

SILICON COMPOSERS INC

FAST Forth Native-Language Embedded Computers

DUP

>R
R>

Harris RTX 2000'"' l&bit Forth Chip SC32'"' 32-bit Forth Microprocessor
08 or 10 MHz operation and 15 MIPS speed. 08 or 10 MHz operation and 15 MIPS speed.
I-cycle 16 x 16 = 32-bit multiply. I -clock cycle instruction execution.
I -cycle 14-prioritized interrupts. *Contiguous 16 GB data and 2 GB code space.

*two 25Bword stack memories. *Stack depths limited only by available memory.
-&channel I/O bus & 3 timer/counters. *Bus request/bus grant llnes wlth on-ch~p tr~state.

SC/FOX PCS (Parallel Coprocessor System) SC/FOX SBC32 (Single Board Computer32)
*RTX 2000 industrial PGA CPU; 8 & 10 MHz. 032-bi SC32 Industrial grade Forth PGA CPU.
*System speed options: 8 or 10 MHz. *System speed options: 8 or 10 MHz.
-32 KB to 1 MB 0-wait-state static RAM. *32 KB to 512 KB 0-wa~t-state static RAM.
*Full-length PC/XT/AT plug-in (&layer) board. *100mm x 160mm Eurocard s~ze (4-layer) board.

SC/FOX VME SBC (Single Board Computer) SC/FOX PCS32 (parallel Coprocessor Sys)
*RTX 2000 industrial PGA CPU; 8, 10, 12 MHz. 032-bit SC32 industrial grade Forth PGA CPU.
*Bus Master, System Controller, or Bus Slave. *System speed options: 8 or 10 MHz.
-Up to 640 KB 0-wait-state static RAM. 064 KB to 1 MB 0-wait-state static RAM.
*233mm x 160mm 6U size (&layer) board. *Full-length PC/XT/AT plug-~n (6-layer) board.

SC/FOX CUB (Single Board Computer) SC/FOX SBC (Single Board Computer)
*RTX 2000 PLCC or 2001A PLCC chip. *RTX 2000 industrial grade PGA CPU.
*System speed options: 8, 10, or 12 MHz. *System speed options: 8, 10, or 12 MHz.
-32 KB to 256 KB 0-wait-state SRAM. -32 KB to 512 KB 0-wa~t-state static RAM.
100mm x 100mm size (4-layer) board. 100mm x 160mm Eurocard slze (4-layer) board.

For additional product information and OEM pricing, please contact us at:
SILICON COMPOSERS INC 655 W. Evelyn Ave. #7, Mountain View, CA 94041 (415) 961-8778

Features

B 5 Scattering a Colon Definition M. L. Gassanenko
The author's prefix-notation Forth assembler performs initialization actions before processing
any new instruction. The assembler's switches are set according to defaults and instruction
operands, and they determine what happens; some switches select a Forth word to be
executed. The problem was that initialization actions belong to two different modules at the
same time: to the module they initialize and to the general initialization module. The author
wanted to distribute these actions so they would be located in the modules they initialize, but
used as a single definition.

8 Mobile Computing in Brazil Klaus Blass
Brazil boasts the world's eighth-largest economy and imports now enter freely, including
computer hardware. Local companies are investing in sales force automation, setting the stage
for mobile computing solutions such as those this author's company develops in Forth. While
other firms are developing for the same market, Forth makes maximum use of limited
resources, typically packing four times the functionality of a competitor's C program into an
executable one-half to one-fourth the size.

18 FORML f 995 Andras Zsoter
Once again, intrepid Forth practitioners converged on Pacific Grove, California, to present their
latest works, to collaborate informally on new ideas, and to seek a concensus about technical,
organizational, and political issues facing the Forth community. Our reporter from Hong Kong
reports on his first experience of the annual FORML Conference.

Stepper Motors Skip Carter
This is the first installment of the new "Forthware" column about using Forth to interact with
the real world. It will explore how to control motors of various types; this issue discusses using
the PC parallel port to control stepper motors-adopting the useful fantasy of working on a
microprocessor-based control application and using the PC parallel port as a proxy for the
digital I/O channels on the controller.

Departments I
4 Editorial Forth jobs, FIG works.

4 Dot-quote Postpone, the inevitable.

7 Advertisers Index

... 10 FIG Board Meeting "New faces, fresh approaches."

1 i President's Letter ... Skip Carter takes the helm.

12 Embedded Systems Conference & "A Prayer for Forth"

13 Stretching Forth All the standard Forth you need.

42 Fast Forthward.. The prospects for ++Forth.

Forth Dimensions 3 January 1996 February

Forth Dimensions
Volume XVII, Number 5
January 1996 February

We were very happy when Everett (Skip) Carter agreed to write a column for Forth
Dimensions, because we knew that his background brought him very well qualified to
the task. The first installment appears in this issue and tackles stepper motors, a classic
subject to which we long have wanted to do justice. Elected to the FIG Board of Directors,
and then elected by the Board to be its new President, Skip's first oficial communication
as such is also in this issue. We congratulate him and thank him in advance, as we thank
past-president (and still Board member) John Hall for his years of service.

In the preceding issue of FD, John outlined his views of the tasks facing the new
Board and asked us to give it our support and encouragement. The Board's first meeting
was propitious, even in the face of some difficult decisions, witheach attending member
demonstrating the desire to make FIG a more vital and solid organization, increasingly
of service to its members and in a better position to promote Forth. We wish the entire
Board success and welcome the contributions of each of its members.

Forth expertisepaysIn her report from the November meeting of FIG's new Board
of Directors, Elizabeth Rather mentions, "The programmer job referral service recently
implemented by Frank Hall in the FIG office will be formalized and expanded." At the
time of this writing, the office knows at least one company looking for Forth
programmers to work on Open Firmware projects for the PowerPC, with responsibility
for all phases of software development and, possibly, for debugging new silicon and
motherboards.

This is just one example of the boost given by the IEEE Open Firmware standard
to those with Forth expertise. It and ANS Forth soon may prove to have been instrumental
in reinvigorating market recognition of and appetite for Forth. Promising signs already
have been reported by some vendors and consultants, and we likely can expect the
trend to continue. For the career-minded, this is an excellent time to stay abreast of
technical developments, to keep one's skills up to date, and to enjoy FIG's growing
ability to provide job referrals to its members.

-Marlin Ouverson
editor@forth.otg

dot-quote

Once I learned Forth, I thought [COMPILE] and COMPILE made thingsquiteclear.
I could tell when something was to happen forthesetwosimilar words. I'm still trying
to grasp POSTPONE.

-Dwight Elvey, elvey8hal.com

See whether this fits--you know what COMPILE does to a word that isn't
immediate, and you know what [COMPILE] does to a word that i s immediate.

POSTPONE acts like [COMPILE] on the immediate words and like COMPILE on
the non-immediate ones. So you don't have to know whether a word i s immediate
or not, you always know which word to use.

-)onah Thomas, J EThomas@ix.netcom.com

(Quoted from comp.lang.forth with permission.)

Published by the
Forth Intenst Group I

Editor
Marlin Ouverson

Circulation/Order Desk
Frank Hall I

Forib Dimensions welcomes
editorial material, letters to the
editor, and comments from its read-
ers. No responsibility is assumed
for accuracy of submissions.

Subscription to Forth Dimen-
sions is included with membership
in the Forth Interest Group at $40
per year ($52 overseas air). For
membership, change of address,
and to submit items for pu blication,
the address is: Forth Interest Group,
P.O. Box 2154, Oakland, California
94621. Administrative offices:
510-89-FORTH. Fax: 510-535-1295.
Advertising sales: 805-946-2272.

Copyright O 19% by Forth In-
terest Group, Inc. The material con-
tained in t h ~ ~ periodical (but not the
code) is copyrighted by the indi-
vidual authors of the articles and by
Forth Interest Group, Inc., respec-
tively. Any reproduction or use of
this periodical as it is compiled or
the articles, except reproductions
for noncommercial purposes, with-
out the written permission of Forth
Interest Group, Inc. is a violation of
the Copyright Laws. Any code bear-
ing a copyright notice, however,
can be used only with permission
of the copyright holder.

The Forth Interest Group
The Forth Interest Group is the
association of programmers,
managers, and engineen who create
practical, Forth-based solutions to
real-world needs. Many research
hardware and software designs that
will advance the general state of the
art. FIG provides a climate of
intellectual exchange and benefits
intended to assist each of its
members. Publications, conferenm,
seminars, telecommunications, and
area chapter meetings are among
its activities.

"ForthDimensions(ISSN W34-0822)
is published bimonthly for $40/46/
52 per year by the Forth Interest
Group, 4800 Allendale Ave.,
Oakland, CA 94619. Second-class
postage paid at Oakland, CA.
POSTMASTER: Send address
changes to Forth Dimemiom2 P.O.
Box 2154, Oakland, CA94621-0054."

January 1996 February 4 4% Forth Dimensions

I FORTH-83, F-PC

Scattering a
Colon Definition

I M.L. Gassanenko
(St Petersburg, Russia

The Problem
The technique presented here is used in a prefm

notation ~~~h assembler that performs initialization ac-
tions (variables resetting, etc.) every time before process-

Forth Dimensions 5 January 1996 February

..: INIT <more initialization actions> ;..
<something>
. . : INIT <more initialization actions> ; . .
<and so On'

: INIT ... <some initialization actions> ;
<something>

We might define:
\ Forth-83 Standard words that build
\ references after BRANCHes.

ing a new instruction. The
assembler has many
switches that get set ac-
cording to the defaults and
the instruction operands
and then determine what
to do. Some switches are
"functionaln: executing
them executes a Forth

word, determines setting which or resetting word is
to be executed. (The
switches are implemented
as multi-CFA words.) Due
to these numerous switches
definitions of instruction
groups are as readable as
instruction formats, but the
initialization code grows.
Had the initialization code

Figure One. The generated code. I '

<header> BRANC <some initialization actions>

F T o m ! t h i n g > <more initialization actions> BRANCH
II 1 1 - ' I

<something>

'<more initialization actions> BRANCH
L--!l II ?- [I

been written as a separate definition, it would occupy two
dense-typed block screens; sequential files could not be a
solution because one dense screen of sequential file isn't
better than two blocks.

'So, the problem is that initialization actions belong to
two different modules at the same time: to the module they
initialize and to the general initialization module. We want
to distribute these actions so they will be located in the
modules they initialize, but used as a single definition.

The Solution
The solution scatters the code of the initialization

definition over the screens where the things to be initial-
ized are used.

The words . . . , . . : , and ; . . are used as follows:

The generated code looks like Figure One.

Implementation
The implementation code below is non-standard, but

very
With the definitions:

\ ~ ~ t ~ h / store a reference that, e . g. ,
\ follows a BRANCH .
\ The branch addresses are relative .
: REF@ (orig -- dest) DUP @ + ;
: REF! (dest orig --) TUCK - SWAP ! ;

\ ~ d d size of a token.
: TOKEN+ (addr -- addr') CELL+ ;

: >MARK (-- orig) HERE 0 , ;
: >RESOLVE (orig --) HERE SWAP REF ! ;
: <MARK (-- dest) HERE ;
: <RESOLVE (dest --) HERE CELL ALLOT

REF! ;

And now we can define:
: . . . COMPILE BRANCH >MARK >RESOLVE
; IMMEDIATE

: ..: ' >BODY TOKEN+ DUP REF@ SWAP
>RESOLVE !CSP 400] ;

: ;.. 400 ?PAIRS ?CSP COMPILE BRANCH
<RESOLVE [COMPILE] [; IMMEDIATE

The word . . . should be the first word in a definition.
It compiles a BRANCH to code that follows it, which is
equivalent to no-operation until you modify the definition
by means of . . : and ; . .. The words . . : (fetches a
definition name from input stream and starts compilation)
and ; . . (finishes compilation) are similar to : and ; with
the difference that they do not redefine the name, but add
the compiled code to the definition. This implementation
does not check if the definition starts with a . . . and, if
you omit . . . your system is likely to hang.

In F-PC there may be some problems with long jumps and
long addresses. Note that a new branching word is defined:
: BRANCHL 2R> REF@L 2>R ;

because the F-PC BRANCH cannot cross the segment
boundaries. F-PC with its double-cell addresses isn't well-
suited for return address manipulations and code genera-
tion tricks. The F-PC code is given in Listing One.

Why a Special Construct
The evident benefit of this tool is that the programmer

does not have to modify the initialization definition when
he adds a new mechanism to the growing program.
Deleting a mechanism also becomes painless: if you do
not load a block, its initialization does not get compiled.

In F-PC this problem is usually solved by means of DEFER
variables. We think a special construct is better because it is:
1. laconic;
2. more readable: the purpose may be understood at the

first glance;
3. uses no auxiliary names (which have no meaning in

themselves).

Conclusion
The technique presented here enables the programmer

to distribute fragments of code that should execute as one
definition across the modules they logically belong to.

M.L. Gassanenko began his serious use of Forth at Leningrad University. In
1989, he implemented backtracking via return stack manipulations, e.g.:

: enter >r ;
: 1-10 (--> i) (<-- i)

1

begin r@ enter (success)

1 +
dup 10 > until
drop

. rdrop exit (failure)

: printl-10 1-10 duP . ;

.which he calls, 'probably my most felicitous work."

: REF@L (orig-seg orig-off --- dest-seg dest-off)

2DUP 2 + @ L X S E G @ + -ROT @ L ;
: REF!L (dest-seg dest-off orig-seg orig-off --- 1

2DUP 2>R !L XSEG @ - 2R> 2+ !L ;
: TOKEN+ 2+ ;

The author has created two Forth systems, one for Soviet IBMl370compatibles;
the other is a 32-bit Forth for the 80861881188 with a trick thatallows both linear

and segmentoffset forms (reported at
euroForth '94). His most recent work is a

: >MARKL (-- Dorig) XHERE 0 0 X, X, ;

: >RESOLVEL (Doriq --) XHERE 2SWAP REF!L ;
: <MARKL (-- Ddest) XHERE ;

/ : <RESOLVEL (Ddest --) XHERE 0 0 X, X, REF!L ;

Listing One. The F-PC code.

He graduated from St. Petersburg
University's Department of Applied Math-
ematics and Control Processes in 1992,
and is now a post-graduate student at
SPllRAN (St. Petersburg Institute of
Informatics and Automatization, at theRus-
sian Academy of Sciences). He can
be reached at gml@ag.pu.ru or at
gml@agspbu.spb.su via e-mail.

formalization of control transfers due to

: BRANCHL 2R> REF@L 2>R ;
: >TCODE (cfa -- seg off) >BODY @ XSEG @ + 0 ;

: ?PAIRS XOR ABORT" NON-PAIRED WORD" ;

return stack manipulations (presented at

: . . . COMPILE BRANCHL >MARKL >RESOLVEL ; IMMEDIATE
: . . : ' >TCODE TOKEN+ 2DUP REF@L 2SWAP >RESOLVEL !CSP 400] ;

: ;.. 400 ?PAIRS ?CSP COMPILE BRANCHL <RESOLVEL [COMPILE] [; IMMEDIATE

anew scatter.seq

January 1996 February 6 Forth Dimensions

euroForth '95).

The Computer Journal 7

Forth Interest Group
.. centerfold

Total control
FORTH, Inc. ... 7

Laboratory Microsystems,
Inc. (LMI) .. 7

with [MI FORTHTM

Miller Microcomputer
Services ... 23

Rochester Conference 1996 44

Silicon Composers 2

For Programming Professionals:
an expanding family of compatible, high-
performance, compilers for microcomputers

For Development:
Interactive Forth-83 Interpreter/Compilers
for MS-DOS, 80386 32-bit protected mode,
and Microsoft WindowsTM
* Editor and assembler included

Uses standard operating system files
500 page manual written in plain English
Support for graph~cs, floating point, native code generation

For Applications: Forth-83 Metacompiler
Unique table-driven multi-pass Forth compiler
Compiles compact ROMable or disk-based applications

= Excellent error handling
Produces headerless code, comp~les from intermediate states,
and performs conditional compilation
Cross-compiles to 8080, 2-80, 64180, 680x0 family, 80x86 family,
80x96197 family, 8051131 family, 6303, 6809, 68HC11

= No license fee or royalty for compiled applications

Laboratory Microsystems lncorporated
Post Office Box 10430, Marina Del Rey, CA 90295

Phone Credtt Card Orders to: (310) 306-7412
Fax: (310) 301-0761

From NASA space
systems to package
tracking for Federal

Hands-on hardware and software
Computing on the Small Scale

Since 1 983

Subscriptions
1 year $24 - 2 years $44 Royalty-free multitasking kernels and libraries.
All Back Issues available. Fully configurable for custom hardware.

