is that the
pullup resistors limit the switching rate on the lines, which
will result in very slow transmission rates.

As a consequence of these problems, we will avoid
using the open collector lines for SPI. Instead, we will use
the following: MOSI will be #Data bit 0, MIS0 will be
#Status bit 6, the clock line will be #Data bit 1 for the master
andbe attached to #Status bit 5 on the slave side. Ifwe make
our cable have five wires (MOSI, MISO, two clock lines, and
ground) as shown in Figure One, we can still choose which
side is master at runtime (one clock line will always be idle);
if we use slave select control, we need to add two more
wires (this is not really necessary for PC-to-PC communica-
tion, and possibly not for some other devices either). Some
simple devices can only be used as a master or only as a
slave, so it's useful to be able to run in either mode. Many
devices have SPI implemented in hardware and can,
therefore, run extremely fast; since we are implementing
SPI in high-level code, our system might not be capable of
running so quickly. Since the data transfer rate in both
directions is controlled by the master, it is desirable to run
in master mode from the slowest device

Listing Two is an implementation of SPI, for master or
slave mode, that will run either under MS-DOS or Linux.
I put one-microsecond pauses after each clock edge; this
is something you can experiment with. With these pauses,
I can reliably transfer data between my 120 MHz Pentium
and my 40 MHz '386, with either machine being the
master. Without the pauses, I can only transfer with the
'386 as the master. I have also used this code, in master
mode, to communicate with the SPI port on the Motorola
68332. This, and many other Motorola microprocessors,
contains a Queued Serial Module (QSM) which is, effec-
tively, a serial I/O coprocessor. SPI using the QSM consists
of setting u p the configuration registers, filling the transmit
buffer, and then letting the QSM run in the background.
The CPU is free to d o other things during the transmission,
and it is notified when the transfer is complete via an
interrupt or by polling a status register (depending upon
the configuration settings). The QSM is very flexible in the
range of configurations it can be put into. For less flexible
devices, you may need to play with the timing, clock
polarity, and phase. Some devices have different timing
requirements for interbit timing, compared to interbyte
timing. Some allow them to be selected for the entire
duration of the transfer, while others require they be
selected once for each byte (and deselected in between).
A further variation to be aware of, is some devices have
open collector SPI pins, while others do not.

I

nous protocol, as d o EEPROMS, and A/D and D/A chips.
Several synchronous protocols are in common usage, 1%
and SPI are probably the most common. We will look at
how to implement SPI here.

Devices using SPI are classified as either master or slave
devices. They use three wires for communication: MOSI
(master out and slave in), MIS0 (master in and slave out),
and a clock line. The MOSI line is the output line for the
master device and is the line the slave device reads data
in from. The MIS0 line is the output line for the slave
device and is the input line for the master. The transfer of
data onto the two lines is bitwise and occurs at previously
agreed-upon phases of the clock signal. There can be
multiple slaves, but there is only one master at a given
time. The SPI master drives the clock and MOSI lines-
these lines are used as inputs by the slave(s). The slave
drives the MIS0 line. If there are multiple slaves, there
must be some arrangement (hardware or software) to
decide which slave is allowed to drive MISO. While the
master is sending data out on MOSI, the selected slave is
sending data out on MISO. So, at the end of a transfer, the
master's input buffer matches the slave's output buffer,
and the slave's input buffer is a copy of the master's output
buffer. Depending upon the application, the master can be
a fixed device, or the roles of master and slave can shift
among the devices. Like RS-232, SPI is not really a
standard, but more of a conceptual approach. There are
variations in the clock polarity, the clock phases at transfer
time, the bit order of a transfer, and the number of bits that
constitute a single transfer. In our example, we will choose
one common set of choices:

The clock line will be low when idle.
The master will write a bit on the rising clock edge.
The slave will write a bit on the falling clock edge.
A single transfer will be eight bits.
The most significant bit is transferred first.
The slave is selected for the entire duration of the
transfer of all bytes.

