

SILICON COMPOSERS INC

FAST Forth Native-Language Embedded Computers

DUP

>R
R>

Harris RTX 2000'"' l&bit Forth Chip SC32'"' 32-bit Forth Microprocessor
08 or 10 MHz operation and 15 MIPS speed. 08 or 10 MHz operation and 15 MIPS speed.
I-cycle 16 x 16 = 32-bit multiply. I -clock cycle instruction execution.
I -cycle 14-prioritized interrupts. *Contiguous 16 GB data and 2 GB code space.

*two 25Bword stack memories. *Stack depths limited only by available memory.
-&channel I/O bus & 3 timer/counters. *Bus request/bus grant llnes wlth on-ch~p tr~state.

SC/FOX PCS (Parallel Coprocessor System) SC/FOX SBC32 (Single Board Computer32)
*RTX 2000 industrial PGA CPU; 8 & 10 MHz. 032-bi SC32 Industrial grade Forth PGA CPU.
*System speed options: 8 or 10 MHz. *System speed options: 8 or 10 MHz.
-32 KB to 1 MB 0-wait-state static RAM. *32 KB to 512 KB 0-wa~t-state static RAM.
*Full-length PC/XT/AT plug-in (&layer) board. *100mm x 160mm Eurocard s~ze (4-layer) board.

SC/FOX VME SBC (Single Board Computer) SC/FOX PCS32 (parallel Coprocessor Sys)
*RTX 2000 industrial PGA CPU; 8, 10, 12 MHz. 032-bit SC32 industrial grade Forth PGA CPU.
*Bus Master, System Controller, or Bus Slave. *System speed options: 8 or 10 MHz.
-Up to 640 KB 0-wait-state static RAM. 064 KB to 1 MB 0-wait-state static RAM.
*233mm x 160mm 6U size (&layer) board. *Full-length PC/XT/AT plug-~n (6-layer) board.

SC/FOX CUB (Single Board Computer) SC/FOX SBC (Single Board Computer)
*RTX 2000 PLCC or 2001A PLCC chip. *RTX 2000 industrial grade PGA CPU.
*System speed options: 8, 10, or 12 MHz. *System speed options: 8, 10, or 12 MHz.
-32 KB to 256 KB 0-wait-state SRAM. -32 KB to 512 KB 0-wa~t-state static RAM.
100mm x 100mm size (4-layer) board. 100mm x 160mm Eurocard slze (4-layer) board.

For additional product information and OEM pricing, please contact us at:
SILICON COMPOSERS INC 655 W. Evelyn Ave. #7, Mountain View, CA 94041 (415) 961-8778

Features

,a Compiling A NS Forth Tom Almy
A fully compiled application is faster and smaller than an interpreted one, right? ForthCMP
compiles Forth applications directly into executable machine code. These files are smaller than
executables produced by other language compilers, even smaller than metacompiled Forth
applications. Execution speed is comparable to current C compilers.

j 1 A Forth Story Allen Cekorich
Why would someone dozunplay Forth's capabilities? Follow one professional career from
college, to first job, to learning and mastering Forth, through corporate shakeups, to today.
Learn from another's experience what you can about how to shape a Forth career and how
to avoid certain pitfalls-or tell us what you might have done in his place.

f 5 Novel Approach to VLSl Design Charles Moore, C.H. Ting
This simple but powerful software package for VLSI chip design runs on a '386. Its editor produces
and modifies IC layout at the transistor level, and generates standard output for IC
production-no schematics or net lists required. It displays the layers of an ASIC chip with
panning, zooming, and layer-selecting, and can simulate the electrical behavior of the entire
chip. Its functionality has been verified in the production of several high-performance
microprocessors and signal-processing devices.

1
j 8 Forth in Control Ken Merk

Finding the leap from software design to hardware control to be intimidating? Forth is a
powerful tool to interface the computer to the outside world: its speed and interactive qualities
let you get immediate feedback from external hardware as easily as from new colon definitions.
The author shows how-with your PC, Forth, and a few electronic components-you can build
a simple interface to control devices in the real world.

25 Code Size, Abstraction, and Factoring John J. Wavrik
From comp.lang.forth, we find a concise explanation of these keys to elegant Forth design.
Aided by an astute querent, the author dispels any confusion between factoring as a way to
make code smaller, and factoring as a device to make code more comprehensible.

Departments I
4 Editorial - Guilding the lily. 2 8 ANS Forth

Clarification Procedures
5 Letters - No better course.

2 9 Stretching Forth - Pinhole optimization.
2 4 FIG Board News - Election results.

38 Fast Forth ward - Organizing code.
2 6 From FIG Chapters

3 9 Backspace - Doug Phili s responds to the
2 7 Advertisers Index preceding Fast Forthward.

Forth Dimensions 3 July 1995 August

Forth Dimensions
Volume XVII, Number 2

July 1995 August

Guilding the Lily
Amid the finger pointing and hair splitting over why Forth hasn't set the prairies on fire,
we often neglect steps we can take to improve the situation. Sure, it's fun to find
scapegoats ("poor implementations cause bad first impressions" and "Forth-83 sank the
ship"), to devise rationalizations ("C had Bell Labs to push it" and "Forth is too creative
for the grunt-code production world"), and to take technical detours ("marketing Forth
is too hard; let's talk about loops, threading, vocabularies.. ."). I've opined about the need
for Forth vendors to d o cooperative marketing, and about things the Forth Interest Group
can do differently or better. It's only fair to consider how the programmers can promote
Forth's acceptance and improve their ability to get Forth work.

Forth programmers should form a professional Guild along the lines of what skilled
artisans have done throughout much of modern history. It need not be totalitarian, but-
through the soundness of its organizing principles-it should wield enough clout to achieve
industry recognition, to lend authority to its endorsements, to make admission into it
desirable, and to require of its members adherence to a formal "standard of practice."

Okay, s o organizing a body of anarchistic Forth programmers might not be the easy
path, and it might dilute our resources. But the same can be said of aerobic activity, and
that's good for you. My point: this exercise, too, might prove useful.

Achieving support for, and cohesion within, a Forth Programmers Guild will require
defining its mission carefully. Following are a few agenda items that should be addressed
in the Guild's standard of practice:

Certification ofForthprogrammen. A way to verify someone's Forth expertise will
be a boon to would-be employers, and will give professional accreditation to those
seeking Forth work-perhaps on a graduated scale. I t will also minimize the damage to
Forth's reputation caused by incompetence, self-indulgence, or poor judgment.

CertiJication o f trainingprogmms. Guild-endorsed classes and workshops (whether
sponsored by vendors, independents, or the Guild itselfl will provide a clear path, with
specific objectives, for anyone desiring to learn Forth or to improve their level ofexpertise.

Good style has substance. Every Guild member's code will demonstrate Forth's
readability. This will improve code maintainability, will mitigate the impression that
everyone uses Forth differently, and will help non-Forth managers and executives who
have to make sense of (or at least look at) Forth code. To this end, a common Forth coding
style, or one of several Guild style conventions, will be followed.

Professional conduct. Ethical business practices regarding deliverables, documenta-
tion, accountability, honest representations, copyright, etc. should be a matter of course but
should not be taken for granted; making these part of Guild members' formal obligations
will be appreciated by employers and will underscore the integrity of the Guild.

Support the Forth economy. Commercial Forths will be used for all new commercial
projects, and will be recommended whenever working on existing products based on
non-standard, obsolete, and/or in-house dialects. This will build a stronger vendor base,
make clients' code easier to maintain after the original programmer leaves, facilitate the
training of additional or replacement programmers, focus resources on the application
(rather than on rolling another Forth), and strengthen Forth's professional image. It leaves
unsupported public-domain Forths to amateur, hobbyist, and experimental pursuits.

Dissemination ofknowledge. Forth has much of value to offer, even to users of other
languages. Guild members should be encouraged to speak and write about their
application of its methods and philosophy, as well as to help others learn Forth.

Too much controversy will undermine a fledgling Guild and, like any new organiza-
tion, it should fill a specific, unmet need and use its own particular strengths, while
avoiding dilution of purpose. I recommend that the Guild stringently refrain from any
activity or overhead which might drain its resources or soften its focus. Its founders might
use the umbrella of the Forth Interest Group as its infrastructure.

Concrete steps like these will enable Forth users to improve their lot instead of getting
mired in debates and conjecture about circumstances over which they have little control.

-Marlin Ouverson, editor
FDeditoeaol. com

Published by the
Forth Interest Group

Editor
Marlin Ouverson

Circulation/Order Desk
Frank Hall

Forth Dimensions welcomes
editorial material, letters to the
editor, and comments from irs read-
ers. No responsibility is assumed
for accuracy of submissions.

Subscription to Forth Dimen-
sions is included with membership
in the Forth lnterest Group at $40
per year ($52 overseas air). For
membership, change of address,
and to submit items for pu blication,
the address is: Forth Interest Group,
P.O. Box 2154, Oakland, California
94621. Administrative offices:
51@89-FORTH. Fax: 510-535-1295.
Advertising sales: 805-946-2272.

Copyright Q 1995 by Forth In-
terest Group, Inc. The material con-
tained in this periodical (but not the
code) is copyrighted by the indi-
vidual authors of the anicles and by
Forth Interest Group, Inc., respec-
tively. Any reproduction or use of
this periodical as it is compiled or
the anides, except reproductions
for non-comrnercial purposes, with-
out the written permission of Forth
Interest Group, Inc. is a violation of
the Copyright Laws. Any code bear-
ing a copyright notice, however,
can be used only with permission
of the copyright holder.

The Forth lnterest Group
The Forth Interest Group is the
association of programmers,
managers, andengineers whocreate
practical, Forth-based solutions to
real-world needs. Many research
hardware and software designs that
will advance the general state of the
an. FIG provides a climate of
intellectual exchange and benefits
intended to assist each of its
members. Publications, wnferences,
seminars, telecommunications, and
area chapter meetings are among
its activities.

"Forlh Dimetlsions(ISSN 0884-0822)
is published bimonthly for $40/46/
52 per year by the Forth Interest
Group, 4800 Allendale Ave.,
Oakland, CA 94619. Second-class
postage paid at Oakland, CA.
POSTMASTER: Send address
changes to Forth Dimensiotls, P.O.
Box 2154, Oakland, CA94621-0054."

July 1995 August 4 43 Forth Dirnensior

Since the world is, at this moment, actively searching for
a better solution to the programming of embedded sys-
tems, I should think each issue of Forth Dimensionswould
be full of articles dealing with the subject. I would expect

No Better Course
Dear Marlin,

I empathize with Richard Fothergill who, in his letter
published in the MarddApril issue, asked whether Forth
Dimensions were suitable for a beginning Forth programmer.

Argumentation, Exposition, or Inspiration?
I myself began learning Forth while the CASE state-

ment insanity was in full bloom, and I found it rather
difficult to distinguish the stuff of substance from the
inane. Issue after issue of Forth Dimensionsdevoted space
to varied implementations of CASE, a word of which I
have never yet made use. I, too, was intimidated because
I could not see why so much attention was being devoted
to such an apparently arcane matter. Looking back, I am
reminded of the faerie tale of the emperor's new clothes.
A newcomer to any field, including that of Forth, does well
to seek out someone having a bit of experience who can
provide perspective.

As is the case with most magazines, the coverage of
Forth Dimensionsis basically limited to the topics of articles
which are submitted for publication. However, articles

In an egoless programming
environment, every member
of the team is encouraged
to interact.

need not be directed to basic programming techniques to
be of interest to beginners. Indeed, it would be very difficult
to surpass the coverage of such techniques provided by
Starting Forth; to make the attempt in Forth Dimensions
would be to squander the available space.

Tyro and expert alike should take interest in the
challenge of finding find better ways to approach difficult
applications. There suddenly is a great deal of interest in
development software for embedded systems. It seems
that magazine articles are increasingly containing admis-
sions by programmers that the C language is unsatisfactory
for the task. Few outside the Forth community seem aware
of umbilical compilation, a powerful and economical
approach to the programming of embedded systems. The
approach appears to have been developed using Forth.

to find perhaps an occasional article describing a complete
system, but I would expect to find many more articles
discussing the problems encountered, viable solutions,
and the considerations involved. In short, I would expect
to find mainly articles which provide a stimulus for
refinement and innovation. Thus, I see great potential
value in Forth Dimensions as a forum for the synthesis of
solutions to current application needs.

The monumental tome by Richard Rhodes, TheMaking
of the Atomic Bomb, provides insight into the workings of
nineteenth-century science, particularly in the fields of
physics and chemistry. The period was one of dizzying
advance, with discovery after discovery, each following
hard upon the heels of the last. The predominant charac-
teristic of the era seems to have been the almost com-
pletely unfettered interaction between the scientific minds
of the age. It appears that this interaction was the catalyst
for the resultant growth of knowledge, a growth which
proved explosive in more ways than one. Not until most
of the foundations of atomic theory were in place did the
governments of the world seek to curtail this interaction.
Curiously, patents were one means of suppression. One
cannot read the book without being struck by the great
power of interacting minds, and, at the same time, by the
blindness and mind-sets to which minds deprived of
interaction are prone.

Foundations
Regarding Starting Forth, I can recommend to the

beginner no better course in Forth technique and philoso-
phy. However, the book is deceptively simple. I dare say
that only a small portion of those proffering their services
as Forth programmers have actually mastered all the
techniques covered therein. One way to ensure such
mastery is to proceed through the book while sitting in
front of a computer, working out each and every exercise.
It is very important to stop and get help whenever a topic
or technique is not clear, for the book contains little
material which is not significant. Beyond Starting Forth,
the best one can d o to educate himseif in Forth is to dissect
and comment well-written Forth code, such as that of a
first-class development environment or an application
written by someone who has truly mastered Forth. Much
of the Forth code I have seen, including that of some
commercial Forth systems, can only be described as a
"dirty hack," being confusing and even ugly to the eye. I
think there are few programmers who truly understand the
philosophy of the language, and fewer still who can
implement that philosophy.

To Be or Not to Be
I strongly recommend to Richard, and to the Forth

community as a whole, a technique espoused by Gerald
M. Weinberg in his classic book The Psychology of Com-
puter Programming (Computer Science Series, Van
Nostrand Reinhold, 1971). (Those without a personal copy
of the book should make it a high priority to get one.)

Forth Dimensions 5 July 1995 August

Weinberg endorses "egoless" programming, a practice in
which each member of a programming team routinely
submits his work for inspection by other members of the
group. The submission is not a formal, structured affair;
indeed, the less formal and less structured, the better.
Perhaps the best mode of submission is simply to hand a
listing to an associate and say, "Here; take a look at this and
tell me what you think."

