

SILICON COMPOSERS INC

FAST Forth Native-Language Embedded Computers

DUP

>R
R>

Harris RTX 200dm l&bit Forth Chip SC32"" 32-bit Forth Microprocessor
-8 or 10 MHz operation and 15 MIPS speed. 08 or 10 MHz operation and 15 MIPS speed.
-1-cycle 16 x 16 = 32-bit multiply. 1 -clock cycle instruction execution.
1 -cycle 1 Cprioritized interrupts. *Contiguous 16 GB data and 2 GB code space.

*two 256-word stack memories. *Stack depths limited only by available memory.
*@-channel 110 bus & 3 timer/counters. *Bus requestlbus grant lines with on-chip tristate.

SC/FOX PCS (Parallel Coprocessor System) SC/FOX SBC32 (Single Board Computer32)
*RTX 2000 industrial PGA CPU; 8 & 10 MHz. 032-bit SC32 industrial grade Forth PGA CPU.
*System speed options: 8 or 10 MHz. *System speed options: 8 or 10 MHz.
-32 KB to 1 MB 0-wait-state static RAM. 032 KB to 512 KB 0-wait-state static RAM.
*Full-length PC/XT/AT plug-in (6-layer) board. *100mm x 160mm Eurocard size (Clayer) board.

SC/FOX VME SBC (Single Board Computer) SC/FOX PCS32 (Parallel Coprocessor Sys)
*RTX 2000 industrial PGA CPU; 8, 10, 12 MHz. ' -32-bit SC32 industrial grade Forth PGA CPU.
*Bus Master, System Controller, or Bus Slave. *System speed options: 8 or 10 MHz.
.Up to 640 KB Gwait-state static RAM. 064 KB to 1 MB 0-wait-state static RAM.
-233mm x 160mm 6U size (&layer) board. *Full-length PC/XT/AT plug-in (6-layer) board.

SC/FOX CUB (Single Board Computer) SC/FOX SBC (Single Board Computer)
*RTX 2000 PLCC or 200lA PLCC chip. *RTX 2000 industrial grade PGA CPU.
*System speed options: 8, 10, or 12 MHz. *System speed options: 8, 10, or 12 MHz.
032 KB to 256 KB 0-wait-state SRAM. 932 KB to 512 KB 0-wait-state static RAM.
-100mm x l00mm size (Clayer) board. 100mm x 160mm Eurocard size (Clayer) board.

For additional product information and OEM pricing, please contact us at:
SILICON COMPOSERS INC 655 W. Evelyn Ave. #7, Mountain View, CA 94041 (415) 961-8778

Features

1 Coordinating Pygmy and C Frank Sergeant
A few changes allow Pygmy Forth to be wrapped inside a C program. The C program can pass
strings to be INTERPRET^^ by Pygmy. Pygmy can call C library functions or functions defined
in the C program. The essence of this method is this: The C wrapper program allocates RAM
into which it loads the Forth image. The C wrapper contains a table holding the addresses of
the functions or structures (variables) we want Forth to be able to access. C calls the loaded
Forth image as a function, passing along the address of the table. Via the table, Forth can call
the C functions, or read or modify the C structures (variables). Eventually, Forth terminates,
returning control to the C wrapper.

D 2 1 Different ;a/ File Comparison Wil Baden
"Stretching Forth1'-Every programmer needs a utility to compare files-particularly source
files-to find where and how they are different. In the course of making a series of small
modifications to fix a misbehaving application, the programmer can easily lose track of just
what has been done. Then the file comparison utility can be used to show the changes. To
d o the job right is not a trivial task. The obvious algorithm will sooner than later fail miserably.
The trick is not to look for differences but to look for the longest common subsequence-the
longest set of lines which are the same in both files and in the same order with what's different
interspersed. What's left are the differences. The author has been refining his version of t h s
tool since 1976 and shares here the benefits of his experience.

30 Getting to the Hardware from Linux Skip Carter
'Forthware'~Those who move to Linux without previous experience with minicomputers
and workstations are probably shocked to discover one fact about sophisticated operating
systems: you no longer control the machine, the operating system does. The essentials are
covered here: which Forth to use, how to access the parallel port, how to add device drivers;
the Linux code for the preceding issue's topic (stepper motors) is included.

Departments 1
4 Editorial A fark'well, working Forth, and a request.

4 On the Stack upcoming topics for future issues.

5 Letters List length and hash quality; Objects of design; Opportunists,
blind disciples, and fanatics.

6 dot-quote Introducing Forth to the world of computer science.

32 Advertisers Index

42 Fast Forthward.. Success stories sought, one told, and a transition.

Forth Dimensions 3 March 1996 April

Forth Dimensions
Volume XVII. Number 6

March 1996 April

I want to thank Mike Elola-he has long served as our "Fast Forthwardn columnist.
In that role, he has poked and probed at Forth as we know it. Where he has found
weaknesses or omissions, he has not hesitated to point them out. When he has discovered
avenues whereby Forth might navigate into wider arenas, he has offered suggestions and
road maps.

We have always enjoyed Mike's contributions, especially when they have made us
collectively uncomfortable. He often has helped to keep our heads out of the sand by
talking about contemporary programming expectations and implementations and
interfaces, support of which is expected by people coming to Forth from other contexts.

But this issue contains Mike's last contribution to the column. In it, he shows in
anecdotal form where his career path is leading him. And he invites someone new to take
over "Fast Forthward." If you would like to write about Forth and contemporary
programming issues, about doing Forth business, and/or about Forth success stories, I'd
enjoy hearing from you.

Meanwhile, columnists Wil Baden and Skip Carter will continue their challenging and
informative columns, "Stretching Forth" and "Forthware."

Working Forth
Another Fortune 500 company has joined the ranks of those pursuing FIG members

to fill current openings for Forth programmers. Remember to keep in touch with the FIG
office when you are looking for Forth work-it's a pleasure to help our active members
find rewarding, interesting jobs.

We Only Ask Two Thlngs.. .
We look forward to sharing with you the useful, educational, and interesting

information that crosses our editorial desktop in the coming year. Two things will make
that possible:

First, please keep your membership in the Forth Interest Group current. Members'
dues are FIG'S financial mainstay, paying the bills that keep the magazine in print and
the office open. Our not-for-profit organization needs the support of each of us if it is
to stay in good health. You could also encourage your employer to call FIG and inquire
about the benefits of a corporate membership.

Secondly, write about your Forth experiences and discoveries, and encourage others
to do so. Forth Dimensions represents the relevant ideas and work of its readers. A lot
of interesting projects deserve a showcase, but we don't know about them until someone
brings them to our attention. And fundamental Forth concepts can always be explained
again, and perhaps better, in a well-written tutorial.

Your participation will be most welcome-stay in touch!

On the Stack... 1
3

Coming soon in Forth Dimensions: I
Switching DC and AC Electrical Power
R/W DOS Disks from non-DOS Hardware
Safety-Critical Systems
A Simple State-Machine Lexicon
Taming Variables And Pointers I

-Marlin Ouverson, Editor
editor@fortb.org

March 1996 April 4

Published by the
Forth Interest Group I

Editor
Marlin Ouverson

Circulation/Order Desk
Frank Hall I

Forth Dimensions welcomes edi-
torial material, letters to the editor,
and comments from its readers.
N o responsibility is assumed for
accuracy of submissions.

Subscription to Forth Dimensions
is included with membership in
the Forth Interest Group at $45
per year ($53 Canada/Mexico, $60
overseas air). For membership,
change of address, and to submit
items for publication, the address
is: Forth Interest Group, P.O. Box
21 54, Oakland, California 94621.
Administrative offices:
510-89-FORTH Fax: 510-535-1295

Copyright 0 1996 by Forth Interest
Group, Inc. The material contained
in this periodical (but not the code)
is copyrighted by the individual
authors of the artides and by Forth
Interest Group, Inc., respectively.
Any reproduction or use of this
periodical as it is compiled or the
articles, except reproductions For
non-commercial purposes, with-
out the written permission of Forth
Interest Group, Inc. is a violation
of the Copyright Laws. Any code
bearing a copyright notice, how-
ever, can be used only with per-
mission of the copyright holder.

The Forth Interest Group
The Forth Interest Group is the
association of programmers, man-
agers, and engineers who create
practical, Forth-based solutions to
real-world needs. Many research
hardware and software designs that
will advance the general state of
the art. FIG provides a dirnate of
intellectual exchange and benefits
intended to assist each of its mem-
bers. Publications, conferences,
seminars, telecommunications, and
area chapter meetings are among
its activities.

"ForthDimarrions(ISSN 08E4-0822)
is published bimonthly for $45/
53/60 per year by the Fonh Interest
Group, 4800 Allendale Ave.,
Oakland, CA 94619. Second-class
postage paid at Oakland, CA.
POSIMAS~FR: Send address changes
to Forth Dimensions, P.O. Box
2154, Oakland, CA 94621-0054."

6% Forth Dimensions

I
i
1
1

send your feedback, quest,ons, criticisms, and other
responses to editor@forth.org or to the editor in care of
the Forth Interest Group. Submissions maybe edited for
clarity and length.

List Length and Hash Quality
Xan Gregg (FD XVII/4) uses the average list length to

evaluate the quality of the hash functions. This neglects
the effect that the distribution of the list lengths can have
On the performance. Viewed another Way, it just tells US

how many buckets are filled.
As a better evaluation method, consider the cost of

accessing every item Present in the table once. For one
bucket with a list of length 1 it is 1(1+1)/2 comparisons. SO
for the whole table it is

C length(list)(length(list) + 1)

list e buckets 2

M, Anton Ertl
anton@complang.tuwien.ac.at

Xan Gregg replies:
It's true that the average list length does hide distribu-

tion but that is why the provided ANALYZE-
HASH function also prints a simple frequency table of list
lengths which would help find any distribution anomalies.
I should have stated in the article that one should strive to
eliminate any particularly long lists before using the
average list length metric.

That said. I happily recognize Anton's as a
superior indicator of hash function quality, since it does
take distribution variations into account, so any irregulari-
ties in distribution will show u p in the value. I would,
however, convert the summation to an average by divid-
ing the number entries thus providing an
"average accessn indicator.

Objects of Design
Dear Mr. Ouverson,

I applaud the Novemhr-Decemhr 1 9 5 issue of F ~ &
D ~ ~ ~ ~ ~ ~ ~ ~ , especially the data-array management issues
discussed in the articles on hashing and associative lis&.
These data array articles stand as anexcellent continuation
of the recent article by Mr. McGowan covering sets, sticks,
and queues. These types of articles have served as both
general programming references and as Forth-specific
references useful for &&-management programming tasks.

The data-array creation articles take an approach that
creates arrays within the Forth dictionary. Have any Forth
programmers built these structures outside the Forth
dictionary-and what tradeoffs occur as a result?

In reference to the ongoing evangelism for object
orientation with Forth, the enthusiastic support for object-

Forth Dimensions

oriented programming (OOP) seems to overlook the com-
panion design methodology that supports object-oriented
programming benefits: class hierarchy design, dynamic
object behavior, and functional data flow design. In view of
the quality and I to
encounter OOp articles that review object-oriented design
(OOD) methodology applied to Forth programming.

Thank you,
Wil Blake

blakew@sunrise.cse.fau.edu

Opportunists, Blind Disciples, and Fanatics
I ,ad a piece in the November 1995 issue of FO&

Dimemiom entitled "OOP, porth and the Future."
I disagree. I am not criticizing Mr. Kneusel, much of

what he says is absolutely true, e.g., write a commercial
operating system in Forth, support Windows better, develop
a g o d way to link to C libraries (because they are there). Just
don't blindly go after o o p s , k t others make the mistakes.

In my opinion, Forth does not need to "climb onn any
bandwagon or "riden any tide in the computer world. Let
the other guys find out for themselves. Most won't and so
what? The computing community is a world full of users,
rich opportunists, blind disciples, and fanatics with a very
few careful, thoughtful persons sprinkled here and there.

Users buy computer stuff and make the opportunists
rich. Nothing wrong there. It's the American way.

The chief fanatics generally are self-proclaimed oracles
who collect a sometimes huge following of blind disciples
(teachers) and other, ordinary fervent fanatics (followers).

me use, and the opportunists are some-
what logical reasoning. ne opportunists say, "1 will sell
this over-priced stuff because I me users say, will
buy this because 1 want it; it's and its
Both groups are basically happy with their respective lot.

Who are the few careful, thoughtful persons? 1 hope
the ~ ~ ~ ~ h ~ ~ ~ , are among them.
 hi^ anathema in he computer community because

of the extremely, fervently religious nature of so-called
science,n not because ~~~~h has any flaws or

disadvantages at all. In fact, in an atmosphere like this,
anything that has a small following and great advantages
is all the more to be cast out.

What is the world's most productive language? If you
can't aXXwer that, sane must be forcing You to read
this. I have used Forth since it was first made available by
the little group of devotees in the 70's. I can testify from
firsthand experience that is more than lox more
productive (yes, that is at least a ten back there) than any

language you can name.
is an language that lives in an

environment that leads low productivity. C
Programmers gleefully deride ~or thers because ~ o r t h uses
stacks. And just where do their so "wonderful," "local"

go, anyway? Use and find out for yourself.
C++ is even worse-much, much worse. Don't take my

for use it and see.
UNIX is an awful, b ~ g - ~ ~ d d e n anachronism written in C,

proclaimed in leather-bound, gilt-edged tomes (with bound-
5 March 1996 April

in, red ribbon markers) and jealously guarded by a commit-
tee of high priests (although you must find a rabbi to tell you
how it must be used). Just try to criticize it (of course, after
using it) and see how you get sneered at.

What is it that OOPS provide us (other than the obvious
literal meaning of the word)? Reusability? No! Information
hiding? Those are just words. You can't hide anything, and
why should you be proud of trying? Code that is easier to
understand? No! Faster execution? Well, maybe a little
faster than C. Portability? Absolutely not! A common code-
speak to unite the "babble?" No, no, no! Is it cute and
complex? Absolutely! Aha, there it is. That must be why it
is so runaway popular. I no longer argue with them, the
believers. As long as someone will pay me to, I will
continue to use C, C++, UNIX, X-Windows, and Fortran.

Derision aside for a moment, there is, in my opinion,
one useful thing that OOPing has introduced to the world,
and that is the concept of an object that is an instance of
a class. An object can be created on the fly, at run time, and
the data. owned by any object is always accessible through
the object's class methods. That's about it. It's a concept,
a way of looking at a problem. Forth can already do this.
Use a concept if it makes sense.

Perhaps there are other OOPing advantages I have
overlooked. The Forth community should continue to
discuss the useful ideas as they spring up.

When the cost to create and maintain code is important,
Forth always wins. Use Forth when it affects yourbottom
line. Stick with what's important.

Support for older systems
Hands-on hardware and software

Computing on the Small Scale
Since 1983

Subscriptions
1 year $24 - 2 years $44

I All Back Issues available.

TC J
The Computer Journal

P.O. Box 3900
Citrus Heights, CA 9561 1-3900

800-424-8825 1 91 6-722-4970
Fax: 91 6-722-7480
BBS: 91 6-722-5799

Philip R. Monson
Kekaha, Hawaii

March 1996 April 6 Forth Dimensions I

-

dot-quote

"I wasparticularlystruck by readingtheTuring Award
lecture of John Backus, in which he complains that
programming languages are growing more enormous
but not more powerful. He attributes this to the fact that
conventional languages are built on a large rigid frame-
work, so trying to make them more powerful entails
tacking on more and more features. This makes Ian-
guagesthat are bigger and bigger, and harder and harder
to use. He proposes a different approach, where a
language has a small and flexible framework on which"
features can be added as changeable parts, rather than
built-in. As I read this, it became apparent to me that
(classic) Forth offers very much this approach. It would
be interesting i f someone with a strong background in
Computer Science could compare the solution given by
Backus with the solution given by Moore. I think that
here, too, some important ideas within C.S. were antici-
pated by Forth.

"As anecdotes about Charles Moore disclose, lan-
guage i s apparently far more malleable, in his eyes, than

in the eyes of most people. The impressive thing i s that the
ability to exercise a high degree of control over the shape
of the language itself i s not reserved for the inventor
alone-it i s available to the moderately adept user. There
should be C.S. papers which examine the idea of making
language itselfmore malleableand flexible-the approach
Moore has taken

"Charles Moore took a look at the problems of com-
puter programming from the point of view of the program-
mer rather than that of the theoretical computer scientist.
The fact that many of his ideas, developed independently,
coincide with or anticipated the findings of mainstream
Computer Science is a very significant fact which needs to
be played up in the literature. The claims that the Forth
community makes about the powers ofthe language need
to be made precise and, at least experimentally, docu-
mented. And all this needsto bedone by people who know
the literature and language of Computer Science."

--John I. Wavrik
jjwavrik@ucsd.edu

Excerpted from comp.lang.forth with permission

Coordinating
Pygmy and C
Frank Sergeant
San Marcos, Texas

A few changes allow Pygmy Forth to be wrapped inside
a C program. The C program can pass strings to be
INTERPRETed by Pygmy. Pygmy can call C library
functions or functions defined in the C program.

Overview
The essence of this method is this: The C wrapper

program allocates RAM into which it loads the Forth
image. The C wrapper contains a table holding the
addresses of the functions or structures (variables) we
want Forth to be able to access. C calls the loaded Forth
image as a function, passing along the address of the table.
Via the table, Forth can call the C functions, or read or
modify the C structures (variables). Eventually, Forth
terminates, returning control to the C wrapper.

The mere mention of the function name in the table in
the C program causes the referenced function to be
included by the linker when the C program is compiled
and linked.

The address of the table is passed to Pygmy on the
"commandline" that Pygmy will INTERPRET. Indeed, this
mechanism is general enough that any Forth code to be
INTERPRETed can be passed to Pygmy on this "command
line." The same PYGMY.COM file that can serve as the
Forth image to be loaded and called by the C program can
also be executed directly from DOS, either with or without
a string to be INTERPRET^^.

The CPU and Operating System
Pygmy runs under DOS on IBM PC-compatible com-

puters with CPUs in the 80x86 family (8088, 8086, 80286,
80386, 80486, Pentium, etc.) Although very widespread,
this family of CPUs is so weird that perhaps a word or. two
of terminology are in order.

Memory is segmented. A full address is composed of
two parts. The offset portion indicates how far into the
segment the address is, but doesn't indicate where the
segment begins. Often, once the segment registers are set
up, we forget about them and treat the offset portion as if
it were the address. This works fine as long as all the
segment registers point to the same segment and we are
content to access memory only within this one segment.

Forth Dimensions

If we want to access memory outside of our segment, we
must consider the segment portion of an address as well
as the offset portion. A full address might be written as
SEG:OFF. For example 01234567 would mean an offset of
4567 hexadecimal into the segment beginning at 0123
hexadecimal times 16. I said it was weird. You can think
of the segment portion of an address as supplying the
starting position of a segment in terms of paragraphs,
where one paragraph is equal to 16 bytes.

In terms of Pygmy, the words @ and ! take 16-bit
addresses (the offset only portion) and are relative to the
single segment into which Pygmy is loaded by DOS. DOS
takes care of setting u p the segment registers, and we can
more or less forget they even exist-unless we want to
access something outside of our segment. In C-for-DOS
terminology, a far pointer is a SEG:OFF address. Pygmy
can fetch and store from/to such a 32-bit address with the
words L@ and L ! . We will need this capability to access
C data and functions.

