

SILICON COMPOSERS INC

FAST Forth Native-Language Embedded Computers

DUP

>R
R>

Harris RTX 2000'"' l&bit Forth Chip SC32'"' 32-bit Forth Microprocessor
08 or 10 MHz operation and 15 MIPS speed. 08 or 10 MHz operation and 15 MIPS speed.
I-cycle 16 x 16 = 32-bit multiply. I -clock cycle instruction execution.
I -cycle 14-prioritized interrupts. *Contiguous 16 GB data and 2 GB code space.

*two 25Bword stack memories. *Stack depths limited only by available memory.
-&channel I/O bus & 3 timer/counters. *Bus request/bus grant llnes wlth on-ch~p tr~state.

SC/FOX PCS (Parallel Coprocessor System) SC/FOX SBC32 (Single Board Computer32)
*RTX 2000 industrial PGA CPU; 8 & 10 MHz. 032-bi SC32 Industrial grade Forth PGA CPU.
*System speed options: 8 or 10 MHz. *System speed options: 8 or 10 MHz.
-32 KB to 1 MB 0-wait-state static RAM. *32 KB to 512 KB 0-wa~t-state static RAM.
*Full-length PC/XT/AT plug-in (&layer) board. *100mm x 160mm Eurocard s~ze (4-layer) board.

SC/FOX VME SBC (Single Board Computer) SC/FOX PCS32 (parallel Coprocessor Sys)
*RTX 2000 industrial PGA CPU; 8, 10, 12 MHz. 032-bit SC32 industrial grade Forth PGA CPU.
*Bus Master, System Controller, or Bus Slave. *System speed options: 8 or 10 MHz.
-Up to 640 KB 0-wait-state static RAM. 064 KB to 1 MB 0-wait-state static RAM.
*233mm x 160mm 6U size (&layer) board. *Full-length PC/XT/AT plug-~n (6-layer) board.

SC/FOX CUB (Single Board Computer) SC/FOX SBC (Single Board Computer)
*RTX 2000 PLCC or 2001A PLCC chip. *RTX 2000 industrial grade PGA CPU.
*System speed options: 8, 10, or 12 MHz. *System speed options: 8, 10, or 12 MHz.
-32 KB to 256 KB 0-wait-state SRAM. -32 KB to 512 KB 0-wa~t-state static RAM.
100mm x 100mm size (4-layer) board. 100mm x 160mm Eurocard slze (4-layer) board.

For additional product information and OEM pricing, please contact us at:
SILICON COMPOSERS INC 655 W. Evelyn Ave. #7, Mountain View, CA 94041 (415) 961-8778

I Features

6 Sets, Stacks, and Queues Marty McGowan

What more can be said about stacks? Rather than floating-point or compiler or exception
stacks, this article discusses using stacks in software applications-meaning stacks in the more

- -

general realm of sets and queues. Sets, stacks, and queues differ only in their access methods:
LIFO, FIFO, and "AIRO." Becoming conversant with Forth versions of each of these brings the
freedom to use whichever is most appropriate to your application.

14 Bounds Checking for Stacks
On the Internet's comp.lang.forth, Russell Y. Webb started this discussion, which revolves
around an interesting technical issue while also shedding light on Forth problem-solving in
general. It all started with an innocent, on-line request for advice: "What is the most efficient
approach to checking for stack underflow and overflow?. . .I'm interested in having a fairly
secure, stack-based virtual machine, but it seems like a lot of overhead to check everything.
Any ideas are welcome."

20 Nanocomputer Optimizing Target Compiler:
the Processor-Independent Core Tim Hendtlass

New nanocomputers-small single-chip processors with integrated RAM, ROM, and I/%
appear regularly, and a simple alternative to assembly language can speed the development
of applications for them. This processor-independent core only needs to be matched with a
processor-specific library to provide a compiler that accepts Forth input and generates
absolute machine code. (In the next issue, a library for the PIC16C71 and PIC16C84 processors

1 will be presented.) The compiler supports chips with different word lengths and different
architectures; it only expects that the target processor executes a series of instructions taken ~ from some type of ROM and has some RAM in which to keep variables and stacks.

I

Departments I
4 Editorial Will the real Forth please stand up?

5 Letters Challenged by macros; Forth vs. not-Forth

32 Forth On-line Forth on the net, in the web, and at other electronic locales.

35 Advertisers Index

36 Forth Vendors Where to find Forth systems, services, and consultants.

38 Stretching Forth Extending CASE by simplifying it.

42 Fast Forthward.. Vocabularies are overworked.

Forth Dimensions 3 September 1995 October

Forth Dimensions
Volume XVII, Number 3

September 1995 October

I'd like to thank the writer of the letter on the facing page (which we have titled 'Forth
us. notForth, "although itsauthor might havepreferred 'FIGUS. Forth'?. Forth Dimensions
welcomes critical input that might further our community's understanding of Forth, of
itsefJ and of its relationship to the rest of the world. This letter, in particular, raises some
specvic points to which readers are invited to respond. My reply here aims at the more
general issue.. .

There has long been a n interesting dichotomy in the responses of Forth users to those
w h o ask about its lack of o n e feature or another. O n the one hand, Forth minimalists reply
with something like, "You don't need it" o r "Forth already has that." 'The first retort tells
the potential Forth user that his perceived need doesn't exist, that w e understand his
problem better than h e does (which may sometimes b e true, but it's tactless and blunt
as a marketing approach). The second inflates some element of Forth beyond proportion
o r demonstrates limited understanding of the topic, as when telling someone that Forth
"already is object oriented."

O n the other hand are those w h o Mr. Kloman (and h e certainly is not alone) seems
eager to dismiss. They say, "Forth can d o that!" and proceed to create systems that d o
so-whether it b e bounds checking, heap managers, or genuine object orientation.
Performance, size, the support of a reliable vendor, and the availability of professional
programmers trained o n such systems all are apparently irrelevant, as long as the point
is proved. Some minimalists say those resulting systems aren't Forth at all, but examples
of application-specific languages o r mutations of Forth inro something else.

Which approach exemplifies the true Forth?
There is a point in Fiddler on the Roof when two people are arguing a n d the

protagonist agrees with both. Another person chimes in, "But Tevya, they can't both b e
right." T o which h e responds, "You, too, are correct!" Wisdom would suggest that the
answer lies not in making this a n either/or debate with o n e right a n d o n e wrong answer
for every programmer a n d every situation. Nor is a properly general solution likely to
b e found in a dilute compromise.

For that reason, as well as for their inherent interest, w e welcome to these pages
debate, critical thinking, and alternative approaches. These can influence u s to think
about Forth in n e w ways, o r can serve as valuable reminders of Forth's inherent strengths.
Neither I nor this magazine, under my stewardship, endorse a minimalist o r maximalist
(or static versus evolutionary) view of Forth. We simply attempt to publish the best of
the useful and interesting material submitted. So I encourage those w h o sympathize with
Mr. Kloman not to d rop a n explanatory note o n the heels of their departure, but instead
to remain a n d contribute their opinions and experience, to engage with us in the
enterprise of shepherding Forth into the future.

I d o suspect, though, that the Forth community must adapt, if only because the rest
of the programming world has changed, and continues to change. And if the Forth
philosophy is to continue to have a relevant voice, we must thoroughly understand
contemporary programming practices, and h o w they relate to Forth. If w e are to
adequately address the expectations of employers, Forth programmers, developers,
educators, a n d computer scientists, w e must understand their expectations a n d b e able
to address them expertly.

-Marlin Ouverson
FDedito?f4aol.com

Published by the
Forth lnterest Croup

Editor
Marlin Ouverson I

Circulafion/Order Desk
Frank Hall

Forth Dimensions welcomes
editorial material, letters to the
editor, and comments from its read-
ers. No responsibility is assumed
for accuracy of submissions.

Subscription to F o ~ h D i m -
swm is included with membership
in the Forth lnterest Group at $40
per year ($52 overseas air). For
membership, change of address,
and tosubmit items for publication,
the address is: Forth Interest Group,
P.O. Box 2154, Oakland, California
94621. Administrative offices:
510-89-FORTH. Fax: 510-535-1295.
Advertising sales: 805-946-2272.

Copyright 0 1995 by Forth In-
terest Group, Inc. The material con-
tained in this periodical (but not the
code) is copyrighted by the indi-
vidual authors of the articles and by
Forth lnterest Group, hc., respec-
tively. Any reproduction or use of
this periodical as it is compiled or
the articles, except reproductions
for non-commercial purposes, with-
out the written permission of Forth
Interest Group, Inc. is a violation of
the Copyright Laws. Any code bear-
ing a copyright notice, however,
can be used only with permission
of the copyright holder.

The Forth Interest Group
The Forth Interest Group is the
association of programmers,
managers, andengineers whocreate
practical, Forth-based solutions to
real-world needs. Many research
hardware and software designs that
will advance the general state of the
an. FIG provides a climate of
intellectual exchange and benefits
intended to assist each of its
members. Publicarions, conferences,
seminars, telecommunications, and
area chapter meetings are among
its activities.

"Forth Dirnensiom(ISSN 088443322)
is published bimonthly for $40/46/
52 per year by the Forth lnterest
Group, 4800 Allendale Ave.,
Oakland, CA 94619. Second-class
postage paid at Oakland, CA.
POSTMASTER: Send address
changes to Forth Dimensions, P.O.
Box 2154, Oakland, CA 94621-0054."

September 1995 October 6% Forth Dimensions

Forth Dimensions 5 September 1995 October

Challenged by Macros
I found Wil Baden's article on "Macro Processing in

Forth" (FD XV1l/l) quite and been a
~ ~ C ~ O - P ~ O C ~ S S O ~ fan longer than a Forth fan, and do quite
a bit in M4 (the UNIX macro language). I was
macros in as I tend to they are a crutch*
particularly in C. I worked for a brief while for Larry
~ossler , who, along with Steve Johnson, contributed
mightily to the growth of C in the 70's and 80's. Larry felt
the C pre-processor was an absolute mistake. He asserted,
and I later demonstrated to myself, that #include is totally
unnecessary, and that #define should be limited to those
occasions where a mnemonic constant is sufficient.

I was the need for in
Forth, thinking them a crutch in any language. Reading
Wil's article carefully, I found both support and challenge
for my views. Challenge sufficient that come to accept
the place of ~ a c r o s in Forth, 2nd am working on their use
in the more general-purpose text processing, data analysis
work that I usually find myself. Challenged further, so that
I'm working on an idea I call the text multiplexor, or uTex
Mux" for short. Using Wil's basic idea, the controlling
string the controlled strings Onto the
output. I'll need more time to explain, so another article
Or be forthcoming. It'' based On fusing three
things:

Wil's macros
Mills and Linder's use of text queues
synergy with C's standard I/O

Mitch Bradley's "Yet Another Interpreter Organization"
in the same issue was quite good as well. I'd seen the code
from connections in Rochester from the mid 80's and am
moving to implement it in my ANS-Forth. Mitch's TH is a
more elegant, if not robust-in my estimation-approach
to the "hex problemn than Wil's Ox. But that's the proof to
me of the of macros. don't belong

Keep the magazine coming, Marlin!

Thanks,

Marty McGowan
Whippany New Jersey

M a w McGowan's article 'Sets, Stacks, a n d Queues"
appean in this issue. -Ed.

Forth vs. not-Forth
You may well believe that Forth programmers have

drifted away from the Forth Interest Group (FIG) because
of the recent recession years. I ask you to consider that
Forth programmers did not drift away from FIG, but that
FIG drifted away from Forth programmers. I believe there
are many, many programmers around the world who, like
myself, program in the Forth language whenever it is the
appropriate language to use (which is most times for
skilled Forth programmers).

I have been a Forth programmer since the original
article in ~ ~ ~ ~ ~ ~ ~ f i ~ ~ ~ ~ ~ ~ ~ ~ . ~~~~h is the main program-
ming language 1 have used for many years. Assembly
language is the second. I write Forth cores in assembly
language. I have written cores for many processors and
computers. But I have little interest in FIG and do not read
F ~ ~ , ~ publications. Here is the reason why.

Forth originated from the need to have an unlimited
programming medium (it was originally in a high-
level language that was itself far too confining). was
designed to inherently encourage programmers and op-
erators to be intimately close to the programming lan-
guage, the hardware, and the data. Of course, the use of
such an unlimited medium requires the full understanding
of all three.

And this is where FIG parted from Forth. FIG took up
the challenge of such things as object-oriented program-
ming, type checking, etc. But the purpose of the use of

these things is to separate the programmer and the
operator from the programming language, the hardware,
and the data of [he system, B~~~~~~ these things are the
counterpart of Forth, they should never be an extension
of Forth, Other programming languages are available for
those who need to be separated from the system. The
collection is an example of the present fad. Unfortunately,
the main topics in Forth Dirnensionsbecame how to make
Forth into these other programming languages; how to
make the programmer less intimate with Forth, hardware,
and data.

To further illuminate the philosophical difference be-
tween Forth and what is not Forth, I offer a few ideas:

Forth programmers limit and manage the source and
path of data so that there is no need for type checking,
etc. Each type can never get into the wrong objects
are handled by their own code and do not need to be
identified, Each path is inherently able to handle any
data that can get into it. . A,d Forth programmers use the inherently easy debug-
ging checks of Forth so that runaway programs don't
happen. There is no need for "bounds" checking. Forth
programs don't run away because Forth programmers
write closed paths.
Forth programs run fast because there is no need for type
checking, definition checking, etc. The programmer has
written and debugged the paths so that run-time check-
ing is not necessary.

(Continues on page 3 7.)

ANS FORTH

Sets, Stacks, and

Marty McGowan
Whippany, New Jersey

What More Can Be Said?
We all know about stacks. What more can you say

about stacks that hasn't already been said? The adoption
of ANS Forth has spawned discussions about stacks other
than the fundamental data stack and return stack. Rather
than floating-point or compiler or exception stacks, let's
discuss using stacks in software applications. And while
we are at it, we'll include stacks in the more general realm
of sets and queues. These data types-sets, stacks, and
queues-are all collections differing only in their access
method. Stacks have the LIFO property where items are
stored last-in, fetched first-out. Queues have the FIFO
property: first-in, first-out. Let's say that sets have the A I R 0
property: any-in, random-out. The need to use one of
these types is based on the application.

It is worth reviewing for just a moment. Stacks are used
in Forth and other programming languages to isolate
functions and communicate data between them; queues
are used in process control applications, particularly to
manage tasks in operating systems; sets are used in
relational data tables, where order isn't explicit. Some
people have criticized Forth because of the many stack
operations, as stack operations (in a pure stack) may only
take place on top. Forth allows direct manipulation of
many other stack items than the top. More words have
been said on this subject than is necessary. Similarly, in
operating systems, queues are examined and manipulated
at places other than the ends. Rather than be too rigorous,
let's take a practical approach. We will implement a pure,
or simple, set of operations, but with a few hooks so we
can traverse all the elements of each type.

My motivation for this article comes most recently from
the "two stacks" discussion in comp.lang.forth and, more
deeply, from an article, "Data Structured Programming:
Program Design without Arrays and Pointers" by Harlan
Mills and Richard Linger.' Implied by the title, Mills and
Linger believe and discuss how many programming errors
are introduced by misuse and overuse of arrays and
pointers. Their suggestion is to use a more appropriate

' "Data Structured Programming: Program Design wichout Arrays and
Pointers," IEEE Transactions on Software Enginem'ng, Vol. SE-12, No. 2,
February 1986, p. 192-197.

data type: a set, stack, or queue. At this point, you might
be skeptical about replacing arrays and pointers with sets,
stacks, and queues. Mills' and Linger's case is more clearly
directed at the procedural languages. As an example, they
show a Pascal statement which contains much potential
for error:

Two arrays with three separate indices are being
managed, each having their potential for error. As a Forth
programmer, you are less likely to attempt this than your
C or Pascal counterpart. But we're always in a position to
learn from others. So, what do these types of sets, stacks,
and queues have to offer the Forth programmer? First, they
substantiate Forth's claim of simpler implementations.
Next, like Forth, these types enforce the idea that simple
tools can change the way we look at problems. I've a
feeling, which I'll pursue in another article, that properly
used, these types relieve some of the pressure on the
return and data stacks. In the implementation here, the
words are designed to allow arbitrary growth for members
of the type. For example, stacks may be arbitrarily deep,
queues arbitrarily long, and sets arbitrarily large. This
comes at a performance penalty; the idea is that, during
program design, a new type needn't be sized until
sufficient use tells us what to expect; then it may be coded
with a fixed-size type instance, which may be more
efficient. Practicality isn't always machine efficiency.

Mills and Linger show how to declare and use the three
new types in a Pascal-like syntax that should suggest
where we're going:

set r of T;
. . .
member(r) := x;
y : = member (r) ;

s t a c k s of T;

September 1995 October 6 Forth Dimensions

queue q o f T;
. . .
b a c k (q) := x;
y := f r o n t (q) ;

In aForth implementation, we expect to see similarities
and differences with a Pascal or C version. First, the major
difference is that the Forth sets, stacks, and queues will be
typeless. When we create a set, for example, the only thing
the set will contain are cells of an unknown type. As with
other types in Forth, the type of the set is up to the user.
For example, we might have a set of queues. The set stores
and retrieves arbitrary members, so we will need Forth
words to accept and retrieve set members. We will also
need a word to declare, or create, sets. Similarly for the
stack, where the "top" is the only accessible member. And
in the case of the queue, items are stored at the back and
fetchedfrom the front. We draw on Forth words fetch and
store (@ and !) to suggest the new names:

se t : (c o m p i l e : (p a r s e) -- 1
(e x e c u t i o n : - - set

set! (n set --)

set@ (set -- n)

s t a c k : (c o m p i l e : (p a r s e } --
(e x e c u t i o n : -- s t a c k)

s t a c k ! (n s t a c k --)

s t a c k @ (s t a c k -- n)

queue : (c o m p i l e : { p a r s e } --)

(e x e c u t i o n : -- q u e u e
queue ! (n q u e u e --)

queue@ (q u e u e -- n)

The operations are entirely regular, consistent with the
core Forth words (:, ! , and @). The type names with a
trailing colon (:) parse a word at compile time, which at
execution time leaves its address on the stack. Type names
with a trailing exclamation (!) expect a value and the
address of an instance, then store the value in the instance
(not the address). Type names with a trailing at-sign (@)
fetch a member of the type according to the rules of the
type: FIFO, LIFO, or AIRO. Similar to the Forth data stack,
but different from the memory operation, the side effect of
the ... @ operation is to remove the value from the instance.
(E.g., set@ removes the next item from the set, leaving it
on the Forth data stack.)

At this point, the list of operators might be complete, but
we're being practical, so two more operators are useful:

empty? (set 1 s t a c k I q u e u e -- f l a g)

x - l i n k (t - a t-b --)

\ e x c h a n g e s i d e n t i c a l t y p e s

Empty? returns true when the type has no members,
false if occupied. For example:

Forth Dimensions

set : test-set
test-set empty? (i s TRUE)

Mills and Linger suggest defining the sparest list of
operations, which seems a good rule. We'll see how to use
these two utility words to traverse instances of sets, stacks,
and queues. SO applications like counting, summing, and
printing which might be "built-in" are better left to the
user. We'll take these u p in a later section.

Design Goals and Objectives
Without getting carried away, the code should be as

sparse as possible. One compromise I made was the use
of the word l i n k , which is used as a noun here. A node
is replaced with its "link* on the stack, where a link is the
forward pointer from one node to the next. Simply, it's:

: l i n k (node -- node n e x t) d u p @ ;

Nodes are two-cell pairs, where the first cell is the link
and the second cell holds the value. I was carrying around
d u p @ in the places where l i n k was the idea. In
debugging, I discovered I'd made a mistake in q u e u e @ . I'd
originally coded d u p d u p @. The queue never emptied!

Sets and queues are similar in that they are maintained
as ring types. A ring is a closed list, where the last node
points to the first, which is the fetch point. Also, the ring
pointer points at the last item, which is the insertion point
for the queue. This is a well-known trick for ring types.
Sets are different from queues because the order of
fetching set elements can't be reliably predicted. This
implementation simulates the random behavior of the set
by moving the end pointer after fetching an element. The
stack is implemented as a null-terminated linked list. When
elements are fetched, they are removed from the type
instance (successive fetches return different elements).

Another goal we have here allows any type instance to
grow indefinitely. Sets, stacks, and queues will "never"
overflow. This means we don't have to declare an initial
size for each instance. How is this achieved? A single
underlying freepool manages the cell-pairs of all types. A
two-cell node is either taken from the freepool or allocated
from the Forth dictionary. When an element, or cell-pair,
is fetched and removed from the type instance, its two-cell
node is returned to the freepool for later re-use.