In an egoless programmingenvironment, every member
of the team is encouraged to interact: to read programs
written by other team members, to ask questions, to
comment, and to share responsibility for the productivity of
the team. Everyone on the team should be familiar with
what everyone else is doing. Accordingly, schedules and
critical paths should be relatively easy to estimate. Since no
team member "owns" a particular piece of code, the
workload can be redistributed as necessary, with minimal
risk of offending a team member. Loss of a team member
need not be catastrophic. No team member need fear
struggling alone with a problem beyond his expertise, since
egoless programming encourages team members to ask for
help and attaches no stigma to ignorance, unless the
ignorance goes unremedied. Program maintenance is facili-
tated, since there is little chance of incorporating into the
program an obscure or exotic technique which only one
programmer understands. Not that such techniques should
be avoided; rather, when employed, they should be made
thoroughly clear to the whole team. The egoless program-
ming team is an excellent environment for a novice: it
provides him opportunity to expand and mature his skills.
The team is also an excellent environment for the expert: it
provides him opportunity to teach and direct. Of course, not
everyone functions well in such an environment.

The Virtue of Reading
Egoless programming need not be restricted to the

activity of a programming team. Even a programmer
working alone may put the concept into practice: he need
only seek out one or more associates with whom he may,
on a habitual and frequent basis, exchange and discuss
listings. The epitome of such interaction was found in the
days of batch processing in a mainframe environment.
Programmers waiting for their runs, having nothing better
to do, would read one another's programs, and would
informally discuss things they found interesting. Indeed,
the cornerstone of egoless programming is the reading of
programs. Too frequently, the only entity (other than the
programmer) which reads a program is the computer.
Only by reading a program do some aspects of its nature
become apparent. Is the program lucid? logical? clean?
elegant? The only way to tell is to read it, but the
programmer who wrote it is hardly an objective evaluator.

Hangin' Out
Ironically, the advent of the personal computer, while

increasing the interactivity between man and machine, has
significantly decreasedthe interactivity between program-
mers, even when there are a number of programmers in
a "shop." The isolation can become almost total when a
programmer single-handedly undertakes a project for a
client who fears that "proprietary" techniques may be

leaked to his competitors.
The best bet I see is to rendezvous with local Forth

programmers as frequently as possible. Try to find a pizza
parlor or a low-key cafe (a place with good lighting and
no jukebox) where you can comfortably spend an hour or
so in one-on-one conversation. A daily meeting over lunch
or right after work would be terrific, but a weekly meeting
may be more realistic. The only reason for having a
schedule of any sort is to increase the probability of
encounters, particularly for people who have to drive
across town to meet. Get into the habit of carrying around
a listing of the program on which you are currently
working. A few words of caution: regimentation is a sure
way to stifle interest. Don't try to turn a relaxed, informal
gathering into a group presentation; the goal is one-on-
one interactivity, not a lecture. Don'testablish official start
and end times, insisting that everyone act in concert;
encourage individuals to come and go as their needs and
interests dictate. Just get into the habit of getting together,
swapping listings, and talking about the code. Everyone
will benefit.

Regards,
Russell L. Harris
8609 Cedardale Drive
Houston, Texas 77055-4806
713-461-1618
71 3-461-0081 (fax)

FORTH and Classic
Computer Support

For that second view on FORTH applica-
tions, check out The Computer Journal. If you run
an obsolete computer (non-clone or PC/XT clone)
and are interested in finding support, then look no
hrther than TCJ. We have hardware and software
projects, plus support for Kaypros, S 100, CP/M,
6809's, PCIXT's, and embedded systems.

Eight bit systems have been our mainstay
for TEN years and FORTH is spoken here. We
provide printed listings and projects that can run on
any system We provide old fashioned support for
older systems. All this for just $24 a year! Get a
FREE sample issue by calling:

(800) 424-8825

TC J ;:"~:,"r
Lincoln, CA 95648

July 1995 August 6 Forth Dimensions

Compiling A NS Forth

Tom Almy
Tualatin, Oregon

Introduction
ForthCMP is the author's native code metacompiler for

Forth. In 1982 I wrote NCC, which was the first Native
Code Compiler for interactive Forth environments. A year
later, the compiler was ported to LMI Forth and is still sold
as part of the LMI Forth package. The NCC exists in
versions for 280, 80x86, and 80386 protected mode.

However, I felt that for optimum performance a meta-
compiler was necessary. A fully compiled Forth applica-
tion would be faster and more compact than one tied to
an interpretive environment. So ForthCMP (then called
Cforth) was born. ForthCMP is run from the DOS com-
mand line to compile Forth applications directly into
executable machine code files. ForthCMP-generated, ex-
ecutable files are much smaller than comparable executables
produced by other language compilers, and are typically
smaller than traditionally metacompiled Forth applications.
Execution speed is comparable to current C compilers.

Since ForthCMP is itself written in Forth, application
programs can evaluate expressions and execute applica-
tion colon definitions during compilation time (these are
called 'host colon definitions'). Variables and other data
structures exist in the target (application) address space,
but can be accessed during compilation as though in the
host. Thus, data structures can be algorithmically initial-
ized during compilation. Code definitions are allowed,
and generate target words and machine code subroutines.
The major difference between ForthCMP and a traditional
interpreted Forth is in the generation of colon definitions.
In ForthCMP, they are machine code subroutines. The
system stack is used as the data stack, and a separate stack
is used for the return stack. Several calling conventions are
used to handle the subroutine return address, depending
on usage hints provided to the compiler. The usage hints
can allow passing of arguments in registers and eliminate
the need to move the return address between the data and
return stacks.

The Compilation Process
In a traditional Forth, the compiler treats words in three

classes. Words marked as IMMEDIATE are executed during
compilation, and generally represent control structures.

Words not so marked are compiled and then executed
when the word is executed. Words not in the dictionary
must be numeric literals, which are compiled as inline
constants.

In ForthCMP, there are many more classes of words:
Literals-these are not compiled, but are pushed on a
compilation 'literal stack.' This allows evaluation of
literal subexpressions at compile time, and also allows
generating instructions with literal arguments, which
reduces the amount of code generated.
Intrinsics-these words are built into the compiler and
are like traditional IMMEDIATE words; however, most
primitive, standard Forth words are intrinsics so that
they can generate inline code. The ANS Forth version of
ForthCMP has about 120 intrinsics. Application pro-
grams cannot define intrinsics (which means they can-
not define compiling, immediate words). Intrinsics have
no execution tokens, since they compile inline code.
Functions--colon and code definitions, either part of
the application or compiled when needed from a library.
It is possible to forward reference functions, with the
restriction that the execution token is not directly
accessible until the function is defined. Words defined
for the host environment cannot be referenced in the
target. Only functions have execution tokens-the value
returned by ' (tick) or FIND-that are suitable for
EXECUTE, and then only if the IN/OUT compiler hint
(which allows passing arguments in registers) is not
used.
Constants-words defined as CONSTANT or 2CONSTANT
behave as numeric literals when compiled. Constants
are not allocated any memory in the target image, thus
have no data address or execution token.
Variables-words defined as VARIABLE, 2VARIABLE,
SCONSTANT, or CREATE behave as numeric literals
when compiled. There is no code generated, and the

I execution token is the data address.
Arrays and Tables-ForthCMP provides defining words
to generate single-dimensional arrays and tables (con-
stant arrays). These generate inline accessing code
when used in a colon definition. The execution token is
the data address.

Forth Dimensions 7 July 1995 August

Value-words defined as VALUE generate iniine access-
ing code when used in a colon definition. The execution
token is the data address.
Does words--created by executing host words contain-
ing DOES> or ; CODE. These compile a numeric literal
(the data address) followed by code to invoke the does
code. The execution token is the data address.

mentioned before, literals are not compiled, so even ifuser
immediate words were allowed, this word could not
perform as desired. The second use of LITERAL is to
evaluate expressions at compile time (e.g. ' [FOO 3
CELLS t] LITERAL). However, all ForthCMP literal
expressions are evaluated at compile time. In fact, the I and
] words have been removed, since they have no usage!

The Challenges
Converting to ANS Forth simplified many aspects of the

compiler, but added a number of challenges. These
challenges, to be discussed in this article, are:

Lack of application 'compiling words.'
UNLOOP-an easy function for interpreters, but a terror
for a compiler.
Execution tokens-they don't always exist.
UNUSED-how to calculate available memory in a
compiler environment.

Compiling Words
Forth has traditionally allowed writing words which

alter the compilation of other words. This is, perhaps, one
of the strongest features of the language. However, these
'compiling words' tend not to be portable among imple-
mentations. ANS Forth attempts to solve the portability
problem by providing new, higher-level, portable func-
tions, and by restricting the way these functions can be
used. However, in the compilation environment, these
functions would have to be restricted further. To write a true
compiling word for ForthCMP is a difficult task, so it has
been disallowed! For instance, consider the mundane word,
BEGIN. In a typical interpreter, it would be written as:
: BEGIN

AHEAD \ c o m p i l e f o r w a r d r e f e r e n c e
2 \ t o k e n f o r s y n t a x e r r o r d e t e c t i o n

; IMMEDIATE

While in ForthCMP it is:
: BEGIN FT \ g o t o F o r t h v o c a b u l a r y

FLUSHPOOLS \ f l u s h l i t e r a l s t a c k ,
\ b u t n o t cpu r e g i s t e r s

NOCC \ d o n ' t r e l y on a n y set
\ c o n d i t i o n c o d e s

ASM BEGIN, FT \ e q u i v a l e n t t o "AHEAD"

CSTATUS \ p r e s e r v e c u r r e n t
\ r e g i s t e r u s a g e s o i t
\ c a n be r e s t o r e d on
\ U N T I L o r REPEAT

2 \ t o k e n f o r s y n t a x e r r o r
\ d e t e c t i o n

,

Optimization gets in the way of clean implementation.
Those nice, simple Forth compiling words just can't be
implemented simply in ForthCMP.

Without the ability to generate immediate words, many
standard words lose their usefulness. For instance, LITERAL
has two uses. The first, when used in an immediate word,
is to compile a literal into the word being defined. As
July 1995 August

The Terror Of Unloop
UNLOOP is defined to 'discard the loop control param-

eters for the current nesting level.' Typical implementation
in an interpreter is a non-immediate word that drops
words from the return stack. This allows executing E X I T
from within a LOOP.

In a compiler, however, the 'loop control parameters'
can vary in number depending on the loop usage, and
might not be on the stack. While the compiler could easily
generate what unlooping code was necessary in order to
d o an EXIT, something which is difficult for an interpreter,
it cannot readily separate the functionality of UNLOOP and
EXIT. Consider the following word:

: DUMMY
10 0 DO 10 0 D o x DUp
I F UNLOOP
THEN I .
I F UNLOOP E X I T
THEN LOOP LOOP ;

If x returns a false value, the inner loop index is printed.
If x returns a true value, the first UNLOOP will cause the
outer loop index to be printed, and then the second
UNLOOP and E X I T will cause the function to be exited.
However, since the generated code is static, the code to
implement I must be the same for both the inner and outer
loops. This cannot be guaranteed except by disabling any
optimization whenever UNLOOP occurs inside the loop.
This is a highly undesirable situation!

A lesser problem is that UNLOOP is basically a control
structure word, but without any compile-time error check-
ing. In order to execute correctly, a correct number of
UNLOOPs must precede an EXIT. To ensure correct
structure, and to solve the compilation problem, UNLOOP
was considered to be part of a new control structure,
UNLOOP . . .EX1 T. Now compile-time syntax checking can
prevent unstructured use of UNLOOP (as in the example)
and make certain that the correct number of UNLOOPs are
used. In the example above, when the first THEN is reached,
the compiler complains that E X I T is missing, because the
UNLOOP.. .EXIT control structure is incomplete.

Now the code generation task is straightforward.
ForthCMP has a compilation loop stack which keeps track
of loop structures during compilation. Normally, DO (and
?DO) push information on the loop stack that is queried by
I (and J) and removed by LOOP (and +LOOP). A second
stack pointer, the 'unloop pointer' was added that is set by
the DO and LOOP words to match the loop stack pointer.
This unloop pointer is used by 1 to query loop informa-
tion. The UNLOOP word sets the unloop pointer back so

8 Forth Dimensions

that any loop index referencing that follows will access the
proper data. E X I T restores the unloop pointer to equal the
loop stack pointer. Of course, UNLOOP also generates
code to remove any runtime loop parameters. The final
uNLOOP code is [in Figure Onel.

The Elusive Execution Token
Earlier Forth standards involved themselves with imple-

mentation details by referring to the code, link, name, and
parameter fields of words. ANS Forth, thankfully, tries to
avoid the implementation details. It basically states that
words like ' and F I N D return an 'execution token.' The
execution token can only be used in limited ways. It can
be used as the argument to EXECUTE or COMPILE, (the
latter, since it is only useful in compiling words, is not
found in ForthCMP). If the execution token comes from a
word generated with CREATE, it can be used as an
argument to >BODY to get the data address.

ForthCMP exceeds the standard as far as the data
address is concerned, since >BODY can be used with the
execution token of words generated with CREATE or
VARIABLE (among others). And as a non-portable bonus,
>BODY is a no-op; the execution token is the data address.
However, ForthCMP's execution tokens can't generally be
passed to EXECUTE.

In an interpreter, all words have code associated with
them. While in ForthCMP, only colon definitions and code
words have code, all others generating either literal values
or compiling inline referencing code. It doesn't make
sense to waste memory with code segments that would
only get executed if EXECUTE were used.

However, there is a way around the problem: any word
for which one wants to have a real execution token can be
embedded in a colon definition (or code word), which
does have an execution token. This is the same technique
traditionally used to put literals in execution vector tables.
Consider this short example:

1 0 CONSTANT A \ Constan ts don ' t have
\ execu t ion tokens

P R I M I T I V E \ Generate a b e t t e r
\ c a l l i n g convent ion

: EXEC-A A ; \ Colon d e f i n i t i o n s
\ have execution tokens!

VARIABLE EXECV \ v a r i a b l e we p l ace
\ execu t ion token i n t o

EXEC-A EXECV !

: MAIN \ Main func t ion f e t ches
\ execut ion token,
\ execu te s it
\ and p r i n t s i t s va lue .

EXECV @ EXECUTE

The code generated by EXEC-A:

POP S I \ r e t u r n address
PUSH OOOA \ cons t an t va lue
JMP S I \ does r e t u r n

And f o r MAIN:
MOV A X , [0 1 2 B l \ Fetch con ten t s of

\ EXECV
CALL AX \ c a l l f u n c t i o n
POP AX \ move r e t u r n va lue

\ from s t a c k t o
\ r e g i s t e r

JMP 0 1 3 6 \ jump t o ., which does
\ r e t u r n from MAIN

Used By Unused
This is simply the amount of remaining space in the

region starting at HERE. The assumption was made that,

Figure One. Final version of UNLOOP.