The word "address" sometimes means the full SEG:OFF
(far pointer) 32-bit address and sometimes just means the
16-bit offset.

Although later members of the 80x86 family of CPUs
have various modes (16-bit, 32-bit, protected, virtual,
real), for our purposes, they are all just faster versions
emulating the original 16-bit 8088/8086 "real mode."

The segment registers are CS, DS, ES, and SS. SS is the
stack segment register and is used in connection with the
hardware stack pointer SP (which is Pygmy's data stack
pointer) and register BP (which is Pygmy's return stack
pointer). CS is the code segment register used in connec-
tion with the CPU's IP instruction pointer register (pro-
gram counter). Most data access is in connection with the
DS (data segment) register. Pygmy keeps the top item of
the data stack in the BX register.

Command-Line Access
Pygmy Forth is a 16-bit, real-mode program loaded

from a .COM file. DOS loads it into a 16-bit segment at an
offset of $100 (256 decimal). The first $100 bytes are
reserved by DOS as the Program Segment Prefix (PSP).
Within the PSP (at offset $80), DOS places any command-

7 March 1996 April

line parameters. This takes the form of a Forth-style
counted string followed by a carriage return. For example,
invoking Pygmy from the command line as
C:\>pygmy DUP DUP DUP

causes DOS to put the string "DUP DUP DUP" at offset $80.
If Pygmy could interpret from a string, say with the

word EVALUATE (a # -) , it could interpret the
command line with
$80 (a) COUNT (a #) EVALUATE.

We add the word EVALUATE to Pygmy as in Figure One.

If there is no string passed on the command line, an
empty string is built at offset $80. EVALUATEing it is
equivalent to a NOP. We might as well EVALUATE the
command line every time Pygmy is started. This is easily
done by adding COMMAND-LINE COUNT EVALUATE to
BOOT, as in Figure Three.

Figure One. Adding EVALUATE 10 Pygmy.

$80 CONSTANT COMMAND-LINE
(it acts like a counted string)

: EVALUATE (a # -)

>IN 2 @ PUSH PUSH TIB @ PUSH #TIB @ PUSH
(a #) #TIB ! TIB ! ()

0 0 INTERPRET
POP #TIB ! POP TIB ! POP POP >IN 2 ! ;

Easy C
Once we can evaluate the command line, we can write

a C program that executes Pygmy with C's spawn call
which passes a command line to Pygmy. When Pygmy
does BYE, control is returned to the C program.

This is the simplest way to combine Pygmy
and C, as it does not require modifying Pygmy
any further than described above. However, it
has the disadvantage of not allowing Pygmy's
dictionary to be extended easily. Each time C
calls (spawns) Pygmy, the original Pygmy ex-
ecutable file is reloaded. In other words, the
Forth image does not stay resident in memory.
Pygmy won't remember anything between calls.
(However, if all we want to do is allow Pygmy
access to C functions or C library routines, this
may be sufficient.)

A little further work on the kernel cures
those problems.

We still have one minor problem. If an error occurs, we I I I
must restore a proper value to TIB. Otherwise, QUERY will
try to use the most recently EVALUATE^ string as the
terminal input buffer. It might not be long enough, etc. So,
we also change the definition of ABORT slightly. Pygmy
already saves the default word to execute for EMIT in the
variable DEFAULT-EMIT. This is used inside ABORT so if
an error occurs while output is directed to the printer,
ABORT directs the output back to the screen. Similarly, we
create a DEFAULT-TIB so if an error occurs while
EVALUATEing a string, the value of TIB can be restored

A More Complete C/Forth Interface
The next step modifies the Pygmy kernel so it can be

called as a subroutine. The C wrapper program builds a
table of addresses to be passed to Pygmy. C allocates an
array of bytes named loadbuffer, opens the file containing
the Forth image (e.g., PYGMYC.COM), then reads the file
into the loadbuffer beginning at an offset of $100 (as
expected by a DOS .COM file). Once this housekeeping is
finished, C can call Forth as often as it wishes as long as
it builds a "command line" at an offset of $80 into the

to its proper value. [See Figure Two.] I loadbuffer array. Typically, the first thing we do is pass the
address of the table to Forth.

March 1996 April 8 Forth Dimensions I

Figure Two. Restoring TIB after an EVALUATE error.

: (ABORT (-)

[' 1 DEFAULT-EMIT 1+ @ [' I EMIT 1+ !
DEFAULT-TIB @ TIB !
HERE TYPES SPACE POP POP TYPES SP ! BL-K @ ?DUP DROP

QUIT ;

(ABORT IS ABORT

There are still a few details to tend

Making the Forth Kernel
a Subroutine

We play fast and loose with the
stacks when fooling around interac-
tively in Forth. A minor underflow or
overflow of Forth's data stack isn't
usually a problem, but we don't want
to screw up C'S stack. Therefore, upon

VARIABLE DEFAULT-TIB
TIB @ DEFAULT-TIB !

entry to Forth, we carefully preserve

to, both in the Forth kernel and in the
C wrapper.

Now Pygmy can INTERPRET any string passed on the
command line, e.g.,
C:\>pygrny ." Hello, how are you?" CR
KEY DROP

or
C:\>pygmy WORDS BYE

the registers and C's stack pointer. Then we set up private
stacks for Forth in its single 16-bit segment. We define
#BYE to restore C's registers and stack pointer, and do a
long return to the C wrapper while passing back a return
code.

We've got another question to decide. Do we want to
be required to execute the Forth from a C wrapper, or do

Figure Three. Interpreting the command line w h e n ~ o o ~ i n g .

(C h a n g e BOOT t o i n t e rp r e t t h e c o m m a n d l i n e)
: (BOOT (-)

COMMAND-LINE COUNT (a #) EVALUATE
(i f it d o e s n ' t do BYE, w e f a l l t h r o u g h t o t h e f o l l o w i n g :)
$ 3 F ATTR ! C L S
CR ." PYGMY F o r t h v 1 . 4 m o d i f i e d t o i n t e r p r e t c o m m a n d l i n e "
OPEN-FILES . F I L E S

CR ." h i " Q U I T ;

' (BOOT I S BOOT

we want the option of executing it as a .COM file directly
from the command line? By leaving the original definition
of BYE which returns to DOS and defining an alternate
#BYE which returns from subroutine, we can use the same
PYGMY.COM either as a Forth image inside a C program
or as a stand-alone executable at the DOS command line.

The main changes to the kernel are
1. Set up three slots near the beginning of the image (for

saving the calling program's SS and SP and for holding
the initial Forth word to be executed).

2. Save the registers upon entry. This is necessary if we
wish to return to the C program, but doesn't hurt
anything if we return directly to DOS.

3. Force the other segment registers to have the same value
as CS. Again, this is necessary if Pygmy is called from
C, but doesn't hurt anything if Pygmy is executed from
DOS.

4. Define #BYE to return to C rather than to DOS.
Take a careful look at the definition of boot. [Fig. Four1

Figure Four. Defining b o o t .

CODE boot
HERE 8 + JMP, (j u m p over t h e n e x t 6 b y t e s
0 , (f i r s t s l o t , a t $ 1 0 2 , f o r sav ing S P)

0 , (second s l o t , a t $ 1 0 4 , f o r s a v i n g S S)

0 , (t h i r d s l o t , a t $ 1 0 6 , f o r ho ld ing)

(address of RESET)

PUSHALL, (save registers on C ' s s t a c k)

CS PUSH, D S POP, (copy C S t o DS s o t h a t t h e three 1
(s l o t s w i l l be addressable 1

S S AX MOV,
AX $ 1 0 4) MOV, (save C ' s s t a c k s e g m e n t register)

S P $ 1 0 2) MOV, (save C ' s s t a c k o f f s e t register
PUSHF, BX P O P , (save i n t e r r u p t " s t a t u s i n BX
DS AX MOV,
AX E S MOV, (copy C S & DS t o E S)

C L I , (disable i n t e r r u p t s 1
AX S S MOV, (C o p y C S t o S S
RSTACK #, BP MOV, (i n i t i a l i z e r e t u r n s t a c k)

DSTACK #, S P MOV, (i n i t i a l i z e p a r a m e t e r s t a c k 1
BX PUSH,
POPF, (restore i n t e r r u p t s t a t u s)

$ 1 0 6) AX MOV,
AX JMP, (j u m p t o RESET)

END -CODE

The first instruction is an unconditional jump to skip over
six bytes, which are filled with zeroes. These six bytes
form the three slots to be used to save the calling
program's stack pointer segment and offset (i.e., S S and
SP) and for holding the address of the initial word for
Pygmy to execute (typically RESET).

As PYGMY.COM is a .COM file, the image will be
loaded at an offset of $100. Since the jump instruction
takes two bytes, we now know the addresses of the three
slots: S P is saved in the first slot at address $102. SS is
saved in the second slot at address $104. boot expects to
find the address of the first word to be executed in the third
slot, at address $106.

After the jump instruction and the three slots, the
PUSHALL, macro pushes a lot of registers on C's stack, the
value of CS is put into the other segment registers, and C's
stack pointer registers are saved in the first two slots.
Interrupts are disabled prior to setting up the Forth stacks,
then restored to their previous state (enabled or disabled).

Finally, a jump is made
to the address stored in
the third slot, and we are
away-running Forth.

Forth Dimensions 9 March 1996 April

Figure Five. Restoring registers for the return to C. 1
CODE #BYE (r e t u r n c o d e -) (u s e t h i s f o r r e t u r n i n g t o C)

PUSHF, (p u t f l a g s on s t a c k f o r p o p p i n g i n t o AX)

AX POP, (s a v e i n t e r r u p t s t a t u s i n AX)

C L I , (d i s a b l e i n t e r r u p t s w h i l e w e change s t a c k s)

$102) S P MOV, (r e s t o r e C ' s s t a c k p o i n t e r r e g i s t e r)
$104) S S MOV, (r e s t o r e C ' s s t a c k segment r e g i s t e r)
AX PUSH, (p u t s a v e d f l a g s back on t h e s t a c k)

POPF, (r e s t o r e i n t e r r u p t s t a t u s)
AX POP, (remove v a l u e AX s a v e d by PUSHALL, i n b o o t)

BX PUSH, (t h e n r e p l a c e it w i t h r e t u r n c o d e)
POPALL, (r e s t o r e C ' s r e g i s t e r s e x c e p t AX)

LRET, (f a r r e t u r n t o C w i t h r e t u r n c o d e i n AX)

END-CODE

Figure Six. New macros clean up other definitions.

(e x t e n d a s s e m b l e r w i t h some macros)
: PUSHALL, (-) DS PUSH, E S PUSH, S I PUSH, D I PUSH, BP PUSH,

DX PUSH, CX PUSH, BX PUSH, AX PUSH, ;

: POPALL, (-) AX POP, BX POP, CX POP, DX POP, BP POP,
D I POP, S I POP, E S POP, DS POP, ;

Similarly, we define a matching #BYE to restore the
saved registers and do a far return back to C. [Figure Five1

We can then return to C with a return code of zero by
typing 0 #BYE.

The macros PUSHALL, and POP ALL, which simply
push or pop a bunch of registers, remove some of the
clutter from the new definitions of b o o t and #BYE.

[Figure Six1
The last block of the kernel is responsible for plugging

the address of RESET into b o o t . Previously, this was
plugged directly into a move immediate instruction at
seven bytes into the definition of b o o t . We must change
this seven to a six to plug the address of RESET into the
third slot in b o o t .

That does it, as far as the changes to Pygmy's kernel go.
Regenerate a Pygmy kernel with 1 LOAD and you are
done. There are still a few additions needed to let Pygmy
call the C functions, but they do not need to be part of the
kernel. In particular, we need to be able to do a long call
(an intersegment indirect call), so we add a definition for
LCALL, to the assembler. Then we define some macros
and defining words to make it easy to access the C
functions and variables from within Pygmy. These will be
shown later in an example of calling Borland graphics
routines from Forth.

Alignment
Under DOS, a .COM file is given its own 16-bit segment.

All four segment registers (CS, DS, ES, SS) hold the same
value. The first $100 bytes of the segment are reserved for
the PSP (Program Segment Prefix). The actual executable
code begins at an offset of $100 into the segment. The first
byte of the file is loaded at address (offset) $100, the

second byte of the file is loaded at address $101, etc.
The way segment:offset addressing works in real

mode, the physical address of the beginning of the
segment must be evenly divisible by 16. This is because
the physical address of the start of a segment equals 16
times the value in the segment register.

When the C program allocates memory to hold the
Forth image, it returns a pointer made up of a segment
value and an offset. We cannot be sure exactly which
physical address will be returned. (Actually, under the
"huge" memory model, we know the offset will be less
than 16.) If the offset is not zero (or at least divisible by 16),
the block of memory allocated by C is not on a segment
boundary. We must walk the pointer forward until we
reach a physical address that is divisible by 16. Once we
have the physical address for the beginning of the seg-
ment, we convert the physical address to an equivalent
segment:offset form where the offset portion is zero. This
is the beginning of the segment and is also the PSP. We add
$100 to this address to find the address into which we copy
the PYGMY.COM image. This is also the address C will use
when calling Forth as a subroutine.

When DOS loads a .COM file, it forces all four segment
registers to hold the address of the segment. But the call
by C to SEG:0100 only forces the correct value into the CS
register. It doesn't alter the other three segment registers.
Thus, we must copy the value in CS into DS, ES, and SS.
The earlier description of b o o t showed how we set up the
segment registers. The important point here is that the call
C makes to Forth must use the correctly aligned address
and the segment:offset form of this address. The code of
LP.C in Listing One shows how we do this. Note, this
trickery is fine in real mode, but would require a different

March 1996 April 10 I
Forth Dimensions

Figure Seven. Declaring void pointers. I
v o i d * p o i n t e r s [I =

I
(v o i d *) & j, / / i n t e g e r 0
(v o i d *) t s t , / / f u n c t i o n 1
(v o i d *) i n i t g r a p h , / / f u n c t i o n 2
(v o i d *) c l o s e g r a p h / / f u n c t i o n 3
1 :

approach in protected mode.

Memory Model
The C used in this project is Borland C/C++ version 4.5,

creating a "hugen model DOS executable. We pick huge
instead of large so the C routines will set the DS register
correctly upon entry, rather than assuming DS is already
correct. Since we want to devote an entire 16-bit (64 Kbyte)
segment to Pygmy, the large or huge model makes the most
sense. To match the huge model, we use a far return
instruction (LRET,) when #BYE returns to the C program.

How C Calls C Routines
C can call subroutines in various ways. The default

method in Borland C's huge model is to push the
subroutine's arguments onto the stack from right to left, d o
a long call (intersegment call) to the subroutine, then clean
up the stack after the subroutine returns. For example, for
a C function prototyped as
i n t add (i n t a , i n t b) ;

upon entry to the subroutine 'add' the stack looks like this
(two bytes for each item):
v a l u e o f b
v a l u e o f a
segment o f r e t u r n a d d r e s s
o f f s e t of r e t u r n a d d r e s s <-- t o p o f s t a c k

Thus, when Forth calls the same C subroutine, it must set
up the stack the way C expects to find it. If we define the
Forth word a d d to call the C subroutine add, we want to
write the arguments in the same order. That is, if the C
prototype shows i n t a on the left and i n t b on the right,
then from Forth we want to say
a b a d d

and not have to rearrange this to
b a a d d

In other words, we want our stack-effects comment in
Forth to look like the C prototype, at least as far a; the
order of the parameters is concerned. However, this puts
the values on Forth's data stack in this order:
v a l u e o f a
v a l u e o f b
segment of r e t u r n a d d r e s s
o f f s e t o f r e t u r n a d d r e s s <-- t o p o f s t a c k

We could fuc this with a SWAP, if we only had two
arguments, but such a solution becomes more awkward
with more than two arguments. The solution I have adopted

is to push the arguments from the data
stack to the return stack, then switch BP
and SP so Forth's return stack becomes
C's stack for the purpose of calling the C
routine. Thus, we easily reverse the argu-
ments into the form expected by the C
subroutine while preserving the readabil-
ity of our source code.

We could define a separate CODE word
in Forth, by hand, for every C routine to be called, but this
would get rather tedious and error prone. Instead, we create
a special defming word to build these routines for us. Then
we can &fine the Forth words that call the C routines with
a simple list of index values and counts of input and output
arguments.

16-bit DOS C routines return zero, one, or two words.
A one-word result is returned in AX. A two-word result
(such as a long int or a far pointer) is returned in DX:AX.
Forth needs to know how many words of result to expect,
so these values can be pushed onto the Forth data stack.

Note that this describes the default calling conventions
used by Borland C. Other calling conventions are possible.
It is important that you make the Forth and C agree on the
calling convention to be used. An easy way to do this in
DOS is to write a short program with a small dummy
subroutine, such as
ma in (v o i d) {

i n t j;
i n t t e s t (i n t a , i n t b, i n t c) ;

j = t e s t (1, 2 , 3) ;
l

i n t test (i n t a , i n t b, i n t c) {

r e t u r n a+b+c;
1

Then, compile and link this dummy program in the
memory model you want to use (such as "huge"), with
debugging turned on. Then, examine the assembly lan-
guage produced. Bring up the program in the debugger
and set a breakpoint at tes t and step through it instruc-
tion by instruction, examining the stack. You will quickly
see exactly how the parameters are passed.

The Table
The table is simply a listing of the addresses of the

subroutines and variables in the C program (or in C
libraries). A C function name without the ending parenthe-
sis marks returns the address of the function. Thus, in the
following example, we d o not need to put an ampersand
before the function names. On the other hand, a variable
name returns the variable's value, rather than its address.
We must precede the names of variables with the amper-
sand in order to put the address of the variable into the
table. In the following example, j is a variable (an integer)
and t s t () , i n i t g r a p h () , and c l o s e g r a p h (1 are
functions. Since we declare pointers to be an array of void
pointers, we cast each address to be a void pointer. [Figure
Seven1

Forth Dimensions 11 March 1996 April

Figure Eight. Installing the pointer table's address.

/ / i n s t a l l t h e a d d r e s s o f t h e p o i n t e r t a b l e
s p r i n t £ (f o r t h s t r , " %d %d CTABLE 2 ! \ r W ,

FP - S E G (p o i n t e r s) , FP-OFF(p0in ters) 1;
s t r c p y (commandl ine+l , f o r t h s t r) ;
commandline [O] = (c h a r) (s t r l e n (f o r t h s t r) -1) ;
e x i t - s t a t u s = f o r t h 0 ;

Because we are using the huge memory model, each
pointer in the table consists of a segment and an offset, and
has a length of four bytes. We must pass the address of
pointers to Forth. Then Forth can look up the address for
each of the items in the table. The C program passes the
address of pointers the first time it calls Forth. Since Forth
will attempt to INTERPRET the string at offset $80 in its
segment, we place a string at that address which will set
the four-byte variable CTABLE to the correct value. First,
we build the string in f o r t h s t r using the s p r i n t £
function. Then, we move this string to address $81 in the
Forth segment. Then we plug the length of the string into
address $80. [Figure Eight1

Note that FP-SEG extracts the segment value from a far
pointer and FP-OFF extracts the offset value from a far
pointer. Suppose, in the above, that the address of
pointers is 0123:4567. The above example would com-
pose this string
291 17767 CTABLE 2 !

and place it where PYGMY.COM expects to find its
command-line parameters. (Note that $0123 is 291 deci-
mal and $4567 is 17767 decimal.) After that, Forth can
access the addresses in the pointers array via the value of
its CTABLE variable.