Instances may be tested for being empty by the word
empty? . The implementation uses a hidden value, rather
than zero, to indicate an empty instance. You may want to
have the value zero in sets, stacks, and queues. I could be
persuaded that no useful item may be zero. For example,
in a priority queue of tasks or processes, the interval to the
next task may be zero, but that zero is probably better used
as a value in another two-cell node, where one value is the
time interval and the other is the task. I felt it better to use
the hidden value as an empty sentinel rather than zero.
Let's say it's open to discussion.

In order to non-destructively examine sets, stacks, and
queues, the x - l i n k ("cross-linkn) word allows swapping
pointers to like type instances. The typical approach is to

7 September 1995 October

swap pointers between an empty type and the type ot
interest, which makes the empty pointer now point to the
data and the pointer of interest an empty type. Then,
successively fetching from the temporary instance and
restoring in the type of interest allows inspection of the
individual values.

Figure O n e shows an empty ring and an empty stack.
Remember, sets and queues are implemented as rings.
They have the property that when the last pointer points
to itself, the ring is empty. The null value { 0) may not be
zero, but indicates the value is of no interest. Further
attempts to fetch items from the empty ring return a value,
after testing by e m p t y ? , o f true. Figure Two shows an
occupied ring. Following the insertion code shows the
value is stored in place of the { O), and a new node
becomes the "last" after the current last. The first node is
always the one after that. Figure Three shows the special
freepool as a possibly non-empty, singly linked list of two-
cell nodes. It is accessed as a stack.

Code Inspection
Sets, stacks, and queues are implemented in the code

3f Listing One. The words INTERNAL, EXTERNAL, and
MODULE were invented (or discovered) by Dewey Val
Shorre (Fouth Dimensions II/5). They are something like:

: i n t e r n a l l a t e s t > l i n k @ ;

: e x t e r n a l l a t e s t > l i n k ;
: m o d u l e ! ;

in a non-ANS Forth definition. Simply define them as no-
ops in your system if you are willing to avoid using the
words between INTERNAL and EXTERNAL. Word defini-
tions (and variables, constants, etc.) between INTERNAL
and EXTERNAL are available to the MODULE, but are
otherwise invisible to later words in the dictionary. Words
between EXTERNAL and MODULE are globally visible,
unless some other wordlist restriction is in force. In Val
Shorre's implementation, modules nest. I've seen sugges-
tions how these words may be defined in ANS Forth, but
I'd like to make sure they may indefinitely nest o n one
hand, and not be hemmed in by a wordlist limit. In the
following discussion, the words INTERNAL, EXTERNAL,

Figure One. Empty ring with p r e - f e t c h e d node (left); empty s t a c k ' s null or zero pointer.

queue : stack: r- first 7 -

l o)

September 1995 October 8 Forth Dimensions

Figure Two. Occupied ring with insertion (q u e u e or s e t) .

last lm.lmllm..lllmm,

I
I
I
I
I
I
I

first datum second datum

I
I

11111111111111111J

first

(0)

- - - - - - - - - - - - - -
I
I t

I - : I-
I I L - - - - - - - - - - - - I 8

1 I I
I I I

I I I I
I I

I I I - - - - - - - - - - - - - ' I

Figure Three. Freepool (stack access). -
v a r i a b l e

ErErEh
-

Listing One. Sets, stacks, and queues source.

(S e t s , S t a c k s , a n d Queues -- Marty McGowan 9 5 0 6 0 1)

INTERNAL

v a r i a b l e - f r e e 0 - f r e e !
: > f r e e - f r e e @ o v e r ! - f r e e ! ;

: f r e e > - f r e e @ dup i f dup @ - f r e e ! else d r o p h e r e 2 c e l l s a l l o t t h e n ;

: l i n k dup @ ;

: l i n k @ l i n k l i n k r o t ! ;
: l i n k ! 2dup @ swap ! ! ;
: - s t a c k @ l i n k ce l l+ @ swap l i n k @ > f r e e ;
: s e t + + @ 2dup = i f @ t h e n dup c e l l + @ r o t c e l l + ! swap ! ;

EXTERNAL

: empty? f r e e = ; \ u s e h i d d e n v a l u e , r a t h e r t h a n 0
: x - l i n k lTnk r o t l i n k r o t r o t ! swap ! ;

: s t a c k : c r e a t e 0 , ;
: s t a c k ! swap f r e e > t u c k c e l l + ! swap l i n k ! ;
: s t a c k @ l i n k i f - s t a c k @ else d r o p - f r e e t h e n ;

: queue : c r e a t e h e r e c e l l a l l o t f r e e > t u c k dup ! ! ;
: queue! t u c k @ c e l l + ! f r e e > t u c k o v e r @ l i n k ! ! ;
: queue@ l i n k l i n k = i f d r o p - f r e e e lse @ - s t a c k @ t h e n ;

: set : queue : ;
: set@ queue@ ;
: set! t u c k q u e u e ! l i n k l i n k s e t + + ;

MODULE

Forth Dimensions 9 September 1995 October

and MODULE are used as reader's guides to the code.

INTERNAL
The freepool is managed as a singly linked list which

allows two operations: > f r e e and f r e e > . These names
were chosen because their operation mimics the Forth
return stack, accessed by > r and r> . In both instances, a
single cell is pushed to or pulled from either the freepool
or the return stack. The freepool need not b e balanced in
the sense of the return stack. Fetching a cell from the
freepool, through f r e e > , returns the address of a free
two-cell node: either the first two-cell node from the
freepool or, if it is empty, two cells allocated from the Forth
dictionary. The freelist is kept intact when a node is
removed. Nodes are returned to the freepool by > f r e e .
The address of the - f r e e variable is used to indicate an
empty list. Programmers using moduleswon't see - f r e e ,
> f r e e , or f r e e > in dictionary searches. Therefore, the
address of the free value shouldn't be used anywhere
outside the module. It's a better candidate for the empty
sentinel than, say, zero. The cell pair managed by the
freepool uses the first cell as the link field. There is no
requirement for users of the freepool to use this approach.
But links enforce this behavior.

A link is the single link from one node to its successor.
Here, w e use the first cell of a two-cell pair to hold the
forward pointer. As discussed above, the word l i n k ,
given a node, returns the node and the next node. L i n k @
and l i n k ! operate o n links with the usual meaning of

fetch and store. Given a node, l i n k @ returns the next
node while repairing the links around the returned node.
In effect, it fetches the link. Similarly, l i n k ! takes a pair
of nodes, storing the second as the link from the first.
L i n k @ is used in - s t a c k @ , which is a further primitive
in s t a c k @ and q u e u e @ ; l i n k ! is a primitive in s t a c k !
and q u e u e ! . Figures Four and Five show the effects of
l i n k @ and l i n k ! .

With s t a c k @ , the underlying concepts start to come
home in-terms of being able to visualize the pictures
through the words. L i n k c e l l + @ puts the data on the
stack, preserving the instance; s w a p saves the data, with
the instance now o n top; l i n k @ plucks out the node
which just yielded its data, and > f r e e stores the node in
the freepool. S e t ++ is a compromise made to keep all
words as one-liners. (I like to use multi-line phrasing, but
when I saw the opportunity to make the one-liner unani-
mous, I took it.) S e t ++ is set to advance the "last" pointer
when items are added to a set instance. The leading
number of @s is arbitrary and could be made random to
give the set truly random behavior. The 2 d u p = i f @
t h e n adds a necessary "next" when the previous fetches
have yielded the "last" node. What happens is, the node
trio of "instance last first" is modified to "instance last
{random)", the value is fetched (dup c e l l + @) and stored
in the "last" cell (r o t c e l l + !), which is otherwise
empty, and the instance then points to random (swap !),
which is the new last.

Figure Four. Effect of L I N K @ .

Data
nodeA nodeB nodeC Stack:

W

5 LI. nodeA ~~~~~~~
W
a

Stack Effect:
nodeA l i n k @ -- nodeB

nodeA nodeC
er

LI.
a

nodeB

nodeA

nodeB

September 1995 October 10 Forth Dimensions

EXTERNAL
The word empty? uses -free as the sentinel for

empty type instances, hiding the use of -f ree. Users see
the value on the stack as a return value from fetches. Its
only purpose is to indicate empty instances. The word x-
l i n k , pronounced "cross-link," exchanges instances of
like types. Two pair of l i n k r o t put both links on the
stack. A r o t ! reassigns one of the crosses, while swap
! does the other.

The action is in the nine following words. Note that
stacks are different from sets and queues. Set creation
(set :) and fetching (set@) are identical to their queue
analogs. These two types are implemented by rings. To be
pedagogic, an intermediate type called r i n g should have
held the queue definitions, with queue definitions using
the ring types. So much for pedagogy. S e t ! uses the
queue ! with the added facility of moving the "last"
pointer to randomize the set.

Stacks simply create a null single cell to hold the stack
pointer. See Figure One for an empty stack. Stacking a
value requires a pair of cells from the freepool. The value
is stored (t u c k c e l l + !) and the linked list is restored

1 (swap l i n k !) . Fetching is simple: non-empty stacks ' return the value from a stack fetch (-stack@), while
empty stacks return the address of the freepool, again,
only useful by comparison to empty?.

Queues (rings) and sets are created by allocating a
single cell, pointing to a two-cell node, whose initial "next"
pointer points to itself (see Figure One). Use of the

freepool by the word free> either allocates two cells in
the dictionary or a node from the non-empty freepool.
Items are stored in the queue (ring) by q u e u e ! , where the
value is stored by the t u c k @ c e l l + ! , recalling the
value is put in the "last" node and a new last node is linked
on from the freepool. Discovering this order made it
possible to insert without testing. F r e e > t u c k o v e r @
produces the "new instance new last" nodes on the stack,
and l i n k ! ! re-establishes the links. Queues are fetched
by constructing the two links "instance last firstn and, if the
last and first are the same, the queue is empty (d rop

- f r e e) , otherwise the value is fetched (@ - s tack@).
Again, sets are identical to queues, except on storing,

the "last" pointer is moved to simulate a random order of
the set.
MODULE

Applications
A few simple applications in Listings Two and Three

will serve to show some of the utility of the types. In a
future article, we can examine how Wil Baden's recent
macro-processor2 might be done with queues. One of the
interesting things I found in translating Wil's macros into
queues is that he has discovered what I'll call a Text
Multiplexor, or " E X MUX" for short. It becomes more
general in useful ways with queues. Queues introduce the

Z"Macro Processing for Fonh," Wil Baden, Forth Dimensions, Vol. XVII,
No. 1, May-June 1995, p. 34-37.

Figure Five. Effect of L I N K ! .

nodeB

Rl Data
W nodeA nodeC

Stack:
CT

2 W n o d e A + ~ ~ ~ ~ Fi
a

Stack Effect:
nodeB nodeA l i n k ! --

nodeA nodeB nodeC
er

n o d e A ~ ~ ~ ~ ~ ~ ~ rl
U.
a

Forth Dimensions 11 September 1995 October

Listing Two. Queue and set applications.

(eachmemb.fth -- f o r e a c h queue member -- 950629 mcg)

queue: empty-queue
: each-queue-member (q x t --)

> r dup empty-queue x - l i n k
b e g i n

empty-queue queue@
dup empty? 0= w h i l e
dup r@ e x e c u t e
o v e r queue!

r e p e a t 2drop r > d r o p

: dequeue (q x t --
> r b e g i n dup queue@

dup empty? 0= w h i l e
r@ e x e c u t e

r e p e a t 2drop r > 2drop

: d o - s e t (s e t x t --)

> r b e g i n dup s e t @
dup empty? 0= w h i l e
r@ e x e c u t e

r e p e a t 2drop r > 2drop

v a r i a b l e #count
: c o u n t e r d r o p 1 #coun t + ! ;
: summer #coun t + ! ;
: c l e a r - c o u n t 0 #coun t ! ;
: c o u n t e d #coun t @ ;
: . p r i n t e r c r 1 2 . r ;

v a r i a b l e % s e t
: q > s e t %set @ s e t ! ;
: q u e u e - s e t %set ! [] q > s e t each-queue-member ;
: q u e u e - s i z e c l e a r - c o u n t [I] c o u n t e r each-queue-member coun ted

: queue-sum c l e a r - c o u n t [I] summer each-queue-member coun ted
I

: .queue ." queue: " dup . s p a c e [' 1 . ;
: .set . " s e t : " dup . s p a c e [' I . ;

overkill of cell-sized elements, so where the data type is
a character, queues might seem to waste space, but, as
many things in Forth, it's small overhead for conceptual
simplicity.

The few applications show how to navigate the data
types. Two approaches are possible to visit each member
in the type, either destructively or non-destructively. The
default behavior is the "destructive" visit, where each
member is removed when visited (see Listing Two). To
visit and retain each member in the queue (in each-
queue-member), we use an empty queue, exchange the
pointers between empty and occupied queues, extract the
successive elements from the temporary queue, execute a
command on the extracted element, and restore the
element to the original queue. For example, to count the

members in a queue, use queue-s ize , which clears a
counter (c lear-count) , ticks the counter for each-
queue-member, and reports the counted. Queues are
printed by . queue, which prints a leading message, prints
the queue address (dup . 1, ticks the printer ([' I .), and
calls each-queue-member or dequeue to either print
and preserve the queue or print the queue while emptying
it as well (see Listing Three).

Future Directions
We could look at similar operations for the set and

stack as we did for the queue. But rather than duplicate
similar code (compare dequeue with d o - s e t in Listing
Two), I'll implement Wil Baden's macro processor using
the queues, and then re-implement the two traversal

September 1995 October 12 Forth Dimensions

operations as macros. A macro word traversal :
creates an empty member type and defines two words
(each- type-member and do- type). The two words
are the destructive and non-destructive type traversals.
With this word, all we have to do is declare:

traversal: set
traversal: stack
traversal: queue

to produce the code. The "easyn way to do the job is
simply to copy the code from each-queue-member
and dequeue for each-set-member and do-set
and each-stack-member and do-stack. My only
problem with this approach is, it violates a principal: my
threshold of pain is three. Three what? Three of any-
thing. In software, you might have two copies of similar
code-a reader and writer, perhaps-and have cap-
tured all the necessary generality. But when you get to
three similar instances, you can bet that, sooner or later,
you will need four or more. It behooves us to generalize
sooner than later. Forth, which encourages factoring,
gives us the simple means.

As an exercise to the reader, think of creating the
ordered-list type, based on queue and an execu-
tion token which returns the ordered sense of two-cell
values, as follows:

' ordering-word
ordered-list: new-instance

where ordering-word has the stack effect:

: ordering-word
(vl v2 -- - 1 1 0 1 1) ;

and the return code tells whether or not vl is less than,
equal to, or greater than v2. The words o-list ! and
o-list @ should behave as expected.

Marty McGowan (mcg@ustad.att.com) is a member of the technical staff at
AT8T Bell Laboratories in Whippany, New Jersey. He uses software as a
data-manipulation tool in the Wireless Communication Center of Excellence.
He recently concluded an effort to re-assign (or 'interleave") frequencies on
the dispatcher base stations for a large eastern U.S. railroad. His wife, Pat,
tests UnixWare OS at Novell. Their three children are at the School of Visual
Arts, Moravian College, and in high school.

Listing Three. Using the applications.

\ non-ANS include, . r
include datatype.fth
include eachmemb.fth

set: test-set
queue: test-queue

test-queue
8 over queue!

13 over queue!
44 over queue!
-1 over queue!

dup over queue!
1 over queue!

dup queue-size 5 .r cr
dup queue-sum 7 .r cr

duP .queue each-queue-member cr
dup test-set queue-set

dup .queue dequeue cr
dup queue-size 5 .r cr

dup .queue each-queue-member cr
drop test-set .set do-set cr
drop

Total control
with [MI FORTHTM
For Programming Professionals:
an expanding family of compatible, high-
performance, compilers for microcomputers

For Development:
Interactive Forth-83 1nterpreterlCompiIers
for MS-DOS, 80386 32-bit protected mode,
and Microsoft WindowsTM

Editor and assembler included
Uses standard operating system files - 500 page manual written in plain English - Support for graphics, floating point, native code generation

For Applications: Forth-83 Metacompiler . Unique table-driven multi-pass Forth compiler . Compiles compact ROMable or disk-based applications . Excellent error handling . Produces headerless code, compiles from intermediate states,
and performs conditional compilation . Cross-compiles to 8080, Z-80, 641 80, 680x0 family, 80x86 family,
80x96197 family, 8051131 family, 6303, 6809, 68HC11 . No license fee or royalty for compiled applications

Laboratory Microsystems Incorporated
Post Office Box 10430, Marina Del Rey, CA 90295

Phone Credif Card Orders to: (31 0) 306-74 12
Fax: (31 0) 301 -0761

Forth Dimensions 13 September 1995 October

Bounds Checking
for Stacks
Adapted from comp. lang. forth

From: Russell Y. Webb
In a software system, what is the most efficient approach

to checking stack undedover flow? Feel free to assume a
stack implementation that optimizes bounds checking.

Some ideas I've thought of are:
1. Checking a bounding byte to make sure it hasn't been

overwritten.
2. Calculating the actual bounding addresses and com-

paring them to the stack pointer (is there an efficient
way to d o this?).

3. Only checking the stack bounds every nth instruction.
4. Having the return and data stacks grow towards each

other reduces the number of checks from four to three.

I'm interested in having a fairly secure, stack-based
virtual machine, but it seems like a lot of overhead to
check everything.

Any ideas are welcome.

From: Gordon Cbarlton
Off the top of my head, say each stack is max 1K bytes

long, and start at 0400h and OCOOh (therefore ending at
07FF and OFFF, respectively). Stack overflow or underflow
in either stack will cause bit 10 of the appropriate stack
pointer to change from one to zero, s o AND them together
and test bit 10.

If it is zero, you have a problem, so now it is time to
figure out what went wrong and deal with it.

operator input for reasonableness, you'll have a pretty
reliable system.

/?om: Roedy Green
If you have a segmented architecture, you can put the

stacks in their own private segments. Then the hardware
will not let you wander out of bounds.

You might also do it with paged hardware, by declaring
a read-only page after the stack.

From: Dwight Elvey
Rocdy's suggestion [above] only works if you have a

machine that has some form of protected mode. Running
a 32-bit Forth on a '386, '486, or '586, this is a good
solution. But what does one d o if they are running o n a
lesser pP?

If one was developing their own hardware, one would
typically use some form of PAL, PLA, or GAL to d o their
address decoding with. It would be quite simple to extend
this to include a simple hardware bounds check.

For those who are looking for a simple way to see where
the stack has been after running some code, I have seen the
trick of loading the memory with some simple pattern like
55AA, and then checking to see how things are later. This
works surprisingly well. With this one, I have caught the
occasional underflow that left the stack depth correct.

Fmrn: Elizabeth D. Rather
We check for underflow following complete execution

of a word (i.e., when returning to the input source for
further interpretation). This provides good feedback dur-
ing development with negligible performance impact.
Overflows are a lot less common, and are pretty easy to
check for (and hard to miss, since the results are usually
catastrophic). The exception is when a background task
infrequently leaves a value; when this is suspected, it's
easy to monitor it from another task.

We're pretty rigorous about testing for stack imbalance
during development, and if you d o this and check

Fmm: Anton Ertl
Use the MMU. Have a protected page before and after

each stack. This can b e done in many Unix systems with
the mprotect or mmap system calls. Then the stack check
is free and you get a segmentation violation signal upon
overflow or underflow.

mom: Marcel Hendnk
If something like this really is needed badly, you can

load the SS register with a selector that has exactly the right
segment limit. This is possible with protected mode Forths
for the lntel '386 or better, when they use a threading

September 1995 October 14 Forth Dimensions

model where the data stack is accessed with hardware
stack instructions. I can see a possibility to protect three
stacks in this way, using FS: GS: overrides (I consider this
a software solution, but maybe you don't).

I like Gordon Charlton's ideas about stack checking a -
lot: make sure you crash violently whenever an error is
made. The trick is to switch the data and the return stack
pointers at random times. :-)

Fmm: Gordon Charlton
IThatl needs explaining, I suppose.
I wrote a slightly serious and mostly humorous piece

called "Upside Down, Wrong Way Round, and Back-
wards" looking at three ways of turning Forth o n its head,
with some justification for each.

"Backwards" talked about writing code that would
apparently run backwards (like Michael Gassanenko's
system), to simplify coding an otherwise difficult set of
problems, including pattern matching.

"Wrong Way Round" proposed a word to exchange the
return stack and data stack pointers, thereby massively
increasing the number of available return-stack-ops at a
stroke. The justification for this ludicrous proposal was
that the more fragile a system is, the sooner bugs will
reveal themselves. (What would you prefer, a bug that
crashes the system during development, or one that
insidiously corrupts data two years after you installed it?)

"Upside Downn argued that ANS Forth would allow
CHAR+ to be defined as 1- (and s o o n for CHARS, CELL+,
and CELLS), which would be handy for testing programs
for adherence to the standard, except that there is one
standard word that screws it up.

and for the return stack, >R, :, etc..