: UNLOOP F T \ F T changes t h e vocabulary t o FORTH from cross-compiler
INDL? I F \ INDL? r e t u r n s t r u e i f i n s i d e a DO LOOP
ULPTR @ LUPSTK = I F \ Unloop p o i n t e r a t s t a r t of s t a c k ?
WARN" t o o many unloops" E X I T THEN
ULPTR @ CELL- @ \ check t o p of unloop s t a c k
DUP O= I F ASM BP I N C BP I N C F T THEN \ pop s t a c k a t runtime
1 = I F -8 E L S E -6 THEN ULPTR t! \ pop unloop s t a c k now
?RESCX \ gene ra t e code t o r e s t o r e loop index r e g i s t e r , i f used
THEN

\ OA on t h e d a t a s t a c k t o p du r ing compilat ion i s used t o i n d i c a t e be ing
\ wi th in an UNLOOP. .EXIT c o n t r o l s t r u c t u r e . So put a OA on t h e s t a c k
\ t o p u n l e s s t h e r e a l r e a d y i s one p r e s e n t .

DEPTH I F DUP OA <> I F OA THEN ELSE OA THEN

Forth Dimensions 9 July 1995 August

1 Figure Two. Conditional com~ilation tailored to memory model. I
-- -

UNDEF UNUSED

CODE UNUSED S I POP
SEPSSEG? O= [I F]
SP AX MOV

[ELSE] SEPDSEG? [I F]
d s s i z e 1 0 * # AX MOV

[ELSE]

FIND P S I Z E [I F]
DROP P S I Z E
[ELSE]
FFFE
[THEN]
AX MOV
[THEN] [THEN]

DP [I AX SUB
AX PUSH
S I JMPI
END-CODE
[THEN]

\ compi le what f o l l o w s o n l y i f UNUSED i s needed
\ t o r e s o l v e a r e f e r e n c e .

\ s t a s h r e t u r n a d d r e s s

\ if s t a c k segment i s same a s d a t a segment, t h e n
\ t o p of memory i s a t s t a c k p o i n t e r l o c a t i o n .

\ e l s e i f d a t a segment i s d i f f e r e n t from
\ code segment,
\ t h e n t o p o f memory i s t o p of a l l o c a t e d segment
\ (p a r a g r a p h c o u n t)
\ Code and d a t a segments t h e same, s t a c k segment
\ d i f f e r e n t .

\ program s i z e d e f i n e d -- u s e i t

\ s i n g l e segment and program s i z e n o t d e f i n e d .

\ s u b t r a c t d i c t i o n a r y p o i n t e r
\ r e t u r n v a l u e on s t a c k
\ r e t u r n from f u n c t i o n

\ e n d s t h e UNDEF

Total control
with [MI FORTHTM
For Programming Professionals:
an expanding family of compatible, high-
performance, compilers for microcomputers

For Development:
Interactive Forth-83 Interpreter/Compilers
for MS-DOS, 80386 32-bit protected mode,
and Microsoft WindowsTM

Editor and assembler included
Uses standard operating system files
500 page manual written in plain English
Support for graphics, floating point, native code generation

For Applications: Forth-83 Metacompiler
Unique table-driven multi-pass Forth compiler
Compiles compact ROMable or disk-based applications

= Excellent error handling
Produces headerless code, compiles from intermediate states,
and performs conditional compilation
Cross-compiles to 8080, Z-80, 64180, 680x0 family, 80x86 family,
80x96197 family, 8051131 family, 6303,6809, 68HC11
No license fee or royalty for compiled applications

I

Laboratory Microsystems Incorporated
Post Office Box 10430, Marina Del Rey, CA 90295

Phone Credit Card Orders to: (310) 306-74 12
Fax: (3 10) 30 1-076 1

during compilation, this value should be the space remain-
ing in the target image, assuming nothing else to be
compiled. The situation is complicated by all the possible
memory models that can change these values. During
compilation, the value is estimated by subtracting the
target value HERE from the size of the target data segment
(normally 6 4 ~ , but can be less). At runtime, the library has
a definition of UNUSED that provides an exact value. The
definition makes use of conditional compilation to com-
pile code tailored for the particular memory model [see
Figure Twol.

This generates a five-instruction subroutine for any
memory model. The process is certainly more complicated
than one might expect!

Conclusion
The new ANS Forth standard provided some unex-

pected challenges which could not be completely solved.
However, the situation has improved over earlier stan-
dards. I expect that, as Forth compilation is more widely
used, future standards will reflect these approaches.

Tom Almy has been a user of Forth since 1981, when he used it to implement
an integrated circuit layout program, PRIDE. Graduating from Stanford with an
MSEE and hired by Tektronix in 1973 to design processors, Tom joined
Tektronix's research laboratories in 1979, where he has since been involved
with various aspects of integrated circuit and system design. Outside the work
environment, Tom enjoys hiking and running a literary bulletin board system.
He can be reached at tom.almy@tek.com via e-mail.

July 1995 August 10 Forth Dimensions

A Forth Story

Allen Cekorich
Walnut Creek, California

- -

I was preoccupied with designing the sulfur meter I I him the device / based on my Fortran simulation. but the natural need to

In 1975, I was fresh out of college with a bachelors
degree in physics and a need to find a job that paid enough
to support myself. After a six-month search, I landed an
entry-level position at MDH Industries in Monrovia, Cali-
fornia, where they promised to increase my minimum
wage starting salary once I proved myself useful. I was to
work with the president and owner, Dr. Howard Marshall,
Ph.D., on a project to develop an instrument to measure
the real-time sulfur content of a coal stream by detecting
and analyzing the prompt gamma ray spectrum resulting
from the absorption of thermal neutrons from a Cali-
fornium 252 radioactive source. The opportunity sounded
exciting to my naive ears, as it was my first professional
job. I was finally in the real work world of adults and ready
to go on to d o great things. Remember, this was twenty
years ago and I was only twenty-two years old. I had no
previous experience to guide me in the situation I was in,
no mentor to teach me, no helping hand and no idea of
where to begin or what to do. Like most good engineers,
I decided to fake it until I understood my value.

I not be ~roarammed in Forth

It came to pass by the natural events of the develop-
ment process that construction of a sulfur meter prototype
was to take place. Howard Marshall had earned his
doctorate in physics from the California Institute of Tech-
nology, which is very much in bed with the Jet Propulsion
Laboratory in Pasadena. His contacts encouraged a com-
puter-based instrument and recommended a strange lan-
guage called Forth that was floating around the lab. They
convinced him it was possible to build a small, Z80-based
controller that could acquire the spectrum from the
sodium iodide detector and maintain real-time signal-
processing rates to compute the actual sulfur content.
Somehow, outside my area of responsibility, an S100-bus
system showed up from the Empirical Research Group. My
electrical engineer office mate had been assigned the task
of fooling around with it for development purposes, but
no progress seemed to ever be at hand. After some time
had passed, a fellow named Martin Smith showed up from
the Cal Tech network. He brought with him a Forth
running on a Monolithic 280-based multibus system, and
progress toward a controller began.

- - - I- - - I Why would I say such a thing?
verify the model from real data taken from the prototype
was growing important. With the help of Marty, I started
playing with the Forth computer. This was the first time in

I spent the first Year or So understanding the design
parameters of a Sulfur meter, which involved creating a
computer model on a T~mshare IBM 370 System accessed
with a teletype terminal at the fantastic rate of 30 charac-
ters Per second. This was a revolution from the punch
cards I had used in college on a CDC 3150 that could be
viewed through a glass window in the foyer of the
computer department. MY degree in physics mandated
that the modeling language would be Fortran, and I
naturally enjoyed programming, which was probably
related to my ability and love for mathematics. I had
completed the coursework for a degree in mathematics
with a 4.0 average in college. I was proud of the growing
complexity and depth of my simulation, which was now
consuming hours of computer time during the night hours
when the cost was lowest.

my life that I had actual, physical contact with a computer.
Those big, eight-inch Shugart floppy drives that held a
whopping 120K bytes, and the awesome 6 4 ~ of fast RAM,
along with the character-based video display terminal,
intoxicated me. ~~t what was more puzzling was this
strange way of talking to the computer, called Forth. I had
taken a computer language survey class in college which
included Fortran, Algol, PWM, Cobol, Trac, Lisp, and APL,
but had never heard of anything called Forth. It was
strange and unnatural without programstatements. I could
not find the compiler, linker, or listing output. I could not
figure out how it worked, but I realized that I now had direct
contact with the CPU without the need to learn complex
system manuals. I finally had a computer under my control
and I went to town. Over the next few years, I had a good
time writing programs on that small Forth system to do data

Forth Dimensions 11 July 1995 August

preprocessing for input to the real, grown-up IBM Tymshare
computer for comparison to my simulation.

I taught myself the 280 assembler in the Forth, which
gave me access to the computer hardware. I played with
serial pons, DMA for the disk drive, video display control-
ler, interrupts, and, most important of all, the AMD 951 1
floating-point coprocessor. I wrote linear matrix hnc-
tions, least squares routines, statistical measures, data
filters, and data stacks for working with the gamma ray
spectra. I used that little 64K computer to its limit to
complete the calibration of the first delivered sulfur meter.
I also became an expert in using Forth, although I still did
not fully understand what I was doing.

About this time, around the beginning of the eighties,
a recruiter called me searching for a Forth programmer. I
was not a Forth programmer in my mind. I did not see
myself as a Forth programmer. I was a physicist using a
tool to do a job. Anyway, I went on an interview to Forth,
Inc. in Manhattan Beach, California, and met a man named
Edward Conklin. We talked about what I had been doing
with Forth, I showed him some of my listings, toured the
offices, and shook hands upon departing. A few days later,
the recruiter called saying I had been offered a job for
more money than I was making and encouraged me to
accept. I was puzzled. I was not a Forth programmer. Why
did they want me? What would it be like? I just did not
understand where I would fit in. I declined the position,
Over the years, I have wondered what direction my career
would have taken if I had just said yes. Looking back, it
is easy to see now that I was an exceptional Forth program-
met, as following parts of my story will reveal; but remem-
bet, I was still in my twenties, working on my first job, which
limited my view of my career horizon. My destiny would
take me to other places and back again, to Forth.

My job was winding up with the completion of the first
sulfur meter. Martin Smith had left earlier, going back to
a previous job at Technicolor in Hollywood. I had grown
as an engineer, becoming more than could be supported
by the twenty-five person company that was owned by a
single person. The end of my first job had come, so I
resigned and, that weekend, I bought a Victor 9000
personal computer. I did have the vision to see that what
I had done with that small 280 computer spelled the death
of my cherished IBM 370 computer running Fortran over
the phone line. The future was in small, personal systems
that clearly exceeded the power of the off-line dinosaurs.
I did not know what I would be doing, but I knew what
I would have to do and that was to learn the basics of the
smaller machines. As fate would have it, Many called me
the following Monday, and a week later I was working for
Technicolor. It was now May of 1983.

I had taken the job as a computer programmer who
would develop the control software for a film printer. This
was a special kind of printer to reduce the cost of choosing
the RGB color light levels for a film scene by printing one
frame of scene onto the positive, thereby saving the cost
of developing a complete print just to check the produc-
tion parameters. I had to learn Intel's version of PL/M and
assembly for the 8086, which was the heart of the Intel 88/
July 1995 August

40 multibus board computer controller. I was back to
compilers, linkers, and locators, and got to play with in-
circuit emulators. I discovered real-time control that en-
ables computers to interact with the physical world. I
learned multitasking, interrupt response times, and con-
trol inputs and outputs fromA,D and D/A ships, counters,
and parallel lines. I got to play with big servo motors. I had
a ball. I almost forgot about Forth.

But not completely. I obtained the fig-Forth listing for
the 8086 with the intention to boot a Forth on my Victor
9000. 1 spent many nights and weekends typing in the
listing as I learned about DOS and just how the PC worked.
I gathered documentation, bought some software, and
joined the Victor 9000 users group. Time passed. Work
went well with the nearing completion of the proof
printer. Then Hollywood came into the picture. Holly-
wood is not in the real world, they make it up as they like.
The engineering director and the chief engineer got
themselves fired for no apparent reason other than a
pompous power play which I never understood. The
upshot was that my project was canceled, leaving me in
limbo. I chose to resign a month later, simply because I no
longer had a defined job. It was July of 1984.

I spent the next five months working twelve-hour days
at home on my Forth system. I booted the kernel as a DOS
executable, and promptly rewrote it to my liking, includ-
ing redesigning the inner interpreter. I was forced, by
finally understanding the true nature of Forth, to add an
8086 assembler of original design, an interface to DOS for
files and display control, floating-point words for an 8087
coprocessor, and many utilities to work with my system.
Looking back, I wonder why I did it. Why would I create
a complete Forth development system for the PC? I had no
use for it, nor any future plans for the system. I believe the
answer was just to learn how personal computers work.
Forth gave me direct access to the machine, and freedom
to explore designs that felt right to me. I did not have to
depend on a vendor to show me what I could do. My
physics training led me to explore fundamentals of com-
puter operation much as I explored the fundamental laws
of the physical world. I also began reading Bmmagazine
every month to keep up on the technology, and I read
books such as Donald Knuth's Art of ComputerPmgmm-
ming. Forth gave me freedom to explore beyond the
limitations of a fixed compiler with a straight-jacket
syntax. I had finally caught the Forth bug.

The realities of living without an income finally caught
up with me. In December of 1984, I found a job with Litton
Industries. The fiber optic department under Mike Suman
had a contract with Western Geophysical to build a
demonstration underwater fiber optic microphone towed
array for oil exploration. The job was to complete an Intel
multibus computer demodulator for five sensors. The
software was written in PL/M-86 and assembler, and was
presented to me as almost done. I learned quickly that the
statement was politically correct but entirely false from an
engineering perspective. I had wandered blindly into
defense engineering for the first time. I redesigned the
computer system to use three single-board computers in

12 Forth Dimensions

a multibus backplane, and wrote the software from scratch
to multiplex the three 8086 CPUs to accomplish the
demodulation. Four months later, it was finished, com-
plete with a real-time video display of the sensor outputs
for the all-important demo. The next day, the contract was
canceled due to the oil glut of the mid-eighties.

