

SILICON COMPOSERS INC

FAST Forth Native-Language Embedded Computers

DUP

>R
R>

Harris RTX 2000'"' l&bit Forth Chip SC32'"' 32-bit Forth Microprocessor
08 or 10 MHz operation and 15 MIPS speed. 08 or 10 MHz operation and 15 MIPS speed.
I-cycle 16 x 16 = 32-bit multiply. I -clock cycle instruction execution.
I -cycle 14-prioritized interrupts. *Contiguous 16 GB data and 2 GB code space.

*two 25Bword stack memories. *Stack depths limited only by available memory.
-&channel I/O bus & 3 timer/counters. *Bus request/bus grant llnes wlth on-ch~p tr~state.

SC/FOX PCS (Parallel Coprocessor System) SC/FOX SBC32 (Single Board Computer32)
*RTX 2000 industrial PGA CPU; 8 & 10 MHz. 032-bi SC32 Industrial grade Forth PGA CPU.
*System speed options: 8 or 10 MHz. *System speed options: 8 or 10 MHz.
-32 KB to 1 MB 0-wait-state static RAM. *32 KB to 512 KB 0-wa~t-state static RAM.
*Full-length PC/XT/AT plug-in (&layer) board. *100mm x 160mm Eurocard s~ze (4-layer) board.

SC/FOX VME SBC (Single Board Computer) SC/FOX PCS32 (parallel Coprocessor Sys)
*RTX 2000 industrial PGA CPU; 8, 10, 12 MHz. 032-bit SC32 industrial grade Forth PGA CPU.
*Bus Master, System Controller, or Bus Slave. *System speed options: 8 or 10 MHz.
-Up to 640 KB 0-wait-state static RAM. 064 KB to 1 MB 0-wait-state static RAM.
*233mm x 160mm 6U size (&layer) board. *Full-length PC/XT/AT plug-~n (6-layer) board.

SC/FOX CUB (Single Board Computer) SC/FOX SBC (Single Board Computer)
*RTX 2000 PLCC or 2001A PLCC chip. *RTX 2000 industrial grade PGA CPU.
*System speed options: 8, 10, or 12 MHz. *System speed options: 8, 10, or 12 MHz.
-32 KB to 256 KB 0-wait-state SRAM. -32 KB to 512 KB 0-wa~t-state static RAM.
100mm x 100mm size (4-layer) board. 100mm x 160mm Eurocard slze (4-layer) board.

For additional product information and OEM pricing, please contact us at:
SILICON COMPOSERS INC 655 W. Evelyn Ave. #7, Mountain View, CA 94041 (415) 961-8778

Features

Forth in the UP1 OOLX M. Edward Borasky
The HP100LX and HPZOOLX computers fit in a jacket pocket and weigh just 11 ounces. But
a d d Forth, a n d these featherweights become contenders. As 80186/DOS 5.0 environments, a
number of Forth packages are available. The author provides benchmarks a n d more that will
put Forth in your pocket-you'll never have to leave home without it!

Hashing Forth Xan Gregg
It's a topic discussed s o nonchalantly that neophytes hesitate to ask h o w it works. Hashing
provides fast ways to search unsorted data-at the cost of memory. Robert Sedgewick
describes hashing as "directly referencing records in a table by doing arithmetic transforma-
tions o n keys into table addresses." ' f iat should make sense to you by the e n d of this article.. .

OOP, Forth, and the Future Ronald T: Kneusel
Unless i t changes, Forth might miss the opportunity of its lifetime. Whatever its drawbacks,
C++ is deemed more powerful because o r its object-oriented features, a n d users demand ever-
more-powerful applications. The object-oriented paradigm is winning the day, a n d C++ is the
forerunner in the fight, But nced it be?

RETRY, EXIT, and Word-Level Factoring Richard Astle
RETRY is not a mere Forth-hacker's whim. Since he found it a decade ago, the author has come
to rely on it more than its well-known brethren, REPEAT, UNTIL, a n d AGAIN. RETRY a n d
EXIT, taken together, make possible flexible control structures with the word a s the unit.

Making Forth Professional Peter Knaggs 22 Forth vendors say that memories of early, poor public-domain implementations still deter
potential customers. And software managers tend to see only code, they d o not appreciate that
Forth is not just another language, but a philosophy. Many contemporary practices-structured
programming, reusability, libraries, etc.-have been available and used in Forth for many years.
Here's o n e way to win back some much-deserved credibility.

I " Nanocomputer Optimizing Target Compiler:
the PIC Library Tim Hendtlass
As promised in the preceding par1 of this article (i;%)XVTI/3), here is a library for the PIC16C71
and ~ IC16C84 processors. The processor-independent core teamed with this library accepts
Forth input and generates absolute machine code for the PIC. The compjler supports chips
with different word lenglhs anti architectures, just requiring a different library for each.

Departments I
1

4 Editorial 'I'he programming public

5 Letters Two cents' worth

10 Advertisers Index
... f 8 President's Letter T o the new board of directors a n d to members

. 24 Conference Report.. Emerging technology at the 1995 Rochester conference

. 33 Forth On-line Expanded and updated list of on-line Forth connections

36 Stretching Forth Associative lists

....... 43 Fast Forthward.. Objects promote new programming style

Forth Dimensions 3 November 1995 December

Forth Dimensions
Volume XVII. Number 4

November 1995 December

Published by the
Forth lnterest Group

Editor
Marlin Ouverson I

Circulalion/Order Desk
Frank Hall

Forth Dimensions welcomes
The Programming Public editorial material, letters to the

editor, and comments from its read-

Over the years of my association with the Forth community, I've often heard the wish ers. is assumed
for accuracy of submissions.

that more younger people would get involved. This, of course, means there is a desire
to see a new generation to carry forward Forth practices and philosophy. In this issue,
Nicholas Solntseffs synopsis of the Rochester Forth Conference includes the comment,
"...registrants expressed hope that Open Root Forth would lead to more neophytes at
future meetings.. . "

Of course, for this to happen, the Forth community-including chapter leaders,
conference organizers, writers, and others-must actually do something to capitalize on
the opportunity. At FIG chapters, for instance, relevant presentations must be planned in
advance, and the meetings must be publicized to capture the attention of those savvy to
the implications of Open Boot/Firmware who are not already part of the Forth landscape.
And follow-up activities must ensure that the piiblic will find value in attending more than
once. Other subjects, too, like embedded system development, target compilation,
controlling remote hardware, and more, need to be presented and promoted in ways to
attract the interest of the programming public in addition to serving our existing
colleagues in Forth.

Maybe none of this sounds like as much fun as rcconlpiling your kernel (again) but,

Subscription to FoTth D i m -
swns is induded with membership
in the Forth Interest Group at $40
per year ($52 overseas air). For
membership, change of address,
and to submit items for pu blication,
the address is: Forth Interest Group,
P.O. Box 21 5.1, Oakland, California
94621. Administrative offices:
510-89-FORTH. Fax: 510-535-1295.
Advertising sales: 805-946-2272.

Copyright O 1995 by Forth In-
terest Group, Inc. The material con-
tained in this periodical (but not the
code) is copyrighted by the indi-
vidual authors of the artides and by
Forth Interest Group, Inc., respec-

without the major corporate or academic sponsorship enjoyed by other languages, 1:orth's tively. Any reproduction or use of

growth depends-as i t always has-on efforts at the grass roots. That means us, folks. periodical as it is Or

the anides, except reproductions . .
for non-commercial purposes, with-
out the written permission of Forth
Interest Group, Inc. is a violation of

Some people mistakenly think of Forth Dimensions as printing the canonical truth 'hecop~ri~h'bwshycodebesv
ing a copyright notice, however,

according to the Forth Interest Group, but it ain't necessarily so, as some of my own ,, be used with permission
editorials have demonstrated. FD is a vehicle for its readers to use, both to learn from and the copyright holder. . , .,
to contribute to; after all, FIG is member supported. Our community is diverse enough
to engender the occasional disagreement on both technical and philosophical grounds, The interest Group

The Forth Interest Group is the
and it is mature enough also to be inclusive and try to find some value even in material association of programmers,
to which we might individually take exception. managers, and engineers who create

We are pleased to present opinion pieces in this issue by Peter Knaggs and Ronald practical, Forth-based solutions to

T. Kneusel. We hope you will take them to heart-not as FIG gospel, but as food for needs Many research
hardware and software designs that

serious thought. Let us know what you think, even submit your own opinion piece for wi,,advancethegeneralstateofthe
publication. Sure, we usually prefer solid technical articles (and are always looking for art. FIG provides a climate of
more ofthem), but to misquoteTolkien, "All that glitters is not code." (Also, note that there intellectuai exchange and benefits I
was no collusion between Mike Elola and Ron Kneusel on their object-oriented articles intended each Its

members Publications, conferences,
published herein: this was just an interesting confluence of thinking.) seminars, telecommunications, and

area chapter meetings are among
its activities.

"J:OTlhDimenswm(lSSN 0884-0822) Everett (Skip) Carter has signed up to become our newest columnist. Skip is a professor is published bimontNy for $40,46,
at the U.S. Naval Postgraduate School, spearheads the 170rth Scientific Library project, is 52 per year by the ~ ~ r t h Interest
a valued presenter at the FORML Conference, hosts the taygeta \V\YfiYI and ftp Forth Group, 4800 Allendale Ave.,

repository (site of FIG'S home page), and generally has done a lot of solid 1:orth work. Oakland~ 94619.
postage paid at Oakland, CA. We are looking forward to presenting his contributions to you on a regular basis. POSTMASTER: S e n d a d d r e s s

--Marlin ~ v e r s o n changes to ~ 0 7 t h Dimensions, P.O.
FDeditor@aol.com Box 2154, Oakland, CA 94621-0054."

November 1995 December @ Forth Dimensions

Two Cents' Worth
Dear Marlin,

The July-August issue of Forth Dimensions waxed so
philosophical that I may as well toss in my two cents'
worth.

In the July issue of Circuit Cellar, Ink a short thread
from their BBS began with a request by an embedded
systems programmer who needed more information on
Forth's ability to generate compiled code (as in C) versus
working with a system using Forth in a microkernel. 'The
Forthwrights answered favorably, but did not provide any
source for more information.

Though the Forth Interest Group (FIG) aspires to b e
that resource, the items o n the mail-order form are not
enough. It should include a vendor list (perhaps extended
to include ads) and a list of chapters and BBS's. This would
provide a source for human contact. Better still would be
setting u p a FIG BBS and Web server. This can be
supplemented by the Forth CD-ROM (vol. one), which
would also provide a file resource for RBS's, as well as
students and Forthwrights world wide.

The idea is to provide entry to Forth information at

The new C++ compilers
now sport something Forth
has had for 25 years.
centralized locations which could more easily be
promoted.

The new C++ compilers now sport Integrated Devel-
opment and Debugging Environments (IDDE), some-
thing Forth has had for 25 years. Forth apparently
reversed the usual compiler technology, beginning with
the IDDE and ending with metacompilers to generate
standalone programs.

In the July-August "Fast Forthward," Mike Elola pon-
ders how to organize Forth. This brought to mind a text
outliner from a decade past called Kamas, the brainchild
of Adam Trent. This was also written in Kamas, a STOIC-
like threaded interpretive language (TIL). It used a binary
tree with labeled stems (indexes) to form the outline, and
text blocks/pages for the leaves. The outline could ex-

panded or contracted, and walked u p or down at any
level. The stems could be shifted to different levels, or
tagged and then moved or copied. The treehlocks were
kept in files. If you could add the ability to use subfiles as
stem extensions, you would have one cool block program-
ming environment. Certainly better than dealing with a
kaxillion files.

Yours truly,
Walter J . Rottenkolber
P.O. Box 17005
Mariposa, California 95338

Walter:
Thank you foryour letter' I recently re-instituted the list of
Forth vendors with the help of L. Greg Lisle, and the list of
on-line Forth resources (BBS or otherwise) with the assis-
tance of Kenneth O'Heskin. I'm gratebl for thegenemus
(i.e., volunteer), diligent work of both those gentlemen,
and hope the useful results move us in the direction you
point out. Given the economics involved (limited number
of pages and the desire to use them mostly for technical
information), we may not publish the lists in every issue,
hut they will appear regularly and the FIG ofice now has
them for use when answering inquiries.

-Editor

I don't question that a development environment such as
the one you mention gives w the very nice hierazhical
containers with which to organize code to the best of our
abilities. I do question whether our code-organizing skills
have been honed well enough that we are ready to exploit
such an environment. I am reminded of how technology
tends to am've before political issues surrounding it are
resolved (e.g., commercial use of the Internet).

Furthermore, I have been wom'ed that satwing load-
order requirements may impose an upper limit on how well
we can do. Donald Knuth developed the WEB code-writing
environment to help address that andsimilarissues. See his
hook, ILterate Programming.

I'd love to see you, orsomeone eke who is aware of one,
relate a "success story" that substantially tested the Kamas
d@)elopment environment.

-Mike Elola

Forth Dimensions 5 November 1995 December

From the Internet to Your Pocket:

Forth in the HPIOOLX

M. Edward Borasky
Beaverton, Oregon

What is the HPlOOLX?
The HPlOOLX Palmtop PC and its successor, the

HP200LX, are DOS-compatible personal computers that fit
in a jacket pocket and weigh 11 ounces. The CPU is an
Intel 80186 running at 7.91 MHz. Memory can be either
one or two megabytes (Mb). The user partitions this
memory into two chunks: DOS/application memory and
RAM disk. In the two Mb model that I have, the DOS
memory ranges from 352 u p to 636 Kb, leaving at worst 1.3
Mb of RAM disk which is accessed as the DOS "C:" drive.
A ROM of two Mb in the HPlOOLX and three Mb in the
HP200LX contains all the built-in software, some of which
can be seen from DOS as the "D:" drive.

The screen, although monochrome, is CGA compatible
and colors are mapped onto four grayscale values. The
HPlOOLX displays text in three modes: 80 columns by 25
rows, 64 columns by 18 rows, and 40 columns by 16 rows.
The 64x18 mode is the most practical compromise between
convenience.and readability, and works very well with Forth
blocks of 16 rows of 64 columns. The standard PC mode of

The HPIOOLX is the most
powerful computer I own.

80 columns by 25 rows is readable with good glasses and
bright light, but is difficult to work with otherwise.

The HP100W200LX has one PC-compatible serial
port, an HP-proprietary infrared port, and a single PCMClA
type I1 card slot. Available peripherals include printers,
external floppy disk drives, numerous battery-backed
SRAM and flash RAM PCMCIA cards for more RAM disk
space, and F W d a t a modems for either the PCMCIA or the
serial port. My configuration at present consists of a two
Mb HPlOOLX, a Sparcom Drive100 floppy disk drive which
connects to the serial port, a Maxtor MobileMAX four h l b
(nominal eight Mb with Stacker 3.0) PCMCIA flash memory
card, and an EXP ThinFax 1414LX 14.4 Kbps FAX,data
PCMCIA modem. The palmtop PC, its peripheral ports, and
PCMCIA slot are powered by two AA alkaline or recharge-
able NiCad batteries. I use an AC adapterhecharger for
working with the modem but, for nearly everything else, an

overnight charge cycle on NiCad batteries is good for about
four-to-eight hours of continuous running. With intermit-
tent use, a week on a charge is typical.

l'he built-in software includes a Phoenix-compatible
BIos, most of DOS 5.0, and 16 key-selectable applica-
tions. The major difference between the HPlOOLX and the
HP200LX is the set of built-in applications supplied; for a
Forth programmer, the two machines are essentially
identical. The applications in both models include the Filer
(very much like the File Manager in Windows), an
appointment book, a phone book, a memo editor, an
emulation of a Hewlett-Packard business calculator, a
DOS prompt window for any DOS application (including
Forth), and that timeless classic: Lotus 1-2-3 Release 2.4.

The built-in applications occupy separate segments of
DOS memory when opened. The user can open as many
as desired, as long as they all fit. Only a single application
is active and on-screen at a time, but the user can switch
among the open applications or open a new one with a
single keystroke. Data can b e cut or copied from one
application and pasted into another using a clipboard. For
applications that require the full 640 Kb DOS memory
space, the user can terminate all the built-in applications
and drop out to a pure DOS environment.

What d o I d o with it? First of all, the appointment book
runs my life. Second, the modem is my main connection
to the Internet away from work. Most of the software I
tested for this article was downloaded this way. Third, the
IHP100LX is my primary vehicle for my various computa-
tional hobbies and technical writing. This article, for
example, was typed on my HPlOOLX using the built-in
memo editor. 'l'he benchmark tables you will see below
were computed in Lotus 1-2-3, printed to a text file, and
imported into the article with the memo editor. The
I-IPlOO1,X is the most powerful computer I currently own.

Before moving to my experiences with Forth in the
l-IPIOOI,X, a brief confession: not all of the programming
and calculating that I d o with my HPlOOLX is done in Forth
(yet). I use the GNlJ "awk" processor ("gawk") heavily f o ~
extracting numerical data from ASCII files into convenienl
formats for Lotus 1-2-3, and for many simple calculation5
and preprocessing functions. I use the built-in Lotus 1-2-3

November 1995 December 6 Forth Dimensions

tor, and file input and output
appear to be limited to redi-
rected DOS standard input
and output. eForth is designed
to be simple and easily ported,
even to such limited environ-
ments as microcontrollers.
Both 8086 macroassembler
and Forth source are provided,

spreadsheet heavily for numerical and statistical process-
ing, including the built-in multiple linear regression, and
I use the Derive 3.0 math package for symbolic calculation
and graphics, And, of course, I use the memo editor for
creating and editing gawk scripts and other code files,
including Forth text source files.

All of these tools do their jobs well, and if the MPlOOIX
had a faster CPU and a larger address space, perhaps they
wouldmeet all my needs. But some of the things I do require
more computational power than gawk or Lotus 1-2-3 are
capable of delivering on a 7.91 MHz, 16-bit machine.
Certain complicated calculations just take too long in gawk
or Lotus 1-2-3. The HPIOOLX is, after all, a minicomputer
rather than a mainframe. And the best, most efficient, and
compact way to extract the optimum in performance and
convenience from a minicomputer is the language that was
created with the minicomputer's constraints in mind: Forth.

Forth in the HPlOOLX
Since the HPlOOLX is an 80186/DOS 5.0 environment,

there are a number of public-domain, shareware, and
commercial Forth packages available. Any 16-bit 8086/
8088 DOS Forth will run in the HP100LX. I haven't tried
them all, of course, but let me give some brief notes on
those I have tested. All of the Forths I examined are either
in the public domain or are low-cost shareware, and all but
one were obtained using the modem over the Internet
from various Forth FTP archives. In Appendix One, I've
listed the Internet Uniform Resource Locator (URL) for
each of the packages I tested from the Internet.

The availability of RAM disk space is often the main
constraint in designing applications for the HPlO0I.X. As
noted above, I have 1.3 Mb on my "C:" drive, and another
four to eight Mb on my flash memory "A:" drive. Accord-
ingly, I have listed the Forths described below in order of
increasing disk space requirements. In Table One, "zip
size" is the size of the pkzip archive before unpacking.
".exe/.com size" is the type of executable (.exe or .corn)
and how much disk space it uses. "dir size" is how much
space the directory occupies immediately after it is all
unpacked. In many cases, unwanted files can be removed
after unpacking, but the pkunzip process will abort i f this
much space is not available during the unpacking.

The smallest Forth I tested is Dr. Ting's eForth. The
eForth executable is also the smallest, at 15600 bytes.
eFor th is very much a
minimalist Forth. Like all of Table One. Forth sizes (bytes).

Forth Archive Name zir, size .exe/.com size dir size

eForth eforth86.exe 53999 .corn: 15600 110132
ForthCMP 4cmp22s.zip 102600 .corn: 32463 272105
ZENForth zenl8b.zip 76360 .exe: 66358 278489
hForth hf86vO92. zi p 149718 .exe: 61488 540362
l00Pygmy 10Opygmy.zip 139722 .corn: 16543 551094
F83 f83s6. zip 25854 1 .exe: 47379 1233157
TCOM tcom25.zip 1279991 .exe: 205968 3118121
F-PC fpc36.zip 1108172 .exe: 172144 3221 166

and both are well documented.
The version of eForth I tested came from the Forth

Primer fprimer.zip. This package includes much tutorial
material on Forth from various sources, plus two Forth
interpreters: eForth and F-PC. eForth is in a file called
eforth86.exe. This is a self-extracting archive; simply
execute this program and it will create the rest of the files
in the cForth package.

eForth seems like an ideal Forth for such environments
as signal-processing chips, microcontrollers, and such, but
it lacks most of the creature comforts a Forth application
programmer expects. The intent of the eForth developers
was to adhere to the ANSI standard wherever possible.
However, some common core constructs, for example DO
... LOOP, are annoyingly absent. DOES> is also absent,
although Forth code for it is included in the archive. eForth
is a well-designed Forth kernel, and I recommend it highly
for embedded systems and as an introduction to the
process of Forth implementation.

In the quest for simplicity, a few decisions were made
 hat will make eForth much slower than most other 8086
Forth implementations. For example, UM* (multiply two
unsigned 16-bit numbers) was implemented withshifts and
adds rather than with the 8086 MUL instruction. This is
probably because eForth is associated with the P21/F21
chips, which do not have a multiply instruction. Most of the
other 8086 Forths I tested use the MUL instruction. eForth
is public domain. A disk and implementation manual are
available from the author for a nominal charge of $25.

In programming in Forth on the HPlOOLX, my intent
has been to use the ANSI standard whenever possible,
which Icd me to the first Forth I used on the HPIOOLX,
Martin Tracy's ZENForth. The version I use is 1.18B as
distributed in Jack Woehr's book, Forth: TheNewModel[ll.
ZENForth is a 16-bit, direct-threaded DOS Forth that is
very close to the ANSI standard. Extensions and options in
ANS Forth that make sense in the 16-bit DOS world are, for
the most part, available. Two that aren't there that I would
really like to see are an 8086 assembler for CODE words
and a software floating-point package.