Compiles and downloads entire program in seconds.
Includes all target source, extensive documentation.
Full 32-bit protected mode host supports interactive

The Computer Journal development from any 386 or better PC.
Versions for 8051,80186/88,80196,68HCll, 68HC16,

P.0. BOX 3900 68332, TMS320C31 and more!

Citrus Heights, CA 9561 1-3900 systems the pros use... Call us today!
800-424-8825 / 91 6-722-4970

Fax: 91 6-722-7480
BBS: 91 6-722-5799

Forth Dimensions 7 January 1996 February

Forth's competitive edge:

Mobile Computing
in Brazil
Klaus Blass
Rio de Janeiro, Brazil

This article has its origin in one of my postings to
comp.lang.forth on USENET, where I commented on a
discussion about the "Forth scare." The FD editor then
invited me to write about my experience with successfully
selling the Forth approach. Of course, the situation in
Brazil may not be directly comparable to that in the U.S.
or Europe (it may well be to the new Eastern European
democracies and Russia, though). But I think some aspects
are common everywhere.

Some time has passed now, and I never found the time,
but when I saw an article about "Forth in the HP1OOIXn in
the November/December 1995 edition of FD, I decided
that now was the time to write about my experience,
including about some of the things that Forth can do on
the HP100LX.

Brazil is the size of the United States without Alaska,
and has a population of 160 million people. It boasts the
world's eighth-largest economy and only a few years ago
reverted from a military dictatorship to a democratic
government. It has since started to open its economy by

What we sell to the customer
is not a computer language
but a complete solution.

removing trade barriers and heavy import duties. During
the dictatorship, a "reserved marketn for computing tech-
nology had been introduced, meaning imports were made
almost impossible in order to protect the national comput-
ing industry. The result was disastrous. The local computer
manufacturers cloned outdated technology and sold it at
outrageous prices. This has now changed as imports are
entering freely and the economy is trying to catch up on
two lost decades.

In the process of streamlining their operations, a lot of
companies have started to invest in sales force automa-
tion. This sets the stage for mobile computing solutions
such as those my company develops.

Many of our projects involve HP palmtops as a comput-
ing platform. These very neat little XT-class computers fit
into a (large) shirt pocket and typically run for weeks on

two AA batteries. Their main limitations for doing sophis-
ticated work are speed (8 MHz 80186) and memory (one
or two Mb shared between system memory and file
storage). While there are other companies developing
programs for these palmtops, typically in C or even Cobol,
their executables are little elephants around 500 Kb,
leaving just enough memory for them to execute.

In comes Forth. What better language can be imagined
to make maximum use of limited resources? We typically
pack something like four times the functionality of a
competitor's d program into an executable one-half to
one-fourth the size (typically 50 to 80 Kb). Recently, a
plastics manufacturer looking for a portable sales automa-
tion solution approached us and told us all other software
developers had told them what they want to do needs a
four Mb notebook computer two to five times the price of
the palmtop, not to mention the weight. Judging from
similar projects we have done, I estimate the size of the
executable to be about 70 Kb, leaving ample room for files
on a two-Mb palmtop. Now this customer plans to equip
150 salespersons with the system, initially. With a price
difference of at least $1000 between a palmtop and a
notebook, which software developer do you think they
chose? We have done a similar project, for one of Brazil's
two large breweries, which eventually will involve several
thousand machines!

Obviously, one of the first things a prospective cus-
tomer asks us is: How do you d o it? And we tell him: We
are doing it in Forth! He may or may not have heard of
Forth before (actually a surprising number of people here
have heard about Forth!), he usually raises questions
about who will be able to support the system, just in case
our company disappears from the scene, etc. In short, he
raises all those arguments in favor of a mainstream
development environment but, in the end, a factor of two
to five in hardware costs is convincing, especially if you
are talking about equipping hundreds or thousands of
salespersons with hardware.

When I was first contacted by the company I am
working with now, they had a programming job for me
and asked, how much and how many months? I told them
one month if I could do it in Forth, two to three months

January 1996 February 8 Forth Dimensions

if I had to use C. They had never heard about Forth before,
so I told them. And I showed them a comparison between
the "Hello world" sample program included with the C
compiler and a (metacompiled) "Hello Forth world" ex-
ample that was about 1/25th the size. They accepted that I
did the project in Forth and, after completing it, asked me
to join the company. Of course, they had realised the
potential of Forth for their palmtop solutions, and now, two
years later, they have no reason to regret their decision.

When our sales people approach a new customer,
there comes the moment where they have to mention
Forth and they copy my initial approach with them. "If you
insist we do it in C , it will take so much longer and the
program will be so much bigger." Next thing, I do a well-
prepared presentation on Forth to the customer, so he sees
why Forth yields these results. The third step is to convince
the customer of guaranteed support for his product, and
this is something I think we have to do. Whereas my
president, by now, is a bit anxious about not giving away
too much of our "secret weapon," I think we have to invest
in popularising Forth, training more programmers, hiring
university students as trainees, etc. We should always be
a step ahead of the others, but I think competing software
developers using Forth will give us even more credibility.
I must mention, however, that so far not a single customer
has backed off because of Forth. What we sell the customer
is not a computer language but a complete solution. Let
him compare this solution to others and then decide
whether a non-mainstream development environment is
acceptable or not. In other words, don't sell Forth, sell the
results you can obtain with it! Interestingly enough, after
having done this for two years now, prospective custom-
ers already have another image of Forth. Instead of saying
"I hope you use C," they say, "We have heard you use this
crazy magic language which allows you to do things no
one else can." We are also getting the reputation that our
programs are faster than those of the competitors, which
in general they are not. But I can always optimise code at
critical points and show them the improvement I got.

By the way, I think a similar line of reasoning holds for
another discussion on comp.lang.forthabout Chuck Moore's
P21 Forth-like microprocessor. I received my evaluation
kit some time ago and what I would like to do is to use it
in some prototype application and show this to the right
people. (I have got some ideas where the P21's integrated
NTSC controller, the fact that it doesn't need a lot of
supporting chips and, thus, the low price of a resulting
device will come in very handy.) I won't try to sell them
the Forth-chip idea, I'll try to sell them a product they
didn't think was possible for this price. When they want
to know how I do it, then I'll tell them about Forth chips!

Encouraged by Edward Borasky's article in a recent
issue of F D W I / 4 , op. cit.) that shows we are not the only
ones using Forth on the HP palmtops, I would like to talk
a little more about this.

advantage we have. knother well-known feature of ~ ~ ~ t h company in Rio de Janeiro, Brazil. When forced to work with computers, he I preferably uses Forth; when not forced to work at all, he prelers to go on an is its ease of accessing non-standard hardware. The HP expedition in the Amazon jungle. He can be reached at klausb@ax.apc.org.

palmtops have a number of non-standard hardware fea-
tures. One example is a three-stage zoom, sometimes very
useful because of the tiny LCD screen. None of the
competition's systems I have seen make use of this feature
in their programs (although you could, of course, call the
appropriate interrupt from a C program as well). In Forth,
it takes me a minute to define three words-~00~1,
ZOOM2, and ZOOM3-and I have extended the language
once and for all to include this feature. Similarly, we make
optimal use of the LCD's non-standard "colors," four
different shades of grey. For example, many of our screens
have scrollable windows representing tables of product or
customer information. The readability and appeal of such
tables increases drastically by changing the white back-
ground of every second line to a light grey shade (think of
that computer-printer stationery that shows every second
line in a different background color). The visual effect is
stunning. And the guys who buy your solution are very
susceptible to aesthetic impressions. Even if another
software house's solution is just as good as yours, but your
application looks much more professional and appealing,
the customer will most certainly go with your solution.

Another example of non-standard hardware is HP's
proprietary infrared interface on the HP100LX. Despite
minimal documentation, it took me a weekend to develop
a driver for printing on a portable HP infrared thermal
printer they had developed for some scientific calculator.
This printer is not much bigger than the palmtop itself and
can be very handy for a salesman to print a copy of the
order he has just taken and leave it with the customer.

Other features easily implemented in Forth are words to
check and display the palmtop's main and backup battery
status, and a word to control the screen contrast from within
the program. After running the little demo program on the
HP200LX, which displays some text in a much larger font,
I started to define my own "bigfont." The letters are 32 x
48 dots, which permits four lines of 20 characters. The
implementation uses graphics mode, writes 32-bit words
directly to the video memory, and has a few words to emit
characters, display strings, and control cursor position.
Nothing very fancy, but you can read this font from a
distance of five meters without effort. I plan to use it in
situations like price surveys in a supermarket, where you
would put the palmtop somewhere on the shelf in front of
you and then start reading in items with a connected bar-
code reader. In any case, no one else has it, and I can
demonstrate it to prospective customers, be it only to
show the name of their company on an opening screen.

I hope that this little article is able to contribute
something to the morale of the Forth community, mainly
because I am not stating theoretical advantages, but
relating some real facts where Forth is helping us to get
ahead of the competition.

Klaus Blass got his B.S in mathematics and computer sclence from the

packing more functionality than non-Forth competitors
into relatively inexpensive hardware is not the only

Forth Dimensions 9 January 1996 February

University of cape Town. He worked as a systems engineer with IBM in South
Africa, as a consultant and project manager with PRIME Computer in Kuwait
and Saudi Arabia, and is now technical director of a mobile com~utinq

A Report of the Board Meeting Nov. 27-28, 1995

New Faces, Fresh Approaches
in New FIG Board

Elizabeth D. Rather
Manhattan Beach, California

The new Forth Interest Group (FIG) Board of Directors
elected by the membership last spring has elected a new
slate of officers and adopted new policies for 1996.

Skip Carter, elected to the board by an overwhelming
92% of voting members, will become the new President.
Jeff Fox will be Vice President, Mike Elola will continue as
Secretary, and Andrew McKewan will assume accounting
responsibilities as Treasurer.

Major policy changes include a revised membership
program, opening of advertising privileges to companies
with products that may not be directly Forth-related,
adjustments in shipping charges for books and software,
expanded programming job referrals, and substantially
improved electronic services.

The Board considers its top priority to be ending the
deficit financing of the past few years by increasing
revenues and cutting expenses, in order to continue to
provide a high level of member services. To this end, the
Board evaluated the three major activities of FIG: publica-
tion and distribution of Forth Dimensions, sales of books
and software, and the annual FORML conference. In each
case, strategies were developed to increase revenues and
reduce expenses without significant loss of service. As a
result, the 1996 budget adopted by the Board includes a
significant allocation for "outreachn (actions designed to
increase awareness of Forth in general and membership in
particular) and a small surplus to cover contingencies.

The most immediate impact on members will be an
increase in dues, effective March 1, I!%, from $40 per year
to $45. This modest increase is the first in several years.
Renewals and new subscriptions received prior to March
1 will be at the previous rate. International mailing charges
were also increased to $15 to cover actual costs. Student
rates remain unchanged.

New membership categories were also established:
Corporate memberships, at $125 per year, include five
copies of each issue of Forth Dimensions and other
benefits; Library memberships, also at $125, include a
complete set of issues for the year sent in a single package
at the end of the year plus a copy of the FORML
Proceedings, in addition to regular bi-monthly issues.

In the product arena, an analysis of shipping and

handling costs led to a revised shipping fee schedule
which will be effective immediately (see the price list in
this issue). Other pricing issues will be evaluated over the
course of the year.

The overall budget for production of Forth Dimensions
and general services will be reduced significantly, by
allocating more responsibility to volunteers, findinglower-
cost alternatives for some services, and in some cases
reducing hours. Although it is hoped that less expensive
production alternatives for Forth Dimensions may be
found, it was pointed out that the major costs for this are
in the labor for editing, formatting and layout, production,
and related activities.

The Board considered electronic publication of Forth
Dimensions as a possible cost-saving alternative. How-
ever, unless paper production is discontinued altogether,
production of a separate electronic edition actually in-
creases editorial costs significantly, for a negligible reduc-
tion in postage and printing. A recent survey of FIG
members indicates that about 75% do not yet use on-line
services regularly.

The Board also voted to extend advertising privileges
in Forth Dimensions to all firms with products of interest
to FIG members. The previous policy limited advertising
to Forth-related products. The new policy is expected to
offer significantly increased advertising revenues.

The programmer job referral service recently imple-
mented by Frank Hall in the FIG office will be formalized
and expanded. Any member in good standing may list his
availability on the job market; such a listing will appear in
the FIG Worldwide Web page for one month, and will be
distributed to all inquiring companies. In addition, the job
seeker may send a self-addressed stamped envelope and
get a list of all current job openings. Currently, approxi-
mately 30 programmer and job listings are registered in the
FIG office. In addition, corporate members offering pro-
gramming services may be listed in Forth Dimensions.

As the Board recognizes the critical importance of good
communication within the growing segment of the Forth
community having access to online services, the Internet
services provided by Skip Carter at taygeta.com will be

I (Continues on nextpage.;

January 1996 February 10 Forth Dimensions

I A Message from the President of the Forth Interest Group

Letter f m the President

Dimensions you will be able to contact FIG directly on the
Internet at the following addresses:

Everett (Skip) Carter
Monterey, California

December3,199SIt is a great honor for me to be writing
this letter to you as the new president of the Forth Interest
Group. I extend my thanks to all of you for electing me to
the Board of Directors, and to the Board of Directors for
choosing me as the president.

As I have stated in the past, FIG is member supported.
As such, I will rely heavily upon your constructive
contributions to help FIG grow and to improve the
services it provides. I know that each of you has ideas on
what you expect of FIG. And so I am issuing a general "call
for volunteers" to lend a hand. If you can make the time
to volunteer to support FIG activities, contact us and let us
know what type of things you can do. If you want to start
a specific project that you think FIG should be doing (like
reviving a dehnct local chapter), let us know.

The new Board of Directors is geographically diverse
(but still North American this time around) and will rely
heavily upon electronic communications between our-
selves. Happily, this provides a means for our geographi-
cally diverse membership (globally diverse, we have no
off-planet members yet!) to communicate with us. Provid-
ing all goes well, by the time you read this in Forth

board@forth.org all FIG Board of Directors
editor@forth.org Marlin Ouverson, FD editor
office@forth.org John Hall, FIG business office
pres@forth.org Skip Carter, FIG President
sec@forth.org Mike Elola, FIG Secretary
treas@forth.org Andrew McKewan, FIG Treasurer
vp@forth. org Jeff Fox, FIG Vice President

The address board@forth.org is a "broadcastn mailbox:
mail sent there is automatically forwarded to all members
of the Board of Directors (Skip Carter, Jeff Fox, Mike Elola,
Andrew McKewan, John Hall, A1 Mitchell, Brad Rodriguez,
Elizabeth Rather, and Nicholas Solntseff). If you have
Forth Dimensfons subscription questions, these should be
directed to office@forth.org, not editor@forth.org.

The FIG Web page will move off of taygeta to http://
www.forth.org (actually this is still on the system taygeta,
which will now service the forth.org domain).

Based on the returns of a recent survey of FIG
members, only 25% of you can access the Internet. You
can always reach us by regular mail, phone, or fax at the
FIG office. If you would like to contact me directly, you
can send a fax to my business office at 408-626-3735.

However you do it, talk to us. A s I used to say to my
students, I can't be assured that I am providing for your
needs if I don't get any feedback.

