

SILICON COMPOSERS INC

FAST Forth Native-Language Embedded Computers

DUP

>R
R>

Harris RTX 2000'"' 16-bit Forth Chip SC32'"' 32-bit Forth Microprocessor
*8 or 10 MHz operation and 15 MIPS speed. -8 or 10 MHz operation and 15 MIPS speed.
*l-cycle 16 x 16 = 32-bit multiply. 1 -clock cycle instruction execution.
1 -cycle 1 eprioritized interrupts. *Contiguous 16 GB data and 2 GB code space.

*two 256-word stack memories. *Stack depths limited only by available memory.
*&channel I/O bus & 3 timer/counters. *Bus request/bus grant lines with on-chip tristate.

SC/FOX PCS (Parallel Coptocessor System) SC/FOX SBC32 (Single Board Computer32)
*RTX 2000 industrial PGA CPU; 8 & 10 MHz. -32-bit SC32 industrial grade Forth PGA CPU.
*System speed options: 8 or 10 MHz. *System speed options: 8 or 10 MHz.
032 KB to 1 MB @wait-state static RAM. 032 KB to 512 KB 0-wait-state static RAM.
*Full-length PC/XT/AT plug-in (&layer) board. 100mm x 160mm Eurocard size (4-layer) board.

SC/FOX VME SBC (Single Board Computer) SC/FOX PCS32 (Parallel Coprocessor Sys)
*RTX 2000 industrial PGA CPU; 8, 10, 12 MHz. -32-bii SC32 industrial grade Forth PGA CPU.
*Bus Master, System Controller, or Bus Slave. *System speed options: 8 or 10 MHz.
*Up to 640 KB 0-wait-state static RAM. -64 KB to 1 MB 0-wait-state static RAM.
0233mm x 160mm 6U size (&layer) board. -Full-length PC/XT/AT plug-in (&layer) board.

SC/FOX CUB (Single Board Computer) SC/FOX S6C (Single Board Computer)
-RTX 2000 PLCC or 2001A PLCC chip. *RTX 2000 industrial grade PGA CPU.
*System speed options: 8, 10, or 12 MHz. *System speed options: 8, 10, or 12 MHz.
032 KB to 256 KB Gwait-state SRAM. *32 KB to 512 KB 0-wait-state static RAM.
100mm x lmmm size (4-layer) board. -100mm x 160mm Eurocard size (4-layer) board.

For additional product information and OEM pricing, please contact us at:
SILICON COMPOSERS INC 655 W. Evelyn Ave. #7, Mountain View, CA 94041 (415) 961-8778

Features

More Than A Simple State Machine John Rible 7 Familiar with some "traffic intersectionn boards made for a programming course, the author
realized they seemed ideal to illustrate state machines, and he wrote a simple state machine
"mini-languagen in Forth. Because of the hardware-oriented approach, the lexicon turns the
normal method on its head. The result models the logic equations, clock, and flip-flops as a set
of software equations that can be directly represented as a circuit diagram.

12 DOS-Compatible Disk Access for Targets Dwight Elvey
As a development environment for target devices the PC works fine; but when the application
changes, new code must be transferred to the target. Burning PROMS is a solution. A more
practical method is possible if both PC and target support serial connection. A better way may
be to add target disk I/O-the code becomes accessible to the target simply by moving the
disk. This also permits the target to log data in a format that can be stored or used on the PC.

22 Safety Critical Systems Paul E. Bennett
The proliferation of microprocessor-based systems throughout nearly every aspect of first-world
cultures means that more of us are engaged in work capable of great impact-for better or
worse. That brings inherent responsibilities and potential liabilities. Engineers, manufacturers,
and operators must not only deliver a system that works (and works safely under varying
conditions), but also protect themselves against claims for compensation and against criminal
charges and the resultant destruction of their careers.

Taming Variables and Pointers Chris Jakeman
Forth programmers enjoy unlimited access to code and computer, but there are times when
so much freedom is counter-productive. Fortunately, the tools are always at hand to try a new
idea and, perhaps with the assistance of on-line Forth colleagues, to refine it. When the author
had trouble debugging some code with lots of pointers, he added a new word to Forth-an
alternative to VARIABLE-to find his mistakes.

1 Does Late Binding Have to Be Slow? Andras Zsoter
Object-oriented programming entices many programmers and, perhaps, its performance pen-
alties discourage a like number. Many Forth dialects already have some sort of OOP support,
but some people in the Forth community argue that the overhead involved is unacceptable for
time-critical applications. This paper is directed towards them; its main goal is to make object-
oriented techniques efficient enough to become more attractive to those who like the "close
to silicon" approach.

Departments I
4 Editorial Forth in Cyberspace

5 Letters A Forth History. On Target. Corrigendum to "Stretching Forth."

30 Advertisers Index

36 Stretching Forth LIFE that knows when to stop.

45 Forthware An introduction to power control.

Forth Dimensions 3 May 1996 June

Forth Dimensions
Volume XVIII, Number 1

May 1996 June

Published by the
Forth Interest Group I

Forth in Cyberspace
Informal surveys would have us believe that only one-third to one-half of Forth

Interest Group members are on line. And my impression is that a significant portion of
on-line Forth activity is contributed and/or consumed by Forth users who are not FIG
members. I wonder what would come of better cross-pollination between the two
groups, and surmise that the interaction would benefit both camps.

I can't d o much to persuade on-line professionals to join FIG, except publish a good
magazine and refer users with questions to FIG resources, digital or otherwise. But there
are ample reasons why every FIG member should have a modem and use it to establish
an Internet connection. As one correspondent told me recently, he realized it is about
time to join the 1990s.

Much of the popular hype about the World Wide Web emphasizes its graphical features,
form over content. Communicating graphically usually means pushing lots of bits over the
phone lines, resulting in a click-and-wait interface at remote locations like mine, where the
local connection is still at a measly 2400 bps (though I can always dial long-distance or
endure a surcharge for 14,400 or 28,800). But the wait is often worthwhile and, besides,
the Internet still provides plenty of character-based resources for Forth folk.

E-mail is mostly taken for granted these days, but there's no denying its value. It's a
matter of seconds to contact an author of a Forth Dimensions article to ask a question,
propose an alternate solution, or request some code. Most Forth vendors are available
for e-mail tech support and advice. There are even e-mail-based SIGs: you can join
current discussions about Forth in robotics, Linux (see "Letters" in this issue), MOPS,
Win32Forth, and safety critical systems, or you can propose a topic of your own and find
people joining from around the world. Anything posted to one of these group addresses
is received by all its members as e-mail, and recipients can reply to the group as a whole
or to an individual. Working the on-line angle this way greatly compensates for the lack
of local expertise or interest in a subject that is important to you.

I send lots of e-mail, especially during magazine production cycles. I sometimes begin
an on-line session by mailing to various authors and, time zones notwithstanding, may
receive replies from Russia, Korea, et al. before I sign off. Not bad, for the cost of a local
telephone call and a couple minutes of connect time.

Your Internet service provider can explain how to access on-line newsgroups, including
the one called "comp.lang.forth"~nce there, you'll see a list of current topics that might
include anything you've ever wondered, criticized, or praised about Forth, and more. It's
a free-wheeling, unmoderated format, with not-quite-real-time questions (and answers)
about Forth systems and techniques, project proposals, idea exchanges, code critiques.. .
you name it. It is an excellent resource, and has helped many to find the right Forth system,
to surmount a bump in Forth's learning curve, to interpret a nuance of ANS Forth, and
generally to find Forth compatriots (neophytes and experts) and even collaborators. If you
are new to newsgroups, look for a topic containing the word "FAQ" to help explain the
on-line social conventions and to answer "frequently asked questions."

If you choose an Internet service provider that offers connection to the World Wide
Web (hopefully at 14,400 bps or better), you'll find some of the newest and most exciting
Internet-based Forth resources. Start at the Forth Interest Group "home page" (http:I/
www.forth.org/fig.html) maintained by FIG President and FD columnist Skip Carter.
Here are a few features you will find:

Forth Scientific Library Project-status updates, coding guidelines, reviewers' names and
e-mail addresses, and the ability to download reviewed and accepted code contributions.

(Continues on page 6.)
May 1996 June 4

Editor
Marlin Ouverson

Circulation/Order Desk
Frank Hall

Forth Dimensions welcomes edi-
torial material, letters to the editor,
and comments from its readers.
No responsibility is assumed for
accuracy of submissions.

Subscription to Forth Dimensiorzc
is included with membership in
the Forth Interest Group at $45
per year ($53 Canadahlexico, $60
overseas air). For membership,
change of address, and to submit
items for publication, the address
is: Forth Interest Group, P.O. Box
21 54, Oakland, California 94621.
Administrative offices:
510-89-FORTH Fax: 510-535-1295

Copyright 0 19% by Forth Interest
Group, Inc. The material contained
in hiis periodical (but not the code)
is copyrighted by the individual
authors of the anides and by Forth
Interest Group, Inc., respectively.
Any reproduction or use of this
periodical as it is compiled or the
articles, except reproductions for
non-commercial purposes, with-
out the written permission of Forth
Interest Group, Inc. is a violation
of the Copyright Laws. Any code
bearing a copyright notice, how-
ever, can be used only with per-
mission of the copyright holder.

The Forth Interest Group
The Forth Interest Group is the
association of programmers, man-
agers, and engineers who create
practical, Forth-based solutions to
real-world needs. Many research
hardware and softwaredesigns that
will advance the general state of
the an. FIG provides a dimate of
intellectual exchange and benefits
intended to assist each of its mern-
bers. Publications, conferences,
seminars, telecommunications, and
area chapter meetings are among
its activities.

"FortbDimwns(ISSN 088442322)
is published bimonthly for $45/
53/60 per year by the Forth Interest
Group, 4800 Allendale Ave.,
Oakland, CA 94619. Second-class
postage paid at Oakland, CA.
POSIMASTER: Send address changes
to Forth Dimensions, P.O. Box
2154, Oakland, CA 94621-0054."

6% Forth Dimensions

Send your feedback, questions, criticisms, and other
responses to editor@forth.org or to the editor in care of
the Forth Interest Group. Submissions may be edited for
clarity and length.

A Forth History
Dear Editor,

Why has Forth not come into wider use and acceptance?
Its status as a "cultn language has been a disappointment to
many of us. We know Forth is a seminal, landmark contribu-
tion to computing, and it hurts us to see it "languish"
unrecognized and unused (well, it's not entirely unused).

I have followed the fortunes of Forth since the early
days of more than fourteen years ago, when Bill Ragsdale
put together a valiant team of programmers to port Forth
to various microprocessor environments. My first copy
came from that group and ran on an Apple 11.

At the time I was on staff at SRI, and one of my jobs was
to watch and be knowledgeable about the state of and the
advances in computing, especially the burgeoning micro-
processor area. I watched the growth of Forth. I also
followed other languages (e.g., C, Pascal, and Ada). I
collected reams of data and experiential material for each
processor and all languages. At first I believed the stuff
from Bell Telephone about C and UNIX, and the stuff from
UCSD about Pascal. I was skeptical about what I could see
of Forth. It sounded too good. Like a few others, and
unlike most of the computer community, I did an in-depth

I was skeptical about Forth.
It sounded too good.

investigation and formed the opinion that most of the
enthusiasm for C, UNIX, Pascal, etc. was truly cult hype.
Forth survived my jaundiced cynicism and gained my
respect. I took to using Forth myself.

Now, in those days, it came to pass that SRI won a
contract to write a communications simulation program for
the military. The group that had won the contract came to
me and asked what sort of computer they should purchase.
I asked the usual questions and, in so doing, found that they
planned to write an astounding number of lines of code
(compared to the value of the contract). I asked them to
revisit their estimate of code volume. They did and replied
to me that they really did believe in their original estimate
(it later turned out that they were correct).

The team was chagrined to learn that, by their own
estimate and using the lowest estimating factors then
available, this valuable contract had been underbid by a
factor of more than ten. They were going to put SRI (a not-
for-profit organization) more than $3 million into debt on
this project! I suggested that they should refuse the
contract. This they, paradoxically, did not want to do.

Forth Dimensions

career, I already well knew
operating as science was in

I

I

that
the

By this time in my
computer "sciencen is
A
C

t;

tc
v
a
f:
t;
e
s
I
S

1
r
r
S

I
i
t

I

t
1
c
t
I

(

I

I

1

5

~tistotelian era. That is to say, such "sciencen is done by
ommittees arguing among themselves whilst sitting around
ables. If any naive upstart should barge in and have the
zmerity to say, "Noble persons, I have gone out into the
vorld, made an observation, and the results are ..." the
ssembled bards would reply, "So much the worse for the
acts." And there it will lie. This happened to me many
imes. Make no mistake-this attitude is even more deeply
:ntrenched in so-called computer science today. Since I
till make my living in the world of computers and am a
xacticing "expertn in C, C++, and X, even now I am
omewhat reluctant to write this letter.

Thus, at the time, I hesitated to place my career on the
ine by recommending something heretical like Forth. But
ight is right, and sometimes you have to go with what's
ight. So, I swallowed hard and suggested that SRI might
Lave the project if the team would use Forth as the language.
showed the relevant managers the data I had collected

ndicating that Forth was about ten times more productive
han any other language (they were planning to use Pascal).

Predictably, they laughed. Or rather, they were embar-
.assed even to think about having to tell their customer that
hey would use what they and the customer considered a
lobbyist's language (expletives deleted). They were, how-
:ver, well and truly painted into a corner. And, in the end,
hey made me lay my reputation on the line again and brief
heir customer on the problem and my proposed solution.
Ihey made me suffer all the derision-and there was lots
sf it. After a while I convinced the customer that, unless they
wanted to fork over another $3 or $4 million, they would
have to let SRI use Forth. They finally agreed to go Forth.

SRI bought an H-P computer, and H-P graciously
allowed one of their employees (a FIG member) to place
Forth on their machine for the project for free. What was
the result, you ask? Using programmers who were totally
unfamiliar with Forth, SRI brought the project in on time,
on budget, tested, and documented with very nearly the
number of lines of code they first estimated. That should
have been a stunning, earth-shattering vindication of Forth
that caused everyone (at least at SRI) to rush into the Forth
camp. As you can see, this brilliant, $3+ million dollar
achievement had no appreciable effect on the community.
Could this be a lesson that the computer community does
not care about money or time?

That outcome further convinced me that my generally
cynical view of the computing community (I won't call it
a science or engineering) was solidly grounded. Neither
engineering nor science is applied to computing. I have
seen nothing in the years that followed to suggest I should
change my view.

What's wrong with Forth? I don't know of a thing. It
certainly is anathema when, in fact, Charles Moore should
get the Nobel prize for his accomplishment.

I do, however, know what I personally want. Maybe
there are others who want it, too. I want a PC that contains
nothing but Forth-no DOS, certainly no UNIX, no C, no
C++, no BASIC, Pascal, or Fortran. It should use the Xerox

May 1996 June

PARC/MacintosNNeXT Step/Windows graphical opera-
tor interface paradigm (please, absolutely no X), and the
underlying operating system code should be in Forth. I
don't want to co-exist with DOS/Windows/UNIX, I want
command of the entire machine. What about application
programs, you say? As far as I am concerned, "build it and
they will come." Ideally, the processor in the PC would be
a Forth engine, however, even the ghastly xx86 family
architecture will d w i . e . , give me a Forth machine, not
just Forth add-in boards.

In my humble opinion, workstations, minicomputers,
and mainframes are all dying and will, in the not very
distant future, be replaced by networks of PCs. While this
is not exactly the point of my letter, it could provide
motivation for someone to offer a real alternative. Some-
where in the world, there must be a person or organization
with enough money, vision, and guts to buck the raging
current and who wants to do humanity a true favor like
this.

Philip R. Monson
Kekaha, Hawaii

On Target
Just received the March-April 1996 issue-wow!It's one

of your best yet!
Since 1 work with (and teach classes in) the C language,

Frank Sergeant's article on integrating Pygmy and C was
extremely interesting. And, having just installed Linux on
a new Pentium (Bill Gates can't tell me to go to Win95 or
else!) Skip Carter's tutorial on accessing the hardware in
Linux was about as timely as you can get.

A couple of questions:
Have you considered getting 'Orneone to write a series

of articles on Forth and Linux? There isn't much written
documentation out there for Linux-we're starved for
information on this really neat operating system. However,
with Linux gaining in popularity every this be
a really valuable resource for Linux-based Forth-a-holics.

Have you ever considered making the code each
issue available on diskette or via FTP?It wouldsure be neat
to be able to order a diskette or access a BBS, etc. for the
code rather than make the 1,001 mistakes I make
in typing in the listings!

Any chance that we (FIG) could obtain copies of the
Linux Forth implementations mentioned in Skip's article?
At the least, could you find out and publish their location
on the WWW?

Thanks again for a super issue.

Tom Bohon
tomb@hecb.wa.com
Olympia, Washington

?hank you for your comments. Forth Dimensions is very
reader-oriented so, ifwe hear from more members wanting
Linux (or othw) materials, the content w'll adjust to reflet
your interests. Andyes, code forLinux Forth implernentatiolzs
is available on-line at FE's site: check out@://ta%eta.com/
May 1996 June

pub/ForMinux forcuwentoJfaings. (Meantime, seeAndr&
Zsdt&'s article and a note about a new Linm Forth in the
conclusion to lForthware," both in this issw.1

We are trying to be more assiduous aboutputting the code
weprint in convenient on-line locations fordownloading,
provided that is all right with the respective authon. Ifyou
can 'tJnd what you are looking for at, for example, ftp://
taygeta.~om/pub/Forth/FD/199Gthensend a n e-mail note
to me (edito~forth.otg) asking ifit can be madeavailable.
As toproviding code on diskettes, I will referyour query to
the Forth Interest Group's office (office@forth.o@ tosee if
it is logistically feasible a t this time.

Corrigendum
In paragraphs 8 and 9 on the right-hand column of

page21 of "Differential File Comparison, "somehow "fail"
became "happen". The twoparagraphs should be:

In twenty years of use this has hardly ever failed. In the
very few times it has, the effect has been negligible. (You
can tell that it has failed when an insertion appears just
before a deletion.) It's at least seven years since I've seen
it fail.

Of course you can force it to fail by using a poor
hashing function. However the hashing function doesn't
have to be sophisticated. The one used here works fine
with 32-bit or 16-bit arithmetic.

(Editorial, frompage 4)

Want ads-as of this writing, seven employers were
seeking Forth programmers to fill jobs in a number of fields,

Resumes-FIG members can post their resumes and
can include links to their own web home pages (ever
wonder what happened to Leo Brodie?), FIG Chapters can
do the same: the group in Maryland has taken advantage
of this to coordinate aspects of their OS project.

F~~ UimensionsAn on-line sampler is included with
a few articles, graphics, illus~ations, and code from recent
issues. Send your colleagues here to preview a litfle of what
FIG membership will provide. You'll also find downloadable
code from many of our recent issues at this site.

conferencesyou can link to sites about the
euroForth and Rochester conferences, including details
about upcoming and past conferences, and contents of
their proceedings.

Forth bibliography--This interactive database of pub-
lished papers is rich with and will grow as
its sponsors expand the range of publications it includes.