Roth the traditional block files and modern ANS file I/O
words are supported. Although I haven't used them yet, two
features required for developing large programsaccess to
the full 80186addressspace with long addresses and multiple
word lists-are available in ZENForth. As a result, for job sthat

Forth Dimensions 7 November 1995 December

the interpreted Forths 1 tested,
eForth is direct-threaded.
There is no assembler or edi-

can't be done with gawk or Lotus 1-2-3, ZENPorth is my
principal application development environment.

A typical ZENForth development session on the
HPlOOLX works like this: I open a DOS window in I32 Kt)
and bring u p ZENForth in it. Then I open the source file
with the built-in memo editor and make whatever changes
are needed. Switching from ZENForth to the memo editor
is done with a single keystroke. After doing a SAVE in the
memo editor with a single keystroke, another single
keystroke switches me back to ZENForth. I type INCLUDE
followed by the filename to compile the program, then the
test sequence for the word I'm currently testing. If there are
errors, ZENForth informs me; I then g o back to the memo
editor, fix the source, and d o another SAVE.

My main debugging tools are DUMP and . S, both
provided in ZENForth. ZENForth comes with complete
source and documentation, and can be rebuilt with user
modifications using the Borland Turbo assembler and
linker. ZENForth supports the SAVE feature as well, so you
can create new executable files with your own Forth code
installed.

After I have an application running, if ZENForth isn't fast
enough, I compile it directly to machine code with Tom
Almy's ForthCMP. The archive is called 4cmp22s.zip. This is
a target compiler which supports a compilable subset of ANS
Forth. A Forth-83 version, 4cmp220.zip, is also available, but
I haven't tested it. ForthCMP is shareware. Registration is 950,
and this compiler is well worth it. It is, as we will see bclo\v,
the fastest Forth I have found for the HP100IX.

In addition to the common Forth words, ForthCMP
supports the ANSI facility and string word sets, long
addresses, memory allocation and deallocation, four differ-
ent memory models including ROM code, DOS files and
other interface operations, and multitasking. The DOS file
interface does not conform with the ANSI standard, but it's
easy to write words to d o the simple parameter adjustments.

mend i t highly for speed-sensitive applications.
Next in size is Dr. \Vyong Koh's hForth. hForth is derived

from cForth, but Dr. Koh has made a number of significant
improvements. There are three memory models, "ROM,"
"RAM," and "EXE." 'The first two are compact and, like eForth,
have very few primitives written in assembler. As a result, they
are slower than most 8086 Forths. For the D(E model,
however, Dr. Koh implemented nearly all of the core opera-
tions in assembler, and this version of Worth is competitive
with other interpreted Forths. All three versions support more
of the ANSI standard than e170rth does, and an 8086 assembler
is provided as an option. Like eForth, Worth is public domain.
hForth shows h a t it is possible to maintain the simplicity of
eForth without sacrificing performance or convenience.

Next, there is IOOPygmy, an adaptation of Pygmy for the
1 IP100IX. Pygmy and IOOPygmy are shareware; the author,
Frank C. Sergeant, asks $15 for registration. lOOPygmy is
nearly identical to Pygmy. The only difference is that
IOOPygmy was adapted to the 64x18 screen mode of the
WPlOOIX by Robert S. Williams, MD. The lOOPygmy screen
editor works very well on the HP100LX. Pygmy is another
minimalist Forth; the current 1.4 release executable, includ-
ing the Forth kernel, block/screen editor, metacompiler,
and 8086 assembler, occupies only 161% bytes.

Pygmy is based loosely o n Charles Moore's cmForth.
Code can be loaded either with the familiar block interface
or with INCLUDE from text files. Pygmy comes with a
wealth of tutorial information and on-line documentation,
but the best way to learn Pygmy is to page through the 191
screens of the Forth source using the screen editor!

Forth is the most personalizable of languages, and
Sergeant has made some choices that make porting and
running existing Forth-83 or ANS Forth code difficult. For
example, DO . . . LOOP is absent from the base Pygmy,
although Sergeant does provide code for this construct. >R
is renamed PUSH, and R> is renamed POP. . -

Forth turns the HPf 0Of.X

In Pygmy, there are only two vocabularies, COMPILER
and FORTH, and there are no IMMEDIATE words. This
trait is inherited from cmForth. Normally, the colon

into a ~elf~contained Forth
development environment ...
a pocket minicomputer.

There is also an 8086 assembler for defining CODE words,
and several nice extensions for optimization of compiled
Forth. As a result, applications written in Forth and com-
piled with the ForthCMP compiler are competitive in speed
with those built using compilers for other languages.

How fast is it? As you will see from the benchmarks
described below, ForthCMP ranges from three to 12 times
as fast as ZENForth, with the average nearly five to one!
The low e n d (three to one) is on code with many multiply
and divide operations. The high end (twelve to one) is on
code that is dominated by branching and looping over-
head. With some hand tuning of the Forth code and use
of some ForthCMP options, I expect to d o better. This is
an amazing Forth, even though it does not conform to the
ANSI standard because it is not an interpreter. I recorn-

compiler searches for a word in COMPILER, then FORTH.
I f the word is found in COMPILER, it is usually executed
immediately; and if it is found in FORTH, it is compiled into
the dictionary entry under construction.

?'he most unfortunate choice, though, is the use of the
hackslash (i.e., \) to force compilation of a word from the
COMPILER vocabulary into a colon definition. While this
is more compact than the traditional word [COMPILE] it
replaces, it means that one cannot load any code that uses
backslash to comment out the rightmost portion of a line!
1 use backslash-style comments heavily. As a conse-
quence, I have not yet run any of my application code
through Pygmy. This unfortunate non-compliance with
recognized standards is the only flaw in an otherwise fine
and compacl Forth package.

Next in size is the venerable Laxen-Perry F83. The
current version is pilblic domain and the archive is called
f83s6.zip. As the name implies, F83 conforms to the Forth-
83 Standard. F83 has a metacompiler, an assembler, an
editor, and a rich collection of I/O operations. Because of

November 1995 December 8 Forth Dimensions

The largest Forth I have tested is version 3.6 of F-PC,
fpc36.zip on the Internet. F-PC is primarily the work of
Tom Zimmer, although a number of others have been
involved and are credited in the source. Version 3.6 is the
final version of F-PC; Zimmer and his colleagues have
moved on to a 32-bit Forth for Windows systems. F-PC is
public domain, with the exception that the floating-point
packages are copyrighted by Dr. Robert Smith. Unlimited
personal use is allowed, but embedding them in commer-
cial software requires the consent of Smith. A disk version
of F-PC is available from the author for $60.

F-PC is the most comprehensive Forth package in the
public domain. At 3.2 Mb, it takes u p most of my flash RAM
disk. Although based on the Laxen-Perry F83, F-PC is a
rich, complete, and comprehensive development environ-
ment, all built in Forth. Of course, there is a Forth-83
interpreter. There is also a combined editor/hypertext
browser, a menu system including comprehensive on-line
help, Forth and code word debuggers, a metacompiler, a
decompiler and disassembler, an 8086 assembler, an ANS
compatibility package, a word usage cross-referencer, a
utility to search for strings in files, and a profiler for
locating performance bottlenecks. As noted above, Robert
Smith's two floating-point packages are included: an 8087-
based hardware floating point and a software floating-
point package using the traditional Forth 16-bit exponent
and 32-bit mantissa. Complex arithmetic is also supported.

Once I backed u p my "A:" and "C:" drives and removed
all nonessential files, installation of F-PC from a floppy
disk was simple. It was also easy to configure F-PC for the
monochrome-mapped CGA screen of the HP1001,X. F-PC
is screen oriented and works well in the 80x25 mode on
the HPlOOLX, provided the lighting is bright enough.

Normally, I terminate all the built-in HPlOOLX applica-
tions and run F-PC from a DOS prompt; some of the
hypertext files will not fit in memory when running F-PC
along with built-in applications. The F-PC editor and other
built-in tools are very good and eliminate the need for
external tools in the development cycle. The on-line help
and source files are very impressive, including pictorial
representations of the dictionary structure! F-PC is a
magnificent example of the power of Forth.

Finally, I tested Tom Zimmer's F-PC target compiler,
TCOM. TCOM is public domain and is currently available
in release 2.5. On the Internet, the archive is tcom25.zip.

:xecutable 8086 code. Most of the things that work in F-PC
~ l s o work inTCOM. TCOM onlygenerates .comexecut.ables,
~ h i c h arc limited to a single 64 K b segment. However,
TCOM programs can access the whole DOS memory space
at run time, just like F-PC programs. I do not have enough
IAM disk space to keep the full F-PC and TCOM resident
31 the same time, so I did not do any extended testing.

TCOM comes with a source/assembly-level debugger,
1 profiler, extensive documentation, and numeroussample
programs. There is also a software floating-point package.
The floating-point package comes from Dr. Robert Smith,
who wrote the F-PC packages. The two appear to be
different, however. The one in TCOM emulates IEEE
arithmetic and is probably much slower as a result.

I the superior development environment of F-PC, I have not
put much effort into testing F83.

Benchmarks
Once I had some idea of the size and feature range of

low-cost Forths for the HPlOOLX, I decided to go further
and try to assess the speed of them as well. Tom Almy's
ForthCMP comes with two Forth benchmarks, one from
Byte magazine and the other from Interface Age, so I
decided to run these with all the Forths. Both make heavy
use of DO . . . LOOP, and the InterJace Age benchmark also
uses LEAVE. Thus, neither will run with eForth, and only
the Byte magazine benchmark will run with 100Pygmy.

In order to get a second speed assessment for lOOPygmy
and to get a measure of absolute performance, I wrote a
third benchmark, using BEGIN . . . UNTIL loops, which all
thc Forths support. My benchmark is a small Forth vector
arithmetic test inspired by the Livermore Fortran Kernels
121, a well-known supercomputer benchmark. There are
five loops: vector no-operation, vector add ("+"), vector
multiply ("*"), vector divide ("/"), and vector scalar multi-
ply ("*/"). There are 1000 repetitions of each operation,
and each operation processes vectors of length 1000, so a
million operations are performed in each of the five
doubly-nested loops.

The combined source file for the ZENForth/ANS version
of all three benchmarks is shown in Appendix Two. The
Byte magazine benchmark as distributed with ForthCMP
has an unfortunate defect. I t stores and reads flags in an area
of memory referred to by absolute decimal address 10000!
While this may work with ForthCMP, it may not with other
systems and I have replaced it with an ALLOTed array.

Table Two shows the benchmark timings from the
i-IP1 OOLX.

Like ForthCMP, TCOM translates Forth source directly into
c
C

T

'
1

I

Table Two. Benchmark run times (seconds - 7.91 MHz 80186).

ForthCMP TCOM hForth Pygmy ZEN F-PC F B
Byte magazine 3 1 107.88 225 247 234 281.77 421
Interface Age 35 85.79 156 N/ A 187 205.14 316
Vector No-Op 3 3.63 36 30 36 46.4 1 68
Vector + 8 1 99.03 210 255 264 348.50 402
Vector * 85 104.96 21 5 250 260 354.05 421
Vector / 89 118.42 253 263 333 363.44 814
Vector */ 72 102.49 246 205 279 325.71 91 1

Forth Dimensions 9 November 1995 December

Table Three. Relative times (ForthCMP = 1.0).

ForthCMP TCOM hForth ZEN F-pc F83
Byte magazine 1 .O 3.5 7.3 8.0 7.5 9.1 13.6
Interface Age 1 .O 2.5 4.5 N/A 5.3 5.9 9.0
Vector No-Op 1 .0 I .2 12.0 10.0 12.0 15.5 22.7
Vector + 1 .O I .2 2.6 3.1 3.3 4.3 5.0
Vector 1 .O 1.2 2.5 2.9 3.1 4.2 5.0
Vector / 1 .O 1.3 2.8 3.0 3.7 4.1 9.1
Vector */ 1 .O 1.4 3.4 2.8 3.9 4.5 12.7
Geometric Mean 1 .O 1.6 4.2 4.3 4.9 6.0 9.7

Appendix One. URLs of Forths tested.

ForthCMP: ftp://oak.oakland.edu/simtel/msdos/forth/4cmp22s.zip
F83: ftp://ftp.cygnus.com/pub/forth/f83s6.zip
eForth: ftp://ftp.cygnus.com/pub/forth/fprimer.zip (contains eForth86)
F-PC: ftp://taygeta.com/pub/Forth/Reviewed/fpc36.zip
hForth: f t p : / / t ayge t a . com/pub / incoming / fo r th /h r ip
TCOM: ftp://taygeta.com/pub/Forth/Reviewed/tcom25.zip
100Pygmy: ftp://eddie.mit.edu/distrib/hp95lx/hpl001x/100pygmy.7ip

Having established that Tom Almy's target compiler
ForthCMP produces the fastest run times, I computed the
ratios of the benchmark times for each of the other Forths
to the time for ForthCMP. Then I computed the average of
these ratios for each Forth to estimate relative perfor-
mance. The correct average to use when averaging relative
benchmark timings like these is the geometric mean, not
the common average or arithmetic mean 131.

. . . Suppose you have N relative times T(l), T(2), T(L9.
The geometric mean is simply the exponential of thc
arithmetic mean of the natural logs of the times! Altcrna-
tively, it is the N-th root of the product of the relative times,
but the logarithmic method is much easier to d o in a
spreadsheet. Table Three gives the computed relative
times and their geometric means.

Summary
As we have seen, a wide range of

low-cost Forth packages are avail-
able for the HPIOOLX, all of which
turn the HPlOOLX into a self-con-
tained Forth development environ-
ment. Moreover, with target compila-
tion, it is easy to develop high-speed
programs without using CODE words.
In short, Forth turns the HPlOOLX
into a pocket minicomputer. I some-
times refer to the HPlOOLX as the

Volkswagen Beetle of the Information Superhighway.
Ilnfortunately, space does not permit me to go into

much detail on my applications, which mostly deal with the
mathematical analysis of stock and futures trading systems.
The largest project I've completed so far is my entry in the
Nm~roVe$t journal International Nonlinear Financial Fore-
casting Contest. This program used an ancient technical
analysis method known as pointandJigurecharting. I have
not seen the final results yet, but I expect my code in
ZENForth on the I-IP100LX to compete with more complex
neural net algorilhms running on a 33 MHz '486.

References
I11 Woctlr, Jack (1992), Forth: The New Model, M & T
Ijooks, San Mateo, California, ISBN 1-55851-277-2.

121 \lc.!lahon, Frank F 1 . (1986) The Livemore Foorlran
Kernels, I.awrcncc 1,ivermore National Laboratory,

.............................. FORML Conference 44

... FORTH, Inc. 23

Forth Interest Group centerfold

I.ivermore, California, UCRL-53745, December 1986. 1
131 I'leming, Philip J. , Wallace, John J. (19861, "How Not To
Lie With Statistics: The Correct Way to Summarize Bench-
mark Results", Communications of the ACM, Volume 29,
Number 3, pages 218-221.

I Laboratory Microsystems, Inc. (LMI) . 21 / I I
M. Edward Borasky is an applied mathemalician and computer scientist who

.............. I Miller Microcomputer Services 21 I I has written software for mact~ines ranging from programmable calculators to
massively parallel supercomputers. His interests include computer music,
computalional finance, computer syslem performanceanalysis and, of course,
the Forth language. He currently works for a major vendor of turnkey business
computers as a UNlX performance guru. Although his desk has been declared
a Forth-free zone, his palmtop PC has been granted an exemption. He can be

.................................. reached at ~nmebQtclcport com or at http Nwww teleport corn/-znmeb (h~s I Silicon Composers home web page)

November 1995 December 10 Forth Dimensions

Appendix Two. Z E N F o r t h I A N S b e n c h m a r k source]
(s y s t e m - d e p e n d e n t t i m i n g r o u t i n e s)
(t h i s i s t h e F o r t h C M P / Z E N / A N S v e r s i o n)

(o u t p u t d o u b l e s are s e c o n d s s i n c e m i d n i g h t)
: GETTIME (-- sec r n i n h o u r)

TIME&DATE (-- sec m i n h o u r d a y m o n t h y e a r)
2DROP DROP (d i t c h da te par t)

: T>B (sec m i n h o u r -- d)
6 0 * + (sec m i n)

6 0 UM* ROT S>D D+

: BENCH (s t a r t t i m i n g)

(- - d)
CR GETTIME T > B 2DUP D. (l o o k a t c l o c k)

: MARQUE (s top t i m i n g)

(d - -)
GETTIME T > B 2DUP D. D- DNEGATE D.

(BYTE MAGAZINE BENCHMARK)

8 1 9 0 CONSTANT S I Z E
VARIABLE BFLAGS S I Z E ALLOT

(d e f i n e d a s i n t r i n s i c i n " F o r t h C M P ")
: C<- SWAP C ! ;

: DO-PRIME
BFLAGS S I Z E 1 F I L L
0 S I Z E 0 DO

BFLAGS I + C@ I F
I 2 * 3 + DUP I + BFLAGS +
BEGIN

DUP S I Z E BFLAGS +
U< WHILE

DUP 0 C<- OVER +
REPEAT
DROP DROP 1 +

THEN
LOOP
U . ." PRIMES" CR

: BYTEBNCH
." 1 0 0 I T E R A T I O N S " CR
BENCH 1 0 0 0 DO DO-PRIME LOOP MARQUE

(INTERFACE AGE BENCHMARK 0 8 : O l 1 1 / 1 6 / 8 5)
(T h i s i s t h e I n t e r f a c e A g e b e n c h m a r k)
(p r o g r a m described i n A p p e n d i x D o f t h e)

(F o r t h C M P M a n u a l .)

: IABENCH DUP 2 / 1+ SWAP CR
1 DO

DUP I 1 ROT 2 DO
DROP DUP 0 I UM/MOD DUP 0 s I F

DROP DROP 1 LEAVE
THEN
1 = I F

DROP 1
E L S E

DUP O= I F
DROP 0 LEAVE

THEN
0 < O= I F

Forth Dimensions

1
THEN

THEN
LOOP
I F

E L S E
DROP

THEN
LOOP
DROP CR

: IAGEBNCH / BENCH 5 0 0 0 IABENCH MARQUE

(VECTOR LOOP BENCHMARK)
(M . EDWARD BORASKY)
(3 0 JULY 1 9 9 5)

(u s e s BEGIN ... U N T I L loops; a l l t es ted)
(F o r t h s h a v e t h e m)
(s o m e s m a l l F o r t h s a r e m i s s i n g DO ... LOOP)
(or FOR ... NEXT)

1 0 0 0 CONSTANT V S I Z E (v e c t o r s i z e)

: CELLS 2 * ; I
: VECTOR (m a k e a n a r r a y)

(n --) (c o m p i l i n g -- reserve m e m o r y)
CREATE CELLS ALLOT

(i n d e x -- address)
(e x e c u t i n g -- c o m p u t e address)

DOES> SWAP C E L L S +

V S I Z E VECTOR V E C l (v e c t o r 1)
V S I Z E VECTOR VEC2 (v e c t o r 2)
V S I Z E VECTOR VEC3 (v e c t o r 3)

: VECLOAD (p u t s o m e s t u f f i n t o t h e vec tors)

(--)
0 BEGIN

DUP V E C l DUP !
(V E C l g e t s i t s o w n address)

DUP VEC2 DUP NEGATE SWAP !
(VEC2 g e t s NEGATEd address)
1+ DUP V S I Z E =

UNTIL
DROP

: LOOP0 (N u l l loop)

(--)
0 BEGIN

1+ DUP V S I Z E =

UNTIL
DROP

: LOOP1 (V e c t o r A d d)

(--)
0 BEGIN

DUP V E C l @ OVER VEC2 @ + OVER VEC3 !
1 + DUP V S I Z E =

(Code continues on next page.)

1 1 November 1995 December

UNTIL
DROP

: LOOP2 (V e c t o r M u l t i p l y)

(--)
0 BEGIN

DUD VECl @ OVER VEC2 @ * OVER VEC3 !
1+ DUP V S I Z E =

UNTIL
DROP

: LOOP3 (V e c t o r D i v i d e)

(--)
0 BEGIN

DUP VECl @ OVER VEC2 @ / OVER VEC3 !
1 + DUP V S I Z E =

UNTIL
DROP

: LOOP4 (V e c t o r S c a l e)

(--)
0 BEGIN

DUP VECl @ 1 0 0 0 0 1 0 0 0 0 * / OVER VEC2 !
1 + DUP V S I Z E =

UNTIL
DROP

1 0 0 0 CONSTANT REPS (r e p e t i t i o n s)

: BENCHO (b e n c h m a r k LOOP0)

(--)

BENCH
0 BEGIN

LOOP 0
1 + DUP REPS =

UNTIL
DROP
MARQUE

b

: BENCH1 (b e n c h m a r k LOOP1)

(--)
BENCH
0 BEGIN

LOOP1
1 + DUP REPS =

UNTIL
DROP
MARQUE

New Products from Offete Enterprises
MuP21 H: MuP21 chip in 44-pin PLCC package, $40
F95: 32-bit Forth for Windows 95 by Tom Zimmer and
A. McKewan, $25
More on Forth Engines, Vol. 20, September 1995, $20.

Other MuP21 Products
MuP21 chip in 40-pin DIP package, $25
MuP21 Evaluation Kit, $100
Assembled MuP21 Evaluation Kit, $350
MuP21 Programming Manual, C.H. Ting, $15
MuP21 Advanced Assembler, Robert Patten, $50
P21 Forth V1 .O. 1, Jeff Fox, $50
MuP21 eForth V2.04, C.H. Ting, $25
More on Forth Engines, Vol. i 8, June 1994, $20.
More on Forth Engines, Vol. 19, March 1995, $20.