Calling C Routines from Forth
To get the address of a C function or variable, we need

to know its position in the table. In the above example, the
address of i n i t g r a p h () has an index of 2. Each entry
is four bytes long, so we get the address of the table and
add eight bytes (two times four) to it and do an L@.

In this approach, we do not need to know the address
of the function, nor even the address of the pointers table,
when we define the Forth words that will call the C routines.
All we need to know are the indexes of the routines in the
table. We look up the actual address at run time.

It would make for a faster call if we knew the actual
addresses at the time we define the Forth words. This could
be done by having the C program call Forth (probably once
for each routine) with the address of each routine, extend-
ing Forth's dictionary. The startup would be a little slower,
but each call would be faster. If this were done, the Forth
code would not need to know the indexes of the items in
the table. Thus, the position of the functions in the table
could be changed without needing to change the Forth.
While this can be faster, it is a little more complicated, so we
will stick with the simpler method for now.

For each C routine to be called, we define a separate

Forth CODE word with CDECL: .
In reading the definition of CDECL :
note that the words that lay down
assembly code end in a comma.
Thus, BX PUSH, lays down the
code to push the BX register to the
stack pointed to by SP, but PUSH
without a comma is what most
Forths call >R. SWITCH, is a macro

that lays down the code to switch the contents of Forth's
data stack pointer and return stack pointer (it exchanges
SP and RP). This is handy because the hardware PUSH,
and POP, instructions work only on the stack pointed to
by SP. SWITCH, allows us to use PUSH, and POP, on
either stack. PUSH-ARGS, is a macro that takes the count
of input parameters and lays down the code to move each
of the parameters from Forth's data stack to Forth's return
stack. GET-RESULT, is a macro that takes the count of
result values and lays down the code to move the result,
if any, from the register(s) C uses to Forth's data stack.

The only tricky part may be keeping track of what is done
at compile time when CDECL : creates a new Forth word,
versus what is done later at run time when the execution of
that Forth word sets u p the parameters in the form C expects
to find them, does a far call to the C routine, then cleans up
the stack and puts any result on Forth's data stack.

Pygmy's assembler doesn't have an instruction to do a
far call (an intersegment indirect call), so code for the
LCALL, instruction needs to be added to Pygmy's assem-
bler. Put the following definition on block 131 or so. Some
of the support words, such as R>M, are headerless, so the
entire assembler must be reloaded.
: LCALL, (mem I r e g -1

lREG? I F R>M THEN

$FF C, $18 OR modDISP, ASM-RESET ;

(e g 0 [BX] LCALL, o r DX LCALL,)

Accessing C Variables From Forth
We have a similar defining word for C variables. CVAR :

defines a Forth word that returns the segmenkoffset
address of the C variable. All that needs to be known at
compile time is the index value for the variable in the
pointers array in the C program.

The Table as Seen From Forth
The Forth code in Figure Nine uses CDECL: and

CVAR : to define Forth words to access the C integer j and
to call the C routines t s t 0 , i n i t g r a p h () , and
c l o s e g r a p h 0 .

Note that the counts of input and output parameters are
needed only for the functions and not for the variables.
Also, the counts of input and output parameters are
actually the number of 16-bit words involved. For ex-
ample, t s t () takes two 16-bit integers and returns one
16-bit integer. On the other hand, i n i t g r a p h () takes
only three input parameters, but each is a four-byte far
pointer, hence the value 6. Three 32-bit values is ex-
pressed as six 16-bit values for the purpose of moving the

March 1996 April Forth Dimensions

1

Figure Nine. Accessing a C integer and calling C routines. I
(Define t h e d a t a s t r u c t u r e s and sub rou t ines)
(index # i n #ou t)

0 CVAR: J (- s e g o f f)
1 2 1 CDECL: TST (a b - C)
2 6 0 CDECL: i n i t g r a p h (Ldrv Lmode L s t r -)

3 0 0 CDECL: c losegraph (-1

values from Forth's data stack to C's parameter stack.

Putting It All Together Graphically
The listings for BGI.SCR [Listing Two, page 161 and LP.C

[Listing One1 show an example of how a C wrapper gives
Pygmy access to Borland's BGI routines. You can trade off
which parts you put in the C wrapper and which parts you
define in Forth. For example, rather than keep track of the
value of the manifest constants such as DETECT,
TRIPLEX FONT, and HORIZ-DIR in Forth, C variables are
created and set to those values. Then Forth can access them
via the pointers table.
g d r i v e r = DETECT;
t e x t f o n t = TRIPLEX - FONT;
t e x t d i r = HORIZ-DIR;

Once the C wrapper turns control over to Forth, we can
exercise the graphics routines from the keyboard.

Summary
This is meant to be a quick answer to the question

"How can I access C routines from Pygmy?" It hasn't gone
into the question of "Should this be done?" It hasn't
attempted to say what the best method might be. If you
need to access Forth from C or C from Forth, here is one
way to d o it with Pygmy.

I like the idea of being able to call Pygmy as a
subroutine from another program as well as executing it
from the command line. I believe I will make this part of
the version 1.5 I am working on.

Frank Sergeant's permanent e-mail address is pygmy@pobox.com. He also
has an FTP site: ftp.eskimo.com/-pygmy '...where I plan to put Pygmy 1.5
when (if) it is ready. I have just placed cpyg.zip on that site. It contains
pygmyc.com, Ip.c, bgi.scr, and bgi.dow in case you want to experiment with
this without modifying the kernel yourself."
Frank began programming in Forth at the age of three after receiving a Forth
tricycle for Christmas. He was wealthy once, but spent his fortune on booze,
women, and RAM and wasted the rest. He lives in Texas with his beautiful,
intelligent girlfriend Beth, who writes his "author's biographies."

Listing One. LP.C

/ * 1p .c "Load Pygmy" by Frank Sergeant pygmy@pobox.com

This i s an example of co-ord ina t ing Pygmy with C, t o a l l ow Pygmy t o c a l l C
s u b r o u t i n e s and acces s C v a r i a b l e s .

To compile and l i n k 1 p . c with Borland C/C++ v e r s i o n 4 . 5 from t h e command
l i n e , use t h e fo l l owing command:

bcc -v -1- -rnh -p- - t D e 1 p . c g r a p h i c s . l i b

The o p t i o n s say t o t u r n on debugging, t o r e s t r i c t t h e i n s t r u c t i o n s t o t h a t
of an 8 0 8 6 , t o compile f o r t h e "huge" model, and t o c r e a t e a DOS .EXE f i l e
t h a t a l s o l i n k s i n t h e g raph ic s l i b r a r y .

This program i s an example of h o w t o make C l i b r a r y f u n c t i o n s a v a i l a b l e t o
F o r t h . Simply p u t t h e names of t h e d e s i r e d f u n c t i o n s i n t o t h e p o i n t e r s
t a b l e bu t wi thout t h e ending " (') " . S i m i l a r l y , t h e add re s se s of C s t r u c t u r e s
may be p l aced i n t h e t a b l e .

This example shows how Bor land ' s B G I (g r aph ic s) r o u t i n e s may be used by Fo r th .
* /
#inc lude < s t d i o . h>
inc lude < s t r i n g . h >
inc lude <process .h>
inc lude <dos.h>
inc lude <g raph ic s .h>
(Continues.) -

Forth Dimensions 13 March 1996 April

/ / d e c l a r e a f u n c t i o n t o b e d e f i n e d i n t h i s f i l e
i n t t s t (i n t a , i n t b) ;

/ / D e c l a r e s e v e r a l v a r i a b l e s whose a d d r e s s e s w i l l b e p a s s e d t o F o r t h . A l l e x c e p t
/ / j have some u s e i n c o n n e c t i o n w i t h t h e g r a p h i c s f u n c t i o n s .
i n t j ;
i n t g d r i v e r , gmode, t e x t f o n t , t e x t d i r ;

I main (i n t a r g c , c h a r * a r g v [I) { I
i n t h a n d l e , f i l e - s i z e , temp;
c h a r * f i l e n a m e = {"PYGMYC.COMw); / / d e f a u l t f i l e name

I I i n t e x i t - s t a t u s ;
I

c h a r * r e a l b u f f e r ; / /
c h a r * l o a d b u f f e r ; / /

/ /
/ /

c h a r f o r t h s t r [80] ; / /
c h a r *commandline; / /
i n t (* f o r t h) (v o i d) ; / /

/ /

A l l o t a 64K b y t e b u f f e r t o h o l d t h e F o r t h image.
A d j u s t t h i s p o i n t e r t o a p r o p e r SEG:OFF where t h e

o f f s e t i s z e r o . I t w i l l p o i n t t o t h e f i r s t b y t e
i n r e a l b u f f e r t h a t i s p a r a g r a p h a l i g n e d .

S t a g i n g a r e a f o r F o r t h command s t r i n g s
w i l l p o i n t t o 0x80 i n t o l o a d b u f f e r
d e c l a r e f o r t h t o be a p o i n t e r t o a f u n c t i o n

t h a t r e t u r n s a n i n t e g e r .

/ / T h i s i s t h e Tab le t h a t F o r t h ' s CTABLE v a r i a b l e w i l l p o i n t t o .
/ / Note t h e i n d e x v a l u e s i n t h e r i g h t m o s t column i n t h e comments.
v o i d " p o i n t e r s [I =

I
(v o i d *) & j , / / i n t e g e r 0
(v o i d *) t s t , / / f u n c t i o n 1
(v o i d *) i n i t g r a p h , / / f u n c t i o n 2
(v o i d *) c l o s e g r a p h , / / f u n c t i o n 3
(v o i d *) getgraphmode, / / f u n c t i o n 4
(v o i d *) se tgraphmode, / / f u n c t i o n 5
(v o i d *) r e s t o r e c r t m o d e , / / f u n c t i o n 6
(v o i d *) g r a p h d e f a u l t s , / / f u n c t i o n 7
(v o i d *) g r a p h r e s u l t , / / f u n c t i o n 8
(v o i d *) ge tmaxco lo r , / / f u n c t i o n 9
(v o i d *) s e t c o l o r , / / f u n c t i o n 10
(v o i d *) p u t p i x e l , / / f u n c t i o n 11
(v o i d *) l i n e , / / f u n c t i o n 12
(v o i d *) l i n e r e l , / / f u n c t i o n 1 3
(v o i d *) l i n e t o , / / f u n c t i o n 14
(v o i d *) movere l , / / f u n c t i o n 15
(v o i d *) moveto, / / f u n c t i o n 16
(v o i d *) c i r c l e , / / f u n c t i o n 1 7
(v o i d *) s e t t e x t s t y l e , / / f u n c t i o n 18
(v o i d *) o u t t e x t , / / f u n c t i o n 19
(v o i d *) o u t t e x t x y , / / f u n c t i o n 10
(v o i d *) & g d r i v e r , / / i n t e g e r 2 1
(v o i d *) &gmode, / / i n t e g e r 2 2
(v o i d *) & t e x t f o n t , / / i n t e g e r 2 3
(v o i d *) & t e x t d i r / / i n t e g e r 2 4

1 ;

March 1996 April Forth Dimensions

/ / a l l o c a t e memory f o r t h e Fo r th segment
r e a l b u f f e r = mal loc(65535) ;

/ / Walk forward i n t h a t segment u n t i l a paragraph (16 b y t e) boundary i s reached.
temp = FP-OFF(rea1buffer);
i f (temp % 1 6) / / i f no t paragraph a l i g n e d ,

temp += 1 6 - (temp % 1 6) ; / / t hen a l i g n it
loadbuf fe r = MK-FP (FP-SEG (r e a l b u f f e r) + temp / 1 6 , 0) ;

f o r t h = (v o i d *) (l o a d b u f f e r + 0x100) ; / / e n t r y p o i n t i s + 256 b y t e s
commandline = l o a d b u f f e r + 0x80; / / command l i n e i s + 128 b y t e s

/ / c o l l e c t a l t e r n a t e Fo r th image f i l e name from t h e command l i n e , i f p r e s e n t
i f (a r g c == 2) s t r c p y (f i l ename, a r g v [l l) ;

/ / l o a d t h e Fo r th image i n t o t h e segment a l l o c a t e d f o r i t
handle = open(f i l ename, 0-RDONLY I 0-BINARY);
i f (handle != -1) {

f i l e - s i z e = f i l e l e n g t h (h a n d 1 e) ;
r ead (handle , loadbuffer+OxlOO, f i l e - s i z e) ;
c l o s e (handle) ;

1
else

p u t s (" F i 1 e cou ld no t be opened\nW);

/ / set up some v a r i a b l e s Fo r th w i l l use when c a l l i n g g r a p h i c s r o u t i n e s
g d r i v e r = DETECT;
t e x t f o n t = TRIPLEX-FONT;
t e x t d i r = HORIZ-DIR;

/ / Bui ld a s t r i n g a t f o r t h s t r which w i l l be INTERPRETed by Fo r th
/ / t o make F o r t h ' s CTABLE v a r i a b l e ho ld t h e add re s s of t h e p o i n t e r t a b l e .
s p r i n t f (f o r t h s t r , " %d %d CTABLE 2 ! \r",

FP-SEG(pointers), FP-OFF(pointers)) ;

/ / Copy t h a t s t r i n g where Fo r th expec t s t o f i n d a "command l i n e "
s t r c p y (commandline+l, f o r t h s t r) ;

/ / Plug i n t h e l e n g t h of t h e "command l i n e "
commandline [O] = (c h a r) (s t r l e n (f o r t h s t r) -1) ;

/ / C a l l F o r t h a s a C sub rou t ine
e x i t - s t a t u s = f o r t h () ;

p r i n t f (" T h e r e t u r n e d e x i t s t a t u s i s %d\nW, e x i t - s t a t u s) ;
p r i n t f ("The va lue of j i s %d\nn , j) ;

f r e e (r e a l b u f f e r) ;
r e t u r n ;

1

/ / Following i s a dummy f u n c t i o n t o a l low us t o i n s p e c t
/ / t h e e x a c t c a l l i n g p r o t o c o l used by C
i n t t s t (i n t a , i n t b) {

s t a t i c i n t k = 7;
i n t c;

c = a + b + k++;
r e t u r n c ;

1

(Listing Turn begins on nextpage.)

Forth Dimensions 15 March 1996 April

Figure Two. BGI.SCR I
scr # 4001
(Load b l o c k)
4002 4009 THRU
SAVE PYGMYC.COM

scr # 5001
(Load b l o c k)

EXIT
Exper iments w i t h c o - o r d i n a t i n g C and F o r t h

Copyr igh t 1995 Frank S e r g e a n t
809 W . San Anton io S t
San Marcos, TX 78666

pygmy@pobox.com (permanent e m a i l a d d r e s s)

scr # 4002
(CTABLE h o l d s t h e a d d r e s s o f t h e t a b l e o f a d d r e s s e s i n C)

: ZVARIABLE (-) (- a) VARIABLE 0 , ;

2VARIABLE CTABLE

scr # 4003
(Macros t o make b u i l d i n g a c a l l t o a C r o u t i n e e a s y)

scr # 5002

ZVARIABLE c r e a t e s a 4-byte v a r i a b l e t h a t can h o l d a
C " f a r p o i n t e r "

CTABLE h o l d s a s e g o f f s e t (f a r p o i n t e r) a d d r e s s of t h e
t a b l e i n t h e C wrapper . The t a b l e c o n t a i n s
t h e f a r p o i n t e r s t o v a r i o u s C f u n c t i o n s and
v a r i a b l e s

scr # 5003
(Macros t o make b u i l d i n g a c a l l t o a C r o u t i n e e a s y)

: PUSH-ARGS, (# i n -) PUSH-ARGS, i s an assemble r macro t h a t l a y s down t h e code
(move parms t o F o r t h ' s r e t u r n s t a c k , i e C ' s s t a c k t o b e) t o move paramete r s f rom F o r t h ' s d a t a s t a c k
FOR BX POP, SWITCH, BX PUSH, SWITCH, NEXT (o f f s e g) ; t o F o r t h ' s r e t u r n s t a c k . When t h e C r o u t i n e

i s c a l l e d , F o r t h ' s r e t u r n s t a c k w i l l be used a s
: GET-RESULT, (# o u t -) C ' s pa ramete r s t a c k .

DUP O = I F DROP BX POP, (w i l l r e f i l l TOS) EXIT THEN
2 = I F DX PUSH, THEN AX BX MOV, (r e s u l t t o TOS) GET-RESULT, i s an assemble r macro t h a t l a y s down t h e code

t o move t h e r e s u l t (i f any) r e t u r n e d by t h e
C f u n c t i o n from r e g i s t e r AX o r r e g i s t e r s DX:AX
t o F o r t h ' s d a t a s t a c k .

acr # 4004 a # 5004
(U s e t h i s t o d e f i n e a word which c a l l s a C r o u t i n e)

CDECL :

: CDECL: (index # i n #out -) CODE SWAP
BP AX MOV, (save F o r t h ' s r s t k p t r)
BX PUSH, (put TOS on r e a l s t a c k) PUSH-ARGS,
AX PUSH, SI PUSH, DS PUSH, (save important r e g i s t e r s)
SWITCH, (make r e t u r n s t a c k become C ' s s t a c k)
CTABLE #, DI MOV, 0 [DI] D I LDS,
(now DS:DI p o i n t s t o 1st t a b l e e n t r y i n t h e C program)
SWAP (#out index) 2* 2* [DI] LCALL, (c a l l v i a t h e t a b l e)
SWITCH, (g i v e u s back o u r r e a l d a t a s t a c k p o i n t e r)
DS POP, S I POP, BP POP, (& o r i g i n a l r e t u r n s t a c k p o i n t e r)
(#ou t) GET-RESULT, NXT, ;

This i s a de f in ing word t h a t bu i ld s a CODE word t o c a l l
a C func t ion . The index i s used a t run t ime t o look up t h e
address of t h e C func t ion i n a t a b l e i n t h e C program (t h e
address of t h e t a b l e i s s t o red i n CTABLE). The # in parameter
parameter t e l l s CDECL: how many 16-bi t words t o move from
t h e d a t a s t ack t o C ' s s tack p r i o r t o c a l l i n g t h e C func t ion .
The #out parameter t e l l s CDECL: how many 16-b i t words t o
move from AX o r DX:AX t o F o r t h ' s d a t a s t ack a f t e r t h e C
func t ion r e t u r n s .

acr # 4005 scr # 5005
(I n t e r f a c e t o a C d a t a s t r u c t u r e)
(Defines a word which r e t u r n s add re s s of a C d a t a s t r u c t u r e) CVAR :

scr # 4006
(Define t h e da t a s t r u c t u r e s and subrout ines)

2

-I

(index # i n #ou t)
0
1 2 1
2 6 0
3 0 0
4 0 1
5 1 0
6 0 0

: CVAR: (index -) (- 'seg o f f)
CREATE 4 * ,

DOES> @ CTABLE 2@ ROT t 2DUP 2 t L@ ROT ROT L@ ;

CVAR :
CDECL :
CDECL :
CDECL :
CDECL :
CDECL :
CDECL :
CDECL :
CDECL:

J (

TST (

i n i t g r a p h (

c losegraph (

getgraphmode (
setgraphmode (

res torecr tmode (
graphdef a u l t s (
g r a p h r e s u l t (

- seg o f f)
a b - C)
Ldrv Lmode
- 1
- mode)
mode -)

- 1
- 1
- r e s u l t)

This i s s i m i l a r t o CDECL: but i s used f o r v a r i a b l e s
i n s t e a d of func t ions . I t d e f i n e s a word t h a t r e t u r n s t h e
seg o f f s e t address of a C v a r i a b l e . For example, i f t h e 0 th
i tem i n t h e t a b l e i s an i n t e g e r j ,

0 CVAR: J I
de f ines t h e Forth word J which w i l l r e tu rn t h e seg and o f f s e t
of t h e C i n t e g e r j. J L@ would r e t u r n t h e c u r r e n t va lue of
t h a t i n t e g e r . 1 7 J L! would change t h e va lue t o 17.

acr # 5006
This block and t h e next d e f i n e words t o a c c e s s a l l of t h e
v a r i a b l e s and func t ions i n t h e C program's p o i n t e r s t a b l e .
These two b locks and t h e C program's p o i n t e r s t a b l e must be
kept synchronized!