(Continued fmmpreuiouspage.)
expanded. A special "domain" has been set up for FIG, and
addresses have been set up for communicating with
various officers and departments in FIG; for details, see the
President's Letter in this issue. Brad Rodriguez will offi-
cially represent FIG on the newsgroup comp.lang.forth.
Additional planned enhancements will be announced as
they are implemented.

Individual Board members have also assumed respon-
sibility for various aspects of FIG operation, as follows:

FIG Chapter relationsJ eff Fox

Education A1 Mitchell and Nick Solntseff

Electronic services Brad Rodriguez and Skip Carter

FORML ohn Hall

(Bob Reiling, manager)

Forth Dimemions Elizabeth Rather

(Marlin Ouverson, editor)

Office ManagementJ ohn Hall

(Frank Hall, office manager)

Outreach A1 Mitchell

Products (books and software) ... Mike Elola

(Frank Hall, sales and shipping)

Those presently having operational responsibility in
these departments, such as Frank Hall in the FIG office and
Marlin Ouverson at Forth Dimensions, will continue as
before under the oversight of the responsible Board
member.

The new Board unanimously wishes to extend a vote
of thanks to John Hall for his dedicated service as
President of FIG for the last several years.

Forth Dimensions 11 January 1996 February

Forth Booth at
Embedded Systems Conference

Through the efforts of Doug Hammed, Tom Vail of
Mosaic Industries, and a few Silicon Valley FIG Chapter
members, FIG was able to receive visitors last September
12-14 at the Embedded Systems Conference in San Jose,
California.

Doug had encouraged Tom Vail to get through to the
show's producers. Just days before the show, things began
to move as far as securing a booth for FIG. Signage was
prepared by Tom Vail, who volunteered to become a
booth partner. He offered to staff the booth and was in
agreement that booth visitors would be treated as FIG/
Forth prospects first and foremost.

Various Forth-promotional materials were handed out
at the show, including the FIG mail-order form and the
"Top Ten Reasons for Choosing Forth." A piece from
Forth, Inc., called "Choosing Forth" was distributed and,
in fact, Elizabeth Rather (president of Forth, Inc.) flew in
on the last day to work the booth.

After the event, everyone agreed that the FIG booth
had been in a good location, and most agreed that the
overall show continues to grow bigger from year to year.
Some thought more concrete (and professional) ties
between Forth and the embedded systems

tant, but so is getting Forth into a position of
respect and credibility regarding industrial
and consumer applications.

The perceived friendliness may stem from
the fact that the booth is usually well staffed
with volunteers who are eager to make con-

versation with passers-by. Doug feels that SV-FIG'S readi-
ness to train new users of Forth is an untapped asset.

-Reported by Mike Elola
based on a talk by Doug Hammed

As usual, it was good to see the members of FIG and
other vendors in the Forth community. It was also good to
meet a lot of people from the embedded systems commu-
nity-many of whom were interested in Forth but weren't
sure how it. can help them. It was disappointing to meet
so many people who were surprised to learn that Forth is
still alive. But I think the Forth booth gave people the
impression that Forth is here to stay. We also put out the
word that Forth is a perfect solution for embedded systems
programming and that many vendors-large and small-
are taking advantage of Forth-based solutions. Adding the
PowerPC (with its Open Boot standard) to the list of
products utilizing the power of Forth added momentum to
the message. Overall, it was a very good experience for us,
it was fun working with FIG again, and I hope we will see
everyone at next year's show.

-Tom Vail, Marketing Director of Mosaic Industries

enjoyed the fun flavor and down-to-earth
friendliness-we excel in that regard. The fun
and warmth of the FIG volunteers is impor-

(An author who looks not for power nor pelf
Will find what he seeks should he print it himself!)

Pray, Gresham, thy Law now hold in suspension
That for once the Good may drive Forth the Bad.

-)ulian V. Noble, 7992

field should be brought to the show. This year,
as in the past, small Forth-controlled mechani-
cal devices were shown, such as an Etch-a-
Sketch that responds to Forth commands.

Doug's training and experience is in high
technology sales and marketing. He urges FIG
and its chapters to be more concerned with
how the ~ o r t h community appears to others.
For Forth to get more of a reputation as a
professional solution language, a public-rela-
tions effort may be needed that, at least for the
Embedded Systems Conference, emphasizes
the power of using ~ o r t h in these applications.
withbetter-coordinated collateral, signage, and
displays, we can help overcome the credibility
gap that is natural for those who are hearing
about Forth for the first time or those who have
heard that ~ o r t h is a write-only language.

Doug acknowledged how booth visitors

January 1996 February 12 Forth Dimensions

A Prayer for Forth

When I undertook a quixotic crusade
On behalf of the Forth tongue obscure

I offered my book to the publishing trade
Who soon beat a path from my door!

0 Forth, thy Forth-right endearing concision
Thy power, thy speed, that my book doth convey

Are these but destined for scorn and derision,
Doomed ne'er to go Forth unto light of day?

0 Forth, doth thy star now wane in declension?
Declare it a FALSEhood lest we wax too sad.

All the Standard Forth
You Need
Wil Baden
Costa Mesa, California

some of them that I don't ever expect to use.
Next in importance to the Core wordset is the Core

Extension wordset, section 6.2. These are required-word
wannabees and has-beens. They make your programs
easier to write and to read. They are tagged "core ex?" in
Listing One.

This completes the first year of Stretching Forth. During
that time I have stuck close to Standard Forth. The year has
shown that Standard Forth is very good, except for file
handling. File handling in Standard Forth for anything but
the simplest task is a pain, and will be discussed in another
article.

In this article I review the Standard Forth words as used
in Stretching Forth. They are fundamentally the words I
have worked with since long before the Technical Com-
mittee first started to meet.

In anything I write for Stretching Forth, I will give
definitions or explanations for words (other than NOT) that
are not Standard Forth.

Working Words
The most important words in Standard Forth are those

given in the Core wordset, section 6.1. In a Standard
implementation all of these words are required. There are

k6.2 Core extension words
The words in this collection fall into several categories:

quired-word wannabees and has-beens. They are tagged
"string" in Listing One.

This wordset is small enough to list all of its words here.
-TRAILING /STRING BLANK CMOVE CMOVE>
COWARE SEARCH SLITERAL

SLITERAL is new in Standard and may be
to you.

17.6.1.2212 SLITERAL STRING
Interpretation: Interpretation semantics for this
word are undefined.
Compilation: (c-addrl u --)

Append the run-time semantics given below to the
current definition.
Run-time: (-- c-addr2 u)

Return c-addr2 u describing a string consisting of the
characters specified by C-addrl u during compilation.
A Program not alter the returned string.

-
- Words that are in common use but are deemed less

[sic] essential than Core words (e.g., O<);
- Words that are in common use but can be trivially

defined from Core words (e.g., FALSE);
- Words that are primarily useful in narrowly defined

types of applications or are in less frequent use (e.g.
PARSE):

- Words that are being deprecated in favor of new
words introduced to solve specific problems (e.g.,
CONVERT).

A.17.6.1.2212 SLITERAL
The current [Core] functionality of 6.1.2165 S" may be
provided by the following definition:
: S" ("ccc<quote>" --)

[CHAR] " PARSE POSTPONE SLITERAL
; IMMEDIATE

The SLITERAL used in Stretching Forth follows the
specification in the File Access wordset, 11.6.1.2165,
which gives the following interpretation semantics.

Interpretation: ("ccc<quote>" -- c-addr u)
Parse ccc delimited by " (double quote). Store the resulting
string c-addr u at a temporary location. The maximum
length of the temporary buffer is implementation-
dependent but shall be no less than 80 characters.
Subsequent uses of S" may overwrite the temporary
buffer. At least one such buffer shall be provided.

Since my principal use of Forth is text processing, I also
want the String wordset, section 17. These too are re-

Because of the varied justifications for inclusion of these
words, the Technical Committee does not encourage
irnplementors to offer the complete collection, but to select
those words deemed most valuable to their clientele.

DEFINITIONS FORTH-WORDLIST GET-CURRENT
GET-ORDER SEARCH-WORDLIST SET-CURRENT
SET-ORDER SET-CURRENT SET-ORDER WORDLIST

Some applications have words that have a special
meaning in the context of the application. For them,
Standard Forth has the Search-Order wordset, section
16.6.1. The words are tagged "search" in Listing One.

Forth Dimensions 13 January 1996 February

Listing Three. Some nominal uses of UNDER+.

: + ! DUP @ UNDER+ ! ; (n addr --)

: C + ! DUP C@ UNDER+ C ! ; (n c-addr --)

: COUNT DUP C@ 1 CHARS UNDER+ ; (c-addr -- c-addr+lc char)

: /STRING DUP NEGATE UNDER+ CHARS UNDER+ ; (s n k -- s + k c n-k)

: Count-Bi ts (n - - k)
0 SWAP B E G I N (k n) DUP 1 AND UNDER+ 2 / ?DUP O= U N T I L (k)

,

There is also sec-
tion 16.6.2, the
Search-Order Ex-
tension wordset.
This is the Forth-83
ONLY-ALSO experi-
mental proposal,
and can be imple-
mented with what
we already have. I
don't expect to use any of them in Stretching Forth. 1 need
only four words from these two wordsets: D E F I N I T I O N S ,
FORTH-WORDLIST, SET-ORDER, WORDLIST.

I hope to have TIME&DATE from the Facilities Exten-
sion wordset.

I want some of the words from the Programming Tools
wordset and Programming Tools Extension wordset -
[I F] , [E L S E] , [THEN] , . S , ? , and BYE - to be used
while programming, not in programs. These words are
given in Listing One.

For Stretching Forth, I don't anticipate needing any of
the other wordsets: Double-Number, Exception, Floating-
Point, Locals, Memory. If I ever use them I'll let you know.

To call attention to words originated by the Technical
Committee, I have underlined them. (For text-only ver-
sions of this article, they are given in Listing Two.) Familiar
words from earlier systems that were adopted by the
Technical Committee are not underlined.

Every programmer has frequently used implementation
factors - favorite non-Standard words that are used over
and over. These are personal required-word wannabees.
Mine have been tagged "stock," for private stock. When
these or any other non-Standard words (other than NOT) are
used in Stretching Forth, definitions or explanations will be
provided. Sample definitions are given in the Appendix.
Use your own definitions if you don't like mine. In
particular, you may want to replace those that use EVALU-
ATE. Many of the sample definitions are not the ones I
actually use, although functionally the same.

Logical NOT and Illogical NOT
The most controversial word in Forth is NOT. It is so

controversial that the Technical Committee could not
agree on standardizing it.

A.6.1.1720 INVERT
The word NOT was originally provided in Forth as a flag
operator to make control structures readable. Under its
intended usage the following two definitions would
produce identical results:
: ONE (f l a g --)

I F ." t r u e " ELSE ." false" THEN ;
: TWO (f l a g --)

NOT I F . " f a l s e " ELSE ." t r u e " THEN ;
This was common usage prior to the Forth-83 [so-called]
Standard which redefined NOT as a cell-wide one's-
complement operation, functionally equivalent to the
phrase -1 XOR. At the same time, the data type
manipulated by this word was changed from a flag to a
cell-wide collection of bits and the standard value for true

was changed from "1" (rightmost bit only set) to "-1" (all
bits set). As these definitions of TRUE and NOT were
incompatible with their previous definitions, many Forth
users continue to rely on the old definitions. Hence both
versions are in common use.
Therefore, usage of NOT cannot be standardized at this
time. The two traditional meanings of NOT - that of
negating the sense of a flag and that of doing a one's
complement operation - are made available by 0= and
INVERT, respectively.

Categorically, Logical NOT is the proper definition. In
my understanding, the Technical Committee did not
intend that NOT wasn't to be used, but that the user would
provide a definition. In Stretching Forth I try to use NOT
only where it doesn't matter. But for optimization, NOT
should be Logical NOT.

Don't Shuffle the Stack
In writing Forth you should try to minimize re-arrange-

ments of the stack. This is especially true in the body of a
definition. Whenever you do a stack operation you have to
re-visualize what is on the stack. For this reason I prefer 2DUP
to OVER OVER, 1 UNDER+ to >R I+ R> or SWAP 1+ SWAP,
N I P to SWAP DROP, TUCK to SWAP OVER, BOUNDS to OVER
+ SWAP, NEGATE UNDER+ to SWAP >R - R>, 3DUP to DUP
20VER ROT, 2 P I C K to >R OVER R> SWAP, and so forth.

UNDER+ gives you a second cell on the stack that can
be used as an accumulator without re-arranging the stack.
Many algorithms can be expressed more easily with a
second accumulator. It should be a primitive word, not
defined in high-level Forth. The definition : UNDER+ ROT
+ SWAP ; will be given for UNDER+, but I hope you don't
have to use it. [See Listing Three.]

Exception: I prefer ROT ROT to -ROT because it is
primitive with simple optimization. Also the Technical Com-
mittee rejected -ROT when it was proposed along with N I P
and TUCK. (And it makes one less definition I have to supply.)

Allergies
There are certain words in Standard Forth that I avoid

using in Stretching Forth. Either they are not relevant to the
general subject matter of Stretching Forth, or I use some-
thing else that I think is easier to understand.

Obsolescent words are never used.
ACCEPT and SOURCE are the latest and greatest words

for source input. They replace Forth-83 EXPECT, # T I B ,
SPAN, and T I B - which replaced something else in
Forth-79. Some day we'll get it right. I don't think we have
yet. Stretching Forth will generally use WORD and PARSE

January 1996 February 14 Forth Dimensions

for source input.
REFILL, which can be used with WORD and PARSE,

replaces QUERY. We may have gotten this one right.
>IN,SAVE-INPUT,RESTORE-INPUT,andSOURCE-

ID are also used in connection with source input and
system hanky-panky.

For BLANK Stretching Forth uses BL FILL; for CMOVE
or CMOVE> Stretching Forth generally uses CHARS MOVE.

Instead of CASE ... OF ... ENDOF ... 0 ENDCASE
Stretching Forth prefers CASE ... OF ... ELSE ... ESAC. In
the future I will use all lower-case for words that replace
Standard words: case ... of ... ELSE ... esac.

ENVIRONMENT? will be used for information only.
EVALUATE will generally be used instead of >NUMBER

or POSTPONE. This is done for clarity of exposition. In
stock definitions I may use >NUMBER or POSTPONE.

EVALUATE or POSTPONE will always be used instead
of [COMPILE].

I have nothing against POSTPONE, and agree that
EVALUATE could be dangerous if used wrong.

Arithmetic calculations will not be bracketed by [and
I LITERAL. This kind of optimization is best left to the
compiler. See the Stretching Forth article on Pinhole
Optimization.

FM/MOD, SM/REM, or M* won't be used unless the.
definition depends on the method of division: floored or
truncated.

Sensitivity
3.4.2 . . . A systern may be either case sensitive, treating
upper- and lower-case letters as different and not
matching, or case insensitive, ignoring differences in case
while searching.

Stretching Forth code is written so that it doesn't matter
whether the system is case sensitive or case insensitive.
This is done by writing Standard words in upper case, and
being consistent with the spelling of other words. Words
are not distinguished by variations of case. I make an
exception for my simplified "case" and "of," which serve
the same purpose as Standard CASE and OF.

Acknowledgment
Selections from the Standard are taken from ANSI

X3.215-1994, copyright O 1994 by Technical Committee
X3J14.

Wil Baden is a professional programmer with an interest in Forth.
wilbaden8netcorn.com

Listing One. Working words.