There is much more, like relevant IEEE docs, Open
Firmware info, valuable ANS Forth documents, links to
Forth vendor sites, and a section only for FIG members
(have your membership number handy, it's on the FD
mailing label). The features are growing, so, even if you've
checked it out in the past, it's a good idea to stop in
regularly to see what,s new.

I'll look forward to meeting you on-line!
-Marlin Ouverson

editor@forth.otg.
6 Forth Dimensions

ANS FORTH

More Than a
Simple State Machine

I John Rible

Over the last year I've been working with a home-
schooled teenager, helping him learn how computers
work. Using my QS2 processor design and Clive Maxfield's
Bebop to the Boolean Boogie, he's gone through Boolean
algebra, combinatorial and sequential logic, and is now
starting in on state machines. At last Fall's Northern
California Forth Day, Dr. Ting talked me into organizing
a programming contest based on some "traffic intersec-
tion" boards that he had made u p for his programming
course. They seemed ideal to illustrate state machines to
my student also, but I didn't want to take too long a detour
into teaching him Forth before we made some lights flash.
The solution was obvious: I'd just write a simple state
machine "mini-language" in Forth!

So while he was working out the state transition
diagrams, I sat down to write some code. Since some of
the contestants at Forth Day almost had the intersection
working in an hour, I figured a day should be enough time
to write just the state machine part. And I was only off by
my usual factor of two: it took about two days to get the
syntax pretty solid. But the code in this article represents
another 3-4 days of exploring alternatives and filling in
some gaping potholes in my original code. My student has
now completed the project, and we hope to have a joint
article describing his work ready for the next issue.

Start at the End
In our usual Forth style, I'm going to begin describing the

lexicon at the end, with an example of its use, and then
backtrack to fill in how the lexicon is coded. Table One
shows the transition table of this fairly meaningless ex-
ample. The goal of this "machine" is to repeatedly produce
the sequence "1 2 3 " (that's a one followed by one
space, a two followed by two spaces ...) at the rate of one

Forth Dimensions 7 May 1996 June

character per clock period, allow the operator to interrupt
the machine at any time, and finally, to stop after a fixed
number of periods. To accomplish this, the counter is cleared
on entry to a new state and incremented otherwise. Both the
operator halt and the timed exit are higher priority inputs
than the count, and would require increasing the size of the
table to properly describe their effects. (You're right, I did
put the table together after I'd worked out the example.)

Because I'd started with a different concept than the
usual software model of a state machine, one much closer
to the hardware logic my student and I were workingwith,
the lexicon doesn't look, or act, at all like the table-format
lexicon Julian Noble shows in his book ScientiJic Forth. I
was trying to highlight the difference between the combi-
natorial logic equations that generate flip-flop inputs and
the clocked flip-flops themselves. This approach turns the
normal method on its head, looking at how one enters the
next state rather than how one leaves the current state.
Think about that sentence while looking at Figure One, a
typical "circles and arrows" state transition diagram, but
focus on the arrowheads entering a state rather than the
tails leaving it.

The result models the logic equations, clock, and flip-
flops as a set of software equations that can be directly
represented as a circuit diagram. A major drawback to its
use in anything other than small, fairly slow problems,
however, is that while the hardware "executes" the equa-
tions in parallel, the software ones are executed serially, on
every clock tick. This can consume a substantial portion of
the clock cycle for large machines with fast clocks.

Step Through the Demo
Listing One shows the code for this example. The

example describes a "one-hot" machine, characterized by

Table One. The transition table.
State

Reset
Once

Twice
Thrice

Count
0

count=O. >Once

. I' 1 " , + l . >Once

. " 2" , + l . >Twice

. " 3" , +l . >Thrice

1

error

SPACE , =O. >Twice

SPACE , +l . >Twice

SPACE , +l. >Thrice

2

error

error

SPACE , =O. >Thrice

SPACE , +l . >Thrice

3
error

error

error

SPACE , =O. >Once

Figure One. State-transition diagram.

if Count <> 1, SPACE Reset

then increment count "-'".
." 1"

and set count to 0

ifcount= 1, ." 2 " if count = 3, . " 1 "
and set count to 0 and set count to 0

if COUnt 0 2, SPACE if count <> 3, SPACE
then increment count then increment count

if count = 2, . " 3" and set count to

execution or starts the
cycle over again, depend-
ing on the flag from
T ICK-TOCK.

Finally, the "next-
state," "output," and
"clock-periodn behaviors
def ined above are
ASS 1 G ~ e d to the ma-
chine and the states, fill-
ing in the empty slots
created when they were
defined way back at the
beginning.

To start the machine,
just type RUN. Execution
will end after 50 clock
ticks if you have resisted
the impulse to stop it
sooner. Just reenter RUN
to pick up where you
left off if you did stop it.

having a bit for eachstate, only one of which is on at a time.
It is also a "Mealy" machine, whose outputs can change
when the inputs change as well as on state changes. It is
a "clocked" machine, changing states synchronously with
an external clock pulse. There isn't room to give a tutorial
on state machines here, so I'll just give a brief rundown of
the DEMO machine and a few implementation notes on the
code. Everything here is ANS Forth, amazingly enough, so
you should have few problems getting it to run in your
environment.

The name of the machine, DEMO, and its states ONCE=,
TWICE=, and THRICE=, are defined first, so that they may
be used in the next-state logicequations. The order in which
the states are defined within the machine determines the
order in which the next-state logic equations are evaluated,
creating a priority ranking. The first state defined has the
highest priority. Executing a state name returns TRUE when
it is the current state, FALSE otherwise.

The next-state logic words, >ONCE?, >TWICE?, and
>THRICE?, describe the state transition logic, returning
TRUE when that state is to be the next "current state." They
are checked, in order, on the "rising-edge" of the clock and
the first one to return TRUE becomes the next current state.
The machine also remains in the same state if none of the
equations returns TRUE on a particular clock tick. Turning
power on is simulated by the word RESET=, which only
returns TRUE when no state is currently active.

The output words ONCE., TWICE., and THRICE., are
executed just after the "rising edge" of each clock tick the
specified state is active, followed by the clock-period word.
In this example, the clock-period word TICK-TOCK waits
the amount of time specified by PERIOD and then checks
the keyboard for an operator interrupt or for having reached
the elapsed-time limit, leaving TRUE on the stack if either
is true. Although DEMO doesn't have any other inputs, you'd
probably want to check them periodically in the output or
clock-period words. After the clock-period word executes,
the machine increments its tick counter and either stops

Under the Hood
Listing Two defines the state machine lexicon. I've

purposely written the code in many styles, to illustrate the
best (and the worst) of Forth documentation. I've grown
fond of the style shown in STEP, where the stack is shown
at the beginning of a line, only when it has changed from
the line above. My primary goal, however, was to create
just enough of a lexicon that my student could avoid the
difficult parts of Forth, but still be coding in Forth. We'll
see next time whether I was successful.

Both MACHINE : and STATE : compile structures with
three data cells and one link cell which are filled in by
ASSIGN. In order to nest multiple machines, the contents of
cu r ren t -mach ine must be pushed on the stack in the
DOES > phrase of MACHINE : and popped back when exiting
the machine in STEP. The guts ofthe machine are all in STEP,
which I must leave as an exercise for the reader. Although it
is a bit convoluted, it illustrates the use of the stack and
control structures, and absorbed many hours getting it "right."

Notice that TICK#, which returns the number of time
periods the machine has been in the current state, does a
subtraction to get that value. There is just one counter
being incremented (machine t i c k s) which is copied
into the state being entered. Although this technique isn't
talked about a lot, it can often make your code simpler,
faster, and easier to maintain. (Some systems use a similar
method to generate I.)

Yes, d o - t i c k and d o - o u t p u t are more complicated
than absolutely necessary, but they allow the machine to
be RUN under all the error conditions that I could dream
u p and that my student stumbled into. The only debugging
I've found necessary is to single-step the machine and
display its contents with DEBUG. You'll soon catch on to
the meaning of the various fields.

As I briefly mentioned in the code, this engine is more
general than a finite state machine. It can model both
Mealy and Moore (no, a different one) machines, but from
the perspective of "how do I get here" rather than "where

May 1996 June 8 Forth Dimensions

I do I go f r o m here." Sk ip Carter gave a Short talk a b o u t I John has been an apprentice Forth programmer since 1976, when he traded

I Listing One. 1

"Subsumpt ion m o n t h after 1 first presented
this 'Ode, showing that my lnachine fits Brooks' I
a p o l o g i z e f o r n o t b e i n g a b l e t o rept?at h i s talk, b u t t h e
generalization incorporates both an input-event hierarchy

\ EXAMPLE.4TH An example using the simple state machine lexicon

his Community College ~ata~rocessing~irector's job for a microprocessor. In
1986, he helped design the processor Harris sold as the RTX2000, and has
recently designed several more small, "Forth friendly." CPUs. He salved as
editor for both the ANS Forth and IEEE Open Firmware standards. The rest of
his life involves children, community, gardening, and science fiction.

\ T h i s i s an ANS F o r t h P r o g r a m w i t h E n v i r o n m e n t a l D e p e n d e n c i e s on:
\ KEY? f r o m t h e F a c i l i t i e s w o r d s e t
\ MS f r o m t h e F a c i l i t i e s e x t e n s i o n w o r d s e t
\ a l l t h e w o r d s i nc luded i n t h e f i l e MACHINE.4TH s h o w n i n L i s t i n g 2 .
\ A S t a n d a r d S y s t e m ex is ts a f t e r t h i s p r o g r a m is loaded.
\ A n y o p e r a t o r ' s t e r m i n a l f a c i l i t i e s provided by t h e s y s t e m a r e adequate.
\ ..

and t h e n o t i o n o f t i m e as an inpu t .

\ T h i s d e m o uses t h e c l o c k - t i c k as an event , d i s p l a y i n g a d i f f e r en t d i g i t
\ a n d n u m b e r of spaces f r o m each s t a t e . T h e ' n e x t - s t a t e f and ' o u t p u t '
\ d e f i n i t i o n s c o u l d be d e f i n e d w i t h :NONAME t o conserve n a m e space.

MACHINE: DEMO
STATE: ONCE= \ S t a y i n t h i s s t a t e j u s t one t i c k , t h e n t o TWICE=
STATE: THRICE= \ S t a y i n t h i s s t a t e f o r t h r e e t i c k s , t h e n t o ONCE=
STATE: TWICE= \ S t a y i n t h i s s ta te f o r t w o t i c k s , t h e n t o THRICE=

MACHINE;

\ n e x t - s t a t e l og ic equa t ions , s t a c k m u s t be (- f l a g)

: >TWICE? (- i s - n e x t ?) T I C K # 1 > ONCE= AND ;

: >THRICE? (- i s - n e x t ?) TICK# 2 > TWICE= AND ;
: >ONCE? (- i s - n e x t ?) T I C K # 3 > THRICE= AND RESET= OR ;

\ s t a t e ou tpu t e q u a t i o n s , s t a c k m u s t be (-)

: ONCE. (-) T I C K # I F SPACE E X I T THEN . " 1" ; \ II 1 II

: TWICE. (-) TICK# IF SPACE EXIT THEN ." 2" ; \ ,,, ,,
: THRICE. (-) TICK# IF SPACE EXIT THEN ." 3" ; \ 3

\ c l o c k - p e r i o d w o r d , s t a c k m u s t be (t n - f l a g)

: DONE? (- s t o p ?) KEY? DUP I F DROP KEY KEY XOR THEN
; \ T a p a k e y t o pause; t a p s a m e k e y aga in t o r e s u m e , d i f f e r en t key t o s t o p .

VARIABLE PERIOD 2 5 0 PERIOD ! \ T h e per iod i s 1 / 4 s e c o n d i n t h i s d e m o

: TICK-TOCK? (# t i c k s - e x i t - m a c h i n e ?) PERIOD @ MS 48 > DONE? OR
; \ T h e d e m o w i l l end a f t e r 50 t i c k s

\ c l o c k - t i c k <zero> m a c h i n e
TICK-TOCK? 0 ' DEMO ASS IGN

I 1

Forth Dimensions 9 May 1996 June

\ enter-state output state
>THRICE? ' THRICE. ' THRICE= ASSIGN
>TWICE? TWICE. TWICE= ASSIGN
>ONCE? ONCE. ONCE= ASSIGN

\ run the machine ..

\ DEMO \ make it the current machine (only needed if more than one)
\ RUN \ should show repeating pattern of "1 2 3 1 2 3 "

\ RESET \ "power-off" the current machine: the state becomes zero
\ n PERIOD ! \ changes the repeat rate
\ s. \ process one clock tick and display the internal variables
\ DEBUG \ RUN with MACHINE. display after each tick

Listing Two.

\ MACHINE.4TH A simple state machine lexicon
\ ..

\ This is an ANS Forth Program
\ A Standard System exists after this program is loaded.
\ Any operator's terminal facilities provided by the system are adequate.
\ ..

\ The machines that are defined by this lexicon are more general than what
\ are generally known as state machines. This was pointed out to me by Skip
\ Carter at a SVFIG meeting when I first showed this code. his code is not
\ very fast, however, since it is modelling in software (serially) what is
\ done in hardware (in parallel) .

\ Only the uppercase words are needed to use this lexicon, the lowercase
\ ones are just used locally. A number of error checks are included, so not
\ all states need be ASSIGNed, or even named, before testing.

\ Defining Words ...

VARIABLE current-machine (- ptr.machine)

: MACHINE: ("machine-name" - link)

CREATE HERE current-machine !
HERE 0 (link) , 0 (ticks) , 0 (current.state) , 0 (tick.xt) ,

DOES> (dfa -)

current-machine !

: machine (- adr.link) current-machine @ ;
: ticks (- ptr-state) CELL+ ;
: current-state (- adr-ticks) machine CELL+ CELL+ ;
: do-tick (- exit-machine?)

machine DUP IF
CELL+ CELL+ CELL+ @ DUP IF machine ticks @ SWAP EXECUTE O= THEN

THEN O=
,

: STATE: (link "state-name" - link')

CREATE HERE SWAP ! \ links this state to machine or previous state
HERE 0 (link) , 0 (ticks) , 0 (output .xt) , 0 (1ogic.xt) ,

DOES> (dfa - current-state?)

May 1996 June 10 Forth Dimensions

I c u r r e n t - s t a t e @ = I
: do-output (s t a t e -) CELL+ CELL+ @ ?DUP I F EXECUTE THEN ;
: i s - n e x t ? (- i s -nex t?)

DUP I F CELL+ CELL+ CELL+ @ DUP I F EXECUTE THEN THEN

: MACHINE; (l i n k -) DROP ; \ - a n a l i a s t h a t makes p r e t t i e r syn t ax

: ASSIGN (' c lock1 ' l o g i c 01 ' ou tpu t 'machinel ' s t a t e -)

>BODY CELL+ CELL+ 2 !

: RESET (-) 0 machine t i c k s ! 0 c u r r e n t - s t a t e ! ;

: RESET= (- r e s e t ?) c u r r e n t - s t a t e @ 0= ;

: f i r s t - s t a t e (- s t a t e) machine @ ;
: checked-a l l? (s t a t e l o - s t a t e ' FALSE I TRUE) DUP I F @ ?DUP THEN O = ;

: S T E P (- exi t -machine?)

c u r r e n t - s t a t e @ f i r s t - s t a t e
(c u r l i n k) BEGIN DUP i s -nex t? 0= WHILE

checked-a l l? UNTIL \ noth ing s e l e c t e d , s o s t a y i n same s t a t e
(c u r DUP O = I F O = (TRUE) E X I T THEN \ u n l e s s i t ' s reset

(next) E L S E \ t h e r e ' s a nex t s t a t e s e l e c t e d
(c u r next) SWAP OVER XOR I F \ i t ' s d i f f e r e n t from t h e c u r r e n t s t a t e ,

(next) DUP c u r r e n t - s t a t e ! \ s o make it c u r r e n t
machine t i c k s @ OVER t i c k s ! \ and i n i t i a l i z e T I C K #

THEN
THEN
do-output \ done on each t i c k , no t j u s t e n t e r i n g s t a t e

() do- t i ck
(e x i t ?) 1 machine t i c k s +!

: TICK# (- n) machine t i c k s @ c u r r e n t - s t a t e @ DUP I F t i c k s @ THEN - ;

: RUN (-) BEGIN S T E P U N T I L ; I
I : ?+ (a d r - ad r+) DUP @ 8 . R CELL+ ; I
: MACHINE. (-)

machine
(l i n k) BEGIN

CR DUP ?+ ?+ ?+ ?+ DROP \ show 4 machine o r s t a t e va lues

I checked-a l l? U N T I L

: S . (-) S T E P DROP MACHINE. ; \ s i n g l e - s t e p and d i s p l a y

: DEBUG (-) MACHINE. BEGIN CR STEP MACHINE. U N T I L ;

Forth Dimensions 11 May 1996 June

DOSmCompatible Disk Access
for Any Target
Dwight Elvey
Santa Cruz, California

May 1996 June 12 Forth Dimensions

Using a PC as a development environment works fine,
but leaves us with a recurring problem. Every time we
change and recompile our application, we must transfer
the new code to the target. Burning a PROM is one avenue
for shuttling new versions of the code to the target. A more
practical way is possible when the PC host and the target
both support a serial connection.

A serial communications link does get the job done, but
I have found a better solution by adding a minimal disk
I/O subsystem to the target. Because this system conforms
to a PC, in terms of the file structures written to and read
from the disk, the host PC can continue to serve as the
development system that generates the code. By moving
the disk physically to the target system, the code becomes
accessible to the target. A considerable added benefit of
this approach is that the target can support intensive data
logging functions, as long as its increased power and
space needs are not prohibitive.

Why would one want to read and write a DOS disk
from a platform other than an IBM-compatible PC? There
are many reasons. One might be to transfer logged data
from an embedded system to a PC in a format that can be
stored or used when needed. My reason was to make a
backup of the code I had written on a hobby project
system, in case I messed u p and didn't have a working
PROM to recover from a mistake.

In this article, I describe DOS disk-file structures. Obtain-
ing a DOS-compatible data format for the files written to
disk turns out to be the bigger part of the solution, and
required the most research. A follow-up installment will be
about using a PC-type floppy controller on a non-80x86
embedded system. Although my system used 360K drives
and an XT controller card, most of the information can be
used for 1.2 Mb or 1.44 Mb drives and controllers.

Like many home projects, this one grew as I went
along. It started with an NC4000 board from Silicon
Composers, Inc. The board came with a cmForth in ROM
and the source code. At first, all the code to run in RAM
was downloaded through the RS-232 serial interface. I
would write all my code on a PC and send it serially to the
card. Gradually, I came to see the value of having a local
disk attached to my single-board computer (called single
board, not because it had just a single PC-board, but
because it was mounted on a single plywood board).

First, I found, in my junk box, an old floppy controller
for a SYM-2 board (SDK for Synertek 6502). I wrote a driver
for this and used an old floppy disk drive. It was only 160
Kbytes, but it proved the effectiveness of the technique.
Next, I found an old ST504 five megabyte hard-disk drive.
Adding a PC ST-11 MFM interface card provided mass
storage. Now I had, almost, a complete standalone devel-
opment system. Adding a simple PROM programmer
completed the system. However, it left me longing for a
DOS-compatible drive to achieve interoperability with my
PC. Also, I had worked myself into a problem: if I made
a mistake in my new code that affected the ability to read/
write disks or blow PROMS, I might not have a way of
recovering the system.