It would be nice if we used the open collector lines for
MOSI, MISO, and clock. That way, we could decide at
runtime whether to be master or slave, and use the lines
as either input or output, as appropriate. Unfortunately,
there is a problem with this idea. A pullup resistor must be
put on the line in order to assure that the line really goes
up to 5 volts when it is not being driven low. The need for
this resistor introduces a minor mechanical inconve-
nience: where d o we physically locate these resistors for

Figure One- Cable for PC-to-PC SPI Communicaton.

25 C 25
Skip Carter is a scientific and software consultant. He is the leader of the Forth
Scientific Library project, and maintains the system taygeta on the Internet. He
is also the President of the Forth Interest Group.

Forth Dimensions 37 September 7996 October

diff patch for supp0rt.c - see page 34 for details of use

1190~1190,1192
< r e t u r n f s e e k (f id->£, pos, SEEK - SET) ? e r r n o : 0 ;

> / * r e t u r n f s e e k (£ id->£ , pos, SEEK-SET) ? e r r n o : 0; * /
> r e t u r n l s e e k (f i l e n o (f i d - > f) , pos, SEEK - SET) == -1 ? e r r n o : 0 ;
>
1207~1209,1211
< f s e e k (£id->£, 0 , SEEK-CUR); / * then seek t o t h i s p o s i t i o n * /
- - -
> / * f s e e k (£id->£, 0, SEEK-CUR); * / / * t hen seek t o t h i s p o s i t i o n * /
> l s e e k (f i l e n o (f id->£) , 0, SEEK-CUR) ;
>
1239~1243,1246
< m = f r e a d (p, 1, *n, £id->£)

>
> / * m = f r e a d (p, 1, *n, £ id->£) ; * /
> m = r ead (f i l e n o (f id->£) , p, *n) ;
>

Listing Two. spi.fth

\ s p i - f t h SPI u s ing t h e PC P a r a l l e l P o r t

\ This i s an ANS For th program f o r SPI 1 / 0 on t h e PC
\ p a r a l l e l p o r t under MSDOS o r Linux r e q u i r i n g :
\ 1. The F i l e Access word set
\ 2 . t h e c o n d i t i o n a l compi la t ion words i n t h e PROGRAMMING-TOOLS word set
\ 3 . The word USEC (us --) i s r e q u i r e d t o cause a d e l a y
\ f o r t h e s p e c i f i e d number of microseconds
\ 4 . For u se under MSDOS t h e word
\ : MSDOS ;

\ must be d e f i n e d be fo re l oad ing t h i s f i l e
\ 5 . I t i s assumed t h a t t h e i n v e r s e of COUNT i s DROP 1-

\ U s e s t h e fo l l owing 1 / 0 l i n e s of #DATA (base) and #STATUS (base + 1)
\
\ Master S lave
\ Pin B i t Name P i n B i t
\ 10 Sta tus -6 MIS0 2 Data-0
\ 3 Data-1 Clock 12 S ta tus -5
\ 2 Data-0 MOSI 1 0 S ta tus -6
\ 4 Data-2 S e l e c t 13 S ta tus -4 (a c t i v e low)

\ 25 Ground 25

\ For PC-PC communications t h e S e l e c t i s not r e a l l y necessary ,
\ b u t f o r t h e Motorola QSM and o t h e r dev i ce s i t s needed

\ (c) Copyright 1 9 9 6 , E v e r e t t F. C a r t e r J r .
\ Permission i s g ran t ed by t h e au tho r t o use t h i s so f tware f o r
\ any a p p l i c a t i o n provided t h i s copyr igh t n o t i c e i s p re se rved .

\ $Author: s k i p $
\ $Workfile: s p i . f t h $
\ $Revision: 1.1 $
\ $Date: 13 J u l 1 9 9 6 02:36:36 $

\ ...