I wondered if I had a job. The major part of the fiber
optic directorate was involved in fiber optic rotation
sensor development for military applications. The pro-
gram seemed to be headed by a man named Dr. George
Pavlath, who was a Ph.D. in physics from Stanford
University. He had a problem with the testing of the
rotation sensors on the rate tables which used H-P BASIC
controllers. He knew from my resume that I had experi-
ence with Forth, and he had heard from his friends at
Stanford that it was a very neat control language. I told him
I had developed my own Forth system for the PC, and we
agreed to try it out for rate table control. I brought in my
system and spent a few months porting it to the IBM PC,
adding drivers to read IEEE-488 instruments via a Metrabyte
card, and rate table position from a CTM-05 counter board.
I completed a fully automated rate table test station and
began to test fiber optic gyros.

The application of Forth to a flexible test environment
was perfect. I went much further and added online data
analysis, and began constructing my own unique plotting
additions to Forth based on Brodie's MAKE DOER con-
struct. My Forth system grew to maturity as different
problems demanded solutions. I quickly returned to my
physics roots to contribute to the new technology of fiber
optic sensor development.

All was not well, though. I encountered the first
resistance to the Forth way of doing business. The Forth
development environment was so efficient that the H-P
BASIC controllers were made obsolete. This led to resent-
ment by engineers who had invested their time learning
H-P BASIC. I offered to teach them Forth, but remember,
this was a system I had personally written. It was my
creation, and no one could understand it as well as myself.

got a job writing Forth.
Sometime in the eighties, I got it in my head that Forth

could be applied to build fast demodulators, especially
since the advent of Forth chips. I convinced George
Pavlath to send me to a company called Novix to check out
a Forth-based CPU. It was on this trip that I met Charles
Moore. He and I talked for half an hour about possibilities.
I had a hard time believing that this was the creator of
Forth. I played with a Novix development system, un-
aware that the chip was not yet real, in the sense that one
could not buy one. In truth, I felt I was sticking my neck
out by suggesting a Forth design when other engineers
wanted my head for what I had accomplished in the
testing area. The reality was, it did not matter-I ordered
a Novix chip which was never delivered, since the
company eventually folded. I felt relieved. I went on to
work with DSP processors such as the TMS320C25, which
were now capable of implementing complex demodula-
tion designs and provided me with new areas to explore.

Then the Berlin Wall fell. The defense buildup was over
in a day, but it took several years of excruciating pain for
many innocent people to accept the change in their lives.
I held out until September of 1331, when I finally admitted
it was time for me to leave. I could no longer pay the price
required to survive. In January of 1989, I had replaced my
aging Victor 9000 with a Dell 386 computer. I briefly went
into consulting with my Forth system. I worked several
months for the Physical Optics Corporation in Torrance,
California, automating their production holographic testers.
I realized again that I was sticking them with a custom
solution that could not be updated without me. It was just
not viable. Even though they were delighted with the
results of my work, I never got called back; probably
because the engineering staff had changed in the interim.

I was out of work until May of 1992, when I got a call
from Systron Donner in Concord, California. A half-dozen

The Forth development

I things that nobody thought possible before. It was even I were made obsolete.

Why should they invest part of their careers learning a to01
that was the personal property of one engineer? They did
have a point. But the fact was that my system was doing

I worse than that. It turned out that someone in a different
Litton division was using Forth for oroduction test station I This led to resentment...

-
environment was so effjc jent
that the HmP BASIC controllers

-
control for the same reason, its efficiency and power. This
person was upset that I had brought in a new dialect. He
had his box of tools and would not look at mine, and we
could not share code.

As the years passed, my system became entrenched in
the fiber optic directorate and enabled a lot of progress to
be made, even though I spent most of my time concentrat-
ing on the physics of the devices. A few people finally
learned my system, which became quite powerful, but the
lingering resentment remained. Other engineers felt I had
cheated by using Forth, that it was unfair to them. I even
published my Forth system, called AFORTH, through the
Victor 9000 users group. I was told that up to forty people
bought copies, and the head of the users group eventually

Litton refugees had found jobs there, and they were eager
for me to join them. I moved from Los Angeles to beautiful
Contra Costa county, and thought I had found a wonderful
place to work. The CEO was Dick Terrell, who came from
Litton marketing, and was converting the company to
quartz sensor technology. It turned out that I was the last
one hired before the defense downsizing began in earnest
at the company. I had to relive the experience at Litton
during the next year and a half.

I was hired to do DSP software for the Quartz Inertial
Measurement Unit, but the military requirements for
software quality control were beyond the resources of the

Forth Dimensions 13 July 7995 August

company, so the project was canceled a month after I
arrived. Instead, I was asked to work on a substitute IMU
for a contract delivery that was not going to happen on the
current schedule. One of the main problems was that the
rate table test station, which was being coded in C, would
not be ready in time. I volunteered my Forth system for the
interim station, and completed the work in several months.
Once again, I experienced the wrath of engineers who
said I cheated because they were forced to use the "correct
C approach," while I used this thing called Forth, which
obviously made the work too easy. Go figure. I should
have known better; the truth was, nothing mattered,
because the company was being downsized with a ven-
geance, and when the CEO was replaced, I soon lost my
job in December of 1333.

Among the people who joined me going out the door
was a guy who wanted to start a company with a product,
based on the Systron Donner rotation sensor, which
would measure body movements for medical purposes. I
met with him and agreed to program a prototype piece of
equipmentusing my Forth system, in exchange for a future
piece ofthe company. In one month, I had a prototype that
displayed real-time rotation movement and medical pa-
rameters for Parkinson's syndrome. It was demonstrated

to the Parkinson's institute and was well received. How-
ever, I told my partner that the final device could not be
programmed in Forth. Why would I say such a thing?
Simply because technology had passed Forth by, in my
opinion. It was no longer possible for one person to
develop all the software required in a graphical environ-
ment. I needed to buy the tools I needed to leverage my
time for a professional job. I could no longer play the role
of the maverick programmer, nor did I want to. I need to
be part of a collaborative community in which I can give
and receive work. I do not see Forth as a viable solution
as of today.

The startup company never happened, for financial
reasons, so I have been unemployed since then. I am also
forty-two years old, and am looking at my life from the
midway point. I have spent nearly twenty years doing this
Forth thing, and I do not know if I want to continue with
it. A year ago, I bought the Symantec C++ development
package for Windows. I have yet to use it. It does not
excite me like Forth did, because it does not give me the
freedom to create those program constructs which enable
my ideas. I guess I am still undecided on the issue of Forth,
so I will renew my subscription to Forth Dimensions for at
least this one last time.

OFFETE ENTERPRISES
1306 South B Street

San Mateo, California 94402
Tel: (41 5) 574-8250; Fax: (415) 571 -5004

MuP21 Products
4010 MuP21 Chip designed by Chuck Moore, $25 4015 MuP21 eForth V2.04, C.H. Ting, $25

MuP21 in low-cost plastic DIP package. 5V only Simple eForth Model on MuP21 for first time MuP21
with timing constrain on a!. users.

401 1 MuP21 Evaluation Kit, $100 4016 Ceramic MuP21 Prototype Chip, $150
MuP21, a PCB board, a 128KB EPROM, instructions MuP21 packaged in ceramic DIP package. 4-6V, no
and assembler diskette. timing constrain.

4012 Assembled MuP21 Evaluation Kit, $350 4017 Early MuP21 Prototype Chips, non-functional,
4011 and 1014 with 1Mx20 DRAM, and I/O ports. $50. Lid can be removed to show the die in bonding

Assembled and tested. cavity. Great souvenir/demo.
1014 MuP21 Programming Manual, C. H. Ting, $15 4118 More on Forth Engines, V18, $20, June 1994.

Primary reference for MuP21 microprocessor. Chuck Moore's OK4.3 and 4.4, Jeff Fox's P21Forth,
Architecture, assembler, and OK. and C.H. Ting's eForth kernel.

4013 MuP21 Advanced Assembler, Robert Patten, $50 4119 More on Forth Engines, V19, $20, March 1995.
EnhancedMuP21 assembler for coding large MuP21 MuP21 eForth by Ting. MuP21 Macro Assembler on
applications. MASM by Mark Coffman.

4014 P21Forth V1.O.l, Jeff Fox, $50
ANS Forth with multitasker, assembler, floating point
math and graphics.

Checks, bank notes or money order.
Include 10% for surface mail, or 30% (up to $10) for air mail to foreign countries

California residents please add 8.25% sales tax.

July 1995 August 14 Forth Dimensions

A Novel Approach to
VLSI Design

C.H. Ting, Charles H. Moore
San Mateo, California

OKAD is a simple yet very powerful software package
for VLSI chip design. It runs on a 386-class personal
computer and requires very few resources. It contains a
layout editor to produce and modify IC layout at the
transistor level. It can display the layered structures of an
ASIC chip with panning, zooming, and layer-selecting
facilities. It also includes a simulator which simulates the
electrical behavior of the entire chip. Its functionality was
fully verified in the production of several high-performance

1 microprocessors and special signal-processing devices.

Introduction
OKAD is a software package that aids silicon layout and

simulation. It currently runs on a 386 and adds about ten
Kbytes in size. Its purpose is to design full, custom, VLSI
chips and produce standard output files suitable for IC
production.

The chip design is based upon the actual, geometric
layout of five layers. This is distinct from normal practice,
where designs are based upon a schematic. OKAD does

I t provides VLSI technology
to anybody who wants to
transport his imagination
to real silicon.

not use or produce schematics and net lists. Of course, the
designer may use them outside the system.

This approach is a matter of personal choice. Silicon
compilers, schematic capture, and auto-routing are being
explored; other alternatives are not. It is interesting to draw
and modify brightly colored graphic images containing a
chip layout, and fun to animate them by simulation. The
Forth computer language is the foundation of this ambitious
software project, and provides the means to achieve the
goal of designing an efficient Forth microprocessor.

As is often the case, available tools influence the
design. For example, OKAD can properly simulate trans-
mission gates, which encourages their use. Conventional
VLSI CAD systems cannot handle transmission gates very

well, and designers are discouraged from making use of
them. Conventional CAD systems rely heavily on cell
libraries which encapsulate designs at the transistor level.
The circuits inside the cells cannot be optimized for
specific situations. The resulting IC tends to be bulky and
inefficient. OKAD encourages the designer to examine
each transistor and optimize it for its purpose.

OK, the Graphic Environment
OK is a software interface to a computer. It is derived

from Forth and takes its name from Forth's terminal prompt.
OK appears on most screens as a key that returns to the
previous menu. OK has the capabilities of Forth, but is
simpler. It does not use the disk, since computers have large
memories. It has no editor or compiler, because it composes
and displays object code. It has no interpreter, but is menu-
driven from seven keys. It has no multitasking.

OK has been evolving for five years along with OKAD.
It is a sourceless programming system that displays code by
decompiling. This eliminates the syntactic difficulties that
source code encounter-ven Forth source. It has run on
the Novix 16-bit, ShBoom 32-bit, and 80386 processors, and
is destined for my MuP21 processor. With the elimination
of source code, a QWERTY keyboard is no longer required.
Rather, a seven-key pad or a three-key chording pad is a
simple, friendly device. Use it to select among seven menu
entries, and you have the good features of a pointing device
without the complexity of a mouse.

The 386 version of OK runs under DOS with a VGA
display. In a 65 Kbyte segment, about 2K is object code, 8K
is tables, the rest is free. There are seven displays of 20 x 15
characters in 16 colors. With them, you define your own
words, menus, and screens. Keys are multiplexed by moving
through a menu tree. The most common key function is to
select another menu. In effect, the space-multiplexing of a
large keyboard is replaced by time-multiplexing a small one.

Characters are in 32- x 32-dot matrices. Besides letters,
numbers, and some punctuation, 16 graphic symbols are
defined for OKAD to compose transistors and IC circuitry.
A symbol editor is included, s o users can modify the
symbols to suit their applications.

Forth Dimensions 15 July 1995 August

The five design layers are expanded to nine output I
July 1995 August 16

Chip Layout
A chip is represented as an array of tiles. For example,

the MuP21 microprocessor die is 2.4 mm square. It is
formatted as a 600 x 600 array of 4- x 4-micron tiles. Each
tile uses four bytes of memory, so the chip uses 1.5 Mbytes.

The present version uses five layers to represent well,
diffusion, polysilicon, metal-1, and metal-2. Each layer
uses four bits of the tile to choose one of 16 patterns:
blank, horizontal, vertical, corner, contact, etc. A tile can
form a transistor by itself. It can also be part of a larger
transistor. It can also provide electrical connections be-
tween transistors and other devices.

A VGA display provides 640 x 480 pixels of 16 colors.
It is formatted into a 20 x 15 array of tiles. Each tile may
be used to represent a 32 x 32 character or a tile containing
patterns in eight colors:

well gold
diffusion green
PO~Y red
metal-1 blue
metal-2 silver

Bright green, red, and blue label nets at 5 volts, as opposed
to ground, as determined by the simulator.

The layers are stacked in their physical order. They may
be peeled off to examine detail otherwise concealed.
Transparent colors are not adequate to look at a design
five layers deep.

The designer works with these tiles. The seven keys are
programmed to provide a variety of actions:

Pan through image
Move cursor through image
Move cursor through layers
Scroll patterns at cursor
Drag trace through image
Copy, reflect, or rotate region of interest.
Display capacitance of net

With these tools, the designer can construct and
connect transistors, compose gates, construct and repli-
cate registers, and finally construct an image of a chip.

With such a layout tool, it is practical to hand craft
chips. The advantage of manual place-and-route is that
you know what you get. If there is no room for a gate, or
if a trace is unfortunately long, you can reconsider the
design. The goal is a clear, compact layout and you can
continually evaluate your progress. Such an approach is
most useful for microprocessor or memory layout, as well
as for random logic.

Layout Display
To view the actual geometry, as well as verify the

rectangle decomposition, keys are defined to:
Display rectangles
Superimpose various layers
Zoom from full chip to tile scale
Pan around chip

I
Forth Dimensions

layers:
Well
n+ active
p+ active
Polysilicon
Metal-1
Contacts
Metal-2
Vias
Passivation

It is very reassuring to view these layers and verify the
expansion from the tiled representation of a chip to a
geometrically correct layout.

Net Lists
The first step in verifying a layout is to extract the

transistors and the nets to which they're connected. The
MuP21 is in 1.2-micron CMOS with 6500 transistors
connected to 2500 nets. Each transistor is characterized by
a drive (uA) and each net by a load (P).