I needed a backup of my target code that didn't require
a working NC4000 system. I could have gone back to the
serial interface but, wanting to enhance my system, I
decided to go with a 360K DOS floppy system. (This disk
format was chosen because I had several 360K drives from
AT systems that were upgraded to 1.2M and getting an XT
interface was easy.) Once the low-level controller code
was working, I would write a DOS-style file-read and file-
write command-line interface for the target. I would then
have a DOS-compatible system that would allow me to
save source code or binary images of the code in PROM
as DOS files.

To keep the target code (image size) to a minimum, the
low- and high-level routines would only support funda-
mental DOS-file-system-compatible read and write opera-
tions. For example, I offer no code to format the disk. The
host PC can do any required formatting, on a 360K drive.
One has to be careful when using 1.2 Mb drive with 360K
disk. The 1.2 Mb drive writes a narrower track than the
standard 3 6 0 ~ drive.

In order to understand how the code conforms to PC
standards, we need to understand how a DOS disk is
organized. There are four sections to a DOS disk. First is
the boot sector, then FATS, then the root directory and,
finally, the files themselves.

The boot sector is always on the first track and sector
of the disk. Even if the disk is not bootable, this sector must
contain some executable code (the code that prints on the
screen that it isn't a bootable disk). My NC4000 system
ignores this code, but it is still required for the DOS

Forth Dimensions 13 May 1996 June

machine. This sector also contains information about the
way the disk is formatted, any relevant information about
revisions, number of FATS, etc. Since my system always
uses 360K disks, I have chosen to ignore this also. If the disk
system were intended to read different-sized disks, one
would have to pay more attention to the data in this sector.

The FATS are in the next sectors of the disk. FAT stands
for File Allocation Table, which is a map showing how the
disk is used. It is a linked list that corresponds to the
clusters on the disk. A cluster is the minimum allocatable
disk space. In the case of a 360K disk, each cluster is two
sectors, or 1024 bytes. The size of a cluster may vary for
different-sized floppy or hard disks. There are two iden-
tical FATs on a standard 360K disk. This is so that, if one
FAT is damaged, the user may be able to recover the disk's
structure (wishful thinking). FAT entries are 12 bits each

On a 360K disk-more about lhat later' Each entry's
location in the table corresponds to a cluster on the disk.
The table location will contain a link to the next cluster
used by the file using this cluster, an end-of-cluster
marker, an indication that the sector is unused, or the
sector-is-bad indicator. Using this system, a file need not
have consecutive clusters and, as 10% as the links are
okay, one can read or write to the file.

360K disks use a 12-bit FAT entry. The newer 1.2 Mb and
1.44 Mb disks use a 16-bit entry. The 16-bit entry is easy
because it is the typical byte-reversed Intel-format number.
The 12-bit is more of a problem. Every three bytes in the FAT
correspond to two FAT entries. If I use the nomenclature
AO-A11 for the first entry and BO-B11 for the second entry,
the first two FAT entries would look as follows:

FAT Bit Order for 12-bit FATS
Bits: 7 6 5 4 3 2 1 0
First Byte: A7 A6 A5 A4 A3 A2 A1 A0
Second Byte: B3 B2 B1 BO A l l A10 A9 A8
ThirdByte: B11 B10 B9 B8 B7 B6 B5 B4

Other than the fact that this is messy, once one has the
code to select an entry and the code to read and write an
entry, one doesn't really have to worry much about this.

The next part of the disk is the root directory. This
contains information about the filename, size of the file,
attributes of the file and, most importantly, the first cluster
number. This cluster number can then be used to index into
the FAT and follow the chain of links through the entire file.
The first directory may have links to other sub-directories
on the disk. assumes there are sub-
directories, but this can be added easily: The easiest way to
do this is to make a sub-directory with the PC and use the
code I've supplied to look at how the root directory, sub-
directory, and FAT are changed. Things usually make more
sense when one experiments with them.

Dwight Elvey is a long-time member of FIG whose claim to fame is that he was
the first to report getting an 8080 fig-Forth listing lo work (which he purchased
at the West Coast Computer Faire). He was also the winner of the Forth
D~mensions Sort Contest. Dwight works as a test engineer for Hal Computer
Systems and, over the years, has used Forth for many embedded systems and
test setups. He can be e-mailed at elvey@hal.com. Current side interests are
in digital signal processing, model slope gliders, and sailing.

The root directory is made u p of seven sectors on a
360K disk. Each entry is a fixed-length record of 32 bytes.
Each record entry is as follows:

Byte offset Record Field
0 to 7 Filename
8 to 10 Filename Extension
11 File Attributes
12 to 21 Reserved
22 to 23 File Creation/Change Time
24 to 25 File CreationKhange Date
26 to 27 First Cluster Number
28 to 31 File Size in Bytes

In my read/write code, I ignore everything except the
filename/extension, first cluster, and file size. One could
add code to change time/dates and also checks to see if
the file had attributes such as read-only. The time/date
information would be especially useful if the file was used
for data logging. (ln any case, my system have a real-
time clock until I later added one of the smart-clock PROM
sockets from ~ ~ l l ~ ~ semi.)

L~~~ comes the file data. ne file always starts with the
first cluster pointed to by the directoryentry and follows the
clusters allocated in the FAT. If the file doesn't use all of the
last cluster, the unused space is wasted. Since I'll be taking
1024byte blocks from my disk structures on the NC4000
system, I'll be using whole clusters for each BLOCK.

Overview o f the Code
The NC4000 is a 16-bit machine. Since it is inconvenient

to work in bytes, I have words that take two bytes and
convert them into two leading, padded, 16-bit values. For
the blocks used in cmForth, Charles Moore used 40 as the
leading byte for reasons that never made clear sense to me,
but I continued to use this. These pack and unpack words
are SMASH and UNSMASH.

Next are some basic words to get the main parts of the
DOS disk into memory buffers. Since I'll need these

a lot, made them =parate the
buffers used by the NC4000's disk I/O. The words RDFAT,
RDD I R , FAT @, and FAT ! should make sense. Words like
DIRFIND, CREATEFILE, and OPEN should be okay, also.

FTYPE is used as a sanity check by displaying ASCII
text files. BLK>FILE is the heart of what this is all about.
This moves specified from the NC4000 file strut-
ture to the oPENed file on the DOS disk.

Well, that's it. All may use the code as they see fit-just
don't blame me if it mangles your disk. order to really
understand all, it helps to have some books as reference.
Here is a list of books I've found to be usefUl:
The Zndispe-able PC Hardware B W ~ by ~ a n ~ - p e t e r

Messmer. Addison-Wesley (ISBN 0-201-87697-3).
The Programmer's PC SourceBook by Thom Hogan.

Microsoft Press (ISBN 1-55615-321-X).
PC System Programming by Michael Tischer. Abacus

(ISBN 1-55755-036-0).

cmForth and Special NC4000 Words Used
@+ (A d d r I n c r - V a l u e A d d r + I n c r) DRO (-)

Machine coded fetch and increment. Selects the offset for drive 0.
DRO = 360K Floppy A

!+ (V a l u e A d d r I n c r - A d d r + I n c r) DR1 = 360K Floppy B
Machine coded store and increment. DR2 = 5 Mb HD

FOR (n -) TIMES (n - I Word)

FOR NEXT loop is like DO LOOP, except the loop Executes the following word n+ l or n+2 times. This is
counter NEXT is a down counter. The loop will execute a confusing one because it works differently if the word
n + l times. When the value on the return stack = 0, NEXT is a code word than if the word is a nested word. Code
will cause the loop to stop. You'll see places in my code words are executed n+2 times.
where I do R> DROP 0 >R. This is the same as LEAVE

in some Forths. MOD (n - r q)

BSWAP (HL - LH) DOES (-)

Not actually a cmForth word. I added special hardware Similar to DOES> in regular Forth, but doesn't return the
to speed u p byte swapping in a 16-bit value. address of the parameter field. To get the parameter

field, it must be popped from R with R>. Since the carry
I (- V a l u e) bit may have been pushed into the high bit, it also needs
I in cmForth is like R@. It simply copies the top of the 7 F F F AND.

return stack. The return stack is also used for the FOR Essentially: DOES> equals DOES R> 7 F F F AND

NEXT counter, so it makes more sense to call it I.

DECIMAL
\ The NC4000 i s a 1 6 - b i t , w o r d - a d d r e s s e d m a c h i n e . B e c a u s e of t h i s a n d t h e fact
\ t h a t I w a n t e d t o u s e t w o b y t e s t o a n address space, I made a f e w w o r d s t o assist .

: 2C@+ (A d d r - A d d r + l Low H i g h) \ t w o b y t e s f r o m word l o c a t i o n

1 @+ \ F e t c h 1 6 b i t s a n d i n c r p o i n t e r
SWAP DUP 2 5 5 AND \ Low p a r t
SWAP BSWAP 2 5 5 AND ; \ H i p a r t

HEX
\ SMASH a n d UNSMASH are l i k e MOVE a n d CMOVE c o m b i n e d .

: SMASH (From To -) (5 1 2 B y t e s) \ P a c k s 2 b y t e s i n t o a w o r d
2* I F F FOR \ B y t e addresses are t w i c e

>R

1 @+ \ F e t c h f r o m a n d i n c r
SWAP OFF AND \ Low b y t e
I C! \ S t o r e i n t o
R> 1 + \ I n c r t o

NEXT DROP DROP ;

: UNSMASH (From To -) (512 B y t e s) \ Unpacks a word t o t w o b y t e s
OFF FOR

>R \ E a s i e r w i t h o n e o u t o f t h e way
2C@+ 4000 OR I ! \ Same f o r m a t a s f o r d i s k
4000 OR \ u s e d i n CMForth: 40xxH
R> 1 + 1 !+ \ I n c r a n d s t o r e

NEXT DROP DROP ;

: DOSO FLUSH DRO ; \ a l w a y s u s e DRO f o r DOS d i s k

CREATE FAT 2 0 0 ALLOT (1 0 2 4 BYTES) \ S t o r a g e f o r a FAT f r o m d i s k

\ FAT (f i l e a l l o c a t i o n t ab l e) c o n t a i n s l i n k e d l i s t t h a t describes t h e u s a g e o f t h e d i s k .
\ A DOS d i s k h a s t w o c o p i e s i n t h e h o p e s t h a t o n l y o n e m i g h t be damaged , a l l o w i n g
\ r e c o v e r y o f t h e d a t a o n t h e d i s k . On a 360K d i s k , t h e f i rst FAT i s a t s e c t o r 3
\ (z e r o - b a s e d) . T h e s e c o n d i s a t s e c t o r 5 . R e a d i n g BLOCK o n e g e t s p a r t o f e a c h ,
\ b u t t h e y a r e o u t o f o r d e r , h e n c e t h e f u n o f f s e t s b e l o w .

May 7 996 June 14 Forth Dimensions

: RDFAT (-) (r e a d FAT)
\ E a s i e r t o r e a d las t p a r t o f f i r s t FAT and f i r s t p a r t
\ o f second w i t h b l o c k = 1 K
DOSO 1 BLOCK \ u s e d b l o c k 1/0 r a t h e r t h a n d i r e c t r e a d
DUP 200 + FAT SMASH \ d o f i r s t 512 b y t e s f rom 2nd FAT
[FAT 100 +] LITERAL SMASH ; \ do n e x t 512 b y t e s f rom 1st FAT

I CREATE DRCT 100 7 * ALLOT \ Space f o r t h e r o o t d i r e c t o r y

I \ I o n l y p r o v i d e u s a g e of t h e r o o t d i r e c t o r y . S u b - d i r e c t o r i e s c o u l d be e a s i l y added.

: RDDIR (r e a d DIR)

\ T r a n s f e r a copy of t h e r o o t d i r e c t o r y t o memory
DOSO
2 BLOCK 200 + DRCT SMASH
3 BLOCK DUP DRCT 100 + SMASH

200 + DRCT 200 + SMASH
4 BLOCK DUP DRCT 300 + SMASH

200 + DRCT 400 + SMASH
5 BLOCK DUP DRCT 500 + SMASH

200 + DRCT 500 + SMASH :

HEX
\ The FAT p o i n t s t o a c l u s t e r of s e c t o r s . On t h e 360K d i s k a c l u s t e r i s 2 s e c t o r s . To make
\ t h i n g s t o u g h e r , t h e e n t r i e s i n t h e 360K FAT a r e two 1 2 - b i t v a l u e s packed i n t o 3 b y t e s .
\ T h i s r e q u i r e s a f a n c y f e t c h . The v a l u e f e t c h e d can b e one o f s e v e r a l v a l u e s . 0 = unused,
\ OFF8 t o OFFF i s a n end marker , OFF7 i s a bad c l u s t e r , OFF0 t o OFF6 a r e r e s e r v e d , and
\ 0002 t h r u 355 dec imal a r e p o i n t e r s t o t h e n e x t c l u s t e r .

: FAT@ (C l u s t e r - C l u s t e r ')

\ Given a c l u s t e r number, f e t c h t h e n e x t l i n k w i t h a 1 2 - b i t FAT
2/MOD 3 * \ C a l c b y t e s o f f s e t
FAT 2* + \ Make b y t e a d d r e s s i n FAT
>R I F \ I f odd c l u s t e r

l I + C @ \ F e t c h b i t s 0-3
2 TIMES 2 / \ S h i f t r i g h t by 4 (2/ i s code word)

R> 2 + C@ \ F e t c h b i t s 4 - 1 1
2 TIMES 2* OR \ S h i f t l e f t by 4 and combine (2* i s code word)

ELSE \ I f even c l u s t e r
I C@ \ B i t s 0-7
R> 1 + C@ \ B i t s 8-11 b u t i n p o s i t i o n 4-7
BSWAP OR \ So swap and combine

THEN
OFFF AND ; \ Mask o f f unwanted p a r t

I : C@+ (A - V A ') DUP C@ SWAP 1 + ;

: CLSTR/MOD (Low High - Rem C l s t r X)
\ 3 2 - b i t f i l e s i z e t o c l u s t e r and p a r t

BSWAP 4 TIMES 2* >R \ S h i f t l e f t by 6
BSWAP DUP 3FF AND \ Remaining amount
SWAP 8 TIMES 2 / \ S h i f t r i g h t by 1 0
3F AND R> + ; \ Make c l u s t e r nurnbe~

I OEO 1 - CONSTANT XDIRS \ number o f d i r e c t o r y e n t r i e s less one

: DIR \ d i s p l a y d i r e c t o r y
\ Name Ext C l u s t e r s RemBytes F i s r t C l u s t e r A t t r i b u t e
\
\ One c o u l d add p r i n t o u t s . I i g n o r e d t h e a t t r i b u t e s and d a t e s i n c e I h a d no r e a l - t i m e c l o c k
\ when I w r o t e t h i s and I w a s n ' t c h e c k i n g a t t r i b u t e s . T h i s assumes t h a t t h e d i r e c t o r y h a s
\ a l r e a d y been r e a d i n t o RAM w i t h RDDIR. I f one wanted t o , t h e y c o u l d add RDDIR b u t one
\ would have t o b e c a r e f u l t o w r i t e o u t any u p d a t e s b e f o r e u s i n g it o r h a v e a
\ d i r e c t o r y - u p d a t e d f l a g .

DRCT 2* \ Byte a d d r e s s
XDIRS FOR \ 112 d i r e c t o r y e n t r i e s f o r 360K d i s k ~ DUP C@ DUP OE5 = NOT AND \ 0 = empty, OE5 = e r a s e d

Forth Dimensions 15 May 1996 June

CR 7 FOR
C@+ SWAP EMIT \ F i l e n a m e 8 c h a r a c t e r s

NEXT SPACE
2 FOR

C@+ SWAP EMIT \ E x t e n s i o n 3 characters
NEXT
C@+ \ A t t r i b u t e
OE + 2 / \ B a c k t o 1 6 - b i t a d d r e s s i n g
1 @+ \ S t a r t C l u s t e r
1 @+ \ Low w o r d f i l e l e n g t h
1 @+ >R \ H i g h w o r d f i l e l e n g t h
BASE @ >R HEX \ L i k e my n u m b e r s i n hex
CLSTR/MOD 4 U.R 4 U.R \ C l u s t e r s a n d b y t e s
BSWAP 4 U.R \ F i r s t c l u s t e r
3 U.R \ A t t r i b u t e s
R> BASE !
R> 2* \ B a c k t o b y t e a d d r e s s i n g

ELSE
2 0 + \ N e x t e n t r y

THEN
NEXT DROP ;

: WRFAT (-) \ Write FATS b a c k t o d i s k
\ W r i t i n g n e e d s t o b u i l d both FATS, so it i s a l i t t l e m o r e w o r k t h a n r e a d i n g .

DOSO
FAT 0 BLOCK \ G e t f i r s t 2 c l u s t e r s

2 0 0 + UNSMASH UPDATE \ P u t f i r s t p a r t of f i r s t FAT
1 BLOCK FAT OVER \ G e t n e x t t w o c l u s t e r s

2 0 0 + UNSMASH \ R e m a i n d e r of f i r s t
FAT 1 0 0 + SWAP UNSMASH UPDATE \ F i r s t part of s e c o n d FAT
FAT 1 0 0 +
2 BLOCK UNSMASH UPDATE \ R e m a i n d e r of s e c o n d FAT
FLUSH ;

CREATE CLUSTER 2 0 0 ALLOT (1 0 2 4 B y t e s) \ C l u s t e r b u f f e r

: DOSBLOCK (CLSTRX - ADDR) \ N e e d s o f f s e t of 4K
4 + BLOCK ;

: RDCLUSTER (C l s t r X -) \ R e a d c l u s t e r f r o m d i s k t o CLUSTER b u f f e r
DOSO
DOSBLOCK \ R e a d d i s k , o n e c l u s t e r 1K
DUP CLUSTER SMASH \ F i r s t ha l f
2 0 0 + CLUSTER 1 0 0 + SMASH ; \ S e c o n d ha l f

: WRCLUSTER (C l s t r X -) \ C o m p l e m e n t of read i s w r i t e
DOSO
DOSBLOCK CLUSTER OVER UNSMASH \ F i r s t h a l f
CLUSTER 1 0 0 + SWAP 2 0 0 + UNSMASH \ S e c o n d h a l f
UPDATE FLUSH ;

: FAT! (CLSTRX CLSTRADDR -)
\ S e t FAT e n t r y t o p o i n t t o c l u s t e r address. N o t i c e t h e
\ s i m i l a r i t y t o FAT@. T h i s i s u s e d t o m a k e t h e l i n k e d l i s t of c l u s t e r s .

2 / M O D 3 * 1 + \ G e t b y t e o f f s e t
FAT 2 * + >R \ Make a b y t e address a n d save.
I F \ O d d e n t r y

DUP 2 TIMES 2* \ L e f t s h i f t b y 4
OF0 AND \ M a s k u n w a n t e d par ts
I C@ \ G e t w h a t w a s i n FAT t o c o m b i n e
OF AND OR \ Make o n e b y t e
I C! \ S a v e it b a c k t o FAT
2 TIMES 2 / \ S h i f t r i g h t b y 4 t o do r e m a i n i n g 8 b i t s
OFF AND \ Mask a n y e x t r a

I I

May 1996 June 16 Forth Dimensions

R> 1 + C!
ELSE

DUP OFF AND
1 1 - C !
BSWAP OF AND
I C@
OF0 AND OR
R> C!