L s t r -)

J accesses t h e C i n t e g e r j j u s t t o i l l u s t r a t e t h e mechanism.
The sample program d i s p l a y s t h e va lue of j upon te rmina t ion .
You could p lay with s e t t i n g it t o d i f f e r e n t va lues i n For th ,
then see what va lue C d i s p l a y s upon te rmina t ion:

2 2.
(Continues on nextpage.) (Continues on -page.)

9 0 1 CDECL: g e t m a x c o l o r (- u)
1 0 1 0 CDECL: s e t co lo r (c o l o r -)

11 4 0 CDECL: p u t p i x e l (x y co lo r -)

1 2 4 0 CDECL: l i n e (x l y l x 2 y 2 -)
(NOTE: "L" a s i n L d r v , L s t r , e t c m e a n s a 4 b y t e address)

scr # 4007
(D e f i n e t h e
(i n d e x # i n

13 2
1 4 2
15 2
1 6 2
1 7 3
18 3
1 9 2
2 0 4
2 1
2 2
2 3
2 4

da ta s t r u c t u r e s a n d s u b r o u t i n e s)
o u t)

0 CDECL: l i n e r e l (
0 CDECL: l i n e t o (

0 CDECL: m o v e r e l (
0 CDECL: m o v e t o (

0 CDECL: c i r c l e (
0 CDECL: s e t t e x t s t y l e (

0 CDECL: o u t t e x t (
0 CDECL: o u t t e x t x y (

CVAR: gd r ive r (
CVAR: g m o d e (

..CVAR: t e x t f o n t (

CVAP: t e x t d i r (

scr # 4008
: .ERR (-) g r a p h r e s u l t . ;

x Y - 1
dx dy -)

x Y -)
x y r a d i u s -)
f o n t d i r s i z e
L s t r -)

x y L s t r -)
- seg o f f)
- seg o f f)
- seg o f f)
- seg o f f)

: L n u l l (- l o n g - n u l l - C - s t r i n g) " " 2 t C S @ ;

: MSG (- o f f s e g) " HELLO! " 1t C S @ ;
: INIT-GPH (-) gdr ive r SWAP g m o d e SWAP

" G : \ B C 4 5 \ B G I \ " 1t C S @ i n i t g r a p h (.ERR) ;

: TXT (-) r e s t o r e c r t m o d e (.ERR) ;

: GPH (-) g e t g r a p h m o d e (u) s e t g r a p h m o d e ;
: T X T S I Z E (# -) PUSH t e x t f o n t L @ t e x t d i r L @ POP s e t t e x t s t y l e ;
: T S T l (-) INIT-GPH

2 0 3 0 m o v e t o " T h i s i s P y g m y ! " 1 + CS@ o u t t e x t 2 T X T S I Z E
2 0 4 0 m o v e t o " T h i s i s P y g m y ! " 1t C S @ o u t t e x t 4 T X T S I Z E
2 0 6 0 m o v e t o " T h i s i s P y g m y ! " 1t C S @ o u t t e x t 8 T X T S I Z E
2 0 8 0 m o v e t o " T h i s i s P y g m y ! " 1t CS@ o u t t e x t
3 0 0 2 4 0 7 5 c i rc le
KEY DROP TXT closegraph ;

3 2 J L ! 5 #BYE e t c

scr # 5007

P e r h a p s t h e m o s t i m p o r t a n t p o i n t t o n o t i c e i s t h a t t h e F o r t h
s t a c k c o m m e n t s h o w s t h e p a r a m e t e r s i n t he very s a m e order as
t h e C f u n c t i o n prototypes. I f i n C y o u w o u l d s a y

c i r c l e (2 0 0 , 3 0 0 , 7 5) ;

t h e n i n F o r t h y o u w o u l d say

2 0 0 3 0 0 7 5 c i r c l e

F o r m o r e i n f o a b o u t these p a r t i c u l a r graphic f u n c t i o n s ,
see B o r l a n d ' s BGI d o c u m e n t a t i o n .

scr # 5008

V a r i o u s e x a m p l e s of accessing t h e graphics f u n c t i o n s
f r o m F o r t h . T r y t y p i n g T S T l t o see t h e m i n a c t i o n .

N o t e ! I t i s u n l i k e l y t h a t y o u r B o r l a n d graphic d r ivers a re
o n d r i v e G: a s m i n e are. B e s u r e t o change t h e path i n t h e
d e f i n i t i o n of INIT-GPH before r u n n i n g t hese e x a m p l e s !

Total control
with 1MI FORTHTM
For Programming Professionals:
an expanding family of compatible, high-
performance, compilers for microcomputers

For Development:
Interactive Forth-83 InterpreterICompilers
for MS-DOS, 80386 32-bit protected mode,
and Microsoft WindowsTM

Editor and assembler included
Uses standard operating system files
500 page manual written in plain English
Support for graphics, floating point, native code generation

For Applications: Forth-83 Metacompiler
Unique table-driven multi-pass Forth compiler
Compiles compact ROMable or disk-based applications
Excellent error handling
Produces headerless code, compiles from intermed~ate states,

I and performs conditional compilation
I = Cross-compiles to 8080, 2-80, 64180, 680x0 family, 80x86 family,

80x96197 family, 8051131 family, 6303, 6809, 68HC11
No license fee or royalty for compiled applications

From NASA space
systems to package
tracking for Federal
Express ...

chip FORTH
...g ives you maximum
performance, total
control for embedded
applications!

Total control of target kernel size and content.
Royalty-free multitasking kernels and libraries.
Fully configurable for custom hardware.
Compiles and downloads entire program in seconds.
Includes all target source, extensive documentation.
Full 32-bit protected mode host supports interactive
development from any 386 or better PC.

1 Versions for 8051,80186/88,80196,68HC11,68HC16,
68332, TMS320C3 1 and more!

Go with the systems the pros use... Call us today!
FORTH, Inc.
11 1 N. Sepulveda Blvd, #300
Manhattan Beach, CA 90266
800-55-FORTH 31 0-372-8493
FAX 31 0-31 8-71 30 forthsales@forth.com

Forth Dimensions

2 1 I

19 March 7996 April

16th Annual ROCHESTER FORTH CONFERENCE

OPEN SYSTEMS
June 19-22.1996

Ryerson Polytechnic University
Toronto, Ontario, Canada

featuring invited speakers

MITCH BRADLEY CHARLES MOORE
Firmworks Inc. Computer Cowboys

creator of "Open Firmware" inventor of the Forth language

The Institute for Applied Forth Research is pleased to present the 16th Annual Rochester Forth Conference, on Open
Systems. Since 1981, theRochester Forth Conference has been a popular forum for researchers, developers, users, and vendors
of the Forth language. This year we extend our welcome to all developers of Open Systems for an exchange of knowledge and
opinion!

PAPERS WORKING GROUPS POSTER SESSIONS VENDOR EXHIBITS TUTORIALS
Papers will be presented on all aspects of Forth technology. Special topics include Open Firmware, Plug and Play S ystems,

Scripting Languages, SGML and HTML, Java, Distributed Computing. There will also be papers and working groups on Forth
programming standards (including ANS Forth), embedded and real-time systems, scientificlengineering applications, and
education. Tutorials will include: Introduction to Forth, Advanced Forth, Forth Under Windows, Metacompilation, "Open
Boot" Firmware, HTML, Java, and TCPIIP. Many of the major vendors of Forth and related technologies will be on hand to
demonstrate their products.

CONFERENCE LOCATION
This year, for the first time, the Rochester Forth Conference moves to Toronto, Ontario-the city Peter Ustinov called

"New York run by the Swiss." Toronto is a center of high technology, finance, and culture, and one of the world's most popular
tourist destinations. Our conference venue at Ryerson Polytechnic University is in the heart of downtown Toronto, and within
walking distance of many attractions. Toronto is ideally located for U.S., Canadian, and international travel.

Register Early and Enjoy Lower Fees! For More Information:
O US$400 Attendee (US$475 after April 1st) Elliott Chapin
O US$200 Full-time student (CAD$200 for a Canadian 24 Monteith St.

student) Toronto, ON Canada
O US$120 Spouse M4Y 1K7

echapin@interlog.com
4 16-92 1-9560

ROOMS or see our World Wide Web page at ' US$150 Sing1e for four nights (Wed., Thu., Fri., Sat-) http://maccs~dcss~mcmaster~ca/~ns/~6roch~htm~
O US$200 Double (2 persons, 1 double bed) for four

nights
O US$100 Student single for four nights

SPONSORS:

SEND REGISTRATIONS TO:
Microtronix Systems Ltd.

Rochester Forth Conference London, Ontario, Canada
Box 1261 Annandale, VA 22003 USA PRESENTED IN COOPERATION WITH:
lforsley@jwk.com the Southern Ontario Forth Interest Group
US check, Visa or Mastercard only and McMaster University

March 1996 April 20 Forth Dimensions

Differential File Comparison

Wil Baden
Costa Mesa, California

Differential file comparison
is the foundation of

A necessary tool for every programmer is a utility to
compare files-particularly source files-to find where
and how they are different. A prudent programmer will
make a copy of a file before modifying it. In the course of
making a series of small modifications to fix a misbehaving
application, the programmer can easily lose track of just
what has been done. Then the file comparison utility can
be used to show the changes.

This utility can be used to show the differences
between released versions as well.

To do the job right is not a trivial task. The obvious
algorithm will sooner than later fail miserably.

The obvious algorithm is to compare lines until a
difference is found, then search forward in both files to
find where they are the same again.

The trick is not to look for differences but to look for
the longest common subsequence-the longest set of lines
which are the same in both files and in the same order with
what's different interspersed. What's left are the differ-
ences.

Not until we print d o we check whether equal hash
values represent identical lines.

In twenty years of use this has hardly ever happened.

I even did this in C for Unix because my output format
was more useful than that of the Unix tool diff.

Some years ago I did it for MacForth. In the present
incarnation it is Standard Forth.

Differential file comparison is the foundation of ver-
sion control systems-SCCS, RCS, SCVS. In a later article
in this series I intend to present a Forth personal version
control system based on this month's code.

The algorithm is essentially brute force. Read and save
one file, then read records from the other file, trying to find
with each record a longer common subsequence than you
already have.

Potentially this could require M x N line comparisons,
where M and N are the number of lines in each file. In real
life that never happens.

The time and memory constraints are still too extrava-
gant. So a really slick trick is used. Instead of comparing
whole lines, an integer hash value is computed for each
line, and the associated hash values are compared. Making
believe that every unique line has a unique hash value, we
compute a longest common subsequence.

1 1 I have to be sophisticated. The one used here works fine

version-control systems ...
/ intend to present a Forth
personal version-control system
based on this code.

In the very few times it has, the effect has been negligible.
(You can tell that it has happened when an insertion
appears just before a deletion.) ~ t ' s at least seven years
since 'Ive seen it happen.

Of course you can force it to happen by using a poor
hashing function. However, the hashing hnction doesn't

Forth Dimensions 2 1

How to do this is the subject of HUNT, J. W. AND M:. D.
MCILROY (19761, "An algorithm for differential file compari-
son," Computing Science Technical Report 41, AT&T Bell
Laboratories, Murray Hill, New Jersey. It is based on HUNT,
J.W. AND T.G. SZYMANSKI (1977), "A fast algorithm for
computing longest common subsequences," Comm. ACM,
vol. 20 no. 5 , pp. 350-353.

In 1976 I implemented this using my own code in
Fortran I1 for an 8 K , 16-bit word IBM 1130. It has followed
me ever since, becoming re-incarnated on each new
platform in whatever the language of the moment was.

March 1996 A ~ r i l

with 32-bit or 16-bit arithmetic.
Where I used to work, the Pascal incarnation was used

30 to 200 times a day for ten years, using 16-bit arithmetic.
It was used even after the company went to Unix.

How to Use
After loading the program, given two files, named e.g.,

PROMISES.BAK and PROMISES.4TH:
S" PROMISES.BAKn INPUT TO OLD
S" PROMISES.4THW INPUT TO NEW
DFC

Here's an example comparing the source for DFC with a revision.
S" DFC.FOn INPUT TO OLD S " DFC-HERE-FO" INPUT TO NEW DFC

The output is:
1 DEL> (DFC - D i f f e r e n t i a l F i l e C o m p a r i s o n . W i l B a d e n 1 9 7 6 - 1 9 9 6)

NEW> 1 (DFC - D i f f e r e n t i a l F i l e C o m p a r i s o n U s i n g HERE W i l B a d e n)

2 2

: BOUNDS OVER + SWAP ; (a k -- a + k a)

: INPUT R / O OPEN-FILE ABORT" C a n ' t open " ;

: REWIND (f i l e i d --)

0 0 ROT R E P O S I T I O N - F I L E

ABORT" S o r r y , error r e w i n d i n g f i l e . "

: PLACE (s . a - -)

2DUP >R >R CHAR+ SWAP CHARS MOVE R> R> C !

2 4 DEL>
2 5 1 2 : U N D E R ROT DROP SWAP ; (a b c - - c b)

5 0 3 7
51 DEL> 6 0 0 0 CONSTANT lcs-space (T h e larger t h e be t ter .)

5 2 DEL> CREATE LCS ICS-space CELLS ALLOT
53 DEL>

NEW> 38 0 VALUE lcs-space 0 VALUE LCS

5 4 3 9 O V A L U E o l d l i n e s 0 VALUE n e w l i n e s

3 9 4 3 7 9 (D i f f e r e n t i a l f i l e c o m p a r i s o n .)

NEW> 3 8 0 ALIGN HERE TO LCS
NEW> 3 8 1 UNUSED 1 CELLS - 1+ ALIGNED 1 CELLS / TO lcs-space

3 9 5 3 8 2 r e a d - n e w e r f i l e s o r t - h a s h - v a l u e s m a r k - h a s h - c l a s s e s

3 9 7 3 8 4 b u i l d - c a n d i d a t e - t a b l e s h o w - d i f f e r e n c e s

NEW> 385 o l d l i n e s n e w l i n e s - 2 - LCS @ - . ." d e l e t i o n s , "
NEW> 3 8 6 n e w l i n e s 1- LCS @ - . ." i n s e r t i o n s , "
NEW> 3 8 7 LCS @ . ." unchanged " CR

3 9 8 388 OLD REWIND NEW REWIND

4 0 1 3 9 1 \ P r o c e d a r n u s i n pace. W i l B a d e n C o s t a M e s a , C a l i f o r n i a
NEW> 3 9 2
NEW> 3 9 3 ARGUMENT INPUT TO OLD ARGUMENT INPUT TO NEW DFC

._
This shows that in the old file, DFC.FO,

Line 1 has been replaced.
Lines 12 through 24 have been deleted.
Lines 5 1 through 53 have been replaced by a single line.
A few new lines have been inserted after lines 394, 397,
and 401.The numbers in the first column are the line
numbers in the first file. The numbers in the second
column are the line numbers in the second file.

Wil Baden is a professional programmer with an interest in Forth.
You can get the text for DFC.FO by e-mail to: wilbaden@netcom.com.
NOT should be equivalent to : NOT O = ;

March 1996 April Forth Dimensions

FIG
MAIL ORDER FORM

HOW TO USE THIS FORM: Please enter your order on the back page of this form and send with your payment to the Forth Interest Group.
All items have one price. Enter price on order form and calculate shipping & handling based on location and total.

("Were Sure You Wanted To Know ..."
k ~ o r t h Dimensions, Article Reference 151 - $4 0#

An index of Forth articles, by keyword, from Forth Dimensions
Volumes 1-15 (1978-94).

*FORML, Article Reference 152 - $4 0#
An index of Forth articles by keyword, author, and date from the
FORML Conference Proceedings (1980-92).

FORTH DIMENSIONS BACK VOLUMES
A volume consists of the six issues from the volume year (May-April)

1 Volume 1 Forth Dimensions (1979-80) 101 - $15

/ Introduction to FIG. threaded code. TO variables, fig-Forth

/ Volume 6 Forth Dimensions (1984-85) 106 - $15

Interactive editors, anonymous variables, list handling, integer
solutions, control structures, debugging techniques, recursion,
semaphores, simple I10 words, Quicksort, high-level packet
communications, China FORML.

I Volume 7 Forth Dimensions (1985-86)

FORML CONFERENCE PROCEEDINGS
FORML (Forth Modification Laboratory) is an educational
forum for sharing and discussing new or unproven proposals
intended to benefit Forth, and is an educational forum for
discussion of the technical aspects of applications in Forth.
Proceedings are a compilation of the papers and abstracts
presented at the annual conference. FORML is part of the Forth
Interest Group.

1981 FORML PROCEEDINGS 31 1 - $45
CODE-less Forth machine, quadruple-precision arithmetic,
overlays, executable vocabulary stack, data typing in Forth,
vectored data structures, using Forth in a classroom, pyramid
files, BASIC, LOGO, automatic cueing language for multimedia,
NEXOS-a ROM-based multitasking operating system. 655pgs

1982 FORML PROCEEDINGS 312 - $30
Rockwell Forth processor, virtual execution, 32-bit Forth, ONLY
for vocabularies, non-IMMEDIATE looping words, number-
input wordset, VO vectoring, recursive data structures, program-
mable-logic compiler. 295 pgs

1983 FORML PROCEEDINGS 313 - $30
Non-Von Neuman machines, Forth instruction set, Chinese
Forth, F83, compiler &interpreter co-routines, log & exponential
function, rational arithmetic, transcendental functions in

107 - $20 / variable-precision Forth, portable file-system interface. Forth
coding conventions, expert systems. 352 pgs

Generic soit, Forth spreadsheet, control structures, pseudo-
interrupts, number editing, Atari Forth, pretty printing, code
modules, universal stack word, polynomial evaluation, F83
strings.

I Volume 8 Forth Dimensions (1986-87) 108 - $20

Interrupt-driven serial input, data-base functions, TI 99/4A,
XMODEM, on-line documentation, dual CFAs, random
numbers, arrays, file query, Batcher's sort, screenless Forth,
classes in Forth, Bresenham line-drawing algorithm, unsigned
division, DOS file 110.

Volume 9 Forth Dimensions (1987-88) 109 - $20

Fractal landscapes, stack error checking, perpetual date
routines, headless compiler, execution security, ANS-Forth
meeting, computer-aided instruction, local variables,
transcendental functions, education, relocatable Forth for
68000.

Volume 10 Forth Dimensions (1988-89) 1 10 - $20

dBase file access, string handling, local variables, data
structures, object-oriented Forth, linear automata, stand-alone
applications, 8250 drivers, serial data compression.