!
#> #S ' ((.) s t o c k
* * / */MOD + +! +LOOP

- -TRAILING s t r i n g
. . " . (c o r e e x t .R c o r e e x t
/ /MOD /STRING s t r i n g
0< 0<> c o r e e x t 0= O> c o r e e x t Ox s t o c k
1+ 1-
2! 2* 2/ 2>R c o r e e x t 2@ 2DROP 2DUP 2OVER 2R> c o r e e x t
2R@ c o r e e x t 2SWAP
3DROP s t o c k 3DUP s t o c k
4DROP s t o c k 4DUP s t o c k
: :NONAME c o r e e x t

< <# 0 c o r e e x t
I

> >BODY >R
? ? s t o c k ?DO c o r e e x t ?Dm?
@
ABORT ABORT" ABS AGAIN c o r e e x t U I G N UIGNEQ
ALLOT AND ANDIF s t o c k
BASE BEGIN BL BOUNDS s t o c k
C! C" c o r e e x t C+! s t o c k C , C@ CASE s t o c k CELL+ CELLS
CHAR+ CHAR8 C O M P W s t r i n g core e x t CONSTANT
COUNT CR CREATE
DECIMAL DEPTH DO DOES> DROP DUP
ELSE EMIT ERASE c o r e e x t ESAC s t o c k EVALU- EXECUTE EXIT
FAtSE c o r e e x t FILL FIND
HAVE s t o c k HERE HEX c o r e e x t HOLD
I IF IMMEDIATE INVERT
J
KEY
LEAVE LITERAL LOOP
W R c o r e e x t WAX MIN m D
MOVE NESATE NIP c o r e e x t NOT r a t i o n a l e
OF s t o c k OR ORIF s t o c k OVER
PAD core e x t PARSE c o r e e x t PARSE-WORD r a t i o n a l e (Continues on nextpage.)

Forth Dimensions 15 January 1996 February

P I C K core ext PLACE stock
QUIT
R> R@ RECURSE core ext REPEAT
ROLL core ext ROT
S" S+ s t o c k S, s tock S= s tock S>D
SEAR- s t r i n g S I G N s t r i n g SPACE SPA-S STATE SWAP
TH s t o c k THEN 7 f a c i l i t y ext
TO core ext TRUE core ext TUCK core ext TYPE
U. 0 . R core ext IX U> core ext UM* UM/MOD UNDER+ s tock
U N W UNTIL UNUSEp core ext
VALUE core ext VARIABLE
WHILE WITHIN core ext WORD
XOR
[[' I [Ox] s tock
\ core ext
I . . s t o c k .S too ls ? too ls BYE too ls ext WORDS too ls
JELSEl t o o l s ext too ls ext too ls ext
DEFINITIONS search-order FORTH - WORD- search-order
SET-ORDER search-order JORDLIST search-order
mCLUDED f i l e

Obsolescent
T I B core ext CONVERT core ext EXPECT core ext QUERY core ext
SPAN core ext T I B core ext FORGET t o o l s ext

Avoided in Stretching Forth exposition
> I N
>NUMBER
ACCEPT
BLANK s t r i n a CMOVE s t r i n q QdOVE> s t r i n q
CASE core ext ENDCASE co;e ext ENDOF core ext OF core ext
7 E
POST-
SOURCE SOURCE-= core ext
SAVE-INPUT core ext PESTORE - I N P m core ext
FMlMOD f 1 oored d i v i s i o n
SM/REM t r u n c a t e d d iv i s ion
M*
[COMPILE] core ext

GET-CURRENT search-order mT-ORDER s e a r c h - o r d e r
SEARCH-WORD- s e a r c h - o r d e r S E T - CDRREm s e a r c h - o r d e r

Listing Two. Words originated by the Standard.

:NONAME >NUMBER ACCEPT ALIGN ALIGNED CHAR CHAR+ CHARS
COMPARE COMPILE, ENVIRONMENT? EVALUATE FM/MOD
FORTH-WORDLIST GET-CURRENT GET-ORDER INCLUDED INVERT LSHIFT
MARKER PARSE PARSE-WORD POSTPONE R E F I L L RESTORE-INPUT RSHIFT
SAVE-INPUT SEARCH SEARCH-WORDLIST SET-CURRENT SET-ORDER SLITERAL
SM/REM SOURCE-ID TIME&DATE UNLOOP UNUSED WORDLIST [CHAR]
[ELSE] [I F] [THEN]

Appendix. Stock definitions.

(S a m p l e D e f i n i t i o n s f o r S t o c k Words -- Y o u r s may v a r y .)

: UNDER+ ROT + SWAP ; (a b c - - a + c b)
: (-) DUP >R ABS 0 <# # S R> SIGN #> ; (n -- s .)
: 3DROP 2DROP DROP ; (a b c - -)
: 3DUP 2 P ICK 2 P ICK 2 P ICK ; (a b c - - a b c a b c)
: 4DROP 2DROP 2DROP ; (a b c d - -)
: 4DUP 20VER 2 0 V E R ; (a b c d - - a b c d a b c d)
: BOUNDS OVER + SWAP ; (a k -- a + k a)
: C+! DUP C@ UNDER+ C! ; (n a - -)
: HAVE BL WORD FIND N I P ; (-- 0 1 - 1 1 1)
: PLACE 2DUP >R >R CHAR+ SWAP CHARS MOVE () R> R> C! ;
: S= S " COMPARE O= " EVALUATE ; IMMEDIATE (Continues on nextpage.)

January 1996 February 16 Forth Dimensions

: S, DUP C, 0 ?DO COUNT C, LOOP DROP ; (9 . - -)
. .. .S BEGIN DEPTH WHILE DROP REPEAT ; (... -- 1

(Simplified CASE)

\ Envir. dependency on data stack used for control-flow stack.

VARIABLE -case-sys- (Should be hidden.)
:case - case-sys- @ DEPTH -case-sys- ! ; IMMEDIATE
: esac (C: case-sys . . . --)

BEGIN DEPTH -case-sys- @ >
WHILE postpone THEN
REPEAT
case-sys- !

; IMMEDIATE
: of

POSTPONE OVER POSTPONE = POSTPONE IF POSTPONE DROP
; IMMEDIATE
: ANDIF POSTPONE DUP POSTPONE IF POSTPONE DROP ; IMMEDIATE
: ORIF POSTPONE ?DUP POSTPONE O= POSTPONE IF ; IMMEDIATE

(Circular String Buffer)

2000 CONSTANT circ-Buffer-Size

CREATE circ-Buffer 0 , circ-Buffer-Size CHARS ALLOT

: Get-Buffer (n -- a n)
DUP circ-Buffer @ + circ-Buffer-Size >

IF 0 circ-Buffer ! THEN
circ-Buffer DUP @ CHARS + CELL+ (n a)
SWAP DUP circ-Buffer +! (a n)

: S+ (sl kl s2 k2 -- s3 k3)
2 PICK OVER + Get-Buffer (i.e. s3 k3) >R >R

2 PICK CHARS R@ + SWAP CHARS MOVE (sl kl)
R@ SWAP CHARS MOVE ()

R> R> (93 k3)

: Ox ("<spaces>name" -- ?)
S" HEX " (S a)

BL WORD COUNT S+
S" DECIMAL " S+
EVALUATE (?)

; IMMEDIATE

: ?? (n "<spaces>name" -- ?)
sW IF 'I (n s .)
BL WORD COUNT S+
S" THEN " S+
EVALUATE (?)

; IMMEDIATE

: th (n "<spaces>namem -- addr)
S" CELLS " (n s .)
BL WORD COUNT S+
S" + " s+
EVALUATE (addr)

; IMMEDIATE

: [Ox] (C: "<spaces>name" -- ?)
S" [HEX] " (S -)
BL WORD COUNT S+
Sn [DECIMAL] " S+
EVALUATE (?)

; IMMEDIATE

\ Procedamus in pace.

Forth Dimensions 17 January 1996 February

Review from abroad=

Andras Zsoter
Hong Kong

I was a bit surprised when asked to write about this
year's FORML conference for I am a newcomer to this
event, while most of the attendees have known each other
for many years. O n the other hand, this might make my
opinion more interesting. Of course, I can write only about
my impressions, I do not know how many of the partici-
pants share my views.

Also, what can I write for FD when, after a couple of
wines, 1 asked Peter Midnight what he does and he
answered, "I write small things." And he described to me
his tiny Forth system with a four-bit-wide stack and one-
letter-long words. As a personal talk it was very nice, but
what could I possibly write about it?

This was my first trip to the American continent and
many things were completely new to me. I arrived at San
Francisco on the afternoon of Thanksgiving (a usual
complaint about the FORML conference: why does it have
to be on the 24th?), which made my very first trip to the
USA even more special. Next morning, John Hall and Brad
Rodriguez picked me u p on their way to Asilomar. On the
two-hour trip, I discovered that my situation would be
unusual because, as a Hungarian who happens to study in
Hong Kong, I represented two continents. (We had
participants from France, so I was not the only European.)

The conference started with registration and lunch,
followed by the afternoon session. The most remarkable
thing was that, unlike other conferences where people
present boring details about work which is not understood
by more than a few participants, Forthists seemed to
understand each other's work very well. I was surprised
how easy it was for me to follow the presentations and
discussions about completely different topics.

While most of the presentations were about traditional
Forth topics, including automation control, engineering
and scientific applications, details about the Forth Scien-
tific Library, and arguments about the usefulness of Forth
for writing programs which can be tested in every detail
(by Dr. Ting), two of them in particular drew my attention.

The first was Andrew McKewan's presentation about
using Forth in the Windows NT environment and imple-
menting an OLE automation server in Forth. I think this
topic can have a huge impact on the acceptance of Forth.

If we can produce applications which integrate peacefully
with major operating systems, more people will accept
Forth as an alternative tool.

The other unusual topic was presented by Christopher
Lavaranne. He suggested a stateless Forth-a Forth system
(Continues on page 43.)

Using Forth Professionally?
During FORML, we had to fill in a couple of question-

naires, which, in my opinion, are not the best tools to
extract information from people. Many of us claimed that
if a single word were different in a question, our answer
would be completely different. With one question I did not
even know what to answer: "How long have you been
using Forth professionally?" (Or something similar.)

I have been programming in Forth with the intention
of making money (or rather, to do my research which, in
turn, is my source of income) only in the last three years.
On the other hand, I learned Forth about ten years ago and
used its concepts in previous projects even though I did
not use a Forth system.

Once I was asked to write a piece of controller software
for a new instrument. At that stage, the development team
already had spent one year developing the hardware, but
the "software" part was only a few lines of code written in
GWBASIC-barely enough to test the hardware. Because
the rest of the software (user interface and such) was
written in Turbo Pascal, I started to develop the controller
program in the same language. Within two weeks, the
system was up and running-something no one from that
team would believe after almost a whole year of failure at
developing a consistent system.

Although I actually did not use Forth as a tool in that
project, my programming style was very much influenced
by it. I almost wrote Forth programs in Pascal. What I mean
is that I wrote tiny little procedures (almost as small as a
Forth word) and tested each of them individually. Well, it
would have been easier with a real Forth, but I did not
have that choice.

So, what is considered to be "using Forth professionally?"

January 1996 February 18 Forth Dimensions

Using Forth to manipulate the real world

Sfepper Motors
Skip Carter
Monterey, California

1. Introduction
This is the first in a series of articles on using Forth to

interact with the real world. We will explore how to
control motors of various types (such as servomotors and
stepper motors), switch power to devices, and sense the
environment. Each article will present a project that can be
used to demonstrate the ideas we are going to discuss.

In this first article, I want to lay the foundation for the
future columns and discuss the use of the PC parallel port
to control stepper motors. We will adopt the fantasy that
we are working on some microprocessor-based control
application and will be using the PC parallel port as a
proxy for the digital I/O channels on our controller. To the
extent possible, the code will be written in high level (so
that we can illustrate the principles clearly), and will be in
ANS Forth.

2. The PC Parallel Port
First, if you haven't already, go to your back issues of

Forth Dimensions and find Ken Merk's article "Forth in
Control" (FDXVII/2). In that article, Ken talks about using
the PC parallel port for eight digital outputs. We will be
expanding on that and use some of those other pins to get
input as well as to provide output.

A parallel port on the PC is really three address
locations which, for conventional use, could be called
#Data, #Command, and #Status.

The port #Data is at the base address of the parallel
port, #Status is at the base address plus one, and #Com-
mand is at base plus two.

The base address depends upon which parallel port we
are using and the hardware installed in your computer;
usually, this address is one of the hex addresses 03BC,
0378, or 0278. The BIOS determines the address and maps
it to the parallel ports at boot time. This allows an
application to find out where the port is by simply reading
the table in memory that starts at 0040:0008. Ken shows in
his article how to get this value and set a constant
containing the base address for the first port; we will do
the same here.

Table One. The PC parallel port.

DB-25
Pin Signal Direction Port Bit
1 Strobe* out Command 0
2 Data, out #Data 0
3 Data, out #Data 1
4 Data, out #Data 2
5 Data, out #Data 3
6 Data, out #Data 4
7 Data, out #Data 5
8 Data, out #Data 6
9 Data, out #Data 7
10 Ack* in #Status 6
11 Busy in #Status 7
12 Paper-out in #Status 5
13 Select-out in #Status 4
14 Auto-Feed* out #Command 1
15 Errof in #Status 3
16 Init* out #Command 2
17 Select-in* out #Command 3
18 to 25 Ground NA NA NA

Table One shows what all the pins on the connector are
for. You will notice that #Status port bits zero, one, and two
and #Command bits five, six, and seven are not used. The
Command port is used as an output port when the port is
being used for a printer, but it is actually an open-collector
I/O port and can be used for input. The #Data port latches
whatever was written to it, so a read from that port returns
the same value that was last written to it. A single PC parallel
port then gives us 12 output bits and four input bits, under
normal circumstances. (Many PCs use general-purpose
parallel I/O chips to implement the parallel port and can
actually be programmed to be bi-directional on all the pins.
Unfortunately, this form of the port is not universal.) For this
project we will only need the first four data lines and ground
(DB-25 pins two through five and pin 25).

3. Stepper Motors
As our first application, let us consider the control of

stepper motors. Stepper motors provide open-loop, rela-

Forth Dimensions 19 January 1996 February

Figure One. (a) The internal arrangement of the coils for a bipolar stepper motor.
(b) The internal arrangement of the coils for a unipolar stepper motor. Wires a through
d are attached to the positive motor power supply. Six-wire motors internally connect
a with b and c with d; five-wire motors internally connect a, b, c, and d.

Figure One-a Figure One-b

00 kk
Cll C12 C21 C , Q, a b Q, Q, c d Q,

Table Two. The part list.

4 TIP120 NPN Power Darlington transistors
4 10-K Ohm 1/4 Watt resistors
4 IN4004 Diodes
1 DB-25 Male solder-type connector

tive motion control. Open
loop means that, when you
command the motor to take
42 steps, it provides no di-
rect means of determining
that it actually did so. The
control is relative, meaning
that there is no way to de-
termine the shaft position
directly. You can only com-
mand the motor to rotate a
certain amount clockwise
or counter-clockwise from
its current position. These
"commands" consist of en-
ergizing the various motor
coils in a particular sequence
of patterns. Each pattern
causes the motor to move
one step. Smooth motion
results from presenting the
patterns in the proper or-
der.

Features that stepper motors provide include:
Excellent rotational accuracy
Large torque
Small size
Work well over a range of speeds
Can be used for motion or position control

There are two types of stepper motors:
Bipolarmotors, with two coils. These have four wires on
them (see Figure One-a). They are tricky to control
because they require changing the direction of the
current flow through the coils in the proper sequence.
We will discuss these motors further when we get to the
topic of DC motor control.
Unipolarmotors, with twocenter-tappedcoilswhich can
be treated as four coils (see Figure One-b). These have
six or eight (or sometimes five) wires, and can be
controlled from a microprocessor with little more than
four transistors (see Figure Two).

use for most of my real stepper motor applications, since it
is a good compromise between parts cost and part count, and
it has a low impact on my I/O pin budget.

The easiest way to control a stepper motor is by using
four bits of a parallel I/O port from a computer or
microprocessor. I usually use this approach when experi-
menting or when the part count must be as small as
possible. The microprocessor approach also has the advan-
tage of being able to use more than one stepper sequence.

The interface to control the motor from the parallel port
is just a transistor switch replicated four times. The
transistor is there to control the current, which is much
higher than the parallel port can sink, and to allow for the
motor voltage to be independent of the PC power supply.
The circuit in Figure Two can readily work with motor
voltages in the range of five to 24 volts. A positive voltage
at the transistor base (writing a '1' to the appropriate bit at
#Data) causes the transistor to conduct. This has the effect
of completing the circuit by hooking up ground to the
motor coil (which has a positive voltage on the other side),
so the chosen coil is turned on.