THEN ;

\ S a v e it i n t o FAT
\ E v e n e n t r y
\ Mask 8 b i t s o f 1 2
\ S t o r e i n FAT
\ F a s t s h i f t r i g h t b y 8 w i t h mask
\ F e t c h o t h e r 4 b i t s
\ Combine t o g e t h e r
\ S a v e t o FAT

: FATEND (CLSTRX - LSTCLSTRX)
\ F o l l o w f i l e c l u s t e r s t o e n d o f f i l e

BEGIN
DUP FAT@ \ Look a t e a c h c l u s t e r p o i n t e r
DUP OFF8 AND \ OFF8 t h r u OFFF
OFF8 -

WHILE \ While n o t e n d mark
SWAP DROP \ F o l l o w c h a i n o f c l u s t e r s

REPEAT DROP ;

: FATAVAIL (- F i r s t A l a i l a b l e F a t)
\ U s e d t o f i n d a free FAT e n t r y

1 \ F i r s t t w o are a l w a y s u s e d
BEGIN

1 + \ N e x t FAT
DUP FAT@ O = \ U n u s e d ?

UNTIL ;

CREATE FILEO OC ALLOT \ F i r s t f i l e h a n d l e
CREATE F I L E l OC ALLOT \ S e c o n d f i l e h a n d l e
CREATE CRNTFILE FILEO , \ C u r r e n t f i l e o p e n e d (d e f a u l t i s FILEO)

\ C h a n g i n g t h e c u r r e n t f i l e h a n d l e w i t h F I L E l CRNTFILE !

: FLPART (o f f s e t - I - addr)

\ Makes h a n d l e s t r u c t u r e
CREATE \ Make name

, \ S a v e o f f s e t v a l u e
DOES R> 7FFF AND \ G e t p a r m f i e l d

@ CRNTFILE @ + ; \ Make d a t a f i e l d a d d r e s s

\ F o l l o w i n g i s t h e f i l e h a n d l e d a t a s t r u c t u r e
0 0 FLPART NAME \ F i l e n a m e
0 5 FLPART EXT \ F i l e n a m e e x t e n s i o n
07 FLPART OCLSTR \ F i r s t c l u s t e r
0 8 FLPART CLSTRS \ C l u s t e r s per f i l e
0 9 FLPART REMBYTS \ B y t e s i n l a s t c l u s t e r
OA FLPART LSTCLSTR \ L a s t c l u s t e r

1 OB FLPART DIRX \ D i r e c t o r y o f fse t c o u n t

: ?NAME (-)
\ G e t f i l e n a m e . S o r r y t h i s is a l o n g o n e , b u t it h a d a l o t t o d o . P a r s e s
\ e x t e n s i o n o u t a n d p u t s s t r i n g s i n t o t h e c u r r e n t f i l e s t r u c t u r e d e f i n e d a b o v e .

NAME 7 2 0 2 0 F I L L \ B L ' s t o name a n d e x t e n s i o n
BL WORD \ G e t s t r i n g f r o m i n p u t
NAME 2* 0 OVER C! \ F i r s t b y t e set t o 0 c o u n t
OA + 0 SWAP C! \ Same f o r e x t e n s i o n

2* 1 +
7 FOR \ S t a r t l o o k i n g f o r "." or BL

DUP C@ DUP
2 0 =

SWAP 2E = OR
I F \ If e i t h e r

R> DROP 0 >R \ Do a l e a v e o f FOR NEXT
ELSE \ E l s e p u t s t r i n g i n t o NAME

DUP C@
NAME 2*

Forth Dimensions 17 May 1996 June

DUP C @ \ Fetch c o u n t
1 + OVER C ! \ I n c r e m e n t c o u n t
8 + I - C ! \ Store character (n o t i c e t r i c k t o i n d e x b a c k w a r d s)
1 + \ I n c r e m e n t s t r i n g p o i n t e r

THEN
NEXT
DUP C @ 2 E = \ If "." t h e n m o r e f o r e x t e n s i o n
I F
1 +
2 FOR \ U p t o 3 bytes

DUP C@ B L = \ L o o k fo r end
I F

R> DROP 0 >R \ If end of s t r i n g l eave loop
E L S E

DUP C @
EXT 2 *
DUP C @ 1+ OVER C! \ I n c r e m e n t s t r i n g c o u n t
3 + I - C! 1 + \ Save character

THEN
NEXT

THEN DROP ;

I \ G e t a pa r t i cu l a r f i l e s p a r t f r o m d i rec to ry tab le I
: DIRENT (D i r # Index - c A d d r)
\ u s e d t o calc l o c a t i o n of p a r t i c u l a r d i rec to ry e n t r y

>R 3 T I M E S 2* \ S h i f t by 5 o r 0 2 0 H t i m e s
[DRCT 2 *] L I T E R A L + R> + ; \ R e t u r n s b y t e address

: DNAME (D i r t - c A d d r) 0 DIRENT ; \ N a m e address
: DEXT (D i r t - c A d d r) 8 DIRENT ; \ E x t e n s i o n address
: DATT (D i r # - c A d d r) OB DIRENT ; \ A t t r i b u t e address
: DSTART (D i r # - c A d d r) l A DIRENT ; \ Sector s t a r t address
: D S I Z E (D i r # - c A d d r) 1 C DIRENT ; \ F i l e s i z e address

, : DSTART@ (D i r # - Sta r t) DSTART 2 / @ BSWAP ; \ C l u s t e r s t a r t
: D S I Z E @ (D i r # - # C l s t r R e m)

D S I Z E 2 / 1 @+ @ CLSTR/MOD ; \ C l u s t e r s a n d r e m a i n d e r by t e s .
: DTIME (D i r # - c A d d r) 1 6 DIRENT ; \ T i m e s t r i n g
: DDATE (D i r t - c A d d r) 18 DIRENT ; \ D a t e s t r i n g

: SCOMP (c A d d r l $ c A d d r 2 $ C n t - Flag)

\ S t r i n g c o m p a r e t o m a t c h f i l e n a m e s w i t h i n p u t s t r i n g s : t r u e = s a m e f a l se = d i f f e r e n t
DUP
I F

-1 >R \ Flag on r e t u r n s t a c k
1 - FOR \ N u m b e r of bytes t o c o m p a r e .

C @ +
SWAP ROT C @ +
SWAP ROT - \ fe tch and c o m p a r e b y t e s (faster t h a n = o n N C 4 0 0 0)

IF \ N o t t h e s a m e ?
R> DROP \ D r o p loop count
R> DROP \ D r o p f l a g

0 >R 0 >R \ a n d leave loop o n NEXT
THEN

NEXT DROP DROP \ D i s c a r d s t r i n g addresses
R> \ R e t u r n f l a g

E L S E \ no l e n g t h so f a l s e
DROP DROP DROP 0

THEN ;

: D I R F I N D (- -l=no 0 - # D I R S = y e s)
\ Find a n a m e i n the DOS directory. A s s u m e s a d i rectory w a s read
\ by RDDIR w i t h s o m e t h i n g l i k e OPEN

?NAME
- 1

D I R S FOR \ L o o k a t o n e a t a t i m e

May 1996 June 18 Forth Dimensions

NAME 2 * 1 + \ C o u n t e d s t r i n g fetched b y ?NAME
#DIRS I - DNAME \ S t a r t f r o m t h e b o t t o m of t h e d i rec to ry
8 SCOMP \ C o m p a r e a l l 8 b y t e s
I F

EXT 2* 1 + \ E x t e n s i o n f e t c h e d b y ?NAME
XDIRS I - DEXT \ A g a i n f r o m b o t t o m of d i r e c t o r y
3 SCOMP \ I f both t h e n d o n e
I F

DROP XDIRS R> - \ C a l c d i rectory e n t r y #
0 >R \ S e t NEXT c o u n t t o z e r o f o r leave

THEN
THEN

NEXT :

: OPEN (- I F i l e n a m e)
\ o p e n specified f i l e n a m e

RDDIR \ R e a d d i r e c t o r y
RDFAT \ R e a d FAT
DIRFIND \ F i n d f i l e
DUP 1 + \ F o u n d ?
I F \ f o u n d so read h a n d l e i n f o

DUP DSTART@ OCLSTR ! \ F i r s t c l u s t e r
DUP DSIZE@ CLSTRS ! \ N u m b e r of f u l l c l u s t e r s
REMBYTS ! \ R e m a i n i n g b y t e s i n l a s t c l u s t e r
OCLSTR @ DUP \ More t h a n 0 b y t e s ?
I F

FATEND \ T h e n s c a n f o r l a s t .
THEN
LSTCLSTR ! \ S a v e l a s t
DIR# ! \ S a v e d i r e c t o r y n u m b e r

ELSE \ n o t f o u n d
DROP ABORT'' No f i l e ? "

THEN ;

HEX
VARIABLE LINES 0 LINES !
: CR+ (-) \ P a u s e e v e r y 1 6 l i n e s a n d c h e c k f o r q u i t b y ESC k e y

L I N E S @ 15 >
I F KEY 1 B =

I F QUIT THEN
0 LINES !

ELSE
1 LINES +!

THEN CR ;

: EMITTEXT (ADDR CNT -)

\ S i m p l e t e x t t y p e r w i t h p a u s e
FOR

1 @+ SWAP DUP 400D = \ N o t e : 4 0 0 0 pa r t of c m F o r t h
I F DROP CR+ \ N e e d s t o l o o k f o r CR
ELSE DUP 4 0 0 A = \ I g n o r e s L F ' s

I F DROP
ELSE EMIT \ E m i t s characters
THEN

THEN
NEXT DROP ;

: FTYPE (-)
\ T y p e a specif ied f i l e as t e x t

OPEN \ O p e n f i l e
CR+ \ Do c r
CLSTRS @ ?DUP \ C h e c k n u m b e r of c l u s t e r s
I F

OCLSTR @ SWAP 1 -
FOR \ F o r e a c h c l u s t e r

Forth Dimensions 19 May 1996 June

DUP DOSBLOCK \ R e a d c l u s t e r
3 F F EMITTEXT \ a n d t y p e it
FAT @ \ G e t n e x t c l u s t e r

NEXT
ELSE

OCLSTR @ \ J u s t t h e f i r s t o n e
THEN

REMBYTS @ \ B y t e s t o t y p e
?DUP
I F

SWAP DOSBLOCK SWAP 1 - \ T y p e o n l y b y t e s of f i l e
EMITTEXT \ t h a t r e m a i n

THEN
DROP
L I N E S ! EMPTY-BUFFERS ;

DECIMAL
: CMOVE (c F r o m c T o C n t -) \ n o t t h e fas tes t , b u t w o r k s

1 -
FOR

OVER I + C@
OVER I + C!

NEXT DROP DROP ;

: ADD-SIZE (B y t e s -)
\ A d d s a m o u n t of b y t e s t o f i l e l e n g t h t o o p e n f i l e

OCLSTR @ O=
I F \ C h e c k f o r 0 l e n g t h f i l e

FATAVAIL DUP OCLSTR ! \ A s s i g n a c l u s t e r
LSTCLSTR ! \ A l s o l a s t

THEN
REMBYTS @ + \ A d d t o r e m a i n i n g
1 0 2 4 /MOD ?DUP \ N e e d s m o r e c l u s t e r s ?
I F 1 -

FOR \ A s s i g n each c l u s t e r
FATAVAIL
DUP LSTCLSTR @ FAT! \ U p d a t e FAT
LSTCLSTR ! 1 CLSTRS +! \ U p d a t e e n d

NEXT
-1 LSTCLSTR @ FAT! \ M a r k l a s t i n FAT

THEN
REMBYTS ! ; \ U p d a t e r e m a i n i n g bytes

(: SUB-SIZE (BYTES -)

\ R e d u c e f i l e s i z e . N e v e r c h e c k e d o u t !
(REMBYTS @ SWAP - DUP O< 1
(I F NEGATE 4 0 0 /MOD ?DUP)

(I F 1 - FOR CLSTRS @ I F OCLSTR @ 0 OVER FAT! >R)
(OCLSTR @ BEGIN DUP FAT@ I - WHILE FAT@ REPEAT R>DROP)

(LSTCLSTR ! -1 CLSTRS ! THEN NEXT 1 0 2 4 SWAP - 1 0 2 3 AND)

(THEN REMBYTS ! ; 1

: DIRAVAIL (- D i r t)

\ S c a n f o r a free d i r e c t o r y e n t r y t o u s e . D o e s n ' t c h e c k t o see i f n o n e i s
\ avai lable . F o r s a f e t y , n e e d s c h e c k added!

0
BEGIN

DUP DNAME C@
DUP E 5 = NOT AND \ E 5 o r 0 i n d i c a t e s free

WHILE
1 +

REPEAT ;

May 1996 June 20 Forth Dimensions

HEX
: UPDATE-DIR (-)

\ P u t s new f i l e d i r e c t o r y i n f o i n t o d i r e c t o r y s t r u c t u r e . D o e s n ' t do date a n d t i m e . If y o u
\ h a v e r e a l - t i m e c l o c k , it w o u l d be n i c e t o add b u t i s n ' t t r u e l y n e e d e d f o r m o s t t h i n g s .

DIR# @
DUP >R DNAME 2 / \ Word a d d r e s s
DUP 6 2 0 2 0 F I L L \ F i l e w i t h b l a n k s i n i t i a l l y
6 + OA 0 F I L L \ O t h e r i n i t s
NAME 2* DUP C@
SWAP 1 + I DNAME
ROT CMOVE \ P u t name i n t o d i r s t r u c t u r e
EXT 2 * DUP C@
SWAP 1 + I DEXT
ROT CMOVE \ P u t e x t e n s i o n i n t o d i r s t r u c t u r e
OCLSTR @ BSWAP I DSTART 2 / ! \ F i r s t c l u s t e r
CLSTRS @ DUP 4 0 0 * REMBYTS @ + \ Any r e m a i n i n g
BSWAP R> DSIZE 2 / 1 !+ \ C r e a t e l e n g t h
SWAP 40 / BSWAP SWAP ! ; \ a n d s t o r e it

: WRDIRI (D i r t -)
DO SO
1 0 / DUP 1 0 0 * DRCT +
SWAP 5 + 2/MOD \ C a l c u l a t e s t h e b l o c k c o n t a i n i n g D i r #
BLOCK SWAP 2 0 0 * +
UNSMASH \ T r a n s f e r s f r o m RAM i m a g e t o b l o c k
UPDATE FLUSH ; \ Writes b a c k t o d i s k

: CREATEFILE (- I F i l e n a m e)

\ Used t o create a f i l e
RDDIR RDFAT \ G e t d i s k i n f o
?NAME \ F e t c h a name
DIRAVAIL >R \ F i n d d i r e c t o r y s p a c e
0 CLSTRS ! \ I n i t c l u s t e r s
0 REMBYTS ! \ a n d r e m a i n i n g
I DIR# ! \ What d i r e n t r y
0 OCLSTR ! \ F i r s t c l u s t e r n o t a s s i g n e d y e t
0 LSTCLSTR ! \ Same w i t h l a s t
UPDATE-DIR \ P u t a l l t h i s i n t o RAM i m a g e o f D i r
R> WRDIR# ; \ S a v e it t o d i s k

: BLK>FILE (B l k # -)

\ A p p e n d s b l o c k t o o p e n e d f i l e . Assumes b l o c k i s o n h a r d d i s k DR2 a n d DOS d i s k i s
\ 360K f l o p p y DRO. A l s o a s s u m e s DOS f i l e i s a b l o c k f i l e .

FLUSH \ Empty a n y o f f e n d i n g b l o c k s
400 ADD-SIZE \ I n c r e a s e f i l e b y 1 0 2 4 b y t e s
LSTCLSTR @ \ F i n d t h e l a s t c l u s t e r
DR2 SWAP BLOCK \ F e t c h f r o m h a r d d i s k
DROP DRO \ Want t o f l u s h t o DOS d i s k
4 + 1 0 @ 1 2 + ! \ C h a n g e s b l o c k number t o be c o r r e c t f o r DOS d i s k . T h i s i s v e r y

\ i m p l e m e n t a t i o n - d e p e n d e n t . One c o u l d get t h e DOSBLOCK i n t o
\ RAM a n d d o a MOVE b u t t h i s i s f a s t e r .

UPDATE \ Mark b l o c k f o r r e t u r n t o d i s k
UPDATE-DIR \ Update d i r e c t o r y i n f o
WRFAT \ Write new FAT
DIR# @ WRDIRX DR2 ; \ Write new d i r e c t o r y i n f o

\ Many o t h e r DOS f u n c t i o n s c o u l d be a d d e d . T h e b a s i c s t u f f
\ i s a l l h e r e . T h i n g s l i k e COPY, RENAME, DELETE, e tc .

Forth Dimensions 21 May 1996 June

Safety Critical Systems

Paul E. Bennett I
Bristol, United Kingdom

many application mortar or may be
areas where they Artificial Intelligence

Databases
the manufacturing

are likely to have an Knowledge Bases company you work
impact on the over- for (see Figure
all safety of the work-
ers involved in a pro- The above may
cess or the public at large. seem a wide ranging
Such systems need to be view, but it is applicable
designed in a manner that throughout all human
gives the necessa endeavours. However, for the
assurance that the purposes of this article I shall

Safety is, in the normal sense of restrict myself to discussion aboul
properties, an intangible factor that de- programmable electronic systems, with a

A disaster caused by a failure of an engineered system
has devastating effects on not only those who are killed or
injured or suffer damage to their property but also on the
company who operate the Engineered System concerned
and those who designed and built it. With the propensity
for litigation (almost at the drop of a hat), System Design
Engineers, as well as manufacturers and operators, must
look to protecting themselves against not only the horren-
dous levels of claims for compensation to the victims but
also the prospect of imprisonment on criminal charges and
the resultant destruction of their careers.

pends very much on the societal view of what reminder that the reader considers the wider
corporations and others do that may affect Figure Onem view for himself.

System-type definition.

people individually or as communities. It can be a very
difficult issue to resolve, as everything in life carries an
element of risk. Whether or not the risk is acceptable
depends very much on the benefits a community may gain
from accepting the risks involved. Some risks may even be
too much to accept.

What are Safety Critical Systems?
Safety Critical Systems are those systems whose mal-

function could potentially lead to death or damage. A
malfunction in this case is faulty operation, late operation,

May 1996 June 22 Forth Dimensions

Whilst what has been written on Safety non-required operation, or non-operation of
Critical Systems in engineering publica- the system, thus preventing the design
tions has concentrated mainly on intention being carried out. The
the engineering aspects, the term covers many system types
engineer is well advised to (see Figure One) and in-
also pay attention to the cludes pneumatic, hydrau-
legal aspects of his work lic, electrical, mechani-
and apply some risk Point of Sale Systems Stock Control Systems cal, electronic, and pro-
analysis to his own grammable systems.
position. They can be involved

in industrial process
Introduction plant, medical sys-
Electronic and Data Collection tems, or consumer

computer -based I Control and Monitor Systems goods. They may
systems are increas-
ingly being used in

Vision Systems even b e made
Safety critical] from bricks and

I Figure Two. ALARP Triangle.]
I

cannot be justified
except in extraordinary
circumstances

-

/
The ALARP or
Tolerability Reglon
(Risk is undertaken only
if a benefit is desired)

/ Tolerable only if further risk reduction
is impracticable or if its cost is
disproportionate to the
improvement gained. R

s the risk-is reduced, the less, proportionately,
it is necessary to spend to reduce it further.
The concept of diminishing proportion
is shown by the triangle.