To facilitate net identification, the program first traces
the two largest nets, power and ground. It starts at the
input pad and uses a recursive algorithm to follow the
trace through metal-1 and diffusion, branching as re-
quired. It marks each tile with a flag:

01 power
10 ground
00 neither

It then scans the poly layer and locates transistors
where poly crosses diffusion. It measures their size by
following the poly trace. It then identifies the nets for
source, gate, and drain. It can distinguishsource and drain
only when source is power or ground. The result is an
eight-byte table:

Source net index
Gate net index
Drain net index
Drive

To identify a net that is not power or ground, it follows
the trace doing two things:

1. Computing capacitance based on P/tile for each layer:
n-diffusion 13.6 fF
p-diffusion 12.1
gate 7.4
P O ~ Y .7
metal-1 .6
metal-2 .5

2. Looking for a tile bit indicating the 'owner' of a net. If
it finds an owner, it searches an eight-byte net table to
identify the net:
Location of owner (three bytes)
Load

Otherwise, it creates an entry for a new net, with the owner
being the location where the search was started. A special
case is an internal (series) node in a NAND or NOR gate
with capacitancehile:

p-diffusion 8.0 fF
n-diffusion 8.8

Simulation
Armed with transistor and net tables, the program can

simulate the chip. Apply five volts to the power net and
observe the consequences. Because all the nets have a
capacitive load, there is no DC bias matrix to solve. Simply
integrate the differential (difference) equations:

I = u(s,g,d)
dV = Icdt/C

First, calculate the currents into each net from a transistor
model. Then adjust the voltage on the net from the current
into it, its capacitance, and the time step. Repeat indefinitely.

As with any model, you don't include unnecessary
detail. Thus, the poly resistance (80 Ohms/tile) is not
included, since it is negligible. Arithmetic is in low-
precision integer (16 bit), a version of fuzzy logic.

The transistor model is:
I = K*(2g-d/delta)*d

where
d drain-source (voltage)
g gate-source-body-threshold (voltage)
K bulk parameter
delta 5 for n-transistors, 1 for p-transistors

Originally, voltages are in the units of mV. However,
6400 mV = 4096 units replaces a divide with a shift and
requires only two multiplications per transistor. This
pragmatic model closely fits measured IV curves from the
manufacturer's data. A display exists for manually fitting
parameters. The parameters reported in the SPICE pro-
grams are much less accurate, and do not produce IV
curves measured from silicon.

The time step wants to be large for speed, but is limited
by the smallest capacitance. In order to ensure that the
voltage change on an internal node is about one volt, it
must be 32 ps. It can be variable, since signals mostly
change during clock ticks, but that doesn't improve the
computation. (Simulation is slow on a 386; the same
algorithm running on MuP21 will be ten times faster.)

While a simulation runs, four scope traces can be
displayed. Merely point to a metal portion of four nets to
select the signals. Rise times, phasing, amplitudes, and
glitches are easily determined. Four traces seem to track
the simulation adequately.

Having run a simulation, the final signal levels (above

A future enhancement will record the time of transition
(through 2.5 volts) for each signal. This will allow easy
verification of phasing of control signals relative to the
clock. It is also an example of continual improvements you
can make if you own the software.

Tape-out
The geometry so far has been purely graphic. The four-

micron tiles determine the model for loads and drives. But,
basically, the layout is scalable, in that the tiles can be
expanded or compressed.

The trace widths for each layer are specified by the
design rules. Tile size must be chosen s o that separations are
adequate. This is inevitably the separation between trace
and adjacent contact. With four-micron tiles, this is met
except for metal-2, where traces may not be adjacent tovias.

The simplest GDSII (or CIF) tape is composed of
rectangles. The tape-out routine scans each layer horizon-
tally (vertically for metal-1) and composes the largest
rectangles for each trace, and then writes the rectangles to
the tape file. A second scan extracts contacts and vias. In
the case of vertical traces, it's necessary to mark visited
tiles to avoid revisiting them.

The MuP21 layout generates 65,000 rectangles. The
OKAD internal format records two bytes for each of four
coordinates (x and y for lower-left and upper- right
corners) or eight byteshectangle. This is then expanded to
20-30 bytes in the standard GDSII or CIF formats, and then
is ZIPed to fit on a floppy to be sent to the foundry.

Conclusion
OKAD is an unconventional VLSI design tool which

allows individual designers to design large, custom ICs
and to explore ways of optimizing the design. It runs on
very inexpensive personal computers, and avails VLSI
technology to anybody who wants to transport his imagi-
nation to real silicon. It has been used to produce a
number of high performance ASIC chips, includingMuP21,
a 20-bit microprocessor with a peak execution speed of 80
MIPS. It demonstrates that VLSI technology as practiced in
the IC industry does leave lots of room for improvements,
in spite of the great success in the last 20 years. It also
points out a new direction for individual IC designers: that
smaller, faster, and better ASIC chips can be designed and
perfected without big, complicated, and expensive soft-
ware tools running on big and expensive mainframe
computers or fancy workstations.

or below 2.5 volts) are indicated on the tile display. Now
there are 2500 signals sampled at the same time.
particular, you can check the logic and sense of control

Dr. C.H. Ting, a long-time, noteworthy figure in the Forth community, may be
reached viae-mail atChen-Ting@umacmail.apldbio.com or by fax at 41557 1-
5004.

signals. It allows the designer to exchange NAND and
gates and to add or from the number

of inverters in a signal chain.
Charles Moore is the inventor of Forth, an explorer in language and silicon
technologies, and the owner of Computer Cowboys.

Forth Dimensions 17 July 1995 August

Forth in Control

Ken Merk
Langley, British Columbia, Canada

The following article is my attempt to contribute back
to the Forth community some of my experiences in solving
hardware interfacing problems using Forth. My formal
training is in hardware, so I consider myself a beginner
when it comes to Forth or any software-related projects.
I found Forth a powerful tool to interface the computer to
the outside world. Its speed and interactive qualities let
you build "modules" that can be tried out with immediate
feedback from your hardware. Once a solid foundation of
primitive words is established, building up from there
goes quickly.

The Forth package I use is F-PC by Tom Zimmer,
which I originally adopted to learn 8086 assembler lan-
guage. My first try at an application using F-PC was very
successful. Using SMENU.SEQ as a foundation for pull-
down menus (with mouse interface), and words like
BOXLFILL, SAVESCR, and RESTSCR for pop-up win-
dows, L I N E E D I T O R for text input with full edit capabili-
ties, FUNKEY. SEQ for function-key input, and~CoL0R. SEQ
to make it pretty, it turned out to be a professional-looking
program. I thought to myself-just think what I could do
if I knew what I was doing!

Using the PC, a Forth disk, and a few electronic
components, we can build a simple interface to control
devices in the real world. The first step is to get some I/O
lines out of the computer. There are four basic routes we
can go:
1. Use the expansion slots located on the computer's

motherboard. To do this, we need to build an address
decoder to select some specific I/O port space, and
some latches or PIA chips to get our I/O off the data bus
into the outside world. There is 1K of port addresses
available here, enough for any situation we can think of.
This is the most versatile and complex to implement.

2. We could use the RS-232 port to get control data in and
out of the computer. This again involves building some
electronics into our interface. We will need a serial-to-
parallel converter to change the serial bitstream into
useful parallel control data. A UART and baud rate
generator would work for this application.

3. The PC game port is another pathway into your
computer. We can sense four digital inputs and four

analog inputs. There is no provision for data output, so
it limits us to just receiving data from the outside world.

4. The parallel printer port is the easiest and least com-
plex to implement. We can bring eight outputs to the
outside world for control purposes. The port is also bi-
directional, so we can implement some input lines to
receive data.

To keep this project as simple as possible, we will use
the parallel printer port and build an interface to control
eight devices. For now, the eight devices will be LEDs
(light-emitting diodes), which will represent the odoff
state of each bit on the port.

The first thing we need to d o is determine what port
address is assigned to your parallel printer card. The three
possible parallel ports referred to as LPTI, LPT2, and LPT3
are supported by three base addresses. At boot up, the
BIOS searches for parallel ports at each of the three base
addresses. The search is always performed in a specific
order.
1. Location 03BC (hex) is polled first. A byte is written to

address 03BC and then read back to see if it matches
what was sent.

2. Location 0378 (hex) is polled second.
3. Location 0278 (hex) is polled last.

The first port that is found is assigned the name LPTI, the
next one is assigned LPT2, and the last one is LPT3.

When you first turn on your computer, the BIOS
displays an information screen which tells you the ad-
dresses of your parallel ports and LPT assignments. If your
BIOS does not support this feature, you can use the System
Information utility in PC TOOLS, under the I/O Port
heading, to obtain this information. When all else fails, we
can use Forth to get this information. On boot up, the
address of the first parallel port found is stored in address
locations 0040:0008 and 0040:0009. To view it, we can use
Forth's dump routine.
H E X 0 0 4 0 0 0 0 8 1 0 LDUMP

A chart will be displayed showing 16 consecutive address
1 locations, starting from location 0040:0008. Address loca-
~

July 7 995 August 18 Forth Dimensions

Forth Dimensions 19 July 1995 August

tion 0040:0008 will contain the least significant byte, and
location 0040:0009 will contain the most significant byte.
This is the address you will be using to send data to the
printer port (LPTl). If the address is 0000, you have no
parallel printer card in the system. To check continuity to
your port, we can conduct a short test. Let's suppose your
port address was shown to be 378 hex. We can write a byte
to it and read it back to see if it matches what we wrote.
Type the following words:

HEX
: WRITE 378 P C ! ;
: READ 378 PC@ . ;

To write the byte FF to the port, type:
FF WRITE

To read that byte back, type:
READ ----- > FF

Try again with different values:
0 0 WRITE
READ ----- > 0 0

The results we get indicate continuity to the printer card.

Building the Interface Hardware
The next step is to build the interface cable and LED

readout display. All components needed are available at
your local Radio Shack or electronics supply outlet. Here
is a list of materials:

1 Solder-type DB25 male connector (276-1 547)
30 ft. #22 gauge stranded hook-up wire (278-1296)
1 Multipurpose breadboard (2761 50)
8 470 ohm 1/4 watt resistors (271-1317)
8 Red LEDs
6 Plastic tie wraps

Took needed:
Pencil-type soldering gun
Rosin-core solder
Wire strippers/cutters

Measure and cut nine pieces of wire, each three feet
long. Strip both ends of the wire and tin. Solder a wire to
each pin of the DB25 connector, as indicated below.

DB25 Pin#
2 0 (least significant bit)
3 1
4 2
5 3
6 4
7 5
8 6
9 7 (most significant bit)
25 Ground

The DB25 connector should have nine wires attached
to it on pins 2-9 and 25. Attach tie wraps, equally spaced
along the cable, to keep the wires bunched together.

Install and solder the eight LEDs onto your breadboard.
Mount them all in a row, with ample space between them
so they are not crowded together. The LEDs are polarity
sensitive, so they all must be installed in the same direction
to function properly. The cathodeis identified by the flat
spot on the rim of the LED. If the LEDs are new and have
not been trimmed, the cathode lead will be the longer of
the two. All the cathodes will be commoned together and
connected to ground (pin 25).

Install and solder a 470 ohm resistor above each LED,
as indicated in the drawing [seepages 25241. One side of
each resistor will be connected to the anode of the LED
below it. The other side of each resistor will be connected
to the appropriate wire from the printer port.

Lay the board down in the position in which you are
normally going to view it. To stay with convention, the
LED on the far rightof the board will be the least significant
bit. Solder the wire from pin #2 of the DB25 connector to
the resistor feeding this LED. Continue from right to left,
soldering wires pin #3 - #3 to each resistor, the last being
the most significant bit. Finally, solder the wire from pin
#25 to common cathode bus (ground).

We can test the board before hooking it up to your
computer, to ensure that it works properly. To do this, we
need a standard 9 Volt battery and a battery clip with
power leads. Attach the battery to the battery clip. Clip the
black wire (neg.) to pin #25 on the DB25 connector. With
the red wire (pos.), touch pins #2 through @ on the DB25
connector; each corresponding LED from right to left
should light up. After testing, remove battery from clip,
and disconnect the black wire.

If the board does not function properly, recheck wiring
from the DB25 connector to the board. Check the polarity
of all LEDs, and make sure all connections look good and
that there is no solder bridging the copper traces. If the
board looks correct, clean the copper traces with alcohol
and a stiff bristle brush to remove dirt and excess flux.

With the board functioning properly, we can connect
it to our computer. Plug the DB25 connector into your
parallel printer port and turn on the computer. While it is
booting up, you will see some of the LEDs turning on. This
is normal, as the computer is searching for active printer
ports. Run F-PC, and at the "ok" prompt, type FLOAD
FCONTROL . SEQ. FCONTROL.SEQ automatically searches
for an active LPTl port and assigns the port address to the
constant #PORT. If no active port is found, the error
message "Parallel printer port not found" will be dis-
played. If no errors are encountered, we can try some
control words.

Type ALL-ON All the LEDs should come on.
Type K I L L All the LEDs should go off.

In the following section, we will walk through the
FCONTROL.SEQ code to see what makes it tick.

Parallel Printer Port Interface
The parallel printer port on the PC has eight outputs

that can be brought to the outside world for control
purposes. The following Forth code will be used to
interface the port to external hardware. Each output line
will drive an LED to indicate its status.

Let's pretend your computer is controlling machinery
in a factory. We will name each line and assign it a number
according to its binary weighting on the port.

DECIMAL \
\

CONSTANT FAN \
CONSTANT D R I L L \
CONSTANT PUMP \
CONSTANT SPRINKLER \
CONSTANT HEATER \
CONSTANT LIGHT \
CONSTANT MOTOR \
CONSTANT VALVE \

B i n a r y
weight :
00000001
00000010
00000100
00001000
00010000
00100000
01000000
10000000

We will now make some words that will control each bit
individually, so we can turn on and off any device we want.

#PORT will be one of the three valid parallel port
addresses. b will be the control byte containing device on/
off information.

CODE BSET (b # P O R T - -)
POP DX
POP BX
I N AX, DX

OR AL, BX

OUT DX, AL
NEXT

END-CODE

The word BSET (Bit-Set) will set each bit on the parallel
port (#PORT) that matches every high bit in byte b. It reads
the status of the port and does a logical OR with byte b.
The result is written back out to the port. So any bit
(device) you want to turn on, you make high in byte b.

CODE BRESET (b #PORT --)

POP DX
POP BX
NOT BX
I N AX, DX
AND AL, BX
OUT DX, AL
NEXT

END-CODE

The word BRESET (Bit-Reset) will reset each bit on the
parallel port (#PORT) that matches every high bit in byte
b. It reads the status of the port and does a logical AND
with byte b. The result is written back out to the port. So
any bit (device) you want to turn off, you make high in
byte b.