Stepper motors vary in the amount of rotation delivered
per step. They can turn as little as 0.72' to as much as 90'
per step. The most common motors are in the 7.5" to 18'
per step range. Many have integral reduction gear trains so
that they have even higher angular resolution. The motor
shaft will freely rotate when none of the coils are ener-
gized, but if the last pattern in a series is maintained, the
motor will resist being moved to a different position.
Because the motors are open-loop, if you do manage to
mechanically overwhelm the motor and turn the shaft to
a new position, the motor will not try to restore itself to the
old position.

There are stepper motor driver ICs available, but these can
be veryexpensive (as much as $20 to $50). The sequences
are relatively easy to generate with a couple ofTTL or CMOS
chips at a much lower cost. This is the approach I typically

Switching is one of the primary uses of transistors-we
are using a power transistor so that we can switch lots of
current (up to five amps for the TIP 120). A Darlington
transistor is really a transistor pair in a single package with
one transistor driving the other. A control signal on the
base is amplified and then drives the second transistor.
The resulting circuit can not only switch large mrrents, but
it can do so with a very small controlling current. The

January 1996 February 20 Forth Dimensions

Figure TWO. The interface circuit to control unipolar stepper motors from a four-bit I10 port. I

"m

4

1 N4004

DATA,
10 K

DATA,

DATA,

DATA,

resistors are to provide current limiting through the
parallel port. The diodes are a feature typical of circuits
that handle magnetic coils, that is inductivecircuits. In this
context, the motor windings are the inductive element.
Capacitors provide a means for the storage of electrical
charge, inductors provide a means for storage of electrical
cuwent. The driving current causes a magnetic field to be
built up in the coil. As soon as the drive is removed, the
magnetic field collapses and causes the inductor to release
its stored current. Semiconductors are particularly sensi-
tive to these currents (they briefly become conductors and
then become permanent nonconductors!). The diodes
provide a mechanism to safely shunt these currents away
and, thus, protect the transistors and the computer. We will
be seeing shunting circuits ofvarious types in all the devices
we will consider when inductive loads are involved.

The whole circuit can easily be built on a 1 7/8" by
2 3/4" prototyping board. For experimenting, it is conve-
nient to connect the motor to the circuit via one or two feet
of hookup wire with alligator clips on them instead of
wiring the motor directly to the circuit. That way, a
different motor can be attached to the circuit in a few
seconds. You should also note that ground for the
transistors must be made common between the parallel
port (say at pin 25) and the motor power supply. An
additional wire with an alligator clip can be used to
provide access to the ground for the motor power supply.
So, on the motor side of the circuit we have six wires, one

for each coil, one for ground and one for the motor voltage
on the shunt diodes. The motor (positive) voltage supply
is provided through the common coils.

After building the circuit, connect the transistors Q,
through Q, (via their current limiting resistors) to the DB-
25 connector pins two through five. When attached to the
PC parallel port, the transistors will be controlled by the
low four bits of the #Data port. Don't forget the ground
wire on pin 25!

3.1 Stepper motor sequencing - unipolar.
There are several kinds of sequences that can be used

to drive stepper motors. The following tables give the most
common sequences for energizing the coils. In all cases,
the steps are repeated when reaching the end of the table.
Following the steps in ascending order drives the motor in
one direction, going in descendng order drives the motor
the other way.

Forth Dimensions 2 1 January 1996 February

Table Three. The normal sequence. I
Step

1
2
3
4

Q4 Q3 Q2 Ql
0 1 0 1
1 0 0 1
1 0 1 0
0 1 1 0

Table Four shows what is known as the wave drive
sequence. This sequence energizes only one coil at a time.
For some motors, this sequence gives a smoother motion
than the normal sequence.

Table Four. The wave drive sequence.

Step

1
2
3
4

Table Five shows the half-step sequence. This sequence
interleaves the normal and wave sequences. It doubles the
angular resolution of the steps, so a 200-step-per-revolution
motor now takes 400 steps to complete a revolution.

Q4 Q3 Q2 Q,
0 0 0 1
1 0 0 0
0 0 1 0
0 1 0 0

Table Five. The half-step sequence. 1

3.2 m e bipolar sequence.
Although we will defer the discussion of bipolar stepper

motors, for completeness we present the step sequence
here in Table Six. These motors cannot be half-stepped.

Step

1
2
3
4
5
6
7
8

Q, Q Q z Q,

0 1 0 1
0 0 0 1
1 0 0 1
1 0 0 0
1 0 1 0
0 0 1 0
0 1 1 0
0 1 0 0

For very smooth startups, the step rate can be started
slow and gradually ramped up to a higher rate. The reverse
can be done for smooth stops.

Table Six. The bipolar sequence. I

3.4 m e control softu/are.
The control code steppers.seq in Listing One can drive

a motor with any of the above unipolar sequences in either
direction. The code loads fcontrol.seq, from Ken Merk's
article, to find the port and define the words to control the
bits on the port. Several other files from the Forth Scientific
Library are loaded as well: fpc2ans.seq loads an ANS-like
layer on top of F-PC (a true ANS Forth would not need
this), fsl-util.seq defines several utility w-ords that are used
throughout the Scientific Library, structs.seq loads the data
structure words. The data structure sequence is defined
to easily manage the sequence of values as defined in the
sequence tables given in section 3.1 above. The sequence
structures keep track of where in the sequence we are, so
that there is no jump in the sequencing if one were to type
7 NORMAL STEPS, stopped to (say) read a sensor, and
then continued on with another 7 NORMAL STEPS. This
could be done with global variables instead of a data
structure. However, the use of a data structure to contain
this information is much more natural to extend, if the
application were to require several stepper motors, than
is the global variable approach.

All the software is available via anonymous FTP at
taygeta.com in pub/Forth/FD.

Step

1
2
3
4

4. The Future
In upcoming articles, we will be looking at various

projects to illustrate the use of Forth to control and
measure the real world. Please send your comments,
suggestions, and criticisms to me through Forth Dimen-
sions or via e-mail at skipQtaygeta.com. In the meantime,
re-tin those soldering irons!

C,, c12 c21 c 2 2

-v +v -v +v
-v +v +v -v
+v -v +v -v
+v -v -v +v

Skip Carter is a scientific and software consultant. He is the leader of the Forth
Scientific Library project, and maintains the system taygeta on the Internet. He
is also the President of the Forth Interest Group.

3.3 Timing issues for stepper motors.
Since steppers are mechanical devices, the timing of

the step pulses is important.
The motor must reach the step before the next voltage

sequence is applied. If the step rate is too fast, the motor
can react in one of several ways:

it might not move at all, or
it could vibrate in place, or
it could rotate erratically, or
it might rotate in the opposite direction!

Guide to listings:

STEPPPERS.SEQ (Listing One) 23-24
ANSI .SEQ .. 24-28

................................ DYNMEM.SEQ 29-31

............................... FPC2ANS.SEQ 32
FSL-UTIL.SEQ 33-37
STRUCTS.SEQ 38-41
FCONTROL.SEQ - See Merk, Forth in Control

(FD XV1112)

January 1996 February 22 Forth Dimensions

Listing One. I
\ steppers. seq coda t o direct ly drive stepper motors
\ This code i s r e l e a s e d t o t h e p u b l i c domain September 1995
\ Taygeta S c i e n t i f i c Inc .

\ $Author: sk ip -ca r t e r $
\ $Work£ i l e : s t e p p e r s . s eq $
\ $Revision: 1 .0 $
\ $Date: Oct 19 1995 11:34:12 $

f l o a d fpc2ans . seq \ l oad s t u f f t o make it look ANS
f l o a d f s l - u t i l . s e q
f l o a d s t r u c t s . s e q \ d a t a s t r u c t u r e s (V l . 9 f o r FPC)
f l o a d f c o n t r o l . s e q

\ ... --------------

CR . (STEPPERS. SEQ V1.0 22 Sept 1995)

s t r u c t u r e sequence
i n t e g e r : .n
i n t e g e r : . index

8 i n t e g e r a r r a y : . s{
e n d s t r u c t u r e

-1 VALUE d i r e c t i o n ?

12 VALUE w t i m e \ i n t e r - s t e p wai t t ime (m s)

\ t h e d a t a s t r u c t u r e s con ta in ing t h e proper c o i l sequences
sequence normal
sequence wave
sequence h a l f

\ ...

: i n i t - s e q s (--) \ i n i t i a l i z e t h e sequences
4 normal . n !
0 normal . index !
5 normal . s{ 0) !
9 normal . s{ 1 } !

10 normal .s{ 2 } !
6 normal . s{ 3 } !

4 wave .n !
0 wave . index !
1 wave .s{ 0 } !
8 wave .s{ 1] !
2 wave . s (2) !
4 wave . s{ 3) !

8 h a l f .n !
0 h a l f . index !
5 h a l f . s (0 } !
1 h a l f . s{ 1) !
9 h a l f . s{ 2 } !
8 h a l f .s{ 3 } !

1 0 h a l f .s{ 4 } !
2 h a l f .s{ 5 } !
6 h a l f . s { 6 } !
4 h a l f . s{ 7] !

(s t e p p e r s . s e q continues on
next page.)

Forth Dimensions 23 January 1996 February

: idx++ (seq-hdl -- i dx) \ increment t h e index, r e t u r n o l d va lue
2DUP .n @ >R

. index DUP @
DUP 1+ R> MOD
ROT !

: idx-- (s e e h d l -- i d x) \ decrement t h e index, r e t u r n o l d va lue
2DUP .n @ >R .

. index DUP @
DUP 1- R> OVER
0 < I F 1- SWAP THEN DROP
ROT !

: f s t e p s (seq-hdl n --)
0 DO wtime MS

2DUP idx++ >R
2DUP .st R>) @ WRITE

LOOP

2 DROP

: r s t e p s (s e e h d l n --)
0 DO w t i m e MS

2DUP idx-- >R
2DUP . s (R>) @ WRITE

LOOP

: r eve r se (--) \ t ogg le s r o t a t i o n d i r e c t i o n
d i r e c t i o n ? IF 0 ELSE -1 THEN
TO d i r e c t i o n ?

: s t e p s (n seq-hdl --) \ t a k e n s t e p s from given sequence
ROT
d i r e c t i o n ? IF f s t e p s ELSE r s t e p s THEN

\ ...

i n i t - s e q s

\ To run use a sequence l i k e : 12 NORMAL STEPS
\ end of s t eppe r s . s eq

ANSI.SEQ I
\ ANSI-SEQ Provide ANSI CORE and CORE EXT by U.Hoffrnann

Only For th a l s o Hidden a l s o d e f i n i t i o n s warning o f f

: COMP: \ Warn i f word i s used i n compile s t a t e
Crea te , immediate
Does> @

s t a t e @
IF ." warning: o u t e r i n t e r p r e t e r not ANS compliant!" c r

X, EXIT THEN
EXECUTE ;

: token (-- x t)
\ Const ruc t a l l necessary d a t a f o r a new ananymous colon def
\ but do not s t a r t t o compile t h e body i t s e l f .
\ Return t h e newly c r e a t e d execution token.

(an si . seq continues on nextpage.)

January 1996 February 24 Forth Dimensions

\ Token i s a f a c t o r of :NONAME and :
he re
!CSP 233 c , (jmp) >nes t h e r e 2+ - ,
XHERE PARAGRAPH + DUP XDPSEG ! XSEG @ - , XDP OFF ;

: colon (--) \ : without c u r r e n t @ context !
HEADER token drop !CSP HIDE (1) ;

Only F o r t h a l s o Hidden a l s o F o r t h a l s o d e f i n i t i o n s
Vocabulary ANSI ANSI d e f i n i t i o n s
Vocabulary CORE ANSI CORE d e f i n i t i o n s

1 . II
' /
' /MOD
' o<
' o=
' 1+

1-
' 2!
' 2"
' 2/
' 2@
' 2DROP
' 2DUP
' 20VER
' 2SWAP
' colon

A l i a s ! (x a-addr --)
A l i a s # (udl -- ud2)
A l i a s #> (xd -- c-addr u)
A l i a s #S (udl -- ud2)
A l i a s ' ("name" -- x t)
A l i a s (immediate ("ccc<paren>" --)
A l i a s * (n l l u l n21u2 -- n31u3)
A l i a s * / (n l n2 n3 -- n4)
A l i a s */MOD (n l n2 n3 -- n4 n5)
A l i a s + (n l l u l n21u2 -- n31u3)
A l i a s +! (nlu a-addr --)
A l i a s +LOOP immediate (C: do-sys --)

(n --) (R: loop - sys l l -- I loop-sys2)
A l i a s , (X - -)

A l i a s - (n l l u l n21u2 -- n 3 (u 3)
A l i a s . (n - - 1
A l i a s ." immediate ("ccc<quote>" --)
A l i a s / (n l n2 -- n3)
A l i a s /MOD (n l n2 -- n3 n4)
A l i a s O< (n -- f l a g)
A l i a s O= (x -- f l a g)
A l i a s 1+ (n l l u l -- n21u2)
A l i a s 1- (n l l u l -- n21u2)
A l i a s 2! (x l x2 a-addr --)
A l i a s 2* (x l -- x2)
A l i a s 2/ (x l -- x2)
A l i a s 2@ (a-addr -- x l x2)
A l i a s 2DROP (x l x2 --)
A l i a s 2DUP (x l x2 -- x l x2 x l x2)
A l i a s 20VER (x l x2 x3 x4 -- x l x2 x3 x4 x l x2)
A l i a s 2SWAP (x l x2 x3 x4 -- x3 x4 x l x2)
Comp: : ("name" -- colon-sys)

(
(

A l i a s ; immediate (

(
A l i a s < (
A l i a s <# (
A l i a s = (
A l i a s > (
A l i a s >BODY (
A l i a s >IN (

I n i t i a t i o n : i * x -- i * x) (R: -- nes t - sys)
"name" execut ion: i * x -- j *x)
C: colon-sys --)
--) (R: nes t - sys --)
n l n2 -- f l a g)
-- 1
x l x2 -- f l a g)
n l n2 -- f l a g)
x t -- a-addr)
-- a-addr)

: >number (udl c -addr l u l -- ud2 c-addr2 u2)
BEGIN dup
WHILE (ud c-addr u)

>r dup >r c @ (ud char)
base @ d i g i t O= IF drop r> r> (ud c-addr u) EXIT THEN (ud d i g i t)
swap (h i) base @ um* drop r o t (l o) base @ um* d+
double? IF d p l i n c r THEN
r> r> 1 / s t r i n g

REPEAT ;

' >R A l i a s >R
I ?DUP A l i a s ?DUP

(x - -) (R : - - x)
(x -- OIx x)

(a n s i . seq continues on netpage.)