Checks, bank notes, or money order. Include looh
surface mail or 30% air mail, up to $10, for shipping.
California residents please add 8.25% sales tax.

OFFETE ENTERPRISES
1306 South B Street

San Mateo, California 94402
Tel: 41 5-574-8250; Fax: 41 5-571 -5004

: BENCH2 (b e n c h m a r k LOOP2)

(--)
BENCH
0 BEGIN

LOOP2
1-t DUP REPS =

UNTIL
DROP
MARQUE

: BENCH3 (b e n c h m a r k LOOP3)

(-- 1
BENCH
0 BEGIN

LOOP3
1 + DUP REPS =

UNTIL
DROP
MARQUE

: BENCH4 (b e n c h m a r k LOOP4)

(-- 1
BENCH
0 BEGIN

LOOP 4
1+ DUP REPS =

UNTIL
DROP
MARQUE

: LOOPBNCH
VECLOAD
BENCHO
BENCH1
BENCH2
BENCH3
BENCH4

: MAIN
BYTEBNCH IAGEBNCH LOOPBNCH

(r u n b e n c h m a r k s a n d e x i t b a c k t o DOS)
MAIN
BYE

November 1995 December 12 Forth Dimensions

ANS FORTH

Hashing Forth

Xan Gregg
Durham, North Carolina

Hashing provides a fast way to search a large, unsorted
data set at the cost of extra memory. Robert Sedgewick, in
his book Algorithms, concisely describes hashing as
"directly referencing records in a table by doing arithmetic
transformations on keys into table addresses." That should
make sense to you by the end of this article, but first, let's
consider a simple example.

Suppose you have to write code to manage a database
of about 50,000 records referenced by 16-bit record
numbers. Record insertions and deletions are common, so
they can't be too slow, and record look-ups are frequent
and must be fast. You are given 64K of RAM in addition
to the memory and disk space occupied by the data, and
you know that each record is referenced by a unique
three-letter code, like airports are in the U.S.

As a Forth programmer, you realize that a three-letter
string is also a three-digit base-26 number, and you make
a table with 26 x 26 x 26 = 17,576 entries, with each entry
containing the record number. Insertion and deletion are
straightforward-you just have to update the table with

The time/space tradeoff is what
hashing is all about.
each operation. Finding a record from its key involves only
packing three letters into a 15-bit number and using it as
an index into the table. Then you have the record number.

If you can do that, you already understand the basic
concepts of hashing. Hashing requires a hash hnction and
a hash table. The hash function converts a key value, such as
a text string or a large number, into a hash table address. Each
entry in the hash table points to a record in the data set.

In the example above, the code to pack three letters
into a 15-bit number was the hash function, and the table

of record numbers was the hash table. The hash function
might look like Figure One.

However, since you have 64K of memory and look-up
speed is s o important, you could multiply by 32 instead of
26 so that you could use a shift operation by changingeach
2 6 * into 5 L S H I F T . Having an efficient hash function is
very important, and it is often written in assembler.

Hashing becomes more interesting when the key is too
big to be packed into a number and when the keys are not
unique. For example, what if the key was a person's last
name? That's more realistic than the unique, three-letter
key given above. It's not obvious how to use hashing in
this situation. We need a hash function to convert a
variable-length string into a table index, and we need a
way of dealing with multiple records that are mapped to
the same table index.

The hash function can be almost anything. Here are
some possibilities for the last-name key mapping into a 15-
bit number:

, 1. Use first three letters, five bits w r letter.
2. Use last three letters, five bits per letter.
3. Use first five letters, three bits per letter.
4. Multiply all letters, modulo 215.
5. Use five bits from first letter, two bits from next five

letters.
6. Use three bits from length byte, three bits from first four

letters.
7. Sum all letters, modulo 215.
8. Sum all letters letter;2', modulo 2Is.

I'm sure you can imagine more. The hard part is picking
a good one. You want a function that is quick to execute
and provides a fairly random distribution of keys. #I,

Figure One. Example hash function.

: ID>INDEX (a d d r -- n) \ a d d r p o i n t s t o t h r e e u p p e r c a s e l e t te rs
COUNT [CHAR] A - \ a d d r t l n l
SWAP COUNT [CHAR] A - \ n l a d d r t 2 n2
SWAP C@ [CHAR] A - \ n l n2 n 3
2 6 * + 2 6 * + + ; \ n

Forth Dimensions 13 November 1995 December

Table One. Average list lengths of various hash functions. I
H a s h Function W/1024 W/4096
Low bits of first three chars 5.23 3.44
Low bits of length and first two chars 4.36 2.30
Low bits of last three chars 6.31 4.41
Product of first three chars 6.64 3.71
Sum of chari 2' 3.56 1.57

above, is not good because many of the names probably
start with the same letters, providing a poor distribution.
#4 is bad for two reasons: multiplying is usually not a good
idea for speed's sake, and the distribution is not good
because multiplying several numbers rarely produces odd
numbers. #7 is bad because the sum of all of the letters will
not approach 215. #8 tries to overcome this shortcoming
by incorporating a shift into the add, and it may do well
with some fine-tuning.

Any of the other hash functions may also do well with
tuning. For instance, when you take three bits from a Icttcr,
how you do decide which three bits? The high three bits
is obviously no good, since all upper-case letters start with
the same three bits. The low three bits seems okay, but it's
not perfect. H, P, and X map to 0; B, J , R , and % map to 1;
and G, 0, and W map to 7; and those hardly seem like
equal groupings.* The only way to know for sure is to try
each possibility on the entire data set and see which one
produces the best distribution. Unfortunately, you often
have to develop your code with only a subset of the data,
which requires you to rely more on your intuition.

Before getting too deep into selection of hashing
functions, we need to address the second problem what
to do when two or more keys share the same index into
the hash table, which is called a collision. There are several
solutions, but the one I prefer is to add a field to each
record that can point to another record. Then each table

the linked list or frorn another hash table entry. And
similarly, insertion and deletion become more compli-
cated as well.

So hashing isn't quite as simple as it appeared in our
first example, but it is still very useful when search time is
critical. A classic usage for hashing is in compiler symbol
tables. A program may have thousands of symbols which
a compiler must look up very frequently by name as it
scans the source code. I implemented hashing in the
MacForth and PowerMacForth vocabularies, and I know
several other Forths also use hashing.

I.isting One contains some generic hashing code. F I L L -
TABLE inefficiently allocates records on the fly in the data
space, but the basic words (INSERT-RECORD, DELETE-
RECORD, and FIND-RECORD) provide a good initial base
for anyone trying to get started with hashing. The code uses
the linked-list approach for collision handling.

ANALYZE-HASH is a useful word for getting some
information about how well the hash function maps the
keys. It produces lines numbered zero through nine which
show how many linked lists there are of that size (or more,
in the case of nine), and another line that shows the average
lisi length (not counting the empty lists). You want to
minimize [hat value. Another useful analysis tool I have
used in the past is to plot the hash table showing the list
length at every entry. Sometimes that reveals patterns of
indices that are never hit or that are hit too often.

Table One gives the average list lengths for various

~ a c ~ o r t h and ~ o w e r f i a c ~ o r t h ,
and several other Forths also
use hashing.

I implemented hashing in

entrybecomes the headofa linkedlist, with theothcr links
being in the new field we added to each record

Another solution is to use a secondary hash funct~on to
produce another index or just add a number (rcla[~vcly
prime to the table size) to the index to get a new indcx.
Ineither case, you have the possibility of another collision,
which requires finding another hash indcx, and so on. This
solution has the requirement that the hash table have at
least one entry for each record.

Either case requires more work during the search. You
must compare the key against the record found, and, if it
is not equal, you must check the next record, whether from

hash functions given a data set of 3448 Forth words and
hash table sizes of 1024 and 4096 entries.

'Butwho knows?Maybe there are as many Greggs, Ouversons,
and Wests asthere are Browns, Joneses, Rathers, and Zwickkers.

All of these hash functions provide decent results. A
binary search of the same data would require us to look
at log2 3448 = 11.8 records. The last one is very close to
optimal (3448/1024 = 3.37), and is a favorite of mine. It is
similar to the function used in PowerMacForth, and it has
thc advantage that many characters factor into the result.

This table is the first mention of hash table size since our
original, 64K hash table. The more entries you have in the
table, the better your hashing will work (because there will
be fewer collisions), but, of course, i t takes more memory.
'I'hc time/space tradeoff is what hashing is all about.

1Iappy hashing!

Readers can contact Xan Gregg at his xgregg@aol.com e-mail address. He is
a Macintosh programmer a l Scholastic. Inc. working on educational software
andliving in Durham, North Carolina. Xan has been programming with MacForth
since 1984 and, in his free time, he plays Ultimate Frisbee.

November 1995 December 14 Forth Dimensions

Listing One. Generic hashing code, with analysis words.

anew --hash--

(Generic Hashing Code
Each record must start with one cell for use by the hashing code.
It must be followed by a counted string which is the key.
Variable-length data may optionally follow.)

: ALLOTERASE (n --) \ utility word
HERE SWAP DUP ALLOT ERASE ;

1024 CONSTANT /HASHTABLE
CREATE HASHTABLE

/HASHTABLE CELLS ALLOT

: INIT-HASHING (--)

HASHTABLE /HASHTABLE CELLS ERASE ;

: MY-HASH-FUNCTION (key-addr -- table-index)

\ you should override this function
COUNT 0 SWAP 0 DO \ addr cur-index

SWAP COUNT I LSHIFT ROT t
LOOP NIP
/HASHTABLE 1- AND ; \ assumes power of 2

: KEY>INDEX (key-addr -- table-index)

MY-HASH-FUNCTION
0 MAX /HASHTABLE 1- MIN ; \ for safety during development

: INSERT-LINK (recAddr tableAddr --)

\ insert at top of linked list for this index
DUP @ ROT DUP >R ! \ recAddr.link <= previous top
R> SWAP ! ; \ top <= recAddr

: INSERT-RECORD (recAddr --)

DUP CELL+ KEY>INDEX CELLS HASHTABLE + INSERT-LINK ;

: DELETE-LINK (recAddr tableAddr --)

\ remove link from list
SWAP >R
BEGIN

DUP @ R@ <> SWAP @ 0 <> AND
WHILE

@ \ no match, so go to next link
REPEAT
DUP @ 0 <> IF

R> @ SWAP ! \ prev.link <= rec.link
ELSE

R> DROP \ do nothing if not found
THEN ;

: DELETE-RECORD (recAddr --)

DUP CELL+ KEY>INDEX CELLS HASHTABLE t DELETE-LINK ;

(Code continues on next page.)

Forth Dimensions 15 November 1995 December

: FIND-LINK (addr tableAddr -- recAddr or 0)

>R BEGIN
@ DUP

WHILE
DUP 1 CELLS + COUNT
R@ COUNT COMPARE O = IF

R> EXIT \ found match, so exit
THEN
@ \ no match, so go to next link

REPEAT ;

: FIND-RECORD (addr -- recAddr or 0)

DUP KEY>INDEX CELLS HASHTABLE + FIND-LINK ;

\ ---- analysis words ----
: FILL-TABLE (--)

INIT-HASHING
S" FILEDATAl" R/O OPEN-FILE IF ABORT THEN
>R \ stash the file-id
BEGIN

HERE 32 CELL+ ALLOTERASE \ space for text and link
DUP CELL+ 1+ 31 R@ READ-LINE
O= OVER 0 <> AND

WHILE
DROP \ recAddr bytesRead
DUP IF

OVER CELL+ C!
INSERT-RECORD

ELSE
%DROP

THEN
REPEAT 2DROP DROP
R> CLOSE-FILE DROP ;

10 CONSTANT MAX-DEPTH
CREATE DEPTHS MAX-DEPTH CELLS ALLOT
VARIABLE TOTAL-ENTRIES
VARIABLE TOTAL-LISTS

: COUNT-LINKS (tableAddr -- n)

0 SWAP BEGIN @ DUP WHILE SWAP 1+ SWAP REPEAT DROP ;

: ANALYZE-HASH (--)

MAX-DEPTH 0 DO I CELLS DEPTHS + OFF LOOP
TOTAL-ENTRIES OFF
TOTAL-LISTS OFF
/HASHTABLE o DO

I CELLS HASHTABLE + COUNT-LINKS
DUP TOTAL-ENTRIES + !
DUP O> IF 1 TOTAL-LISTS t ! THEN
MAX-DEPTH 1- MIN
1 SWAP CELLS DEPTHS + + !

LOOP
MAX-DEPTH 0 DO

CR I 3 .R 2 SPACES I CELLS DEPTHS + @ 5 .R
LOOP CR ." AVE = "
TOTAL-ENTRIES @ 100 TOTAL-LISTS @ * /
S>D <# # # [CHAR] . HOLD #S #> TYPE ;

November 1995 December 16 Forth Dimensions

OOP, Forth,
& the Future

I Ronald 7: Kneusel
Milwaukee, Wisconsin

Heraclitus would have loved Forth, it is the one
computer language that is always changing. Yet, unless it
changes rapidly and dramatically, Forth is in serious
danger of missing the opportunity of its lifetime. Most of
the computing industry threw its hat in the C ring long ago
and now seems to be moving to C++. Why? \X/hatevcr its
drawbacks, C++ is deemed more powerful than C because
of its object-oriented features, and users are demanding
ever-more-powerful applications. The object-oricntcd (00)
paradigm is winning the day, and C++ is the clear
forerunner in the fight. But need it be? Many who use C++
do not appear to like it. This is key.. . an Achilles heel that,
in my view, opens the door for a new era for Forth.

The world has gone GUI. It is a fact of life, an
undeniable reality. True, embedded systems are pretty
much the same as they have always been, but I'm thinking
here ofexpanding Forth's horizons into areas that have not
been traditional Forth territory. GUI operating systems bcg
for object-oriented languages to interface with, and Forth
is perfectly suited to this new world.

The Forth community
must move quickly or

f'orth a[the present time:
Fl i t your enemy when he's confused. During this period
oftransition from C to C++, Forth has an opportunity that
may not come again.
Ncw operating systems are emerging that do not fit well
with the current crop of programming languages. Some
companies, like Apple Computer, are inventing new
ones (e.g., Dylan), but an object-oriented Forth would
work as well.
New hardware architectures are emerging that will use
Forth. Operating systems and applications based on an
object-oriented Forth would have a definite advantage.

Now think about a few of the possibilities an object-
oriented Forth could create:

An object-oriented operating system using, and written
in, Forth. In a sense, this is a step into the past, but with
a new twist that dramatically increases the possibilities.
One reason for the success of Unix was its close ties with
(7; the same would hold true here.
Forth is always playing the game of "See, I can do it,
too.. . " like a littlc brother copying his elder sibling and
dcmanciing [hat everyone in the family pay attention to
that fact. Ycs, i t is fun to write a particular application in
I'orlh just to scc it done in Forth, but the world will not
be claimed by those who merely copy what has already
been done, even if i t is faster and smaller. An object-
oricntcd Forth would soon have the other guys trying to
say, "See, C++ can do it, too."
An object-oriented Forth could be successfully intro-
duced into the universities. More Forth courses taught =

more Forth programmers.
In scientific applications, an object-oriented Forth (with
a nice infix expression compiler!) could start to displace
I'ortran, especially as scientists experience the power of
a truly interactive system. Adding a simple interface to
the mountains of existing Fortran code, and a sharp
target compilcr for finished applications, would help
immensely. 'I'his area is largely untapped by industry.
Standard Forth will work here, but the addition of

lose, perhaps forever.

For the most part, I use the Macintosh. Presently, there
are two freeware, object-oriented Forths available for thc
Macintosh: Yerk and Mops. Offspring of the commercial
language Neon, both interface well with the Macintosh
operating system, providing a nice way to get things done.
Yerk is presently used at Yerkes Observatory for fantastic
things involving everything from remote telescope con-
trol, to TCP/IP, and imaging. Forth need not be stuck in a
decades-old model, as is C. The marriage of Forth and
object-oriented techniques provides considerable power.
One programmer with an object-oriented Forth could do
things that might take an entire team of C programmers , much longer to accomplish, and have a final result that
would be easier for a future programmer to understand
and maintain.

Think about some of the reasons for an object-oriented

objects would make i t that much easier to get research-
ers to want to learn Forth.

As I see it, Forth is in some ways stuck in the early
1980s. 1:orth has a choice: to tag along with C and die a
slow COBOL-esque death, or to jump ahead and take the
front line. Sometimes the old becomes new again (look at
neural networks, for example) and it seems the industry
is just waiting for something like that: somewhat familiar,
yet fresh and new and powerful. Marrying OOP and Forth
is a logical thing to do.

A standard is needed that includes, at a minimum, an
object-oriented wordset for Forth. Perhaps i t might be time
to take the Forth philosophy and move it to an entirely
"new" language with its own standard, apart from what
Forth currently is. Either way, the Forth community must
move quickly or lose, perhaps forever. It must be an
organized move by the entire community ifit is tosucceed.
Speed, power, flexibility, modularity, and reusability are

Forth Dimensions 17 November 1995 December

nice, but if there is n o widespread standard, there will be
n o widespread success. People will avoid it for fear of
being stuck with an oddball system.

How does one infiltrate and conquer the world of C?
This is an involved question, but I see two immediate
necessities: (1) a seamless interface between C libraries
and Forth, and (2) a C to object-oriented Forth compiler.
The former is definitely easier than the latter, but the
compiler, if available, might help convince those with an
existing C product to move it to the object-oriented Forth
and not to C++. The world was once Fortran/COBOL and
moved to C; it can make the adjustment, if given sufficient
reason for doing so. A well-planned and executed object-

oriented Forth might provide this reason
With an object-oriented Forth, nothing is lost and much

is gained in terms of flexibility, productivity, and ease of
development. Moreover, much is gained in buying a future
for Forth itself. I t is time for Forth to take the lead, and
adopting the object-oriented paradigm will allow it to d o so.

Ronald T. Kneusel works as a systems specialist for the Division of General
Internal Medicine at the Medical College of Wisconsin. Milwaukee, where he
also spends about 50% of his time doing data manipulation and analysis for a
research group. He has used Forth lo write several applicalions for the
Macintosh, all of which are available via the Web from http:/ll41.106.68.98lor
via FTP at 141,106.68 98 He can be contacted by mail at 8725 West Burdick
Avenue, Milwaukee, Wisconsin 53227 U.S.A. , and by e-mail at
rknousel@~ost.its.mcw edu.

November 1995 December 18 Forth Dimensions

Welcome to the New
Forth Interest Group

I want to thank all the ten nominees for the Board of
Directors for standing for election and making their
interests in FIG known. This was the first election that had
gone to a ballot of the members, and though the choices
weren't easy to make, the members have decided.

I want to congratulate the nine who were elected.
Elected were:

Everett (Skip) Carter MOntereyl California
skip@taygeta.oc.nps.navy.mil

Mike Elola San Jose, California
elolam@aol.com

Jeff Fox California
jfox@netcom.com

John Hall oakland, california
johnhall@aol.com

Andrew McKewan Austin, Texas
mckewan@netcom.com

Albert Mitchell Loomis, California
sofia@netcom.com

Elizabeth Rather Manhattan Beach, California
erather@forth.com

Bradford Rodriguez Hamilton, Ontario, Canada
bj@genie.com

Nicholas Solntseff Dundas, Ontario, Canada
ns@maccs.dcss.mcmaster.ca

To the Board:
The job of the Board o f Directors is not at all an

honorary one. The board has always been a hard-working
board, and this board has its work cut out for it.

FIG is now in its 18th year.
We are publishing Volume 17 of Forth D i m i o n s . That

is 17 years of on-time, bi-monthly Forth papers, articles and
news, edited and published by FIG with the material
provided by Forth users and researchers and paid for by FIG
members. This has been a magazine as good as any found
on the newsstands, and is unequaled as a user group journal.

This November w e will be holding our 17th annual

Board of Directors
FORML conference. Seventeen years hosted by FIG where
attendees have provided over 640 major papers for the
Forth community. Annual FORML proceedings are pub-
lishedby FIG. FORML is where those who have the fortune
to attend are able to "hobnob" with their fellow wizards.
FORML makes the prior year's routine work worthwhile.

Chapters have been the place in lieu of FORML for the rest
of the year and for those that cannot attend, where the real
face-toface action of Forth takes place. New and old ideas
can be presented, and new andseasoned members cancome
and learn from each other. Loyal support by chapter mem-
bers has made FIG and will decide the ultimate fate of FIG.

Worldwide membership of loyal Forth people has molded
FIG into what it is. Without their support, there would be
nothing and the world would be poorer for not having Forth.
We have a strong, loyal membership and if w e provide the
leadership, they will provide the will and the strength.

Because of the need to maintain an FDsubscription
base, support FORML registration, provide distribution of
Forth literature, and maintain a point of contact for Forth
users, FIG has maintained an office and office personnel.
The office's job is to contact and remind the members of
dues, provide available Forth literature, support members'
needs and problems, listen and re-route the technical
questions, and provide financial reporting.

All of the above has required direction and coordina-
tion to exist. Some set on their course have needed less
attention, others have needed more, and yet others have
needed more than we have been able to give and have
withered. The new Board's challenge is to continue, to
change, and to redress at the same time.

The Board of Directors will hold its first face-to-face
meeting after FORML in November. Some of the first things
the Board needs to d o is set a course for the next few years
for FIG and choose officers who can steer that course.

To the Members:
Please provide the Board and its officers your support,

ideas, shoulder, and encouragement. We will need it in our
19th and future years. Input to the new board members will
help determine FIG'S course. Contact these board members
and let them know where FIG should be going.