Volume 11 Forth Dimensions (1989-90) 111 - $ 2 4

Local variables, graphic filling algorithms, 80286 extended
memory, expert systems, quaternion rotation calculation,
multiprocessor Forth, double-entry bookkeeping, binary table
search, phase-angle differential analyzer, sort contest.

Volume 12 Forth Dimensions (1990-91) 112 - $20

Floored division, stack variables, embedded control, Atari
Forth, optimizing compiler, dynamic memory allocation, smart
RAM, extended-precision math, interrupt handling, neural nets,
Soviet Forth, arrays, metacompilation.

1984 FORML PROCEEDINGS 314 - $30
Forth expert systems, consequent-reasoning inference engine,
Zen floating point, portable graphics wordset, 32-bit Forth,
HP7 1B Forth, NEON-object-oriented programming, decom-
piler design, arrays and stack variables. 378pgs

1986 FORML PROCEEDINGS 316 - $30
Threading techniques, Prolog, VLSI Forth microprocessor,
natural-language interface, expert system shell, inference engine,
multiple-inheritance system, automatic programming environ-
ment. 323 pgs

1988 FORML PROCEEDINGS 318 - $40
Includes 1988 Australian FORML, Human interfaces, simple
robotics kernel, MODUL Forth, parallel processing,
programmable controllers, Prolog, simulations, language topics,
hardware, Wil's workings & Ting's philosophy, Forth hardware
applications, ANS Forth session, future of Forth in A1
applications. 31 0 pgs

1989 FORML PROCEEDINGS 319 - $40
lncludes papers from '89 euroFORML. Pascal to Forth,
extensibleoptimizerfor compiling, 3Dmeasurementwithobject-
oriented Forth, CRC polynomials, F-PC, Harris C cross-
compiler, modular approach to robotic control, RTX recompiler
for on-line maintenance, modules, trainable neural nets. 433 pgs

1992 FORML PROCEEDINGS 322 - $40
Object oriented Forth bases on classes rather than prototypes,
color vision sizing processor, virtual file systems, transparent
target development, Signal processing pattern classification,
optimization in low level Forth, local variables, embedded Forth,
auto display of digital images, graphics package for F-PC, B-tree
in Forth 200 pgs

I * These are your most up-to-date indexes for back issues of Forth Dimensions and the FORML proceedings.

Fax your orders: 510-535-1295

1993 FOKML PROCEEDINGS 323 - $45
Includes papers from '92 euroForth and '93 euroForth
Conferences. Forth in 32-Bit protected mode, HDTV format
converter. graphing functions, MIPS eForth, umbilical
compilation, portable Forth engine, formal specifications of Forth,
writing better Forth, Holon - A new way of Forth, FOSM, a Forth
string matcher, Logo in Forth, programming productivity. 509pg.v

BOOKS ABOUT FORTH

ALL ABOUT FORTH, 3rd ed., June 1990, Glen B. Haydon 201 - $90

Annotated glossary of most Forth words in common usage,
including Folth-79, Folth-83, F-PC, MVP-Forth. Implementa-
tion examples in high-level Forth andlor 8086188 assembler.
Useful commentary given for each entry. 504 pgs

eFORTH IMPLEMENTATION GUIDE, C.H. Ting 215 - $25

eForth is the name of a Forth model designed to be portable to
a large number of the newer, more powerful processors available
now and becoming available in the near future. 54pgs (wldisk)

Embedded Controller FORTH, 8051, William H. Payne 216 - $76

Describes the implementation of an 805 1 version of Forth. More
than half of this book contains source listings (wldisks C050)
511 pfis

F83 SOURCE, Henry Laxen & Michael Perry 217 - $20

A complete listing of F83, includingsource and shadow screens.
lncludes introduction on getting started. 208pgs

T H E FIRST COURSE, C.H. Ting 223 - $25

This tutorial's goal is to expose you to the very minimum set of
Forth instructions you need to use Forth to solve practical
problems in the shortest possible time. "... This tutorial was
developed to complement The Fortlz Course which skims too
fast on the elementary Forth instructions and dives too quickly
in the advanced topics in a upper level college microcomputer
laboratory ..." A running F-PC Forth system would be very
useful. 44 11gs

THE FIRST COURSE, C.H. Ting 223 - $25

This tutorial's goal is to expose you to the very minimum set of
Forth instructions you need to use Forth to solve practical
problems in the shortest possible time. "... This tutorial was
developed to complement The Forth Course which skims too
fast on the elementary Forth instructions and dives too quickly
in the advanced topics in a upper level college microcomputer
laboratory ..." A running F-PC Forth system would be very
useful. 44 pjis

FORTH ENCYCLOPEDIA, Mitch Derick & Linda Baker 220 - $30

A detailed look at each fig-Forth instruction. 327pgs

FORTH NOTEBOOK, Dr. C.H. Ting 232 - $25

Good examples and applications. Great learning aid. poly-
FORTH is the dialect used. Some conversion advice is included.
Code is well docun~ented. 286 pgs

FORTH NOTEBOOK 11, Dr. C.H. Ting 232a - $25 ".

Collection of research papers on various topics, such as image
processing, parallel processing, and miscellaneous applications.
23 7 pfis

F-PC USERS MANUAL (2nd ed., V3.5) 350 - $20

Users manual to the public-domain Forth system optimized for
IBM PCIXTIAT compilters. A fat, fast system with many tools.
143 11~s

F-PC TECHNICAL REFERENCE MANUAL 351 - $30

A must if you need to know the inner workings of F-PC. 269pgs

INSIDE F-83, Dr. C.H. Ting 235 - $25

Invaluable for those using F-83. 226pgs

OBJECT-ORIENTED FORTH, Dick Pountain 242 - $37

Implementation of data structures. First hook to make object-
oriented programming available to users of even very small
home computers. 118 pgs

SCIENTIFIC FORTH, Julian V. Noble 250 - $50

Scientific Forth extends the Forth kernel in the direction of
scientific problem solving. It illustrates advanced Forth
programming techniques with nontrivial applications:
computer algebra, roots of equations, differential equations,
function minimization, functional representation of data (FFT,
polynomials), linear equations and matrices, numerical
integrationlMonte Carlo methods, high-speed real and complex
floating-point arithmetic. 300 pgs (Includes disk with
programs and several utilities), IBM

SEEING FORTH, Jack Woehr 243 - $25

"... I would like to share a few observations on Forth and
computer science. That is the purpose of this monograph. It is
offered in the hope that it will broaden slightly the streams of
Forth literature ..." 95 pgs

STACK COMPUTERS, T H E NEW WAVE 244 - $82

Philip J. Koopman, Jr. (hardcover only)
Presents an alternative to Complex Instruction Set Computers Last
(CISC) and Reduced Instruction Set Computers (RISC) by 5
showing the strengths and weaknesses of stack machines.

STARTING FORTH (2nd ed.), Leo Brodie 245 - $29

In this edition of Starting Fortlz-the most popular and
complete introduction to Forth-syntax has been expanded to
include the Forth-83 Standard. 346pgs

THINKING FORTH, Leo Brodie 255 - $20

BACK BY POPULAR DEMAND. The bestselling author of
Sturting Fortlz is back again with the first guide to using Forth to
program applications. This book captures the philosophy of the
language to show users how to write more readable, better
maintainable applications. Both beginning and experienced
programmers will gain a better understanding and mastery of
such topics: Forth styleand conventions, decomposition, factoring,
handling data, simplifyingcontrol structures. And, to give you an
idea of how these concepts can be applied, Thinking Forth
contains revealing interviews with real-life users and withForthts
creator Charles H. Moore. To program intelligently, you must
first think intelligently, and that's where Thinking Forthcomes in.
Reprint of original, 272pgs

WRITE YOUR OWN PROGRAMMING LANGUAGE USING C++,
Norman Smith 270 - $15

This book is about an application language. More specifically,
it is about how to write your own custom application language.
The book contains the tools necessary to begin the process and
a complete sample language implementation. [Guess what
language!] Includes disk with complete source. IORpgs

WRITING FCODE PROGRAMS 252 - $48

This manual is written for designers of SBus interface cards and
other devices that use the FCode interface language. It assumes
familiarity with SBus card design requirements and Forth
programming. The material covered discusses SBus
development for both OpenBoot 1.0 and 2.0 systems. 414pgs

For faster service, fax your orders: 510-535-1295

DISKS: Contributions from the Forth Community
The "Contributions from the Forth Community" disk library contains
author-submitted donations, generally including source, for a variety
of computers & disk formats. Each file is determined by the author as
public domain, shareware, or use with some restrictions. This library
does not contain "For Sale" applications. To subnzit your own contri-
butronr, send tlzenz to tlze FIG Publiccctions Conzrnittee.

FLOAT4th.BLK V 1.4 Robert L. Smith COO1 - $8
Software floating-point for fig-, poly-, 79-Std., 83-Std.
Forths. IEEE short 32-bit, four standard functions, square
root and log.
*** IBM, 190Kb, F83

Games in Forth
Misc. games, Go, TETRA, Life ... Source

IBM, 760Kb

A Forth Spreadsheet, Craig Lindley COO3 - $6
This model spreadsheet first appeared in Fortlz Dimensions
V11/1,2. Those issues contain docs & source.

* IBM, 100Kb

Automatic Structure Charts, Kim Harris COO4 - $8
Tools for analysis of large Forth programs, first presented at
FORMLconference. Full source; docs incl. in 1985 FORML
Proceedings.

** IBM, 114Kb

A Simple Inference Engine, Martin Tracy COO5 - $8
Based on inf. engine in Winston & Horn's book on LISP,
takes you from pattern variables to complete unification
algorithm, with running commentary onForthphilosophy &
style. Incl. source.

** IBM, 162 Kh

The Math Box, Nathaniel Grossman COO6 - $10
Routines by foremost math author in Forth. Extendeddouble-
precision arithmetic, complete 32-bit fixed-point math, &
auto-ranging text. Incl. graphics. Utilities for rapid
polynomial evaluation, continued fractions & Monte Carlo
factorization. Incl. source & docs.

** IBM, 118 Kb

AstroForth & AstroOKO Demos, I.R. Agumirsian COO7 - $6
AstroForth is the 83-Std. Russian version of Forth. Incl.
window interface, full-screen editor, dynamic assembler &
a great demo. AstroOKO, an astronavigation system in
AstroForth, calculates sky position of several objects from
different earth positions. Demos only.

* IBM,700Kb

Forth List Handler, Martin Tracy COO8 - $8
List primitives extend Forth to provide a flexible, high-
speed environment for AI. Incl. ELISA and Winston &
Horn's micro-LISP as examples. Incl. source & docs.

** IBM, 170 Kb

8051 Embedded Forth, William Payne C050 - $20
8051 ROMmable Forth operating system. 8086-to-8051
target compiler. Incl. source. Docsare in the book Enzbedded
Cor~troller Fortlifi~r the 8051 Fccntily. Included with item
#2 16
*** IBM HD, 4.3 Mb

68HCll Collection C060 - $16
Collection of Forths, tools and floating point routines forthe
68HC l 1 controller.
*** IBM HD, 2.5 Mb .,

F83 V2.01, Mike Perry & Henry Laxen C100 - $20
The newest version, oorted to a varietv of machines. Editor.

F-PC TEACH V3.5, Lessons 0-7 Jack Brown C201 - $8
Forth classroom on disk. First seven lessons on learning Forth.

~ - - . -. . - . .- -. . . .
- - - - - - 7

from Jack Brown of B.C. institute of Technology.
* IBM HD, F-PC, 790 Kb

VP-Planner Float for F-PC, V I .O 1 Jack Brown C202 - $8
Software floating-point engine behind the VP-Planner spreadsheet.
80-bit (temporary-real) routines with transcendental functions,
number UO support, vectors to support numeric co-processor
overlay & user NAN checking.

** IBM, F-PC, 350 Kb

F-PC Graphics V4.6, Mark Smiley C203 - $10
The latest versions of new graphics routines, including CGA,
EGA, and VGA support, with numerous improvements over
earlier versions created or supported by Mark Smiley.

** IBM HD, F-PC, 605 Kb

PocketForth V6.4, Chris Heilman C300 - $12
SmallestcompleteForthfortheMac. Access toall Mac funct~ons,
events, files, graphics, floating point, macros, create standalone
applications and DAs. Based on fig & Starting Fortlz. Incl. source
and manual.

* MAC, 640 Kb, System 7.01 Compatible.

Kevo V0.9b6, Antero Taivalsaari C360 - $10
Complete Forth-like object Forth for the Mac. Object-Prototype
access to all Mac functions, files, graphics, floating point, macros,
create standalone applications. Kernel source included, extensive
demo files, manual.
*** MAC, 650 Kb, System 7.01 Compatible.

Yerkes Forth V3.67 C350 - $20
Complete object-oriented Forth for the Mac. Object access to all
Mac functions, files, graphics, floating point, macros, create
standaloneapplications. Incl. source, tutorial, assembler& manual.

** MAC, 2.4Mb, System 7.1 Compatible.

Pygmy V 1.4, Frank Sergeant C500 - $20
A lean, fast Forth with full source code. Incl. full-screen editor,
assembler and metacompiler. Up to 15 files open at a time.

** IBM,320 Kb

KForth, Guy Kelly C600 - $20
A full Forth system with windows, mouse, drawing and modem
packages. Incl. source & docs.

** IBM, 83,2.5 Mb

Mops V2.6, Michael Hore C7 10 - $20
Close cousin to Yerkesand Neon. Very fast, compiles subroutine-
threaded & native code. Object oriented. Uses F-P co-processor
if present. Full access to Mac toolbox &system. Supports System
7 (e.g., AppleEvents). Incl. assembler, manual & source.

** MAC, 3 Mb, System 7.1 Compatible

BBL & Abundance, Roedy Green C800 - $30
BBLpublic-domain, 32-bit Forth with extensive support of DOS,
meticulously optimized for execution speed. Abundance is a
public-domain database language written in BBL. Incl. source &
docs.
*** IBM HD, 13.8 Mb, hard disk required

assembler, decompiier, metacornpile;. Source and shadow
screens. Manual available separately (items 217 & 235).
Base for other F83 applications.

* IBM, 83,490 Kb

F-PC V3.6 & TCOM 2.5, Tom Zimmer C200 - $30
A full Forth system with pull-down menus, sequential files,
editor, fo~ward assembler, metacompiler, floating point.
Complete source and help tiles. Manual for v3.5 available
separately (items 350 & 351). Base for other F-PC
applications.

* IBM HD, 8 3 , 3 . 5 ~ b

Version-Replacement Policy

Return the old version with the FIG
labels and get a new version

replacement for 112 the current
version price.

* - Start~ng ** - lntermedlate *** -Advanced For faster service, fax your orders: 510-535-1295

MISCELLANEOUS

T-SHIRT "May the Forth Be With You" 601 - $12
(Specify size: Small, Medium, Large, X-Large on order form)
white design on a dark blue shitt or green design on tan shirt.

POSTER (Oct.. 1980 BYTE cover) Last 602 - $5
10

ANS-FORTH QUICK REFERENCE CARD 685 - $1

BIBLIOGRAPHY O F FORTH REFERENCES 340 - $18
(3rd ed., January 1987)
Over 1900 references to Forth articles throughout computer
literature. 104pgs

MORE ON FORTH ENGINES

Volume 10 January 1989 810 - $15
RTX reprints from 1988 Rochester Forth conference, object-
oriented ctnFotth, lesser Forth engines. 87pgs

Volume 11 July 1989 811 - $15
RTX supplement to Footstel~s in an Enlpty Valley, SC32.32-bit
Forth engine, RTX interrupts utility. 93 pgs

Volume 12 April 1990 812 - $15
ShBoom Chip architecture and instructions, neural computing
module NCM3232, pigForth, binary radix sort on 80286,68010,
and RTX2000. 8711gs

Volume 13 October 1990 813 - $15
PALS of the RTX2000 Mini-BEE,EBForth, AZForth, RTX2IO1,
8086 eForth, 805 1 eForth. 107pg.~

Volume 14 814 - $15
RTX Pocket-Sco~e, eForth for muP20, ShBoom, eForth for

I CP/M & 280. XMODEM for eForth. 1 1 6 ~

Volume 15 815 - $15
Moore: new CAD system for chip design, a portrait of the P20;
Rible: QSI Forth processor, QS2, RISCing it all; P20 eForth
software simulatorldebugger. 94 pgs

Volume 16 816 - $15
OK-CAD System, MuP20, eForth system words, 386 eForth,
80386 protected mode operation, FRP 1600 - 16-Bit real time
processor. 104 pgs

Volume 17 817 - $15
P21 chip and specifications; Pic17C42; eForth for 68HCl1,
805 1, Transputer I28 pgs

Volume 18 818 - $20
MuP2 1 - programming, demos, eForth I14 pgs

Volume 19 819 - $20
More MuP21 - programming, demos, eForth 135pgs

DR. DOBB'S JOURNAL back issues
Annual Forth issue, includes code for various Forth applications.

Sept. 1982, Sept. 1983, Sept. 1984 (3 issues) 425 - $10

FORTH INTEREST GROUP
P.O. BOX 2154 OAKLAND, CALIFORNIA 94621 510-89-FORTH 51 0-535-1295 (FAX)

(510-893-6784)
Name Phone

Fax Company
Street eMail
City
StateIProv. Zip
Country

Item # I Tltle Unit Price Total

I I I I

CHECK ENCLOSED (Payable to: FIG) Sub-Total

VISAIMasterCard Expiration Date 10% Member Discount, Member # ()
*Sales Tax on Sub-Total (CA only)

Card Number shipping & **Shipping and Handling (see above) handling

Signature ***Membership in the Forth Interest Grou
O N e w ORenewal $45153166

MEMBERSHIP Total

***MEMBERSHIP IN THE FORTH INTEREST GROUP
The Forth Interest Group (FIG) is a worldwide, nonprofit, member-supported organizalion w~th over 1,000 members and 10 chapters. Your membership includes a subscription to the bimonthly
rnagazlne Forth D~mens~ons. FIG also offers its members an on-line data base, a large selection of Forth literature and other services. Cost is $45 per year for U.S.A. &Canada surface; $53 Canada
alr mall: all other countries $60 per year. This fee includes $39 for Forth Dimensions. No sales tax, handling fee, or discount on membership.
When you loin, your flrst Issue will arrive in lour to six weeks: subsequent issues will be mailed to you every other month as they are publ~shed-six issues in all. Your membership entltles you to
a 10% dlscount on ~ u b l l c a t i o n ~ and functions of FIG. Dues are not deductible as a charitable contribution for U.S. federal income lax purposes, but may be deductible as a business expense.

MAIL ORDERS: PAYMENT MUST ACCOMPANY ALL ORDERS CALIFORNIA SALES TAX BY COUNTY:
Forth Interest Group 7.7596: Del Norte. Fresno. Imperial. lnyo,
P.O. Box 2154 PRICES: All orders must be prepaid. Prlces are SHIPPING & HANDLING: SHIPPING TIME: Madera, Orange, Riverside. Sacramento,
Oakland. CA 94621 subject to change without notice. Credit card Allorderscalculate shipping& Books in stock are shipped withln Santa Clara. Santa Barbara. San Bernar-
PHONE ORDERS: orders will be sent and billed at current prices, handling based on order seven daysof receipt oftheorder. dino, Sari Diego, and Sari Joaquin; 8.25%:
510-89-FORTH Credlt card Checks must be in U.S. dollars, drawn on a U.S. dollar value. "'SURFACE DELIVERY: Alameda, Contra Costa. Los Angeles San
orders. Customer servlce. bank. A $10 charge will be added for returned Special handling available US: 10 days. Other: 30-60 days Mateo, San Francisco, Sari Benito, and
Hours: Mon-Frl. 9-5 p m. checks. on request. Santa Cruz; 7.25%: other counties.