Forth Dimensions 25 January 1996 February

' @ Alias @ (a-addr -- x)
' ABS Alias ABS (n -- +n)
I ABORT Alias ABORT (i*x --) (R: j*x --)
' ABORT" Alias ABORT" immediate (C: "ccc<quote>" --)

(i*x flag -- i*x I) (R: j*x -- j*x I)

: ACCEPT (c-addr +nl -- +n2) EXPECT SPAN @ ;
' NOOP Alias ALIGN immediate (--)
' NOOP Alias ALIGNED immediate (--)
I ALLOT Alias ALLOT (n - 1
I AND Alias AND (xl x2 -- x3)
I BASE Alias BASE (-- a-addr)
' BEGIN Alias BEGIN immediate (C: -- dest) (--)
' BL Alias BL (-- char)
I C! Alias C! (char c-addr --)

' C, Alias C, (char --)
' C@ Alias C@ (c-addr -- char)
' 2+ Alias CELL+ (a-addrl -- a-addr2)
' 2* Alias CELLS (nl -- n2)
: CHAR ("name" -- char) BL WORD 1+ C@ ;
' 1+ Alias CHAR+ (c-addrl -- c-addr2)
' NOOP Alias CHARS immediate (nl -- n2)
I CONSTANT Alias CONSTANT (x "name" --) (-- x)
I COUNT Alias COUNT (c-addrl -- c-addr2 u)
' CR Alias CR (-- 1
' CREATE Alias CREATE ("name" --) (-- a-addr)
I DECIMAL Alias DECIMAL (--)
I DEPTH Alias DEPTH (-- +n)
' DO Alias DO immediate (C: -- do-sys) (nl lul n2 1u2 --) (R: loop-sys
' DOES> Alias DOES> immediate (C: colon-sysl -- colon-sy2)

(--) (R: nest-sysl --)
(Initiation: i*x -- i*x a-addr) (R: -- nest-sys
("name" execution: i*x -- j*x)

' DROP Alias DROP (X - -)
' DUP Alias DUP (x - - x x)
' ELSE Alias ELSE immediate (C: origl -- orig2)
' EMIT Alias EMIT (X - -)
: ENVIRONMENT? (x-addr u -- false I i*x true) 2DROP FALSE ;

Only Forth also definitions needs eval
Hidden also ANSI CORE definitions

EVAL Alias EVALUATE (i*x c-addr u -- j*x)
I EXECUTE Alias EXECUTE (i*x xt -- j*x)
' EXIT Alias EXIT (--) (R: nest-sys --)
' FILL Alias FILL (c-addr u char --)
' FIND Alias FIND (c-addr -- c-addr 0 I xt 1 I xt -1)
' M/MOD Alias FM/MOD (dl nl -- n2 n3)
' HERE Alias HERE (-- addr)
' HOLD Alias HOLD (char --)

' I Alias I (-- n lu) (R: loop-sys -- loop-sys)
' IF Alias IF immediate (C: -- orig) (x --)
' IMMEDIATE Alias IMMEDIATE (--)
' NOT Alias INVERT (xl -- x2)
' J Alias J (-- nlu) (R: loop-sys -- loop-sys)
' KEY Alias KEY (-- char)

' LEAVE Alias LEAVE immediate (--) (R: loop-sys --)
' LITERAL Alias LITERAL immediate (C: x --) (-- x)
' LOOP Alias LOOP immediate (C: do-sys --) (--)

(R: loop-sysl -- I loop-sys2)
\ : LSHIFT (xl u -- x2) 16 umin 0 ?DO 2 * LOOP ;
CODE LSHIFT (xl u -- x2) POP CX POP AX SHL AX, CL lPUSH end-code \ courtesy akg
' *D Alias M* (nl n2 -- d)
' MAX Alias MAX (nl n2 -- n3)
' MIN Alias MIN (nl n2 -- n3)
' MOD Alias MOD (nl n2 -- n3)
' MOVE Alias MOVE (addrl addr2 u --)
' NEGATE Alias NEGATE (nl -- n2)
' OR Alias OR (xl x2 -- x3) (an si . seq continues on nextpage

January 1996 February 26 Forth Dimensions

I OVER Alias OVER (xl x2 -- xl x2 xl) I
: POSTPONE (C: "name" --) (--)

state @ O= Abort" compile only"
defined dup 0= ?missing O< IF (non imm) compile compile THEN
X, ; immediate

I QUIT Alias QUIT (--) (R: i*x --)
I R> Alias R> (- - X I (R : x - -)
' R@ Alias R@ (- - x) (R : x - - x)
I RECURSE Alias RECURSE immediate (C: --)
I REPEAT Alias REPEAT immediate (C: orig dest --) (--)
I ROT Alias ROT (xl x2 x3 -- x2 x3 xl)
\ : RSHIFT (xl u -- x2) 16 umin 0 ?DO u2/ LOOP ;
CODE RSHIFT (xl u -- x2) POP CX POP AX SHR AX, CL lPUSH end-code \ courtesy akg
I I* Alias S" immediate (C: "ccc<quote>" --) (-- c-addr u)
S>D Alias S>D (n - - d)

' SIGN Alias SIGN (X I - -)

: SM/REM (dl n2 -- n2 n3)
over >r 2dup xor 0< >r
abs >r dabs r> um/mod (rem quot)
r> ?negate swap r> ?negate swap ;

I SOURCE Alias SOURCE
I SPACE Alias SPACE
I SPACES Alias SPACES
I STATE Alias STATE
I SWAP Alias SWAP
I THEN Alias THEN immediate
I TYPE Alias TYPE
I U. Alias U.
I U< Alias U<
I UM* Alias UM*
' UM/MOD Alias UM/MOD
Code UNLOOP (--) (R: loop-sys --)
' UNTIL Alias UNTIL immediate
I VARIABLE Alias VARIABLE
' WHILE Alias WHILE immediate
I WORD Alias WORD
I XOR Alias XOR
' [Alias [immediate
' [' I Alias ['] immediate
: [CHAR] (C: "name" --) (-- char)

' I Cornp:]

I Vocabulary EXT EXT definitions

Alias XTIB
Alias . (immediate
Alias .R
Alias O<>
Alias O>
Alias 2>R
Alias 2R>
Alias 2R@

(-- c-addr u)

(--)
(n - - 1
(-- a-addr)
(xl x2 -- x2 xl)
(C: orig --) (--)
(c-addr u --)

(u - -)
(ul u2 -- flag)
(ul u2 -- ud)
(ud ul -- u2 u3)

ADD RP, # 6 NEXT end-code
(C: dest --) (x --)
("name" --) ("name" Execution: -- a-addr)
(C: dest -- orig dest) (x --)
(char "<chars>ccc<char>" -- c-addr)
(xl x2 -- x3)

(--)
(-- xt)

CHAR [compile] Literal ; immediate
(-- 1

(-- a-addr)
("ccc<paren>" --)
(nl n2 --)
(x -- flag)
(n -- flag)
(xl x2 --) (R: -- xl x2)
(-- xl x2) (R: xl x2 --)
(-- xl x2) (R: xl x2 -- xl x2)

: :NONAME (-- colon-sys) (-- xt)
token (1) ;

I <> Alias <> (xl x2 -- flag)
' ?DO Alias ?DO immediate (C: -- do-sys) (nllul n21u2 --)

(R: -- 1 loop-sys)

(ansi . seq continues on next page.)
- - - --

Forth Dimensions 27 January 1996 February

' AGAIN Alias AGAIN immediate (C: dest --) (--)
: C" ("ccc<quote>" --) (-- c-addr) [compile] " compile ">$; immediate
' CASE Alias CASE immediate (C: -- case-sys) (--)

' x, Alias COMPILE, (xt --)
' CONVERT Alias CONVERT (udl c-addrl -- ud2 c-addr2)
: ENDCASE (C: case-sys --) (x --)

compile drop [compile] ENDCASE ; immediate
' ENDOF Alias ENDOF immediate (C: case-sysl of-sys -- case-sys2) (--)
' ERASE Alias ERASE (addr u --)
' EXPECT Alias EXPECT (c-addr +n --)
I FALSE Alias FALSE (-- false)
' HEX Alias HEX (-- 1

: MARKER ("name" -- 1
Create
context Xvocs 0 DO dup @ , 2+ LOOP drop current @ ,

Does> (--)
dup context #vocs 0 DO over @ over ! 2+ swap 2+ swap LOOP drop

@ current !
body> dup >view (frget) ;

I NIP Alias NIP (xl x2 -- x2)
' OF Alias OF immediate (C: -- of-sys) (xl x2 -- I xl)
' PAD Alias PAD (-- c-addr)
' PARSE Alias PARSE (char "ccc<char>" -- c-addr u)
' PICK Alias PICK (xu ... xl x0 u -- u ... xl x0 xu)
' QUERY Alias QUERY (--)
(REFILL is not defined)

: RESTORE-INPUT (xl ... xn n -- flag)
dup 7 <> IF 0 ?DO drop LOOP true EXIT THEN
drop
!> run !> loadline ! > Xtib !> >in !> 'tib ! > loading !> iblen
false ;

' ROLL Alias ROLL (xu xu-1 ... x0 u -- xu-1 ... x0 xu)

: SAVE-INPUT (-- xl . . . xn n)
@> iblen @> loading @> 'tib @> >in @> Xtib @> loadline @> run 7 ;

(SOURCE-ID is not defined)
' SPAN Alias SPAN (-- a-addr)
' TIB Alias TIB (-- c-addr)
1 -. - Alias TO immediate (x "name" --) (C: "name" --) (x - - 1
' TRUE Alias TRUE (-- true)
' TUCK Alias TUCK (xl x2 -- x2 xl x2)
' U.R Alias U.R (u n - -)
' U> Alias U> (ul u2 -- flag)
: UNUSED (-- u) sp@ here - ;
' VALUE Alias VALUE
: WITHIN (nllu2 n21u2 n31u3 -- flag) over - >r - r> u< ;
' [COMPILE] Alias [COMPILE] immediate ("name" -- 1
' \ Alias \ immediate ("ccc<eol>" --)

Only Forth also Root definitions

' ANSI Alias ANSI

Only Forth also definitions warning on

cr . (ANS-Forth compatibilty package loaded)

January 1996 February 28 Forth Dimensions

\ dynmem. seq Dynamic Memory Allocation package
\ this code is an adaptation of the routines by
\ Dreas Nielson, 1990; Dynamic Memory Allocation;
\ Forth Dimensions, V. XII, No. 3, pp. 17-27
\
\ This is an ANS Forth program requiring:
\ 1. The Memory-Allocation wordset, or the implementations below of ALLOCATE and FREE
\ 2. The compilation of the local ALLOCATE and FREE is controlled by
\ the VALUE HAS-MEMORY-WORDS?
\ and the conditional compilation words in the Programming-Tools wordset
\
\ This code is designed to work in conjunction with the FSL implementation
\ of arrays as given in the file, 'fsl-util'.
\
\ The words ALLOCATE and FREE are implementations of the ANS Forth
\ words from the Memory-Allocation wordset. If your Forth system
\ has the Memory-Allocation wordset the following words can be eliminated from here:
\ f reelist
\ Dynamic-Mem
\ ALLOCATE
\ FREE
\
\ To use dynamic memory, a dynamic memory pool needs to be created and
\ initialized. The dynamic memory pool needs to be initialized before it is ever
\ used. IF THIS IS NOT DONE, ALLOCATE will abort with a message
\ complaining about the lack of initialization. Typically
\ the initialization would look like,
\ CREATE POOL #bytes ALLOT
\ POOL #bytes Dynamic-Mem
\
\ (any other way of allocating space for the pool will also work, one just has to pass
\ the starting address of some contigous memory and the number of bytes to Dynamic-Mem).
\ If there are alignment requirements for the data space, this should be satisfied BEFORE
\ the address is passed to Dynamic-Mem.
\
\ If your application ends up using more bytes than are in the memory
\ pool (#bytes) then the internal pointer will be NULL when)malloc
\ fails. You can detect this by invoking malloc-fail?,
\ malloc-fail?
\
\ If there is a true on the stack at this point, then the allocation
\ failed. This allows the following usage,
\ malloc-fail? ABORT" ALLOCATE failed "
\
\ The allocation and freeing of dynamic memory can be done in any order.
\ Since this can be done in any order, there is a possiblity that the
\ pool will become fragemented. It is then possible that a }malloc
\ will fail if the memory pool is very fragmented.
\
\ The current version of the dynamic memory package can have only one memory pool. I \ I
\ For dynamically allocated arrays, the delcaration looks like,
\ element-size DARRAY name{

\ where element-size is the number of cells that the data type occupies
\ just as for static arrays.

\ To allocate space for a dynamic array (this can be done at runtime),
\ & name{ #elements }malloc 1 \
\ If it succeeds then there will have been contiguous space allocated
\ for the required number of elements. 1 \
\ To release the space (this can also be done at runtime) use,
\ & name{ }free

\ A dynamic array name can be re-used by calling }free to release
\ the old space and then calling } malloc again to reallocate it. Cdynmem. seq continues on nextpage,)

Forth Dimensions 29 January 1996 February

CR . (DYNMEM V 1 . 9 4 J a n u a r y 1 9 9 5 E F C)

P r i v a t e :

HAS-MEMORY-WORDS? O= [I F]

\ p o i n t e r t o b e g i n n i n g of free space
var iab le f reel is t 0 . 0 f reel is t !

[THEN]

P u b l i c :

\ m e m o r y a l l o c a t i o n s t a t u s var iable , 0 f o r OK
0 VALUE m a l l o c - f a i l ?

: c e l l - s i z e (addr -- n) >BODY CELL+ @ ; \ gets array ce l l s i z e

HAS-MEMORY-WORDS? O= [I F]

\ i n i t i a l i z e m e m o r y pool a t ALIGNED address 'start-addr '
: Dynamic-Mem (start-addr l e n g t h --)

OVER DUP f reel is t !
0 SWAP !
SWAP CELL+ !

: ALLOCATE (u -- addr i o r) \ a l loca te n bytes , r e t u r n p o i n t e r t o b l o c k
\ a n d r e s u l t f l ag (0 f o r s u c c e s s)

\ c h e c k t o see i f pool has b e e n i n i t i a l i z e d f i r s t
f ree l i s t @ O = ABORT" ALL0CATE::memory pool n o t i n i t i a l i z e d ! "

CELL+ f ree l i s t DUP
BEGIN

WHILE DUP @ CELL+ @ 2 P ICK U<
IF @ @ DUP \ get n e w l i n k
ELSE DUP @ CELL+ @ 2 P ICK - 2 CELLS MAX DUP 2 CELLS =

IF DROP DUP @ DUP @ ROT !
ELSE OVER OVER SWAP @ CELL+ ! SWAP @ +
THEN
OVER OVER ! CELL+ 0 \ store s i z e , b u m p p o i n t e r

THEN \ a n d set e x i t f l a g
REPEAT

SWAP DROP

DUP O=

: FREE (p t r -- i o r) \ free space a t p t r , r e t u r n s t a t u s (0 f o r s u c c e s s)
1 CELLS - DUP @ SWAP OVER OVER CELL+ ! f ree l i s t DUP
BEGIN

DUP 3 PICK U< AND
WHILE

@ DUP @
REPEAT

DUP @ DUP 3 P I C K ! ?DUP
I F DUP 3 PICK 5 PICK + =

I F DUP CELL+ @ 4 P ICK + 3 PICK CELL+ ! @ 2 P ICK !
ELSE DROP THEN

THEN

DUP CELL+ @ OVER + 2 P ICK =

I F OVER CELL+ @ OVER CELL+ DUP @ ROT + SWAP ! SWAP @ SWAP !
ELSE !
THEN

(dynmem. seq continues on nextpage.)

January 1996 February 30 Forth Dimensions

DROP
0 \ this code ALWAYS returns a success flag

[THEN]

\ word for allocation of a dynamic 1-D array memory
\ typical usage: & a{ #elements)malloc

\
: } m a l l ~ ~ (addr n --) \ I size I data area

OVER cell-size DUP >R * \ save extra cell-size on rstack
\ now add space for the cell-size entry
CELL+ ALLOCATE
TO malloc-fail?
OVER >BODY !

\ now store the cell size in the beginning of the block
>BODY @ R> SWAP !

\ word to release dynamic array memory, typical usage: & a{]free

:)free (addr --)
>BODY DUP
@ FREE
TO malloc-f ail?
0 SWAP !

\ word for allocation of a dynamic 2-D array memory
\ typical usage: & a{{ #rows #cols }}malloc

: }}malloc (addr n m --) \ I m I size I data area

2 PICK cell-size DUP
>R OVER >R \ save extra cell-size and m on rstack
* * \ calculate the space needed
\ now add space for the cell-size entry and m
CELL+ CELL+ ALLOCATE
TO malloc-fail?

SWAP OVER CELL+ SWAP >BODY ! \ store pointer to allocated space
\ Note: pointing to size field not

\ now store m and cell size in the beginning of the block
R> OVER !
R> SWAP CELL+ !