Some ideas I've thought of are:
1. Checking a bounding byte to make sure it hasn't been

overwritten.

Agreed. A less thorough, but cheaper, way is to add a
margin above the stack space and fill this with recognisable
values. Add a test to the interpreter loop within QUIT:

If the last value in the margin has been changed, then
serious overflow has taken place-advise the user to re-
boot.
I f the first value in the margin has been changed, but not
the last, then warn the user that a non-fatal overflow has
occurred. Also advise him how to increase the size of the
stack!

Stack Underflow:
You can d o something very similar for underflow.

Coding Support:
You could also consider tools which help the user to

avoid writing code that misuses the stack, by comparing
the stack depth at entry and exit of each word. Does the
change in parameter stack match the stack comment? Has
the return stack changed at all? (It shouldn't!)

These tools are helpful because they identify the faulty
word as soon as it is executed. Of course, they are turned
off after testing is complete. (Prof. Hoare describes this
practice as throwing away your life jacket once your canoe
reaches the open sea.

From: Michael L . Gassanenko
Russell Y Webb wrote:

From: ChrisJakeman
Russell Y. Webb writes:

In a software system, what is the most efficient approach to
checking stack under/over flow? Feel Free to assume a stack
implementation that optimizes bounds checking.

Fmm: Hans van der Vuunt
I added a stack checker to the Forth compiler; it counts

the stack behaviour ofeach word and tells at compile time
if the stack is bad. This helps speed u p development time
a lot-I don't debug until the compiler does not complain
about bad stacks. I implemented this system in response
to customers getting "stack overflow/underflow" mes-
sages while running the application after I had made little
changes and was not able (willing) to check every single
case of software execution. The compromise is to d o less
"dynamic" stack behaviour, such as pushindpopping
elements in a loop. I swear by it.. .

Stack Overflow:
The thorough (and expensive) way to check for stack

overflow is to include checks in each primitive that adds
value(s) to the stack, such as DUP, OVER, SOURCE, etc.;

In a software system, what is the most efficient approach to
checking stack under/over flow? Feel free to assume a suck
hplemcntation h a t optimizes bounds checking,

Okay, one more trick is based on [the fact1 that the '386
and '486 d o check bounds, even in real mode. If yourstack
bottom starts at address FFFFh (odd!), then stack underflow
will cause an exception, and you will b e able to see the
register (if you use QUEMM or something like it); or hit
reset, if you do not catch the exception number. :-)

'he return stack will rarely underflow; at least, usually
you will know that something bad has happened because
the system will hang (in 99%, i.e., if you d o not copy/
restore the return stack).

Some ideas I've thought of are
1. Checking a bounding byte to make sure it hasn't been

overwrirten.

A very useful approach: when I was debugging
BacFORTH, my system used to report:

Stack Underflow
Stack Has Been Underflown

L-Stack Underflow
L-Stack Has Been Underflown

Forth Dimensions 15 September 1995 October

I added checks to INTERPRET, and used to add
?STACK in misbehaving definitions. The word R . that
prints the trace of return addresses (using the R@ 2- @
>NAME .NAME principle) turned out to be very useful in
ABORT diagnostics.

3. Only checking the stack bounds every nth instruction

SP and RP are usually registers, the counter scarcely can
be allocated in a register.

4. Having the return and data stacks grow towards each other
reduces the number of checks from four to three.

Please, do not do that. There are words Sp@, Sp ! , RP@,
and RP ! , and most people believe that stacks grow
downwards.

From: Bruce McFarfing
Michael L. Gassanenko wrote:

The return stack will rarely underflow; at least, usually you will
know that something bad has happened because the system will
hang (in 9 9 0 , i.e., if you do not copy/restore the return stack).

If the return stack underflows from a runaway R>, you
might pick that up on a parallel operand stack overflow
(though only if the value is not consumed, so this is not
ironclad). If it underflows through a misaligned R> right near
the top of stack, a few dummy returns into a return stack
underflow error report (logically) below the bottommost
return into the interpreter would catch that. If it's effective
enough, it would be efficient, since it adds overhead to the
return stack initialization, rather than while running.

Since a runaway situation is likely to go into cybervoid,
you might have the efficient (but not bulletproof) return
stack underflow guard, along with a stringent check that is
run when you have to debug a seriously misbehaving word.

Michael L. Gassanenko wrote:
"4. Having the return and data stacks grow towards each

other reduces the number of checks from four to three."

Please, do not do that. There are words SP @, SP ! , RP @, and
RP !, and most people believe that stacks grow downwards.

This was the subject of a discussion a month or more
ago, wasn't it? SP@, SP ! , R P @ , and RP ! would seem to be
pretty model specific; I say, if you want to optimize the
model for stack checking, go ahead. (And with the above,
it goes from one to two.)

Since return stack shenanigans are the least likely to be
portable, and most likely to require re-writing for your
specific model anyway; if you go with face-to-face stacks,
let the operand stack grow down and the return stack
grow up.

From: Paul Shirley
Michael L. Gassanenko writes:

The return stack will rarely underflow, or at least usually you
wiU know that something bad has happened because h e system
will hang (in 9Yh, i.e., if you do not copy/restore the return stack).

There's a hidden trap here. A stack bounds underflow
will almost certainly crash the system; however, individual
words popping too much return stack need not crash your
program (I've seen code work 99% correctly whilst merrily
dropping returns). By largely limiting the return stack to
actual return addresses, Forth increases the chance that an
underflow will simply cause the tail end of a routine to be
skipped without any instantly fatal effects.

This tends to suggest to me that stack checking really
should be done at a routine level.

From: Bruce McFarling
Of course, i f the word has been exhaustively debugged

in the interpreter, the return that would be skipped in the
erroneous condition would be the return to the inter-
preter, so tucking a 'return stack underflow' return under
the interpreter would help there. However, it would only
help if the word has been well tested, and the test suite
well-chosen; so, with St. Murphy at hand, his wonders to
perform, checking for balanced return in process is
probably worthwhile, especially when hunting a mystery
bug (where, by definition, someof your exhaustive testing
missed a trick somewhere).

From: Chris Jabernan
Stack Overflow

The thorough (and expensive) way to check for stack
overflow is to include checks in each primitive that adds value(s)
to the stack, such as D U P , OVER, SOURCE, etc. and for the return
stack >R, :, etc..

Further to my prcvious post, I've been experimenting
with a thorough way to check for data stack and parameter
stack overflows.

, Checks within the primitives @UP, >R, etc.) detect
/ overflow and execute -3 THROW or -5 THROW. CATCH

and THROW are secondaries (defined in Figure One), so
this is an unusual instance of a primitive executing a
secondary! (Or, more precisely, arranging for a secondary
to be executed next.)

But wait a moment. THROW will need some room on the
data and return stacks to execute correctly. I handle this
problem in the primitive checks. If they fail, they discard
a few values from the appropriate stack before executing
THROW.

I could avoid this by making THROW into a primitive
which doesn't push anything onto the stacks. I don't want
to do that because THROW calls a vectored word (i.e.,
' UserThrow @ EXECUTE below) which supports some
debugging. After THROW has been called, and before it
restores the stacks to the depth saved by CATCH, the
values on the stacks are precisely what is needed to find
the cause of exception.

A debug word called at this point can present the data
stack information as integers and the return stack informa-
tion as a sequence of called words (or call tree).

It's an interesting paradox-THROW can call a debug

Se~tember 1995 October 16 Forth Dimensions

word to show exactly what has gone wrong to cause the
exception, but not after a stack overflow, because we have
had to discard some values to allow room for THROW to
operate!

Can anyone suggest a solution?

From: Bruce McFarling
Chris Jakeman wrote:

But wait a moment. THROW will need some room on the data
and return stacks to execute correctly. 1 handle this problem in
the primitive checks. If they fail, they discard a few values from
the appropriate stack before executing THROW.

Figure One. Jakeman's code for ANS CATCH and THROW (assumes RDepth similar to DEPTH). I
VARIABLE C a t c h R D e p t h

: CATCH
(i * x x t -- j * x 0 I i*x n)

DEPTH >R
C a t c h R D e p t h @ >R
R D e p t h C a t c h R D e p t h !
EXECUTE
R> C a t c h R D e p t h !
R> DROP
0

: R e s t o r e D e p t h
(R e q u i r e d D e p t h --)

>R DEPTH R>
2DUP > I F

DO DROP LOOP
ELSE

SWAP
PDUP > I F

DO 0 LOOP
ELSE

2 DROP
THEN

THEN

: R e s t o r e R D e p t h
(R D e p t h R q u i r e d --)

R>
R D e p t h ROT -
2DUP >= A s s e r t
BEGIN
DUP O> WHILE

R> DROP
1 -

REPEAT
DROP
>R

: THROW \ T a k e n f r o m S t a n d a r d
(k * x n -- k * x I i * x n)

?DUP I F
' U s e r T h r o w @ EXECUTE ?DUP I F \ T h i s l i n e n o t i n S t a n d a r d .

C a t c h R D e p t h @ R e s t o r e R D e p t h \ R e s t o r e t h e R e t u r n S t a c k t o d e p t h
\ s a v e d b y CATCH.

R> C a t c h R D e p t h ! \ R e s t o r e v a l u e f r o m a n y p r e v i o u s CATCH.
R> SWAP
>R R e s t o r e D e p t h R> \ R e s t o r e D a t a S t a c k a s bes t we c a n .

THEN
THEN

Forth Dimensions 17 September 1995 October

\ A d j u s t s t h e d a t a s t a c k t o p r o v i d e
\ t h e d e p t h r e q u i r e d n o t c o u n t i n g t h e
\ p a r a m e t e r o n t o p o f t h e s t a c k .
\ -- A c t u a l R e q u i r e d
\ I f A c t u a l > R e q u i r e d ...
\ D r o p s u r p l u s

\ I f R e q u i r e d > A c t u a l
\ Add z e r o e s

\ R e d u c e s t h e R e t u r n S t a c k t o t h e
\ d e p t h r e q u i r e d .
\ S a v e t h e n e x t w o r d .
\ -- A c t u a l - R e q u i r e d

\ t h e c o u n t
\ R e s t o r e t h e n e x t w o r d

Instead of discarding the information, store it in a
private, dedicated stash location. If the word to do this is
done as a primitive (appropriate, I believe, i f there is a
stack problem), it can avoid use of the stack.

From: Roedy Green
You could create a small emergency stack, and switch

to it as part of calling THROW. THROW could then restore
the stack (not its own, which makes life a little simpler),
then switch the stack pointer back to point to the restored
one. I do similar coding when I JAUNT in Abundance.

JAUNTing is a type of throwing where you restore past
system state to give the illusion of running the program
backward in time. I t is used primarily for data entry, to Ict
the user back up and change his mind about a previous
decision keyed, or in response to failing an assertion.

From: julian V. Noble
Stack underflow can be a problem, depending on

whether the CPU generates exceptions or whatever. Rut
anyway, checking for it on all operations that consume
stack items can slow up a program. In my opinion, the best
way to avoid underflow is to check each word as i t is
written, to make sure it does to the stack what is wantcd,
i.e., leaves it in the condition expected by the stack
comment (which should be the minimum documentation
accompanying any word being defined).

Stack overflow is easier. Overflow that crashes the
machine happens only two ways: excessively deep recur-
sion, or a loop containing a word that leaves too many
things on the stack. The second is easy to avoid: one need
merely factor out the contents of a loop as a word, and test
that word for its stack effects before running the word with
the loop.

Thus,
: i n n e r (- -) s t u f f ;

: o u t e r (n - - 0 DO i n n e r LOOP ;

If you test i n n e r before running o u t e r , you can see
immediately whether or not there will be trouble.

Recursion is harder. The trick here is to avoid algorithms
that grow faster than log(N) with the problem size N. 'That
is, recursion makes the return stack grow as the number of
nested levels. On divide-and-conquer algorithms this will
be log(N), which for many problems is tolerable without
having to increase the size of data or return stacks.
However, the Microsoft (!) example of string reversal (that
is, abcdefg + gfedcba) is

function reverse$(s$)

C$ = left$(s$, 1)

if C$ = null$ then

else
reverse$ = reverses (mid$ (s$r 2)) + c$

end if

e n d f u n c t i o n

which takes (NA2) time, and increases the depth of the
data stack (and the return stack, if you were so foolish as
to translate to Forth) as NA2 also. Guaranteed to crash on
a long string. Don't use recursion to compute N! either.

Compound recursion applied to recursive-descent
parsing should be safe, even i f not entirely predictable,
since the number of levels will increase only as
log(expression length), for example.

From: Roedy Grem
One way to check the return stack would be to salt it

with five entries that point to a routine that complains and
aborts. If somebody pops the real first element off the
stack, then returns, it will hit one of these.

In practice, you will probably die long before that. If
you mess up the return stack, it is because you did not
match your >Rs and RZS. YOU will die long before you
underflow or overflow the stack.

From: Claus Vogt
Mow about checking the return stack in each word? If

each word began with a word which saves the return stack
pointer and endcd with a check for balance, you would not
crash. For ease of use, the check may be globally enabled
or disabled for following loaded words, by changing the
behaviour of : and ; . (See source in Figure Two.)

But if we want to extend the error checking (maybe for
educational purposes), other checks are necessary. Check-
ing the balancing of the data stack inside loops would
probably be the first candidate. And, even after eight years
of Forth development, I sometimes change data and
address for store operations (!)--not to talk about these
horrible SWAPS in front of CMOVE.

Has someone invented a ProtectedForth which checks
for such errors?

From: Jonah Thomas
Claus Vogt writes:

I-las s o m e o n e invented a ProtectedForth which checks
such errors?

My Standdth checks those and a lot of others-it checks
everything I could think of. The beta test version -.I0 is on
taygeta, and I'm slowly grabbing little chunks of time to
put together version -.09.

I'd welcome feedback on it.

September 1995 October 18 Forth Dimensions

I Figure Two. Vogt's method for checking the return stack. I
\ Source f o r r e t u r n - s t a c k check ing , n o t t e s t e d . C laus Vogt 1 9 9 5

\ n o t ANS-compatible:
\ ANS d o e s n ' t know r p @
\ ANS renames b o t h compi le and [compi le] t o p o s t p o n e
\ t r i c k w i t h : : : d o e s n ' t run on e v e r y F o r t h s y s t e m

V a r i a b l e o l d r p o l d r p o f f \ Saves r p between [r c h e c k and rcheck]

: [r c h e c k (; r ret -- ; r o l d r p r e t) \ I n i t i a l i z e R check
r> r p @
o l d r p @ >r
o l d r p !

I : r c h e c k l (; r o l d r p r e t -- o l d r p) \ Ends R check
r>
r>
o l d r p @ r p @ - a b o r t " R S t a c k n o t b a l a c e d "
o l d r p !
>r ;

: test-err [r c h e c k r> rcheck l ; \ s h o u l d a b o r t on e x e c u t i n g r c h e c k]

: t e s t - o k [r c h e c k \ p r i n t s o u t s a v e d OLDRP and r e t u r n a d d r
r> dup . r> dup . >r >r
r c h e c k] ;

: : : compi le [r c h e c k ; \ Not p o s s i b l e w i t h e v e r y F o r t h sys tem!
: ; compi le r c h e c k] [compi le] ; ; immediate

\ A f t e r r e d e f i n i t i o n of : and ; t h e f o l l o w i n g compi les e x a c t l y a s t e s t - e r r above I
: t e s t - e r r r> ; \ s h o u l d a b o r t on e x e c u t i n g rcheck]

Forth Dimensions 19 Se~tember 1995 October

Nanocomputer
Optimizing Target Compiler:
The Processor-Independent Core
Tim Hendtlass
Hawthorn, Victoria, Australia

This compiler shell has bcen written to assist program-
ming modern nanocomputers, small single-chip proces-
sors with integrated RAM, ROM, and T/O. New
nanocomputers appear regularly, and a simple alternative
to assembly language can speed the development of
applications. This shell provides a processor-independent
core, described in this part, and only needs to be matched
with a processor-specific library to provide a compiler that
accepts Forth input and generates absolute machine code.
In the second part, a library for the PIC16C71 anti
PIC16C84 processors will be presented. Using the tiescrip-
tion given here and that example, libraries for other
processors can readily be developed.

The minimum processor-specific library is derived
from the minimal set of primitive words in eForth. In
eForth, all other words are derived from these primitives;
these same derivations can be uscd here. You can, of
course, define other words as primitives, in he interests of
speed, but it is not required that you do so.

The compiler has been designed to support chips with
different word lengths and different architectures; it only
expects that the target processor executes a series of
instructions taken from some type of ROM and has some
RAh4 in which to keep variables and stacks.' Since it can
support Harvard architecture processors (those with quite
separate program and data spaces), as well as those based
on the Von Neuman architecture, the control stack may be
separate from the return stack. At this stage of devclop-
ment, only colon definitions, constants, variat~lcs, and
literals are supported. Interrupt support is so processor
specific that i t has to be provided as part of a particular
processor's library.?'he compiler takes as input a source
written in Forth, and processes i t in two passes through the
source code (pass one and pass three). I3ctwcen these
passes, it carries out a spccial pass through the proccssor-
specific library (pass two). During these passes, i t places
information into three separate regions. rigure One shows
where the information is placed and where it comes from.

At the time of writing, this cornpiler has only bccn used to dcvc:lop
code forthe PIC l6C71 and l6C84 processors. Wtiilc: carc has bcen takrn
to try to make the core processor-independent, it is possiblc that somc:
processor-dependence still remains.

'I'he three spaces are as follows. First, there is the
library. 'l'his contains a number of definitions of standard
Forth words and any special words written by the user that
they wish to keep so they can be used in the future. When
run, the definitions in the library cause some of the target
processor's native code to bc laid down in the image.
Some extra (but temporary) definitions are added to the
lit)rary during the first phase of the compilation. The image
is whcre the final program is assembled ready to be
downloaded into the target. All code in the image is written
for the target processor and cannot (in general) be run by
the host processor. As code is put into the image, a record
of what has bcen loaded is kept in the target vocabulary
along with s~xcial code that, when run, will addsubroutine
calls to the code being assembled in the image

In pass one, the source is read and checked against the
words in the library. ?'he number of colons in the source is
counted-this will enable the final ortop word in thesource
to be identified during pass three. As words are found, the
count of how many times each will be used is updated. Any
word not found in the library is ignored in this pass.

No code is laid down in the image during the first pass,
but the library is addcd to. As constants, variable defini-
tions, and literals (all of which will eventually cause a
number to be put on the target processor's data stack) are
encountered in the source, new (temporary) entries are
added to the library. These will later be responsible for
entering the code into the image which, when run in the
target, will place the correct number on the target's stack.
I3y the end of pass one, the library contains two types of
entry: pcrmancnt library routines and transient numbers-
handling routines. No matter the meaning of a number, as
an address or a data value, a particular number value is
only added once to the library.

For most entries, there are two ways they can be
included in the final code. I f they are used infrequently, it
may be more economical on memory to just write their
code in-line as and when needed. However, if they are
uscd often, i t will be more memory-efficient to load the

I code as a subroutine and call this as needed. For example,
consider a routine for a PICl6Cxx that takes three words
when written in-line but takes four words (the same three

September 1995 October 20 Forth Dimensions

words plus a return word) as a
subroutine. Each time the subrou-
tine is called, this takes another
word. So, if this routine is used
once, it makes more sense to write
it in-line (three words) than to load
it as a subroutine and then call it
(four words in the subroutine and
one in the call). However, i f it is
used twice, it would take six words
in-line (three for each occurrence),
and also six as a subroutine (four
words in the subroutine and one
for each call). Since there is no
memory advantage either way, in
this case it makes sense to load it
in-line, as it will run faster in-line
than as a calledsubroutine (each call
and return takes time to execute). In
this example, the break-even count
is two; if it is used more than this, it
is more memory efficient to load it as
a subroutine. A subroutine that must,
for some reason, be always loaded
in-line (perhaps because it is a return
stack modification word) can be
accommodated by setting its break-
even count to an absurdly high
number. A routine that must always
be loaded as a subroutine would be

Figure One.

Source File
Written by the user to define

what the final program will do.

Target Vocabulary
Built in the host during compilation, using
information from both source and library.
Contains information about target; never

transferred to target.

Library (mget-machine-specitic)
In host, never directly transferred to target

machine. Added to from source during pass one.

The program for the target processor is
built here in the host during passes two
and three. Ready to be transferred to

the target processor's memory and run.