Broadly Acceptable Region Necessary to maintain
(No need for detailed working assurance that risk
to demonstrate ALARP) remains at this level

v
Negligible Risk

Forth Dimensions 23 May 1996 June

Societal View of Hazards and Risk
Society in general accepts risks everyday for situations

that do lead to death and destruction. This is evidenced by
the existence of wars, car crashes, and other accidents
reported in the news on a daily basis. People do get killed,
property does get damaged. Some of it is preventable,
some not.

Individuals also accept risks-climbing mountains,
shooting rapids, leaping from tall buildings, etc. Some
people do some of these things just for fun. Others do it
as their job. Everyone, however, accepts some element of
risk in their daily lives: crossing the road, living in a tall
apartment where earthquakes occur, living close to their
work at a chemical or nuclear plant.

Individually we would prefer no risk at all. We all
expect that society in general is strong enough and caring
enough to limit, by means of legislation and monitoring,
the risks imposed on us by corporations or other individu-
als. The level of risk we finally do accept is not zero, nor
could it ever be so. Risk, though, can always be reduced
at a cost. The environment has become a concern as we
have come to realise the aspects of environmental risk we
have been exposing ourselves to and wish to reduce. The
question is how much are we willing to pay for such a
reduction in risk.

Recent research on what people will accept in terms of
cost for reduction of risk to save just one life vary
depending on which industry we are talking about. For car
manufacturers and the road authorities, it seems like a life

is worth approximatt., 5250,000. A similar analysis in the
railway industries came up with the figure of 52 million,
and in the nuclear industry, 53 million.*

Whilst we can go on spending more and more money
to reduce risk, there is a diminishing return on the
investment the lower we are trying to drive the level of
residual risk (see Figure Two). Therefore, it has been
determined within the Safety Critical Systems community
that the "Residual Risk Should Be As Low As Reasonably
Practicable." Establishing what level of residual risk is
acceptable for the application is what the risk analysis
stage of the design process is all about.

Designed in Mitigation
In designing a system, it is worth bearing in mind the

fact that 33% of rare failures are from small faults, and 33%
of the most common failures are caused by very few faults.
A common mode failure in something that is designed for
the consumer goods market can have wider-ranging
devastation than one major fault in a one-off project. Take
an electronic control system for a washing machine. A fault
in the design of the controller that can cause, in certain
circumstances, the overheating of the motor may lead to
the appliance catching fire. This fire may lead to death,
injury, and damage of property for which, under the UK
Consumer Protection Act, you as a designer of a compo-
nent of that control system may be liable for damages and/

'Figures are from various sources of UK research, averaged out to
provide a simple single figure).

Control
to Plant

From
Plant
Sensors

From
Control
Voltage
Supply

or imprisonment. You would certainly be liable if it was
your component that failed and you were not using the
best available practice.

This all seems very daunting for a systems designer or
manufacturer to contemplate. For reasons of self protec-
tion and preservation, you will need to adopt and work to
well-structured design procedures and methods; you will
also need to create a clear audit trail for all design work
and testing and validation performance.

Inherent Safety
A process that cannot, through any stimulus orenviron-

mental deterioration, degrade to a hazardous state is
inherently safe. Such systems are preferable from the
design position. They require no further protective mea-
sures to remain safe. Processes that, if a failure occurs, shut
down by themselves to a known safe state are examples
of inherently safe systems.

Boundaries and Containment
The provision of well-defined boundaries and the ability

to contain hazardous materials or situations within those
boundaries is the next best approach to designing an
inherently safe system. Such containment or boundaries
should be strong enough to resist a breach until the process
can be made safe by other means (see Figure Three).

Protective Measures
Protection systems are demand-driven by a failure in

the monitored process. They are only active during the
existence of a hazardous condition in the process. They
must be ultra-reliable and ultra-dependable. Protection
systems are usually the most difficult to prove in terms of
plant safety, andshould only be used when inherent safety
and boundaries and containments are not enough to
achieve a risk level that is ALARP.

How Good is Good Enough
Not all systems or sub-systems need to be designed to the

same Safety Integrity Level. The design of the system
components should be appropriate to the Safety Integrity
Level required to maintain the assurance of safety for the
overall system and evidentially supported in the Safety Case.

Safety Cases
Many of the larger industrial organisations are com-

pelled to comply with rigorous licensing requirements
before they may begin operation of new plant, and they
have to re-prove their systems at regular intervals. It is the
plant operator's responsibility to ensure that the plant he
operates is safe. In the design of such large industrial
installations, a Safety Case is generated for presentation to
a licensing authority.

Safety Cases begin in draft form as very humble
documents. Throughout the design lifecycle they grow as
changes and adaptations to the design are made and the
risks are assessed for the latest situation. Prior to setting to
work, Safety Cases will have to provide sufficient support-
ive evidence of the soundness of the design, the adequacy

Forth Dimensions

of all operating procedures, and that emergency condi-
tions have been sufficiently considered in the design of
the system under consideration to satisfy any relevant
inspecting authority and, probably, the insurance com-
pany providing cover.

A Safety Case covers a wide range of evidence, of which
only a part will deal with the control system and how it is
used in the various modes the plant may experience. It will
also cover the intended maintenance of the plant or
equipment and, maybe, also its eventual de-commissioning.

Organisations who are mass producing an inexpen-
sive item of consumer equipment may not see the need
for making a Safety Case. Their product may seem to use
such a simple device that they do not see the full
consequences of its failure. It is, however, worth the effort
to d o a full risk analysis and record the results of the
analysis in the Safety Case.

Legislation
In the United Kingdom, the main legislation is "The

Health and Safety at Work Act" and "The Consumer
Protection Act." However, the various European Direc-
tives have added to the weight of legislation applicable to
all systems. Examples of such legislation are "The Ma-
chinery Directive," "The EMC Directive," "The Low Volt-
age Directive," and "The Lifts Directive." There are others.
Sometimes the legislation may contradict other laws. The
engineer is faced with some difficult choices and legal
advice is well worth seeking in such cases. However, in
the end it is your engineering judgment you rely on. It is
important to support that judgment as best you can.

Standards
A standard is defined as something by which all else

is measured. Standards exist to ensure that work con-
forms to a certain level of expectation. Standards bodies,
like IEC, CCITT, ISO, and ANS, form committees to
discuss issues of standardisation in a wide variety of
topics. The latest standard that is expected out of the IEC
stable is IEC1508 "Functional Safety: Safety Related Sys-
tems." This document is in seven parts. Parts one, two,
and three are normative-dealing with the general re-
quirements; electrical, electronic, and programmable
electronic systems; and software requirements, respec-
tively-and are due for final publication during early
1996. Part four defines the terms and abbreviations used
within the standard and is also expected out early in 1996.
Parts five and six are guidelines on the application of parts
one, two, and three and are expected to be published
during the last quarter of 1996. Part seven contains a
bibliography of techniques and is expected out early in
1996. IEC1508 is a generic standard from which each
industry sector is expected to derive its own sector-
specific standards.

IEC1508 is expected to have a major impact on the design
of all systems. This arises from its denoting four levels of
Safety Integrity (SIL one to four). The only problem left to
the engineer is how does he know if he is designing a system
with no Safety Integrity Level requirement (let's call this a

25 May 1996 June

SILO system). I will return to this question later.
The Safety Integrity Levels are denoted in Table Two

(part one of IEC1508).

Table Two. Safety Integrity Levels; Target Failure Measures.

Codes of Practice
Codes of practice are issued by the institutions and

societies to which practitioners hold membership. Some
such of these bodies are the Institute of Electrical Engi-
neers (IEE), British Computer Society (BCS), and the
Engineering Council. These codes give guiding rules on
what is considered best practice in terms that generally
comply with the legislative and standards requirements.
One or two of these codes of practice have now become
standards in their own right.

Safety
Integrity
Level

At last ...

ProForth
for

Windows

Demand Mode of
Operation

(Probability of failure
to perform its design
function on demand)

... brings the full
power of Forth to
Windows!

Continuous/
High Demand Mode of

(Probability of a
dangerous failure per year)

Powerful 32-bit Forth for Windows and NT.
Includes ProForth GUIDETM "visual"-type automated
toolkit for Windows user interfaces.
Graphics library, floating point, much more.
Full support for DDE, external DLLs.
Integrated debugging aids for reliable programs.

>=10E-5 to <10E-4
>=10E-4 to <10E-3
>=10E-3 t o <10E-2
>=10E-2 to <10E-1

4
3
2
1

Go with the systems the pros use... Call us today!

This implies that:

SIL 0 I <10E-1 I <10E-1

>=10E-5 to <10E-4
>=10E-4 to <10E-3
>=10E-3 to <10E-2
>=10E-2 to <10E-1

 an hat tan Beach, CA '90266
800-55-FORTH 31 0-372-8493
FAX 31 0-31 8-71 30 forthsales@forth.com
ProForth for Windows is a product of Microprooessor Engineering Ltd. W E) .
Southampton. England. ProForth for Widows is sold and supported in the US and
Canada by FORTH, Inc.

Paul E. Bennett (peb@transcontech.co.uk) is h e Systems Engineering Director
of Transport Control Technology Ltd.,his own company, and has been involved
in the design implementation, verification and validation, and commissioning of
Safely Critical and Safely Related Systems since 1969. He has workedon Factory
Automation Systems; Petroleum Production Well SCADA Systems; Nuclear
Power Plant Irradiated Fuel Disposal Equipment; Specialist Robotic Cranes for
Plutonium Handling; and Railway Control. Signalling, and Monitoring Systems.

Trained in electrical and electronic hardware design and construction, he
picked up software through necessity of testing programmable systems that
were beginning toappear in industry during the late sixties andearly seventies.
Paul has used Forth ever since he discovered its existence in 1982. In 1992.
Paul became a member of the Safety Critical Systems Club and has been
proactive in many of its events, and has also written for the Safely Systems
Newsletter. He has published several papers which were given at EuroFORML
and Software Quality Workshops, concentrating on Design for Safety Issues.

Support for older systems
Hands-on hardware and software

Computing on the Small Scale
Since 1983

Subscriptions
1 year $24 - 2 years $44

All Back Issues available.

TCJ
The Computer Journal

P.O. Box 3900
Citrus Heights, CA 9561 1-3900

800-424-8825 1 91 6-722-4970
Fax: 91 6-722-7480
BBS: 91 6-722-5799

- - -- - -

May 1996 June 26 Forth Dimensions

ANS FORTH

Taming Variables
and Pointers
Chris Jakeman
Peterborough, United Kingdom

Forth programmers enjoy unlimited access to their
code and computer, but there are times when so much
freedom is counter-productive. When I had trouble re-
cently debugging some code with lots of pointers, I gave
up and instead added a new word to Forth, Limitvar,
to find my mistakes for me.

LimitVar is an alternative to VARIABLE which takes
two integer limits and, by redefining ! and + ! , warns if the
variable is going to stray outside those limits. For example,
to generate a warning, first define some variables such as:

S" limitvar.seqW INCLUDED
\ Load LimitVar code from file
\ and use it . . .

0 7 LimitVar DayOfWeek
1 13 LimitVar MonthOfYear
0 100 LimitVar YearOfCentury

and then try to set an impossible value with !. This
generates a warning such as:

13 MonthOfYear !
WARNING: Trying to set MonthOfYear to
13 (13) beyond limits 1 - 12
To continue, press Return

For convenience, this warning repeats the value in
brackets as a signed integer. Note that the upper limit
given is the maximum acceptable value + 1, the same
format as required by WITHIN, which is used to imple-
ment the check.

A Stack Example
The check is even more useful for code which works

with pointers, as this sort of code is harder to build
correctly. For example, a stack of five cells can be built as:

Reservespace forthestack and note the limits which astack
pointer should respect:
HERE ALIGN
5 CELLS ALLOT
HERE CONSTANT StackTop

CONSTANT StackBase

Then create a stack pointer SP which does respects these
limits:
StackBase StackTop LimitVar SP

Now we can a& three simple stack operaton:
: EmptyStack (--)

StackBase SP !
,

: Push (n --)

SP @ !
[1 CELLS] LITERAL SP +!

: Pop (-- n
[-1 CELLS] LITERAL SP + !
SP @ @

and a test for ove@ow:
: PushTooFar (--)

EmptyStack
0 BEGIN
1+
CR . " Push " DUP .
DUP Push

AGAIN
,

That's enough-now we can test for overflow with
PushTooFar:
PushTooFar
Push 1
Push 2
Push 3
Push 4
Push 5
WARNING: Trying to set SP to 32323 (

32323) beyond limits 32313 - 32322
To continue, press Return

Forth Dimensions 27 May 1996 June

a special case and arrange for LimitVar to accept 0 as a
legal value.

After Testing
Once the need for checking has passed, leave the

definitions and limits unchanged. They will provide valu-
able documentation, and more checking might be needed
at a later date. To disable Limitvar, comment out the
include line and add a dummy definition:

\ S" limitvar.seqW INCLUDED
: LimitVar 2DROP VARIABLE ; \ Dummy def

How It Works
Limitvar is simple and surprisingly efficient. My first

attempt was neither of these, so I appealed for help on the
Internet newsgroup comp.lang.forth. My thanks are due to
several contributors, but especially to Jonah (JET) Thomas
who came up with the following idea:

Reserve an area of memory and access it as an array.
Build each LimitVar variable as a CONSTANT pointing
into that array.
Redefine ! and + ! to check for addresses within that
area. (This can be done quickly using WITHIN and
makes for a fast implementation.)
For each Limitvar in the array, store the current value
and the minimum and maximum limits.

I've extended this idea here to store two additional
values:

The execution token, so that redundant entries can later
be found in the array and removed.
The address of a copy of the Limitvar's name, so that
we can print a helpful warning message.

The code given here is an ANS Forth program with an
environmental dependency (detailed in the text) and re-
quires:
WITHIN from the Core Extension word set
FORGET from the Tools Extension word set

The data structures look like Figure One.
Checks are carried out by ! and +! using code

: ! (x & - -)
DUP LimitVar? IF CheckLimits THEN
t

The basic code is given here:
\ Build an array at LimitBase to
\ hold data and limits for each
\ LimitVar.

\ Size it to hold 10 entries for now.
10 CONSTANT MaxLimitVars

\ The size of each entry is:
5 CELLS CONSTANT >LimitVar<

\ which will be used as:
\ Offset Use
\ ====== --------------- ---------------
\ 0 CELLS for Data
\ 1 CELLS for High Limit
\ 2 CELLS for Low Limit
\ 3 CELLS for Execution Token
\ 4 CELLS for &Name

\ Reserve space for the array:
HERE ALIGN
MaxLimitVars >LimitVar< * ALLOT

\ Note address of array for LimitVar?
\ to use:
HERE CONSTANT LimitTop

CONSTANT LimitBase

\ An index into the array:
VARIABLE LimitVars 0 LimitVars !

An ANS Forth program cannot access the name of a

Figure One. The data structures. I
--> Value <--- LimitBase, bottom of array

I High Limit
I Low Limit
I Execution Token
1 &String ---
I I
I I <--- LimitTop, top of array

I I
I I
I I
I xt I <--- Execution token for CONSTANT SP
--- &Entry I

I
wspll <----- <--- Copy of SP 's name

May 1996 June 28 Forth Dimensions

variable, so L i m i t v a r saves the name using
CompileString which re-reads it with BL WORD, allots
space, and then copies it into the space:

: CompileStr ing (-- &Data)
\ Adds a counted s t r i n g d e l i m i t e d by BL
\ t o t h e d a t a space .

HERE BL WORD
2DUP C@
I+ \ Allow f o r count cha r .
CHARS \ Convert t o add re s s

\ u n i t s .
DUP ALLOT \ Add t o d a t a space .
MOVE \ Move s t r i n g i n t o

, \ p l a c e .

: LVField (# F i e l d -- & F i e l d)
\ C a l c u l a t e s & of a f i e l d of t h e
\ c u r r e n t e n t r y i n LimitVar a r r a y .

CELLS \ G e t o f f s e t of f i e l d .
LimitVars @ \ G e t o f f s e t of e n t r y .
>LimitVar< *
LimitBase + + \ C a l c u l a t e add re s s .

,

: LimitVar (LowLimit HighLimit ++ --)

(-- &Data) \ A t run-time
\ Crea t e s a LimitVar

LimitVars @ 1+ MaxLimitVars >
ABORT" No room t o c r e a t e a LimitVarvv

> I N @ >R \ Save t o rewind inpu t
\ l a t e r .

0 LVField \ Compute add re s s of
\ f i e l d 0.

CONSTANT \ Crea t e a cons t an t
\ p o i n t i n g t h e r e .

0 0 LVField ! \ S t o r e 0 i n f i e l d 0 a s
\ t h e i n i t i a l va lue .

1 LVField \ S t o r e t h e l i m i t s i n
2! \ f i e l d s 1 & 2.
R@ > I N ! \ Rewind i n p u t
1 \ and g e t x t .

1 3 LVField ! \ S t o r e i t i n f i e l d 3 .
\ Rewind i n p u t and g e t 1 ::mz:!eLtring \ &Namestring.

4 LVField ! \ S t o r e it i n f i e l d 4 .
1 LimitVars + !

: Return (--)

\ A u s e f u l 1/0 word
." , p r e s s Return"
KEY 13 = O= ABORT" Aborted"

,

: Continue (--)

\ Another one
CR ." TO cont inue" Return

,

: CheckLimits (X &Data -- X &Data)
\ Prompts wi th a warning i f X i s
\ o u t s i d e l i m i t s f o r t h e LimitVar.
\ X=O i s not checked, which makes t h i s
\ v e r s i o n s u i t a b l e f o r p o i n t e r s .

OVER I F \ I f X<>O . . .
2DUP CELL+ 2@ \ G e t t h e l i m i t s .
W I T H I N O= IF

CR ." WARNING: Try ing t o set "
DUP 4 CELLS + @
COUNT TYPE SPACE \ Var i ab l e name
." t o " OVER U .
." (" OVER .
.") beyond l i m i t s "

DUP CELL+ 2@ SWAP
u. . " - " 1- u.
Cont inue

THEN
THEN

CheckLimits does not consume its arguments, as
this makes it more efficient.

: ! (x & - -)
\ ! r ede f ined t o check LimitVars .

DUP LimitVar? I F CheckLimits THEN
!

: + ! (x & - - 1
\ + ! r e d e f i n e d us ing t h e new ! .

DUP >R \ Save & .

@ + \ Compute r e s u l t .
R> ! \ S t o r e i t .

That is all for creating Limitva r s; now we need some
words to test against the limit:

: LimitVar? (& -- F l a g)

\ True i f & l i es w i t h i n LimitVar a r r a y .
LimitBase LimitTop W I T H I N

,

Within And Without
W I T H I N is defined in ANS in such a way that

5 0 10 W I T H I N

returns true and so does
15 10 0 W I T H I N

I.e,, by reversing the arguments, W I T H I N canbe used to
test for "without"! Since CheckLimits uses W I T H I N , it
can also be used to exclude a variable/pointer from a range.