\ adapted from t h e Fo r th S c i e n t i f i c L ib ra ry
\ assumes t h a t t h e i n v e r s e of COUNT i s DROP 1-

September 1996 October 38 Forth Dimensions

: DEFINED (c-addr u -- t / f) \ r e t u r n s d e f i n i t i o n s t a t u s of
DROP 1- FIND SWAP DROP \ a word, t r u e i f i t s t h e r e

S" MSDOS" DEFINED [IF]

S" f c o n t r o l . s e q " INCLUDED \ from FD XVII/~

: i n i t i a l i z e (--) ; IMMEDIATE \ noth ing t o do h e r e
: c lose -po r t (--) ; IMMEDIATE

#PORT CONSTANT #DATA

I \ assume Unix/Linux

S" /usr/local/lib/forth/ports.fth" INCLUDED

: i n i t i a l i z e (--) \ open up t h e p a r a l l e l I/O p o r t
i n i t - p o r t TO #IOPORTS

1 HEX

[THEN]

\ set a s a p p r o p r i a t e

#DATA 1+ CONSTANT #STATUS
#DATA 2 + CONSTANT #COMMAND

\ bitmasks and s h i f t o f f s e t s

40 CONSTANT READ MASK
6 CONSTANT READ~SHIFT

1 CONSTANT WRITE MASK
0 CONSTANT WRITE~SHIFT

110 CONSTANT SELECT-MASK

2 VALUE c lock mask
0 VALUE t r a n s f e r - b y t e \ execu t ion v e c t o r
0 VALUE s e l e c t \ execu t ion v e c t o r
0 VALUE d e s e l e c t \ execu t ion v e c t o r

16 CONSTANT BUFSIZE \ t h e s i z e of t h e 1/0 b u f f e r s

I BUFSIZE VALUE N

CREATE inbuf BUFSIZE ALLOT
CREATE outbuf BUFSIZE ALLOT

(Listing Two continues on nextpage.)

Forth Dimensions

-

September 1996 October

: show-buffer (addr n --)

CR
0 DO I OVER + C @ . LOOP
DROP
CR

\ g e n e r a t e a d d i t i v e sequence, f o r b u i l d i n g dummy d a t a
: g a s (addr n --) 0 DO I OVER C! 1+ LOOP DROP ;

: s p i - s e t u p (--)

i n i t i a l i z e \ open/se tup 1/0 p o r t
4 #DATA pc ! \ set i d l e l e v e l s , and s e l e c t o f f

: s t robe -c lock (--) \ d r i v e c lock l i n e h igh then low
\ master does t h i s

#DATA pc@ \ g e t c u r r e n t va lue

\ g e n e r a t e above va lue with c lock h igh and c lock low
clock-mask OR DUP clock-mask XOR
SWAP #DATA pc!

(pause momentarily he re)
1 usec

#DATA pc!

1 usec
,

: wait-on-clock-hi (--) \ wait f o r l e ad ing c lock edge
\ s l a v e does t h i s

\ now wai t f o r c lock t o go high
BEGIN

#STATUS pc@ c lock - mask AND
U N T I L

: wait-on-clock-lo (--) \ wait f o r t r a i l i n g c lock edge
\ s l a v e does t h i s

\ wai t h e r e f o r t h e c lock t o be low
BEGIN

#STATUS pc@ c lock - mask AND O =
U N T I L

,
: r ead -b i t (-- x) \ l s b of x i s new b i t

#STATUS PC@ READ-MASK AND
READ - S H I F T R S H I F T

: w r i t e - b i t (x --) \ w r i t e l s b of x

WRITE - S H I F T L S H I F T
WRITE - MASK AND \ s h i f t and mask t o g e t j u s t b i t t o send

September 1996 October
- --

Forth Dimensions

WRITE MASK -1 XOR
D A T A ~ C @ AND \ s e t ou tput b i t t o 0

\ send output b i t

: mas te r - t r ans fe r -by te (x -- y) \ w r i t e x, read y

0 7 DO
1 L S H I F T

OVER I R S H I F T w r i t e - b i t \ w r i t e be fo re r i s i n g edge
s t robe-c lock
r ead -b i t OR \ read a f t e r f a l l i n g edge