-

given a break-even count of zero.

r
from the source, the pass three code will first check to see

During pass two, every library entry is checked to see i f an entry with the same name is already in the target
if its use count (the number of times it will be used when vocabulary. All those words that were loaded as subrou-
the final code is built) will exceed the break-even count. tines and earlier words defined in the user program will
Ifso, it is loaded as asubroutine. The actual code that loads now be found in the target vocabulary. If a target entry is
it is not in the word PASS2, but in the DOES> section of found, the compiler will lay down a call to the appropriate
the defining word LIB : . As each subroutine is loaded, an address in the image. If no target is found, the library code
entry is also made in the target vocabulary so the compiler will be run which will lay down the in-line version of the
knows where this subroutine has been loaded in the code in the image. Every time a colon is encountered, the
image and can efficiently lay down a call to it in the image colon count is decremented; when the count reaches one,
whenever it needs to. The loading of code into the image we are about to compile the top word, the word that runs
in pass two is a little bit more complicated than it a t first the user's program. This definition is preceded by the
seems. The reason already described in this paragraph initialization code needed (setting up the stacks, etc.). On
why an entry may be loaded is the most obvious one (and power up, the processor executes the boot code, which
is referred to in the source code as a load-typeone). During jumps to this initialization code. After the initialization
this, a subroutine is constructed in the image and some of code is complete, execution falls through to the top word.
the words needed in thissubroutine (let's call them subsidiary The final program we build in target space will have the
words) may themselves be words from the library. The structure shown in Figure Two. The address the target
loading of these words is referred to as a load-type two. If a processor must jump to in order to start program execution
particular subsidiary word has already been loaded as a is processor-dependent, and so is defined in the proces-
subroutine, we just lay down a call to it. If it hasn't (pass one sor-dependent part of the library. Figure Two shows an
found that it would not be used enough to justify this), it example for the P I C I ~ C X X processors.
needs to be written down in-line. So three types of additions Assuming that the processor you wish to use has the
may be made to the image in pass two: as a subroutine for capability to handle jumps and subroutine calls and some
later use, as a call to a subroutine that has already been laid RAM in which to maintain stacks, this compiler can
down, or as a word laid down in in-line form. generate code for it. How the stacks are arranged and

In pass three, the source is read again and the image- implemented is processor-dependent.
code building is completed by adding all the user's colon As an example, again for the P1Cl6Cxx processors, the
definitions from the source file. As each word is extracted normal processor return stack is used to hold return

Forth Dimensions 2 1 September 1995 October

Figure Two.

Low program , Processor-dependent boot code (from library).

Subroutines loaded from the library.

On start-up,
processor jumps here

to begin execution.

High program
memory

addresses, and the other two
stacks (the data and control
stacks) and the space for
variables share RAM, as
shown in Figure Three.

The compiler source is
divided into two main files,
the first of which includes
the words that build library
entries as well as the words
that perform passes one, two,
and three of the compila-
tion, and all processor-inde-
pendent library definitions.
The second is the library file
which has the few proces-
sor-dependent definitions.
Each of these is loaded by,
and on top of, F-PC. There
could also be a file of conve-
nience words that provide
debug facilities, such as a
copy of the image or a sym-
bol table. The source of the
program you wish to com-
pile is written to a file and
then compiled by typing
C O M P I L E < f i l e n a m e > .
After the compile has fin-
ished, the compiled code for
the target is in the image space and can be
extracted and loaded in EPROM or whatever
is appropriate for your situation.

The first compilingword (~ i b r a r y - R O U -
t i n e) is used to add library entries that
define a routine for the final target processor
to do. As with most compiling words, the
objects that it produces have two parts-a
private storage region for each word pro-
duced by the compiling word (each child
word), and a pointer to the code that defines
what the child word will do when it is run. All
the children from one particular compiling
word share the same run-time code.

The second compiling word (~ i b r a r y -
Number) builds temporary library entries to

Figure Three.

L

First user colon definition compiled as a subroutine.
May include in-line code from library and calls to the

library subroutines loaded earlier in this target.

Second user colon definition compiled as a subroutine.
May include in-line code from library and calls to the

library subroutines loaded earlier in this target.

Third user colon definition compiled as a subroutine.
May include in-line code from library and calls to the

library subroutines loaded earlier in this target.

etc.

etc.

> Initialisation code. Processor processes this
and then falls through to the following code.

'Top user colon definition compiled. Must be an endless
loop. Will include in-line code from library and calls to

the library subroutine and other colon definitions
already loaded.

\.ow
R A M

High
RAM

handle numbers. These are similar, but simpler, structures
tothose producedby Library-Routine, but its children
store different information in their structures. Again, while
all Library-Number's children have the same run-time
code, this differs from the run-time code shared by all the
children of the ~ i b r a r y - E n t r y compiling word.

Each child of the Library-Rout i n e entry compiling
word has the structure shown in Figure Four..

The child also has a list (in F-PC's normal list space) that
is the list of words that follow the name and precede the
lerminating semicolon This list is pointed lo the entry
adr+7 and adr+8 in the child's private storage space.

For example, consider the processor-independent li-

Control stack (dynamic size, grows down). -1

Spare space (may at times drop to zero).

Data stack (dynamic size, grows up) t
Variable storage space
(fixed at compilation time).

brary entry for N I P . " This is defined as:
2 LIB: N I P swap drop ;

Two is the breakeven count for this word, assuming
that each entry, including the return, occupies one word
(if used more than this, load as a subroutine). Imagine that,
when this definition is compiled in the host, the part of it
in code space starts at 1000 hex and the part in F-PC's
normal list space starts at 2000 hex. Also, suppose that the
next library definition's code part starts at 1019 hex and

-.!-his is jug an i]lustration, Ofcouise, NIP could bedefied as a prhav
(machine language) word. In part two, the library for the 16C84, it is so
defined as it is just o n e machine-code insmction.

September 1995 October 22 Forth Dimensions

Figure Four.

that the routine NEST (the normal colon definition inter-
preter) is at 88E0 hex, s o that jump n e s t in 80x86
machine code is E9 EO 88 hex. Then, the full entry
compiled into the host will be as shown in Figure Five.

Each child of the library number entry compiling word
has the structure shown in Figure Six, all of which is in the
code space. There is no list associated with the library
entry for a number.

When the child of either of these compiling words is
run, it first puts the start address of its personal data area
on the stack (indicated as adr above), and then jumps to
executes the common run-time code for all children of this
compiler. The code for either type of child is in three parts:
first it checks what pass is currently being done, and then
runs the code for that pass.

During passes one and three, a library word is found
by looking u p the name, almost as w e would do with any
Forth word. "Almost," as in pass one only the library
vocabulary is searched, and any word not found there and
which is not a number is ignored, rather than being
considered an error. In pass three, both the target and the
library vocabularies are searched, and if a word is not

Forth Dimensions

found in either, his is considered an error. When a library
word is loaded into the image as a subroutine, an entry is
made in the target vocabulary. Checking the target vo-
cabulary first enables us to see if the word in question has
already been added as a subroutine. If an entry exists (a
subroutine has been loaded), it is run and lays down a call
to the subroutine in the image. If n o subroutine for this
word has been loaded (there is n o entry by this name in
the target vocabulary), the library pass three code lays
down the required word as in-line code.

During pass two, every library entry has to be checked
to see if it isusedenough to warrant loading as asubroutine.
As the different words are distributed on different threads,
it is not easy to ensure they are all checked in the correct
order. It is mainly for this reason that the link field is added
at the end of the private information area of each child word
of either of the two compiling words. Each link field envy
has the address of the count byte of the name field of the
next entry. By following the chain, it is simple to accesseach
definition in turn.

An example of a word (NIP) for the PIC16C71/84 series
of chips was given above. NIP is a secondary word (it calls

23 September 1995 October

adr+9

length byte
of name of
the entry (n)

a d r

times this
routine will

be used.

adr+4

jump nest

adr+2

breakeven
count

Figure Five.

In code space:

adr+ 10

ASCII name
of entry

adr+7

address of
list for this
definition

adr+lO+n

address of length
byte of next
library entry

1009 hex

3

lOOA hex

"NIP"

1000 hex

0

lOOD hex

1019 hex

In list space:

1002 hex

2

2004 hex

address of unnest routine

2000 hex

address of swap routine

1004 hex

E9 EO 88

2002 hex

address o f drop routine

1007 hex

2000 hex

Figure Six. I
a d r

times this
routine will

be used.

adr+8

length byte
of name of
the entry (n)

adr+2

breakeven
count

adr+9

ASCII name
of entry

adr+9+n

address of length
byte of next
library entry

adr+4

low 16
bits of

number

adr+6

high 16
bits of

number

other Forth words). An example of a primary (one which
calls n o other library routine) is:
3 L I B : DUP dpt- p u s h d l ;

where dpt - is a machine-code word that lays down code
to decrement the data-stack pointer (0384 hex), thus
making the data stack, which grows down, o n e item
larger; and p u s h d l is a machine-code word (80 hex) that
copies the t o p of the data stack (in register W) to the
address pointed to by the data-stack pointer (the new
stack location w e just acquired). The breakeven count of
three ensures that DUP is loaded as a subroutine if it is used
more than three times, or in-line if it is used three or less
times. The code actually laid down if DUP is entered as a
subroutine is 384 hex, 8 0 hex, 8 hex. For the PICl6Cxx
processors 8 hex is the object code for return. If loaded in-
line, 384 hex, 8 0 hex is laid d o w n each time DUP is
encountered in the source.

As well as words that will eventually cause code to b e
added to the image, the library also contains special
versions of the standard Forth words : , ; , CONSTANT, and
VARIABLE. These are run as these words are encountered
in the source, a n d carry out the following actions.

The library colon compiler just counts the number of
times it is called during pass one. In pass three, it first
decrements this count and, if it is zero (the last colon
definition in the source file is being compiled), runs
INIT-CODE to lay d o w n the initialization code needed.
Then, n o matter what the count is, it adds a new entry to
the target vocabulary which consists of the name of this
word (the next input word after the :) and the code which,
when run, will lay down a jump to the position where the
next word will b e written to the image (which will be the
first word of the colon definition itself).

The library semicolon compiler does nothing until pass
three. Then, unless the count maintained by the colon
compiler is zero, it terminates this word's definition with a
return instruction. This may not actually involve adding any
extra code. If the last instruction laid down was a call, this
is changed to a jump, a s the sequence call xxx return is
functionally the same as jumpxxlcbut the latter form takes
less memoryand runs faster. Of course, if the last instruction
laid down was not a call, a return does have to be laid down.
Using the example above, NIP would not require an
explicit return, as the final word of its definition is DROP,
which is always loaded as a subroutine. The in-line form of
DUP, however, does not finish with a call, s o an explicit
return has to b e added when it is loaded as a subroutine.

The library literal compiler checks to see if the number
it wishes to compile already exists in the library (has been
encountered before). If so , there is n o need to add i t again,
but just to b u m p the use count of the o n e already there,
If it does not yet exist in the library, it adds a library-
number entry to the library (with the particular value
stored in its private information area) and a use count of
one. If a particular number is used often enough it, too,
will be added as a subroutine a n d called a s needed.

The library constant compiler uses the library literal
compiler to first check if the value o f the constant already
September 1995 October

exists in the library and adds it if not. It then lays down an
entry in the target vocabulary which, when called, will just
transfer control to the relevant number entry routine.

Finally, the library variable compiler first allocates
space in the image for the variable a n d then, armed with
this address, uses the library literal compiler to enter it in
the library (unless it is already there). It then makes a n
entry in the target vocabulary which, when called, just
transfers control to the relevant number-entry routine.

The control structures implemented in the processor-
independent core-the else then, begin while repeat
unti l again, and the for loop g r o u p s a r e defined using
five processor-dependent words. O n e will lay down code
to perform an unconditional jump jump), one lays
down code to perform a jump if the top of the target stack
is true (T jumpt), another lays down code to perform a
jump if the top of the target stack is false (~ j u m p f) , and
two move data between the control and data stacks. These
last two are called by the traditional names >r and r>,
alchough only if the control and return stacks are o n e and
the same will these names b e accurate. As normal in Forth,
these words consume the stack items they test. Very
limited checking is done using the same words that F-PC
uses to ensure that the stack depth at the e n d of a control
structure is the same as that at the start. If not, the structures
are probably incorrectly constructed. It is quite possible to
beat this checking s o that an incorrect structure is ac-
cepted, but this compiler pays the programmer the normal
Forth compliment: they are assumed to know what they
are doing. The compiler will attempt to optimize the code,
but will not try to second-guess what the programmer
means. If you write an empty loop, itwill b e compiled, not
omitted; presumably, you had some reason for writing it.

The optimization comes from loadng in the most memory-
efficient way, and from ensuring that numbers (be they
literals, constants, or addresses) are only entered in the library
once. A stub is also provided for processor-dependent
peephole optimization with thevariable l a s t - l o a d - t y p e .
For example, on the PIC16C84 it can take ten instructions
to d o a C@. If, however, you know that the last code laid
down loaded a literal number # onto the data stack (two
instructions), the code to load the number # can be
converted into code to load the contents of the address #,
which is also two instructions. Thus, you can save ten
instructions. After code to load a number has been laid
down, l a s t - l o a d - t y p e is set to two (ifa subroutine was
called to d o the job) or three (if in-line code was laid down).
Normally it is set to one.

A few olher words in the source are worthy of a brief
note. GET-LINE acquires a valid line from the source,
skipping empty lines and returning with either a line and
a true flag, or a false flag if w e have reached the e n d of the
file. NO-SEARCH is a curious word whose only role is to
undo a side effect of the standard colon compiler. The
normal F-PC colon compiler (the o n e w e use to compile
NOTC itself) always takes the name of the vocabulary to
which the definition is to b e added a n d writes this over the
top item on the context stack, the list of vocabularies to be
searched to find words used in this colon definition. When

24 Forth Dimensions

we are compiling our special versions of words such as
colon and semicolon, these special versions must not be
used (they are only for use when NOTC is compiling a
source), so the name of the vocabulary the special defini-
tions are being put in must not be on the context stack. Since
colon insists on putting it there, we have to use NO-SEARCH
to remove it again before any damage can be done.

The final words to describe are IN-LIB? and I N -
TARGET?. Each of these looks in one specific vocabulary to
see if a word is there and, if it is, returns with its address.
Because F-PC uses 64 threads within each vocabulary to
speed searchmg, before we look for it we must first work out
which thread the word would be on if it were in the
vocabulary at all. We cannot use the normal word FIND, as
it will search through all the vocabularies on the context stack
and automatically abort if it can't find what it is looking for
in any of them. We just need to know if a given word exists
in a particular vocabulary, and will base our future actions
depending on the result. Finally, [L I B] is used to force the
library version of the following word to be run, even though
the library is not in the current context-stack search path. It
is used as [LIB] dup and is equivalent to writing:
[also library] dup [previous definitions]

Three special words are provided to assist this core in
handling any processors. One, BOOT-CODE, is provided so
that any special processor-specific initialisation can be done
before any code is laid down. This could be loading a small
core of words to set target hardware options, for example.
The second, INIT-CODE, is provided so that one can load
any code that must be loaded and executed by the target
processor, such as initializing stack pointers, before the top
word of the source is run. The last word, END-ROUTINE,
is a routine to run at the end of compilation. This could
extract the image and write it as a file in a format to suit a
PROM programmer, for example. Or it could perform some
final packaging pass on the image. For example, for the
P21-which packs up to four five-bit instructions in each
twenty-bit word, with some instructions being position-
dependent-END-ROUTINE might perform the intelligent
packaging pass required to produce final code.

The source code for he core, shown with this article,
can be divided into five parts. First comes the part that
defines he compiling words to build the library and the
words to handle thc passes through the user's source that
build the image. Then comes the few proccssor-depen-
dent words for the library (loaded from another file). Then
starts the processor-independent part of the library which
consists of secondary dcfirlitions built from the processor-
dependent words and the processor-independent control
words. Fourth comes the word that does i t all, COMPILE.
Finally come a few utility words that let you look at the
image, see what library words have been used, and look
at a symbol table.

?'he minimum set of processor-dependent words con-
sists of only drop, dup, swap, over, !, @, c!, C@, r>, >r,
0<, and, or, xor, and umt. The processor-independent
words are built from these. Secondary words can be taken

' from the source code for eForlh, but no doubt everyone
has words of their own devising that they use. These

Forth Dimensions

personal words go in the third section of the core source.
If you define a machine code version of one of these
secondary words in the processor-dependent file of words
for sorrle processor (for speed perhaps), you must then
comment out the corresponding definition in the second-
ary word definitions. If you do not do this, you will end
u p using the secondary definition, not your hand-crafted,
processor-dependent version.

Part two of this article has a sample processor-depen-
I dent set of words (somewhat richer than the minimum set)

for the Microchip 16C71 and 16C84 chips. They should
form a model for any other processor for which you wish

I
to produce a compiler.

I Tim is a long-time Forth devotee. A professor in the School of Biophysical
Sciences and Electrical Enaineerinaat Swinburne Universitv, he s ~ e n d s much
of h ~ s time working with artiicial neural net-
works and evolutionary algorithms in his
capacity as Director of the Centre for Intel-
ligent Systems. He escapes to Forth when-
ever he gets the chance, and has a dream
of building a giant evolutionary algorithm
computation array using Forth chips. He
can be contacted at Swinburne (P.O. Box
218, Hawthorn 3122 Australia) or by e-mail
(tim@bsee.swin.edu.au). The source code
for this article can be obtained by anony-
mous flp from brain.physics.sw~n.oz.au in
publforth, as can electronic copies of his
book on F-PC, Real T ~ m e Forth. another day without Forth.

Powerful 32-bit Forth for Windows and NT.
Includes ProForth GUIDETM "visualv-type automated
toolkit for Windows user interfaces.
Graphics library, floating point, much more.
Full support for DDE. external DLLs.
Integrated debugging aids for reliable programs.

) Go with the systems the pros use... Call us today! 1 1 FORTH,lnc.
1 11 1 N. Sepulveda Blvd, #300

I
Manhattan Beach, CA 90266
800-55-FORTH 31 0-372-8493
FAX 31 0-31 8-71 30 for-thsales@forth.com
ProForth for W~ndows is a product of Microprocessor Engineering Ltd. (MPE),
Southampton, England. ProForth for Windows is sold and supported in the US and
Canada by FORTH. Inc.

25 September 1995 October

\ N a n o c o m p u t e r o p t i m i z i n g t a r g e t c o m p i l e r s h e l l . NOTC V e r s i o n 1 . 0
\ (P r o n o u n c e d NOTCH) P r o c e s s o r i n d e p e n d e n t c o r e .
anew p r o g r a m
\ * * * * A * * * PART ONE * * * X * * *

\ * z * SPECIAL VOCABULARIES

v o c a b u l a r y n o t c \ o n e t o h o l d c o m p i l e r w o r d s
v o c a b u l a r y l i b r a r y \ o n e f o r t h e l i b r a r y
v o c a b u l a r y t a r g e t \ o n e f o r image a n d t a r g e t . s u b r o u t ~ n e c a l l s

\ . A D D DF,FINTTIONS TO OUR NOTC VOCABULARY

o n l y f o r t h a l s o n o t c a l s o d e f i n i t i o n s

\ . DEFERRED LINKS TO THE PROCESSOR DEPENDENT CODE
DEFER ICALL \ c o n v e r t t h e a d r on t h e s t a c k t o a c a l l a n d l a y i t down
DEFER IRETURN \ i f l a s t c e l l a c a l l , make i t jump, e l se a d d a r e t u r n
DEFER INLINE# \ r o u t i n e t o l o a d a l i t e r a l i n l i n e i n f i n a l t a r g e t c o d e

\ VARIABLES, BUFFER, LIST A N D ASSOCIATED WORDS
VARIABLE PASS \ w h i c h p a s s w e a r e on
VARIABLE LOAD-TYPE \ p r i m a r y o r s e c o n d a r y t y p e o f l o a d (s e e L I B :)
VARIABLE LAST-LOAD-TYPE \ may h o l d d a t a t o h e l p p e e p h o l e o p t i m i z a t i o n
VARIABLE # : \ number o f : d e f i n i t i o n s s i n s o u r c e
VARIABLE IPTR \ p o i n t s t o s t a r t o f l a s t e n t r y i n t a r g e t i m a g e
CREATE WBUFF 34 a l l o t \ a s m a l l w o r k i n g b u f f e r
CREATE WBUFFl 34 a l l o t \ a n o t h e r s m a l l w o r k i n g b u f f e r
CREATE WBUFF2 1 5 a l l o t \ y e t a n o t h e r s m a l l w o r k i n g b u f f e r

: COPY-TO-WBUFF (a d r -- a d r)

d u p w b u f f o v e r c@ 1 + cmove \ c o p y s t r l n g f r o m a d r t o w b u f f
b l w b u f f d u p c@ t I + c ! \ a d d b l a n k on e n d

: COPY-TO-WBUFF162 (a d r -- a d r)

wbuff w b u f f l o v e r c @ 2+ cmove \ c o p y s t r i n g w i t h b l a n k f r o m wbuff t o w b u f f l
c o p y - t o - w b u f f \ new s t r i n g i n t o wbuff

\ W e k e e p a s i m p l e l i n k e d l i s t o f w o r d s i n t h e l i b r a r y (l i b - l i s t) f o r u s e i n p a s s 2 .
VARIABLE LIST-END \ p o i n t s t o z e r o a d d r e s s a t e n d o f l i s t

: ADD h e r e l i s t - e n d @ ! ; \ u p d a t e l a s t l i n k a d d r e s s t o p o i n t t o t h e e n t r y w e a r e s t a r t i n g
: TO-LIB-LIST

h e r e l i s t - e n d ! 0 , \ s a v e a d d r e s s and p l a c e a z e r o a d d r e s s a f t e r name

CREATE LIB-LIST -1 h e r e a d d " " t o - l i b - l i s t + ! \ b u i l d a l l s t w l t h e m p t y z e r o t h e n t r y
: POINT (n - a d r) \ p o i n t t o l e n g t h b y t e o f n t h e n t r y i n l i s t

l i b - l i s t s w a p 0 \ s e t u p l o o p
d o d u p c@ 2t + @ l o o p \ l o o p down l i n k a d d r e s s e s t o n t h a d d r e s s

\ . ERROR MESSAGES

: E r r o r (n --) cr ." FATAL ERROR! "
c a s e 1 o f ." L i b r a r y l i s t i s c o r r u p t e d ! ! " e n d o f
2 o f h e r e c o u n t t y p e . " i s u n d e f i n e d ! ! " e n d o f
3 o f ." C o m p i l e d p r o g r a m i s t o o b i q ! ! " e n d o f

e n d c a s e c r a b o r t

: ?NEW-LINE
o u t @ 60 > i f c r t h e n \ g o t o new l i n e i f p a s t c o l 60

: .* ? n e w - l i n e ." * " ; \ new l i n e i f a t c o l 60 t h e n p r i n t *
: .LENGTH \ show how much c o d e p r o d u c e d s o f a r

? n e w - l i n e ." I m a g e l e n g t h now " I p t r @ It .