Forth Dimensions 29 May 1996 June

Tidying Up
L i m i t v a r checks that the array is not already full

before adding to it, but we also need a way to remove
redundant entries from the array. In the code below, we
extend FORGET to do just this. At this point, conforming
to ANS becomes overly complex, so instead we declare an
"environmental dependency" and assume that as each
word is compiled, it is given an execution token greater
than the previous one.

Using this assumption, we can remove redundant
entries by scanning through the array until the first
redundant one is found and then leaving L i m i t v a r s to
overwrite all entries from there onwards:

: F o r g e t L V s (x t T o F o r g e t --)

\ R e c o v e r s space f o r L i m i t V a r s .
\ U s e d by FORGET.
0 L V F i e l d >R \ S a v e & of 1st

\ u n u s e d e n t r y as a
\ l i m i t .

0 L i m i t V a r s ! \ U s e a s a loop index
BEGIN \ For each L i m i t V a r . .

0 L V F i e l d \ G e t & E n t r y .

R@ U< WHILE \ While e n t r y i n u s e
3 L V F i e l d \ G e t x t f o r t h e

@ \ t h e L i m i t V a r .
OVER U< WHILE \ While < x t T o F o r g e t

1 L i m i t V a r s + !
REPEAT \ . . . f r o m 1st WHILE
THEN \ . . . f r o m 2 n d WHILE
DROP R> DROP

: FORGET (++ --)

\ R e d e f i n e d t o m a n a g e L i m i t V a r s
> I N @ >R \ S a v e t h e i n p u t s t r e a m

' F o r g e t L V s
R> > I N ! \ R e w i n d t h e i n p u t s t r e a m

FORGET

Enhancements
L i m i t v a r becomes even more useful if it is enhanced

with an option to show the calling tree-the sequence of
words executed to reach the current warning. But that, as
they say, is another story.

Chris Jakeman is an engineer sadly promoted out of hands-on software work
some years ago. He retains his enthusiasm for software and its potential by
using Forth to explore the boundaries. His writings often appear in the FIG-UK
magazine Forlhwrite. Send e-mail to cjakeman@apvpeter.demon.co.uk.

I YiUlirR Y(CR00-
61 Lake Show &fN, N W ,

(-198, O am - $ rn) wkrgu- kktwbrdf&- I

I The Computer Journal 26 1
FORML 48

FORTH, Inc. 26

The Forth Institute's
Rochester Conference 44

Forth Interest Group
centerfold

Miller Microcomputer
Services 30

Silicon Composers 2

May 1996 June 30 Forth Dimensions

Does Late Binding
3 Have To Be Slow.

I Andras Zsoter

Introduction
Today's software tool is object-oriented programming,

as many programmers will agree. It is no surprise that many
Forth dialects already have some sort of OOP support either
built into the kernel [2,31 or as an add-on feature ill. On the
other hand many from the Forth community will argue that
the overhead involved in virtual method calls and field
accesses is unacceptable in time-critical applications. This
paper is directed towards them, and its main goal is to make
object-oriented techniques more attractive for those who
like the "close to siliconn approach.

In this paper the implementation details of my object-
oriented Forth model' [31 will be presented. In this model
the overhead involved in virtual method calls and field
accesses is very low. Actually, on the Intel486 microproces-
sor there is no overhead involved in virtual method calls and
field accesses. The only overhead is in object instance
access. In other words, once an object has become active
all virtual method calls take exactly the same time as any
other call, and field accesses take as much time as an
ordinary variable access. Because the usefulness of this
implementation technique is not limited to Forth, most of
the following ideas have already been published 141; here
the emphasis will be on our language-specific advantages.

An Object as a "Mini Universen
I was reading an old article in BY7E [51 which com-

plained about the instuctions and clock cycles spent on
ordinary housekeeping in any program. The trouble is that
function parameters are passed on the stack, so the caller
has to push them onto the stack and the callee has to fish
them out2. In a well-factored program this parameter
passing can be significant. Of course, for Forth program-
mers the painful part is not parameter passing (because we

problem is that such a routine would be extremly inflex-
ible and not at all reusable.

Considering all these, I immediatly thought about
OOP. An object can have its own world where variables
(the fields of the object) are all in some way at a f ~ e d
address so they do not have to be passed as parameters.
A routine (a method in this case) only has to know who3
is the object calling it. Explicit parameter passing is
required only in communication with the outside world.

In object-oriented languages objects and their meth-
ods-either virtual or static-constitute an alternative way
of factoring. Not only common instruction sequences4 can
be factored out, but data structures and pieces of code
handling them; which can lead to much cleaner program
design5.

Methods or Messages?
I have to explain at this point why I prefer the term

"virtual method to "message." The latter implies that one
object communicates with another and only as a special
case can the sender and the receiver of a message be the
same object. The word "method" only indicates that the
routine is somehow special in the sense that it operates on
an object instance and assumes certain properties of that
object (e.g., its memory layout). In other words, a method
is a piece of code which implements a particular kind of
behavior of a class of objects. The more specific term
"virtual method means a method whose identity (the
actual piece of code) is not known when the program is
compiled6 so it must be determined at run time. Because,
in my OOF, methods are often used for factoring out
reusable functionality inside an object, I consider the term
"messagen to be rather misleading.

use the stack for our temporaries anyway) but the need to
rearrange the stack. A piece of code using only global

be much and faster because it
would not have to fiddle around with the parameters. The

:: t: ~ , " ~ ~ ~ ; ~ ~ ~ ~ ~ ~ ~ ~ ~ $ t i ~ , " ~ I e n c e s ,
5. Here I have to do what many Forthists would regard as heresy

and recommend a C++ textbook [9]. The usefulness of the

1. To avoid confusion I refer to this model as "my OOF" because
other object-oriented Forth implementations [2] are also called
OOF.

2. Of course, on CPUs with huge register files and with register
windows, stack accesses can usually be avoided.

design principles suggested in that book are far beyond the
scope of one particular programming language.

6. If the typeof an object is known at compile time, asmart enough
compiler can do the binding statically. If a method whose
identity is known at compilation time is small enough, a compiler
can even in-line it [9].

Forth Dimensions 31 May 1996 June

Listing One. I
Objec ts DEFINITIONS \ Objec ts i s t h e base of t h e C la s s h i e r a r chy .
3 C la s s P o i n t s \ A new c l a s s wi th 3 new v i r t u a l methods.
P o i n t s < I \ The d e t a i l e d d e s c r i p t i o n of t h e new c l a s s .
F i e l d X \ The X coo rd ina t e of t h e P o i n t .
F i e l d Y \ The Y coo rd ina t e of t h e P o i n t .
Method Show (--) \ How t o show a Po in t .
Method Hide (--) \ How t o h i d e a Po in t .
Method Move (dY dX --) \ How t o move a Po in t a given d i s t a n c e .

I >

A s I n i t use : (Y X --) X ! Y ! ; M \ I n i t i a l i z a t i o n of a new o b j e c t i n s t a n c e .

: GotoXY (--) X @ Y @ AT-XY ; \ This i s a s t a t i c method.

A s Show use : GotoXY [CHAR] * EMIT ; M
A s Hide use : GotoXY SPACE ; M
A s Move use: Hide X +! Y +! Show ; M

10 40 Obj P \ Crea t e a new o b j e c t i n s t a n c e .

: Test (dY dX --) P { Move 1 ; \ A sample word u s i n g ou r o b j e c t .

An "Object-Oriented Architecture"
The above ideas might look good on paper but to learn

more about them we need an implementation. When I
started to experiment with my OOF I wanted to comply
with the following conditions:

The system must have efficient support for both field
accesses and virtual method calls.
The compiler has to be simple, so the efficiency of
the OOP support must not depend on optimization.
The details of OOP implementation must be expressed
in the language so that the user of the system can
tailor the high-level layer to his or her individual taste7.

As a working hypothesis let us consider a microproces-
sor which has built-in support for the above-mentioned
kind of object-oriented behavior. We need one register to
contain the base address of the active object; all field
addresses will be relative to this base address. Another
register is needed to hold the address of the Virtual
Method Table (VMT), which contains the addresses of the
virtual method instancess. Our theoretical microprocessor
needs a couple of instructions to load these registers, and
to read their contents and save them on a stack.

So the basic ideas are clear but the next problem is that
the whole thing has to be implemented somehow in
hardware. Making an object-oriented microprocessor is
far beyond our facilities, so I had to emulate the above
behavior on an existing one. Our PCs are based on the
Intel486 chip, which does not have very many registers but
enough to spare two for OOP support. This microproces-
sor also has quite flexible addressing modes, so once the
base address of an object is in a register, one instruction

is enough to read or write one of its fields. The same can
be said about the VMT pointer and virtual method calls. In
my Dynamic Object-Oriented Forth, or DOOF (the imple-
mentation of my OOF model for the Linux operating
system), I used the following register assignment:
eax : TOS = The Top Of Stack
edi : PSP = The Parameter Stack Pointer9
esp : RSP = The Return Stack Pointer
ebp : LSP = The Locals' Stack Pointer
ebx : OBJ = The OBJect Pointer
esi : VMT = The Virtual Method Table Pointer

Examples
Listing Onelo shows a sample object which is just a

point on the screen (actually a character position on a
character screen). This simple object has two fields which
are its X and Y coordinates in a Cartesian coordinate
system. A Point can show itself and hide (delete) itself.
These are the most basic virtual methods or types of
behavior a Point can manifest. One example of a more
complicated kind of behavior is that a Point can move
itself a specified distance in the X and Y direction. A good
example for field accesses is G o t o X Y which is a static
method. As we will see later there would be no perfor-
mance penalty if we implement it as a virtual method.
DOOF generated the sequence of Intel486 instructions1'
shown in Figure One-a for G o t o X Y . Not highly efficient
code but so far no optimization has been used12.

9. Unlike in the MS-DOS version of the program, the parameter
stack is not the same as the machine stack. This makes the

7. 1 used Forth as theassembly languageof ahypotheticalmachine
with object-oriented architecture.

8. 1 will call an abstract entity corresponding to a "kind of behavior"
or a "kind of message the objects of a class answer to" a virtual
method. Theactual routinescorresponding tothe actual behavior
of the objects of agiven class will be referred to as virtualmethod
instances in this paper.

system slower because the only efficient stack-handling
instructions of the x86 family of microprocessors use the (e)sp
register. So any operation which changes the numberof items on
the stack has to increment or decrement the parameter-stack
pointer explicitly, using an extra instruction. On the other hand
linking with existing C and C++ code as well as implementing
most of the system in C++ is much easier in this way.
Because the OOP-support words arenon-standard, the glossary
at the end of this paper explains them.
DOOF, just like OOF, does not use threading. It generates
machine code.
Because no optimization has yet been implemented in DOOF.

Forth Dimensions

10.

11.

12.

May 1996 June 32

Figure One-a. 1
sub e d i , 4 ; Make room on t h e s tack.
mov [edi] , eax ; Save top of s tack.
lea eax, [ebx] .X ; Get t h e address of t h e f i r s t f i e l d .
mov eax, [eax] ; @
sub e d i , 4 ; Make room on t h e s tack.
mov [edi] , eax ; Save top of s tack.
lea eax, [ebx] . Y ; The address of t h e next f i e l d .
mov eax, [eax] ; @
c a l l A t X Y ; An ordinary c a l l of a Forth word.
r e t ; Return.

Figure One-b. I
sub e d i , 8 ; Make room f o r two items on t h e s tack.
mov [edi+4] , eax ; Save top of s tack.
mov eax, [ebx] .X ; Get t h e value of t h e f i r s t f i e l d .
mov [edi] , eax ; Save t h e value on t h e s tack.
mov eax, [ebx] . Y ; The value of t h e next f i e l d .
c a l l A t X Y ; An ordinary c a l l of a Forth word.
r e t ; Return.

Figure Two.

c a l l [e s i] .Hide ; Call Hide.
sub ed i , 4 ; Make room on t h e s tack.
mov [ed i] , eax ; Save top of s tack.
lea eax, [ebx] . X ; Get t h e address of t h e f i r s t f i e l d .
mov edx, [ed i] ; Move value t o a r e g i s t e r .
add [eax] ,edx ; Add t o t h e c e l l a t t h e address.
mov eax, [edi+4] ; Move next top item t o t o s r e g i s t e r .
add e d i , 8 ; Adjust stack pointer .
sub ed i , 4 ; Make room on t h e s tack.
mov [ed i] , eax ; Save top of s tack.
lea eax, [ebx] .Y ; Get t h e address of t h e next f i e l d .
mov edx, [ed i] ; Move value t o a r e g i s t e r .
add [eax] ,edx ; Add t o t h e c e l l a t t h e address.
mov eax, [edi+4] ; Move next top item t o t o s r e g i s t e r .
add e d i , 8 ; Adjust s tack po in te r .
c a l l [e s i] .Show ; Call Show.
r e t ; Return.

A more intelligent compiler would output something
like the code in Figure One-b. This code is concise and
efficient, but the problem is that the compiler has to be
smart to produce this kind of output. With present
compiler technology this optimization is possible [6, 81".
Nevertheless, the first version of the code can be produced
by any dumb compiler.

If we take a closer look at either version of the code we
can see that the number of instructions to access a field of
the object is the same as the number of instructions
needed to access a global variable (with the same smart-
ness of the compiler)'*. So far so good, but OOP is not only
about field accesses.

The quality of an OOP implementation depends on the

13. Of course it will not help us if we have to make a Forth
implementation which runs on a machine with very limited
resources.

14. A variable access usually means pushing the address of the
variable onto the stack and then executing a @. In either version
of the compiled program the instruction sequence would be
similar to the above except that instead of [ebx+offset] a simple
constant address would be used.

efficiency of virtual method calls. The only virtual method
instance in our example which calls other virtual methods
is Move, which has been compiled to the following
sequence of instructions by DOOF shown in Figure Two.

Again this is rough code generated by a dumb com-
piler. On the other hand, what we have been interested in
is clearly visible in the above list: the virtual method calls
are single instr~ctions'~. In other words, a virtual method
call is exactly as expensive as any other call as long as our
program does not change the active object instance.

Changing the Active Object Instance
The word Test in our example changes the active

object and then calls one of its virtual methods. The machine
code generated by DOOF is given in Figure Three-a.

15. Unfortunately, on architectures with less-flexible addressing
modes this is not always the case. Depending on the flexibility of
indirect calls the overhead can be very small (zero instructions
ason the Intel architecture, one instructionon CPUs which donot
have indirect calls but can use a register as target address, and
it can take even longer on very simple microprocessors where
indirection is not quite supported).

Forth Dimensions 33 May 1996 June

Figure ~hree-a. 1
sub e d i , 4 ; Make room on t h e s t a c k .
mov [e d i] , eax ; Save t o p of s t a c k .
mov e a x , o f f s e t P ; Push t h e add re s s of t h e o b j e c t on to t h e s t a c k .
push e s i ; Save t h e VMT P o i n t e r .
push ebx ; Save t h e Object P o i n t e r .
mov ebx ,eax ; Load Object P o i n t e r from t h e s t a c k .
mov e s i , [ebx-41 ; Load VMT P o i n t e r wi th t h e new o b j e c t s VMT.I6
mov eax, [e d i] ; Reload t o p of s t a c k .
add e d i , 4 ; Adjust s t ack p o i n t e r .
c a l l [e s i] .Move ; C a l l v i r t u a l method.
pop ebx ; Restore Object P o i n t e r .
pop e s i ; Restore VMT P o i n t e r .
r e t ; Return.

Figure Three-b.

push e s i ; Save t h e VMT P o i n t e r .
push ebx ; Save t h e Object P o i n t e r .
mov e b x , o f f s e t P ; Load Object P o i n t e r from t h e s t a c k .
mov es i , [ebx-41 ; Load VMT P o i n t e r wi th t h e new o b j e c t s VMT.
c a l l [e s i] .Move ; C a l l v i r t u a l method.
pop ebx ; Restore Object P o i n t e r .
pop e s i ; Restore VMT P o i n t e r .
r e t ; Return.

Of course the fiddling with the stack makes our code
somehow obscure again. A smarter compiler could emit
something like that shown in Figure Three-b.

From the second version of the code which can be
generated from T e s t we can clearly see that the overhead
in changing the active object is significant (six housekeep-
ing instruction for only one useful virtual method call). On
the other hand, if the virtual method calls other virtual
methods (as in our case) or accesses a couple of fields in
the active object before the program switches to another
object, the code can be significantly smaller and faster than
in implementations where each and every method re-
ceives the address of the object it has to operate on as a
parameter on the stack" [41.

Multiple Inheritance and Other Bells and Whistles
My OOF has always been intended to be a low-level

language which provides the advantages of late binding
with no, or only a minor, performance hit. In such a low-
level concept more complicated constructs like multiple
inheritance and operator overloading have no place. Of
course most of them can be implemented on top of the
features provided by W F . For example, multiple inherit-
ance can be provided by aggregating several objects
together, and for every method the compiler can present
16. The VMT pointer is stored in the cell immediately before the

object. In this way the body of the object is not interrupted with an
extra field and the addressof theobject can be passed to routines
written in other languages than Forth as ordinary data structures.

17. Of course if everything is an object, and even ordinary integer
arithmetics is implemented via method calls, my argument will
not hold true. On the other hand such a system should only be
irnplementedforgood reasons, e.g., in certain Al programs. The
presented technique is intended to improve efficiency, not to
replace sanity in program design.

18. 1 have trouble putting it into proper words. As traditional Forth is
an untyped language, we have not developed a terminology for
concepts such as "the type of a type."

May 1996 June

the appropriate part of the object [lo]. By making the Class
"Classes" (the special vocabulary type representing classes
of objects [31) a part of the class hierarchy, DOOF provides
a way to derive more sophisticated tools to create new
typesla.

Operator overloading is more troublesome. To mean-
ingfully provide operators which can do arithmetics on
different types of numbers we have to provide a way for
the operator to check the type of its operands. Tradition-
ally, items on Forth's stack are typeless, so this checking
cannot be done without substantially modfying the internal5
of our traditional model of a Forth engine. The resulting
language is still Forth but the overhead of the run-time
type checking can make it extremly unattractive for the
designers of time-critical applications.

In arguments about ~ & t h , the complete lack of pre-
defined data structures is listed as one of the major
weaknesses of the language. After reading some C++
literature [9, 101 and seeing the complaints about C's array
concept and its incompatibility with C++ objectsI9, I have
started to think otherwise: Our "greatest weakness" can be
our biggest stengtha because we do not have to take away
anything from the language to adapt W P . Plain old-
fashioned Forth is the best starting point to make some kind
of Forth++21. We do not have array concepts that would be
incompatible with the more carefully designed data aggre-
gates needed for an object-oriented system. Forth-very
luckily-has remained a low-level tool, a kind of portable
assembler, for most of its users. My OOF model has been
designed to live peacefUlly with this approach.

19. For further details see the notes at the end of x8.2.4 in reference
[lo].

20. This statement soundsvery Taoist-no wonder many outside the
Forth community consider Forth a religion rather than a
programming language.