-John Hall, President, FIG

RETRY, EXIT, and
Word-Level Factoring
Richard Astle
La Jolla, California

: DOG tes t - someth ing?
I F do-something
ELSE do-something-else THEN ;

With the standardization process completed, and main-
stream acceptance the goal, now is not, perhaps, the time to
propose lexical extension, or a different style, even idiom, of
programming. RETRY, the word I propose here, is not,
however, a whim, a mere "here'ssomethingcute you can do,
aren't I clever," like implementing a C-like switch in Forth. I
don't mean that SWITCH: doesn't have its uses, only that
since I found RETRY a decade ago, I have learned (tenderly
at first, but then more and more passionately) to love it, and
to rely on it to the extent that I use it far more often than its
well-known brethren, REPEAT, UNTIL, and AGAIN.

RETRY (perhaps not its best name, but easy to type) is
the opposite of EXIT. Where E X I T unconditionally
terminates a colon definition regardless of nested IFs,
WHILEs, and UNTILs-leaping, so-to-speak, to the semi-
colon and beyond-RETRY returns unconditionally to the
colon, to start the word all over again. Like E X I T , RETRY
can't be used within a DO . . . LOOP, but that's another story.

EXIT
EXIT, taken by itself, is useful as a way to get out when

the unexpected occurs, as in deeply nestederror handling.
It can also be used to implement a crude but effective case
statement, e.g.:
: TEST&ACT (n ---)

DUP n l = IF DROP do-something1 E X I T THEN

DUP n2 = I F DROP do-something2 E X I T THEN
DUP n3 = IF DROP do-something3 EXIT THEN
DUP n4 = I F DROP do-something4 EXIT THEN

DUP n5 = IF DROP do-something5 E X I T THEN
do-defaul t -something

,

It is not insignificant that this structure not only looks better
(perhaps a matter of opinion) but also saves space, at least
in Forth implementations I've inspected. Of the following,
: DOG tes t - someth ing?

I F do-something EXIT
THEN do-something-else ;

Admittedly, this is not a particularly compelling example,
but the RETRY version is arguably clearer in concept. It
also avoids the problem that, in the second case, t e s t 2

the first is two bytes shorter when ELSE compiles four
bytes (a jump and a n address) against EXIT'S two. Of
course, the shorter case is also uglier, unless the test
distinguishes not merely between two things but two
kinds of things, as between normal and error processing:
: DOG e r ro r ?

I F .error-message E X I T
THEN do-something ;

or
: DOG e r r o r ?

- I F do-something E X I T
THEN .error-message ;

(-IF is equivalent to O= IF. I also have a -WHILE and a
- U N T I L , but for me they are less useful.)

RETRY
RETRY, taken by itself, is a way to start over when

execution goes awry, as when a user inputs an incorrect
value, or an operating system or hardware device returns
a message meaning "not ready." You can test for any
number of errors and retry from each one, rather than
piling up flags and ORing them together for a WHILE or an
U N T I L . (There have been suggestions to allow multiple
WHILEs between B E G I N and REPEAT, but those are
typically complications, while RETRY and EXIT simplify.)
: DOG

t e s t 1 I F RETRY THEN
t e s t 2 IF RETRY THEN
do-something ;

instead of
: DOG

BEGIN
t e s t 1 t e s t 2 OR O =

UNT I L
do-something ;

Forth Dimensions 19 November 1995 December

is executed whatever the result of testl, which might
waste time o r cause other problems. '1'0 avoid that
situation, DOG could b e recoded:
: DOG

BEGIN
testl DUP O=
I F DROP test2 THEN
0 =

UNTIL
do-something ;

o r perhaps
: DOG

BEGIN
testl DUP
- I F DROP test2 THEN

-UNTIL
do-something ;

but whatever is gained b y this is not readability.
Taken together, RETRY and EXIT can untangle even

more complicated control situations. Figure O n e shows a
contrived, bu t far from extreme, example of RETRY and
E X I T working together:

Word-Level Factoring
What RETRY and EXIT, taken together, make possible

is flexible control structures with the word as the unit. This
is, of course, a virtue of necessity: if RETRY (or O= I F
RETRY THEN) is like a REPEAT or UNTIL to a n implicit
BEGIN, that BEGIN can only b e at the beginning of the
word, with nothing between it a n d the word's name;
similarly, the implicit REPEAT that might b e seen as
EXIT'S target can have nothing between i t and the semi-
colon. But this necessity promotes a way of factoring that
is not at all unpleasant. The word becomes, even morc
than usually, a little machine, a building t~ lock , a sub-
assembly, a white box. In a (typical) Forth word that
begins with some action (setting u p parameters for a loop,
for example), then executes a REPEAT

o r UNTIL loop, a n d finally interprets

~mplementation
RETRY can b e implemented through manipulation of

the Forth instruclion pointer (like REPEAT, UNTIL, and
AGAIN) o r the return stack (like RECURSE). The latter was
the first method I tried, and the following implementation
still exists (occasionally under the name >RETRY) in some
derivatives o f Guy Kelly's Forth-83:
: (RETRY)

R> PERFORM ;

: RETRY
COMP ILE (RETRY) [COMPILE] RECURSE

: IMMEDIATE

(PERFORM is equivalent to @ EXECUTE.) This implemen-
tation has the virtue o f conceptual difficulty, as does
anything that involves twisting the return stack, and made
me feel like a wizard when I found it. Basically, this
implcmcntalion of RETRY, in code like the following,
: DOG . . . RETRY . . . ;

lays down the CFAs of (RETRY) and DOG. When the Forth
interpreter goes off to execute the compiled (RETRY), it
first places the address of the following cell (the one
containing the recursive call to DOG) o n the return stack,
which R> PERFORM then executes, without any return
stack buildup. Of course, this depends o n the fact that the
Forth this implementation works in is a single-segment
I:orth (or at least that data a n d lists are in the same
segment) , a n d that the instruction pointer is post-
incrcmcnted; but a similar technique should be possible
in other Forth implementation models.

Much more straightforward is the following, which
should work in many 83-standard implementations, albeit
using some not quite standard words.
: RETRY

LATEST NAME> >BODY
COMPILE BRANCH <RESOLVE

; IMMEDIATE

and/or cleans u p the results of the
loop, the loop can b e factored a s a
separate word. The enclosing word
then executes straight through, a n d the
factored word contains and controls
the complexity, with opportunities for
structural simplification by RETRY and
EXIT. Nested structures can iteratively
be factored away. In the extreme, o n e
can d o away with BEGIN, WHILE,
REPEAT, UNTIL, and, perhaps, even
ELSE entirely, factor all control struc-
tures (except for LOOPS) a s separate
colon definitions, a n d have that thing
w e all secretly desire, a n odd-looking
Forth.

Figure One. Untangling complex control situations. I
: DOG

do-something test l? I F .error EXIT THEN
do-something-else testz? I F RETRY THEN
do-some-other-thing ;

replacing

: DOG
BEGIN
do-something testl?
I F .error FALSE TRUE
ELSE do-something-else test2? 0= ?DUP
THEN

UNTIL
I F do-some-other-thing THEN ;

November 1995 December 20 Forth Dimensions

The phrase COMPILE BRANCH <RESOLVE is the code
for AGAIN in the absence of "compilersecurity." (AGAIN
is, of course, not quite 83-standard but often present, and
it returns in ANS Forth.) In a Forth with compilersecurity,
something like the following might work:
: RETRY

LATEST NAME> >BODY
1 [COMPILE] AGAIN

; IMMEDIATE

where 1 is the value placed on the stack at compile time
by BEGIN.

In LMI's WinForth, the following definitions work:
: RETRY

?COMP LAST @ N>BODY
1 [COMPILE] AGAIN

; IMMEDIATE

: RETRY
?COMP LAST @ N>BODY
COMPILE branch HERE - ,

; IMMEDIATE

All of these latter implementations are based on the
same basic idea: to lay down the code for an uncond-
tional backwards jump (an AGAIN or FALSE UNTIL) to
an implicit BEGIN at the beginning of the colon definition
(with, of course, the difference that you don't have to
worry about nesting and balancing and all those things).

Total control
with [MI FORTHTM
For Programming Professionals:
an expanding family of compatible, high-
performance, compilers for microcomputers

For Development:
Interactive Forth-83 InterpreterICompilers
for MS-DOS, 80386 32-bit protected mode,
and Microsoft WindowsTM

Editor and assembler included
Uses standard operating system files
500 page manual written in plain English - Support for graphics, floating point, native code generation

For Applications: Forth-83 Metacompiler
Unique table-driven multi-pass Forth compiler
Compiles compact ROMable or disk-based applications
Excellent error handling
Produces headerless code, compiles from intermediate states,
and performs conditional compilation
Cross-compiles to 8080, 2-80, 64180, 680x0 family, 80x86 family,
80x96197 family, 8051131 family, 6303, 6809, 68HC11
No license fee or royalty for compiled applications

Laboratory Microsystems Incorporated
Post Office Box 10430, Marina Del Rey, CA 90295

Phone Credit Card Orders to: (310) 306-74 12
Fax: (310) 301-0761

Richard Astle has been programming in Forth for about eight years, most of
that time developing and maintaining a rather large database-management
set of programs. In the process, he has re-written the underlying Forth
system more than once for speed andcapacity. He has a bachelors degree
in mathematics from Stanford University, a master's in creative writing from
San Francisco State, and a Ph.D. in English literature from the University of
California (San Diego).

21 November 1995 December Forth Dimensions

Making Forth
Professional
Peter Knaggs
Paislex Scotland

In the past, Forth has suffered (and continues to suffer)
from the attitude that it is a "hackers" language. This goes
back to the release of fig-Forth-software houses/manag-
ers took one look at this hodge-podge of ideas and badly
documented pre-standard code before either becoming
engrossed in the idea or dropping it like a hot brick. Now
when we talk of Forth, this is what they remember. We are
well aware that Forth has moved on greatly since those
days, yet this is all they remember.

Software managers tend to see only the (mostly badly
documented) code. They do not appreciate that Forth is not
just another programming language, but rather a philoso-
phy of programming. Many ideas currently in favour (such
as structured programming, reusability, libraries, etc.) gen-
erally known as "software engineering" have been available
and used in Forth for many years.

This must be changed, if Forth is to gain any standing as
a language. Fortunately, this has indeed been happening,
the ANS Forth being a very big step in this direction, closely
followed by the IEEE Open Firmware standard. These two

If Forth is to be taken seriously,
it should have a professional
body that controls the quality
of Forth programmers.

events are slowly bringing some respectability to Forth.
A number of platform-independent development lan-

guages have been developed by different organisations.
The Ten15 development language (TDL), architecture-
neutral distribution format (ANDF), Open Firmware, and
JAVA are all languages that use a Forth-like abstract
machine to provide "portable programming" at various
levels.

The ANSI standard has gone a long way to improving
Forth's standing in many manager's eyes. The "portability"
aspect of the standard is very important; the standard not
only addresses this problem, but actively encourages the
development of portable programs!

The professional acceptance of Forth is being held

back by both the lack of good quality Forth programmers
and the reluctance of companies to acknowledge their use
of 170rth.

'I'hc Open Firmware standard has created a need for
professional-quality Forth programmers which we are
simply not able to satisfy.

A growing number of companies have been using
Forth but are reluctant to acknowledge it, normally for one
of two reasons: they either consider i t to be commercially
sensitive or their software managers think they will be
condemned for making what was, apparently, an intelli-
gent production decision.

The academic interest in Forth, both as a language in its
own right and as a development platform, is being hindered
by the push Tor ever-more refereed papers. There is
currently very little scope for "academic publication,"
because we only offer two outlets for this kind of work.

'I'he eurol'OR'f1-l conference has recently introduced a
"refereed section" to its proceedings. None of the other
Forth meetings support refereed publications. The only
other outlet being the Journal of For~h Application and
Research, which has only recently started production
again after a gap of five years. The other Forth-related
publications arc not refereed.

This is a vast improvement over the situation in '93
when nothing was available. I-Iowever, there is still a long
way to go i f f70rth is to be accepted in academia.

I t is my beliefthat fig-Forth, or more precisely, the non-
updating of fig-Forth, has been the cause of much of the
predicament we find ourselves in today, in that both the
Forth Interest Group (FIG) and Forth arc permanently
associated with the "hackers" attitude.

During the 1991 liochesler Forth Conference, I was a
party to a number of discussions with various people both
at FIG (including the chairman and directors) and the
Institute of Applied Forth Research (IAFR). I have reflected
on these discussions and have come up with the following
suggestion.

lfwe want I:or~h to be taken seriously, we should have
a professional body/organisation that controls the quality
of Forth programmers. 'I'his is a very important part of the
~hinking, as only a via a professional body can we

November 1995 December 22 Forth Dimensions

I courses in Forth programming. It is envisaged that, in I

overcome the hacker label. For the time being, I will call
this new organisation the "Forth Programmers Guild."

I see the Guild as a membership-based organisation to
monitor and promote good practise in and the further
development of the Forth programming environment. The
exact nature of the Guild is unknown; however, I see it
having a number of roles in order to fulfill the above goal:

The Guild would be subscription based, with different
levels of membership based on the person's compe-
tence in professional software development with Forth.
This would confer an official status on the member, such
as "Student," "Associate," "Member," or "Fellow."

There will be a clear set of criteria specifying the level
of competence for the different levels of membership.
This would give members a clear indication of which
areas they should improve in order to progress up the
membership scale.

It would also give employers a clear understanding of
the person they are employing and their abilities.

There are a number of companies currently offering

community further. It would lead to a great deal of
duplicated effort for a while, until one or more of the three
players retired. Not a happy picture.

Another possibility would be to set up a special interest
group under the control of one of the "professional"
organisations, such as the BCS, ACM, IEE, or even the
IEEI'. 'l'his reminds me very much of the now-defunct ACM
SIC-For~h, except rhey were not as active. There is a
possibility ofsome funding from the Open Firmware camp
for such a move.

Alternatively, eithcr 1:lG or IAFR may expand their
opcralions to become the new "Guild."

A final possibility would be for PIG and IAFR to merge
into the new Guild. This still has a drawback: the "hackers"
attitude attached to FIG may move over to the new
organisation, thus i t would make more sense for the IAFR
to take over FIG.

'['he idcas I have presented here are open to discussion.
Some of the ideas are covered in more detail in my
euroFOI<'1~11 '93 paper, "A Look at Forth's Academic
Standing" also available for ftp at <URL:ftp://
ftp.paislcy.ac.uk/pub/cis/forth/ef93/academic.p~> or on
the World \Vide \Vcb at <URI,: hup://www.paisley.ac.uk/
-cis/forth/ef93/academic.html>.

A - - -
time, the ~ ~ i l d would these courses, hi^
would allow people taking any such course to become

This would allow the companies offering such courses to
advertise it as being validated by the Guild, thus raising
the value of the course and the profile of the Guild. I t
would also encourage membership in the Guild.

Peter Knaggs IS a lecturer in Softwarc Eng~neerlng a l the University of Paisley,
Scotland Hcobta~ncd his Ph D, w~th a thesis enl~l led "Practical andTheoretical
A s ~ c c t s 01 Forlh Soflwarc Dcvclo~rncnl" from the UnlversiW of Teesside in . .

a member of the Guild and, on completion of the
sufficient become a

To encourage further development of the Forth pro-
gramming environment, the Guild would organise a
number of international, refereed conferences. It could
also arrange so-called "picnics" at a national or regional
level for social contacts.

1994 HC IS actlvcly Involved In ~orth-rclaled research and IS the program cha~r
for the Europcan Forth conference (curoFORTH), and adm~n~sters the
curoFORTH WWW s~ tc CURL http //www palsley ac uk/-cls,forlh>

It should also provide a medium for more-considered
works, thus it should publish a refereed journal on Forth
Development, Practise, and Experience. The frequency
ofthis is unknown, possibly as low as one issue per year.
On the other hand, as with the picnic idea, it should also
produce a more lightweight newsletter on a more
regular basis (say monthly) with news, articles, jobs, etc.
covering the more social aspect of things.

1 As we can see, the proposed Guild is going to be rather
large and encompass the current operation of both FIG
and IAFR. Precisely how the Guild is going to be set up is
another question.

One possibility would be to start a entirely new
organisation. However, this would be in direct competi-

1 tion with both FIG and IAFR. Whilst this would be the

At last ...

ProForth
for

Windows

... brings the full
power of Forth to
Windows!

Powerful 32-bit Forth for Windows and NT.
Includes ProForth GUIDETM "visualM-type automated
toolkit for Windows user interfaces.
Graphics library, floating point, much more.
Full support for DDE, external DLLs.
Integrated debugging aids for reliable programs.

Go with the systems the pros use... Call us today!

FORTH, Inc.
11 1 N. Seoulveda Blvd. #300 11111
~ a n h a t t a i Beach, CA 90266
800-55-FORTH 31 0-372-8493
FAX 31 0-31 8-71 30 fot-thsales@forth.com
ProForth for Windows is a product of Microprocessor Eng~neering Ltd. (MPE),
Southampton, England. ProForth for Windows is sold and supported in the US and

I correct "free market" approach, it will simply fragment the can"dadyFORTil~'nc. 1. 2
Forth Dimensions 23 November 1995 December

1995 Rochester Forth Conference

Emerging Technology

Nicholas Solntseff
Hamilton, Ontario, Canada

Driving down to Rochester for three hours o n a hot
summer afternoon gave me the opportunity to reflect on
the future of the Forth Interest Group (FIG), my own
involvement in Forth, and where personal computing is
heading. The fastest growing aspect of the latter in the
Hamilton-Wentworth region, as in most Canadian com-
munities, is the rapid growth of community networks, or
freenets as they are commonly called. The last meeting of
the Hamilton Internet Users Group collected some 40
keen persons eager to find out what they could about the
mysteries of the Internet. By contrast, the June meeting of
the South Ontario Chapter of FIG attracted only four in
addition to the speaker. The highest attendance ever was
30, ten years ago. Perhaps something should be done
about combining Forth and the Internet!

This year, the attendance at the fifteenth Rochester
Forth Conference was 46, which showed, perhaps, that
Forth in an industrial setting is withstanding the onslaught
of C and C++. The vendors (Forth Inc., New Micros, and
MPE) were in an upbeat mood and talked of profits at long

and the American Electrostatic Society. The dining room
was very crowded at breakfast time, and I could imagine
what it would b e like for Forth to b e part of mainstream
computing-conferences attended by several thousand
people!

The proceedings were opened Wednesday morning by
Larry Forsley, who pointed out that programming skills
among computer users were diminishing while more and
more capability was being put into silicon and proprietary
packages that nobody could talk about. What was needed
was to reduce the average age of attendees at future
Rochester Conferences by attracting young, new blood.
Forth programming instruction geared to those encounter-
ing Forth for the first time in Open Root courses was a
possible way of achieving this.

Chuck Moore gave the first invited talk, and discussed
his involvement with chip making. There are many
opportunities for innovative engineering apart from mak-
ing bigger and bigger chips Chuck's latest designs have an
area around one-tenth that of the giant Pentium chips and,
in fact, involve a volume occupied by some 3000 x 3000

..,we need a "killer app" to
demonstrate that Forth is

x 60 atoms, which is getting pretty close to the
nanolechnology scale. Designing chips is fun, but they
have to be manufactured, which puts immense pressure

the best solution to a
pressing problem ...
last, the registrants that Open

lead to at meetings,
the half-dozen or s o attendees for whom this was their first
contact with the Forth culture eagerly described their
successes in taming Forth.

Registration and tutorials took place Wednesday after-
noon; papers were presented and with

groups taking place A
Open Day with and demonstrations by

was On Saturday. As food was good,
free beer ~ len t i fu l , and evening d k ~ u s s i o n s wide ranging
and stimulating. An interesting change from the 12 other
times I attended the conference was the large numbers of
conferees from two other meetings being held at the same
time-the ~or th -Eas t Synod of the Presbyterian Church

on the designer to meet foundry schedules; and tested,
which brings about a very long, drawn out, edit-compile-
test cycle with a period of o n e month! How to improve this
is lhe challenge for the next century.

Thirty-three general papers were presented on the usual
wide variety of topics, although papers on astronomical
app l i ca t ions notable The largest object dis-
cussed at this year's was h e size of a football
field-a lime kiln controlled by Alan Anway's Forth system.
pour papers from the [:lectrical Engineering Deparment at
the Universiry ofMissouri-Rolla by Darrow F. Dawson et 21.

dealt with the use of Forth in a classroom environment and
describcd the hardware (a single-board computer based on
the Th4S320C25 DSI'), the software (a Forth and a graphical
user interface for IJnix), as well as a set ofstudent exercises.
Richard E. 1 laskell (CSE Department, Oakland Universiry)
detailed a c++-based version of Forth for the Motorola
6 8 1 1 ~ 1 ~ designed to reside i n embedded systems,

Commercial appIica~ions described at the conference
November 1995 December 24 Forth Dimensions

highlighted interoperability requirements, i.e., the nccci
for Forth systems to work in a wide variety of environ-
ments, with multi-vendor hardware and sof~ware pack-
ages, as well as in a multi-processing regime. This mcans
that more and more effort has to be dcvo[cci to the
interaction between components rather than the indi-
vidual components themselves. The use of standard
modules such as those for X-Windows, TCP/IP, and
operating systems is becoming increasingly necessary. An
important aspect of marketing Forth is to concentrale on
selling solutions, not tools. Forth allows the vendor to
demonstrate a prototype in very short time by comparison
with other approaches, and this can lead to user satisfac-
tion and trust in the developer without the need to
mention Forth at all!