: GET-LINE (-- f l a g) \ g e t a l i n e o f s o u r c e , f l a g = O i f no more (e n d o f f i l e)
b e g i n l i n e r e a d s e t t i b d t i b @ \ g e t a l i n e , O=end o f f i l e
O = i f f a l s e t r u e \ e n d o f f i l e , e x l t l e a v i n g f a l s e f l a g
e lse # t i b @ 3 > \ > 3 means a u s a b l e l i n e ,

i f . * - 2 # t i b + ! t r u e t r u e \ show p r o q r e s s a n d i g n o r e c r l f o r t r y a g a i n
e lse f a l s e
t h e n

t h e n
u n t i l

September 1995 October 26 Forth Dimensions

: GETWORD (-- h e r e)

b l word ? u p p e r c a s e \ g e t n e x t word f r o m i n p u t t o h e r e , e n s u r e i n u p p e r c a s e

: [L I B] \ c o m p i l e l i b r a r y v e r s i o n o f f o l l o w i n g word
a l s o l i b r a r y d e f i n e d \ a d d l i b r a r y a n d l o o k u p n e x t word
i f X , \ i f f o u n d c o m p i l e i t
e l se 2 e r r o r \ i f n o t r e p o r t f a t a l e r r o r
t h e n p r e v i o u s \ remove l i b r a r y a g a i n

; i m m e d i a t e \ r u n [l i b] a s w e c o m p i l e
: NS

p r e v i o u s a l s o ; i m m e d i a t e \ s t o p s u s s e a r c h i n g c u r r e n t v o c a b w h i l e c o m p i l i n g t h e c o m p i l e r
: P I ? p a s s @ 1 = ; \ w e i n p a s s l?
: P3? p a s s @ 3 = ; \ w e i n p a s s 3 ?

\ * * * * * * * * * * * * t * VOCABULARY ACCESS WORDS

\ S e a r c h v o c a b u l a r y f o r a word , p t r p o i n t s t o s t r i n g t o s e a r c h f o r , a d r i s w h e r e f o u n d
: (IN-LIB?) (p t r v o c a b - t o - s e a r c h -- a d r t r u e I p t r f a l s e)

o v e r s w a p > b o d y h a s h @ (f i n d) \ c a l c t h r e a d t o l o o k on a n d g o l o o k f o r i t

: IN-LIB? (p t r -- a d r t r u e I p t r f a l s e) [' I l i b r a r y (i n - l i b ?) ;
: IN-TARGET? (p t r -- a d r t r u e I p t r f a l s e) [' I t a r g e t (i n - l i b ?) ;
: FIND#? (d # -- a d r t r u e 1 d # f a l s e 1 \ l o o k a n d s e e i f # i s a l r e a d y i n l i b r a r y

Zdup (d .) \ c o n v e r t t o a s t r i n g
t u c k w b u f f 2 1 + s w a p move \ c o p y u p t o w b u f f 2
w b u f f 2 c ! \ p u t l e n g t h i n p l a c e
w b u f f 2 d u p c @ t 1 + b l s w a p c ! \ a d d b l a n k t o e n d
w b u f f 2 i n - l i b ? \ 1s i t i n t h e l i b r a r y a l r e a d y ?
i f n i p n i p t r u e
e l se d r o p f a l s e
t h e n

\ . WORDS TO COMPILE TARGET ENTRIES INTO THE HOST
\ B u i l d r o u t i n e i n t a r g e t v o c a b u l a r y u s i n g t h e name a t a d r l which , when c a l l e d , w i l l l o a d "CALL a d r 2 " i n
\ t a r g e t s p a c e . Adr2 is t h e c u r r e n t a d d r e s s o f I p t r t l - t h e s t a r t a d d r e s s o f word a b o u t t o b e l a i d down
: BUILD-TVOC-ENTRY (a d r l --)

a l s o t a r g e t d e f i n i t i o n s
"CREATE I p t r @ 1+ , \ c r e a t e h e a d e r , l a y down a d d r e s s t h a t w i l l b e c a l l e d
p r e v i o u s d e f i n i t i o n s
DOES> @ I c a l l \ l a y down a c a l l t o s t o r e d number

\ C o m p i l e l i b r a r y r o u t i n e s , e g n L I B : f r e d ; , w h e r e n i s t h e b r e a k e v e n c o u n t
: LIB: a l s o l i b r a r y d e f i n i t i o n s \ a d d t h i s d e f i n i t i o n L O t h e l i b r a r y

g e t w o r d c o p y - t o - w b u f f \ g e t name t o u s e t o wbuff
d r o p w b u f f " c r e a t e \ b u i l d h e a d e r
0 , , 2 3 3 c , > n e s t h e r e 2 + - , \ u s e c o u n t e r (O), b r e a k e v e n c o u n t , i n s t a l l jump n e s t
x h e r e p a r a g r a p h + d u p x d p s e g ! \ p a r a g r a p h a l i g n e n d o f l i s t s p a c e
x s e g @ - , x d p o f f ! c s p] \ e n t e r l i s t a d r , 0 l e n g t h , b u i l d l i s t s t o p a t ;
a d d w b u f f h e r e o v e r c@ 2 t cmove \ a d d name t o l i b r a r y l i s t (i n c l u d e b l a n k o n e n d)
h e r e c@ 2 t d p t ! t o - l i b - l i s t \ move p o i n t e r t o e n c l o s e name a n d c o m p l e t e t h e l i s t e n t r y
p r e v i o u s d e f i n i t i o n s \ b a c k t o a d d i n g t o n o t c
DOES> > r p a s s @ c a s e \ s a v e p o i n t e r t o e n t r i e s i n f o on r e t u r n s t a c k
1 o f 1 r @ t ! \ bump u s a g e c o u n t
r@ @ r @ 2 t @ <= \ u s e s t i l l b e l o w b r e a k e v e n c o u n t ?
i f r @ 4 + e x e c u t e t h e n \ y e s , r u n d e f i n i t i o n t o see what i t u s e s

\ P a s s 2 c o d e may b e r u n a s w e l o a d a h e a v i l y u s e d word a s a s u b r o u t i n e (t y p e l)
\ OR a s a h e a v i l y u s e d word w e a r e l o a d i n g i n t u r n u s e s t h i s word (t y p e 2) .
\ I n t y p e 1, s i n c e n o word c a n b e c a l l e d b y a n e a r l i e r o n e , w e c a n n o t b e i n
\ t a r g e t a n d w i l l b e l o a d e d a s a s u b r o u t i n e i f o u r own u s e i s h i g h e n o u g h . I n
\ t y p e 2 i f w e h a v e a l r e a d y b e e n l o a d e d a s o u r u s e 1 s h i g h a n d now a l a t e r
\ word n e e d s u s , l a y down a c a l l t o o u r s e l f i n t h e t a r g e t . I f n o t a l r e a d y
\ l o a d e d j u s t wr i te o u r s e l v e s i n l i n e .

2 o f r@ 9 + i n - t a r g e t ? \ w e a l r e a d y e x i s t i n t h e t a r g e t ?
i f e x e c u t e \ y e s t y p e 2 , l o a d c a l l t o u s
e l se d r o p r@ @ r @ 2 + @ > \ n o , i s a c t u a l u s e > b r e a k e v e n c o u n t ?

i f r@ 9 + b u i l d - t v o c - e n t r y \ y e s t y p e l , a d d e n t r y t o t a r g e t v o c a b u l a r y
2 l o a d - t y p e ! \ show now d o i n g t y p e ~ w o a s l o a d t h i s word
r@ 4 + e x e c u t e I r e t u r n \ l o a d i n l i n e a n d c o n v e r t t o s u b r o : > t l n e

e l s e l o a d - t y p e @ 2 = \ I n t y p e 2 ONLY we s h o u l d now l o a d i n l i n e
i f r@ 4 + e x e c u t e t h e n \ I t i s t y p e 2 , l o a d i n l i n e

t h e n
t h e n

1 1
Forth Dimensions 27 September 1995 October

e n d o f
3 o f r@ 9 t i n - t a r g e t ? n o t \ p o i n t t o ASC!I name, not. a l r e a d y l o a d e d a s s u b r o u t i n e ?

i f d r o p r @ 4 t t h e n e x e c u t e \ y e s l o a d i t i n l i n e , n o u s e s u b r o u t i n e
1 l a s t - l o a d - t y p e ! \ o p t i m i z a t i o n f l a g

e n d o f
e n d c a s e r > d r o p \ c l e a n u p r e t u r n s t a c k

\ Add a # t o l i b r a r y u n l e s s i t i s a l r e a d y t h e r e when w e bump i t ' s u s e c o u n t .
\ E x p e c t s t e x t v e r s i o n o f X i n w b u f f .
: ADD#-TO-LIBRARY (# --)

a l s o l i b r a r y d e f i n i t i o n s \ w h e r e w e n e e d t o a d d i t
w b u f f "CREATE \ name f r o m wbuff f o r l i b r a r y e n t r y
1 , 2 , swap , , \ u s e (i n i t t o t h i s I) , b r e a k e v e n c o u n t , 32 b i t v a l u e low, h i g h
a d d w b u f f h e r e o v e r c @ 2 t cmove \ a d d name t o l i b r a r y l i s t
h e r e c@ 2 t d p t ! t o - l i b - l i s t \ move p o i n t e r t o e n c l o s e name a n d f i n i s h t h e l i s t e n t r y
p r e v i o u s d e f i n i t i o n s
DOES> > r p a s s @ c a s e \ s a v e p o i n t e r t o e n t r i e s i n f o on r e t u r n s t a c k
1 o f 1 r @ t ! e n d o f \ bump o u r u s a g e c o u n t
2 o f r @ @ r @ 2 + @ > \ a c t u a l u s e q r e a t e r t h a n b r e a k e v e n c o u n t ?

i f r @ 8 + b u i l d - t v o c - e n t r y \ a d d a n e n t r y t o t h e t a r g e t v o c a b u l a r y
r@ 4 t 2@ i n l i n e # I r e t u r n \ l o a d a s a s u b r o u t i n e

t h e n
e n d o f
3 o f r@ 8 t i n - t a r g e t ? \ a l r e a d y l o a d e d a s a s u b r o u t i n e ?

i f e x e c u t e \ y e s r u n t h a t
2 l a s t - l o a d - t y p e ! \ o p t i m i z a t i o n i n f o r m a t i o n

e l se d r o p
r@ 4 t 2 @ i n l i n e #
3 l a s t - l o a d - t y p e ! \ o p t i m i z a t . i o n i n f o r m a t i o n

t h e n
e n d o f

e n d c a s e r > d r o p \ l o s e p o i n t e r

: LIBRARY-NUMBER (d - -)
w b u f f i n - l i b ? \ a l r e a d y i n t h e l i b r a r y ? (we had t h i s # b e f o r e ?)
i f e x e c u t e Z d r o p
else d r o p a d d # - t o - l i b r a r y \ i f s o r u n i t t o bump i t s c o u n t
t h e n \ n o , g o a d d i t

: ADD-CONSTANT-TO-LIBRARY
a l s o l i b r a r y d e f i n i t i o n s
g e t w o r d c o p y - t o - w b u f f \ g e t n e x t word i n i n p u t s t r e a m
d r o p wbuf f " c r e a t e \ b u i l d h e a d e r f r o m i t
w b u f f l i n - l i b ? n o t \ f i n d # j u s t e n t e r e d (t e x t i n w b u f f l)
i f w b u f f l 2 e r r o r t h e n \ d i s a s t e r i f n o t f o u n d
-1 o v e r > b o d y t ! \ a d j u s t c o u n t (t h i s i s n ' t a r e a l u s e)

t \ s t o r e a d d r e s s of r u n t i m e c o d e f o r number
p r e v i o u s d e f i n i t i o n s
d o e s > @ e x e c u t e \ g o d o t h i s r o u t i n e w h e n e v e r c o n s t a n t name i s u s e d

: POINT-TO-NUMBER (a d r --) \ b u i l d e n t r y p o i n t i n g t o c o d e f o r a number
a l s o l i b r a r y d e f i n i t i o n s
w b u f f " c r e a t e , \ b u i l d h e a d e r , u s e a d r o f r u n t i m e c o d e f o r X
p r e v i o u s d e f i n i t i o n s
d o e s > @ e x e c u t e \ a t r u n t i m e j u s t r u n t h e number

: INITIALIZE \ e n s u r e t h a t e v e r y t h i n g i s c l e a n b e f o r e w e s t a r t .

: PASS1 \ READ THE SOURCE F l L E PERFORMING ACTION ON EACH WORD
1 p a s s ! b e g i n g e t - l i n e \ t r y f o r a n o t h e r l i n e t o p r o c e s s
w h i l e \ o n e i s a v a i l a b l e

b e g i n g e t w o r d c@ O < > \ g e t word , i s o n e a v a i l a b l e ?
w h i l e h e r e c o p y - t o - w b u f f l S 2 \ i f s o , s a v e word we a r e w o r k i n g on

n u m b e r ? \ i s i t a number?
i f l i b r a r y - n u m b e r \ y e s , a d d t o l i b r a r y UNLESS a l r e a d y t h e r e ! !
e l se 2 d r o p w b u f f i n - l i b ? \ i f n o t , i s i t a l i b r a r y w o r d ?

i f e x e c u t e e l se d r o p t h e n \ y e s r u n i t , no l g n o r e i t
t h e n

r e p e a t
r e p e a t \ g o l o a d a new l i n e

September 1995 October 28 Forth Dimensions

: PASS2
2 p a s s ! l i b - l i s t 2+ @
b e g i n . * d u p i n - l i b ?
1 l o a d - t y p e !
i f e x e c u t e e l s e 1 e r r o r t h e n
d u p c@ + 2+ @ d u p 0=

u n t i l d r o p

: PASS3
3 p a s s ! b e g i n g e t - l i n e
w h i l e b e g i n g e t w o r d c @ O < >

w h i l e h e r e i n - t a r g e t ?
i f e x e c u t e e l s e i n - l i b ?

i f e x e c u t e
else 2 e r r o r
t h e n

t h e n
r e p e a t

r e p e a t

WARNING OFF

\ l o a d a l l f r e q u e n t l y u s e d l i b r a r y w o r d s a s s u b r o u t i n e s
\ p o i n t t o f i r s t r e a l e n t r y
\ show p r o g r e s s , f i n d w h e r e i t i s i n l i b r a r y
\ mark a s a p r i m a r y l o a d (t y p e 1) - LIB:
\ i f f o u n d r u n i t , f a t a l e r r o r i f n o t p r e s e n t i n l i b r a r y
\ g e t n e x t a d d r e s s , c h e c k i f 0 (e n d o f l i s t)
\ c o n t i n u e u n t i l i t i s , t h e n l o s e t h e z e r o

\ S e a r c h t a r q e t t h e n l i b r a r y ONLY t o l a y down t h e c o d e
\ g e t a l i n e t o p r o c e s s
\ g e t word
\ g o t o n e , i n t a r g e t ?
\ y e s , r u n i t , no c h e c k l i b r a r y
\ y e s r u n i t
\ f a t a l e r r o r i f n o t f o u n d

\ g o g e t n e x t word
\ g o l o a d a new l i n e

\ w e w i l l r e d e f e a l l s o r t o f t h i n g s d e l i b e r a t e l y !

FLOAD PIC84LIB.SEQ \ l o a d t h e p r o c e s s o r d e p e n d e n t l i b r a r y
\ .

I ' . THE PROCESSOR INDEPENDENT PART OF THE LIBRARY

o n l y f o r t h a l s o n o t c a l s o \ s e a r c h n o t . c > f o r t h > r o o t
l i b r a r y d e f i n i t i o n s \ a d d t o l i b r a r y
p r e v i o u s a l s o \ b u t remove l i b r a r y f r o m s e a r c h l i s t

\ L i b r a r y n e e d s p a t c h e s t o r e g u l a r w o r d s \ a n d (s o a l l comment d e f i n i n g w o r d s work when w e a r e o n l y
\ s e a r c h i n g t h e l i b r a r y . P a t c h e n t r y t e c h n i q u e works b e c a u s e l a t e s t d e f i n i t o n i s h i d d e n u n t i l c o m p l e t e .

: \ [c o m p i l e] \ ; i m m e d i a t e
: ([c o m p i l e] (; i m m e d i a t e

\ S p e c i a l v e r s i o n s o f : ; CONSTANT VARIABLE I F ELSE THEN BEGIN UNTIL AGAIN WHILE REPEAT
\ D o n ' t s e a r c h t h e l i b r a r y a s w e l o a d t h e m o r w e w i l l t r y t o u s e t h e s e v e r s i o n s a s w e c o m p i l e !