:]}free)free ;

Reset-Search-Order

Forth Dimensions 31 January 1996 February

\ fpc2ans.seq Loads the stuff to add ANS compliance for F-PC

cr . (FPC2ANS. SEQ V1.6 23 September 1994 EFC)

fload ansi.seq

Only Forth also definitions ANSI CORE also

: GET-CURRENT (-- wid)
CURRENT @

: SET-CURRENT (wid --)

CURRENT !

fload ffloat.seq \ get the floating point package

: to ' >body state @ if [compile] literal compile !
else ! then ; immediate

: d>s drop ;

: d>f float ;

: F>D int ;

: >float drop 1- (mantissa) (exp) float falog f* -1 ;

\ size of a floating point element
8 constant fcell

\:floats fcell* ;

\ : cell+ 1 cells + ;
: float+ 1 floats + ;

: FE. F. ;

: SF@ F@ ;
: SF! F! ;

\ not exactly right but good enough

: FALIGN ALIGN ;
: FALIGNED ALIGNED ;

: FSINCOS FDUP FSIN FSWAP FCOS ;

: FATAN2 F/ FATAN ;

' #IF Alias [IF]
' #ELSE Alias [ELSE]
' #THEN Alias [THEN]

January 1996 February 32 Forth Dimensions

A n a u x i l l i a r y f i l e f o r t h e Fo r th S c i e n t i f i c L ib ra ry
c o n t a i n s commonly needed d e f i n i t i o n s .
For F-PC V3.6

\ $Workfile: f s l - u t i l . s e q $
\ $Revision: 1.18 $
\ $Date: 27 Jan 1995 22:29:26 $

\ dxor, d o r , dand double xo r , o r , and
\ sd* s i n g l e * double = double-product
\ v: d e f i n e s u s e (& For d e f i n i n g and s e t t t i n g execut ion v e c t o r s
\ % Par se next token a s a FLOAT
\ S>F F>S Conversion between (s i n g l e) i n t e g e r and f l o a t
\ F, S t o r e FLOAT a t (a l i gned) HERE
\ INTEGER, DOUBLE, FLOAT For s e t t i n g up ARRAY t y p e s
\ ARRAY DARRAY For d e c l a r i n g s t a t i c and dynamic a r r a y s
\ I For g e t t i n g an ARRAY o r DARRAY element add re s s
\ & ! For s t o r i n g ARRAY a l i a s e s i n a DARRAY
\ PRINT-WIDTH The number of elements p e r l i n e f o r p r i n t i n g a r r a y s
\ IFPRINT P r i n t ou t a given a r r a y
\ Matrix For d e c l a r i n g a 2-D a r r a y
\ 1) g e t s a Matr ix element add re s s
\ Publ ic : P r i v a t e : Reset-Search-Order c o n t r o l s t h e v i s i b i l i t y of words
\ lframe frame 1 s e t s up/removes a l o c a l v a r i a b l e frame
\ a b c d e f g h l o c a l FVARIABLE va lues
\ &a & b & c & d & e & f & g &h l o c a l FVARIABLE addres se s

\ This code conforms wi th ANS r e q u i r i n g :
\ 1. The Floa t ing-Poin t word s e t
\ 2. The words umd* umd/mod and d* a r e implemented
\ f o r F-PC i n t h e f i l e dmuldiv.seq
\ 3 . The word VOCABULARY i s de f ined

I \ This code i s r e l e a s e d t o t h e p u b l i c domain E v e r e t t C a r t e r J u l y 1994 I I CR . (FSL-UTIL. SEQ V1.18 26 January 1995 EFC) I
\ c o n t r o l

\ f o r c o n t r o l of c o n d i t i o n a l compi la t ion t e s t code
FALSE VALUE TEST-CODE?
FALSE VALUE ?TEST-CODE \ obso le t e , f o r backward compa t ib l i t y

\ f o r c o n t r o l of c o n d i t i o n a l compi la t ion of Dynamic Memory
FALSE CONSTANT HAS-MEMORY-WORDS?

I \ FSL Non ANS words I
: -DEFINED (c-addr -- t / f) \ r e t u r n s t r u e i f NOT de f ined

DEFINED O=

\ umd/mod (uquad uddiv -- udquot udmod) unsigned quad d iv ided by double
\ umd* (ud l ud2 -- qprod) unsigned double mu l t i p ly
\ d* (d l d2 -- dprod) double mu l t i p ly

\ For F-PC t h e above t h r e e a r e a l r e a d y de f ined i n DMULDIV.SEQ
\ needs dmuldiv.seq \ needs d e f i n i t i o n s of umd* umd/mod and d*

: dxor (d l d2 -- d) I ROT XOR -ROT XOR SWAP

: dor (d l d2 -- d) I . ROT OR -ROT OR SWAP

\ double xo r

\ double o r

(f s l -u t i 1 . seq continues on netpage.)

Forth Dimensions 33 January 1996 February

: dand (d l d2 -- d)
ROT AND -ROT AND SWAP

\ double and

\ s i n g l e * double = double
: sd* (mul t ip l i cand mult ipl ier-double -- product-double)

2 P I C K * > R UM* R > +

I \ :
NIP O< ;

: T* TUCK UM* 2SWAP UM* SWAP >R 0 D+ R> ROT ROT ;
DUP >R UM/MOD ROT ROT R> UM/MOD NIP SWAP ;

\ func t ion v e c t o r d e f i n i t i o n
: v: CREATE ['I noop , DOES> @ EXECUTE ;
: d e f i n e s ' >BODY STATE @ IF [COMPILE] LITERAL COMPILE !

ELSE ! THEN ; IMMEDIATE

: u s e (STATE @ IF [COMPILE] [I] ELSE THEN : IMMEDIATE
[COMPILE] u s e (; IMMEDIATE

\ pushes fo l lowing va lue t o t h e f l o a t s t a c k
: % BL WORD COUNT >FLOAT 0s ABORT" NAN"

STATE @ IF POSTPONE FLITERAL THEN ; IMMEDIATE

: S>F (n --) (f : -- x) \ i n t e g e r t o f l o a t
S>D D>F

: F>S (n) (f : x --) \ f l o a t t o i n t e g e r
F>D DROP

\ S t o r e f l o a t a t (a l i gned) HERE
\ a l r eady d e f i n e d i n F-PC
\ : F, (- - 1 f : X - -) FALIGN HERE 1 FLOATS ALLOT F! ;

\ : F= F- FO= ;
\ : -FROT FROT FROT ;
\ : F2* % 2.0e0 F*
\ : F2/ % 2.0e0 F/
\ : FZDUP FOVER FOVER ;
\ : F2DROP FDROP FDROP ;

I : CELL- [1 CELLS] LITERAL - ; \ backup one c e l l I
0 VALUE TYPE-ID \ f o r bu i ld ing s t r u c t u r e s
FALSE VALUE STRUCT-ARRAY?

\ f o r dynamical ly a l l o c a t i n g a s t r u c t u r e o r a r r a y I
TRUE VALUE i s - s t a t i c ? \ TRUE f o r s t a t i c a l l y a l l o c a t e d s t r u c t s and a r r a y s
: dynamic (--) FALSE TO i s - s t a t i c ? ;

\ s i z e of a r e g u l a r i n t e g e r
1 c e l l s CONSTANT INTEGER

\ s i z e of a double i n t e g e r
2 c e l l s CONSTANT DOUBLE

\ s i z e of a r e g u l a r f l o a t
1 f l o a t s CONSTANT FLOAT

I (f sl -u t i 1 . seq continues on nextpage.) I
January 1996 February 34 Forth Dimensions

\ 1-D array definition
\
\ I cell-size I data area I
\

: MARRAY (n cell-size -- I -- addr)
CREATE

DUP , * ALLOT
DOES> CELL+

,

\
\ I id I cell-size I data area I
\

: SARRAY (n cell-size -- 1 -- id addr)
CREATE

TYPE-ID ,
DUP , * ALLOT

DOES> DUP @ SWAP [2 CELLS] LITERAL t

\ monotype array

\ structure array

: ARRAY
STRUCT-ARRAY? I F SARRAY FALSE TO STRUCT-ARRAY?

ELSE MARRAY
THEN

\ word for creation of a dynamic array (no memory allocated)

\ Monotype
\
\ I data-ptr I cell-size I
\

: DMARRAY (cell-size --) CREATE 0 , ,
DOES>

@ CELL+

\ Structures
\
\ I data-ptr I cell-size I id I
\

: DSARRAY (cell-size --) CREATE 0 , , TYPE-ID ,
DOES>

DUP [2 CELLS] LITERAL + @ SWAP
@ CELL+

: DARRAY (cell-size --)
STRUCT-ARRAY? I F DSARRAY FALSE TO STRUCT-ARRAY?

ELSE DMARRAY
THEN

\ word for aliasing arrays,
\ typical usage: a(& b{ & ! sets b{ to point to a{'s data

: & ! (addr-a &b --)
SWAP CELL- SWAP >BODY !

: } (addr n -- addr [n]) \ word that fetches 1-D array addresses
OVER CELL- @
* SWAP +

(f s l -ut i 1 . seq continues on nertpage.)

Forth Dimensions 35 January 1996 February

VARIABLE p r i n t - w i d t h 6 p r i n t - w i d t h !

:) £ p r i n t (n a d d r --) \ p r i n t n e l e m e n t s of a f l o a t a r r a y
SWAP 0 DO I p r i n t - w i d t h @ MOD O= I AND IF CR THEN

DUP I) F@ F. LOOP
DROP

: } i p r i n t (n a d d r --) \ p r i n t n e lements o f an i n t e g e r a r r a y
SWAP 0 DO I p r i n t - w i d t h @ MOD O= I AND IF CR THEN

DUP I } @ . LOOP
DROP

: I fcopy (n & s r c & d e s t --) \ copy one a r r a y i n t o a n o t h e r
ROT 0 DO

OVER I) F@
DUP I } F!

LOOP
2 DROP

\ 2-D a r r a y d e f i n i t i o n ,
\ Monotype
\
\ I m I c e l l - s i z e I d a t a a r e a I
\

: MMATRIX (n m s i z e --) \ d e f i n i n g word f o r a 2-d m a t r i x
CREATE

OVER , DUP ,
* * ALLOT

DOES> [2 CELLS] LITERAL +

\ S t r u c t u r e s
\
\ I i d I m I c e l l - s i z e I d a t a a r e a I
\

: SMATRIX (n m s i z e --) \ d e f i n i n g word f o r a 2-d m a t r i x
CREATE TYPE-ID , '

OVER , DUP ,
* * ALLOT

DOES> DUP @ TO TYPE-ID
[3 CELLS] LITERAL +

: MATRIX (n m s i z e --) \ d e f i n i n g word f o r a 2-d m a t r i x
STRUCT-ARRAY? IF SMATRIX FALSE TO STRUCT-ARRAY?

ELSE MMATRIX
THEN

: 1 1 (a d d r i j -- a d d r [i] [j]) \ word t o f e t c h 2-D a r r a y a d d r e s s e s
2 >R \ i n d i c e s t o r e t u r n s t a c k t e m p o r a r i l y
DUP CELL- CELL- 2@ \ &at01 [O] s i z e m
R> * R> + *

\ Dynamic 2-D a r r a y d e f i n i t i o n ,
\
\ I d a t a g t r I c e l l - s i z e I (i d) I
\

January 1996 February 36 Forth Dimensions

: DMATRIX (cell-size --)
DARRAY

\ defining word for a 2-d matrix

: } }£print (n m addr --) \ print nXm elements of a float 2-D array
ROT ROT SWAP 0 DO

DUP 0 DO
OVER J I 1) F@ F.

LOOP

CR
LOOP

ZDROP

\ Code for hiding words that the user does not need to access into a hidden wordlist.
\ Private:
\ will add HIDDEN to the search order and make HIDDEN the compilation wordlist.
\ Words defined after this will compile into the HIDDEN vocabulary.
\ Public:
\ will restore the compilation wordlist to what it was before HIDDEN got added,
\ it will leave HIDDEN in the search order if it was already there. Words define
\ after this will go into whatever the original vocabulary was, but HIDDEN words
\ are accessable for compilation.
\ Reset-Search-Order
\ This will restore the compilation wordlist and search order to what they were
\ before HIDDEN got added. HIDDEN words will no longer be visible.

\ These three words can be invoked in any order, multiple times, in a
\ file, but Reset-Search-Order should finally be called last in order to
\ restore things back to the way they were before the file got loaded.

\ WARNING: you can probably break this code by setting vocabularies while
\ Public: or Private: are still active.

\ the Vocabulary HIDDEN is already defined in F-PC
\ Vocabulary HIDDEN
variable HIDDEN-SET HIDDEN-SET Off
variable Private-Used Private-Used Off
variable OLD-CURRENT 0 OLD-CURRENT !

\ These definitions may require modification for non F-PC systems.
: Public: (--)

HIDDEN-SET @ IF HIDDEN-SET OFF
PREVIOUS
ALSO HIDDEN
OLD-CURRENT @ O= NOT IF

OLD - CURRENT @ SET-CURRENT
THEN

THEN

: Private: (--)
HIDDEN - SET @ O= IF

HIDDEN-SET ON
GET-CURRENT OLD CURRENT !
Private-Used @ YF PREVIOUS THEN
ALSO HIDDEN DEFINITIONS
Private-Used On

THEN

: Reset-Search-Order (--) \ invoke when there will be no more
\ mucking with vocabularies in a file

HIDDEN-SET @ IF Public: THEN
PREVIOUS
Private-Used Off

I 0 OLD-CURRENT !

Forth Dimensions 37 January 1996 February

\ structs.fo An implementation of simple data structures I
\ This i s an ANS F o r t h program requ i r ing :
\ 1. The words ' P r i v a t e : ' , ' P u b l i c : ' and 'Reset-Search-Order'
\ t o c o n t r o l t h e v i s i b i l i t y of i n t e r n a l code.
\ 2. The F loa t ing -po in t word s e t
\ 3. The compi la t ion of t h e t e s t code i s c o n t r o l l e d by t h e VALUE TEST-CODE? and
\ t h e c o n d i t i o n a l compilat ion words i n t h e Programming-Tools wordset
\ Note t h a t t h e r e a r e two ve r s ions of I] de f ined , one f o r ANS t h e o t h e r
\ f o r F-PC V3.6

\ based h e a v i l y upon p a r t of t h e code desc r ibed i n :
\ Hayes, J .R . , 1992; Objec ts f o r Small Systems, Embedded Systems Programming,
\ V. 5 , No. 3(March) pp. 32 - 45
\ a l s o upon t h e i d e a s i n :
\ Pounta in , D., 1987; Object-Oriented Fo r th , Implementation of Data
\ S t r u c t u r e s , Academic P r e s s , New York, 119 pages, ISBN 0-12-563570-2
\ and communications wi th Marcel Hendrix

CR . (STRUCTS V1.9 3 January 1995 EFC) I
P r i v a t e : I

I
0 VALUE fetch-em \ execut ion token of a ' s t r u c t - @ ' (temporary)
V : store-em \ a v e c t o r t o a ' , ' t ype word
FALSE VALUE i s - cons t \ i d e n t i f i e s cons t an t o r v a r i a b l e t y p e s t r u c t
FALSE VALUE GO-EARLY \ TRUE when doing e a r l y b inding

: makevar \ a l l o c a t e memory f o r a s t r u c t of given s i z e
CREATE , ALLOT (s i z e i d --)
DOES> DUP @ SWAP CELL+ (-- i d addr)

: makeconst \ a l l o c a t e memory f o r a cons tan t - type s t r u c t of g iven s i z e
\ I i d I @ I d a t a . . . I

CREATE , (s i z e i d --)
DROP \ d o n ' t need t h e s i z e s i n c e fetch-em knows it
fetch-em ,
store-em \ l a y down t h e cons t an t s t r u c t u r e d a t a
FALSE TO i s - cons t
DOES> (-- va lue)

DUP @ SWAP
CELL+ DUP CELL+ SWAP @ EXECUTE \ executes fetch-em

: makeinstance (s i z e --- 1 \ c r e a t e a s t r u c t of g iven s i z e
i s - cons t IF makeconst

ELSE makevar
THEN

: ?member-error (m-id s - id --) \ r a i s e an e r r o r i f s - i d and m-id do not match
OVER OVER

<> IF ." Wrong member of s t r u c t u r e , STRUCT = " U .
. " , MEMBER = " U . CR

ABORT
THEN

2 DROP

\ c a l c u l a t e add re s s of member base f o r s imple s c a l a r d a t a t y p e s
: resolve-scalar-member (s - i d s-addr m-base -- m-addr)

ROT >R \ save s - id
2 @ SWAP R>
?member-error \ compare s - i d and m-id
+

(s t r u c t s . s e q continues on nextpage.)