CODE BTOGGLE (b #PORT --)

POP DX
POP BX
I N AX, DX
XOR AL, BX
OUT DX, AL
NEXT

END -CODE

The word BTOGGLE (Bit-Toggle) will toggle each bit on
the parallel port (#PORT) that matches every high bit in
byte b. It reads the status of the port and does a logical
XOR with byte b. The result is written back out to the port.
So any bit (device) you want to toggle, you make high in
byte b.

The above code for BSET, BRESET, and BTOGGLE
uses the logical functions OR, AND, and XOR as masking
templates to preserve the status of the devices we do not
want to change. If we send out the byte that corresponds
to the device weight to the port, we would activate that
device and turn the rest off. By using this masking scheme,
we preserve the status of the other devices and activate
only the one we want. So, before each command, the port
status is read and then masked against the binary weight
of the device, and then sent to the port.

10110001 current port status
00000100 binary weight for PUMP

- - - - - - - - To turn on pump (bse t) , we will do
a logical OR mask.

10110101 Byte written to port. Pump bit is on
and the rest have not been changed.

Control Word Set
Each device can be controlled simply by commanding

it to be on or off:

: >ON (b ---) #PORT BSET ;

With the word >ON we can activate any device on our port.

MOTOR >ON

will turn on the motor

FAN >ON
will turn on the fan

: >OFF (b ---) #PORT BRESET ;

With the word >OFF we can shut off any device on our
port.

MOTOR >OFF
will turn off the motor

FAN >OFF
will turn off the fan

1 (Text continues on page 22.)

July 1995 August 20 Forth Dimensions

\ FCONTROL.SEQ Ken Merk Apr/95
\ F-PC
\ For th Code t o c o n t r o l p a r a l l e l p r i n t e r p o r t .
\ .

DECIMAL

\ Look f o r a c t i v e LPTl p o r t
\ If no p o r t found then a b o r t

CLS
23 8 AT . (P a r a l l e l p r i n t e r p o r t no t found.)
CLOSE Q U I T

$0040 $0008 @ L CONSTANT #PORT \ Find p o r t addr f o r p r i n t e r c a r d
\ a s s i g n t o cons t an t #PORT

1 CONSTANT FAN \ a s s i g n each dev ice i t s
2 CONSTANT D R I L L \ b ina ry weight ing
4 CONSTANT PUMP
8 CONSTANT SPRINKLER
1 6 CONSTANT HEATER
32 CONSTANT LIGHT
6 4 CONSTANT MOTOR
1 2 8 CONSTANT VALVE

code b s e t (b # p o r t --) \ w i l l SET each b i t i n #por t t h a t

POP dx \ matches every high b i t i n by te b .
POP bx
i n ax, dx
o r a l , bx
out dx, a 1
next

end-code

code b r e s e t (b #por t --) \ w i l l RESET each b i t i n #por t t h a t

POP dx \ matches every high b i t i n by te b .
POP bx
not bx
i n ax, dx
and a l , bx
o u t dx, a 1
next

end-code

code b togg le (b #por t --) \ w i l l TOGGLE each b i t i n #por t t h a t

POP dx \ matches every high b i t i n b y t e b .
POP bx
i n ax, dx
xor a l , bx
out dx, a 1
next

end-code (code continues on nextpage.)

Forth Dimensions July 1995 August

: >ON (b - - 1 #PORT b s e t , \ t u r n ON device
: >OFF (b - - 1 #PORT b r e s e t ; \ t u r n OFF device
: TOGGLE (b --) #PORT b toggle ; \ TOGGLE dev ice

: K I L L (--) 0 0 #PORT pc ! ; \ t u r n O F F all dev ices
: ALL-ON (--) $ F F #PORT pc! ; \ t u r n ON a l l dev ices

: ON? (b - - f) #PORT pc@ and O<> ; \ g e t ON s t a t u s of dev ice
: O F F ? (b - - f) #PORT pc@ and 0 = ; \ g e t OFF s t a t u s of dev ice

: WRITE (b - -) #PORT pc! ; \ WRITE b y t e t o p o r t
: READ (- - b) #PORT pc@ . ; \ READ by te a t p o r t

: BINARY (--) 2 base ! \ change base t o b ina ry

: TOGGLE (b ---) #PORT BTOGGLE ;

The word TOGGLE can be used to change the status of any
device on the port. If the device is on, a TOGGLE command
will turn it off. If the device is off, a TOGGLE command will
turn it on. This command can be useful to create digital
pulses. It will take the present condition of port bit and
invert it for a selected time, then toggle it again to the
original condition.

FAN TOGGLE
If fan is on, the command will turn it off.
If fan is off, the command will turn it on.

The words ALL-ON and K I L L will control the states of
all devices:

: K I L L (---) 0 0 #PORT P C ! ;
: ALL-ON (--- 1 $ F F #PORT P C ! ;

The word K I L L can be used to shut down all devices
on the port. It can also be used at the beginning of the
program to clear the port to a known condition.

ALL-ON
will turn on all devices

K I L L

will turn off all devices.

We can now make some words that will check the
status of each device. After a status check of a device, a
branch can occur depending on the flag value.

: ON? (b --- f) #PORT PC@ AND O < > ;

: O F F ? (b --- f) #PORT PC@ AND O = ;

FAN ON?
Will return a true flag if the device is on, or a false flag if
it is off.

July 1995 August

FAN OFF?
Will return a true flag if the device is off, or a false flag if
it is on.

To turn on or off any combination of devices, we can
use the following code:

: BINARY (---) 2 BASE ! ;
BINARY
1 1 1 1 0 0 0 0 WRITE

The output port will match the binary byte. A "1" will cause
the LED to be on. A "0" will cause the LED to be off.

READ
will show the status of the port (e.g., 11 110000).
Note: Any error will cause BASE to go back to DECIMAL.

Here are some other commands we can try. On the
same line, type:

MOTOR TOGGLE 2 SECONDS MANY
The MOTOR LED will blink on and off every two seconds.
To end the cycle, hit any key.

MOTOR >ON 2 SECONDS MOTOR >OFF
2 SECONDS 1 0 TIMES

The MOTOR LED will come on for two seconds and then
off for two seconds. This will be repeated ten times.

To speed it up, type:

MOTOR >ON 1 0 0 MS MOTOR >OFF
1 0 0 MS 1 0 T I M E S .
The on/off time has been changed to 100 milliseconds.

To build more complex control structures, we can
incorporate multiple devices in the control byte. In our
imaginary factory, we have a large mixing tank that needs
to be cleaned out at the end of the day. To do this, we open
up the VALVE at the bottom of the tank and PUMP water into
it. After the tank is flushed out, we turn off the PUMP and

22 Forth Dimensions

close the VALVE. The control sequence could go like this:
VALVE >ON PUMP >ON 15 MINUTES
PUMP > O F F VALVE > O F F

We can make a control word called FLUSH that will
both turn on the pump and open the valve:
1 3 2 CONSTANT FLUSH \ l ~ ~ ~ ~ l ~ ~

The new control sequence could now go like this:
FLUSH >ON 15 MINUTES FLUSH > O F F

Using this simple concept, we can build very complex
control structures that are very "readable," so a non-
technical person can understand a sequence of control
commands and even write them.

Make u p your own commands and try them out. Maybe
next time, we can hook u p a stepper motor to our interface

/ or some infrared diodes for remote control applications.

P.S. A special thanks to Tom Zimmer who gave us that
huge pile of F-PC code to play with, for all that time he
spent staring at his computer monitor.

Ken Merk, who graduated from BClT asan ElectronicTechnologist, is a married
father of two girls and lives in Langley, B.C., Canada. He works for Canadian
Pacific Railway, and is involved in a braking system used on caboose-less
trains-the caboose is replaced by a black box which monitors many param-
eters of the train and sends them digitally by radio to the head end. In
emergencies, a remote radio can trigger braking. Other projects include
infrared bearing-failure detectors, wind detectors, and mountain-top radio
communication sites. Merk originally used Forth to learn 8088 assembler, and
found it a great tool to control electronic hardware.

systems to package
tracking for Federal

Royalty-free multitasking kernels and libraries.
Fully configurable for custom hardware.
Compiles and downloads entire program in seconds.
Includes all target source, extensive documentation.
Full 32-bit protected mode host supports interactive
development from any 386 or better PC.
Versions for 8051, 80186188, 80196,68HC11,
68HC16,68332, TMS320C31 and more!

Go with the systems the pros use... Call us today!

Forth Dimensions 23 July 1995 August

Schematic. (Also see next page.)

470 Ohm
resistors

LEDs

.5a.5a.5a.5a.5a.5a9y9g

A - - - - -
MSB LSB

A A 1 1 1

Parallel-port interface.

July 1995 August 24 Forth Dimensions

FIG Board Elections
The Forth Interest Group recently held elections for

its Board of Directors. The Board was previously com-
posed of seven members, but recently moved to in-
crease in size by two seats; all nine of the positions were
up for election. Ten people had accepted nomination to
run for a Board position, thereby necessitating an open
election. All active members of FIG were eligible to
vote-ballots and candidates' statements were mailed
with the last issue of Forth Dimmions.

The results were counted on June 5,1995 by members
of the Silicon Valley FIG Chapter, and the count was
verified by FIG Secretary Mike Elola. The election results,
listed in order of the percentage of total votes received,
are as follows:

1) Everett "Skip" Carter (91%)
2/3) Elizabeth Rather (88%)
2/3) Brad J. Rodriquez (88%)
4) Jeff Fox (84%)
5) Andrew McKewan (81%)
6) John D. Hall (80%)

7) Mike Elola (78%)
8) Al Mitchell (74%)
9 Nicholas Solntseff (61%)
10) Jack Woehr (53%)

Our congratulations go to each member of the new FIG
Board, along with our thanks for the dedicated service of
outgoing directors Dave Petty, Dennis Ruffer (Treasurer),
C.H. Ting, and Jack Woehr (Vice-president).

New officers had not been appointed at press time, but
any changes in those positions will be reported in FD at
the earliest opportunity.

Those wishing to contact the Board may address their
correspondence to:

Forth Interest Group
att'n: Board of Directors
P.O. Box 2154
Oakland, California 94621
Fax: 510-535-1295

-

Code Size,
In mathematics, there are often analogies between the

properties of objects that one would like to exploit in
programming (say the similarity of integer arithmetic and
the arithmetic of rmlvnomials in one variable over a field).

& Factoring
Abstraction,

John Wavrik

. .
The process of abstraction would be one of generalizing
procedures to make them applicable to a variety of objects.
Differences in data representation often make it difficult to

San Diego, California

Editor's note: lThis material was ortginally part of a discussion
about "Code Bloat" that was found on the USENET newsgroup
comp.lang forth.

On comp.lang.forth, Darin Johnson wrote:
To me, not having been indoctrinated, the difference

is that "factor" seems to imply "make things smaller"
without anything else attached. "Abstractionn implies
"make things better and more usable."

Part of the problem might be a confusion between
factoring as a device to make code smaller, and factoring
as a device to make code more comprehensible. I suspect
it is usually used for the latter purpose.

Suppose a piece of code has a segment which carries
out a task which is logically independent of the body of
the code. For example, suppose that code for sorting an
array of numbers is embedded in the definition of a word.
The client word needs to know that sorting is done, but
does not have to know how it is done-so the sorting
routine is factored out. Factoring achieves the effect of
separating what is done from how it is done: it is an
isolation process. Here it has no impact on code size.

write simple code to handle abstraction of this sort. On some
cases, one just winds up with several separate processes
combined by conditionals.) This type of abstraction does
not seem to be related to "factoring." It can often result in
making the task of writing the code harder.

You don't "break" many functions into few, you break
few ones into smaller parts. Thus, if you've got a window
system with, say, 50 function calls total, and assuming it is
nicely abstracted, this is simpler to understand than 100 or
200 functions chosen merely because they were smaller.

Depending upon what you're working with, improving
abstraction can either increase or decrease the number of
functions. Factoring without abstraction only increases the
number. Abstraction may greatly increase the size of a
program; for instance, supporting any combination and
arrangement O F widgets will usually take more underlying
code to support than allowing only a few fixed choices.

-Darin Johnson

I suppose we all program applications in a hierarchical
or stratified fashion. The user may only need to know one
word at the top level ("GO"), and can remain completely
ignorant of how many words were required to define it.

Suppose level three of an application exports 50 words
to level four. If, in writing these 50 words, the programmer
uses a lot of factorization, then perhaps 100 or 200 words
will be produced in the process of writing level three-but
still only 50 words need to be exported to level four.
Increasing or decreasing the total number of functions
really is not so much the issue as the number of exportable
functions (functions used in subsequent programming).

of code size.
Suppose that, later in the application, there is also a sort

of an array of strings. The programmer then might try to
create a general sort routine that will handle both strings and
numbers, being passed the address of the array and the
address of the comparison routine. This would be abstrac-
tion At the same time, it would factor the sort routines out
of the places they were originally used, so it would also be
an example of factoring. Whether the abstraction would
result in smaller code size or in more comprehensible code
depends on what is involved in doing it.

Factoring can also play a role in data abstraction: it can
be used to separate words which need to know how data
structures are actually implemented from those which
don't. It can increase flexibility by making the bulk of code
independent of the choice of data representation. The
effect on code size is neutral. It can have the effect of
simplifying coding.

If, later in the application, another sort occurs, the
factored-out word could be used, rather than repeating the
code. In this case, the factoring does result in a reduction

comprehensible code depends
on what is involved in doing it.

Whether abstraction results in
smaller code size or in more

Factoring could increase the number of independently
useful words, resulting in both a decrease in code size and
a simplification in subsequent programming. On the other
hand, some of the factoring might just improve the quality
of code at the given level-without any impact at all on
subsequent code.

John Wavrik is an Associate Professor of Mathematics at the University of
California- San Diego. His research is in the areaofAbstract Alaebra. He started
using Forth in 1980in an effort to exploit the potential of the nkrocomputer as
a research tool. His interest in computational aspects of Algebra hascontinued,
and he uses Forth lo develop research systems in this area. He has also taught
a course, using Forth, to introduce pure mathematicians to computers. He can
be reached at iiwavrik8ucsd.edu via e-mail.

Forth Dimensions 25 July 1995 August

Southern Wisconsin FIG Meeting
Reported by Bob Loewenstein
rfl@oddjob. uchicago. edu

The May meeting of the Southern Wisconsin FIG chapter
meeting was held at Yerkes Observatory in Williams Bay.

Scott Woods brought the prototype hardware for his
ADS/TDS metal detector, and gave a demo of its interface
as well as a close look at the hardware. Scott also showed
his F-PC local information monitor that he has broadcast
on all of his home television sets.