. . . .
n s p a s s @ c a s e
1 o f 1 # : + ! e n d o f \ i n c r e m e n t c o u n t o f # c o l o n s i n s o u r c e
3 o f -1 # : t ! # : @ 0 = \ d e c r e m e n t c o u n t , t h i s t h e l a s t : d e f i n i t i o n ?
i f [l i b] i n i t - c o d e t h e n \ l o a d i n i t i a l c o d e i f s o

g e t w o r d b u i l d - t v o c - e n t r y \ g e t name f o r new r o u t i n e a n d b u i l d a h e a d e r
e n d o f d r o p

e n d c a s e

. . . ,
n s p 3 ? i f

: @ 0 <> i f
I r e t u r n

t h e n
t h e n

\ i f n o t p a s s 3
\ a n d n o t l a s t word
\ a d d r e t u r n o r make l a s t c a l l a jump

: CONSTANT
n s p a s s @ c a s e
1 o f \ a d d c o n s t a n t name t o l i b r a r y p o i n t i n g t o l a s t

a d d - c o n s t a n t - t o - l i b r a r y
e n d o f

3 o f \ l o s e t h e number we a d d e d a n d s k i p o v e r name
[l i b] r e m o v e # g e t w o r d d r o p

e n d o f
e n d c a s e

: VARIABLE
n s p a s s @ c a s e

number

Forth Dimensions
- -

September 1995 October

1 o f [l i b] v a r - s p a c e \ a l l o c a t e s p a c e f o r a v a r i a b l e
g e t w o r d c o p y - t o - w b u f f d r o p \ g e t name t o u s e t o wbuff
f i n d # ? \ l o o k f o r t h i s number i n t h e l i b r a r y
i f p o i n t - t o - n u m b e r \
e l s e a d d # - t o - l i b r a r y \ a d d e n t r y f o r t h i s v a r i a b l e t o l i b r a r y
t h e n

e n d o f
3 o f g e t w o r d d r o p e n d o f \ j u s t s k i p name i n p a s s 3

e n d c a s e

\ . PROGRAM FLOW CONTROL WORDS

: I F (- - a d r) n s p 3 ? \ o n l y a n y a c ~ i o n i n p a s s 3
i f ! c s p I p t r @ 0
[l i b] I j u m p t 1 t h e n \ g e t c u r r e n t a d r , b u i l d j i ~ m p 0, show a d d r e s s f r o m i f c l a u s e

: THEN (a d r f l a g --) n s p3? \ o n l y a n y a c t i o n i n p a s s 3
i f I p t r @ > r s w a p I p t r ! \ s a v e c u r r e n t a d d r e s s , q o b a c k t o dummy jump w e l a i d down
1 = i f r@ [l i b] I j u m p t

e l se r@ [l i b] I j u m p \ l a y i t dowm a g a i n , t h i s t i m e w i t h t h e c o r r e c t a d d r e s s
t h e n

r > I p t r ! ? c s p \ b a c k t o w h e r e we w e r e , c h e c k c o n t r o l s t r u c t u r e
t h e n

: ELSE (a d r l f l a g 1 -- a d r 2 f l a g 2)

n s p 3 ? \ o n l y a n y a c t . i o n i n p a s s 3
i f d r o p I p t r @ 0 [l i b] I j u m p \ a n d l a y down dummy u n c o n d i t i o n a l jump, s a v e i t s a d d r e s s

s w a p I p t r @ s w a p I p t r ! \ g o b a c k t o r e b u i l d t h e dummy jump w i t h c o r r e c t a d d r e s s
d u p 1 + [l i b] I j u m p t I p t r ! 2 \ b u i l d i t a n d come b a c k , show a d d r e s s i s f r o m a n e l s e

t h e n

: BEGIN (-- a d r)

n s p 3 ? i f ! c s p I p t r @ t h e n \ i n p a s s 3 y e t a d d r e s s t o b r a n c h b a c k t o

: UNTIL (a d r --)

n s p 3 ?
i f 1 + [l i b] I jumpt ? c s p t h e n \ i n p a s s 3 l a y down c o n d i t i o n a l jump c h e c k f o r e r r o r

: AGAIN (a d r - -)

n s p 3 ?
i f 1+ [l i b] I j u m p ? c s p t h e n \ i n p a s s 3 l a y dowm r l n c o n d i t i o n a l jump c h e c k f o r e r r o r

: WHILE (a d r l -- a d r l a d r 2) \ a d r l a d r o f b e g i n , a d r 2 a d r o f w h i l e jumpf
n s p 3 ?
i f I p t r @ 0 [l i b] I j u m p f t h e n \ i n p a s s 3 l a y dowm dummy jump i f f a l s e , r e c o r d a d d r e s s

: REPEAT (a d r l a d r 2 --)

n s p 3 ?
i f s w a p I t [l i b] I j u m p I p t r @ \ b u i l d c n c o n d i t i o n a l jump b a c k t o b e g i n , s a v e c u r r e n t a d d r e s s

s w a p I p t r ! d u p 1t \ s a v e c u r r e n t a d d r e s s
[l i b] I j u m p f I p t r ! ? c s p \ r e s o l v e jumps c h e c k f o r e r r o r s

t h e n

comment: ********************REST O F PROCESSOR INDEPENDENT PART OF THE LIBRARY
Now t h e e x t r a l i b r a r y w o r d s f r o m E f o r t h o r e l s e w h e r e . They a r e a d d e d t o t h e
l i b r a r y a n d u s e t h e w o r d s f r o m t h e l i b r a r y . I f you n e e d t o u s e t h e r e g u l a r
f o r t h w o r d s I F , AND, OR e t c , t h e s e w i l l n e e d t o b e p r e c e e d e d w i t h [a l s o
f o r t h] a n d f o l l o w e d b y [p r e v i o u s] l i k e i n t h e w o r d s a b o v e (w h i c h n e e d e d
d e f i n i t i o n s f r o m t h e l i b r a r y w h i c h was n o t g e n e r a l l y i n t h e s e a r c h p a t h) .
They a r e e n t e r e d i n t o t h e l i b r a r y w i t h LIB: - t h e i r b r e a k e v e n c o u n t w i l l
p r o b a b l y b e 1 a n d c o u l d b e p r o c e s s o r d e p e n d e n t . .

I comment; I

I o n l y f o r t h a l s o n o t c a l s o l i b r a r y a l s o d e f i n i t i o n s
\ .
\ l i b r a r y e n t r i e s g o h e r e
\ .

\ * * * * * * * * * * * * * * * * * * * f * * t * * * * * * * f * * t r * f r * * * * WORD THAT DOES IT ALL

\ Use a s COMPILE FRED.SEQ
o n l y f o r t h a l s o n o t c a l s o d e f i n i t i o n s
: COMPILE

s e q u p f i l e [l i b] b o o t - c o d e \ o p e n f i l e , d o a n y p r o c e s s o r s p e c i f i c i n i t i a l i z a t i o n
L I

September 1995 October 3 0 Forth Dimensions

c r ." p a s s 1 " p a s s 1 . l e n g ~ h \ d o p a s s 1 i r o m s t a r r o f f l l e
c r ." p a s s 2 " p a s s 2 . l e n g t h
0 .0 s e e k \ b a c k t o s a t r t o f s o u r c e f i l e
c r ." p a s s 3 " p a s s 3 . l e n g t h \ d o p a s s 3
e n d - r o u t i n e seqdown c r \ d o f i n i s h u p a n d c l o s e f i l e
." F i n a l i m a g e s i z e = "
i p t r @ 1+ . ." w o r d s " cr \ r e p o r t on t h e f i n a l s i z e

\ Image d i s p l a y w o r d s .
: SHOW-LIB-ENTRY (n -- a d r l

p o i n t d u p > r i n - l i b ?
i f > b o d y @ d u p 0 <>

i f r@ cr c o u n t t y p e
30 t o u t @ - 0
? d o ." ." l o o p
." u s e d " . . " t i m e s "
." l o a d e d "
r@ i n - t a r g e t ?
i f ." a s s u b r o u t i n e a t "

> b o d y @ .
else d r o p ." i n l i n e "
t h e n

e lse d r o p

) \ a d r l = a d d r e s s o f n e x t e n t r y
\ g e t name a n d p o s i t i o n i n l i b r a r y
\ i s i t u s e d ?
\ p o i n t t o name a n d t y p e i t

\ w r i t e d o t s t o co lumn 3 0
\ show how many c i m e s u s e d

\ show w h e r e l o a d e d
\ o r i f l o a d e d i n l i n e

\ c l e a n u p p o i n t e r s
t h e n

e l s e I e r r o r
t h e n r > c o u n t + 1+ @ \ c a l c u l a t e a d r l

: .LIB
c r ." L i b r a r y u s a g e "
1 b e g i n \ s t a r t w i t h t h e f i r s t

d u p s h o w - l i b - e n t r y 0 <> \ show o n e
w h i l e
1+ \ a s l o n g a s n o t a t e n d , move o n t o n e x t

r e p e a t d r o p cr

: .SYMBOLS \ show a l l t h e u s e r d e f i n e d w o r d s
c r ." Symbol t a b l e " cr
[' I t a r g e t > b o d y h e r e 5 0 0 +
t h r e a d s 2 * cmove \ c o p y t h r e a d s u p i n memory a s w e w i l l a l t e r t h e m
b e g i n h e r e 5 0 0 + X t h r e a d s

l a r g e s t d u p ? k e y p a u s e \ i n c a s e w e want t o see a b i q l i s t on t h e s c r e e n
w h i l e d u p l > n a m e d u p w . i d \ p r i n t name

40 t o u t @ - 0 d o ." ." l o o p \ w r l t e d o t s Lo co lumn 40
name> > b o d y @ d u p . \ w r i t e a d d r e s s i n d e c i m a l
[c o m p i l e] h e x \ s w i t c h t o h e x
." [" 4 u . r ." I " \ w r i t e a d d r e s s a g a i n
[c o m p i l e] d e c i m a l cr \ r e v e r t t o d e c i m a l , new l i n e
Y@ s w a p ! \ r e a d y f o r n e x t e n t r y

r e p e a t 2 d r o p

: .IMAGE
cr . ' Memory Map"
c r ." A d d r e s s C o n t e n t s " c r
i p t r @ d u p I + 0 d o \ set u p l o o p

o u t @ 0 =

i f [c o m p i l e] d e c i m a l \ b a c k t o d e c i m a l
i 4 u . r \ a d d r e s s i n d e c i m a l
[c o m p i l e] h e x \ t o h e x
. " . [" i 3 u . r ." 1 " \ a d d r e s s i n h e x t o o
4 0 d o ." ." l o o p \ w r i t e d o t s

t h e n i i p t r ! [l i b] i@ \ s e t u p p o i n t . e r a n d r e a d c o n t e n t s
. I1 ['I 4 u . r ." 1 " \ write i n h e x
o u t @ 6 0 > \ p a s t c o l u m n 6 0 ?
i f cr t h e n \ s t a r t new l i n e i f s o

l o o p i p t r ! \ r e s t o r e o r i g i n a l t p o i n t e r
[c o m p i l e] d e c i m a l \ f i n a l go b a c k t o d e c i m a l

: PRINT-OUT p r i n t i n g on . l i b . s y m b o l s . i m a g e p r i n t i n q o f f ;

Forth Dimensions 3 1 September 1995 October

Forth On-line Uscnet groups (incl. comp.lang.forth); BCbbs.net.
9.1.0 uucp, qwk
9.1.1 uuencodc/decode

of information they offer. Sparser entries were derived I 1.0 The FROG Pond RBS

 bout half these entries are resource-~rovider re-
sponses to our survey, easily identifiable by the rich lode

from a quick login and browse simply to verify the
presence of Forth. It is not our role to interpret the
intentions or to verify the claims of resource providcrs. NO
doubt, there are some omissions and errors; apologies for
those in advance-please bring them to FOR12's attention
by sending e-mail to forl@artopro.mlnet.com. (PORL is an
electronic mailbox for tracking publicly available, Forth-
related electronic resources; it is provided and maintained
by Kenneth O'Heskin.)

10.0 WildcatJGNT-Mail
11.0 Download aop.zip for a list of al l files on the board.

- -

Guide to Line Numbers
1.0 Resource name

Resource startup date
2.0 Location
3.0 ,... On-line addressltelephone numbers
4.0 Sponsorship

Sponsoring personl~nstitut~on's name

1.1 Aug. 89
2.0 Rochcster, NY, USA
3.0 716-461-1924
4 0 non-profit
4 .1 The FROG Computer Society
5.0 Nick Francesco
5.1 nickf@vivanct.com
6.0 free
7.0 Modem
7.1 14400 8Nl
8.0 5
8.1 languages
8.2 yes
9.0 Fidonet and lnternet mail available for all users.
9.1.0 qwk,netmail
9. I . 1 uuenc/decode
10.0 Remote Access (for now)
11.0 Download FROGPOND.EXE for self-extracting list of all

files. All Forth files available to first-time downloaders.

September 1995 October 32 Forth Dimensions

5.0 ,... Contact name (admin, sysop, etc.)
5.1 E-mail address
6.0 Access type (freelpay, conditions of access)
7.0 Connection type (modemltelnet)
7.1 Modem (maximum bps, paritylbitslstop)
7.2 Telnet (address)
8.0 Approximate number of Forth-related files
8.1 Theme of these files
8.2 Available to first-time callers?
9.0 Mail and news
9.1.0 Mail technology
9.1.1 Binary mail tranfers supported?
10.0 .. System software, if relevant
1 1.0 .. Additional comments

1.0 Gold Country Forth RRS
2.0 CA, USA
3.0 916-652-7117
5.0 Al Mitchell
8.1 Some product support (password required), many free files.
8.2 Okay Tor first-time callers.

1.0 LMI Forth BRS
1.1 Oct.84
2.0 I,os Angcles, CA, USA
3.0 310-306-3530
4.0 business
4.1 Laboratory Microsystems Inc. (LMII
5.0 Ray Duncan
5.1 sysop@lmi.la.ca.us
6.0 free

Bulletin Board Systems
1.0 Arcane Incantations
1.1 Mar. 93
3.0 617-833-6672
5.0 Gary Chanson
5.1 gary.chanson@channel I .com
8.0 Several files (some authored by sysop), first-time caller

available.
10.0 PC Board

1 .0 Art of Programming BBS
1.1 Jan. 91
2.0 Mission, BC, Canada
3.0 604-826-9663
4.0 non-profit
4.1 ForthBC Computer Language Society
5.0 Kenneth O'Heskin
5.1 kohQartopro.mlnet.com
6.0 Free dial-up access for all Forth files.
7.0 modem
7.1 v32 8,N,1
8.0 hundreds
8.2 first-time callers ok
9.0 Mail and news; e-mail by low-cost annual subscription;

7.0 modem
7.1 1,200 - 28,800 baud, 8/N/1
8.0 hundreds
8.1 Mostly compatible with I.MI Forth products, but also some

public-domain Forth stuff.
8.2 yes (except for 1.MI product updates, which require prior

registration)
9.0 Supports Internet e-mail and UseNet News
9 . 1 . 0 ~ ~ c p
10.0 PC Board 15.2
11.OThe [.MI Forth BBS is primarily intended for technical

support of 1,MI customers. However, all members of the
Forth community are welcome to upload/download files in
the public directories, and to use the LMI BBS for Internet
e-mail and reading the UseNet comp.lang.forth conference.

1.0 MindLink!
2.0 Vancouver, BC, Canada
3.0 modcrn: 604-528-3500 (main) 28.8Kbps

Telnet: mindlink.bc.ca
4.0 nusiness
6.0 Pay; may log on as guest.
7.0 28.8Kbps, Telnet
8.0 75
8.0 Available only to registered users.
11.0 l'wo ~or th file libraries: Sources.Forth and MsDos.Forth.

Forth Dimensions 33 September 1995 October

3.0 http: / /www.netaxs.com/-jayfar/
mops.html

4.1 private
5.0 Jay Farrell
5.1 jayfar@netaxs.com
6.0 free web/ftp
8.1 The Mops language by Michael Hore.

The Mops system, manual, and Doug
Hoffman's Selection Framework are
directly available from my pub direc-
tory. Other filesand resourcesare linked
from other sites via the web page.

10.0 My ISP's Unix boxes, which I connect
to using a Mac Quadra 605

11.0 Mops 2.6 is Michael Hore's public-
domain development system for the
Macintosh. With Forth and Smalltalk
parentage, Mops has extensive OOP
capabilities, including multiple inher-
itance and a class library supporting
the Macintosh interface.

1 . 0 Ron's Mac and Appk TI archive
1.1 June95
2.0 Milwaukee, WI, USA
3.0 http://141.106.68.98/

ftp:/141.1O6.68.98/
4.0 private
4.1 Ron Kneusel
5.0 Ron Kneusel
5.1 rkneusel@post.its.mcw.edu
6.0 free
7.0 ftp and http
8.0 10
8.1 Forth programs I've written for the

Mac and Apple 11.
8.2 yes
10.0 httpd4Mac-123a and FTPd 2.4
11.0 Types o f files: pretty-printer for LaTeX,

Forth on a simulated Apple I1 in Forth,
microcomputer simulator/assembler,
fractal-drawing program, CGI appli-
cations in Forth for MacHTTP.
To be added soon: Web Forms han-
dlers for MacHTTP/WebStar; updated
and "improved" Forth for the Apple
lie; simple program to show the pe-
riod-doubling route to chaos.
Mac files are BinHexed Compact Pro
archives (transfer as text); Apple I1
files are Shrinklt archives (.shk, bi-
nary).

1 . 0 taygeta.oc.nps.navy.mil
1.1 1990
2.0 Monterey, CA, USA
3.0 taygeta.oc.nps.navy.mil (131.120.60.20)

www:
t l t tp : / / taygeta .oc .nps .navy.mi l /
f ighome. html

4.0 non-profit
4.1 Skip Carter
5.1 skip@taygeta.oc.nps.navy.mil
11.00ne of the premiere Forth archives

on the net; includes the Forth Scien-
tific Library, CD-ROM project, GEnie
archives.

1 . 0 University of Bremen
3.0 Nftp.uni-bremen.de/pub/languages/

1 . 0 RCFB "The Rocky Coast Free Board"
1.1 Oct.88
2.0 Golden, CO, USA
3.0 303-278-0364
4.0 private
4.1 Jax
5.0 SYSOP
5.1 jax@well.com
6.0 Free, but must register.
7.1 19200, 8-11-1
8.0 300
8.1 Programming tools and productivity
8.2 Must register online, wait 24 hours.
10.0 PC Board since 1988, Linux by mid-

1996.

FTP Sites
I .O Asterkc Forth archive
2.0 Portugal
3.0 asterix.inescn.pt /pub/forth
4.0 university
4.1 Computer Graphics and CAD group

INESC
5.1 paf@porto.inescn.pt
6.0 anonymous ftp
8.0 hundreds
11.0 First internet site o f the GEnie Forth

archives, built with the assistance of
Doug Phillip's FNEAS server. Mirrored
on hp.com.

1 . 0 Cygnus Support Ftp Senn'ce
3.0 ftp://ftp.cygnus.com

http://www.cygnus.com
5.1 info@cygnus.com (?)
11.OThis site has a good file list and

appears to support some Forth mate-
rial not available elsewhere on the net.

1 . 0 Fare'% own small FTPsite, Forth sub-
section

1.1 1994
2.0 Paris, France
3.0 ftp://frmap711 .mathp7.jussieu.fr/

pub/scratch/rideau/
5.0 Fran~ois-Rene "Fare" Rideau
5.1 rideauQens.fr
6.0 free (anonymous FTP)
8.0 TwoFORTHsystems,myportofeForth

to Linux, and Olivier Singla's FROTH.
8.2 yes
10.0 SunOS4.1.3
11.OThis site does not contain much

about Forth, but more is welcome if
you upload it. 1 am developing my
own system, TUNES, which is re-
motely Forth-related, and for which
I opened this site.

I .O Hewlett-Packard
3.0 ft'tp://col.hp.com/mirrors/Forth
6.0 anonymous ftp
11.0Mirror site for asterix, recommended

for North American users when
asterix is busy.

1 . 0 VtForth-speci/i:c stuff
1.1 Sept. 94
2.0 Eindhoven, Brabant, the Netherlands
3.0 ftp iaehv.iaehv.nl, directory pub/

uscrs/mhx
4.0 private
4.1 Marcel Hendrix
5.0 Marcel Hcndrix
5.1 mhx@iaehv.iachv.nl
6.0 free, anonymous ftp
8.0 10 - 20
8.1 i/tForth specific files, not ANS

enough to put them on taygeta or
such. Some very Intel-hardware-spe-
cific (networking, audio CD). i/tForth
general info, release notes, previews.

11.0There is a link on taygeta to this
directory.

1 . 0 SimTel
3.0 ftp://ftp.coast.net/SimTel/msdos/

forth
5.1 service@coast.NET
11 .O Several Forth files; and Norm Smith's

Until revisions are updated here.

1.1 July 95
2.0 Ann Arbor, MI, USA
3.0 ftp://williams.physics.lsa.umich.

edu/pu b/forth
4.0 university
4.1 Particle'fhcory Group, Physics De-

partment, University o f Michigan
5.0 David N. Williams, sysadmin
5.1 David.N.Williams@umich.edu
6.0 free, low traffic, download only
7.0 anonymous ftp
8.0 12-20
8.1 Forth: personal interestsofDavidN.

Williams
11 .O This is one directory at an anony-

mous FTP site devoted mainly to
communication between our group
and the particle theory community.
Forth and symbolic computing
(Schoonschip) happen to be an in-
terest o f one o f our group.

FTP/Web Sites
1.0 Forth Research at Institut f r

Computersprachen
2.0 Vienna, Austria
3.0 http://www.complang.tuwien.ac.at~

projectdforth. html
ftp://ftp.complang.tuwien.ac.at/
pub/projects/forth.html

4.0 university
4.1 lnstitut fr Computersprachen, TU

Wien
5.0 Anton Ertl
5.1

anton@mips.complang.tuwien.ac.at
6.0 free
11.0 There's also some Forth material that

is not referenced on the page, in
particular:
ftp://ftp.complang.tuwien.ac.at/
pu b/l-orth/
http://www.complang.tuwien.ac.at/
forth)

I .O The Mops Page
1.1 Mar. 95
2.0 Philadelphia, PA, USA

programming/forth
http://ftp.uni-bremen.de/FTP/
ftp. html

5.1 ftp-admin@ftp.uni-bremen.de
11.0 Features a full ../Taygeta-Mirror

archive (information from c.1.f post
by dku@zarniwoop.cp-labor.uni-
bremen.de (Dirk Kutscher).

Internet Mdllng Lists
1 .O FIRE-L
1.1 Sept. 94
2.0 global
3.0 subscribe:

listserv@artopro.mlnet.com
submissions:
fire-l@artopro.mlnet.com

5.0 Moderated by Rick Hohensee
5.1 rickh@cap.gwu.edu
11.0The Fire-l Mailing List is for updates,

discussions, debate, speculation, and
announcements of Rick Hohensee's
free-form FlRE specification.