For faster service, fax your orders: 510-535-1295 XVII-6

Listing I
1 (DFC - ~ i f f e r e n t i a l F i l e C o m p a r i s o n . W i l B a d e n 1 9 7 6 - 1 9 9 6)

3 (M a k e a l i n e by l i n e c o m p a r i s o n of t w o f i l es , s h o w i n g
4 (w h e r e and h o w t h e y a re d i f f e r e n t .)

6 (U s e d :
7 S " < o l d f i l e n a m e > " INPUT TO OLD
8 S" < n e w f i l e n a m e > " INPUT TO NEW
9 DFC

1 2 : BOUNDS OVER + SWAP ; (a k -- a+k a)

1 4 : INPUT R / O OPEN-FILE ABORT" C a n ' t o p e n " ; I
1 6 : REWIND (f i l e i d --)

1 7 0 0 ROT R E P O S I T I O N - F I L E
1 8 ABORT" S o r r y , error r e w i n d i n g f i l e . "
1 9 ;

2 1 : PLACE (s . a - -)
2 2 2DUP >R >R CHAR+ SWAP CHARS MOVE R> R> C !
2 3 ;

2 5 : UNDER ROT DROP SWAP ; (a b c - - c b)

2 7 : h a s h (c o u n t e d - s t r i n g -- h a s h - v a l u e)
2 8 (C o m p u t e hash v a l u e f o r a counted s t r i n g .)

2 9 0 SWAP COUNT CHARS BOUNDS ?DO (h a s h - v a l u e)
3 0 6 5 5 9 9 * I C @ +
3 1 1 CHARS +LOOP

1 3 2 ;

3 4 0 VALUE OLD
3 5 0 VALUE NEW

39 CREATE o l d t e x t l i n e s i z e 3 + CHARS ALLOT

4 0 CREATE n e w t e x t l i n e s i z e 3 + CHARS ALLOT

1 3 7 2 5 4 CONSTANT l i n e s i z e

4 2 : read-text (b u f f e r f i l e i d -- f l a g)

4 3 >R CHAR+ DUP l i n e s i z e R> READ-LINE
4 4 ABORT" S o r r y , error reading f i l e . "
4 5 ROT ROT -TRAILING SWAP 1 CHARS - C !
4 6 ; ._
4 8 (C e l l f o r each record + 3 * m a t c h i p g - c a n d i d a t e s .)

4 9 (T h u s 6 0 0 0 h a n d l e s f i l e s up t o 1 2 0 0 l i n e s o r m o r e .)

51 6 0 0 0 CONSTANT lcs-space (T h e l a rger t h e be t t e r .)

5 2 CREATE LCS lcs-space CELLS ALLOT

5 4 0 VALUE o l d l i n e s 0 VALUE n e w l i n e s
55 VARIABLE X VARIABLE Y

5 6 VARIABLE c a n d

(Continues.)

Forth Dimensions 23 March 1996 April

I

1 1 6 : s o r t - h a s h - v a l u e s (-- 1
117 (S h e l l s o r t f o r u n u s u a l d a t a s t r u c t u r e .)
118 (I n p u t : n e w l i n e s)

1 1 9 n e w l i n e s 1 (l i n e s gap)
12 0 BEGIN 2DUP 1 + >WHILE 2* 1+ REPEAT
121 B E G I N 2 / DUP
122 WHILE
123 2DUP 1+ DO I i n s e r t - h a s h - v a l u e LOOP
124 REPEAT 2DROP
125 ;

127 (Mark t h e h a s h v a l u e e q u i v a l e n c e c l a s s e s by n e g a t i n g
128 (t h e l a s t l i n e number a s s o c i a t e d w i t h a hash v a l u e .)

130 : mark-hash-c lasses (--)
131 (Negate l i n e s w i t h d i f f e r e n t hash f rom n e x t l i n e .)
132 (I n p u t : n e w l i n e s)

133 n e w l i n e s 1- 1 DO
134 I s l o t - h @ I 1 + s l o t - h @ = NOT (135 I F I s l o t DUP @ NEGATE SWAP ! THEN
136 LOOP

n e w l i n e s 1- s l o t DUP @ NEGATE SWAP !
138 ; I 137

Rese rve two c e l l s f o l l o w i n g t h e l i n e numbers of t h e newer
f i l e . Now r e a d i n e a c h l i n e of t h e o l d f i l e . Take t h e hash
v a l u e o f t h e l i n e , and f i n d t h e f i r s t l i n e i n t h e newer
f i l e h a v i n g t h e same hash v a l u e . S t o r e t h e number of t h e
c e l l c o n t a i n i n g l i n e number i n t h e n e x t s u c c e s s i v e c e l l .
I f t h e l i n e i n t h e o l d f i l e d o e s n o t a p p e a r anywhere i n
newer f i l e , s t o r e 0 .)

: s e a r c h - f o r - h a s h (match h i g h low hash -- match)

> R (match h i g h low) (R : h a s h)
BEGIN OVER 1+ OVER <
WHILE

2DUP + 2/ (match low h i g h mid)
DUP s l o t - h @ R@ < I F

UNDER (match low h i g h)
ELSE (match low h i g h mid)

NIP (match low h i g h)
DUP s l o t - h @ R@ =

I F UNDER OVER THEN
THEN

160 REPEAT 2DROP (match)
1 6 1 R> DROP
162

.<, (R : 1
I

164 : r e a d - o l d f i l e (--)
165 (Read o l d f i l e and match n e w f i l e hashed l i n e s .)
1 6 6 (I n p u t : n e w l i n e s ; Outpu t : o l d l i n e s)
167 n e w l i n e s 1+ (biased- l ine -number)
168 BEGIN
16 9 1 +
170 o l d t e x t OLD r e a d - t e x t
171 WHILE
172 DUP n e w l i n e s + l c s - s p a c e >
17 3 ABORT" S o r r y , o u t of s p a c e f o r newer f i l e . " (Continues.)

Forth Dimensions 25 March 1996 April

174 0 0 newlines (. match low high)
175 oldtext hash search-for-hash (biased-line match)
17 6 OVER slot ! (biased-line-number)
17 7 REPEAT
178 TO oldlines ()

179 ;

181 (We are done with the sub-array of hash values, and the
182 (memory can be used for something else.)

184 (Find the longest common subsequence. Following the
185 (sub-array used for the old file, build a doubly-linked
186 (list representing the potential longest common subsequences
187 (in reverse order. In doing this, replace the value in
188 (the cells associated with the old file with the cell number
189 (of the appropriate doubly-linked list. The two cells that
190 (were reserved are used as the bounds of the subsequences.)

candidate (x y z -- candidate-pointer)
(Make a new candidate for LCS.)

(In/Out: cand)

cand @ lcs-space 2 - >
ABORT" Sorry, candidate space exhausted. "

cand @ >R (R: candidate-pointer)
>R >R (X)

cand @ slot ! (1
1 cand + !
R> (y) cand@slot ! ()

1 cand + !
R> (z) cand @ slot ! (1
1 cand +!

R> (candidate-pointer) (R:)

search-for-match (Value low high -- 0 I Value wherefound)

(Binary search for LCS candidates.)

ROT >R (low high) (R: Value)
BEGIN 2DUP > NOT
WHILE

2DUP + 2 / (low high mid)
DUP slot @ 1+ slot @ R@ < NOT IF

1 - NIP (low high)
ELSE (low high mid)

DUP 1-t slot @ 1+ slot @ R@ < NOT
IF NIP NIP R> SWAP EXIT THEN

1+ UNDER
*\

(low high)
THEN

REPEAT .a 2DROP
R> DROP (R: 1
0 (0)

226 : new-candidate (value wherefound i -- flag)
227 (Make and link a new LCS candidate.)

228 (In/Out: X Y LCS)

229 ROT ROT (i value wherefound) 1 230 DUP >R
231 2DUP 1+ slot @ 1+ slot @ < IF

March 1996 April 26 Forth Dimensions

232 Y @ X @ slot !
233 DUP I+ X !
234 slot @ candidate Y ! ()

235 ELSE 2DROP DROP THEN
236 R> L C S @ = (flag)
237 DUP IF (Move fence.)

238 LCS @ 1+ slot @ LCS @ 2 + slot !
239 1 LCS +!
240 THEN
241 ;

(flag)

243 : find-longest-common-subsequence (--)

244 (Nu£ ced,)

245 (Input: oldlines newlines ; Use: cand LCS X Y)

2 4 6 oldlines cand !
247 newlines LCS !
248 newlines 1+ 0 0 candidate LCS @ slot !
249 oldlines newlines 0 candidate LCS @ 1+ slot !
250 oldlines newlines 2 +
251 DO
2 52 I slot @ (newer-line-number)
253 DUP IF
254 newlines DUP X ! slot @ Y !
255 BEGIN
256 DUP slot @ ABS (. value)
257 X @ LCS @ search-for-match
2 5 8 (. 0 I . value wherefound)
259 DUP IF I new-candidate THEN
260 (newer-line-number flag)
261 O=
2 62 WHILE (newer-line-number)
263 DUP slot @ 0>
264 WHILE
2 65 1+
266 REPEAT THEN
2 67 Y @ X @ slot !
268 THEN DROP
269 LOOP
270 ;

272 (Untangle the linked reverse list of the longest common
273 (subsequence to become a simple linear list in forward
274 (order in the sub-array used for the old file.)

276 : build-candidate-table (--)

277 (Unravel LCS.)

27 8 (Input: LCS oldlines newlines)

279 LCS @ slot @ (c)
280 oldlines newlines 2 +
2 8 1 DO 0 I slot ! LOOP
282 newlines oldlines slot !
283 BEGIN DUP
284 WHILE
285 DUP 1+ slot @ (c j)
286 OVER slot @ slot ! (C)

287 2 + slot @
2 8 8 REPEAT DROP
289 ; (Continues.)

Forth Dimensions 27 March 1996 April

291 (The va lues a r e 0 i f t h e l i n e does no t appear i n t h e newer
292 (f i l e , o r t h e l i n e number of a cand ida t e match i n t h e
293 (newer f i l e . Skipped numbers are l i n e s t h a t a r e new i n
294 (t h e newer f i l e .)

296 (Display t h e l i n e s t h a t w e r e d e l e t e d from t h e o l d f i l e ,
297 (i n s e r t e d i n t h e newer f i l e , o r unchanged.)

299 (S t a t e : 0= d e l e t e , 0< add, 0> copy.)

301 VARIABLE match ingtex t l i n e s i z e 3 + CHARS ALLOT

303 : d e l e t e d (p r e v i o u s - s t a t e -- s t a t e)

304 (What t o do when t h e l i n e i s i n t h e o l d f i l e on ly .)

305 (Inpu t : X Y o l d t e x t)

306 (In/Out: match ingtex t)

3 0 7 match ingtex t C @ IF
308 X @ 1- 4 U . R SPACE
309 Y @ 4 U . R SPACE
3 1 0 match ingtex t COUNT 1- TYPE CR
3 11 0 match ingtex t C!
312 THEN
3 13 X e 4 U . R SPACE . I 1 DEL> "

3 1 4 o l d t e x t COUNT TYPE CR
315 DROP 0 (d e l e t e)

316 ;

added (p r e v i o u s - s t a t e -- s t a t e)

(What t o do when t h e l i n e i s i n t h e newer f i l e on ly .)

(Inpu t : X Y newtext)

(In/Out: match ingtex t)

matchingtex t C @ I F
X @ 1 - 4 U . R SPACE

Y @ 1- 4 U . R SPACE
match ingtex t COUNT 1- TYPE CR

0 match ingtex t C !
THEN

." NEW> " Y @ 4 U . R SPACE
newtext COUNT TYPE CR

DROP -1 (add)

333 : matched (p r e v i o u s - s t a t e -- s t a t e)

3 3 4 (What t o do when t h e l i n e i s i n bo th f i l e s .)

335 (Inpu t : X Y o l d t e x t newtext)

336 (In/Out: LCS : number of matcted l i n e s .)

337 (Output: match ingtex t)

338 1 LCS t!

339 DUP 1- 0< (adding o r d e l e t i n g) IF
3 4 0 X @ 4 U . R SPACE
3 4 1 Y @ 4 U . R SPACE
342 newtext COUNT TYPE CR
3 4 3 DROP 1 (copy)

3 4 4 ELSE (copying, = number of l i n e s j u s t copied .)

345 1 +
346 3 OVER = IF CR THEN

3 4 7 newtext COUNT It matchingtex t PLACE

March 1996 April 28 Forth Dimensions

348 THEN
349 ;

: handle-delet ed (state -- same)

BEGIN
1 X +! X @ newlines + 1+ oldlines <

oldtext OLD read-text 0=
ABORT" Oops, error with old file

THEN
X @ newlines + 1+ slot @

(i.e. newer-line-number) 0=
WHILE deleted REPEAT

: handle-added (state -- same)

BEGIN
1 Y + ! Y @ newlines < IF

newtext NEW read-text 0=
ABORT" Oops, error with newer file

THEN
X @ newlines + 1+ slot @ Y @ >

WHILE added REPEAT

372 : handle-matched (state -- same)

373 (Check that matched records are really the same.)

374 oldtext COUNT newtext COUNT COMPARE O= IF
37 5 matched
376 ELSE added deleted THEN
377

379 : show-differences (-- 1
380 (Let's see them.)

381 (Input: oldlines newlines ; Use: X Y LCS matchingtext)

382 OLD REWIND NEW REWIND
3 8 3 O X ! O Y ! 0 LCS !
384 0 matchingtext C!
3 8 5 1 (copying
386 BEGIN (state)
387 handle-deleted handle-added
388 Y @ newlines <
389 WHILE handle-matched
3 9 0 REPEAT DROP
391 ;

393 : DFC (--)

394 (Differential file comparison. ")
395 read-newerfile sort-hash-values mark-hash-classes
3 9 6 read-old£ ile find-longest-common-subsequence
397 build-candidate-table show-differences
398 OLD REWIND NEW REWIND
399 ;

401 \ Procedarnus in pace. Wil Baden Costa Mesa, California

I
Forth Dimensions 29 March 1996 April

Using Forth to manipulate the real world - .-. n

Getting to the Hardware from Linux

Skip Carter
Monterey, California

1995 was a year in which probably everybody using a
PC agonized over the prospect of changing operating
systems. For myself, I thought about it and ultimately
installed Linux on my PC. I have to confess to a Unix
prejudce (brought about by nearly two decades of expo-
sure to it!) so I felt right at home. Those of you who moved
to Linux without any previous experience with minicom-
puters and workstations were probably shocked to dis-
cover one fact about sophisticated operating systems: you
no longer control the machine, the operating system does
and you have to ask permission from it to do what used
to be an ordinary thing (such as writing to the parallel
port).

In this month's column, we will give you Linux
newcomers the ability to catch up with all those MS-DOS
users who are terrorizing their cats with stepper-motor-
controlled "mice."

Which Forth to Use
If you are running with the Linux operating system you

have three choices when it comes to Forth compilers,
The standard write-it-yourself approach.
Wil Baden's ThisForth.
Dirk Uwe Zoller's PFE (Portable Forth Environment).

The second two are good solid compilers, good
enough that the only justification for doing your own is the
educational value. Wil's compiler is the most portable
Forth-in-C implementation I have ever seen (I even got it
running on a Cray, a 64-bit environment). It is not quite
ANS (it was never intended for that purpose), but one can-
write ANS programs on it. It requires implementing the
ANS File wordset on top of the (more generalized) 'i/0
system that ThisForth implements. PFE is a very good ANS
Forth system; it is not as portable as ThisForth, but it runs
much more quickly. PFE running on Linux also has the
very nice feature of the ability to naturally access shared
libraries (these are the DLLs of the Unix/Linux world).

Dirk has also managed to do the Forth community a
service by getting PFE as an installation option of Linux
distribution CD-ROMs (also, by the way, the FreeBSD
operating system distribution CD-ROM).

Where did PRN go?
The first thing to learn is where the parallel port went

to. Under Linux, one can't just go read from address
0040:0008. First of all, Linux presents all processes with a
flat virtual memory space, it takes a special system call to
convert to the actual physical location. Second, that
physical memory location is only significant to MS-DOS.
Instead, Linux does has a table of all the physical and
virtual devices that the operating system knows about.
This table is the special &rectory, /dev. The Linux devices
/dev/parX are the parallel ports, the value of X depends
upon the address of the port:

Table One. Correspondence of devices and addresses.

Major Minor
Device Address number number

/dev/parO Ox3BC 6 0
/dev/parl 0x378 6 1
/dev/par2 0x278 6 2

The major device number is an index into a list of
device drivers; on my system, index 6 is the parallel port
driver (the value of the number is arbitrary but needs to be
established uniquely for each device when building the
operating system image. The Linux community has adopted
a major device number convention for standard devices to
make interoperability and management simpler. Other
than following convention, there is no reason why the
value of this number is special).

The minor device number is an index used internally
by the device driver. It is typically used to indicate an
instance of the actual device; in the above case, the system
is capable of handling three different parallel ports. They
do not have to all actually exist, on my system the only one
that actually corresponds to a physical port is /dev/parl.
If you have the standard parallel port device driver
compiled into the operating system, then you can figure
out which one is your actual port by looking u p the port
address in Table One.

1 You can find out the assignment of the major and minor

March 1996 April 30 Forth Dimensions

v

Figure One. Major and minor device number assignments.

crw-rw---- 1 r o o t daemon 6, 0 J u l 17 1994 /dev/parO
crw-rw-rw- 1 r o o t daemon 6, 1 J u l 17 1994 / d e v / p a r l
crw-rw---- 1 r o o t daemon 6, 2 J u l 17 1994 / d e v / p a r 2

L

Forth Dimensions 3 1 March 1996 April

device numbers to all the devices by typing the command
Is -1 / d e v / p a r * } [seeFigure Onel.

Going from left to right this tells us,
The permissior. settings (see below).
The number of hard links (we will ignore this here).
The name of the owner, r o o t is the master of the
system.
The name of the group that this device belongs to,
daemon is the group of programs that run in the
background performing system services.
The major device number, 6 in all cases for this device.
The minor device number, 0 through 2.
The creation date.
The name of the device driver.

Getting to the Port
Now that we know where the port is, how do we talk

to it? The short answer is, you treat /dev/parX as if it were
a disk file and just open the file and write to it. The long
answer deals with all the complicating factors that makes
it actually work.

First, you need to have permission to open the file.
Looking at the directory listing shown above we see,
crw-rw----. The c means we are dealing with a
character device. The first two rw's mean that the owner
and group have read/write privilege on the device and
everyone else (including you, most likely) can't touch.

We need to get permission to use the device. There are
two solutions to this problem: (i) become the privileged
owner or part of the privileged group, or (ii) expand the
read/write privileges on the device. The first is not a good
idea because that means that you need to become the
super-user (roo t) to run an application; this can be
dangerous, since r o o t has the privilege to do almost
anything. A slightly safer method is to make the permis-
sions on your program such that it runs with the super-user
privilege level even though you are not; this is done by
setting the setuid bit with the chmod command. It is much
safer to extend the permissions on the device to everybody
by using the command chmod t r w on the device (of
course r o o t has to do this). +..