January 1996 February 38 Forth Dimensions

: resolve-structure-member (s-id s-addr m-base -- m-id m-addr)
ROT >R
DUP 2 @ SWAP R>
?member-error
SWAP [2 CELLS] LITERAL + @
ROT ROT +

: resolve-array-member (s-id s-addr m-base -- m-base m-addr)
ROT >R
DUP 28 SWAP R>
?member-error
ROT + \ calculate address of array pointer base

: aus: \ Structure member compiler. I offset I id I
CREATE OVER , + (id offset size -- id offset')

OVER ,
DOES> \ (s-id s-addr m-base -- m-addr)

resolve-scalar-member

: smc: \ Structure member compiler. 1 offset 1 id I struct-id 1
CREATE OVER , + (id offset size -- id offset')

OVER ,
TYPE-ID ,

DOES> (s-id s-addr m-base -- m-id m-addr)
resolve-structure-member

Public:

: constant-structure (' @ ', -- 1

DEFINES store-em
TO fetch-em

TRUE TO is-const

: structure \ Start structure declaration.
CREATE HERE 0 , 0 \ (-- id offset)
DOES> DUP @ SWAP makeinstance ; \ (-- pfa template)

: attribute (offset size -- offset') \ same as struct:
>R ALIGNED R>
STRUCT-ARRAY? IF smc: FALSE TO STRUCT-ARRAY?

ELSE aus: THEN

: chars: (offset n --- offset') \ Create n char member.
CHARS aus : ;

: char: (offset --- offset') \ Create 1 char member.
1 chars: :

: cells: (offset n --- offset') \ Create n cell member.
CELLS attribute ;

: cell: (offset --- offset') \ Create 1 cell member.
1 cells: :

: struct: (offset size --- offset') \ Create member of given size.
attribute ;

: integer: (offset -- offset')
1 cells: ;

: double: (offset -- offset')
2 cells: ;

(s t r u c t s . seq continuesonnextpage

Forth Dimensions 39 January 1996 February

: float: (offset -- offset')
FALIGNED 1 FLOATS aus:

: endstructure (id offset ---)
SWAP ! ;

\ ...

\ Words for creating STATICALLY declared arrays WITHIN a structure

Private : I
\ For arrays of SCALAR types
: MARRAY: \ I offset I id I cell-size I

CREATE (id offset n cell-size -- id offset')
2 PICK , 3 PICK ,
DUP ,
*
+ CELL+

DOES> (s-id s-addr m-base -- m-addr)
resolve-array-member

\ get cell size and store it in the instance
SWAP [2 CELLS] LITERAL + @ OVER !
CELL+

\ For arrays of structure types
: SARRAY: \ / offset I id I t-id I cell-size I

CREATE (id off set n cell-size -- id offset.')
2 PICK , 3 PICK ,
TYPE-ID ,
DUP ,
*

1 + CELL+

DOES> (s-id s-addr m-base -- m-id m-addr)
resolve-array-member

\ get cell size and store it in the instance
SWAP [2 CELLS] LITERAL + 2 @ >R OVER !

CELL+
R> SWAP

Public :

: ARRAY: (id offset size -- id offset')
>R ALIGNED R>
STRUCT-ARRAY? IF SARRAY: FALSE TO STRUCT-ARRAY?

ELSE MARRAY: THEN

\ ------------ ---------------==-------===============----------------- -----------------
\ Words for creating array pointers WITHIN a structure
\ These ARE NOT dynamic arrays but are general purpose pointers
\ (does cell-size need to be stored ?)

I Private: I
: dmpointer: \ pointer member compiler. I offset I id I cellsize I

CREATE OVER , (id offset csize -- id offset')
2 PICK ,
t \ store cellsize, but its not being used by anything yet
CELL+

DOES> \ (s-id s-addr m-base -- m-addr)
resolve-scalar-member
@ CELL+

(st r u c t s . seq continues on nextpage.)

January 1996 February 40 Forth Dimensions

: dspointer: \ pointer member compiler. I offset I id I struct-id I cs I
CREATE OVER , (id offset csize -- id offset')

2 PICK ,
TYPE-ID ,
t

CELL+
DOES> (s-id s-addr m-base -- m-id m-addr)

resolve-structure-member
@ CELL+

Public:

: POINTER: (id offset cell-size -- id offset')
>R ALIGNED R>
STRUCT-ARRAY? IF DSPOINTER: FALSE TO STRUCT-ARRAY?

ELSE DMPOINTER: THEN

\ for building arrays of structures and nested structures
: sizeof (-- n) \ returns size of a structure, APPLY TO TYPES!!!

' >BODY DUP TO TYPE-ID @
STATE @ IF POSTPONE LITERAL THEN
TRUE TO STRUCT-ARRAY?

; IMMEDIATE

: typeof (-- id) \ returns the type id, APPLY TO TYPES!!!
' >BODY
STATE @ IF POSTPONE LITERAL THEN

; IMMEDIATE

: addrof (-- addr) \ return base address, APPLY TO INSTANCES! ! !
' >BODY @
STATE @ IF POSTPONE LITERAL THEN

; IMMEDIATE

\ Word to get base address of pointer instance
\ example usage: pix -> .x{

: -> (s-id s-addr -- addr)
' >BODY STATE @ IF POSTPONE LITERAL POSTPONE resolve-scalar-member

ELSE resolve-scalar-member THEN ; IMMEDIATE

\ usage: a{ pix -> .x{ ->!
: ->! (ar-base addr --) SWAP CELL- SWAP ! ;

\ For forcing early binding.
\ These words are written so that they are harmless to invoke at runtime
: [[STATE @ IF TRUE TO GO-EARLY POSTPONE [

ELSE FALSE TO GO-EARLY THEN ; IMMEDIATE

\ F-PC V3.6 version
: I] GO-EARLY IF POSTPONE] POSTPONE LITERAL FALSE TO GO-EARLY THEN

, ; IMMEDIATE

\ ANS version I \ :]] GO-EARLY IF] POSTPONE LITERAL FALSE TO GO-EARLY THEN ; IMMEDIATE

structure STRUCT-HANDLE \ useful for saving structure instances
1 CELLS attribute .type
1 CELLS attribute .addr

endstructure

: h@ (hdll -- hd12) 2DUP .type @ ROT ROT .addr @ ;
: h! (hdll hd12 --) 20VER 2OVER .addr ! DROP ROT DROP .type ! ;

Reset-Search-Order

\ ...

Forth Dimensions 4 1 January 1996 February

A Forum for Exploring Forth Issues and Promoting Forth

The Prospects
for ++Forth
Mike Elola
San Jose, California

If OOLs (object-oriented programming languages) make
fashionable a new breed of profoundly extensible pro-
gramming languages, then OOLs may eventually be a big
Forth benefactor.

I have applauded how OOLs promise to make our
program designs more open to change. By trivially chang-
ing their implementation, we can substantially change
their design thanks to the soft-coding of functions and
thanks to classes designed for polymorphic use (see my
column "Objects Promote New Programming Style," from
the preceding issue).

Even if this goal is achieved through other means than
extensible data types (object classes), it should become a
milestone in the history of computer science.

To conceive of C++ required embracing a bold deci-
sion. For years, the evolution of programming languages
had tended to hide more and more details of the compiler's
manner of operation from the user of the language.

Besides Forth, C++ is one of the few programming

... not only data types, but many
other substantial extensions
can be "plugged in" to Forth.

languages that bucks the trend. It does this by revealing-
rather than hiding-a part of the C++ compiler that is
responsible for data types.

In the area of data type extension, the C++ user must
supply such low-level functions as copy constructors,
(object instance) destructors, and so forth. So in a sense,
C++ reaches a lower level than C.

Despite the laudable extensibility that C++ achieves,
the perilous path it uses to get there may be its undoing.
Ironically, the smooth path through which Forth reaches
its profound levels of extensibility may never bring it the
popularity that it deserves.

Reconcilable C++ and Forth Differences?
If C can be extended into C++, then any conventional

programming language can be similarly extended. The

programming provisions that C++ includes beyond those
of C can serve as a standard basis for achieving object
support in a variety of conventional programming lan-
guages, including a ++Forth.

However, the nature of the extensibility offered by
Forth and by C++ differs considerably.

Forth's compiler extensibility has always given us Forth
programmers visibility into a modifiable compiler. For
Forth in particular, such visibility and potential for modi-
fication extends to all parts of the compiler. That way, not
only data types (object classes), but also many other
substantial extensions can be "plugged in" to Forth.

Not so long ago, the immaturity of data typing systems
escaped notice. C++ is one means to educate ourselves in
regard to fully articulated data typing systems. A mature data
typing system is very far-reaching. An extensible data typing
system has also been shown to be possible, yet complex.

For Forth to support soft-coded functions as do OOLs,
it needs an equally far-reaching data typing system. Until
that happens, Forth will remain on a less-promising branch
in the evolution of programming languages.

Forth can be shown to be amenable to data typing
systems, despite its type-vague data stack. In contrast, C++
is not going to be at all amenable to adopting as open, as
extensible, or as simple a compiler as the Forth compiler.

While Forth's extensibility reveals a simple compiler, the
data type extensibility of C++ reveals an off-putting and
complicated compiler: C++ class designers must write the
delicate glue routines (constructors, destructors, exception
handlers, etc.) that make their data type extensions inte-
grate with one another, and otherwise behave reasonably.

++Forth
If our community wishes to continue to advance our

favorite programming language, we may need to prove
Forth's ability to adopt data types and objects.

Despite Forth's reputation as a difficult language, the
learning curve of C++ is bound to be steeper than Forth's
own. The move from C to C++ involves a quantum leap in
learning difficulty. Accordingly, if the move from Forth to
a ++Forth (with C++ features) involved only a moderate

January 1 996 February 42 Forth Dimensions

for Forth?

level of added difficulty, Forth would gain appeal.
C++ has had to pay an awfully high price in clarity for

most of its object support. (Nevertheless, the C++ experi-
ment has also proven that older programming languages
can be transformed into object-oriented languages.)

Bringing u p primitive levels of object support in Forth
is simple enough. The worry is that a fully articulated
object system may weigh a ++Forth down in much the
same way that it weighs down C++.

Beyond the hurdle of adding data typing to Forth, a
formal module and object system is needed. Once those
hurdles have been cleared, there is much more of C++ to
emulate in ++Forth.

In the end, the W L environment may be irreconcilable
with the simplicity of Forth.

Maybe the best we can hope for is that the complexity
of C++ will open the minds of the larger programming
community to the alternatives that exist. As part of such a
scenario, an easy-to-use ++Forth could certainly do us no
harm.

++Forth Should Not Overshadow Forth
Even if ++Forth turned out to be substantially less

obscure than C++, who will be impressed?
The vastly superior simplicity of Forth has never won

it widespread accolades. As paradoxical as it sounds after
the previous statement, Forth has developed a reputation
as being difficult to learn. So why should we be hopeful
that ++Forth would fare any better?

For these reasons, I feel like we need to be able to sell
others on Forth first and foremost. If and when it arrives,
++Forth should not be promoted at the expense of normal
Forth.

If anything, ++Forth should help entice others on the
path towards Forth, which already captures the essence of
extensibility and scalability in a programming language.
What better proof of this could there be than a ++Forth that
can be spun out of Forth naturally and simply?

These sentiments underscore the importance of mak-
ing Forth more widely recognized as a language that is
easy to use and learn. That's where the real challenge lies.
One year ago, I proposed some ways to make Forth even
easier to use (see "Fine-Tuning Forth, " FD XVI/5).

Other than changing Forth in small but friendly ways,
Forth books, tutorials, and similar study materials have a
very important role to play. To FIG'S credit, the re-release
of minking Forth was money that was well spent. Kudos
to John Hall for this.

Forth Dimensions 43

(FORUC, fmm page 18.)
without the interpretation state. The idea behind his model
is that we can always compile whatever is read from the
input stream, and a special word (; in his example) can
cause the code which is compiled so far to be executed.
This way, control structures like I F THEN or DO LOOP can
be used while "interpreting." (I guess this approach has
other advantages, e.g., the need for state-smart words
would disappear because STATE disappears.)

The free talks during the cheese and wine parties (I am
a wine drinker, so California's countless different kinds of
wines made a particularly good impression on me) were
interesting, especially because of the numerous different
topics, not always limited to programming. This was a place
where I-a chemist who decided to do automation rather
than some more "conservative" branch of chemistry-was
not some rare kind of animal to admire, but a perfectly
ordinary Forth programmer.

I enjoyed every bit of these talks, especially because in
Asilomar I could talk without having to watch constantly
to see whether the other person understood what I was
talking about. This is something you grow to appreciate
when you have to talk "different languages" with chemists
and programmers or, even worse, different languages with
different chemists and different programmers. As it turned
out, many of us started with chemistry or other sciences
and did other things than writing programs.

This might explain why Forth is not so popular among
mainstream computer scientists and software companies.
Forthists seem to be attracted by any challenge and tend
to try out very unconventional approaches-definitely a
kind of behaviour that dinosaurs like IBM and Microsoft
will never tolerate.

The bad part about the FORML conference is that it is
so short (about 48 hours altogether). So whatever ideas
arose concerning different aspects of the use of Forth-
such as integrating Forth into today's operating systems,
using Forth as a scripting language, problems with ANS
Forth, defining defining words (some very interesting and
valuable ideas by John Rible jcould not be discussed in
detail because of the lack of time.

The conference ended on the 26th and after lunch we
said goodbye to each other and left Asilomar hoping that
we will meet next year at the same place. I met nice and
fine people in Asilomar, and I was very happy to be able
to talk to someone about my work. It was nice to see
people face to face who were previously but e-mail
addresses. Dr. Ting was kind enough to give me a lift on
my way back and showed me around Silicon Valley,
giving me a very good impression of the place.

I was probably the youngest attendee at the confer-
ence. Not being very young myself, I have to think about
what this implies. Are we some endangered species which
might disappear in one generation, or is there still a future

January 1996 February

The Institute for Applied Forth Research, Inc.
Announces the 16th Annual

1996 Rochester Forth Conference
on Open Systems

June 19 - 22,1996
Ryerson Polytechnic University

Toronto, Ontario, Canada

Call for Papers
The 1996 Rochester Forth Conference on Open Systems is hosted by the Institute for Applied
Forth Research, Inc. in conjunction with the Southern Ontario Forth Interest Group and
McMaster University. The Rochester Conference will again provide a forum for researchers,
developers, and vendors to present the latest practical results dealing with open systems. The
conference seeks original papers relevant to the design, development, implementation, and
use of open systems. Conference topics include:

Open Firmware Standard/Open BootTM
Scripting Languages
Distributed Computing
Plug and PlayTM Systems
SGML and HTML
Educational Issues
JavaTM

Other areas of interest are Forth programming standards, embedded systems, real-time
systems, and the use of Forth for scientific and engineering applications.

Important Dates
February 1,1996 Deadline for an extended abstract
May 1,1996 Deadline for the camera-ready copy of final paper

Please send all manuscripts to the Program Chairman.
Additional information will be posted on the world-wide web as it becomes available:

http:/ /maccs.dcss.mcmaster.ca/ -ns/96roch.html
Facilities Chair: B.J. Rodriguez

Propram Chair Conference Information
Nicholas Solntseff Lawrence P.G. Forsley, General Chair
Dept. of Computer Science & Systems Institute for Applied Forth Research, Inc.
McMaster University Box 1261
Hamilton, Ontario Annandale, Virginia 22003
Canada L8S 4K1 fax: 703-256-3873 phone: 71 6-235-01 68
ns@maccs.dcss.mcrnaster .ca 1forsley~wk.com