1.0 MISC mailing list
3.0 Subscribe to:

misc-request@pisa.rockefeller.edu
Articles: rnisc@pisa.rockefeller.edu

5.0 Jeff Fox and Penio Penev
5.1 jfox@netcom.com (Jeff Fox)

Penev@venezia.rockefel ler .edu
(Penio Penev)

11.0 The MISC list is about all aspects of
the new P21/P8/P32 and F21 Mini-
mal Instruction Set technologies be-
ing developed by Charles Moore and
his MlSC associates.

1.0 The Win32For mailing list
1.1 Dec.94
3.0 for list entries:

win32for@edmail.spc.uchicago.edu
for un/subscribe:
win32for-requests@edmail.spc.

uchicago.edu
5.0 Carl Zmola
5.1 zmola@cicero.spc.uchicago.edu
11.0 Discussion of all Win32For issues,

the Win NT/95 object-oriented Forth
system from Andrew McKewan and
Tom Zimmer.

Electronic Mailboxes
1.0 The Forth Online Resources Survey

(FORL)
1.1 July 95
3.0 forl@artopro.mlnet.com
11.OA permanent mailbox/indexfor track-

ing the e b b and flow of all publicly
available Forth electronic resources.

1.0 Milkr Microcomputer Services
1.1 Dec. 90
2.0 Natick, MA, USA
3.0 dmiller@irn.lcs.mit.edu
4.0 business
4.1 Miller Microcomputer Services
5.0 A. Richard Miller
5.1 dmiller@im.lcs.mit.edu
6.0 free
7.0 Internet
September 1995 October

8.0 none
9.0 none
11.0 We stock Forth-related books (some

on sale) and MMSI'ORTFI software.
We s u p p o r t l icensed users of
MMSFORTI~I, FORT1 ICOM, I'ORTI-1-
WRITE, DATAHANDLER-PLUS for
IBM-PC (MS-DOS and non-DOS/
standalone). We provide PC-com-
patible consulting and hardware.
ltequest our frce e-mail brochure
"MMSFORTtl and Forth books."

Newsgroups, Conferences, et al.
1.0 comp.lang forth
11.0 Usenet newsgroup, c.1.f is the pre-

miere global Forth bulletin board.
Articles from comp.lang.forth are
archived at:
ftp://asterix .inescn .pt/pub/forth/
news/

1.0 GEnie
11.0 GEnie is a BBS run by General Elec-

tric Information Services (GEIS). It
has a Forth "RoundTable" with a
bulletin board and library. For info,
including local access numbers (not
just U.S. and Canada), phone 800-
638-9636. "As a user and worker on
GEnie, I have round customer ser-
vice to be very good."

World-Wide Web
1.0 FORTI-I, Inc. /-lome Page
7.1 June 95
2.0 Los Angeles, CA, IJSA
3.0 http://www.earthlink.ner/-forth
4.0 business
4.1 FORTH, lnc.
5.0 E. Rather
5.1 erather@rorth.com
6.0 free website
11.0Site includes summary info and de-

tailed data sheets for FORTH, Inc.
products, Forth programming course
outlines, application descriptions
(some with photos), and links to
other Forth sitcs. Material added pe-
riodically.

1.0 F-PC llome/)nge
1.1 May 95
2.0 Eugene, OR, USA
4.0 private
4.1 Fred Warren
5.0 Fred Warren
5.1 fwarren@gcars.efn.org
6.0 Free dialup access for all Forth files
8.0 five Forth files
8.1 related to F-PC Forth for the IRM-PC
9.0 Mail
9.1.0 netrnail
9.1.1 PTP
11 .O This home page is dedicated to the

version of Forth lor the IRM-PC known
as F-PC. It is a full-featured, non-ANSI
compliant, publicdomain version of
Forth-a supersct of Forth-83 Stan-
dard. 'l'his page provides an introduc-
tion to Forth, an introduction to F-PC,

34

downloading F-PC and tutorial material,
and on-line mini-tutorials on using fea-
tures of F-PC. This page will eventually
be a repository for useful F-PC libraries.

1.0 Jeff Fox's Home Page
1.1 Dec. 9 3
2.0 Berkeley, CA, USA
3.0 http://www.dnai.com/-jfox
4.0 Business
4.1 Ultra Technology
5.0 Jeff Fox
5.1 jfox@netcom.com (most often)

jfox@dnai.com (supports Eudora)
8.0 40 files
8.1 UltraTechnology,ComputerCowboys,

Offete Enterprises, MlSC chips, P8,
P21, F21, P32, parallel programming
in Forth, and AI.

9.1.1 uuenc/decode (on the netcom ac-
count)

11.0This web site is organized by subject
from the home page listed above.
Incl. individual home pages for my
company, Ultra Technology (http://
www.dnai.com:80/-jfox/ultra.html);
C h u c k M o o r e ' s c o m p a n y
(cowboys.htm1); Dr. Ting's company
(offete.html); and for Minimal Instruc-
tion Set Computers (misc.htrnl); as
well as for MISC chips like P8, P21,
and my chip, the F21.
There are FORML Conference papers,
and FDarticles in html format. There is
a copy of the first published article on
Forth by Chuck Moore in 1970
(4th-1970.html). Many documents are
available in html, .DOC, .ZIP, .PRN,
.TXT, with some .EXE, etc. All files are
cross-indexed in ultrafre.htm1, which is
listed as "Free Files" on my home page.

1.0 Nick Francesco's Forth Page
1.1 Feb. 95
2.0 Rochester, NY, USA
3.0 http://raptor.rit.edu/Nick/forth.htm
4.0 Private
4.1 Nick Francesco
5.0 Nick Francesco
5.1 nick@rit.edu
6.0 free
7.0 Web Browser
8.0 5
8.1 Forth resources on the net
8.2 yes
9.0 none
11.0 The Sound Bytes Radio Show Home

Page:
http://www.vivanet.com/soundbytes

I .O Pbil Koopman's Forth Mini-Page
1.1 July 95
2.0 East Hartford, CT, USA
3.0 h t t p : / / d a n v i l l e . r e s . u t c . c o m /

Mechatronics/ads/koopman/forh/
index. html

4.0 personal
5.0 Philip Koopman
5.1 koopman@utrc.utc.com
6.0 free
8.0 Personal Forth and stack machine

Forth Dimensions

publications
11.0 In html as of July 1995:

WISC CPU/16 patent cover page
and block diagram.
WISC CPU/32 (Harris RTX-4000)
patent cover page and block dia-
gram.
Preliminary exploration of opti-
mized stack code generation (lFAR
paper).
Brief introduction to Forth ("two-
page" language overview).

Pocket Forth Home Page
June 95
Phoenix, AZ, USA
http://chemlab.pc.maricopa.edu/
pocket.html
Private on a community-college-
owned computer.
Chris HeilmadPhoenix College
Chris Heilman
heilman@pc.maricopa.edu
free/daytime access may be slow or

limited
7.0 www only.
8.0 about 40
8.1 Pocket Forth
8.2 yes
9.0 Click a link to e-mail the author of

Pocket Forth.
10.0 Mac OS
11.OThis site is maintained by the author

of Pocket Forth and includes ar-
chives of software written in Pocket
Forth, such as programming demos,
applications, and unique CGI pro-
grams written in Pocket Forth.

1.0 Stephan JBeuan's Webpage
3.0 h t t p : / / p a n t h e r . c s . m a n . a c . u k /

-bevadforth
5.1 bevan@cs.man.ac.uk (Stephan J.

Bevan)
11 .OUpto-date FAQ information on Forth

implementations and books; e-mail
maintainer to make suggestions, cor-
rections, and additions.

1.0 B e TUNES project
1.1 1995
2.0 Paris, France
3.0 http://www.eleves.ens.fr:8080/home/

rideau/Tunes/
5.0 Fran~ois-RenC "Far&" Rideau
5.1 rideau@ens.fr
6.0 free (GNU copyleft)
8.0 Only part of one file points to Forth

www sites, but the Forth spirit has
contaminated the whole project.

8.1 Review of actual Forth in
.. ./Review/Languages.html#FORTH
and of my own version of Forth in
.. ./LLWLLL,html.

8.2 yes
10.0 SunOS 4.1.3
11.OThis site is for my TUNES system

project, only remotely related to Forth.
The only thing about actual Forth is:
http://www.eleves.ens.fr:8080/home/
r i d e a u / T u n e s / R e v i e w /
Languages.html#FORTH

........................ I The Computer Journal 35 I

h

................................. FORML back cover

FORTH and Classic
Computer Support

For that second view on FORTH applica-
tions, check out The Computer Journal. Ifyou run
an obsolete computer (non-clone or PCIXT clone)
and are interested in finding support, then look no
hrther than TCJ We have hardware and software
projects, plus support for Kaypros, S 100, CP/M,
6809's, PCIXT'S, and embedded systems.

Eight bit systems have been our mainstay
for TEN years and FORTH is spoken here. We
provide printed listings and projects that can run on
any system We provide old fashioned support for
older systems. All this for just $24 a year! Get a
FREE sample issue by calling:

(800) 424-8825

TC JW
Lincoln, CA 95648

FORTH, Inc.. 25

Forth Interest Group centerfold

Laboratory Microsystems,
.. Inc. (LMI) 13

Miller Microcomputer Services 19

Silicon Composers 2

35 September 1995 October Forth Dimensions

I T o make suggestions, corrections, o r
additions to this list, contact:

Lyle Greg Lisle, P. E.
L Squared Electronics
2160 Foxhunter Court
Winston-Salem, No. Carolina 271063621
910-924-0629
L.SQUARED@CEnie.geis.com

Offerings codes:
L = Literature, S = Software,
H = Hardware , C = Consulting,
T = Training

Forth standards supported:
FIG = fig-Forth
F79 = Forth-79
F83 = Forth-83
ANSI = ANS Forth

4th Wave Computers Ltd.
C ANSI
2314 Cavendish Drive
Burlington, Ontario L7P 3P3 Canada
905-335-6844
p.caven@ieee.org

A Working Hypothesis, Inc -
L

P.O. Box 820506
Houston, Texas 77282 USA
713-293-9484
70410.1173@Compuserve.com

AM Rcsearch
LSHC ANSI
4600 Hidden Oaks Lane
Loomis, California 9565&9479 USA
800-949-805 1
sofia@netcom.com

Ampro Computers Inc.
H
990 Almanor Ave.
Sunnyvale, California 94086 USA
408-5 22-4825
techsupport@arnpro.com

Bernd Paysan
S ANSI BigForth
Stockmannstr. 14
81477 MuenchenFRG Germany
++49 89 798557
paysan@informatik.tu-muenchen.de

Blue Star Systems
S ANSI Forth/2
P.O. Box 4043
Hammond, Indiana 46324 USA
ka9dgx@interaccess.com

Delta Research
S F83 JForth
P.O. Box 151051
San Rafael, California 94915 USA
415-453-4320
phil@3do.edu

Forth Vendors
FORTH, Inc.
LSHCT ANSI polyFORTH
111 N. Sepulveda Blvd. Ste. 300
Manhattan Beach, California 90266 USA
800-5 53-6784
ERATHER@aol.com

Forth Interest Group
SL
P.O. Box 2164
Oakland, California 94621 USA
5 10-893-6784
JDHALL@netcom.com

Frank Sergeant
SC ANSI Pygmy
809 W. San Antonio St.
San Marcos, Texas 78666 USA
F.SERGEANT@GEnie.geis.com

Frog Peak Music
S F83 HMSL
P.O. Box A36
Hanover, New Hampshire 03755 USA
603-448-8837
phil@3do.edu

L Squared Electronics
SC Pygtools, Pygmy
2160 Foxhunter Ct.
Winston-Salem, North Carolina 27106 USA
910-924-0629
L.SQUARED@GEnie.geis.com

Laboratory Microsystems, Inc. (LMI)
S F83 URIFORTH
P.O. Box 10430
Marina del Rey, California 90295 USA
3 10-306-74 12
duncan@nic.cerf.net

MicroProcessor Engineering Ltd.
HCLS ANSI PowerForth, ProForth
133 Hill Lane
Southampton SO15 5AF England
+44 1703 631441
sales@mpeltd.demon.co.uk

Miller Microcomputer Services
LSHCT F79 MMSFORTH
61 Lake Shore Road
Natick, Massachusetts 017&-2099 USA
508-653-6136
dmiller@im.lcs.mit.edu

Mosaic Industries, Inc
SH F83
5437 Central Ave Ste 1
Newark, California 94560 USA
5 10-790-1255

Mountain View Press, Div. of
Epsilon Lyra
LSI-ICT ANSI MVP-Forth
Star Rt. 2, Box 429
La Honda, California 94020-9726 USA
4 15-747-0760
ghaydon@forsythe.stanford.edu

Offete Enterprises, Inc.
CHLST F83 eForth, F83 &
1306 South B St.
San Mateo, California 94402 USA
415-574-8250
tingch@ccmail.aplbio.com

Redshift Limited
S
726 No. Locust Lane
Tacoma, Washington 98406 USA
206-564-33 15
RedForth@AOL.com

Rob Chapman
S botKernel, Timbre
11120 - 178 St.
Edmonton, Alberta T5S 1P2 Canada
403-430-2605
robQidacorn.hp.com

Science Applications
International Corp.
CSTH ANSI Until, LMI, Uniforth
301 Laboratory Road
Oak Ridge, Tennessee 37831 USA
615-482-9031
smithn@orvb.saic.com

Silicon Composers. inc.
H
655 W. Evelyn Ave., #7
Mountain View, California 94041 US
415-961-8778

T-Recursive Technology
C ANSI
221 King St. East, Suite 32
Hamilton, Ontario L8N 1B5 Canada
905-308-3698
BJ@CEnie.geis.com

TOS Systems Inc.
C LM I
P.O. BOX 81-128
Wellesley, Massachusetts 02181 USA
617 431-2456
rstern@worId.std.corn

Triangle Digital Services, Ltd.
1-1 ANSI TDS2020 &
223 Lea Bridge Road
London, U.K. E l 0 7NE
+44-181-533-0285
~OOO~S.~~@COMPUSERVE.COM

Ultra Technology
LSCT ANSI P21Forth
2510 - 10th St.
Berkekey, California 94710 USA
510 -848-2149
jfox@netcom.com

Vcsta Technology, Inc
SHC ANSI, Forth-83+
7100 W. 44th Ave Ste 101
Wheat Ridge, Colorado 80033 USA
303-422-8088

September 1995 October 36 Forth Dimensions

(Letters, continued from page 5.)

And Forth programs run fast because data is manipu-
lated and passed in a common area, the data stack. The
programmer has checked and debugged the use of this
common area, and no run-time checking is required.
(Data stack checking and debugging is probably the
hardest part of Forth programming.)
Forth programs are smaller than others because there are
no checking and defining routines necessary.
And Forth programs are smaller because data is manipu-
lated and passed in a common area. Work areas (heaps)
and work area managers are not necessary. The Forth
programmer is the work area manager.

To conclude, Forth is an all-adaptable programming
language usable by skillful programmers who understand
the Forth programming language, the hardware, and the
data they are using, and are capable of properly control-
ling all three. Many other programming languages are
available for other people, but adaptations of Forth will
never be one of them. Obviously, Forth cannot be the right
language for everyone.

Should you and the others of FIG return and limit your

interests to promoting the advancement of the use of the
true Forth philosophy, I would be interested in rejoining.

Fred F. Kloman
Laguna Niguel, California

P.S. It has been impossible for me to believe that the
people who were credited with such great intelligence
have manipulated the path of FIG without seeing the great
contradiction between the Forth philosophy and what
they were doing. Forth is a very logical language, and a
contradiction is an elementary logical situation. If they
didn't see the contradiction, perhaps they are not as
intelligent as they have been credited.

P.P.S. It would seem futile to attempt to recover interest in
the real philosophy of Forth by publishing in Forth
Dimemiom. Very few of the many, many real Forth
programmers of the world read the publication. We have
all left FIG! And this explains FIG'S hard times!

/See editorial on page 4 for commentary.. .I

Author Recognition Program

To recognize and reward authors of Forth-related ar-
ticles, the Forth Interest Group (FIG) has adopted the
following Author Recognition Program.

Articles Letters to the Editor
The author of any Forth-related article published in a Letters to the editor are, in effect, short articles, and

periodical or in the proceedings of a non-Forth conference so deserve recognition. The author of a Forth-related
is awarded one year's membership in the Forth Interest letter to an editor published in any magazine except
Group, subject to these conditions: Forth Dimensions is awarded $10 credit toward FIG

a. The membership awarded is for the membership membership dues, subject to these conditions:
year following the one during which the article was a. The credit applies only to membership dues for the
published. membership year following the one in which the

b. Only one membership per person is awarded in any letter was published.
year, regardless of the number of articles the person b. The maximum award in any year to one person
published in that year. will not exceed the full cost of the FIG member-

c. The article's length must be one page or more in the ship dues for the following year.
magazine in which it appeared. c. The author must submit to the Forth Interest Group

d. The author must submit the printed article (photo- a photocopy of the printed letter, including iden-
copies are accepted) to the Forth Interest Group, tification of the magazine and issue in which it
including identification of the magazine and issue in appeared, within sixty days of publication. A
which it appeared, within sixty days of publication. coupon worth $10 toward the following year's
In return, the author will be sent a coupon good for membership will then be sent to the author.
the following year's membership. d. If the original letter was published in a language

e. If the original article was published in a language other than English, the letter must be accompa-
other than English, the article must be accompanied nied by an English translation or summary.
by an Engish translation or summary.

i

Forth Dimensions 37 September 1995 October

Extending CASE by
Simplifying It
Wil Baden
Costa Mesa, California

"Less is More"
In Forth, the definitions of @ ("fetch") and ! ("store") are

independent from each other, and the two words can be
used independently, although their uses are often paired.
This is a characteristic of Forth-words are defined sepa-
rately, and each word has an individual behavior. Words are
not used together because of their syntax, but for what hey
do by themselves to the stacks and other data structures.

The definitions of the required control-flow words-IF,
ELSE, THEN, BEGIN, WHILE, REPEAT, UNTIL, DO, LOOP,
+LOOP, LEAVE, UNLOOP-are like the definitions of all the
other required words. Each definition stands alone, inde-
pendent of all the others. This independence is ob~ained by
defining their behavior relative to a mysterious "control-
flow stack" whose form and location are left unspecified.

There is no mention in the required words of "control
structure." This is a recognition of how control-flow words
have always worked in Forth.

THEN is not preceded by IF (and maybe ELSE) because
of syntax, but because IF (and maybe ELSE) did certain
things tothe control-flow stack that THEN can use.'The same
can be said about the other required control-flow words.

In the optional control-flow words, this essence of
Forth was overlooked, and the concept of "control struc-
ture" was introduced.

In particular, in the Core Extension wordset certain
optional control-flow words were defined using "the
CASE ... OF ... ENDOF ... ENDCASE structure."

Figure One shows formulations of CASE, OF, ENDOF,
and ENDCASE that are coherent with the definitions of the
required control-flow words. There is no concept of
"control structure."

These words can be used wherever the Standard words
can be used. However, they can also be independently
mixed and matched, depending on the values in the
control-flow stack.

With these definitions, OF can be used without CASE,
and CASE can be used without OF. ENDOF is a synonym
for ELSE.

Sample Implementation
In anysystem in which the data stack serves as the control-

flow stack, the following is one possible implementation.

September 1995 October

VARIABLE (CASE-MARK)
(This variable name should be
(kept hidden.)

: CASE
(CASE-MARK) @ DEPTH (CASE-MARK) !

; IMMEDIATE

: ENDCASE
POSTPONE DROP
BEGIN

DEPTH (CASE-MARK) @ <>
WHILE

POSTPONE THEN
REPEAT
(CASE-MARK) !

; IMMEDIATE

: OF
POSTPONE OVER POSTPONE =

POSTPONE IF POSTPONE DROP
; IMMEDIATE

: ENDOF POSTPONE ELSE ; IMMEDIATE

Depending on how your system is implemented, other
and perhaps better definitions could be made.

Examples

("Thirty days hath September")

: THIS-YEAR
TIME&DATE NIP NIP NIP NIP NIP ;

9 CONSTANT SEPTEMBER
4 CONSTANT APRIL
6 CONSTANT JUNE
11 CONSTANT NOVEMBER
2 CONSTANT FEBRUARY

38 Forth Dimensions

Figure One. The Simplified Case Statement. 1
(Complex M u l t i p l e - e x i t Example

6.2.0873 CASE CORE EXT
Compilation: (C: -- case-sys)

Mark the control-flow stack with an element to be used
as a sentinel.

Execution: (--
1 Continue execution.

6.2.1342 ENDCASE CORE EXT
Compilation: (C: case-sys orig-1 orig-2 . .. orig-n --)

Append the execution behavior given below to the
current definition. Then keep resolving the control-flow
stack with the function of THEN s o long as case-sys is not
on top of the control-flow stack. Discard case-sys.

An ambiguous condition exists if THEN fails when
doing this.

Execution: (x --)
Discard the top stack element and continue execution.