The program was rounded out by several papers
exploring new directions for Forth internals anci applica-
tions-these included a Forth-based graphical proccss-
chart language (Matthew Mercaldo), a new way of looking
at stack operations (Rob Chapman), linked-list ~cchniqucs
(Lloyd Prentice), the use of Field Programmable Gate
Arrays (David Rusnell), a Forth-based approach to pro-

cessing SGMI. and 1 I'I'MI. documents (Norman Smith), to
name just a few. 'The Forth Scientific Library managed by
Skip Carlcr has been the success of the year! It has the
potcn~ial to provide ~lsers outside the present Forth
cornniunity with an al~ernative to FORTRAN for their
computing needs. The library is steadily expanding, but
more help is needed to review contributed software. It
can he found a1 <IJRI,: http://taygeta.oc.nps.navy.mil/fsl/
sciforth.html>.

\'('helhcr freeware and cheapware Forths hurt Forth
vendors or eventually provide them with new customers
was debated, as expected, during social periods outside the
lecture room and in dormitory corridors. Proponents and
opponents of an under-$40 Forth went home without
changing their minds, but I have decided that what we need
is a "killer app" that will demonsuate unequivocally that
I:or~h is ~ h c best solution to a pressing problem. How about
a n intcractivc scripting package for the World Wide Web?

Nicholas Solnlsclf, a prolcssor In Ihe Department of Computer Science and
Systems al McMasler Univers~ty (Hamillon, Ontario, Canada) IS a board
mcmbcr 01 lhc Forlh lnlercst Group He can be reached vla e-mall at
nsQrnaccs dcss mcmasbr ca

Statement of
Ownership, Management, and Circulation

1. Publication Title: Forth Dimensions
2. Publication No. 0002-191
3. Filing Date: Sept. 27, 1995
4. Issue Frequency: bi-monthly
5 . No. of Issues Published Annually: 6 15. Extent and Yature of Circulalion: Averuge No, Copies AcluaINo. Copies of
6. Annual Subscription Price: $40 Each Issue During Single Issue Published
7. Complete mailing address of known of- Precedlnp 12 Month3 Nearest to Ftl in~ Date

fice of publication: p . 0 , nox 21 54, a. 'Total NO. Copies (nel [~rrtss run) 1300 1300
Oakland, California 94621-0054 b. I'aid and/or llcquesrcd (:irculat~on

8. Complete mailing address of headquar- (1) Salos through Ikalcrs anti

ters or general business office of Publisher: Carriers, S~rcc t Vendors, and
same as above Counrcr Sales (no1 mc~~ led j 0 0

9. Publisher: Forth Interest Group, P.O. (2) Paid or Requested Mail

BOX 2154, Oakland, California 94621 - Subscriptions (Include Adriert~ser.s'
0054. Editor: P.O. Box 2154, Oakland, Proof Copie.~/Exchanqe Copies) 1082 1061
California 9462 1-0054. c. Total I'aid and/or Ilequestcd

10. Owner: Forth Interest Group (non-profit), Circulation 1082 1061
P.O. Box 2154, Oakland, California 94621- d . Free Distribution by Mail

0054. sample.^, Complimmlury, and
11. Known bondholders, mongagees, and OLhe7 Free) 6 6

othersecurity holders owningor holding e . Free Distribution Outside the Mail
1 percent o r more of total amount of (c@m'ms oroLherMeany) 0 0
bonds, mortgages, o r other securities: f . Total Distribution 6 6
none. g. Total Ilistribution 1088 1067

12. The purpose, function, and nonprofit h. Copies Not I)is~ributc:d
status of this organization and the ex- (1) Oflice llse, I.cl~ovcrs, Spoiled 21 2 233
empt status for federal income tax (2) Return from News Agents 0 0
purposes: has nor changed during pre- i . Total 1300 1300
ceding 12 months. Percent Paid and/or Requested

13. Publication Name: Forth Dimensions Circulation 99.4% 99.4%
14. Issue Date for Circulation Data Below: Signature and 1-itle of Vditor, Publisher, nusiness Manager, o r Owner:
Nov.-Dec. 1995 John D. I Iall, Prcsidcnt, Scptembcr 27, 1995.

Forth Dimensions 25 November 1995 December

Nanocomputer Optimizing Target Compiler 1
The PIC16C71 and
PIC1 6C84 Library
Tim Hendtlass I
Hawthorn, Victoria, Australia

/Part one of this article, pertaining to theprocessor-inde-
pendent core, appeared in ourpreceding issue.-Ed./

This example of a processor-specific library is for a
particular pair of nanocomputers which share substan-
tially the same instruction set, but have different hardware
resources. It is presented as a model for readers who wish
to develop versions of NOTC for other processors.' First
the hardware must be studied, and the way to implement
the stacks decided. It is often advantageous to keep the top
of the data stack in a register. Depending on the architec-
ture, the one stack may handle both return address and
control information (as in traditional Forth), or separate
return and control stacks may be needed. The boot-code
and the init-code will need to be designed.

The PIC16C71 and PIC16C84 chips are similar; the C71
has a four-channel analogue-to-digital converter, and the
C84 has EEPROM rather than EPROM. Both employ Harvard
architecture, in which the program memory and the data
memory are.quite separate and there is no way to transfer
information between the two. The program memory is 14
bits wide, the data memory is eight bits wide. Each chip has
a processor that handles 14-bit instructions, 1024 14-bit
words in which to store the program, twelve input/output
lines, and an independent timer. There is a small amount of
eight-bit-wide RAM, but only locations 12 to 47 are available

either be returned to the W register or to the other register
involved in the operation. The W register does not have
an address in normal RAM, and is a very busy register.
Also, location four is special: it is used as a pointer into the
rest of RAM. Any read or write to address zero will actually
occur to the address which is held in location four. This
makes location four ideal for maintaining a stack in RAM;
unfortunately, i t has to be shared between the data and
control stacks. We leave it normally containing the data
pointer, switching it with the control pointer as required.

Initially, the processor will have to be set so that the
control-stack pointer contains 0F;hex (remember, it will be
incremented before anything is stored on it). The data
stack pointer will point to the lowest data memory address
occupied by any variables, and it will be decremented
before any item is stored onto the data stack.

The number of words that have to be defined in
machine code is small and is taken from the eForth
primitive set. As this is a true compile environment, words
that are only used in the interpret mode are omitted.
However, a few extra words are defined in the interests of
speed. The standard Forth words defined are:

Data-stack-manipulation operations:
DUP, NIP, DROP, SWAP, OVER, ROT

to u s t h e rest are used to control the other hardware on the
chip or for processor registers. A separate 14-bit wide, 8-
deep hardware stack is used for holding return addresses.

Since the return stack is unavailable for holding control
information, and it is really not practical to hold that
information on the data stack, a third stack is needed if
control structures are to be used. The normal processor
return stack is used for return information and the other two
stacks, data and control, have to share the limited, byte-
wide RAM alongwith any variables we may construct, ~~~i~
variables, like all math operations, are limited to eight bits.

The organization of the memory is shown in Table One,
There is one special register associated with the proces-

sor, the W register, that always supplies one parameter to
the arithmetic logic unit. The result of an operation can

1. The code produced by the compiler using this library has only
been tested on a simulator. Users d o so at their own risk!

Arithmetic and logical words:
+, -, UM+, AND, OR, XOR, NOT

comparison words:
=, 0=, 0>

Control-stack operations:
R> , >R

AS noted above, some of these words are additional to
the min i~~um eForlh set-for example, + and -, which can
be derived from UM+. 1 - I o w ~ v ~ ~ , they are written in machine

for Weed.
Further speed could be made by writing

other words in machine code (for example, *) and
removing the corresponding high-level definitions in the
processor-indepe ndent core. Some common routines (not
standard Forth words) used in the above definitions have

November 1995 December 26 Forth Dimensions

Address Symbolic name Use
W D 1 Top of thc data stack

register
0 Stack Access location poinlcd lo by DPTR (or CPTR i f

pointers swapped)
1-3 Other processor registers
4 Stack pointer Pointer to second item on data stack (D2)

(SP)
5-12 Other processor registers

13 Control Alternate stack pointer, normally pointer to top
pointer (cp) item on control stack

14 Temp1 Working space
15 Tem p2 Working spacc
1 6 Cn Bottom item on control stackof x items
17 Cn-1 next to bottom item on control stack I Control stack

.
16+x Top item on control stack

Unused space
Top item on data stack 4
.

-

Data Stack
13 o~

47-n Las~ (nth) dcclarcd variable
....... .. I Variables

47 First declared variable of n
128-139 processor registers I

been identified and coded as subroutines. These are:

POP Remove the top item from the data stack
putting it in temporary register 'Temp].

PUSHTl Move item from Templ to top-of-stack
PUSHT2 Move item from Temp2 lo top-of-stack.
SHUFFLE Top-of-stack to Temp2, Templ to top-of-stack.
CSPtoSP Save normal stack pointer and move control-

stack pointer into normal stack-pointer place.
SPtoCSP Return item in normal stack pointer to con-

I trol-stack pointer, replace saved stack pointer

1 Since the nanocomputers have two I/O ports, simplc
specific words are provided to read and write to these porLs
(~S@,CS!,C6@,C6!,C85@,C85!,C86@,C86!).1tdidnot
seem worthwhile to implement the conventional C ! and C@
words. (Location 85 is the data direction register for real port
5; location 86 is the data direction register for real port 6 .)

The definitions in the library are storcd as in-linc
routines; if necessary, they will be converted to a subrou-
tine either by adding a return instruction (0008hex) or by
changing the final call to a goto. All library entries need to

havc their breakeven number specified; i f they are used
more than lhis number of times, it will be more efficient
lo load them as a subroutine and call them as needed. If
the breakeven count is set to zero, they will always be
loadcd as a subrou~ine; if set to a very high number, such
as 7FFFhcx, thcy will always be used in in-line form.

'fable Two shows the breakeven number as a function
ofthe length of the in-line form of the routine and whether
the in-line form ends in a call.

The source code published with this section of the article
is organised in parts. First, a number of definitions are
provided that were left as deferred definitions in the core.
Then words are defined which will, when run, lay down
specific processor instructions in the image. The names given
rcflect the use being made of various registers on the
processor which, hopefiilly, makes it all more readable than
using normal processor assembly mnemonics. The proces-
sor-cicpendcnt primary words are then defined, followed by
thrcc l7o\~-control primitive words from which all the normal
control structures are built. Next come words to lay down in-
linc numbers and to remove numbers laid down that hrther
consideration has shown are not needed here (see how

Forth Dimensions 27 November 1995 December

Table Two. Calculating in-line vs. subroutine efficiency.

Len*
(as in-line code)
Load as subroutine if
used more than.. .

1

7FFFhex
(never)

2
no end call

3

2
ends in call

2

3
no end call

2

3
ends in call

1

> 3

1

I Sample output. I
The particular t e s t f i l e was:

\ f i l e t o t e s t c o m p i l e r o p e r a t i o n - a c t u a l p r o g r a m m a k e s n o s e n s e !
v a r i a b l e f r e d
v a r i a b l e p a u l

5 c o n s t a n t j o e
: Word1 i f d u p 5 e l s e d u p p a u l n i p t h e n r o t 2 0 r o t ; \ a comment
: Word2 b e g i n swap swap w h i l e swap swap w o r d l r e p e a t f r e d w o r d l ;
: Word3 b e g i n j o e o v e r > r (a comment) s w a p word2 r > u n t i l ;

1 Sample output during the compile sess ion:

c o m p i l e t e s t o f 3 1 1 b y t e s .
p a s s 1 * * * * * * * I m a g e l e n g t h now 2
p a s s 2 . I m a g e l e n g t h n o w 4 4

p a s s 3 * * * * * * * I m a g e l e n g t h now 1 0 0
F i n a l i m a g e s i z e = 1 0 0 w o r d s o k

Output obtained by using p r i n t - o u t :

L i b r a r y
DUP
DROP
POP
PUSHTl
PUSHT2
SHUFFLE
SWAP
OVER
NIP
CSPTOSP
SPTOCSP
>R
R>
ROT
FRED
PAUL

u s a g e
u s e d
u s e d
u s e d
u s e d
u s e d
u s e d
u s e d
u s e d
u s e d
u s e d
u s e d
u s e d
u s e d
u s e d
u s e d
u s e d

6 t i m e s
3 t i m e s
2 t i m e s
1 t i m e s
2 t i m e s
1 t i m e s
7 t i m e s
1 t i m e s
1 t i m e s
2 t i m e s
2 t i m e s
2 times
2 t i m e s
2 t i m e s
2 t i m e s
2 t i m e s

l o a d e d
l o a d e d
l o a d e d
l o a d e d
l o a d e d
l o a d e d
l o a d e d
l o a d e d
l o a d e d
l o a d e d
l o a d e d
l o a d e d
l o a d e d
l o a d e d
l o a d e d
l o a d e d

a s s u b r o u t i n e a t 2
i n l i n e
i n l i n e
i n l i n e
i n l i n e
i n l i n e
a s s u b r o u t i n e a t 5
i n l i n e
i n l i n e
a s s u b r o u t i n e a t 1 3
a s s u b r o u t i n e a t 1 8
a s s u b r o u t i n e a t 2 3
a s s u b r o u t i n e a t 32
a s subroutine a t 40
i n l i n e
i n l i n e

Symbol t ab l e
WORD3
WORD2
WORD 1
ROT
R>
>R
SPTOCSP
CSPTOSP
SWAP 5
DUP
I SPACE

u s e d 2 t i m e s l o a d e d i n l i n e
u s e d 1 t i m e s l o a d e d i n l i n e

Memory Map
A d d r e s s C o n t e n t s

0 . [0 1 [284C] [81 [3841 [801 [81 [8E1 [8001 [A841
8 . [8 1 [8 F] [8 0 3 1 [2 0 0 2] [80F1 [8) 4 8041 [8 E] [80D]

1 6 . [l o] [841 [81 [8041 [8D1 [80E1 [841 [81 [8 F]
2 4 . [1 8 1 [200D] [A841 [80F1 [801 [2 0 1 2] [8001 [A841 [81
3 2 . [2 0 1 [2 0 0 2] [200D] [8001 [3841 [8 F] [2 0 1 2] [8 0 F] [81
40 . [2 8 1 [2 0 1 7] [ZOO51 [2 0 2 0] [8E1 [8001 [A841 [88El [1D03]
48 . [3 0 1 [2 8 3 5] [2 0 0 2] [2 0 0 2] [3 0 0 5] [2 8 3 8] [2 0 0 2] [2 0 0 2] [3 0 2 E]
5 6 . [3 8 1 [A841 [2 0 2 8] [2 0 0 2] [3 0 1 4] [2 8 2 8] [2 0 0 5] [2 0 0 5] [8 E]
6 4 . [4 0 1 [8001 [A841 [88E1 [I 9 0 3 1 [2 8 4 9] [ZOO51 [2 0 0 5] [202B]
7 2 . [4 8 1 [283D] [2 0 0 2] [3 0 2 F] [282B] [3 0 0 F] [10C] [302D] [1 0 4 1
8 0 . [5 0 1 [2 0 0 2] [3 0 0 5] [8E1 [8001 [A841 [8F3 [2 0 0 2] [80E]
8 8 . [5 8 1 [ZOO21 [8 0 F] [2 0 1 7] [2 0 0 5] [203D] [2 0 2 0] [8E] [8001
9 6 . [6 0 1 [A841 [88E3 [1D03] [2 8 5 0]

constants are handled). A word
to allocate space for a variable
is followed by one to extract
the image in a form suitable for
transferring it to the actual tar-
get processor (here left as a
dummy definition).

?'he hardest part of writing
the library is ensuring that you
use the correct version ofwords.
Most of the library is written
using the special definitions in
the library itself, but from time to
time the normal control struc-
ture words (IF, etc.) and com-
piling words like : from the
FORTH vocabulary are needed.
Accidentally running the library
versions that lay down code in
the target when you meant to
use the "real" definitions is guar-
anteed to lock up your com-
puter! The vocabulary search
order is set up to suit the major-
ity of words in the definition
being compiled, but the order
will have to be temporarily
changed for the minority words.
For example, the search order
might be ROOT FORTH NOTC

L I B R A R Y . Words will be
searched for in the LIBRARY

first; only if they are not found
there will NOTC and then FORTH

be searched. If we need the
FORTH version of >R (for ex-
ample), rather than the version
in the library that would lay
down code in the target image,
we need to add FORTH to the
top of the search list, find the >R,

and then remove FORTH from
the top of the List again. The
sequence to do this is [ALSO

FORTH] >R [PREVIOUS 1.

Tim is a long-time Forth devotee. A pro-
fessor in the School of Btophysical Sci-
ences and Electrical Engineering at
Swinburne University, he spends much
of his time working with artificial neural
networks and evolutionary algorithms in
his capacity as Director of the Centre for
Intelligent Systems. He escapes to Forth
whenever he gets thechance, and has a
dream of building a giant evolutionary
algorithm computation array using Forth
ch ps mecan becontacteo alsw~nburne
(P 0 Box 218 Hawthorn 3122Australia)
or by e-mail (tim@bsee.swin.edu.au).The
source code for this article can be
obtained by anonymous flp from
brain.physics.swin.or.au in publforlh, as
can electronic copies of his book on
F-PC, Real Time Forth.

I I I

November 1995 December 28 Forth Dimensions

Source code - PIC library.
I

\ Nanocomputer Optimising Target Compiler. (NOTC) PIC16C71 and C84 l i b r a r y . ve r 1 . 0
\ f i r s t few d e f i n i t i o n s go t o NOTC

only f o r t h a l s o n o t c \ search o rde r no t c>fo r th>roo t
a l s o d e f i n i t i o n s \ d e f i n i t i o n s t o NOTC

\ . AND CONSTANTS
VARIABLE TDS 4 7 TDS ! \ p o i n t s t o a b s o l u t e top-of -da ta-s tack a r e a
1024 CONSTANT max-program \ al low t a r g e t t o have up t o 1024 program s t e p s
2 CONSTANT c e l l - s i z e \ 2 by te s needed f o r each 14-b i t i n s t r u c t i o n

\ .

\ make space f o r t h e image i n t h e image vocabulary
only f o r t h a l s o no tc a l s o t a r g e t \ sea rch o rde r t a r g e t > n o t c > f o r t h > r o o t
a l s o d e f i n i t i o n s \ d e f i n i t i o n s t o t a r g e t
CREATE ISPACE max-program c e l l - s i z e * a l l o t \ b u i l d t h e a r r a y

\ now s t a r t adding d e f i n i t i o n s t o t h e l i b r a r y
only f o r t h a l s o n o t c a l s o t a r g e t a l s o l i b r a r y
a l s o d e f i n i t i o n s . \ d e f i n i t i o n s t o l i b r a r y

1 \ WORDS TO MANIPULATE THE IMAGE I
\ . THE DEFERRED WORDS FROM CORE ARE DEFINED HERE

\ t h e p r i m i t i v e words t o read and w r l t e t o image space
: I! (n --) \ w r i t e one 16-b i t c e l l

I p t r @ c e l l - s i z e * I space t !

: I @ (- - n) \ read one 16 -b i t c e l l
I p t r @ c e l l - s i z e * I space + @

: <IADD> (n --)
I p t r @ max-program =
i f 3 e r r o r
e l s e 1 I p t r + ! I !
then

: IADD (i t em --)
p l ?
i f d rop
e l s e <iadd>
then

\ add an i tem i n t o image space
\ h i t maximum s i z e ?
\ yes , a b o r t
\ no, l a y down next 16 -b i t c e l l

\ add i tem i n t o image un le s s i n pass 1
\ i f pass 1 . .
\ l o s e i tem
\ otherwise add lt

: <ICALL> (n --)
2000H o r Iadd \ l a y down c a l l n

: RETURN 0008H Iadd ; \ l a y down machine code r e t u r n , \ I f l a s t c e l l i s a c a l l change it t o a goto (jump), e l s e add r e t u r n (0008H)
: <IRETURN> (--)

I@ 3800H and 2000H = \ r e s u l t w i l l be t r u e i f l a s t c e l l i s a c a l l
i f I @ 0800H o r I ! \ i f c a l l make it goto
e l s e r e t u r n \ otherwise add r e t u r n

! t hen

\ Complete t h e d e f e r r e d d e f i n i t i o n s from t h e core
' < I r e t u r n > i s I r e t u r n
' < I c a l l > i s I c a l l

\ . PRIMITIVES

\ These r o u t i n e s cause s i n g l e machine i n s t r u c t i o n s t o be l a i d down du r ing pas s 2.
\ They have been given names t h a t r e f l e c t t h e i r p a r t i c u l a r use h e r e .
: D l > t l OO8EH Iadd ; \ MOVWF t l - copy top-of -da ta-s tack t o temp1
: t l > D l O8OEH Iadd ; \ MOVF t1 ,O - copy temp1 t o top-of -da ta-s tack
: Dl>t2 008FH Iadd ; \ MOVWF t 2 - copy top-of -da ta-s tack t o temp2
: t2>D1 080FH Iadd ; \ MOVF t2 ,O - copy temp2 t o top-of -da ta-s tack

(Conlinues.)