This meeting was Ron Kneusel's first. Bob had corre-
sponded via e-mail with Ron about a project he had done
in Yerk, s o the meeting provided the opportunity for them
to finally meet. Ron showed his 6502 QForth running on
a Mac. To do this, he wrote a virtual 6502 machine on the
Mac using Mops. Ron also talked about his Forth back-
ground, as well as his familiarity with other systems, both
hardware and software. He maintains an FTP site at
141.106.68.98 and may have volunteered to create a
SWFIG WWW home page.

Bob Loewenstein talked about visiting Mike Hore in
Sydney, Australia, in April of this year. He also mentioned
his proposed plans to upgrade Yerk to PowerPC native
code. He still has not decided whether to use C or
assembly to create the kernel. C would obviously be more
portable to other platforms, if appropriate hooks were
made to isolate Mac-specific code.

Olaf Meding arrived 20 minutes late, due to Olafs
decision to give his front license plate to his father who
was visiting from Germany.. . the cop didn't see it Olafs
way, explaining that front license plates are necessary in
Wisconsin.

We discussed how we might entice new members to
the group. One idea was to try to hold regularly scheduled
meetings, as in the past. For the past six months or so,
meetings were either not held, or called at a few days'
notice (not conducive for big crowds to attend).

At the Madison Expo held in late April, about 40 people
signed interest sheets. A follow-up questionnaire was
drafted to send to these people. We hope some of them
will come to the next meeting, to be held in Madison.

We also talked about a program to introduce Forth to
any newcomers at the meeting. We discussed possible
applications where Fonh is more applicable than other
languages, and demonstrating how the program would
work in Forth for the next meeting.

The meeting ended around 10:30 p.m. and was fol-
lowed by a tour of Yerkes, home of the world's largest
refracting telescope.

A draft of the questionnaire to interested people is
below:

SWFIG Questionnaire

Dear Forth enthusiast(?),
Are you interested in attending the Southern Wisconsin

Forth Interest Group (SWFIG) meeting in Madison in
June '95?

What is your level of expertise in Forth?
What computers and/or systems are you familiar with?
What programming languages, if any, have you pro-

grammed in or are familiar with?
What is your interest in Forth?
Help us prepare for the meeting - what would you like

us to discuss?

Silicon Valley FIG Meeting I design of the F21 CPU to make the 32-bit P32 design. He

Condensed fro; a report by ~eff Fox 1 said the P32 would use six 5-bit instructions. One of the

.- - two leftover bits would be return, and he didn't know
jfox@netcom. COm I about the other yet.

May 27, 1995-Charles Moore said his F21 chip was
suffering from too many improvements. The design re-
quiredsome chip-wide changes based on the results of the
last P8 prototype run. He said the simulator currently says
400 mips internally on F21 (at one point he had it tuned
to 500, but worried he had pushed it too far). Memory
access will still limit F21 to less than 300 mips maximum
performance in memory.

Chuck said it was about a one-day job to stretch the

Chuck said he was using new names for the signals
previously called I/O and SRAM on MuP21, that he was
now calling these RAM and ROM. Chuck talked about the
analog I/O coprocessor, the network interface processor,
and the configuration registers on F21.

Chuck also said he had been thinking about
nanotechnology. He talked about the statistical distribu-
tion of dopants in transistors, and the problems when
there are so few atoms in a transistor.

He has been speaking with NASA and the U.S. Air Force

July 1995 August 26 Forth Dimensions

about projects like satellites and the Mars rover. Chuck
said he perceives that antagonism to Forth has faded, that
they aren't locked into ADA.

Dr. C.H. Ting then demonstrated a multi-voice music
program that was using the video output processor on
MuP21 to generate the analog signal being played. He
showed details of the design and code, and explained that
he used a much slower xtal than the one used to generate
the video timing for the P21 coprocessor.

Tom Zimmer and Andrew McKewan are about to
disappear to the jungle ofTexas. This was their last chance
to talk about their 32-bit Forth (F95) for Windows to this
group for a while.

Andrew wrote the original C wrapper and the kernel of
F95. He also ported the object-oriented code from Neon,
which he said was useful as an interface to the windowing
system. He discussed the issues in hosting an interactive
Forth under the Windows environment.

Andrew said he considered the system a good environ-
ment to learn about the Windows interface, because you
could test anything interactively. But he said he does not
really consider it a Windows GUI development environ-
ment, because it is lacking too many things. There is no
icon editor, no help editor, etc.

In addition to names for Windows functions, and
constants for control locations in Windows, F95 contains
most of the features of F-PC. The system boots from
FORTH.EXE and loads FORTH.IMG. The IMG contains the
dictionary and can be from 300K to 2M. The EXE file

The Computer Journal 6

FORML back cover

FORTH, Inc. 23

..... Forth Interest Group ctrfld

Laboratory
Microsystems, Inc. 10

Miller Microcomputer
Services 27

Offete Enterprises 14

Silicon Composers 2

contains the C wrapper, and changing it would be similar
to metacompiling a new kernel in F-PC.

You can simply say
' MAIN IS BOOT FSAVE FOO

to save a FOO.EXE and FOO.IMG. You can then install and
use it in Windows.

Tom Zimmer extended Andrew's F95 kernel to include
all the utilities and tools he needed to finish porting a
multi-megabyte Forth project from a fragmented 16-bit
Forth system to the 32-bit Windows system. The exten-
sions include assembler, disassembler, debugger,
decompiler, editor, class, objects, mouse interface, and
graphic interface. A floating-point package has been
added, but it requires floating-point hardware.

Tom talked about the 00 extension and how, when he
only needed one particular new object, he felt it was
wasteful to create a new class for it. So he created a way
to define such objects without having to first define a one-
of-a-kind class. He also talked about headerless classes,
and showed how methods are assigned to classes.

Tom explained that the interpreter was a little unusual.
First it looks up a word to see if it is in the dictionary, then
it tries to convert it to a number, and finally, if it can't do
either of these things, it performs a hash and leaves the
value on the stack. This is because it assumes that it is a
method and that its value should be put on the stack so the
object can resolve it at runtime. Objects match the method
value to those in their own list of methods to find
executable code.

Forth Dimensions 27 July 1995 August

ANS Forth
Clarification
Procedures
Greg Bailey (gregQminerva.com)

Hillsboro, Oregon

Editor's not+Here's some help with acronyms for ANSI neo-
phytes: TC- technical committee; Xy14 = thedesignation of the
specific TC that developed ANS Forth; AD = alleged defect(s); X3
= the ANSI body that oversees the activities of various TCs.

The X3J14 TC has set up procedures for handling
Requests for Clarification/Interpretation or Alleged De-
fects in the document X3.215-1994 (ANS Forth).

The most formal procedure is to submit a written
request to the X3 Secretariat (X3J14 c/o X3 Secretariat,
1250 Eye St. NW, Suite 200, Washington, DC, 20005-3922;
202-628-2829 or fax 202-638-4922). In this case, the TC's
current ~rocedures are as follows:
11 AD Gill be mailed to all members.
2. Chair will appoint a member to draft the TC's response.
3. Chair will announce the AD and the appointment to all

members via US, and electronic mail using the mailgroup
X3J14@minerva.com.

4. TC members will collaborate with the appointee in
composing the draft using appropriate means includ-
ing primarily the above mailgroup.

5. When Chair is satisfied with the draft, it will be
submitted to the TC for letter ballot.

6. Chair will modify these procedures when and as she
determines that such is necessary.

When this is done, X3 monitors the proceedings and the
TC has specific obligations. Recently, TC chair ruled that
we should treat electronic requests similarly, but with
streamlined electronic processing during response study
and composition.

If you wish to submit a request for clarification, a request
for interpretation, or a "bug reportn for the Standard, please
format your query suitably for publication and e-mail it,
clearly stating at the beginning that you wish the TC to
subject it to duepmcess, to any of the following:

x3jl4@minerva.com (TC only)
greg@minerva.com (log and distribute to TC only)
ansforth@minerva.com (widest distribution)

(As long as it is practical to d o so, and as long as the
traffic is welcome, the ansforth list will subscribe a
gateway to comp.lang.forth so that all postings to ansforth
will appear on the newsgroup, but not vice versa.
Therefore, for anyone who regularly reads the c.l.f, there
is no need to subscribe to the mailgroup; just make
postings that are suitable business for the mailgroup via e-
mail to ansforth@minerva.com, and read them and any

public responses on netnews. The advantage of this
scheme, again, is that it includes a broader audience in
the process than just the usenet news by itself. The
disadvantage is that a netnews reader will need to look at
the header for any ANS Forth traffic. Suggestion: When
starting any ANS Forth thread, begin the subject with ANS
to warn Usenet readers of need to reply via e-mail [in
order for their replies to reach all subscribers to the
ansforth list]. In addition, all postings to the ANS Forth list
are crossposted automatically to the FIGI-L list.)

When your query has been recognized for processing,
you will receive an acknowledgment of that fact. When the
TC has completed processing of the query, the reply will
be posted to the full ansforth list. The process takes an
absolute minimum of thirty days, due to the mail balloting
requirement; but having been thus processed, they may be
regarded as authoritative. (All inquiries sent to the TC via
the ANSForth mailgroup which d o not clearly indicate the
desire for formal reply will be answered informally by
individual TC members and other interested parties.)

Queries and replies will be posted on
ftp://ftp.uu.net/vendor/minerva/x3j14/queries

This server is mirrored in the U.K. and various other
places. There is also a Web page at

ftp://ftp.uu.net/vendor/minerva/uathena.htm
which serves to bind the postings together and which
includes links to other prominent Forth resources.

Clear identification of quasi-formal inquiries will save
all of us time and bandwidth. Thank you very much!

Additional Resources
The Unreal Thing--For those with a legitimate need, the
final draft of the Standard is posted as a working document
on the root FTP server, ftp.uu.net. Before retrieving and
using any of the draft files, please read and comply with
the instructions and restrictions defined in the files
0OREADME.TXT and DPANS94.TXT.

The URL ftp://ftp.uu.net/vendor/minerva/uathena.htm
provides access to all of the information.

The Real Thing-To obtain the official standard (Docu-
ment X3.215-1994), please contact:

American National Standards Institute, Sales Dept.
212-642-4900 or fax 212-302-1286

or Global Engineering Documents
800-854-7179 or fax 3038439380

Test Suites-John Hayes at Johns Hopkins has written an
unofficial but very good test suite for most of the Core
wordset. This test suite is posted on ftp.uu.net as above.

It is informal, in the sense that it is not a product of X3J14
nor is it "blessed" by the TC. However, it is very useful. If
John releases new versions of his suite, they will be posted
in the above archive. Anyone with bugs or improvements
for John's test suite is encouraged to e-mail them to
ansforth@minerva.com, which will get them to John.

Others with test suites that have the ring of authority are
welcome to upload them to ftp.minerva.com:\incoming
(anonymous/e-mail) and discuss their posting with
greg@minerva.com. Only send material that may be freely
distributed legally, with any necessary boilerplate embed-
ded in the source; we can zip and authenticate here, if you
wish.

July 1995 August 28 Forth Dimensions

Pinhole Optimization
Wil Baden
Costa Mesa, California

The performance of compiled programs can be greatly
improved by a little bit of optimization. One standard
technique is "peephole optimization." In peephole opti-
mization, the compiler's output is examined for sequences
of operations that can be replaced by more efficient
sequences.

This is the approach taken in Tom Almy's ForthCMP,
Xan Gregg's "PowerMacForth Optimizer" (FD XVI/6),
Charles Curley's "Optimization Considerations" (FD XIV/
5), and David M. Sanders' "Optimizing '386 Assembly
Code" (FD XV/6).

In those systems, the implementation is subroutine
threaded or compiled machine language. The implemen-
tations are all specific to particular hardware.

Peephole optimization for a direct token-threaded or
indirect token-threaded implementation can be provided
by having the text interpreter remember the words most
recently encountered when compiling. Only the execu-
tion token or compilation token of words needs to be
remembered. The compiler knows what it did with them.

For practicality, only the last three operations will be
remembered.

Just the two previous execution tokens have to be
remembered.

This can be done by extending the standard word
COMPILE, or equivalent in your system.

VARIABLE l a s t
VARIABLE penu l t
: COMPILE, (execut ion-token --)

l a s t @ penu l t !
DUP l a s t !
(O l d D e f i n i t i o n of COMPILE,)

COMPILE ,
f

I call this narrow-window approach to optimization
pinhole optimization.

In traditional implementations of Forth, an immediate
word has at most one execution token or compilation
token associated with it. That is, I F may have OBRANCH,
. " may have (. ") , LITERAL may have do-LITERAL.

These tokens may have different names in your system,
are often headerless, not found in a wordlist, and known
only to the compiler.

With pinhole optimization, such words may have more
than one execution or compilation token. The appropriate
one will be selected by the optimization logic. Previously
compiled tokens may be replaced.

Pinhole optimization extends the number of immediate
words. Words that will benefit by being combined with
words that have just been compiled are made smart.
Execution tokens are provided for secret words written in
low-level Forth.

As an example of one possibility, some systems have
-ROT equivalent to ROT ROT. With pinhole optimization,
-ROT may not have a name in any dictionary, but when
ROT is encountered by the text interpreter in compilation
state, it looks to see if the previous word was ROT; if so,
it replaces the compilation token of ROT with the compi-
lation token of the secret word -ROT.

Other examples are not so straightforward, and re-
placement words usually don't have a meaningful name.

Pinhole optimization is most useful with literals and
logic.

When the text interpreter encounters a literal in a
definition, it puts out do-LITERAL, or whatever your
system calls it, followed by the binary value of the literal.
When the definition is executed, do-LITERAL will take
the binary value following it, and push it onto the stack.

With pinhole optimization, if the literal is followed by
+, do-LITERAL will be replaced with do-LITERAL-PLUS.
When the definition is executed, do-LITERAL-PLUS
will take the binary value following it, and add it to the top
element of the stack.

This roughly halves the time it takes to add a literal.
In a traditional implementation, 0- IF or O= UNTIL

will generate two tokens, that might be called
do-ZERO-EQUAL do-BRANCH-IF-ZERO, followed by
a destination. FALSE = I F or FALSE = U N T I L will
generate three tokens followed by a destination. With
pinhole optimization, they will all generate one token,
do-BRANCH-UNLESS -ZERO, followed by a destination.

Pinhole optimization would also look for DUp and

Forth Dimensions 29 July 1995 August

other words preceding IF, UNTIL, and WHILE.
This roughly halves, and sometimes quarters, the time

to make a test.
M~ experience has shown that pinhole optimization for

threaded implementations generally improves speed of
execution about 25 percent. For some applications, par-
titularly those with many variables, the improvement can
be as much as 80 percent. Macros, such as dk+cussed is the
last issue, can improve 25 percent on top of that.