6.2.1343 ENDOF CORE EXT
Compilation: (C: orig-1 -- orig-2)

ENDOF is an alternative name for ELSE.
See ELSE.

: ROLL-FOR-POINT (n - 1
BEGIN (p o i n t)

THROW-DICE (p o i n t n)
DUP .
7 OF DROP LOSE E X I T
OF WIN E X I T

AGAIN

(N o t e : OVER = I F DROP c a n be r e p l a c e d
(b y OF a n d v ice v e r s a .)

: CRAPS
THROW-D I C E
DUP .
CASE 2 OF LOSE
E L S E 3 OF LOSE
E L S E 7 OF WIN
ELSE 11 OF WIN
ELSE 1 2 OF LOSE
E L S E ROLL-FOR-POINT
0 ENDCASE

(- 1
(p o i n t)

: DAYS
CASE
E L S E
E L S E
E L S E
E L S E
ELSE
E L S E

6.2.1950 OF EXT
Compilation: (C: -- orig)

Put the location of a new unresolved forward reference
on the control-flow stack. Append the execution behavior
given below to the current definition. The behavior is
incomplete until the forward reference is resolved, e.g., by
THEN or ELSE.

Execution: (xl ~2 -- I xl)
If the two values o n the stack are not equal, discard the

topvalue and continue execution at the location specified
by the consumer of orig.

Otherwise, discard both values and continue execu-
tion in line.

Note: OF is equivalent to OVER = I F DROP.

(m o n t h
SEPTEMBER OF
A P R I L OF
JUNE OF
NOVEMBER OF
FEBRUARY <> I F
THIS-YEAR 4 MOD I F

(For c o m p l e t e n e s s , d e f i n i t i o n s o f
('THROW-DICE' , ' W I N ' , a n d
(' L O S E ' a r e g i v e n i n t h e a p p e n d i x .)

(conditional using a
(String case Statement)

: [E L S E] (- 1
1 BEGIN (l e v e l)

BL WORD COUNT (l e v e l w o r d .)

CASE
2DUP S " [I F] " COMPARE O=

I F
2DROP 1t

ELSE
2DUP S " [E L S E] " COMPARE O=

I F

- d a y s)

3 0
3 0
3 0
3 0
3 1
2 8
2 9

2DROP 1- DUP I F 1+ THEN

I I
ELSE

2DUP S " [THEN]" COMPARE O=

0 ENDCASE

-

I F
2DROP 1-

ELSE
2DROP

0 ENDCASE
?DUP O=

U N T I L
; IMMEDIATE

(l e v e l)

()

: [I F] (f l a g -
O = I F POSTPONE [E L S E] THEN ; IMMEDIATE

I I (Continues on next page.)

Forth Dimensions 39 September 1995 October

: [THEN] (-) ; IMMEDIATE

(Signum - n e g a t i v e / z e r o / p o s i t i v e
(d i s c r i m i n a t i o n .)

: SIGNUM (n - -11011)

CASE DUP O< I F DROP -1
ELSE DUP O> I F DROP 1
0 ENDCASE

,

(C h a n g e c a r r i a g e r e t u r n t o l i n e f e e d .)

1 3 OF 1 0 THEN

Discussion
ENDCASE presumes that there is a test value still o n the

stack. This means that if you use that value between the
last ENDOF and ENDCASE, you must DUP it first, or use it
and restore a dummy.

In almost all applications, you want to d o something
with it.

CASE and 0 ENDCASE give a solution to an inconve-
nience with Forth control logic. Suppose that, despite your
goodintentions, you have a definition with nested I F s and
ELSEs which e n d with many THENs.

Put CASE before the first I F , and 0 ENDCASE in place
of the many THENs. This form is clearer, and it's impossible
to miscount the THENs.

An example of such is a "string case" structure-see the
definition of [ELSE] above.

: ESAC
POSTONE FALSE POSTPONE ENDCASE

; IMMEDIATE

A p p e n d i x
(U s e y o u r f a v o r i t e Random Number
(G e n e r a t o r .)

(T h i s o n e h a s a n e n v i r o n m e n t a l
(d e p e n d e n c y o n 3 2 - b i t a r i t h m e t i c .)

(D e f a u l t RNG f r o m t h e C S t a n d a r d .
('RAND' h a s r e a s o n a b l e p r o p e r t i e s , p l u s
(t h e a d v a n t a g e o f b e i n g w i d e l y u s e d .)

VARIABLE RANDSEED
32767 CONSTANT MAX-RAND
: RAND (- random)

RANDSEED @ (random)
1 1 0 3 5 1 5 2 4 5 * 1 2 3 4 5 +
DUP RANDSEED !
1 6 RSHIFT MAX-RAND AND

: SRAND (n -) RANDSEED ! ; 1 SRAND
: CHOOSE RAND * 15 RSHIFT ;

: THROW-DICE
6 CHOOSE 1+ 6 CHOOSE 1 + + ;

: W I N . " You w i n . " ;
: LOSE . " You l o s e . " ;

Wil Baden is a profess~onal programmer with an interest in Forth

(Fast Forthward, continued from page 43.)

entering BUG would make visible just the two names SEE
and DEBUG.

OS Maturity
Without a doubt, vocabularies increase the conve-

nience and richness of the Forth development environ-
ment. However, they d o not address all the needs that can
b e identified, including needs better served by modern
operating systems.

A modern operating system allows running distinct
applications in dedicated memory spaces. It can even
afford them a certain amount of protection from corrup-
tion. It also permits easy loading and unloading of
applications to let the user configure their preferred mix
of instantly available tools (such as word processor,
spreadsheet, etc.).

Forth supports instant access to mini-applications by
letting you configure the Forth that comes u p with your
choice of preloaded mini-applications, or tools. Flowever,
the procedure is circuitous and often varies from one Forth
system to another--even among several systems with a
common host 0 s .
September 1995 October

Furthermore, incremental changes are not well sup-
ported, except to load more tools.

Where Forth falls down is in its support for the
incremental removal of one mini-application. The ability
of Forth to conveniently forget (unload) a tool depends
upon how recently it was loaded, and whether you don't
mind also unloading any tools that happen to have been
loaded more recently than it.

Such a simple task as unloading a ready-to-use appli-
cation deserves an equally simple interface. Unloading of
tools should not require the unintentional loss of execut-
able code.

(Forth's view of compilation as the sole way to adjust the
memory image is too narrow and too antiquated a view, as
developers of Forth overlay managers already know.)

Recognizing this problem-and recognizing that a host
OS underlies many Forth systems, system implementors
have the opportunity to exploit the host OS to load or
unload tools such as an editor. For a Windows-based Forth
system, this provides a more convenient interface and
makes the operation of Forth's tools more consistent with
other tools on the same platform.

40 Forth Dimensions

Assessing Vocabularies
Forth's vocabularies are sewing a number of roles, as

I have shown. Probably these roles are too numerous,
suggesting that vocabularies are overloaded and therefore
can't possibly perform well across the board.

When functioning as a means for changing focus
between tools, vocabularies are satisfactory.

Corresponding GUI provisions can help you manage
several concurrently loaded applications in a windows
environment. Those GUI provisions include windows,
application menus, taskbar-displaying utilities, and user-
customizable menus-such as options for short and full
menus. In future Forth systems, this particular application
of vocabularies may b e curtailed by taking advantagc of
superior GUI provisions.

When functioning as a way to change the configuration
oftools that are loaded, vocabularies are not of any assistance
as currently implemented Forth's equivalent tools are subop-
timal: We have tools for discarding (forgettin9 compilcd
code and tools for regenerating an executable.

When functioning as a means of organizing source
code, vocabularies are inadequate. Creating separate
namespaces helps us isolate groups of routines for pur-
poses of referencing them more precisely after they are
defined. But before its compilation, the source code for
Forth words is not subjected to any rigorous treatment that
segregates them according to their vocabulary affiliation.

In any case, it may not be the role of formal language
provisions to achieve such an objective Code-structu ring
conventions may be more appropriate as a means to help
us organize source code.

Vocabularies play a role like modules in terms of
helping isolate groups of routines (and data) from other
groups of routines, at least in terms of their visibility. But
before vocabularies can be viewed as an effective substi-
tute for modules, they require more development.

Nevertheless, vocabularies may be able to be inte-
grated with other layers of software. Well integrated,
external layers of software could augment and articulate
vocabularies in various ways. Ry adding the right amount
of outside support of just the right kind, an upgrade may

Pr@dmeO WaE~lh
FORTH, Inc. now publishes a home page on the

Internet's World-Wide Web (WWW). The company's

site at URL http://www.earthlink.net/-forth contains

both brief and detailed product descriptions,

application notes, and links to other Forth-related

sites. These web pages also contain "mail-to" links so

that web surfers can readily request information about

how the company's tools support development of

embedded systems, industrial controls, DOS-based

real-time applications and Windows programs.

New facilities should be introduced to handle the roles
they do not serve well, or that they serve only in a
peripheral sense.

Related problems should be attended to, as well. For
example, we should strive to reduce the need for source
code recornpilation and kernel regeneration to just those
occasions when the source code has changed. Currently,
the need for such procedures arises due to system admin-
istration (system cleanup) activity. Let's give ourselves
more convenient provisions tooffload or rearrange memory-
resident tools as part of our administration of a system.

One of thc directions w e need to explore is a form of
compilation that permits vocabulary (or module) groups
of words to occupy contiguous memory spaces. The

Such measures don't conflict

-
able. ~ e c o m ~ i ~ a t i o n alone is not enough. Recompilation is one implementation option ...
often unavoidable when, due to the unloading (or forget- " 1
be possible that offers much greater versatilily.

Along with that, w e may be able to better address how
we can make c o m ~ i l e d memorv images more manage-

with vocabularies, so an
extension of vocabularies is

ting) of compiled code through operations that are not as
granular as could b e desired, more code was forgotten
than was desired. (The unloading process has become
even more constrained by the ANSI standard.)

Conclusion
Forth is a programming environment that is wide open.

No other development environment permits a similar levcl
of access to and modification of the tools for developing
applications. For this privilege, we are willing to tolcratc
a certain amount of inconvenience. However, the rest of
the programming world will not look upon this so kindly.

Let's acknowledge that vocabularies are overworked.

natural next step is to compile such groups of words into
execxtion units that can be relocated.

These measures could greatly improve the ease with
which application- or module-resident memory is man-
aged. Furthermore, such measures are not in conflict with
the features o f vocabularies. 'Therefore, an extension of
vocabularies is one possible implementation choice.

(If the job can be done best by a host OS, perhaps the
Forth kernel should become the equivalent of a shared
library. That way, each application can be given its own
address and stack spaces that are loaded and offloaded by
the OS.)

Forth Dimensions 4 1 September 1995 October

A Forum for Exploring Forth Issues and Promoting Forth

Vocabularies Are Overworked

Mike Nola
San Jose, California

O n e role that vocabularies serve well is setting the
scope of name searches. In order to establish such search
states, vocabularies also organize Forth words into groups.
Each Forth word will have only o n e vocabulary affiliation.

The fact that words may b e grouped into vocabularies
should not be taken as evidence that the source code for
each vocabulary is centralized in o n e place. Despite
vocabularies, Forth source code can b e haphazardly
organized.

It might be enlightening to structure Porth source code
more rigidly, such as by attempting to fix the location of
various program elements. Other problems stand in the
way of achieving this through formal language provisions,
however (see the last installment of Fast Forthward).
Vocabularies are among those Forth formalisms that arc
hindered from serving as effectively as they could as
organizers of source code.

If the hindrances that impact our ordering of code were
removed, the words in a vocabulary might b e better
organized in a file. Such a file could have at its start some

tion results from typing something using the keyboard.
Typically, w e type commands with names that have
particular meanings to us.

A Forth development environment might have o n e or
more tools with identically named routines, however.
Vocabulary search states permit o n e tool to take the
foreground temporarily, while others tools are simulta-
neously hidden o r pushed into the background.

This is a job for vocabularies. Vocabularies provide a
means for Porth users to manage the system's focus.
Systems such as F83 place vocabulary manipulation com-
mands in a ROOT vocabulary, where they are readily
accessible. (The fact that it was named the ROOT vocabu-
lary should not imply that it is always the last vocabulary
searched, however. At least, that is what I presume to be
the case. Perhaps ROOT was not the best choice of names.)

By entering EDITOR (or ALSO EDITOR), you permit
the editor words to take precedence over same-name
words associated with other development tools. By enter-
ing DOS (or ALSO DOS), you permit file-manipulation
words to take precedence over same-name words associ-

and articulate vocabularies
in various ways.

jntegratedJ layers
of soft ware could augment

code that declares a n overall vocabulary state that remains
in effect for the entire file.

ated with other development tools.
Ry entering FORTH (or ONLY FORTH), you permit the

focus to b e narrowed to exclude all but the most basic

Scoping the Command User Interface
Forth is a strange and wonderful aggregation of tools. To

shepherd these tools around, vocabularies play a substan-
tial role. I will call this role o n e of focus management.

I a m borrowing the term focus from the domain of user
interface objects. GUI interfaces are populated with user
interface objects that handle input events. As users navi-
gate to a n object, such as a text field or button, that object
is said to have the focus. User interface events, such as
keypresses, are handled by the object that has the focus.

Forth has a nongraphical user interface. User interac-

development tools.
GlJI menus typically contain commands for which

keyboard sequences exist. Therefore, GUIs a n d command
interfaces can share a common style of interaction.

Of course, focus management in Forth fails to parallel
GUI user interfaces in all respects. The shift of focus in
Forth through vocabularies is not as clear or intuitive as
switching to another tool-dedicated window.

Forth consists o f a n aggregation o f many tools into a
single development environment. When you reference a
vocabulary after ALSO, the system's focus widens to
include the new tool as well any other tools that previously
had the focus.

Comparing this with GUI interaction styles, it's as if the
menus of several development tools were combined into
one large menu bar. In such a way, Forth helps manage
access to several simultaneously loaded mini-applications,
each of which is typically a discrete development tool.

September 1995 October 42 Forth Dimensions

Forth permits many disparate commands to all b e
available at once. These commands might correspond to
editors, debuggers, profilers, and s o forth. In case any of
those commands are named identically within different
tools, your prior specification of the focus through a tool-
oriented vocabulary can assure you of obtaining the
command meaning you really want.

When using a GUI, keyboard shortcuts cannot b e
overloaded. However, by switching to another task win-
dow, you gain access to a new namespace for keyboard
shortcuts. Only o n e window is active at a time, s o the
keyboard shortcuts must b e unique in o n e application
only, not across several applications. (Essentially, the
same visibility limits apply within a vocabulary.)

When you use the Forth CUI (Command User Inter-
face), commands are directly available. In contrast, a GUI
will probably force you to choose the correct menu to go
to first in order to find the command-unless you memo-
rize the command shortcut.

Development Tool Deployment
Vocabularies help provide assured access to o n e tool

at a time. Because vocabularies often are not exclusively
used in one-to-one correspondence with development
tools, they must play other roles a s well.

Take, for example, the USER vocabulary in F83. It
contains the words VARIABLE, DEFER, CREATE, and
ALLOT.

The USER vocabulary supports tool development,
assuring that each mini-application can incorporate per-
user data structures. Private storage areas are helpful in a
multitasking system s o that users d o not overwrite each
other's work spaces when they run shared applications.

The USER vocabulary does not play the same role as
does the EDITOR vocabulary. Its namespace need not
come to the foreground o r fade to the background to
overtake control from o r yield control to other devclop-
ment tools.

In order to qualify as a mini-application (or tool), a group
of commands must accept input, process data, and produce
a n output. The words in the USERvocabularies serve ano~ticr
purpose, that of declaring specialized data structures.

Despite the different purposes that can b e identified for
vocabularies, vocabularies work their magic by affecting
namespace search states. A couple of examples are: When
EDITOR is excluded from the focus, Forth's editing tools
become invisible; likewise, when USER is excluded from
the focus, resources for writing multiuser Forth programs
become invisible.

Consider h o w your car has component parts and ho.iv
your toolbox contains discrete tools.

T o make a particular repair, you need to use the correct
tool. This corresponds to alternating between the tool-
oriented vocabularies during Forth development, such as
between the EDITOR and DOS.

T o make a particular repair, you also need to obtain the
correct parts. A Ford parts dealer is not the place to obtain
a Chrysler part. This corresponds to selecting the correct
vocabulary to obtain a domain-specific routine.

Forth Dimensions

We may b e tempted to think of domain-specific
vocabularies in the same way as modules. They serve a
module-like role, in that they help isolate o n e group of
routines from another.

In his article "Understanding F83 Vocabulary Usage,"
I3yron Nilsen listed nine vocabularies and gave short
ciescriptions of each (see page 21 of FDXVI/ 1). Based
on his descriptions, ROOT, EDITOR, a n d DOS appear to
b e the tool-oriented vocabularies. Of the remaining six,
five appear to be domain-specific vocabularies. They
are ASSEMBLER, FORTH, HIDDEN, SHADOW, anduSER.

The remaining vocabulary, BUG, is ultimately domain-
specific because it regulates access to a particular type of
programming resource. It generally contains code-in-
spection words. Yet facilities for code inspection are truly
tools that accept inputs and generate outputs, so there is
impetus to classify BUG as a tool-oriented vocabulary.
While most of the words needed to support DEBUG and
SEE reside here, the DEBUG and SEE words themselves
remain in the FORTH vocabulary. What happened?

Perhaps the words DEBUG and SEE are s o few in
number that a conflict of them a n d user interface words
from other tools was not foreseen as a likely area of
conflict, s o there is n o real need for a tool-oriented
vocabulary.

Considering how the remaining words in the BUG
vocabulary fail to comprise an application or development
tool-it may have been viewed as a poor organizational
strategy to group SEE and DEBUG together with them.

1 don't think the notion that the developers of F83
might have been interested in avoiding extra typing
when using SEE and DEBUG was a concern, particularly
when ALSO is available. More likely, they wanted to
preserve a private namespace for words that support
code inspection, allowing more freedom to name words
as they chose.

This illustrates a potential problem with the varied
roles of vocabularies-one vocabulary might be pulled
in several directions to enclose development-tool-ori-
cnted routines as well as domain-oriented programming
provisions. Without further subdivisions, vocabularies
cannot collect and distinguish both types of content.

A true module system has private a n d public parts.
I,ikewise, a class or object system has a similar distinction
between public messages and private implementations.

A few essays back in time, I suggested that a n
INTERFACE subvocabulary could b e appropriate in
certain contexts. The BUG vocabulary seems to b e o n e
where additional internal partitioning was needed.

Words in the INTERFACE subvocabulary could be
searched at times when the words outside it but inside
the same overall vocabulary remain hidden (or private).
'I'hose other word? need to b e searched, however, when
extending a particular vocabulary domain.

Since I suggested this, I have had a suspicion that a
better alternative might b e a PRIVATE subvocabulary.
Entering BUG PRIVATE would make available all the
definitions that help support SEE a n d DEBUG. Whereas,

(Continues on page 40.)

43 Se~tember 1995 October

CALL FOR PAPERS
FORML CONFERENCE

The original technical conference for professional Forth programmers and users.

Seventeenth annual FORML Forth Modification Laboratory
Conference

Following Thanksgiving November 24-26,1995

Asilomar Conference Center
Monterey Peninsula overlooking the Pacific Ocean

Pacific Grove, California USA

Theme: Forth as a Tool for Scientific Applications
Papers are invited that address relevant issues in the development and use of Forth in scientific applications,
processing, and analysis. Additionally, papers describing successful Forth project case histories are of
particular interest. Papers about other Forth topics are also welcome.

Mail abstract(s) of approximately 100 words by October 1,1995 to FORML, PO Box 2154, Oakland, CA
94621. Completed papers are due November 1, 1995.

The Asilornar Conference Center combines excellent meeting and comfortable living accommodations with
secluded forests on a Pacific Ocean beach. Registration includes use of conference facilities, deluxe rooms,
meals, and nightly wine and cheese parties.

Skip Carter, Conference Chairman Robert Reiling, Conference Director

Advance Registration Required Call FIG Today 510-893-6784
Registration fee for conference attendees includes conference registration, coffee breaks, and notebookof papers
submitted, and for everyone rooms Friday and Saturday, atl meals including lunch Friday throughlunch Sunday, wine
and cheese parties Friday and Saturday nights, and use of Asilomar facilities.

Conference attendee in double room-$395 Non-conference guest in same room-$280 Children under 18 years
old in same room-$1 80 Infants under 2 years old in same room-free Conference attendee in single mom-$525

Forth Interest Group members and their guests are eligible for a ten percent discount on registration fees.

Registration and membership information available by calling, fax or writing to:

Forth Interest Group, PO Box 2154, Oakland, CA 94621, (510) 893-6784, fax (510) 535-1295

Conference sponsored by the Forth Modification Laboratory, an activity of the Forth Interest Group.