- 1 +LOOP

SWAP DROP I i
: s l a v e - t r a n s f e r - b y t e (x -- y) \ w r i t e x, r ead y

0 7 DO
1 L S H I F T

wait-on-clock-hi \ read a f t e r r i s i n g edge
r ead -b i t OR

OVER I R S H I F T
wait-on-clock-lo \ w r i t e a f t e r f a l l i n g edge

1 w r i t e - b i t

SWAP DROP I ;
: a s s e r t - s e l e c t (--) \ master

0 #DATA pc ! \ s e t i d l e l e v e l s , and s e l e c t ON

: d e a s s e r t - s e l e c t (--)

4 #DATA pc ! \ s e t i d l e l e v e l s , and s e l e c t o f f
,
: wait-on-select (--) \ s l a v e

I wait-on-clock-lo I
BEGIN

#STATUS PC@ SELECT-MASK AND O =
U N T I L

: noth ing ;
: t r a n s f e r - d a t a (n --) \ send outbuf d a t a , r ece ive t o inbuf

s e l e c t EXECUTE \ s e l e c t once f o r whole loop, (Listing T m continues on nextpage.)

Forth Dimensions 4 1 September 1996 October

\ some dev ices p r e f e r t o s e l e c t f o r each i n d i v i d u a l
\ t r a n s f e r , move t h i s i n s i d e t h e loop i n t h a t c a s e

0 DO
outbuf I + C@
t r a n s f e r - b y t e EXECUTE
inbuf I + C!

LOOP

d e s e l e c t EXECUTE \ see n o t e on s e l e c t above, move t h i s
\ i n s i d e t h e loop t o o i f s e l e c t i s moved

,

: s e t u p (--)

inbuf BUFSIZE 0 FILL
outbuf BUFSIZE gas

,

\

: tes t (--)

s e t u p
BUFSIZE t r a n s f e r - d a t a
c lo se -po r t

inbuf BUFSIZE show-buffer
I

: master (--)

2 TO clock-mask

[' I mas t e r - t r ans fe r -by t e TO t r a n s f e r - b y t e
[' 1 a s s e r t - s e l e c t TO s e l e c t
[' 1 d e a s s e r t - s e l e c t TO d e s e l e c t

sp i - s e tup
,

: s l a v e (--)

32 TO clock-mask

[' I s l a v e - t r a n s f e r - b y t e TO t r a n s f e r - b y t e
[' I no th ing TO d e s e l e c t
\ use ' no th ing ' below i f NOT us ing
\ t h e select l i n e f o r t h e s l a v e (e . g . PC t o PC)
['] wai t -on-se lec t TO s e l e c t
\ [' I no th ing TO s e l e c t

sp i - s e tup

\ usage: mas te r t e s t
\ o r : s l a v e t es t

September 1996 October 42 Forth Dimensions

I Listins Three. usec timer for F-PC. I
\ usec.seq P a u s e f o r a specified n u m b e r of m i c r o s e c o n d s

code delay (dus --) \ specified delay i s a DOUBLE
m o v ax, # $ 8 6 0 0

POP cx
POP dx
i n t $ 1 5
nex t
end-code

: usec (u s --)

S>D delay
I

Listing Four. Recap of Linux parallel port access. I
I

\ p o r t s . f t h F o r t h C o d e t o c o n t r o l p a r a l l e l p r i n t e r p o r t
\ see K e n M e r k , F o r t h D i m e n s i o n s J u l y 1 9 9 5
\ U s e s IOPORTS device p l u s o f f s e t E F C M a r c h 1 9 9 6
\ C o n v e r t e d f o r P F E u n d e r L i n u x EFC O c t o b e r 1 9 9 5

\ T h i s i s an ANS F o r t h p r o g r a m r e q u i r i n g :
\ 1. T h e F i l e A c c e s s w o r d set
\ 2 . T h e w o r d FLUSH-FILE f r o m t h e F i l e A c c e s s E x t e n s i o n s w o r d set