I did this on my system, which is why the permissions
on /dev/parl looks the way it does.

Now we can open the device with the (ANS) Forth line:

S" / d e v / p a r l W R/W B I N OPEN-FILE

ABORT" Unable t o open p a r a l l e l p o r t a t
/ d e v / p a r l n

The use of B I N to modify the file access method is not
really necessary, but it is probably a good habit to use
when manipulating bits on a file or device. Read access is

also probably not that useful either, unless you have bi-
directional parallel port hardware.

Why test for an open failure when we have fmed the
permissions on the device? Remember that Linux is a
multi-usedmulti-tasking operating system, lots of things
are going on (even when nobody is logged in). It could be
that some other user or process has opened the device. If
this happens, your attempt to open the device will failuntil
the device is unclaimed again.

Talking to the Port
Once you have the permissions all properly set up, you

can get to the port. Listing One, fcontrol.fth is a Linux
version of the MS-DOS code originally presented by Ken
Merk (FD XVII/2). If you are using the standard device
driver for the parallel port, you will find that you can only
write, at most, one character to the port, then your
program hangs. This is because the device driver expects
the BUSY pin (pin 11) to be pulled low when the port is
ready for another character. The easiest way to handle this
is to wire your cable connector to loop back one of the
ground pins (18 to 25) to pin 11. This way your device
always looks ready.

Controlling the Stepper Motors
At this point, we can actually use the parallel port for

our own needs. By using our new version of fcontrol.fth,
we can drive stepper motors by using the file steppers.seq
from last time by making the following simple change:
replace the lines,
f l o a d fpc2ans . seq
f l o a d f s l - u t i l . s e q
£ l o a d s t r u c t s . seq
£ l o a d f c o n t r o 1 . s e q

with the lines,
s" f s 1-ut il . f t h " i n c l u d e d
s" s t r u c t s . seq" i n c l u d e d
s" f c o n t r o l . f t h " i n c l u d e d

Other Dwlces
All this is just fine if you just want to manipulate the

Data bits of the port, but you can't do much with the
Command and Status bits this way. To do this, you go back
to the problem of running your program with root
privilege and calling the I/O port directly (with the
dangers this implies), or you write a special device driver.
The second approach is a vastly better method if you are
going to be making a regular practice of using the port; it
is also what you should do if you just got your hands on
a fancy new A/D board that you want to use.

A Linux/Unix device driver is nothing more than an

...... The Computer Journal 6

I/O interface with a standard set of entry points (primarily
open, close, read, w r i t e , and a configure routine).
The only trick is that the device drivers are staticallybound
into the operating system; this means that you have to
rebuild the operating system kernel to add a new device
driver. This is one reason that you will see lots of stuff in
/dev that are not actually associated with any installed
device. This allows you to, say, add a CD-ROM drive to
your system and then just use it without having to
recompile the operating system in order to get to it.

Feedback
Recall that last time I said that the coils in the stepper

motor act as inductors storing current. Dwight Elvey sent
me e-mail pointing out that this means that one of the
limiting factors on how fast you can drive the stepper
motor is how long it takes to dump the coil current (if you
drive it too fast, barely any current is gone before you have
gone and recharged it, so the motor will never see the

are used, after as a in low-
pass filters). Dwight describes that he has used a couple

I FORTH and others I

of techniques to cause the coils to discharge their current
more quickly. The most reliable method is to put a zener
diode in series with the shunting diodes. He reports that
he has increased the useful step rate by as much as a factor
of two by using this technique.

Conclusion
Now that we have wrestled control of our computer

back into our hands, we can join everybody else and use
the machines to control the world. We will start by
controlling electrical power, which is the topic of our next
column.

Please send your comments, suggestions, and criti-
cisms to me through Forth Dimensions or via e-mail at
skip@taygeta.com.

Skip Carter is a scientific and software consultant. He is the leader of the Forth
Scientific Library project, and maintains the system taygetaon the Internet. He
is also the President of the Forth Interest Group. The code that accompanies
this article is on-line at ftp://ftp.forth.org/publForthlFD/1996 for downloading.

March 1996 April 32

.................... FORTH, Inc. 19

Support Forth ... (and your career) ... by supporting the Forth Interest Group

Record numbers of top-paying employers are looking for Forth programmers. The best
candidates for these prestigious positions keep their Forth skills up to date and follow the key
developments in the field. The not-for-profit Forth lnterest Group is where to look-for job
referrals, reference literature, tutorials & advanced techniques, Forth news and, of course,
Forth Dimensions. These important services are made possible only by membership fees.

Please renew your membership today. And tell a friend, or ask your employer to
inquire about the benefits of a corporate membership. Phone: 1-51 0-89-FORTH

The Forth Institute's
.... Rochester Conference 20

L

............ Forth lnterest Group
........................ centerfold

Laboratory Microsystems,
Inc. (LMI) 19

Miller Microcomputer
Services 32

Silicon Composers 2

Forth Dimensions

Listing One. fcontrol.fth 1
\ f c o n t r o l . f t h Fo r th code t o c o n t r o l p a r a l l e l p r i n t e r p o r t .
\ See Ken Merk, For th ~ i m e n s i o n s , J u l y 1995.

\ Converted f o r PFE under Linux EFC October 1995

\ This i s an ANS For th program r e q u i r i n g :
\ 1. The F i l e Access word set
\ 2 . The word FLUSH-FILE from t h e F i l e Access Extens ions
\ word set

\ Note: i n o r d e r t o u se t h i s code
\ 1. Linux should be u s i n g t h e s t anda rd p o l l e d p r i n t e r d r i v e r
\ 2 . DB-25 P in 11 (BUSY) should be t i e d low, t h i s can be e a s i l y
\ achieved by looping p i n 11 back t o one of p i n s 18-25
\ 3. The p rope r /dev/parX dev ice is set i n INIT-PORT below
\ 4 . The permiss ions on t h a t dev ice should be : c r w - r w - r w -
\ ...

CR . (FCONTROL . FTH
: FCONTROL.FTH ;

October 1995)

\ t h e Linux d e v i c e s /dev/parX a r e t h e p a r a l l e l p o r t s ,
\ t h e va lue of X depends upon t h e add re s s of t h e p o r t :
\ X Address
\ 0 Ox3BC
\ 1 0x37 8
\ 2 0x278

: i n i t - p o r t (-- n)

S" /dev /par l l l R/W B I N OPEN-FILE
ABORT" Unable t o open p a r a l l e l p o r t a t / d e v / p a r l w

i n i t - p o r t CONSTANT #PORT

CREATE cbuf 8 ALLOT I
: pc! (n p o r t --)

DUP ROT cbuf C! cbuf 1 ROT WRITE-FILE DROP
FLUSH-FILE DROP

: PC@ (p o r t -- n)
cbuf 1 ROT READ-FILE 2DROP cbuf C@

HEX
: K I L L (--) 00 #PORT pc! ; \ t u r n OFF a l l dev i ce s
: ALL-ON (--) OFF #PORT pc! ; A t u r n ON a l l d e v i c e s

: ON? (b -- f) #PORT pc@ AND O < > : \ g e t ON s t a t u s of dev i ce
: OFF? (b -- f) #PORT pc@ AND O = ; \ g e t OFF s t a t u s of dev i ce

: WRITE (b --) #PORT PC! ;
: READ (-- b) #PORT PC@ ;

DECIMAL

\ WRITE b y t e t o p o r t
\ READ b y t e a t p o r t

\ a c rude wai t approximately n mi l l i s econds
\ a d j u s t t h e "700" va lue f o r your system

\ : m s (n - -) 0 DO 700 0 DO LOOP LOOP ;

Forth Dimensions 33 March 1996 April

Listing Two. fsl-util.fth

\ fsl-util.fth An auxiliary file for the Forth Scientific Library
\ For PFE

\ contains commonly needed definitions.
\ dxor, dor, dand double xor, or, and
\ sd* single * double = doublegroduct
\ v: defines use(& For defining and settting execution vectors
\ % Parse next token as a FLOAT
\ S>F F>S Conversion between (single) integer and float
\ FI Store FLOAT at (aligned) HERE
\ F= Test for floating point equality
\ -FROT Reverse the effect of FROT
\ F2* F2/ Multiply and divide float by two
\ F2DUP FDUP two floats
\ F2DROP FDROP two floats
\ INTEGER, DOUBLE, FLOAT For setting up ARRAY types
\ ARRAY DARRAY For declaring static and dynamic arrays
\ 1 For getting an ARRAY or DARRAY element address
\ & ! For storing ARRAY aliases in a DARRAY
\ PRINT-WIDTH The number of elements per line for printing arrays
\ IFPRINT Print out a given array
\ Matrix For declaring a 2-D array
\ 1 1 gets a Matrix element address
\ Public: Private: Reset-Search-Order controls the visibility of words
\ frame unframe sets up/removes a local variable frame
\ a b c d e f g h local FVARIABLE values
\ &a &b &c &d &e &f &g &h local FVARIABLE addresses

\ This code conforms with ANS requiring:
\ 1. The Floating-Point word set
\ 2. The words umd* umd/mod and d* are implemented
\ for ThisForth in the file umd.fo

\ This code is released to the public domain Everett Carter July 1994

CR . (FSL-UTIL.FTH V1.15 7 October 1995 EFC)

\ for control of conditional compilation of test code
FALSE VALUE TEST-CODE?
FALSE VALUE ?TEST-CODE \ obsolete, for backward compatibility

\ for control of conditional compilation of Dynamic memory
TRUE CONSTANT HAS-MEMORY-WORDS?

+,

\ FSL NonANS words

: -DEFINED (c-addr -- t/f) \ returns definition status of
FIND SWAP DROP O = \ a word

WORDLIST CONSTANT hidden-wordlist

: Reset-Search-Order
FORTH-WORDLIST 1 SET-ORDER
FORTH-WORDLIST SET-CURRENT

March 1996 April 34 Forth Dimensions

: Public:
FORTH-WORDLIST hidden-wordlist 2 SET-ORDER
FORTH-WORDLIST SET-CURRENT

: Private:
FORTH-WORDLIST hidden-wordlist 2 SET-ORDER
hidden-wordlist SET-CURRENT

: Reset-Search-Order Reset-Search-Order ; \ these are

CREATE fsl-pad 84 CHARS (or more) ALLOT

: dxor (dl d2 -- d)
ROT XOR >R XOR R>

t

: dor (dl d2 -- d)

ROT OR >R OR R>

: dand (dl d2 -- d)

ROT AND >R AND R>

\ double xor

\ double or

\ double and

\ single * double = double
: sd* (multiplicand multiplier-double -- product-double)

2 PICK * >R UM* R> +

: CELL- [1 CELLS 1 LITERAL - ; \ backup one cell

0 VALUE TYPE-ID \ for building structures
FALSE VALUE STRUCT-ARRAY?

\ for dynamically allocating a structure or array

TRUE VALUE is-static? \ TRUE for statically allocated structs and arrays
: dynamic (--) FALSE TO is-static? ;

\ size of a regular integer
1 CELLS CONSTANT INTEGER

\ size of a double integer
2 CELLS CONSTANT DOUBLE

\ size of a regular float
1 FLOATS CONSTANT FLOAT

\ size of a pointer (for readability)
1 CELLS CONSTANT POINTER

: % BL WORD COUNT >FLOAT O = ABORT" NAN"
STATE @ IF POSTPONE FLITERAL THEN ; IMMEDIATE

(Continues.)

Forth Dimensions 35 March 1996 April

: F, HERE FALIGN 1 FLOATS ALLOT F! ;

\ 1-D array definition
\
\ I cell-size I data area I
\

: MARRAY (n cell-size -- 1 -- addr)
CREATE
DUP , * ALLOT

DOES> CELL+

\
\ I id I cell-size I data area I
\

: SARRAY (n cell-size -- I -- id addr)
CREATE
TYPE-ID ,
DUP , * ALLOT

DOES> DUP @ SWAP [2 CELLS] LITERAL +
,

\ monotype array

\ structure array

: ARRAY
STRUCT-ARRAY? IF SARRAY FALSE TO STRUCT-ARRAY?

ELSE MARRAY
THEN

,

\ word for creation of a dynamic array (no memory allocated)

\ Monotype I

\ I data-ptr 1 cell-size I
\

: DMARRAY (cell-size --) CREATE 0 , ,
DOES>

@ CELL+

\ Structures
\
\ I data-ptr I cell-size I id I
\

: DSARRAY (cell-size --) CREATE 0 , , TYPE-ID ,
DOES> ''

>DUP [2 CELLS] LITERAL + @ SWAP
@ CELL+

: DARRAY (cell-size --)
STRUCT-ARRAY? IF DSARRAY FALSE TO STRUCT-ARRAY?

ELSE DMARRAY
THEN

March 1996 April Forth Dimensions

\ w o r d f o r a l i a s i n g a r r a y s ,
\ t y p i c a l usage: a { & b{ & ! sets b{ t o p o i n t t o a { ' s da ta

: & ! (addr-a &b --)

SWAP CELL- SWAP >BODY !
,

: 1 (addr n -- addr [n]) \ w o r d t h a t fetches 1-D a r r a y addresses
OVER CELL- @
* SWAP +

VARIABLE p r i n t - w i d t h 6 p r i n t - w i d t h !

: } £ p r i n t (n addr --) \ p r i n t n e l e m e n t s of a f l o a t a r r a y
SWAP 0 DO I p r i n t - w i d t h @ MOD O= I AND I F CR THEN

DUP I } F@ F . LOOP

I DROP
,

: I i p r i n t (n addr --) \ p r i n t n e l e m e n t s of an in teger a r r a y
SWAP 0 DO I p r i n t - w i d t h @ MOD O= I AND I F CR THEN

DUP I } @ . LOOP
DROP

: Ifcopy (' s r c 'dest n --)

0 DO
OVER I } F @
DUP I } F !

LOOP
2DROP

\ 2-D a r r a y d e f i n i t i o n ,

I : I m I cel l-size I da ta area I
-__--_---_--_--_--_-----------

: MMATRIX (n m s i z e --)

CREATE
OVER , DUP ,
* * ALLOT

DOES> [2 CELLS] LITERAL +

\ copy o n e a r r a y i n t o ano the r

\ d e f i n i n g w o r d f o r a 2 - d m a t r i x

\ S t r u c t u r e s . ~

\
\ I i d I m I c e l l - s i z e I d a t a a?ea I
\ __-_--_--_--__---------------------

: SMATRIX (n m s i z e --) \ d e f i n i n g w o r d f o r a 2 - d m a t r i x
CREATE TYPE-ID ,

OVER , DUP ,
* * ALLOT

DOES> DUP @ TO TYPE-ID
[3 CELLS] LITERAL +

(Continues.)

Forth Dimensions 37 March 1996 April

: MATRIX (n m size --) \ defining word for a 2-d matrix
STRUCT-ARRAY? IF SMATRIX FALSE TO STRUCT-ARRAY?

ELSE MMATRIX
THEN

I

: DMATRIX (size --) DARRAY ;

: 1 1 (addr i j -- addr[i] [j]) \ word to fetch 2-D array addresses
2 >R \ indices to return stack temporarily
DUP CELL- CELL- 2 @ \ &a[0] [o] size m
R> * R> + *
+

:)) fprint (n m addr --) \ print nXm elements of a float 2-D array
ROT ROT SWAP 0 DO

DUP 0 DO
OVER J I] } F@ F.

LOOP
CR

LOOP
2DROP

\ function vector definition

: v: CREATE [' 1 noop , DOES> @ EXECUTE ;
: defines >BODY STATE @ IF POSTPONE LITERAL POSTPONE !

ELSE ! THEN ; IMMEDIATE

: use(STATE @ IF POSTPONE [' I ELSE ' THEN ; IMMEDIATE
: & POSTPONE use(; IMMEDIATE

(
Code for local fvariables, loosely based upon Wil Baden's idea presented
at FOWL 1992. The idea is to have a fixed number of variables with fixed names
I believe the code shown here will work with any, case insensitive, ANS Forth.

i/tForth users are advised to use FLOCALSI instead.

example: : test 2e 3e FRAME1 a b 1 a f. b f. IFRAME ;
test <cr> 3.0000 2.0000 ok

PS: Don't forget to use IFRAME before an EXIT .
)

8 CONSTANT /£locals

: (frame) (n --) FLOATS ALLOT ;

: FRAME1
0 >R
BEGIN BL WORD COUNT 1 =

SWAP C @ [CHAR] I =.
AND O=

WHILE POSTPONE F, R> 1+ >R
REPEAT

March 1996 April 38 Forth Dimensions

/FLOCALS R> - DUP O < ABORT" t o o many f l o c a l s "
POSTPONE LITERAL POSTPONE (f r a m e) ; IMMEDIATE

: IFRAME (--) [/FLOCALS NEGATE 1 LITERAL (FRAME) ;

: & h HERE [1 FLOATS] LITERAL - ;
: &g HERE [2 FLOATS] LITERAL - ;
: & f HERE [3 FLOATS] LITERAL - ;
: &e HERE [4 FLOATS] LITERAL - ;
: &d HERE [5 FLOATS] LITERAL - ;
: &c HERE [6 FLOATS] LITERAL - ;
: &b HERE [7 FLOATS] LITERAL - ;
: & a HERE [8 FLOATS] LITERAL - ;

: a & a F@ ;
b & b F@ ;
: c &c F@ ;
: d &d F@ ;
: e &e F@ ;
: f & f F@ ;

: 9 & g F@ ;
h & h F@ ;

(Fast Forthward, frompage 43.)

in order to discover the few that are broken. To test each After a flurry of processing, the newly developed tools
link, you must be able to recognize the intended destina- will generate and safely store a single hlp-suffixed file for
tion when you reach it. I wish you luck if you ever have each FrameMaker book. Along the way to that final file,
to do this for a nontrivial project. Testing a few thousand about 20 intermediate files will be generated for a book
distinct destinations this way is a hardship you would that has five chapter files and five heading levels. Most of
rather not confront. these are short-lived files built in a temporary holding area.

First, you must click correctly through as many as four Five of the files will provide the drill-down navigation
or more levels of heads before you reach or fail to reach capability that I sought so keenly. (The number of drill-
an expected book passage. The initial clicks take you to down files generated varies. Roughly one is needed for
the intermediate destinations, corresponding to the drill- each level of headline present in the original book.)
down navigation screens. Final destinations are book These drill-down files start out as what FrameMaker
passages. For a straightforward book conversion such as calls a book's generatedfiles. They are initially created by
ours, they will not possess more links of their own. FrameMaker as though they were ordinary table-of-con-

The mouse clicks can really add u p as you seek each tents files. However, each of these files was carefully
book-passage. Suppose you have a book-or suite of defined to focus exclusively upon one header level.
books-with a rate of headline fan-out of ten that contin- These drill-down files are processed by a custom awk
ues for three levels of heads, followed by a fan-out of four program. It redirects the Frame-generated hypertext links
for fourth-level headlines. This would yield a count of that normally always point to the book's body text. To
about 4,000 (4' lo3) destination passages at header level ',support drill-down navigation, most level-one heads are
five. A complete-coverage test in such a scenario involve? redirected to point to lists of subordinate level-two heads
intermediate-destination checks totaling 1,110 (10 at level and, similarly, most level-two heads will be changed to
two, plus 100 at level three, plus 1,000 at level four), in point to lists of subordinate level-three heads, continuing
addition to the 4,000 final-destination checks. That's a in such a way until a level of head is reached that has no
minimum of 5,110 mouse clicks and 5,110 companion, subordinate head. (The processing of the drill-down files
where-am-I-now assessments. is more sophisticated than I have let on. For example, a

means was devised to preserve a way to navigate to those
New Book-Building Tools higher-level discussions that happen to contain one or

My tools prove that automation need not impose more subordinate levels of heads.)
severe limitations nor impact the quality of the on-line The lowest-level heads are those without any subordi-
books that can be produced. nate heads. They are left defined as FrameMaker created

Forth Dimensions 39 March 1996 April

them so that they take the reader into a particular book
passage. Such book passages must correspond to WinHelp
topics. To treat them as discrete WinHelp topics, another
custom awk program strategically inserts the necessary
markups (manual page breaks) throughout each chapter
file for the book. As will be mentioned later, this MIF
markup processor also implements some cosmetically
useful font-size changes in the chapter files.