21. The term Forth++ appears more and more often in Forth

34 Forth Dimensions

Conclusions
In this paper a fast and effective way of implementing

OOP has been presented. The benefits of the technique
are most useful in applications where speed is critical. The
suggested technique provides the benefits of object-
oriented design without the need of a sophisticated
compiler. Although the examples are Intel-specific, the
presented argument will hold true on most modern
microprocessors.

The usefulness of this approach is not limited to one
particular programming language; nevertheless, languages
which encourage extensive factoring will benefit most
from it. In Forth, where the average definition is only a
couple of words longz2, the implicit parameters passed
from method to method with no extra cost can make a
program based on OOP even faster than its counterpart
implemented by using more conservative techniquesz3.

References
111 Dick Pountain, Object-OrientedForth. Academic Press

Ltd. (London), 1987.
121 M. Dahm, "Object-oriented Forth," Forth Dimensions,

Vol. XIV, No. 1, 16-22 (1992 May).
[31 A. Zsoter, "An Assembly Programmer's Approach to

Object-Oriented Forth," Forth Dimensions, Vol. XVI
No. 6, 11-17 (1995).

[41 A. Zsoter, "Implementation of Object-oriented pro-
gramming via register-based pointer," Journal of
Microcomputer Applications (1995), 18, 279-285.

[51 P. Wilson, "The CPU Wars. An overview of the
microprocessor battlefield, and how it got that way,"
BYTE, Vol. 13, May 1988, 213-234.

I61 D. Watson, High-Level Languages and Their Compil-
en. Addison-Wesley Publishers Ltd., 1989.

171 P.A. Steenkiste. "Advanced Register Allocation," in
Topics in Advanced Language Implementation, ed-
ited by P. Lee. MIT Press, 1991.

(81 T. Pitunan, J. Peters. The Art of Compiler Design,
Theory and Practice. Prentice-Hall, Inc., 1992.

[91 B. Stroustrup. The C++ Programming Language.
Addison-Wesley Publishing Company, 1994.

(101 M. A. Ellis, B. Stroustrup. neAnnotated C++ Reference
Manual. Addison-Wesley Publishing Company, 1995.

Trademarks mentioned:
Intel486 is a trademark of Intel Corporation.

discussion but there is no implementation I am aware of which
would actually have the name Forth++.

22. Or at least we should strive for adopting a programming style
with short definitions.

23. This issue has yet to be examined. Of course I am talking about
equal functionality. If aprogram needsacertain level of indirection

, (e.g., 110 primitives have been vectored in many Forth

Glossary I
O b j e c t s

C l a s s

I >

Field

Met hod

use :

(-- 1
The base class of all classes.
(<Name> Methods --)
Creates a new classz4 with Methods new
slots for virtual methods in its VMT.
(-- End
Performs the hnction of DEFINITIONS
followed by pushing the offset of the end of
an object instance (which is the same as the
offset of the first of its new fields to be) the
stack.
(End --)
Makes End (the first unused offset) the
new default size of the class.
(<Name> 01 -- 02)
Creates a word Name. If Nameis executed
later it pushes the address of the cell
which is 01 away from the base address of
the active object.
(<Name> --)
Creates a word Name. This word is the
application programmer's interface to a
new virtual method. If this word is ex-
ecuted later it will call the corresponding
virtual method in the active object's VMT.
The method indexes are assigned auto-
matically as long as there are enough free
slots in the class's VMT.
(<Name> -- Index)
Pushes the index of the virtual method
identified by Name onto the stack.
(Index -- use-sys)
Starts a headerless d e f ~ t i o n which will be the
body of a virtual method instance of the class.
(use-sys --)
Finishes a definition started by use :.
(Obj --)
Pushes the active object onto the return
stack and then selects Obj as the active
object.
(-- 1
Reactivates the object which was previ-
ously pushed onto the return stack by I .
(args* --)
This is the name of a "virtual methodvzs
which initializes the active object with args'.
The latter can be any number of arguments
required by the type of the object.
(<Name> args* --)
Creates an object with the Forth name
Name and initializes it via Init.

Forth Dimensions 35 May 1996 June

LIFE That Knows
When to Stop

JOHN HORTON CONWAY'S Game of Life has been a popular
computer pastime since MARTIN GARDINER wrote about it in
his Scientific American column in 1970 and after. Imple-
menting it is a favorite assignment or project in program-
ming classes.

The implementation given here has two features that
are unusual.
1. It does not run until terminated by the operator, but

stops by itself when it detects the inevitable cycle.
2. It checks and updates 32 life-cells at a time.

If you are already familiar with the game, skip ahead
until section "Smart Life."

Theoretically, the universe of the Game of Life is an
infinite square board. Every computer representation must
necessarily have a finite universe. This means that the
game must eventually end in a cycle. The cycle may be a
steady-state, that is, a cycle of length one.

The elements of universe are cells, or as I call them
here, life-celk;. A life-cell can be dead or live, represented

by a bit.
The rules for the Game of Life are:

A dead life-cell becomes live in the next generation if it
has exactly three neighbors.
A live life-cell remains live in the next generation if it has
exactly two or three neighbors.
A live life-cell becomes dead in the next generation if it
has fewer than two or more than three neighbors.

You specify which life-cells are live in the first genera-
tion; the rules determine what happens to them.

The neighbors of a life-cell are the adjacent eight life-cells.
Exhibit One-a gives the first eight generations of Five

in a Row. After that, the last two repeat forever as in Exhibit
One-b.

Three-in-row, which alternates with Three-in-a-col-
umn, occurs often enough to have its own name, blinker
Four blinkers like the above are called a traffic light. The
generation of blinkers or traffic lights is the most common
cause of a cycle of two.

Exhibit One-a. I
0

0 000 0
0 0 000 000 0

000 0 0 000 0 0 0 0 0 0 0
00000 000 0 0 00 00 0 0 000 000 0 0 000 000

000 0 0 000 0 0 0 0 0 0 0
0 0 000 000 0

0 000 0
0

Exhibit one-b. 1
0 0 0

000 0 000 0 000 0 000
0 0 0

0 0 0 0 0 0 0 0
0 0 000 000 0 0 000 000 0 0 000 000 0 0 Etcetera
0 0 0 0 0 0 0 0

0 0 0
000 0 000 0 000 0 000

0 0 0

May 1996 June 36 Forth Dimensions

Exhibit Two. Glider. I
0 I

Smart Life
In this implementation the topology of the universe is

a torus, that is, the universe wraps around top to bottom
and left to right.

You can change the size of the universe by changing
the definitions of columns and rows. The values used
here are 64 x 25.

As examples of cycle detection see Exhibit Two and
Exhibits Three-a through Three-c.

The glider in any of its eight rotations and reflections
will reproduce itself every four generations, moving
horizontally and vertically one life-cell. Unless it encoun-
ters an obstruction, in a 64 column by 25 row universe it
will return to its starting position in 6400 generations,
recognizing a cycle of 6400 generations. Adding some-
thing out of harm's way that vanishes early, for instance,
six in a row or 15 in a row, will cause the cycle to start later,
but it will still be detected at generation 6400. In an infinite
universe it will travel forever unless it runs into something.

The r-pentomino in a 64 x 25 universe will become ten
still-lifes and a traffic light in a cycle of two after 1222
generations. It will create several gliders which will smash
into something and destruct. The glider was discovered by

Exhibit Three-a. The r-pentomino. I

Exhibit Three-b. The r-pentomino after 100 generations in a 64 x 25 universe.
The starting position was at the center of the universe. Find a glider in an
intermediate stage. Hint: it is made up of five cells.

00
0 0

00 0 0
00 00

0 00 0
000 00 00
00 0

0 00 000 00 0
0 000 00 00 00
0 0 00 0 0 00 00000 0
0 0 00 0 0 0 000

0 0 0 0 0 0
0 0 0 0000 0
00 0 000

0 00 0
0

0 00 00
0 00 00

0
0 0

0 0
00 0

Conway and his friends while they were watching the
r-pentomino.

Changing the values of rows and columns will change
how configurations develop.

On a 48K Apple I1 in the early 1980s I accidentally had
a configuration which took six days to go 3.4 million
generations before entering a short cycle. I have not been
able to rediscover it.

Cycle detection is easy to implement. Copy the starting
configuration to a "scratchn universe. Then for every
generation in the "real" universe advance two generations
in the scratch universe. When the "realn universe and the
"scratchn universe are identical, the cycle has been found.
The cycle will be detected somewhere in its first occur-
rence in the real universe.

The other special feature of this implementation is the
updating of life-cells CELL-BITS at a time, where CELL-
BITS is the number of bits in a Forth cell.

This is done by using AND, OR, XOR, and INVERT to
imitate logic gates for two-bit adders and three-bit adders.
These are not used on single bits but on Forth cells of
CELL-BITS bits.

As the simplest example, consider adding the bits of two
Forth cells in parallel.

XOR gives every bit
0 of the CELL-BITS
answers. AND gives
every carry bit of the
CELL-BITS answers.

Forth Dimensions 37 May 1996 June

s u m - t h e - r o w adds the bits of three Forth cells in
parallel. For example,

l e f t : 0 0 0 0 1 1 1 1
m i d d l e : 0 0 1 1 0 0 1 1
r i g h t : 0 1 0 1 0 1 0 1
- -
s u m - 1 0 0 0 1 0 1 1 1
sum-0 0 1 1 0 1 0 0 1

add-to-pair adds in parallel the bits of a Forth cell
to the bits of a pair of Forth cells, setting the bits of Forth
cell carry.

X 0 0 0 0 1 1 1 1
+
sum-1 (o r 2) 0 0 1 1 0 0 1 1
sum-0 (o r l) 0 1 0 1 0 1 0 1
- -
car ry 0 0 0 0 0 0 0 1
sum-1 (o r 2) 0 0 1 1 0 1 1 0
sum-0 (o r l) 0 1 0 1 1 0 1 0

Combining these in a d d - t o - s u m - 2 1 0 , we add the
bits of nine Forth cells in parallel into sum-2, sum-1, and
sum-0. Luckily, the results eight and nine are treated the
same as the results zero and one.

The program has been written to avoid hardware

dependencies. If your system permits, you should re-write
s h o w - u n i v e r s e to refresh the display rather than scroll.
Standard Forth AT-XY can be used for this. You may have
to change the value of r o w s . Even better is to increase the
values of c o l u m n s and r o w s and use a graphic bit
display. The value of c o l u m n s will be effectively rounded
down to a multiple of CELL-BITS.

For additional credit, what does the following Forth
word do?
: X (? ? ? -- ? ? ?)

BEGIN ?DUP
WHILE 2DUP AND 2 * >R XOR R>
REPEAT

,

This classic Forth puzzle was my inspiration for this
implementation of the Game of Life.

Menopause
The most important change is to display the universe

without scrolling so life-cells can seem to move. Also try
changing the values of r o w s and c o l u m n s . Use VALUE
instead of CONSTANT so you can change interactively.

See how big a universe you can have and be happy with.
You can investigate what happens when the topology

is a rectangle instead of a torus.
When looking for long-running configurations, put

TRUE TO TESTING to avoid massive printing.

The Truth
Real life is not a game. It's a toy.

, A game has a known purpose. Real life does not.

May 1996 June 38 Forth Dimensions

Exhibit Three-c. T h e r-pentomino after 1222 generations in a 64 x 25 universe .

0
0 0 00
0 0 00 00

0 0 0 00
0 0 00

0 0
0 0

0 0 00

00 0 0

00

00
0 0
0 0

00 000

0 0

0 0
0 0

000

Wil Baden is a professional program-
mer withan interestin Forth. A text-only
edition of this article is available for the
asking by e-mail to:
w~lbaden@netcom.com

Listing. Life That Knows When to Stop. I
1

Life That Knows When To Stop Wil Baden 197?-1996)

J. H. Conway's "Game of Life", with cycle detection.)
Stops when the inevitable cycle is detected.)

Computes new generation CELL-BITS life-cells at a time.)

Used:
fileid LIFE

where
fileid is for a text file with the starting generation
"0" for live; " " for dead, i.e. empty.
Note: Any text file can be used for examples.
It would be easy to convert to BLOCK files.

1 4 (Environmental Values)

CONSTANT ADDRESS-UNIT-BITS
17 ADDRESS-UNIT-BITS CELLS I 1 6 8

CONSTANT CELL-BITS

19 (The following are the key parameters. They determine the size
20 (of the universe. Change them to suit yourself.)

CONSTANT columns
CONSTANT rows

25 columns CELL-BITS / CONSTANT cols I 1 27 1 CELL-BITS 1- LSHIFT CONSTANT mask-bit I
29 (This code presumes that the bit-map goes left-to-right from
30 (high-bit to low-bit. If the bit-map goes the other way
31 (define '1 CONSTANT mask-bit' and exchange LSHIFT and RSHIFT
32 (in 'SET-BIT', 'sum-the-row', and 'show-universe'.
33 (The change is needed only if you are doing a bit-display.)

1 35 FALSE
VALUE TESTING I

37 (Working Variables) I
39 VARIABLE left VARIABLE middle VARIABLE right

4 1 VARIABLE center

43 VARIABLE top-1 VARIABLE top-0
44 VARIABLE mid-1 VARIABLE mid-0
45 VARIABLE bottom-1 VARIABLE bottom-0
46 VARIABLE sum-2 VARIABLE sum-1 VARIABLE sum-0

1 48 VARIABLE carry I
50 (Ancillary Operations)

52 : XOR! DUP >R @ XOR R> ! ;
53 : AND! DUP >R @ AND R> ! ;
54 : OR! DUP >R @ OR R> ! ;

56 : SET-BIT (offset addr --)
5 7 >R (offset) (R: addr)
5 8 CELL-BITS /MOD CELLS R> + >R (bit#)
5 9 mask-bit SWAP RSHIFT (mask)
60 R> OR! () (R:)
61 ;

63 (Add CELL-BITS 1-bit-numbers to CELL-BITS 2-bit-numberpairs.)

/ 65 : add-to-pair (x a b - -) I
L I

Forth Dimensions 39 May 1996 June

6 6 (Sets: carry)
6 7 ROT
68 DUP carry !
69 OVER XOR!
7 0 @ INVERT carry AND!
71 carry @ SWAP XOR!
72 ;

74 (Add CELL-BITS 2-bit-numberpairs to the 3-bit-numbersums.)

76 : add-to-sum-210 (X Y - -)
7 7 (Sets: sum-2 sum-1 sum-0)
78 >R (X) (R: Y)
79 sum-2 sum-1 add-to-pair ()
80 R> sum-1 sum-0 add-to-pair (R: 1
8 1 sum-1 @ INVERT carry @ AND sum-2 XOR!
82 ;

84 (The sum of three 1-bit numbers can be expressed with 2 bits.
85 (That is what 'sum-the-row' does, CELL-BITS at a time.)

8 7 (If bit-map left-to-right is high-bit to low-bit:)

8 9 (left middle right
90 ((. . . L 1 3 1 3 0 . . . 1 0 1 R . . . I

92 : aum-the-row
93 (Sets: sum-1 sum-0)
9 4 0 sum-1 !
9 5 OVER (= 1 3 1 30 . . . 2
96 CELL-BITS 1- RSHIFT OVER
9 7 (= I 3 0 2 9 . . . 1
9 8 sum-1 sum-0 add-to-pair
9 9 1 RSHIFT SWAP CELL-BITS

100 (= I L 3 1 3 0 . . .
101 sum-1 sum-0 add-to-pair
102 ;

(left middle right --)

1 0 I) sum-0 !
1 LSHIFT
O R I) OR

(left middle)
1- LSHIFT
2 l l) O R (left)

(1

104 (The Rules of the Game of Life)

106 (sum-2 sum-
107 (0 0
108 (0 0
109 (0 1
110 (0 1
111 (1 0
112 (1 0
113 (1 1
114 (1 1

-1 sum-0 center Stack Result)
0 x 0 0 x 0 0 or 8 total is dead.)
1 x 0 1 1 0 1 or 9 total is dead.)
0 x 1 0 x 0 2 total is dead.)
1 x 1 1 1 1 3 is survive or birth.)
0 x 1 1 x x 4 total is survive.)

1 x 1 0 1 0 5 total is dead.)
0 x 0 1 x 0 6 total is dead.)

1 x 0 0 1 0 7 total is dead.)

11 6 : live-or-dead (- - x)
117 sum-2 @ sum-1 @ XOR
118 (2 3 4 o r 5)
119 sum-2 @ sum-0 @ XOR
120 (1 3 4 o r 6)
121 AND
122 (3 o r 4)
123 center @ @ sum-0 @ OR AND (X)

1 124 ;

126 ('the-universe @ ' is a bit map of the Game of Life's world.)
127 ('new-universe @ ' and 'alt-universe @ ' are scratch universes.)

129 CREATE the-universe HERE CELL+ , cols rows * CELLS ALLOT
130 CREATE new-universe HERE CELL+ , cols rows * CELLS ALLOT

May 1996 June 40 Forth Dimensions

131 CREATE alt-universe HERE CELL+ , cols rows * CELLS ALLOT I
133 (This is a typical definition to initialize the universe.)

135 : checked ABORT" (File-Access Error) " ;

1 137
\ The definition of 'NOT' is up to you. I

139 : purge-universe (-- 1
140 the-universe @ cols rows * CELLS ERASE
141 new-universe @ cols rows * CELLS ERASE
142 ;

144 : load-universe (fileid --)

145 purge-universe
146 rows 0 DO
147 PAD cols CELL-BITS * 2 PICK READ-LINE checked
148 O= IF DROP LEAVE THEN
149 0 ?DO
150 I CHARS PAD + C@ [CHAR] 0 < NOT IF
151 I J cols CELLS * the-universe @ + SET-BIT
152 THEN
153 LOOP
154 LOOP DROP
155 ;

157 (Fill the universe with the next generation.)

159 (The topology of the universe is a torus: the top and
160 (bottom rows are next to each other; the leftmost and
161 (rightmost columns are next to each other.)

163 : spawn-a-generation (Universe --)

164 (For CELL-BITS columns at a time.)

165 cols 0 DO
166 (Get left, right, and middle cell positions.)
167 I 1- cols + cols MOD CELLS OVER @ + left !
168 I 1+ cols MOD CELLS OVER @ + right !
169 I CELLS OVER @ + middle !

(Get sums for mid row.)
left @ @ middle @ @ right @ @ sum-the-row
sum-1 @ mid-1 ! sum-0 @ mid-0 !

(Get sums for wrap-around "top" row.)
left @ rows 1- cols * CELLS + @

middle @ rows 1- cols * CELLS + @
right @ rows 1- cols * CELLS + @

sum-the-row
sum-1 @ top-1 ! sum-0 @ top-0 !

rows 1- 0 DO (- 1
(Remember the center life-cell.)
middle @ center !

(Get new bottom row.)

cols CELLS left + !
cols CELLS middle + !
cols CELLS right + !

(Get sums for bottom row.)

left @ @ middle @ @ right @ @ sum-the-row
sum-1 @ bottom-1 ! sum-0 @ bottom-0 !

195 (Add sums for mid and top rows.)

1 9 6 0 sum-2 !

Forth Dimensions 4 1 May 1996 June

(Judge.)
live-or-dead

J I cols * + CELLS new-universe @ + !

(Save new sums for mid and top rows.)
mid-1 @ top-1 ! mid-0 @ top-0 !
bottom-1 @ mid-1 ! bottom-0 @ mid-0 !