\ N o t e : i n order t o u s e t h i s code
\ 1. T h e device /dev / iopor t s s h o u l d e x i s t , it i s a copy
\ of s t anda rd device /dev/port
\ 2 . T h e p e r m i s s i o n s on t h e / dev / iopor t s device s h o u l d be:
\ c r w - r w - r w - , a n d t h e group should be ' u s e r s ' o r
\ a l o c a l l y d e f i n e d g r o u p

\ $ A u t h o r : s k i p $
\ $ W o r k f i l e : p o r t s . f t h $
\ $ R e v i s i o n : 1 . 0 $
\ $ D a t e : 11 J u l 1 9 9 6 1 0 : 4 0 : 4 4 $

: i n i t - p o r t (-- n)
S " / dev / iopor t sW R/W B I N OPEN-FILE

ABORT" U n a b l e t o open 1/0 p o r t s a t / dev / iopor t sW
,

\ i n i t - p o r t VALUE #IOPORTS
-1 VALUE #IOPORTS
CREATE cbuf 8 ALLOT

: close-por t (--)
#IOPORTS CLOSE-FILE
ABORT" U n a b l e t o c lose 1 / O p o r t s a t / dev / iopor t sW

: P C ! (n p o r t - -)
S>D #IOPORTS REPOSITION-FILE THROW
cbuf C ! cbuf 1 #IOPORTS WRITE-FILE DROP

#IOPORTS FLUSH-FILE DROP

: PC@ (p o r t -- n)
S>D #IOPORTS R E P O S I T I O N - F I L E THROW
c b u f 1 #IOPORTS READ-FILE 2DROP c b u f C@

I

Forth Dimensions 43 September 1996 October

Asilomar
FORML CONFERENCE

The original technical conference for professional Forth programmers and users.

18th annual FORML Forth Modification Laboratory Conference
Following Thanksgiving November 29-December 1, 1996

Asilomar Conference Center
Monterey Peninsula overlooking the Pacific Ocean

Pacific Grove, California, USA

Experimenting with the ANS Forth Standard
The ANS Forth standard has been out for two years, and the review process will start in another two years. FORML,
with it's charter as Forth's "Modification Laboratory," is the appropriate place to let others know what your experiences
have been as a developer or user while there's time for your ideas to spread.

Papers are sought that report on your experience writing ANS Forth programs and systems. That is, on your
experiments. By calling attention to the successes and the problems now, before the review process begins, others will
repeat your experiments, confirming or refuting your hypotheses.

Please, whether your ANS experiment was one line or a thousand, whether it succeeded or failed, or can be described in
one page or ten, bring it to this year's FORML Conference to share with the world. As always, papers on any Forth-
related topic are welcome.

Mail abstract(s) of approximately 100 words by October 1, 1996 to FORML, PO Box 2154, Oakland, CA 94621 or
e-mail to FORML@ami.vip.best.com. Completed papers are due November 1, 1996.

John Rible, Conference Chairman Robert Reiling, Conference Director

Advance Registration Required Call FIG Today 5 10-893-6784
Registration fee for conference attendees includes conference registration, coffee breaks, and notebook of papers
submitted, and for everyone rooms Friday and Saturday, all meals including lunch Friday through lunch Sunday, wine
and cheese parties Friday and Saturday nights, and use of Asilomar facilities.

Conference attendee in double room-$440 Non-conference guest in same room-$320 Children under 18 years old in
same room-$190 Infants under 2 years old in same room-free Conference attendee in single room-$570

The Asilomar Conference Center combines excellent meeting and comfortable living accommodations with secluded
forests on a Pacific Ocean beach. Early registration is recommended, space for this conference is limited.

Forth Interest Group members and their guests are eligible for a ten percent discount on registration
fees.

Registration and membership information available by calling, fax or writing to:
Forth Interest Group, PO Box 2154, Oakland, CA 94621

voice 510-893-6784, fax 510-535-1295
Conference sponsored by the Forth Modification Laboratory, a Forth Interest Group activity.