I let the MIF processor loose on the chapter files
directly after FrameMaker has resolved cross-references
and other computed book elements that they typically
contain. Under UNIX, this can be accomplished by issuing
an Update command by way of FrameMaker's fmbatch
utility. Several shell command scripts orchestrate all pro-
cessing in part by relying on fmbatch, which is available
for UNIX versions of FrameMaker only.

So far I have described how the source text is organized
in terms of a set of body files, one per chapter as is
customary; and a set of drill-down files, one per header
level.

The final compilation step has numerous options that
enable and disable various Help browser features, such as
whether graphics files will be compressed or not. In this
regard, HyperHelp closely resembles WinHelp. Although
professional programmers will be quick to assimilate the
protocol for establishing compiler options, the casual user
may be in for quite a struggle.

I was able to relieve my client from having to specify
certain compiler options-such as the names of the MIF
markup files-through some very basic UNIX file-manipu-
lation commands. For example, I redirect a listing of MIF
files generated by the 1s command into a file whose name
is mentioned in an includecompiler directive that I supply
in a boilerplate project file.

This dynamic way of specifying file options to the
compiler eliminates human intervention and avoids file-
name synchronization errors. Why not let the shell scripts
do the work based on the names of files you established
when you set them up in FrameMaker?

Three book-building shell scripts orchestrate a very
thoughtful sequence of processing, in the spirit of UNIX
make scripts. Generally, there is one book-building shell
script for each type of processing: (1) a book-building
script for the chapter files that optimizes them for on-line
,viewing, (2) a book-building script for the generation of
the drill-down files, and (3) a book-building script to
invoke the compiler properly while affording a simpler . \
interface to many compiler options.

.%

A Little Relief from Compiler-Induced Madness
As you might expect, the HyperHelp compiler is as

fussy as the WinHelp compiler. Each of these compilers
requires syntactically correct markups in the textual source
files. Each one chokes on the slightest typographical error
in a control (project) file and related include files. Error
messages are often cryptic or just plain misleading. In
general, most authoring tools presume that you are
familiar with the vagaries of software development envi-
ronments, such as compiler directives.
March 1996 April

The good news about the HyperHelp browser is that it
has some helpful tracing functions that the Windows Help
browser lacks. For example, it can show the context string
associated with any recent hypertextual action that you
performed. This facility helped me get past several seem-
ingly insurmountable roadblocks.

Supplementary help-authoring tools typically hide the
command-line and compiler-directive interfaces of the
WinHelp compiler. Likewise, they often sit inside an
extensible publishing tool such as Microsoft Word where
they can simplify many markup-generation tasks. How-
ever, such tools make life easier only when they work
without a hitch. The vendors of supplemental tools ought
to offer technical support second to none.

Besides the trace facility, HyperHelp has one more
virtue that I consider invaluable: HyperHelp can segregate
the graphics inside MIF files into temporary external files
just long enough for the compiler to finish its business with
them. While graphics can be interspersed along with the
text in RTF or MIF files, none of the compilers I have
mentioned can tolerate them being there. This ordinarily
leaves you with a whole bunch of file management chores.
However, a HyperHelp user need not fuss at all. Well,
maybe a little:

You may find that the UNIX /tmp directory seizes up
during compilation due to an overload of multi-megabyte
graphics files. In such an event, HyperHelp's error mes-
sages are very misleading. In the client-server environ-
ment I was using, I typically never saw the system-level
"file system full" error messages at all. In any case,
experience taught me to be suspicious of this particular
problem after repeated compilation failures. (HyperHelp
would be a much better UNIX citizen if it caught interrupt
signals and cleaned u p after any stray graphics files it had
been creating in the /tmp directory.)

(For those of you keeping track of file counts, add 100
or so temporary graphics files to the 20 stock temporary
files created by my custom shell scripts. Add 30 to the file
count to roughly take into account all the permanent files,
including shell scripts, related control files, and several
HyperHelp startup and executable files. Organizing all
these temporary and permanent files required a couple of
directories per book, along with about 12 stock directories
for the permanent files.)

Avoiding the Tool-Integration Blues
One way to improve the levels of integration between

tools is to choose them so they conform to non-proprietary
standards. Tools designed to work well with other tools
typically can import and export data in standard formats,
such as RTF. One FrameMaker virtue is its ability to export
in an ASCII markup called MIF. MIF can easily be parsed
with any UNIX text processing tools, including my favor-
ite, the awk text processor. Admirably, the HyperHelp
compiler accepts not only MIF files, it also accepts RTF
files and SGML files.

Because my client's CAD tools worked on IBM, Sun,
and other engineering workstations, I enjoyed abundant
access to UNIX tools. With X-Windows to help UNIX serve

40 Forth Dimensions

the FrameMaker and HyperHelp applications, I could
move between systems readily without incurring a pro-
ductivity hit. At a new workstation, I merely chose from a
startup dialog the UNIX system where my application
services would originate.

By taking full advantage of Frame's f mbat ch utility for
UNM, my book-building scripts could take control all of
the processing needed to optimize and compile on-line
books, in cradle-to-grave fashion. Accordingly, these
processes and tools are a real breakthrough.

MIF files do not have to be present initially for my tools
to process them. The fmbatch utility permits them to be
dynamically extracted by a shell script. The final process-
ing step is the customary submittal of MIF (or RTF) files to
the compiler, after which the MIF files are deleted. This
shows how the on-line and hardcopy versions of the book
are truly created from a single set of master files.

Even without my awk tools, the HyperHelp literature
holds out the promise of superb automation when used in
conjunction with FrameMaker. By itself, however, it falls
shorts in several respects: (1) It expects you to manually
save the MIF files to be compiled-it has no provision to
call fmbatch as a way to request that FrameMaker
generate these files automatically; (2) it expects that you
won't mind if the entire book is converted into one
oversize, long-scrolling WinHelp topic-or one that is
broken into topics based on page breaks or manually
inserted markups; (3) it makes no attempt to minimize the
efforts to compile a book, nor to reduce the maintenance
of the many required specifications for various compiler
options; and (4) it does not offer drill-down navigation
where you navigate through heads one level at a time.

The first three drawbacks have an deleterious impact
upon the intensity of labor required to obtain professional-
quality, on-line books. The final drawback deprives read-
ers of a drill-down interface better suited to lengthy on-line
reference works. (Windows 95 diminishes the amount of
labor required to obtain drill-down styles of navigation,
but even with the use of its navigational features, its labor
requirements would have been prohibitive.)

between topics. For me, this goes over about as well as
fingernails screeching across a blackboard!

Note also that the wide of range of font sizes suitable
for a hardcopy book may detract from an on-line book. For
one thing, the body font size needs to be boosted to
promote its on-screen readability. However, to allow all
the other font sizes to increase in roughly the same
proportion has a tendency to create gargantuan font sizes
for the highest levels of heads. Therefore, it is wise to
shrink larger font sizes moderately, despite an increase in
the body font size.

Technical Success, Marketing Failure?
After about 140 hours on this project, my client took

delivery of a very professional-looking subset of on-line
documents. A couple of weeks later, the client had
leisurely converted another six or so titles. By then, an
entire suite of books for the Tecnomatix tools that run on
a single CAD platform had been converted, yielding 35
megabytes of browser files.

Each year, I suspect that thousands of WinHelp on-line
documents will be created. By comparison, those created
yearly for UNIX environments is minuscule. So even
though I now have some of the best tools around, they are
targeted at a relatively small market.

This helps explain why I am taking time out now to
rework these tools to handle RTF forms of hypertext
markup from programs other than FrameMaker, and to
work with compilers from Microsoft in place of the
HyperHelp compiler from Bristol Technologies.

Error messages are often
cryptic or misleading.
Most authoring tools presume
you are familiar with the
vagaries of software

March 1996 April

Serving TWO Media Masters
Once you go beyond the drill-down layers of naviga-

tion, the substance of the hardcopy and on-line books is
identical-with only a couple of minor exceptions. One
exception involved font-size changes for all levels of
heads. While they would normally be formatted at differ-
ent font sizes, my tools changed the MIF markup to impart
to them the same appearance in the on-line book. 4ddi-
tional MIF markups were inserted to cause HyperHelp to
freeze the opening headline for a topic in a window pane
of its own. This ensures that readers will always have a
way to identify the topic they are currently viewing.

The use of a consistent size head in a dedicated
window pane lends the on-line book a more solid feel,
because that window pane will always remain a fixed size.
If you permit the topic headline's font size to vary for
topics that are at different header levels, the reader will
notice a jiggling of the window panes as they navigate

development environments...

Farewell for Now
As I step up to my latest challenge, who will step up to

take the reins of "Fast Forthward"? As for me, writing this
column has been a long and enjoyable journey into some
of the bright and some of the dark corners of Forth. I am
especially thankful for the support and encouragement I
received, particularly from Marlin Ouverson.

Meanwhile, may the marketing forces be with each of
you and may each of you have a happy and prosperous
year.

-Mike

Forth Dimensions 41

A Forum for Exploring Forth Issues and Promoting Forth

Success Stories Sought
Mike Elola
San Jose, California

My enjoyment of technical writing peaks when I can
contribute to the success of a publishing effort by writing
programs. I was my happiest and my busiest when I was
developing a publishing system tailored to the UNIX
reference manuals and their associated on-line documen-
tation systems. Those programs were shell and text
processing scripts that provided rarely dreamed of levels
of publishing automation.

Recently, my curiosity has taken me into the depths of
Applescript programming for Macintosh and UNIX-style
programming under DOS. The latter is made possible
with products from Thompson Automation Software
(and other vendors). I have found their Tawk program-
ming language to be an interesting variant of normal awk
because of some of the unique extensions it offers. I
intend to use it to process a markup known as Rich Text
Format (RTF), and possibly HTML as well.

For someone with my background, one of the best
areas of opportunity today is creating WinHelp and other
on-line viewable documentation. On-line publishing

This has been a long, enjoyable
journey into the bright and
the dark corners of Forth...

with WinHelp resembles programming because it requires
a markup language, RTF, and a compiler that converts that
language into a corresponding binary file that the Help
browser displays as on-line help or on-line books.

This activity has already become the largest part of my
consulting work. To focus my efforts towards developing
on-line documentation, I will relinquish "Fast ~orthward"
with chis installment.

So that I do not miss out completely on the discussion
of Forth versus Java and other emerging topics, I will
continue contemplating Forth in light of these develop-
ments.

I am going to leave you gentle readers with one of my
own success stories about on-line publishing. It is offered
to inspire you to follow my lead.

By showing how Forth has contributed to your success,

you will play a part in the marketing of the Forth
programming language. Trust me, readers will want to
hear about it!

Flashback
During the walk from parking lot to office building, I

realize that this day is another one of those perfect,
summer-like, mid-September days in Silicon Valley. As
much as I wanted to slow down to take in the sights and
sounds, I had an equally strong urge to stare at several 21-
inch computer screens in the classroom/lab where my
client had settled me down to work.

My client wishes to publish a complete suite of
reference guides for their product line, which consists of
sophisticated CAD-application extensions. For example,
several extensions work in concert to permit a robot arm
to take measurements that can qualify or reject a custom-
manufactured part in terms of its meeting previously
captured tolerance specifications.

This project was bringing back the old excitement I
once felt years earlier, but had lost. With the agile UNIX
toolset to back my efforts, I felt confident about being able
to solve any problems that lie in the way of converting
FrameMaker-based hardcopy books to on-line-viewable
documentation.

What a powerful incentive this effort held for me: If
successful, I would be able to claim that I had automated
the conversion of about five thousand pages of reference
books for electronic distribution. However, I was duty-
bound to explore all the possible solutions that did not
involve custom programming. After all, the client wanted
to limit the contract hours to no more than a few weeks!

Dutifully, I had spent the first half of that first week
chasing down every obscure feature and menu option that
might help make this conversion possible without the
creation of any new tools.

With the dust from my research more settled at that
point, I saw that even though the HyperHelp tool could
take advantage of certain automation features found in
FrameMaker, it was not enough. To reliably and efficiently
impart high production values to these on-line books,
more automation was sorely needed.

March 1996 April 42 Forth Dimensions

I am certain that my client did not realize the broad
scope of the tools that might be built. Part of the role of
the consultant is to try arrive at solutions that are more
complete than the client imagined. The real allure for me
was to create tools that address the on-line book conver-
sion process from start to finish.

Imagine my predicament. I did not wish to throw too
damp a towel over my client's expectations, yet I never-
theless had to confront him with the difficulty of our
situation. I softened the blow considerably by offering to
accept less than my full rate for hours ofwork I might need
to provide beyond those in our original contract. I wanted
to be certain that I would be involved in the project as long
as really required. Also, by contributing some of my labor
I could lighten my daily workload, avoid burnout, and
enjoy the work more. With a less-than-breakneck pace, I
tend to work more efficiently and more reliably anyway.
(Will management ever get it?)

The first week came and went and I had no working
prototype. I had to take a few days off for personal
reasons, so I still had a for-pay week to go. That week
came and went and still no prototype. Finally, at the end
of a third week I had a working prototype. For my trouble,
I would enjoy unhindered use of the newly developed
code in future projects.

The prototype became fodder for a presentation that
my supervisor used to sell upper management on a bigger,
more legitimate project. Word finally came to me about a
month after I completed the prototype that the project
would resume.

For the duration of the second contract, my client and
I were understanding each other better and functioning
smoothly as a team. I no longer worried that my hard work
might not be appreciated. Although we cleared some
difficult hurdles during that time, this feeling that we could
depend upon one another for support made all the
difference.

Book Covers Revisited as Contents Topics
There are many unique aspects of on-line books that

distinguish them from their hardcopy counterparts. In
Win-Help parlance, the leading element of an on-line
book (or help system) is a Contents topic.

The Contents topic displays the graphics and text that
the reader will encounter first. It is typically brief because
it functions as the cover of an on-line book. However, it
also functions as a capsule contents section. That way, an
initial set of hypertext links can help lead the reader to the
passage they truly sought. Typically, the Contents topic
lists the chapters available.

The visual appeal of a Contents topic is improved with
a company logo or some other easily assimilated color
graphic. However, the graphic should not eclipse the
hypertext links.

Note that if the on-line document is really an on-line
help system, it will have close ties with a software
application. Because of this, a request for context-sensi-
tive help initiated from the application will normally
bypass the Contents topic, favoring a topic that is more

Forth Dimensions

relevant to the current operating context. In such a case,
the Contents topic should probably be as task-oriented as
possible.

When Automation Becomes a Necessity
Despite their daunting size and scope, the mainstream

publishing programs sometimes come up short. For ex-
ample, we could not rely on FrameMaker alone to
generate a set of drill-down topics to augment the Con-
tents topic. Still, this type of automation was sorely needed
for my client's lengthy suite of reference manuals.

HyperHelp was the name of the browser and compan-
ion compiling system that we were using to build and view
on-line books. It is one way to gain access to a WinHelp-
style browser when running UNIX on engineering work-
stations like those that my client's CAD tools required.

While HyperHelp honors the hypertext links that
FrameMaker builds when creating a table of contents, a
Contents topic is not well served by that feature alone. For
about five thousand pages of reference materials, a
Contents topic built this way would occupy the screen
space equivalent to 30 or 40 hardcopy pages.

Can you imagine a single WinHelp-style Contents topic
that ran that long? As inappropriate as that would be, that
was the state of the art in terms of cooperation between
FrameMaker and HyperHelp.

Incremental, drill-down navigation avoids a massive
Contents topic-displacing it with a hierarchy of coordi-
nating navigation topics. For would-be publishers of large
sets of reference documents, the lack of such a feature is
tantamount to failure. (Indexes and keyword searches can
also be important forms of navigation.)

The bad news with respect to a drill-down style of
navigation is the extensive labor involved in its creation.
Custom tool development was therefore more than justi-
fied. Neither enough staff nor enough time could be
mustered for the hand-assembled approach, as I am about
to explain.

Suppose you just finished creating a few thousand
links. Usually, you will not immediately know which fifty
or so links are broken due to incorrect specification of a
topic destination or of a hypertext link's markup. The
compiler usually complains about the latter, but not the
former type of error.

(Even when it does complain, the compiler reports
about a topic number-as though you were maintaining
sequentially numbered topics in your source files. Yeah,
sure. Even if you use one of the third-party authoring tools,
their amenities tend to taper off at the compiling and
debugging stages. For compiler errors that refer to topic
numbers, no mapping of these numbers to human-
friendly names of topics will be made for you. You'll be
lucky if the tool can map them for you at all.)

Assume you suspect there are link errors in the
successfully compiled book. You have no choice but to
hunt for them in the generated on-line book using the
compiler's companion browser. Furthermore, you will
have to interactively test many, if not all, of the good links

(Continues on page 39.)

43 March 1996 April

The Institute for Applied Forth Research, Inc.
Announces the 16th Annual

1996 Rochester Forth Conference
on Open Systems

June 19 - 22,1996
Ryerson Polytechnic University

Toronto, Ontario, Canada

Call for Papers
The 1996 Rochester Forth Conference on Open Systems is hosted by the Institute for Applied
Forth Research, Inc. in conjunction with the Southern Ontario Forth Interest Group and
McMaster University. The Rochester Conference will again provide a forum for researchers,
developers, and vendors to present the latest practical results dealing with open systems. The
conference seeks original papers relevant to the design, development, implementation, and
use of open systems. Conference topics include:

Open Firmware Standard/Open BootTM
Scripting Languages
Distributed Computing
Plug and PlayTM Systems
SGML and HTML
Educational Issues
JavaTM

Other areas of interest are Forth programming standards, embedded systems, real-time
systems, and the use of Forth for scientific and engineering applications.

Important Dates
February 1,1996 Deadline for an extended abstract
May 1,1996 Deadline for the camera-ready copy of final paper

Please send all manuscripts to the Program Chairman.
Additional information will be posted on the world-wide web as it becomes available:

http:/ /maccs.dcss.mcmaster.ca/ -ns/96roch.html
Facilities Chair: B.J. Rodriguez

Propram Chair Conference Information
Nicholas Solntseff Lawrence P.G. Forsley, General Chair
Dept. of Computer Science & Systems Institute for Applied Forth Research, Inc.
McMaster University Box 1261
Hamilton, Ontario Annandale, Virginia 22003
Canada L8S 4K1 fax: 703-256-3873 phone: 71 6-235-01 68
ns@maccs.dcss.mcmaster.ca 1forsley~wk.com