Forth Dimensions 29 November 7995 December

: D2>t2
: PUSHDl
: POPD2
: DPT-
: DPT+
: t l + D 1
: t l - D l
: t l andDl
: t l o r D l
: t l xo rDl
: O > D 1
: 1>D1
: - 1 > D 1

008FH Iadd ;
0080H Iadd ;
0800H Iadd ;
03848 Iadd ;
OA84H Iadd ;
070EH Iadd ;
020EH Iadd ;
050EH Iadd ;
040EH Iadd ;
060EH Iadd ;
3000H Iadd ;
3001H Iadd ;
30FFH Iadd ;

\ MOVWF t 2 - copy D 2 d l r e c t l y t o temp2
\ MOVWF SP - push top-of -da ta-s tack
\ MOVF 0,O - pop second on d a t a s t ack t o t o p
\ DECF DPTR - decrement t h e da ta-s tack p o i n t e r
\ INCF DPTR - increment t h e da ta-s tack p o i n t e r
\ ADDWF t1 ,O - add D l and t l
\ SUBWF t1 ,O - s u b t r a c t D l from t l
\ ANDWF t1 ,O - and D l and t l
\ IORWF t1,O - o r D l and t l
\ XORWF t1,O - xor D l and t l
\ MOVLW 0 - s e t D l t o zero
\ MOVLW 1 - s e t D l t o one
\ MOVLW FF - s e t D l t o -1

\ .
: BOOT-CODE \

-1 i p t r ! 0 Iadd \
r e t u r n \

: INIT-CODE \
I p t r @ dup 1+ 2800H o r \
0 I p t r ! I ! I p t r ! \
300FH Iadd \
O l O C H Iadd \
TDS @ 3000H o r Iadd \
0104H Iadd \

*****TARGET-ARCHITECTURE-DEPENDENT ROUTINES
t h e low memory i n i t i a l code, always loaded
w r i t e a nop a t s t a r t of image, t o be patched l a t e r
and a simple r e tu rn f o r t h e i n t e r r u p t v e c t o r

t h e high memory i n i t i a l code
assemble jump t o next i n s t r u c t i o n
w r i t e jump a t zero and r e s t o r e I p t r
MOVLW 15
MOVWF 13 i n l t l a l i s e c o n t r o l p o i n t e r
MOVLW [TDS] ad r of l a s t by t e used by v a r i a b l e s
MOVWF 4 i n i t i a l l s e da ta -s tack p o i n t e r

\ * * X * X * * - - WORDS

\ (no e a r l y word may c a l l a l a t e r one)
3 LIB: DUP dpt - pushdl ; \ increment s t ack p o i n t e r , d u p l i c a t e t o p i tem.
3 LIB: DROP popd2 d p t + ; \ pop o l d d2 t o top-of -s tack , a d j u s t p o i n t e r
2 LIB: POP d l > t l d rop ; \ pop d l o f f i n t o temp1
2 LIB: SDROP d l > t l d rop ; \ pop o l d d l i n t o temp1
3 LIB: PUSHTl dup t l > d l ; \ push from temp1 t o top-of -da ta-s tack
3 LIB: PUSHT2 dup t 2 > d l ; \ push from temp2 t o top-of -da ta-s tack
3 LIB: SHUFFLE d l > t 2 t l > d l ;
1 LIB: SWAP pop s h u f f l e pusht2 ; \ in te rchange d l and d2 (a l t e r s templ and temp2)
1 LIB: OVER pop d2>t2 push t l pusht2 ; \ copy o ld D2 on t o p of o l d D l
7FFFH LIB: NIP dp t+ ; \ j u s t increment d a t a p o l n t e r so o l d D2 l o s t
3 LIB: + pop t l t d l ; \ save d l , o l d d2 t o d l , add saved d l t o new d l
3 LIB: - pop t l - d l ; \ save d l , o ld d2 t o d l , sub t r ac t saved d l from new d l
3 LIB: AND pop t l a n d d l ; \ save d l , o l d d2 t o d l , and saved d l t o new d l
3 LIB: OR pop t l o r d l ; \ save d l , o l d d2 t o d l , o r saved d l t o new d l
3 LIB: XOR pop t l x o r d l ; \ save d l , o l d d2 t o d l , xor saved d l t o new d l
1 LIB: NOT d l > t l 090EH Iadd ; \ d l t o templ, then comp of templ back t o d l
1 LIB: CSPtoSP \ save s tack po in t e r i n templ, put c t r l - s t a c k p o i n t e r

\ where s t ack p o i n t e r u s u a l l y i s . W i s des t royed .
0804H Iadd \ movf sp,O - data-s tack p o i n t e r t o D l
d l > t 1 \ and i n t o temp1
O B O D H Iadd \ movf csp,O - con t ro l - s t ack p o i n t e r t o D l
0084H Iadd \ movwf sp - and i n t o normal da ta -s tack p o i n t e r p l ace

1 LIB: SPtoCSP \ r eve r se ope ra t ion of CSPtoSP
0804H Iadd \ CSP from normal DP p l ace t o D l
008DH Iadd \ movwf a s p - CSP from D l back t o i t s u sua l p l ace
t l > d l \ SP back t o D l
0084H Iadd \ and back t o i t s usua l p l ace

1 LIB: >R
Dl>t2
CSPtoSP
DPT+

t2>D1
PUSHDl
SPtoCSP
DROP

\ t o p i tem from da t a s t ack t o c o n t r o l s t ack
\ t o p i tem t o temp2. D l now f r e e .
\ swap t o c o n t r o l s t ack
\ a d j u s t s t ack p o i n t e r t o p o i n t t o next space i n
\ c o n t r o l a r e a
\ r e t u r n t o p i tem t o D l
\ move i n t o p lace
\ back t o da t a s tack
\ a d j u s t da t a s tack so t o p i tem i s i n D l

November 1995 December 30 Forth Dimensions

1 LIB: R>
DUP
CSPtoSP
POPD2
DPT -
Dl>t2
SPtoCSP
t2>D1

\ t o p i tem from c o n t r o l s t ack t o d a t a s t ack
\ make room In D l
\ swap t o c o n t r o l s t ack
\ o l d top-of -cont ro l - s tack t o D l
\ a d j u s t con t ro l - s t ack p o l n t e r va lue
\ Item t o temp2
\ back t o da t a s t ack
\ and put l t em In p l ace on top-of -s tack

1 LIB: ROT
>r swap r> swap \ a b c - c a b

1 LIB: UM+
+
dup
O > D 1
1803H Iadd
1 > D 1

1 LIB: =
-
- 1 > D 1
1D03H Iadd
O > D 1

1 LIB: O=
dup O > D 1
=

1 LIB: O >
D l > t l
O > D 1
1F8EH Iadd
- 1 > D 1

\ add D l and D2, answer i n D2, c a r r y i n D l
\ do t h e a d d i t i o n
\ push answer, c a r r y preserved
\ c l e a r Dl, c a r r y preserved
\ b t f sc 3 , 0 , s k i p next i n s t r u c t i o n i f no c a r r y
\ s e t high word of answer t o 1

\ t e s t f o r e q u a l i t y
\ g e t answer, zero s e t i f equal
\ l oad t r u e
\ b t f s s 3 , 2 s k i p next i n s t r u c t i o n i f z e ro s e t
\ l oad f a l s e

\ t e s t i f D1=0
\ make space, s e t Dl10

\ t e s t i f D l i s p o s i t i v e
\ copy D l t o temp1
\ l oad f a l s e
\ b t f s s OEH,7 - s k l p next i n s t r u c t i o n i f nega t ive
\ l oad t r u e

comment :
The PIC84 has on ly two e i g h t - b i t p o r t s (a t add re s se s 5 and 6) , each wi th a
da ta d i r e c t i o n r e g i s t e r (a t add re s se s 85 and 8 6) . So f o r 1 / 0 we only need
t o read and w r i t e t o fou r add re s se s . C5@, CS!, C6@, C6!, C85@, C85!, C86@, C86!
Get t ing t o add re s se s r e q u i r e s t h e page-se lec t b i t s a t add re s s 3, b i t s 5&6, t o
be s e t up. These a r e zero on power-up, and we always leave them t h a t way.
comment;

3 LIB: c5@ \ by te f e t c h
pushDl \ make room
0805H Iadd \ g e t va lue (MOVF 5,O)

2 LIB: c5 !
0085H Iadd ~ POP

pushDl
0806H Iadd

2 LIB: c6 !
0086H Iadd

POP

2 LIB: c85@
1585H Iadd
c5@
1185H Iadd

\ by te s t o r e
\ s t o r e va lue (MOVWF 5)
\ l o s e va lue

\ by te f e t c h
\ make room
\ g e t va lue (MOVF 6 , O)

\ by te s t o r e
\ s t o r e va lue (MOVWF 6)
\ l o s e va lue

\ by te f e t c h
\ BSF 3 , 5 - poin t t o r e g i s t e r block 80
\ read t o 5 i n t h a t block
\ BCF 3 , 5 - back t o r e g i s t e r block 0

2 LIB: c85! \ by te s t o r e
15858 Iadd \ BSF 3 , 5 - poin t t o r e g l s t e r block 80

(Continues.)

Forth Dimensions 31 November 7 995 December

c5!
1185H Iadd

2 LIB: c86@
15858 Iadd
c6@
1185H Iadd

2 LIB: c86!
l585H 1add
c6!
1185H Iadd

\ w r i t e from f i v e i n t h a t block
\ BCF 3 , 5 - back t o r e g i s t e r block 0

b y t e f e t c h
BSF 3 , 5 - po in t t o r e g i s t e r block 80
read t o s i x i n t h a t block
BCF 3 , 5 - back t o r e g i s t e r block 0

by te s t o r e
BSF 3 , 5 - po in t t o r e g i s t e r block 80
w r i t e t o s i x i n t h a t block
BCF 3 , 5 - back t o r e g i s t e r block 0

: IJUMP (a d r --) \ uncondi t iona l jump
2800H [a l s o f o r t h] o r [previous] Iadd \ l a y down jump t o a d r

: IJUMPT (a d r --)

POP
088EH Iadd

1D03H Iadd
I jump

: IJUMPF (a d r --)

POP
088EH Iadd
1903H Iadd
I jump

\ jump i f t o s t r u e (not 0) , consume t o s
\ f l a g (t o s) t o templ
\ l a y down move templ t h r u a l u back t o templ (s e t s
\ f l a g s)
\ l a y down s k i p next i n s t r u c t i o n i f z e ro f l a g s e t
\ l a y down jump.

\ jump i f t o s f a l s e (0) , consume t o s
\ f l a g (t o s) t o templ
\ l a y down s e t f l a g s based on temp1
\ l a y down s k i p next i n s t r u c t i o n i f z e ro f l a g c l e a r
\ l a y dowm lump

\ . NUMBERS AND VARIABLES

: <INLINE#> (h i l o --) \ l a y down code t o e n t e r n a s an i n - l i n e l i t e r a l
[a l s o f o r t h] \ need r egu la r n i p & and from t h e FORTH vocabulary
n i p OOffH and \ only us ing 8 -b i t numbers f o r t h i s p roces so r !
[prev ious] \ back t o s p e c i a l ve r s ions
load-type @ \ save previous l oad type
2 load-type ! \ next word being loaded a s subs iduary

 UP \ push o l d t o p of s t ack
load-type ! \ back a s we were
3000H \ b a s i c load 0 t o Dl, ove rwr i t i ng o l d top-of -s tack
[a l s o f o r t h] OR [previous] \ conver t t o load our number t o D l
Iadd \ put 8 -b i t l i t e r a l i n d l

: REMOVE# \ remove code ju s t l a i d down t o push a #
[a l s o f o r t h]
I @ 3800H and 2000H = \ r e s u l t t r u e i f l a s t code was a c a l l
i f -1 e l s e -3 t hen I p t r + ! \ back up 1 i f c a l l , 3 i f i n - l i n e ve r s ion
[previous]

: VAR-SPACE (- dadr) \ a l l o c a t e space f o r a v a r i a b l e
[a l s o f o r t h]
t d s @ -1 t d s t! 0 \ r e t u r n a s a 32-b i t address
[prev ious]

' < I n l i n e # > i s I n l i n e #

only f o r t h a l s o no tc a l s o d e f i n i t i o n s
\ Place f o r p roces so r - spec i f i c word t o run a f t e r t h e image i s gene ra t ed
: END-ROUTINE

November 1995 December 32 Forth Dimensions

1 Forth Onmline
I t is not our role to interpret the
intentions or to verify the claims of
resource providers. I f you find omis-
sions or errors, send them by e-mail
to forl@artopro.mlnet. com. (FORL is
an electronic mailbox for tracking
publicly available, Forth-related
electronic resources; i t is provided
and m a i n t a i n e d by Kenne th
O'Heskin.)

Bulletin Board Systems
1.0 Arcane Incantations
1.1 Mar. 93
3.0 617-899-6672
5.0 Gary Chanson
5.1 gary.chanson@channel I .com
8.0 Several files (some authored by

sysop), first-time caller available.
10.0 PC Board

1.0 Art of'hogramming BBS
1.1 Jan. 91
2.0 Mission, BC, Canada
3.0 604-826-9663
4.0 non-profit
4.1 ForthBC Computer Language Soci-

ety
5.0 Kenneth O'Heskin
5.1 koh@artopro.mlnet.com
6.0 Free dial-up access for all Forth files.
7.0 modem
7.1 v32 8,N,1
8.0 hundreds
8.2 first-time callers ok
9.0 Mail and news; e-mail by low-cost

annual subscription; Usenet groups
(incl. comp.lang.forth); BCbbs.net.

9.1.0uucp, qwk
9.1.1 uuencode/decode
10.0 Wildcat JGNT-Mail
11.0 Download aop.zip for a list of all

files on the board.

1.0 The FROG Pond BRS
1.1 Aug. 89
2.0 Rochester, NY, USA
3.0 716-461-1924
4.0 non-profit
4.1 The FROG Computer Society
5.0 Nick Francesco
5.1 nickf@vivanet.com
6.0 free
7.0 Modem
7.1 14400 8N1
8.0 5
8.1 languages
8.2 yes
9.0 Fidonet and Internet mail available

for all users.
9.1.0 qwk,netmail
9.1.luuenc/decode
10.0 Remote Access (for now)
11.0 Download FROGPOND.EXE for self-

extracting list of all files. All Forth files
available to first-time downloaders.

Guide to Line Numbers
1.0 Resource name
1.1 Resource startup date
2.0 Location
3.0 On-line addressltelephone numbers
4.0 Sponsorship
4.1 Sponsoring personlinst~tut~on's name
5.0 Contact name (admin, sysop, etc.)
5.1 E-mail address
6.0 Access type (freelpay, conditions of access)
7.0 Connection type (modemltelnet)
7.1 Modem (maximum bps, paritylbitslstop)
7.2 Telnet (address)
8.0 Approximate number of Forth-related files
8.1 Theme of these files
8.2 Available to first-time callers?
9.0 Mail and news
9.1.0 Mail technology
9.1.1 Binary mail tranfers supported?
10.0 .. System software, if relevant
11.0 .. Additional comments

I .O Gold Country Forth RRS
2.0 CA, lJSA
3.0 916-652-71 17
5.0 Al Mitchell
8.1 Some product support (password re-

quired), many free files.
8.2 Okay for first-time callcrs.

7.0 I.MI Forth BUS
1.1 Oct.84
2.0 1.0s Angcles, CA, IJSA
3.0 310-306-3530
4.0 business
4.1 1.aboratory Microsystcms Inc. (1,MI)
5.0 Ray Duncan
5.1 sysop@lmi.la.ca.us
6.0 free
7.0 modem
7.1 1,200 - 28,800 baud, 8/N/1
8.0 hundreds
8.1 Mostly compatible with I.hlI Forth

products, but also some public-do-
main Forth stuff.

8.2 ycs (cxcept for I.MI product updatcs,
which require prior registration)

9.0 Supports Intcrnct c-mail and UseNet
News

9.1 OUIJCP
10.0 PC Board 15.2
11.OThc I.MI Forth RRS is primarily in-

tended for technical support of [,MI
customers. However, all members of
the Forth community are welcome
toupload/download files in the pub-
lic directories, and LO usc the 1,MI
RRS for Internet e-mail and reading
the UscNct cornp lang.forth confcr-
encc.

Mindlink!
Vancouver, RC, Canada
modern: 604-528-3500
28.8Kbps
Telnet: mindlink.bc.ca
Business

(main)

6.0 Pay; may log on as guest.
7.0 28.8Kbps, Telnet
8.0 75
8.0 Available only to registered users.
11 .OTwoForth file libraries: Sources.Forth

and MsDos.Forth.

1 .O RCFR "7%e Rocky Coast Free Board"
1 . I Oct. 88
2.0 Golden, CO, USA
3.0 303-278-0364
4.0 private
4.1 Jax
5.0 SYSOP
5.1 jax@well.com
6.0 Free, but must register.
7.1 19200, 8-n-1
8.0 300
8.1 Programming tools and productivity
8.2 Must register online, wait 24 hours.
10.0 PC Board since '88, Linux by mid-96.

FTP Sites
1.0 ANS Forth x3j14
3.0 ftp://ftp.uu.net
1 1.0 This is the ANS Forth archive; elec-

tronic versions of dpANS standards
document may be obtained by anony-
mous ftp from:
/vendor/minewa/x3jl4/dpans94.zip

(Word for Windows, v.2)
/vendor/minerva/x3j 14/dpans94. hqx

(Word for Macintosh)

Information on this group's mailing,
html, and other resources may also
be found in these /vendor/minewa/
x3j14 directories.

Astenk Forth archive
Portugal
asterix.inescn.pt /pub/forth
university
Computer Graphics and CAD
INESC
pafaporto. inescn.pt

Forth Dimensions
. -

33 November 1995 December

6.0 anonymous ftp
8.0 hundreds
11.0 First internet site o f the GEnie Forth

archives, built with the assistance of
Doug Phillip's FNEAS server. Mirrored
on hp.com.

1.0 Brain
3.0 ftp: brain.physics.swin.oz.au
4.0 university
5.1 Tim Hendtlass

<tim@brain.physics.swin.oz.au>
ll.OTimls book "Real Time Forth" is

available in /pub/forth or can by
accessed by the URl,s:
file://brain.physics.swin.oz.au/pub/
forth/rtfppcl.zip (1,aserJet)
file://brain.physics.swin.oz.au/pub/
forth/rtfpps.zip (PostScri pt)

Recent material on nanocomputers
has been added to the site

1 .0 Cygnus Support Ftp Service
3.0 ftp://ftp.cygnus.com

http://www.cygnus.com
5.1 info@cygnus.com (?)
11.0Has a good file list and appears to

support some Forth material not avail-
able elsewhere on the net.

1.0 Farb's own small FPsite, Forth suh-
section

1.1 1994
2.0 Paris, France
3.0 ftp://frrnap711 .mathp7.jussieu.fr/

pub/scratch/rideau/
5.0 Franqois-Ren6 "Fare" Rideau
5.1 rideau@ens.fr
6.0 free (anonymous FTP)
8.0 TwoFORTH systems, my portofeForth

to Linux, and Olivier Singla's PItOTl-I.
8.2 yes
10.0 SunOS4.1.3
11.0This site does not contain much about

Forth, but more is welcome if you
upload it. I am developing my own
system, TUNES, which is remotely
Forth-related, and for which 1 opened
this site.

1.0 Hewlett-Packard
3.0 ftp://col.hp.com/mirrors/Forth
6.0 anonymous ftp
11.0Mirror site for asterix, recommended

for North American users when
asterix is busy.

1.0 VtFortb-speciJic stuff
1.1 Sept. 94
2.0 Eindhoven, Brabant, the Netherlands
3.0 ftp iaehv.iaehv.nl, directory pub/

users/mhx
4.0 private
4.1 Marcel Hendrix
5.0 Marcel Hendrix
5.1 mhx@iaehv.iaehv.nl
6.0 free, anonymous ftp
8.0 10 - 20
8.1 i/tForth specific files, not ANS enough

to put them on taygeta or such. Some

very Intel-hartiu,arc-sprcific (net-
working, audio <:I>). i/tl!orth gen-
rral info, rcdcase norcs, previews.

11.0l'hcrc is a link on taygcta to this
directory.

1.0 Microtronix
3.0 ftp.microtronix.com /pub/forth
5.1 Brian Fox <bfox@microtronix.corn>,

j.fox26@gcnie.com
11.0 A new site featuring scvcral original

(NMI MaxForth) 681 1C11 files.

1.0 Sirn'l'cl
3.0 ftp://ftp.coast.nct/SimTel/msdos/

forth
5.1 service@j)coast.Nl;n'
11.0 Several Forth files; and Norm Smith's

l lnt i l revisions arc updated hcrc.

1.0 Yerk
3.0 astro.uchicago.edu pub/MAC/Yerk
11.0 Archive for Yerk system, manuals,

and info (the 00 I:orth successor to
NEON); Mops also available hc!re.

1.1 July95
2.0 Ann Arbor, 111, IjSA
3.0 ftp://wilIiams.physics.lsa.umich.cdu/

pub/forth
4.0 university
4.1 Particle 'fhc%ory Group, Physics I l c -

partment, l!nivrrsity of Michigan
5.0 David N. \Y'illiams, sysadmin
5.1 David.N.\Y~illiams@~~mich.cdu
6.0 free, low traffic, download only
7.0 anonymous ftp
8.0 12-20
8.1 Forth: personal intcrestsof David N.

Williams
11 .0 This isonedircctory at an anonymous

14'TP site dcvorcd mainly to communi-
cation bctwccr~ our group and the
particle thcorycommunity. Forth and
symbolic cornpuling (Schoonschip)
happen to bc an intcrcst o f onc of
group.

FTP/Web Sites
1.0 Forth Research at Institut fr

Computer.rprachen
2.0 Vienna, Austria
3.0 http://www.complang.tuwirnnaccat/

nroiects/fortl~. html
, I

ftp://flp.complang.rl~wic:n.ac.at/
pub/projects/forth. htrnl

4.0 university
4.1 Institut fr <;omputcrsprachcn, I ' IJ

\Y1irn
5.0 Anton Ertl
5.1 antonG~mips.complang.tuwicn.ac.at
6.0 free
11.0 There's also some Forth marcrial that

is not referenced on the page, in
particular:
ftp://ftp.compIang.tuwien.ac.at/
pub/forth/
http://www.complang.t~~~icn.ac~at/
forth)

7 . 0 7he Mop.$ Page
1.1 Mar. 95
2 0 Philadelphia, PA, USA
3.0 http: / /www.netaxs.com/-jayfar/

mops.html
4.1 private
5.0 Jay Farrell
5.1 jayrar@netaxs.com
6.0 free web/ftp
8.1 The Mops language by Michael Hore.