LOOP (Universe)
(Remember the center life-cell.)
middle @ center !

(Get the wrap-around "bottom" row.)
I 1- cols + cols MOD CELLS OVER @ + left !
I 1+ cols MOD CELLS OVER @ + right !
I CELLS OVER @ + middle !

(Get sums for bottom row.)
left @ @ middle @ @ right @ @ sum-the-row

219 (Add sums for mid and top rows.)
220 0 sum-2 !
221 mid-1 @ mid-0 @ add-to-sum-210
222 top-1 @ top-0 @ add-to-sum-210

(Judge.)
live-or-dead

I rows 1- cols * + CELLS new-universe @ + !

228 LOOP
229 (Exchange the-universe and new-universe.)
230 DUP @ new-universe @ ROT ! new-universe ! (1
231 ;

233 (This displays the bit-map of the universe. It should be
234 (replaced by high-performance system-specific graphic routine.)

/ ::: CREATE linebuffer columns CHARS ALLOT
VARIABLE #out

239 : show-universe (--)

240 rows 0 DO
241 0 #out !
242 cols 0 DO
243 I J cols * + CELLS the-universe @ + @ (cell)
244 CELL-BITS 0 DO (cell)
245 DUP mask-bit AND IF
24 6 [CHAR] 0
24 7 ELSE
248 BL
249 THEN (. char)
250 linebuffer #out @ CHARS + C! (cell)
251 1 #out +!
252 1 LSHIFT
253 LOOP DROP
254 LOOP
255 linebuffer #out @ -TRAILING TYPE CR
256 LOOP
257 :

259 (The inevitable cycle is found by advancing the alternate universe
260 (two generations for every generation of the reference universe.
261 (When the two universes are equal the cycle has been detected. 1

May 1996 June 42 Forth Dimensions

2 63 : BOUNDS OVER + SWAP ; (a n -- a+n a)

265 : detect-cycle (-- flag)
266 the-universe @ (addr)
267 alt-universe @ cols rows * CELLS BOUNDS DO
2 68 DUP @ I @ = NOT
2 69 IF DROP FALSE UNLOOP EXIT THEN
2 70 CELL+
2 71 1 CELLS +LOOP DROP
2 72 TRUE
273 ;

275 (Spawn new generations until the cycle is detected.)

277 VARIABLE generation

279 : ahow-life (-- 1
280 the-universe @ alt-universe @ cols rows * CELLS MOVE
281 0 (generation#)
282 BEGIN
283 the-universe spawn-a-generation
284 1 +
285 TESTING IF
286 DUP 100 MOD O= IF
287 DUP . CR
288 THEN
289 ELSE
290 ." Generation " DUP . CR
291 show-universe
292 THEN
293 alt-universe spawn-a-generation
294 alt-universe spawn-a-generation
295 detect-cycle
296 UNTIL
297 generation ! (1
298 ;

300 (After the cycle has been found, show it. The cycle may
301 (be detected at any place within its first occurrence.)

show-cycle (-- 1
0 (cycle#)

BEGIN
the-universe spawn-a-generation
1t
." Generation " DUP . . " in cycle " CR
show-universe
detect-cycle

UNTIL
." Cycle of " . ()

." after " generation @ . ." generations "
CR

31 7 : evolve
31 8 show-universe
319 show-lif e
32 0 show-cycle
321 :

323 : life
324 load-universe
325 evolve
326 ;

(file --)

()

328 \ Procedamus in pace. Wil Baden Costa Mesa, California

Forth Dimensions 43 May 1996 June

1 Gth Annual Rochester Forth Conference
"Open Systemsn

June 19-22,1996
Ryerson Polytechnic University

Toronto, Ontario, Canada

featuring invited rpeakers

MITCH BRADLEY CHARLES MOORE
Firmworks Inc. Computer Cowboys

creator of "Open Firmware" inventor of the Forth language

The Institute for Applied Forth Research is pleased to present the 16thAnnual Rochester Forth Conference, on Open Systems.
Since 198 1, the Rochester Forth Conference has been a popular forum for researchers, developers, users, and vendors of the
Forth language. This year we extend our welcome to all developers of Open Systems for an exchange of knowledge and opinion!

Papers Working Groups Poster Sessions Vendor Exhibits Tutorials
Papers will be presented on all aspects of Forth technology. Special topics include Open Firmware, Plug and Play Systems,
Scripting Languages, SGML and HTML, Java, Distributed Computing. There will also be papers and working groups on
Forth programming standards (including ANS Forth), embedded and red-time systems, ~cientif iden~ineerin~ applications,
and education. Tutorials will include: Introduction to Forth, Advanced Forth, Forth Under Windows, Metacompilation,
"Open Boot" Firmware, HTML, Java, and TCPIIP. Many of the major vendors of Forth and related technologies will be
on hand to demonstrate their products.

Conference Location
This year, for the first time, the Rochester Forth Conference moves to Toronto, Ontari-the city Peter Ustinov called
"New York run by the Swiss." Toronto is a center of high technology, finance, and culture, and is one of the world's most
popular tourist destinations. Our conferencevenue at Ryerson Polytechnic University is in the heart of downtown Toronto,
within walking distance of many attractions. Toronto is ideally located for U.S., Canadian, and international travel.

REGISTRATION:
0 U S 4 7 5 Attendee

0 US$200 Full-time student

(CAD$200 for a Canadian student)

O US$120 Spouse

FOR MORE INFORMATION:
Elliott Chapin

24 Monteith St.

Toronto, O N Canada M4Y 1 K7

echapin@interlog.com 41 6-92 1-9560

Rooms or see our WorU Wide Web page at

O US$150 Single for four nights (Wed., Thu., Fri., Sat.) http://maccs.dcss.mcmaster.ca/-ns/9Grochhhtml

O US$lOO Student single for four nights

US$200 Double (2 persons, 1 double bed) for four nights

Send registrations to:
Rochester Forth Conference

Box 1261

Annandale, VA 22003 USA

lforsley@jwk.com

US check, Visa, or Mastercard only

SPONSORS:
Microtronix Systems Ltd. -

London, Ontario, Canada
JWK International Corporation

Annandale, Virginia, USA
Presented in cooperation with:

the Southern Ontario Forth Interest Group

and McMaster University

I Using Forth to manipulate the real world

ln troduction
Power Control
Skip Carter
Monterey, California

Introduction
In this month's column, we will expand our ability to

control devices by looking at what we need to do in order
to turn AC and DC power off and on. There won't be any
code in this installment, instead we will be exploring part
ofthe alphabet soup of devices that can be used to manage
electrical power. This will provide us with the basic
background we will need in the future.

Switching Direct Current
It was in disguise, but we have already seen one good

method for controlling DC power to devices. This was the
part of the stepper motor circuit that switched power to the
different coils of the motor /seeFD XVIY51 Figure One is
nothing more than that circuit for one coil with a re-
arranged layout; it primarily consists of a bipolar Darlington
power transistor. The diode is there in order to protect the
transistor during switching when the load is induc-
tive. If you are going to be switching non-inductive
loads, the diode can be omitted. The resistor at the
base is to control the base current to the transistor
when it is switched on. This resistor needs to be
chosen with some care: since the controlling digital
port needs to be able to supply this current, this
implies that we want a relatively large resistor so
that the current is small. But we cannot make it too
small or we won't get a useful amount of current
through the collector. For a given transistor, the
ratio of the collector current, I,, to the base current,
I,, is a fixed value, the cuwentgain:

This gain is typically around 50 for a power
transistor. So a 10 milliamp current at the base can
switch half an amp through the collector; okay,
but not great. Signal transistors have a value of fi
that can be up around 200, but they have upper
limits on the amount of current that can go through
them; they are not designed to switch large
currents. If we drive the power transistor with the
output of a signal transistor, we can get very large

gains and still switch lots of current. This configuration is
what is done internally in a Darlington power transistor.
With a value ofb around 1000 we can switch 10 amps from
our lOma control signal (this is respectively large, not all
power transistors can handle that much!).

Notice that the circuit consists of the voltage supply, the
load to be driven, the transistor, then ground. This is called
low side switching, i.e., we are connecting the circuit to
ground when the circuit is turned on. Notice that the current
flows through two PN junctions to get from the low side of
the load to ground. Each of these junctions imposes a
voltage drop. Depending upon the transistor, this drop is
typically in the range of 0.3 to 0.6 volts per junction. This
means that the low side of the load will actually be
significantly aboveground. One can avoid this by swapping
the places of the load and the transistor so the transistor
connects the load to the voltage supply when it is turned on

Forth Dimensions 45 May 1996 June

Figure One-a (left) and One-b. Switching DC power. I
A 4

+v +v

Load

I L

Load

2L

Low side switching High side switching

(Figure One-b). This is known as high side switching. The
voltage drop still exists, but now it is on the supply voltage
being applied to the load. The ground for both the load and
the controlling circuit is the same. In some circumstances
this arrangement is more desirable, but it comes at a very
high price. Take a look at this circuit from the point of view
of the driver at the base. It looks like a diode going from the
base to the emitter. In order to turn on this diode, it must
be forward biased. For the NPN transistors we are using
here, this means the voltage at the base must be greater than
the voltage at the emitter by at least the amount of the diode
voltage drop. This is not too hard to achieve if we are
controlling a 3 volt circuit from our 5 volt I/O pin that is
driving the base. But what we'd really like to d o is switch
larger voltages, say 12 volts, from our processor. If we use
the transistor this way, it ends up acting more like an
amplfler giving some proportion of the voltage at the
collector, instead of the switch that we really want; this can
waste a lot of power. The only way to really achieve what
we want is to put some kind of voltage amplifying device
at the base, so that the base voltage is larger than the
collector voltage. In summary, use low-side switching to
control power unless you really must use high-side.

The bipolar transistors we have used so far are current
controlled devices. Using a Darlington reduces the current
required to turn on the transistor, but the current is still the
controlling factor. If we switch to a MOSFET power
transistor, we can do the equivalent things, but now we are
dealing with a voltage controlled device. Because it is
voltage controlled, very little current is needed to switch the
transistor-which is nice for driving from digital output
pins. There is a voltage drop between the drain and source
(which are functionally equivalent to the collector and
emitter), but in MOSFETs it is caused by the resistance of the
semiconductor material in the on state. This resistance can
be quite small, thus there can be very small voltage drops
across the device. The small voltage drop means an
efficiency gain in our transistor switch, but in order to
achieve it we need to apply enough voltage at the gate (the
equivalent of the base) in order to fully turn the transistor
on (if the transistor is only partially on, the drain-to-source
current path has a relatively large resistance).
Trying to achieve the fully on state of the
transistor is where we run into a disadvantage
with MOSFETs: the typical power MOSFET
requires gate voltages around 8 volts or more.
So now our device must have a bipolar
transistor switching power to the base of the
MOSFETso itcan turn on the real power to the
contolled circuit. At least, with this arrange-
ment the bipolar transistor does not need to
handle much current. The situation with
MOSFETs is even worse when used in a high-
side configuration: in this case, the voltage at
the gate must be substantially higher than the
voltage supply at the drain (by 8 or 10 volts).
As with bipolar transistors, high-side switch-
ing without the use of a voltage amplifier on
the control signal is extremely inefficient.
May 1996 June 46

The transistors we have worked with here have been
NPN or, the equivalent MOSFET concept, n-channel. We
could have used the alternate form, PNP (or p-channel for
MOSFET). However, because of differences at the quan-
tum mechanical level, PNP devices are less efficient,
particularly at high frequencies. Therefore, we will avoid
using them unless there is no other choice.

The SCR (Silicon Controlled Rectifier) is a device that acts
like a diode with a control line attached, and it has some
useful properties. It can be used like a transistor to switch
current on or off. When turned on, it behaves like a diode
in the circuit. But when it is turned off, an interesting thing
happens: the SCR continues to conduct until the source
currentstops. This makes it useful in applications where you
want to turn on something permenantly but only after, say,
other parts of the system have been properly intialized.
Figure Two shows a typical application of an SCR.

Switching Alternating Current
Now that we can control DC power, what about

controlling AC? The SCR almost gives us what we want
except, since it acts like a diode, it rectifies the voltage.
What about putting a pair of SCRs together with their
polarities reversed? It turns out that this is the right
approach; such a device is known as a TRIAC. The
matched, reversed SCRs means that a TRIAC will conduct
current in both directions when it is turned on. In other

Figure Two. Switching DC with an SCR.

+V A

Forth Dimensions

Load -

D

Figure Three. Example TRIAC circuit.

I

A

Load

+5v

180 1.2K
a*

(e.g., MOC3010)

Figure Four-a. Alternative approach to I10 ports under Linux. I
S" / d e v / p o r t U R / W OPEN-FILE ABORT" unable t o open / d e v / p o r t W

CONSTANT IO/PORTS \ f i l e d e s c r i p t o r f o r 1 / O P o r t s

: i n (p o r t -- va lue)

S>D IO/PORTS REPOSITION-FILE THROW \ seek t o p o r t l o c a t i o n
IO/PORTS PC@

f

: o u t (va lue p o r t --)

S>D IO/PORTS REPOSITION-FILE THROW
IO/PORTS PC!

I

respects, a TRIAC behaves just like an SCR. This means
that, if it is being used to control AC power and the control
signal turns it off, the current will cease to flow when the
source current drops to zero. The current drops to zero 120
times per second for AC (or 100 times for 50 Hz current),
so the voltage out of the TRIAC will drop quickly (but not
immediately) when the control signal turns it off.

If you are like me, the idea of getting AC power that
close to your computer's logic-level circuitry will make
you nervous. That is why, in my example TRIAC circuit
(Figure Three), the logic signal is optically isolated from
the AC supply: the optical isolator output drives the TRIAC
control input.

For controlling inductive AC loads, we still need to
consider the huge voltage spike we will get when the
magnetic field collapses when power is switched off,
Because of the alternating current, we don't use a diode
to do the shunting; instead, we use a capacitor. For
resistive loads, the circuit in Figure Three can be simplified
by removing the capacitor and replacing the 1.2K resistor
with just a piece of wire.

Feedback
My last column on using Linux seems to have resonated

with many of you. I got lots of feedback, but one of the
most interesting was a suggestion from Andras Zs6t6r for
a possible alternative approach to getting to the I/O ports.
AndrQs notes there is character device / dev /po r t which
maps to all the hardware I/O ports. To get to a particular
I/O port, use the port address (say, 0x378) as an offset into
the device file and reposition the file pointer to that
location.

So you can manipulate it in the manner [shown in
Figure Four-a. 1

Again, in order for this to work, your application must
be allowed read-write access on /dev/por t . The device
/ dev /po r t is rather special, it is much safer to use
makedev to create a new entry in /dev with the identical

Conclusion

major and minor device numbers, and adjust the permis-
sions on that file [as in Figure Four-b.1

Here, / dev / io is a new device driver entry point (it
points to the same code as / d e v / p o r t , since the device
numbers are the same); this is the name of the "filen that
should be opened in the above code. In this example,
anyone in the group u s e r s can gain read-write access to
the port (you can create a special group that not all users
are members of and change the group of the device, if you
want to restrict access to only some users-this is what
AndrQs does for his system).

This is a clean and direct approach to getting to the
ports, but it has one weakness: the management of
multiple process access to the devices is problematic.
Depending upon the way the system is configured and the
file access flags used when the file was opened, a file is
either exclusively for the use of the process or it can be
shared among multiple processes. Either choice causes
problems. If the file is not shared then once a process has
opened the I/O port device, no other process can get to
any otherports without resorting to very special tricks. So,
if you are running one program in the background that
uses an AID board at 0x320, you cannot have another
program running stepper motors on the parallel port at
0x378. Alternatively, if you open the file as shared, then
two different processes can get access to the same device
at the same time and not know it. Consider the confusion
that would be caused by two different processes trying to
simultaneously initialize a device (like the 8255) that takes
multiple configuration bytes that are successively written
to a single register. There are ways around this, but if you
are going to be making a practice of doing this sort of
thing, you should probably just write and install a proper
device driver.

I am also pleased to report that there is at least one
more ANS Forth compiler available for LinudUnix: gForth
by Bernd Paysan (paysanC4informatik.t~-muenchen.de).

We now have the
basic tools we need for
controlling electrical
power to devices. Next
time we will combine
these circuits with some
Forth code to control DC
motors. Please send your
comments, suggestions
and criticisms to me
through Forth Dimen-
sions or via e-mail at
skip@taygeta.com.

Figure Four-b.

c rw- rw- - - - 1 r o o t kmem 1, 4 J u l 17 1994 /dev /po r t
c r w - r w - r - - 1 r o o t u s e r s 1, 4 Mar 11 18:53 / d e v / i o

Skip Carter is a scientific and
software consultant. He is the
leader of the Forth Scientific Li-
brary project, and maintains the
system taygeta on the Internet.
He is also the President of the
Forth Interest Group.

Forth Dimensions May 1996 June

CALL FOR PAPERS
FORML CONFERENCE
The original technical conference for professional Forth programmers and users.

Eighteenth annual FORML Forth Modification Laboratory
Conference

Following Thanksgiving November 29-December 1,1996

Asilomar Conference Center
Monterey Peninsula overlooking the Pacific Ocean

Pacific Grove, California USA

Theme: Experimenting with the ANS Forth Standard
The ANS Forth standard has been out for two years, and the review process will start in another two years. During the
development of the standard, the lack of "common practice" led to many last-minute experiments. FORML, with it's charter as
Forth's "Modification Laboratory," is the appropriate place to let others know what your experiences have been as a developer or
user while there's time for your ideas to spread.

Papers are sought that report on your experience writing ANS Forth programs and systems. That is, on your experiments. What
worked, what didn't? How easy or difficult was it to ... ? Are ANS programs really portable? Where were the "gotcha's" in writing
the half-dozen or so public domain ANS systems? How are you checking that your program or system really does comply? What
has it been like to convert your customer base to ANS? Or is it worth doing at all?

Has documentation improved because of the ANS examples? Is it easier to read another's code? Have you seen any change in
Forth's acceptance? What is needed for there to be a truly international standard?

By calling attention to the successes and the problems now, before the review process begins, we hope that others will repeat
your experiments, confirming or refuting your hypotheses. Can an alternative to DOES> really resolve syntactic problems and
make meta-compilation easier? Can a tethered system be compliant and efficient? Would it make sense to have various common
groups of environmental restrictions labeled "Forth models"?

Please, whether your ANS experiment was one line or a thousand, whether it succeeded or failed, or can be described in one page
or ten, bring it to this year's FORML Conference to share with the world. As always, papers on any Forth-related topic are
welcome.

Mail abstract(s) of approximately 100 words by October 1, 1996 to FORML, PO Box 2154, Oakland, CA 94621 or e-mail to
FORML@ami.vip.best.com. Completed papers are due November I , 1996.

The Asilomar Conference Center combines excellent meeting and comfortable living accommodations with secluded forests on a
Pacific Ocean beach. Registration includes use of conference facilities, deluxe rooms, meals, and nightly wine and cheese parties.

John Rible, Conference Chairman Robert Reiling, Conference Director

Registration and membership information available by calling, fax or writing to:
Forth Interest Group, PO Box 2154, Oakland, CA 94621, (5 10) 893-6784, fax (510) 535-1295

Conference sponsored by the Forth Modification Laboratory, a Forth Interest Group activity