The Mops system, manual, and Doug
I loffman's Selection Framework are
directly available from my pub direc-
tory. Other filesand resourcesarelinked
from other sites via the web page.

10.0 My ISP's IJnix boxes, which I connect
to using a Mac Quadra 605

11.0 Mops 2.6 is Michael Hore's public-
domain development system for the
Macintosh. With Forth and Smalltalk
parentage, Mops has extensive OOP
capabilities, including multiple inher-
itance and a class library supporting
the Macintosh interface.

I 0 Ic'on's Mac and Apple 11 archive
1.1 June 95
2.0 Milwaukee, WI, USA
3.0 http://kreeft.intmed.mcw.edu/pf.html
4.0 private
4.1 Iton Kneusel
5.0 Ron Kneusel
5.1 rknei~sel@poa.its.mcw.edu
6.0 frce
7 0 ftp and http
8.0 10
8.1 Forth programs I've written for the

Mac and Apple 11.
8.2 yes
10.0 httpd4Mac-123a and ITPd 2.4
1 1.0 Types of files: pretty-printer for LaTeX,

Forth on a simulated Apple 11 in Forth,
microcomputer simulator/assembler,
fractal-drawing program, CGI applica-
tions in Forth for MacH'ITP.
' fo be added soon: Web Forms han-
dlers for MacHTTP/WebStar; updated
and "improved" Forth for the Apple I[e;
simple program to show the period-
doubling route to chaos.
Mac files are BinHexed CompactPro
archives (transfer as text); Apple I[files
are Shrinklt archives (.shk, binary).

7.0 taygcta.oc.nps.na y , m i l
1.1 1990
2.0 Monterey, CA, USA
3.0 taygeta.oc.nps.navy.mil (131.120.60.20)

www: http://taygeta.oc.nps.navy.miI/
fighome.html

4.0 non-profit
4.1 Skip Carter
5.1 skip@taygeta.oc.nps.navy.mil
11.0 A premiere Forth archive on the net;

includes Forth Scientific Library, CD-
ROM project, GEnie archives.

1 .0 University of Brernen
3.0 //ftp.i~ni-bremen.de/pub/languages/

programming/forth http://ftp.uni-
bremen.de/ITP/ftp.html

Forth Dimensions November 1995 December

(Continues on page 3 7.)

November 1995 December

4.0 business
4.1 FORTH, lnc.
5.0 E. Rather
5.1 crather@forth.com
6.0 rree website
11.0Site includes summary info and de-

tailed data sheets for FORTH, Inc. prod-
ucts, Forth programming course out-
lines, application descriptions (some
with photos), and links to other Forth
sites. Material added periodically.

7 .O F-PC Homepage
1.1 May 7, 1995
3.0 http://www.efn.org/-Fwarren/fpc.html
5.1 Fred Warren, email:

fwarren@gears.efn.org
8.1 Related to F-PC Forth for the IBM-PC.
1 1.0 I lomepage dedicated to the Forth for

the IRM-PC known as F-PC. I t is a Full-
featured, non-ANSlcompliant (superset
o f Forth-83 standard) public-domain
version o f Forth. This page intro-
duces Forth and F-PC, can download
F-PC and tutorial material, and on-line
mini-tutorials about features o f F-PC.
This page wil l eventually be a reposi-
tory for useful F-PC libraries.

1.0 Jeff Fox's Home Page
1.1 Dec. 93
2.0 Rerkeley, CA, USA
3.0 http://www.dnai.com/-jfox
4.0 Business
4.1 Ultra Technology
5.0 Jerf Fox
5.1 jfox@netcom.com (most often)

jfox@dnai.com (supports Eudora)
8.0 40 files
8.1 UltraTechnology, Computer Cowboys,

Offete Enterprises, MlSC chips, P8,
P21, F21, P32, parallel programming
in Forth, and AI.

9.1.1 iiuenc/decode (on the netcom ac-
count)

11.0Thiswebsiteisorganizedbysubject
from the home page listed above.
Incl. individual home pages for my
company, Ultra Technology (http://
www.dnai.com:80/-jfox/ultrahtml);
Chuck Moore 's company
(cowboys.html); Dr. Ting's company
(offete.html); and for Minimal Instruc-
tion Set Computers (misc.htm1); as
well as for MlSC chips like P8, P21,
and my chip, the F21.
There are FORML Conference papers,
and FD articles in html format. There is
a copy of the first published article on
Forth b y Chuck Moore in 1970
(4th-1970.html). Many documents are
available in html, .DOC, .ZIP, .PRN,
.TXT, with some .EXE, etc. All files are
cross-indexed in ultrafre.html, which is
listed as "Free Files" on my home page.

5.1 ftp-admin@ftp.uni-bremen.de
11.0Features a ful l ../Taygeta-Mirror

archive (information from c.1.f post
by dku@zarniwoop.cp-labor.uni-
bremen.de (Dirk Kutscher).

Internet Mailing Lists
1.0 ANSFortb Mail Croup
3.0 ANSForthOminerva.com

(mail group membership)
ansforth-request@minerva.com

(to join ANSForth mail group)
11.0 Communicate with these for ques-

tions pertinent to the Technical Com-
mittee mJ14 working on ANS Forth.

1.0 FIRE-L
1.1 Sept. 94
2.0 global
3.0 subscribe:

listserv@artopro.mlnet.com
submissions:
fire-I@artopro.mInet.com

5.0 Moderated by Rick Hohensee
5.1 rickh@cap.gwu.edu
11.0The Fire-l Mailing List is for updates,

discussions, debate, speculation, and
announcements o f Rick 14ohensee's
free-form FIRE specification.

1 .O LMI Technical Support
3.0 support@lmi.la.ca.us
4.1 Laboratory Microsystems Inc.
5.1 Ray Duncan, e-mail:

<ray.duncan@lmi.la.ca.us>
11.0Technical support for users o f I.MI

Forth systems.

1 . 0 MISC mailing list
3.0 Subscribe to:

misc-request@pisa.rockefeller.edu
Articles: misc@pisa.rockefeller.edu

5.0 Jeff Fox and Penio Penev
5.1 jfox@netcom.com (Jeff Fox)

Penev@venezia.rockefel ler .edu
(Penio Penev)

11.0 The MISC list is about all aspects o f
the new P21/P8/P32 and F21 Mini-
mal Instruction Set technologies be-
ingdeveloped by Charles Moore and
his MISC associates.

1.0 7;be Win32For mailing list
1.1 Dec. 94
3.0 for list entries:

win32for@edmail.spc.uchicago.edu
for un/subscribe (on one line):
win32for-requests@edmail.spc.

uchicago.edu
5.0 Carl Zmola
5.1 zmola@cicero.spc.uchicago.edu
11.0 Discussion o f all Win32For issues,

the Win NT/95 object-oriented Forth
system from Andrew McKewan and
Tom Zimmer.

Electronic Mailboxes
1.0 The Forth Online Resources Survey

(FORL)
1.1 July 95
3.0 forl@artopro.mlnet.com

Forth Dimensions

11.0A permanent mailbox/index for track-
ing the ebb and flow of all publicly
available Forth electronic resources.

7 .O Miller Microcom/~uler Scwices
1.1 Dec. 90
2.0 Natick, MA, IJSA
3.0 dmiller@im.lcs.mit.edu
4 .O business
4 .1 Millcr Microcomputer Services
5.0 A. Richard Miller
5.1 dmillerdim.lcs.mit.cdu
6.0 free
7.0 Internet
8.0 none
9.0 none
11 .0 We stock Forth-related books (some

on sale) and MPI4SFOIITkI software. We
support licensed users of MMSFOR'TI 1,
FORT1 ICOM, FORTI I-WRITE,
DATAHAND1,F.R-P1,USForlRM-PC(MS
DOS and non-DOS/standalonc). \Ye
provide PGcompatiblc consulting and
hardware. Request our free e-mail bro-
chure "MMSFOR'Tf-I and Forth books."

Newsgroups, Conferences, et al.
1.0 comp.lang forth
1 I .O Usenet newsgroup c.1.f is the premiere

global Forth bulletin board. Articles
from comp.lang.forth are archived at:
rtp://astcrix.incscn.p~/pub/rortNnew

1 . 0 GEnie
11.0 GEnic is nin by General Electric Infor-

mation Scrviccs (C;l:IS). Its Forth
"Round1'at)lc" has a bullctin boardand
library. For info, including local access
numbers (not just IJ.S. and Canada),
phone 800-638-%36. "As a user and
worker on GEnie, I have round a s -
tomer service to be very good."

World-Wide Web
1.0 Rernd f-'aysan's Web site
3.0 h t t p : / / w w w . i n f o r m a t i k . t u -

muencticn.de/cgi-bin/nph-gateway/
hphalle2/-paysad

5.0 Rcrnd Paysan
5.1 paysan@in~ormatik.tu-mucnchen.dc
11.0 BigForth and GForth systems and

information.

1.0 FIG borne page
3.0 http://ww.taygeta.com/fig.html
4.0 non-profit
4.1 Forth interest Group
5.1 e-mail: johnhall@aol.com
11.0The FIG home page includes an on-

line membership form, a commcn~.
mailer, and links to several other
Forth \~RI,s-c g., Andrew Rartelt homc
page
http://www-ccc.rice.edu/-andrew
M. Rorasky's Home Page
http://www.teleport.com/-znmebp7

1.0 FORTFI, lnc. Ilotne Page
1.1 June 95
2.0 1.0s Angelcs, CA, IJSA
3.0 http://www.earthlink.net/-forth

35

Associative Lists

Wil Baden
Costa Mesa, California

Associative Lists as Wordlists
This article is in response to a n inquiry about how to

implement associative arrays.
O n a n external medium, particularly disk, a database

is a collection of keys with associated properties. Keys may
o r may not be able to b e inserted o r deleted; properties
may o r may not b e able to be modified.

In direct access memory, such an object is a symbol
table, or associative away, or associatir~e list.

Every programming language processor has such a
mechanism. Forth is rare, if not unique, in that the
compiler's o w n facility is available to the programmer.

When challenged to implement associative arrays, the
Forthly response is: Use WORDLIST from the Search-
Order wordset.

Let's see h o w w e could use it to define a word to define
associative-lists.
: associative-list WORDLIST CONSTANT ;

Well, that was easy. Now let's
define some words to use them.

Just three other words from the
Search-Order wordset, SET-CUR-
RENT, DEFINITIONS, a n d
SEARCH-WORDLIST, give us what
w e need for basic operations with
associative-lists. (See Figure One.)

See Listing O n e [page 381 for
the relevant words from the Search-
Order wordset. See the appendix
[page 381 for string operators S+
and S, used here.

Examples
Let's begin setting u p two asso-

ciative lists, In ternet Country
Codes, a n d U.S. Postal Service
State Codes. That all our entries
are two letters long is not signifi-
cant. (See Figure Two.)

Associative Lists from Scratch
Wordlists as vocabularies a n d wordlists a s associative

arrays are used differently. A member of a wordlist as
vocabulary is translated a n d executed automatically when
encountered in the input stream with an appropriate
search-order enabled. A wordlist a s associative array
generally takes at least three explicit specifiers to get a n
associated property: a value for the key, a n identifier for
the associative array, a function for the property.

In a wordlist, the keys must follow the rules for Forth
words in the implementation, a n d there is a stringent limit
as to the number of wordlists that can b e defined. T o
overcome these limitations, you can define associative
lists directly. The look-up method that will be used here
is brute force, which should always be your first choice.

Illis implementation is about twice as big as the wordlist
approach, but is still economical. (See Figure Three.)

l 'he cxamples are the same as above. Applications and
extensions are left to the reader.

Conclusion
Being able to do-it-yourself is the good news; having to

do-it-yoursclf is the bad news. Doing-it-yourself is more fun.

(/.isling One and Appendix appear o n page 38.)

Wil Badcn is a professional programmer with an interest in Forth.
wilbadenOnclcom.com

Figure One. Definitions for basic associative-list operations.

: e n t r y (s . wid --)

SET-CURRENT (3 .)

S" CREATE " 2SWAP S+ EVALUATE ()

DEFINITIONS

: i t e m ? (s . wid -- 0 I xt)

SEARCH-WORDLIST DUP IF DROP THEN

: i t e m (s . wid -- a)

i t e m ? DUP O = ABORT" N o t an i t e m . " (x t)
>BODY (a)

: i t e m s (--)

SET-CURRENT
WORDS

DEFINITIONS

November 1995 December 36 Forth Dimensions

Figure Two. Setting up two example associative lists.

a s s o c i a t i v e - l i s t country
a s s o c i a t i v e - l i s t usa

(Define three country codes and two s t a t e codes.)

S" u k " c o u n t r y e n t r y S" U n i t e d Kingdom" S,

S" c a w c o u n t r y e n t r y S" C a n a d a " S,

S" c a w u s a e n t r y S" C a l i f o r n i a " S ,
S" d e " u s a e n t r y S" D e l a w a r e " S ,
S" d e w c o u n t r y e n t r y S" Germany" S ,

(Here's how t o get t h e property o f a code.)

S" c a w c o u n t r y i t e m COUNT TYPE \ Canada
S" c a " u s a i t e m COUNT TYPE \ C a l i f o r n i a

(Lis t t h e c o u n t r y codes def ined so f a r .)

c o u n t r y i t e m s \ d e c a uk

("Forih On-line, "from page 35.)
7 .0 Leo Rrodie Sem'ces
3.0 tittp://www.pacificrim.net/-lbrodiel

Ibs.html
5.0 1.eo Rrodie
11.0 Renowned author of Starting Forth

and Thinking Forth keeping in touch
with the community.

7.0 Nick Francesco's Forth Page
1.1 Peb. 95
2.0 Rochester, NY, USA
3.0 http://raptor.rit.edu/Nick/forth.htm
4.0 Private
4.1 Nick Francesco
5.0 Nick Francesco
5.1 nickQrit.edu
6.0 free
7.0 Web Rrowser
8.0 5
8.1 Forth resources on the net
8.2 yes
9 .0 none
I I . 0 The Sound Bytes Radio Show Home

Page:
http.//www .vivanet.com/soundbytes

Figure Three. Implementing associative lists from scratch.

: associative-list CREATE 0 , ;

: e n t r y (s . l i s t --)

ALIGN HERE SWAP (. . here l i s t)
DUP @ ,
! (s .)

S , () ALIGN ()

: i t e m ? (s . l i s t -- a)

@ (s . pointer)
BEGIN

DUP
WHILE

3DUP CELLt COUNT COMPARE
WHILE

@
REPEAT

CELL+ COUNT CHARS + ALIGNED (s . a)
THEN
NIP NIP (a)

: i t e m (s . l i s t -- a)

i t e m ? DUP O= ABORT" N o t a n i t e m . " (a)

: items (l i s t --)

@ (pointer)
BEGIN

DUP
WHILE

DUP CELL+ COUNT TYPE SPACE
@

REPEAT DROP

1 .O Open Firm Ware
3.0 http:Nwww.firrnworks.com
4 .1 Bradley Forthware
11.0 several Postscript documents avail-

able from this URL on PowerPC,
Sparc for Open Firmware develop-
ment, licenses, and consultation.

I .O Phil Koopman 's Forth Mini-Page
1.1 July 95
2.0 East Hartford, CT, USA
3.0 http://danville.res.utcccom/

Mechatron ics/ads/koopman/forth/
index. html

4.0 personal
5.0 Philip Koopman
5.1 kooprnan@utrc.utc.com
6.0 free
8.0 Personal Forth and stack machine

publications
11.0 In html a s of July 1995:

WISC CPU/l6 patent cover page
and block diagram.
WlSC CPU/32 (Harris RTX-4000)
patent cover page and block dia-
gram.
Preliminary exploration of opti-
mized stack code generation VE4R
paper).
Brief introduction to Forth ("two-
page" language overview).

1.0 Pocket Forth Home Page
1.1 June 95
2.0 Phoenix, AZ, USA
3.0 http://chemlab.pc.maricopa.edu/

pocket.html
4.0 Private on a comrnunity-college-

owned computer.
4 .1 Chris Heilman/Phoenix College
5.0 Chris Heilrnan
5.1 heilrnan@pc.rnaricopa.edu
6.0 free/daytime access may be slow or

limited
(Continues o n next page.)

Forth Dimensions November 1995 December

Listing One. Relevant words from the Search-Order wordset. I
16.6.1.1 180 DEFINITIONS SEARCH

(-- 1
Make the compilation word list the same as the first word list
in the search order. Specifies that the names of subsequent
definitions will b e placed in the compilation word list.
Subsequent changes in the search order will not affect the
compilation word list.

16.6.1.2192 SEARCH-WORDLIST SEARCI I

(c-addr u wid -- 0 I xt 1 I xt -1)

Find the definition identified by the string c-addr u in the
word list identified by wid. If the definition is not found,
return zero. If the definition is found, return its execution
token xt and o n e (1) if the definition is immediate, minus-one
(-1) otherwise.

16.6.1.2195 SET-CURRENT SEARCI I

(wid --)

Set the compilation word list to the word list identified by
wid.

16.6.1.2460 WORDLIST SEARCI I

(-- wid 1

Create a new empty word list, returning its word list identifier
wid. The new word list may b e returned from a pool of
preallocated word lists o r may be dynamically allocated in dala
space. A system shall allow the creation of at l c a s ~ 8 new
word lists in addition to any provided as part of the system.

Appendix. Definitions of string operators s t and s, .
I

: S, (s . - -)
DUP C,
0 ?DO (3)

COUNT C ,
LOOP DROP

: S+ (sl . s 2 . -- s3 .)

>R (sl . s 2)
OVER CHARS PAD + R @ (s l . s 2 a .)

MOVE (271 .)

>R (s l)
PAD R @ MOVE ()

PAD (33)
R> R> t (3 3 .)

: 3DUP (a b c - - a b c a b c)
2 P I C K 2 P I C K 2 P I C K (a b c a b c)
(o r DUP 20VER ROT)

("Forth On-line, "from precedingpage.)
7.0 www only.
8.0 about 40
8.1 Pocket Forth
8.2 yes
9.0 Click a link to e-mail the author of

Pocket Forth.
10.0 Mac OS
1 1.0 This site is maintained by the author

of Pocket Forth and includes archives
of software written in Pocket Forth,
such as programming demos, appli-
cations, and unique CGI programs
written in Pocket Forth.

1.0 Ste/~han J Bevan 's Web page
3.0 http://panther.cs.man.ac.uk/-bevan/

forth
5.1 bevan@cs.man.ac.uk (Stephan J.

Bevan)
11.0 IJp-to-date FAQ information on Forth

implementations and books; e-mail
maintainer to make suggestions, cor-
rections, and additions.

1.0 The Computer Journal
3.0 h t~p : / /www2.psybe r . com/ - t c j /

groups. html
5.0 TCJ Editor: Rill D. Kibler
5.1 tcj@psyber.com
1l.Out-lands on support for the Trailing

Edge ofl'echnology" is the tongue-in-
cheek motto of this publication about
old and new hardware and embed-
ded systems programming; URL has
many pages of info, much with direct
bearing on Forth.

1.0 The 7UNFS project
1.1 1995
2.0 Paris, France
3.0 http://www.eleves.ens.fr:8080/home/

rideau/Tunes/
5.0 Franqois-Reni: "Fare" Rideau
5.1 ridcau@ens.fr
6.0 free (GNU copyleft)
8.0 Only part of one file points to Forth

www sites, but the Forth spirit has
contaminated the whole project.

8.1 Review of actual Forth in
. . ./Review/Languages. html#FORTH
and of my own version of Forth in
. . ./LI.L/LI.L.html.

8.2 yes
10.0 SunOS 4.1.3
11.OThis site is for my TUNES system

project, only remotely related to Forth.
The only thing about actual Forth is:
http://www.eleves.ens.fr:8080/home/
r i d e a u / T u n e s / R e v i e w /
I.anguages.html#FORTH

November 1995 December 38 Forth Dimensions

(Fast Forthward, continuedfmm page 43.)
C++ programmers. (Forth programmers have the choice of
using stack comments to help give descriptive labels to
dynamic data.)

Named dynamic data can make program source code
easier to comprehend. This important facility involves the
widely used feature of local (automatic) variables in
languages like C. This continues to be the practice because
local (automatic) objects are featured in C++.

When pointer names are used to refer to dynamic data
(local objects or variables), the pointer name is usually
appropriately descriptive, too.

For C++, the typed pointers of C have been embel-
lished with all the extra semantics and syntax of C++
objects when the thing they point to is an object. So i f
o p e r a n d l P t r is a pointer to a complex number object,
operandlptr->add(operand2)

should reference the member function for the addition of
two complex numbers.

However, two object instantiation protocols are re-
quired in OOLs like C++. A new operator creates dynamic
objects in C++ at the runtime for a routine. A data-type
(class) name can also be used to create object instances as
part of the initialization of static data. I t can also be used
to create compiler-scoped names for pointers to the
associated class of object.

In the pointer case, no memory is actually allocated.
For pointers, memory allocation is not an automatically
suppliedstep, but one that you code explicitly. Thus, there
are two different ways to bring a dynamic object into
existence in C++:

If the data-type name is employed inside a Function for
the creation of an object, a named local (dynamic) object
is created with allocated memory. It takes the same
object syntax as would normal static objects.
If an object is instantiated inside a function using the
new operator, then a pointer-style of syntax applies to
the address that is returned by new. IJsually, thc
returned address is assigned to a type-corresponding
pointer that was declared to the compiler earlier, as in:
complex*operandlPt r;
. . .
o p e r a n d l p t r = new complex;

Soft-coding Functions and Data v p e s
One reason we should wish to encounter objects along

the way to Functions is that we can go soft on the functions
that need to be called. For example, if I want an addition
suitable for double number arguments, I can ask for
addition as it applies to an operand of the double data
type, as follows:
o p e r a n d l . a d d (o p e r a n d 2)

The compiler can determine the exact form of addition
needed.

Because a class aggregates the data types from the line
of parent classes from which it is inheriting, what I have
been describing as polymorphism is perhaps better de-
scribed as inheritance. In any case, member functions

Forth Dimensions

from one or more parent classes will be mated to objects
of the data type corresponding to their subclass.

Soft-coded functions and data types is the distinction of
objects that I find most remarkable, regardless of the label
we put on i t . Accordingly, 1'11 continue to attach the label
of polymorphism to continue to emphasize that the
member function calls for objects are class-encapsulated
and, thereby, soft-coded.

Note how little maintenance is required if we change
the declara~ion of operand1 and operand2 to make
them floating-point numbers. The 00 compiler merely
gives me an addition operation suitable for floating-point
numbers. 1 don't have to weed through my code, unearth-
ing all the obsolete references to a uniquely named
addition operation for double numbers.

Of coursc, C, BASIC, and Pascal already had this level
of support in terms of functions that were exposed
through operation symbols. However, this was only the
case for built-in data types. A modern OOL extends the
convenience enjoyed with soft-coded operations to soft-
coded functions.

To be able to treat the programmer-supplied functions
as flexibly (polymorphically) as built-in (overloaded)
operations, data types must be declared that overload
mcmbcr functions with common names (or common
operation symbols). The decision to create classes with
analogous nlember functions but different data structures
is wise, even though i t can be more work, because of the
malleability i t can afford.

'Through the practice of overloading operator symbols
or member function names in several closely related
classes, we can anticipate the need for data types to
change once a program is complete. Using an alternate
data type to represent certain values can dramatically alter
the performance, memory-appetite, and other run-time
characteristics of the final program.

I think of this feature as a sort of what-if scenario-
cxercising facility for data-structuring decisions you must
make. I t is a playful feature, in the same sense that Forth's
interactive style of programming can be so immediate that
i t becomes a pleasure to use.

The data-structuring decisions you must make early in
the development cycle for an application can remain in
flux until the end of development. Even after development
has ceased, the overall characteristics of your program are
subject to a certain amount of fine-tuning with small
c.hanges to the source code.

Of course, this potential benefit is only realized if we
can program or purchase classes or class libraries that can
readily be substituted for one another. C++ has recently
adopted a template library that has code-generation
capabilities for ensuring just such an outcome for the more
commonly required classes, such as queues. For example,
using the template library, queue classes can be readily
constructed for integers, floats, and even any program-
mer-supplied data types.

Arguably, i t may be wise to create classes with member
functions for which there are no analog member functions
inside analogous classes. This merely forces an object

39 November 1995 December

form of a function-calling syntax upon our code, making
functions soft-coded. Later, we are free to add the look-
alike classes so that the flexibility of soft-coded functions
can be enjoyed. If nothing else, we can use this facility in
place of conditional compiler directives.

The Matchmaking of Casts and Objects
Automatic casts are a close cousin to polymorphism.

Through automatic casts, function parameters can be
coerced to match the data type expected by the function.
This avoids data-type mismatches, too, providing that the
conversion operation applied can be considered robust.

Automatic casting allows the effective function to
remain the one explicitly specified. In contrast, polymor-
phism selects a function, if any, that suits the unchanged
data type of the related object.

For example, polymorphic selection of an unsigned
addition operation due to the presence of an unsigned
integer operand is more robust than for the compiler to
automatically cast the unsigned number to a signed
number for use with a signed-integer addition.

Such a cast would involve a loss of one bit of resolution.
Automatic casting can be considered completely safe when
the type is made more general. Unsigned numbers do not
possess an "is-a" relationship with signed numbers. In fact,
neither a relationship of signed-is-an-unsigned-number or
a relationship of unsigned-is-a-signed-number holds true.

Considering how data types inherit from their parent
classes, every node data type is considered to be a n
aggregation of the data types from its parent classes. So
any cast of an object to an object of a more general data
type is effortless and safe. No conversion operation need
be compiled to change the data type of the object.

By design, mating member functions will exist for i t ,
perhaps drawn from a parent class. Through early binding,
this involves no run-time overhead, nor even a funclion
pointer.

(The same claim about type safeness is not true when
down-casting to a more specific data type. For safe handling
insuch a situation, the requirements are virtual functions in
abstract classes and pointer-moderated function calls for
member functions at runtime, also known as late binding.)

Due to class-structuring rules, neither signed nor
unsigned numbers can be the parent class of the other. As
a result, automatic casting between them can be consid-
ered suspect because a conversion function is required.
Depending on the conversion function, he converted
data may be unfaithful to the original.

(Recall that C++ is a hybrid language, however, so it
can break its own object-oriented rules.)

C was much less type safe. C++ is, nevertheless, free lo
continue with the old ways of C, which it sometimes does
for the sake of backwards compatibility.

Unfortunately, C++ also permits casting betwccn data
types that are not part of a class inheritance chain. \Vhcrc
is the wisdom in being able to convert an integer to a n
array? By adding this additional form of automatic casring,
the type-checking facilities ofC++ are considerably weak-
ened. (A workaround has been approved, however, as
November 1995 December

part of the continuing evolution of the C++ standard.)

The Definitiveness of Data
An increment hnction for a variable used for sample-

counting is profoundly different than an increment func-
tion for a variable used to hold a temperature threshold.
\Ye do nor understand the significance of a function action
until we understand the nature of the data it acts upon.

Since many representations are possible for the same
data, its dara type should be considered a subordinate
attribute. For example, i f a sample-counting variable is
changed from an integer to a double, its algorithmic role
remains unaffected. .

A shift to a data-centric view is therefore justified to
emphasize the data apart from its mutable type-and, by
extension, its mutable type-associated operations. It's as
though we need to tell the compiler: "When incrementing the
value for temperature threshold, use its associated data type
to resolve the exact hlnction for that type, regardless ofwhat
that data type may bc today, tomorrow, or the next day."

Through polymorphism, objects offer the encapsula-
tion tool with which to soft-code functions and data-types,
affording more maintainable programs. In contrast, a
fi~nction-centric way of coding of program actions runs a
risk of obsolescence due to a greater likelihood for data-
type changes. Even when the data types of function
parameters are built-in types, automatic casting imparts
only limited flexibility, beyond which code obsolescence
is produced, and maintenance work is engendered.

(Functions with indeterminate types of parameters are
exceptional, such as print f () . For such functions, type-
checking is iinavailable because data type mismatches are
not caught early.)

An Object-led Programming Style
A style guideline I constantly hear from gurus in both

the Forth and C: encampments is to eliminate literal
numbers from your programs and replace them with
enumerations or named constants.

I claim that the practices of data-type encapsulation and
lircral-value encapsulation are similar because both practices
produce a program that is easier to maintain and fine tune.
As an example of literal-value encapsulation, a program
previously written to assume a line length of 80 columns can
be rewritten in terms of a line-length constant. For a program
that encapsillares the line-length in a constant, very trivial
changes can support alternative line widths. Likewise, by
changing the data declaration from a constant to a variable,
and making a few more simple changes, run-time changes of
the line width can be supported.

You can also understand these forms of encapsulation
in terms of the use of a client-server protocol. Client
functions throughout the program that require knowledge
of rhe line width are served that value through the variable
or constant that encapsulates it.

With OOLs, the encapsulation capacity is taken up a
level: the sites of function calls serve up the correct
functions. These calling sites are soft-coded references to
functions. Function selection relies upon the data type of

40 Forth Dimensions

Forth Dimensions 4 1 November 1995 December

a mandatory accompanying reference to an object in-
stance. The object name and the function name thus work
together to identify the correct function.

These two types of encapsulation have a similar look
and feel. For example, several print functions may t)c
written for use in conjunction with various types of line-
width objects. Auxiliary line-width data types might t)e
created to hold a length as well as an algorithm that
permits a right-adjusted line-print style, or an algorithm
that centers lines.

When the L I N E - W I D T H instance object is re-declared
using an alternative (compatible) data type, an entirely
new function can be resolved at the site of a soft-coded
function reference such as:
L I N E - W I D T H . p r i n t (l i n e)

If this sounds a bit like the tail wagging the dog, well
so be it.

Just as the gurus permit no exceptions to the elimina-
tion of literal values from programs, I suspect 00 pro-
gramming shines its brightest when there are no excep-
tions to the soft-coding of functions and data types.
Beware, however, because this type of issue leads to the
debates that continue between the object purists and
object nonpurists.

We need to answer the question: Is it ever beneficial to
hard-code functions and data types? (I don't believe i t is
ever beneficial to literally specify a value as opposed to
encapsulating it in a constant.)

Another guideline for an object style of programnling is
the pursuit of namespace reduction. It is natural to want to
view a proliferation of functions as an order-of-magnitude
fewer functions, if at all possible. One way we can make
hordes of functions more manageable is by naming related
functions the same, but placing them in different classes.
That way, a more limited number of function names can
make less direct (i.e., soft) reference to a larger pool of
related member functions, according to object contexls.

However, this argument appeals most when you are
coding larger applications. Programming guidelines are
largely self defeating when they vary in applicability
according to circumstances, such as program length.

Because namespace reduction is a natural byproduct of
the guideline to soft-code functions and data types using
polymorphism, it need not be considered a separate and
distinct guideline.

Conclusion
Even if you have despised object-oriented program-

ming before now, you should be able to see that soft-
coding permits the final application to be more easily
maintained and fine tuned. This is in the same spirit as
Forth's incremental development.

Objects may be seen as a part of a larger pursuit of more
mutable or fine-tunable programs. If there exists a means
to achieve a similar goal that can bypass the conventions
and peculiarities of OOLs, then we could perhaps afford
to ignore object languages.

We Forthers may be critical of object-oriented pro-

gramming languages for various and compelling reasons.
I-Iowever, the goal of soft-coding function calls through
the data type of an accompanying object reference re-
mains a laudable one.

(Ionsidering how operator polymorphism was already
a part of modern programming languages, OOLs are
shown to be directly descendent of previous languages.
By emphasizing those ties to previous languages, I have
shown that 001,s do not have to be considered foreign. A
germ of their goals and their mechanisms for implemen-
tation, such as operator selection based on data types,
already existed. Automatic casting is another prevalent
facility that is closely related to objects.

In any case, we should not dismiss 0 0 1 s without a
serious study of them. I f they do not determine the future
of programming, objects at least signal a shift in program-
mingstyles. Objects will make programmingeasier insofar
as they support flexible programming without bringing us
programmers too much additional grief and without
making our programs inefficient.

C++ does well in terms of not making our programs
inefficient. ILS ability to offer the efficiency of hard-coded
C functions, but the convenience of soft-coded functions,
is a remarkable achievement.

As an 001, compiler, C++ helps eliminate operator and
operand mismatches-even for programmer-supplied data
types and for functions and their parameters-primarily
through its better exploitation of data-type information
encapsulated by references to data objects of specific classes.

I lowever, I suspect C++ is causing a lot of unnecessary
grief.

C++ places upon us the additional burdens of an
unwieldy language syntax and compilers that are both too
smart and too dumb. To implement a data type thor-
oughly, we are asked to enter into the delicate business of
writing constructors and destructors, the likes of which
were never exposed for the built-in data types of earlier
programming languages. It's as if we are being asked to
take over some of the compiler-writing role. In this regard,
the C++ compilers are too dumb.

The compilers are also too smart, because they cling to
the role of writing constructors and destructors for you. In
many cases, the work these smart compilers would do for
you is usually useless due to oversimplification. So we
need to be able to take control from them, meaning that
we must out-smart these smart compilers. In this regard,
these compilers are too smart.

Forth supports no soft-coding of functions that is
moderated by data types. Change a Forth integer variable
to a double, and you must go hunting for all references to
integer-specific operations with that variable.

Of course, admirers of OOLs will see Forth as an
elegant candidate for building an OOL, because its present
status makes backward compatibility irrelevant. I t has the
opportunity to support objects, and built-in and other data
types, using a common protocol. This should be much
better than kludging together two separate mechanisms,
in the manner of hybrid languages like C++.

A Forum for Exploring Forth Issues and Promoting Forth

Objects Promote New Programming Style

Mike Elola I
San Jose, California

Objects can bring a better style
of programming while easing
code maintenance.

One cannot conceive of programming without func-
tions. Functions correspond to program actions. Each
program action corresponds to one or more groups of
instructions that comprise functions, Because functions
can easily refer to one another, they tend to become a
meta-language for specifying programs.

With our long labors directed towards defining the best
functions for specifying an application, it is natural for us
to look upon data structures as lesser concerns. Oddly,
however, there are good reasons to elevate our consider-
ation of data structures to an equal level, or even a level
above functions.

Even if we pack the functions into modules, the names
and calling conventions ofthe functions always remain thc
focus ofour reuse effort. Likewise, if we package functions
inside object classes, we still continue to deline the actions
of a program in terms of class-member functions, i f not
normal functions. Part of the calling convention for a
member function is a mandatory reference to an instance
object of a related class.

The name of an archive library or D1,I. can bc more or
less arbitrary. Changing the name of a library docs not
affect the source code that implements program actions.
In just a few places, coordinated changes are required. For
example, compiler invocation commands will be affected.

Because we deploy functions at widely varied loca-
tions throughout our source code to specify program
actions, changes to function names or lo the parameters
they accept can make many passages obsolete throughout
our source files.

Although macro processors (such as the C preprocessor)
allow the soft-coding of functions so that less maintenance
arises from such changes, objects can bring a better stylc of
programming while easing code maintenance.

Data is not normally referenced without the intent of
processing it somehow. So the suffixing of an object

rcfercnce with a function rererence is not only natural, it
is a clever extension of the normal function-calling syntax.
Considering how the function reference alone can be
ambiguous, the prepended object reference supports its
timely disambiguation.

]:or this reason, using object-moderated functions can
help 11s more than trafficking in normal functions alone.

Reforc expanding upon this idea (in "Soft-coding Func-
tions and Data 'Types"), the expanded role of data types will
be explored in three or four brief sections following. C++
will be used as a reference language for comparing object
programming to conventional programming.

I t can also be illuminating to compare objects to
variables. For variables, overloaded operators had to be
matched lo appropriate Tunctions, such as plus and minus.
For objects, overloaded member functions may need to be
discriminated bctwcen.

I.ikc ordinary variables, objects are identified with a
single data type. I!nlike ordinary complex data types (C
strucw or Pascal records), however, objects are tapped for
their associated data-type (class) information by a C++
compiler to resolve overloaded names or symbols to type-
suitable functions.

Variables come in two flavors in languages such as C
and C++. There arc static globals (described in "Static
Variables") and there are dynamic or automatic variables
(ticscribed in "Ilynamic Variables and Data").

Extensibility Extended to Data Types
A primary feature of object-oriented languages (OOLs)

is the cxtcnsion of data typing in such a way that
programmer-supplied data types can be indistinguishable
from built-in data types (a Forth-inspired trend, no doubt).

Wc Forlhcrs already have a deep appreciation of a
programming language that offers transparent extensibil-
ily (an acquired taste?). Perhaps we will discover a greater
kinship with our C++ brethren as they acquire a similar
apprecialion.

Enlarged Data Type Scope
Objects bring a new form of extensibility to data-typed

programming langi~ages. \We won't fully appreciate this

November 1995 December 42 Forth Dimensions

until we first appreciate how 001,s redefine whal consti-
tutes a (complete) data type.

Before objects, the notion of a data type had been
defined very narrowly. With part of their implcrncnration
unexposed (operator functions and automatic casts) anti
partially exposed (data declaration syntaxes and manual
casts), data types were largely off-limits to programmers.

What had gone unrecognized, and what objects now
expose, is that data types can be broadened to account for
such closely related provisions as operator overloading,
member function overloading, and polymorphism. As a n
example ofoperator overloading, the plus sign can usually
refer to floating point as well as integer addition, depend-
ing on context.

(Forth is unusual with respect to its neglect for operator
overloading; i t merely offers a larger number of type-
specific primitive operations.)

The OOLs attempt to carry the data-type-related feature
of polymorphism out of the backwaters of built-in data
types, extending it to programmer-supplied data types
and their associated (member) functions with overloaded
names. Data types have been enlarged by 001,s inro a
module-like conglomerate that includes function dcclara-
tions as well as data-structure definitions.

This may sound like smoke and mirrors. Some will say
that it is a simple matter of better codc packaging, since
classes merely consolidate every declaration pertinent ro
a data type into one easily identified i~nil of cotie.

Data wpes Annex Functions
Because it is redefined as a broader unit of codc

packaging, a data type (or class) is a more flexible container
for holding elements of the source code for an application.

However, saying that objects merely better organize
code overlooks their expanded role. For one thing, once
the conglomeration of related provisions consti~uting a
data type is bundled inside a well-delimited lexical unit
with a unique name, the collection as a whole can be easily

more will t)e cnjoycci for static object instances as well.
(Persistent objects can also be considered static ob-

jects. Any data location that is not allocated and freed with
the lifetimc of a program is static. Persistence usually
implies prcscrvation of data-not only during the lifetime
ofthc program, but across runs of the same program, and
even across runs of different programs that share data.
Accordingly, the pcrsistcnce of Smalltalk objects refers to
a longer-lived object than a C++ static object.)

Another way we can appreciate static data is as a key
to understanding a program written by someone else.
I3ccausc they arc often assigned values that reflect pro-
gram states, static variablcs can be important landmarks.
(Variable names help document the program better. If
names arc chosen with care, this extra documentation
makes any program much easier to understand.)

\Yfhilc the dynamic data on the stack can reveal a
dizzying amount of processing, the slower-motion activity
going on wilh respect to the variables can offer us a "big
picture." With appropriate tools, we can monitor variables
at run tirne to help us divine the overall direction of the
fincr-graincd processing.

When state information is evaluated in if-statement
predicates, the state information hejps determine appro-
priate processing, such as whether to compile an in-line
doul)lc or an in-line integer. Viewing the Forth interpreter
and compiler as state machines, certain Forth system
variables capture the state of the system:

STATE-captures whether the next word in the input
stream should be treated as interpretation source or
compilation source.
DPL-captures whether a number parsed from the input
stream was a double or an integer.
CURRENT-points to the latest word in the current
vocabi~lary.
CONTEXT-points to the latest word in the context
vocabulary.

referenced elsewhere.
This makes the redeployment of data structures and Some will say it is a matter of

associated function declarations easy. In such a way, onc bef fer code packaging.
(data type can easily be nested inside of another data-type

(or class), without a polluting it and without any codc
duplication. DP-points to the next free compilation address.

BLK-points to the block (or file handle).

Data-type Factoring Revealed IN-points to thc current character position inside the

Objects support a form of data-type factoring rhat is input buffer.

moderated through classes.
when data types are properly formalized as c~asscs, a n The" static variables help preserve data that should

identical process to what we ~ ~ ~ t h ~ ~ ~ c a l l f a c l o r i n g not 10" between calls to LOAD, INTERPRET, and other
becomes possible with respect to the syntactic unit for- entry points for the Forth input stream processor.

merly known as a data type (now known as a class). Built-
in and other previously defined data types can be aggre- Dynamic Variables and Data
gated to produce new data types (new classes). Ilynamic data has a shortened lifespan relative to the

length of a program run. The memory used by dynamic

Static Variables data is subject to recovery and reuse.
Static or global data structures are given names that Names may be omitted for dynamic data on the stack

benefit our of source code, l.hcy a l s o or on the heap, although this is rarely the practice of C and

disclose various program states. These samc benefits and C~ontinue.~ onpage33.)

Forth Dimensions 43 November 1995 December

CALL FOR PAPERS
FORML CONFERENCE

The original technical conference for professional Forth programmers and users.

Seventeenth annual FORML Forth Modification Laboratory
Conference

Following Thanksgiving November 24-26,1995

Asilomar Conference Center
Monterey Peninsula overlooking the Pacific Ocean

Pacific Grove, California USA

Theme: Forth as a Tool for Scientific Applications
Papers are invited that address relevant issues in the development and use of Forth in scientific applications,
processing, and analysis. Additionally, papers describing successful Forth project case histories are of
particular interest. Papers about other Forth topics are also welcome.

Mail abstract(s) of approximately 100 words by October 1,1995 to FORML, PO Box 2154, Oakland, CA
94621. Completed papers are due November 1, 1995.

The Asilornar Conference Center combines excellent meeting and comfortable living accommodations with
secluded forests on a Pacific Ocean beach. Registration includes use of conference facilities, deluxe rooms,
meals, and nightly wine and cheese parties.

Skip Carter, Conference Chairman Robert Reiling, Conference Director

Advance Registration Required Call FIG Today 510-893-6784
Registration fee for conference attendees includes conference registration, coffee breaks, and notebookof papers
submitted, and for everyone rooms Friday and Saturday, atl meals including lunch Friday throughlunch Sunday, wine
and cheese parties Friday and Saturday nights, and use of Asilomar facilities.

Conference attendee in double room-$395 Non-conference guest in same room-$280 Children under 18 years
old in same room-$1 80 Infants under 2 years old in same room-free Conference attendee in single mom-$525

Forth Interest Group members and their guests are eligible for a ten percent discount on registration fees.

Registration and membership information available by calling, fax or writing to:

Forth Interest Group, PO Box 2154, Oakland, CA 94621, (510) 893-6784, fax (510) 535-1295

Conference sponsored by the Forth Modification Laboratory, an activity of the Forth Interest Group.