In the listings here and in the previous "Stretching
Forth" articles, certain phrases are underlined. These
phrases show where pinhole optimization would occur in
a definition.

The following compiles to five primitive Forth instruc-
tions.
DUP 10 < NOT IF 10 - [CHAR1 A +
[CHAR1 0 - THEN JCHARl 0 +

DUP 10 < NOT IF 7 +
THEN 48 +

The following loop is two primitive Forth instructions.
BEGIN 1 - ?DUP 0 = UNTIL

With pinhole optimization, there is seldom a need for
[mumble I LITERAL to optimize an calculation.

One about Forth that I have heard from
some Forth programmers is that it doesn't have logical AND
and OR.

Here is they were defined in the last listretching
Forthn:
: ANDIF S" DUP IF DROP" EVALUATE ;
IMMEDIATE
: ORIF S" ?DUP O = IF" EVALUATE ;
IMMEDIATE

~ D I F hardy THEN, optimization makes
true words out ofmDIF. If is false, then hardy
is not performed.

In ORIF laurel optimization
makes one word out of ORIF. If st a n l e y is tme, then
l a u r e l is not performed.

If POSTPONE were used to define ANDIF and ORIF,
optimization would not take place.

Pinhole optimization increases the number of primi-
tive, low-level Forth definitions in an application to
improve performance. But the source code does not
change, hi^ means you can make some optimizations in
an application after you have got it working, without
changing the source code.

An is never as you
be forever thinking of new optimizations to recognize.

WIL BADEN is a professional programmer with an interest in Forth. He can be
reached at his e-mail address, wilbaden@netcom.com.

July 1995 August

("Backspace" continued frompage 39.)
function without affecting the code where it is called. In this
case, Forth has the clear advantage.

As for being back to square one when you find a word
that the all-so-powerful-kernel writer didn't make deferred,
that just isn't true. At the least, all You have to do is make
the word deferred, rename the old definition, and set it up
to be the default vector. This is exactly analogous to the
linking behavior seen in In fact, you might even want to
argue that it would be a better solution to allow every word
to be re-vectorable from within Forth, by default. This
would give you even more flexibility than you'd get with C.

Here is why: I think your example in this case is flawed.
Often, what you want is not to revector some kernel word,
but rather some word used by a kernel word. In this case, you
are as out of luck with C as You are with Forth, since the
internal functions used by the word you want to alter are not
likely to be visible for a relinking f m p . In fact, this is the very
strength of component or object-oriented approaches-the
internal code is hidden from the user of the interface. You are
just as out of luck if the hash-table-in-C object doesn't have
a method visible for you to override. It's a completely
analogous problem. I think you are being a bit blinded by the
power of relinking, and not seeing through to the fact that the
problems remain and don't really get any easier to solve.

Take your example of fopen. In many, many C systems,
in order to get reasonable performance through the I/O
library, functionality that looks like a function call is really
a macro. This means that you cannot relink, because you
don't really have a function call to revector in the first place.
Let's take this one step further with an example. Perhaps
you want to add multitasking to your (Forth) system. This
involves synchronizing access to global state, such as I/O
tables, buffers, e t c Sure, you could provide another layer
of functions between your system and the library, so that
your intermediate layer can take locks and do all the mutual
exclusion stuff it wants to. This is a very big job, but it can
be partially automated; it is painful, but doable. But if you
want to link with third-party libraries, you are out of luck
because they were compiled against the non-thread-safe C-
compiler-vendors library and, lucky YOU, half of the I/O
"functions" are really macros. You don't have any way to
wedge your replacement functions "in betweenn the third
party code and the C library, because the macro implemen-
tations have completely elided the function calls. (This is a
real life example from my recent working past.)

In conclusion: Iheartilyagree that a mutable, portable,
code base for Forth systems is needed. Zstronglydisagree
that C is the right answer to this. As noted above, you are
trading away non-portable assembly language for the
portability of C, but you are not necessarily doing anything
but pushing problems into t h i r d - ~ a r t ~ software, where
they are even harder to fix! I believe that a look into a
metacompilation-like solution would be very worthwhile,
not only because it would allow system generation in the
very same language (the duality of assembly and Forth is
no better or worse than the duality of Fonh and C, except
there is more inappropriate matching of concepb be-
tween C and Forth-< 'for' loops versus Forth's DO
WHILE-that can cause cognitive dissonance), but also
because you too easily brushed it aside. It may not endup
being feasible, but that is neither obvious to me, nor
argued persuasively in your column(s). (Granted, I may
have missed something more than six months old.)

-Doug Philips (dwp@transarc.com)

30 Forth Dimensions

Pinhole optimization. I

These are samples of the pinhole optimizations in the system I'm using at the time
of writing. They are subject to change without notice.

A lowercase letter other than "b" represents a literal, constant, or variable. "b"
represents a literal or constant that is a power of 2.

n + x n + x + n + 0 + SWAP +
n - x n - x + n - 0 - SWAP -

x n * b * 1 * CHARS
x n / 1 /
X @ DUP @
x ! SWAP !
x + ! S W A P + !
n < SWAP < 0 <
n = n OVER = DUP n = 0 = FALSE =

n ALIGNED
n AND x n AND
n >BODY [I] x >BODY [' 1 >BODY n CELLS +
[' I >BODY n CELLS + @ [' 1 >BODY n CELLS + !
n CELLS
n COUNT C" CCC" COUNT
DUP I F ?DUP I F DUP O = I F ?DUP O= I F
O < I F FALSE I F O < NOT I F O= NOT I F
1 +LOOP 1 CHARS +LOOP
x n L S H I F T x L S H I F T n L S H I F T n L S H I F T
b MOD
n OR x n OR
0 P I C K OVER 1 P I C K 1 P I C K n P I C K
ROT ROT ROT ROT ROT
n R S H I F T x n R S H I F T
n U< SWAP U<
n UNDER+
DUP U N T I L ?DUP UNTIL DUP O= UNTIL ?DUP O= UNTIL
O < U N T I L FALSE U N T I L O < NOT UNTIL O= NOT U N T I L
n XOR x n XOR
DUP WHILE ?DUP WHILE DUP O = WHILE ?DUP O= WHILE
O < WHILE FALSE WHILE O < NOT WHILE O= NOT WHILE
AGAIN ; QUIT ; ABORT ; BYE ;

Here is a typical implementation of the required control-flow words other than
LEAVE. Words that contain one or more lowercase letters, or are a single uppercase
letter other than I or J, are not in Standard Forth, and probably won't be available
to you.

Not all optimizations are given.

branch, compiles part of an unconditional branch;
? b r a n c h , compiles part of a conditional branch;
d o , , l o o p , , and +loop, compile parts of the execution semantics of DO, LOOP, and

+LOOP.

> m a r k puts the origin of a forward branch on the control-flow stack;
< m a r k puts the destination of a backward branch on the control-flow stack;
>resolve resolves the destination of a forward branch;
<resolve resolves the destination of a backward branch.

r a k e gathers the LEAVES within a DO loop.

Forth Dimensions 3 1 July 1995 August

: swop 1 CS-ROLL ;

?branch, >mark ; IMMEDIATE
: THEN >resolve ; IMMEDIATE
: ELSE
: BEGIN
: UNTIL
: WHILE
: REPEAT
: DO
: LOOP
: +LOOP

branch, >mark swop >resolve ; IMMEDIATE
<mark ; IMMEDIATE
?branch, <resolve ; IMMEDIATE
?branch, >mark swop ; IMMEDIATE
branch, <resolve >resolve ; IMMEDIATE
do, <mark ; IMMEDIATE
loop, <resolve rake ; IMMEDIATE
+loop, <resolve rake ; IMMEDIATE

The implementation in your system may not look like that, but you should be able to make a correspondence.
In traditional Forth implementations, branch, and ?branch, look something like:

: branch, do-BRANCH COMPILE, ;
: ?branch, do-BRANCH-IF-ZERO COMPILE, ;

We want to optimize these so that there is no penalty when a conditional branch is preceded by O=.
We are using smart @, ! , +, and , . They know when they are accessing data space and when they are accessing

code space.

HERE is the next available address in dataspace.
nex t is the next available location in codespace.

ALLOT allocates in dataspace.
gap allocates in codespace.

I codes is like CELLS but for codespace. I
Words beginning with do- are execution tokens implemented in low-level Forth. You'll have to roll your own.

(Optimize: O= IF O= WHILE O= UNTIL) I
The definition of branch, is the same, but uses the new definition of COMPILE,.
However ?branch, becomes:

: ?branch, last _@ do-ZERO-EOUAL = IF \ O= IFIUNTILIWHILE
-1 codes gap
do-BRANCH-UNLESS-ZERO COMPILE,

ELSE \ IF I UNTIL I WHILE
do-BRANCH-IF-ZERO COMPILE,

THEN
,

(do-ZERO-EQUAL is the execution-token of O=.)

Let's make some more optimizations in ?branch , .

(
Optimize :

?DUP O= IF ?DUP O= WHILE ?DUP O= UNTIL
O= IF O= WHILE O= UNTIL
0= O= IF 0= O= WHILE O= O= UNTIL
DUP IF DUP WHILE DUP UNTIL

July 1995 August 32 Forth Dimensions

0 IF 0 WHILE 0 UNTIL
1

: ?branch,
(CASE)

last do-ZERO-EOUAL =

IF
(CASE)

penult @ do-OUEDUP =

IF \ ?DUP O= I F I U N T I L I WHILE

-2 codes gap
do-QUEDUP-BRANCH-UNLESS-ZERO COMPILE,

ELSE
penult @ Go-ZERO-EOUAL =

IF \ o= o= I F I U N T I L I W H I L E

-2 codes gap
do-BRANCH-IF-ZERO COMPILE,

ELSE \ O= I F / U N T I L 1 WHILE

-1 codes gap
do-BRANCH-UNLESS-ZERO COMPILE,

(0 ENDCASE) THEN THEN
ELSE

last @ do-DUP =

IF \ DUP I F I U N T I L I WHILE

-1 codes gap
do-DUP-BRANCH-IF-ZERO COMPILE,

ELSE
last @ do-LITERAL =

ANDIF
next 1 codes - @ 0=

THEN
IF \ 0 I F I U N T I L I WHILE

-2 codes gap
do-BRANCH COMP ILE,

ELSE \ I F I U N T I L I WHILE

do-BRANCH-IF-ZERO COMPILE,
(0 ENDCASE) THEN THEN THEN

,

W e will optimize other things in ?branch,, but they will all follow that pattern.
n < and n >, for a literal n, can be optimized with the following paradigm.

: <
(CASE)

$- o=
IF

do-LESS EXECUTE
ELSE

last @ do-LITERAL =

IF
(CASE)

next 1 codes - @ 0=
IF \ O <

penult @ last !
-2 codes gap
do-NEGATIVE COMPILE,

Forth Dimensions 33 July 1995 August

ELSE \ n <
penult @ last !
next 1 codes - @

-2 codes gap
do-LITERAL-LESS COMPILE,
I

(0 ENDCASE) THEN
ELSE \ <

do-LESS COMPILE,
(0 ENDCASE) THEN THEN

; IMMEDIATE

For =, we want more optimizations.

(Optimize: DUP n = 0 = n = n OVER =)

. =

(CASE)

STATE @ 0=
IF

do-EQUAL EXECUTE
ELSE

last @ do-LITERAL =

IF
(CASE)

penult @ do-DUP =

IF \ DUP n =

0 last L
next 1 codes - @

- codes gap
do-DUP-LITERAL-EQUAL COMPILE,
I

ELSE
next 1 codes - @ 0=

IF \ o =
penult _@ last ?
-2 codez gap
do-ZERO-EQUAL COMPILE,

ELSE \ n =
penult @ last !
next 1 codes - @

-2 codes gap
do-LITERAL-EQUAL COMPILE,
I

(0 ENDCASE) THEN THEN
ELSE

last @ do-OVER =

AND IF penult @ do-LITERAL = THEN
IF \ n OVER =

0 last !
next 2 codes - @

-3 codes gap
do-DUP-LITERAL-EQUAL COMPILE,
I

ELSE
do-EQUAL COMPILE,

I I
July 1995 August 34 Forth Dimensions

(0 ENDCASE) THEN THEN THEN
; IMMEDIATE

The arithmetic operators should all receive optimization.

(Optimize: x n + x + n + 0 + n +)

: +
(CASE)

STATE @ 0=
IF

do-PLUS EXECUTE
ELSE

last @ do-LITERAL =

IF
(CASE)

penult @ do-LITERAL =

ORIF penult k do-LITERAL-PLUS = THEN
IF \ x n t or x + n t

0 last !
next 1 codes - @ next 3 codes - @ +

-4 codes gap
DUE' 9RIF penult @ do-LITERAL = THEN
IF

penult COMPILE,
r

ELSE DROP THEN
ELSE

next 1 codes - @o=
IF \ a +

penult @ last !
0 penult !
-2 codes gap

ELSE \ n t
penult @ last !
next 1 codes - @

-2 codeg gap
do-LITERAL-PLUS COMPILE,
I

(0 ENDCASE) THEN THEN
ELSE \ +

do-PLUS COMPILE,
(0 ENDCASE) THEN THEN

; IMMEDIATE

Pinhole optimization, like any form of peephole optimization, should work across uses of POSTPONE.
Given the definition,

: UNLESS 0 POSTPONE LITERAL POSTPONE = POSTPONE IF ; IMMEDIATE

when UNLESS is used, POSTPONE = should combine with the result of the preceding 0 POSTPONE LITERAL
to yield 0=, and then POSTPONE IF should yield the BRANCH-UNLESS-ZERO optimization.

Forth Dimensions 35 July 1995 August

(Fast Forthward, from page 38.)
For linear expanses of homogeneously subdivided code,
standard editor tools are sufficient.

Another way involves heterogeneous subdivisions,
such as header files as opposed to source files. These more
diverse units of code create a demand for more refined
tools for managing source code beyond editors. Diverse
units of code bring opportunities for tools such as make
utilities and code browsers.

Diverse ways of structuring code is a catalyst for better
code-manipulation tools, accelerating the evolution of
development environments. As one example, class hierar-
chies provide impetus to apply graphical or outline
metaphors to the presentation of code.

Code browsers and related tools typically must parse
through source code before its compilation. That way, even
before compilation, a code browser can be responsive to
the code's organizational divisions, such as classes, sub-
classes, messages, methods (functions), and data structures.

A Time and Place for a Command Interface
Even though I usually tout visual tools, I like the idea

of demand-based browsing of source code. That means I
don't have to locate files and scroll buttons to see my code.
The fewer hoops to jump through, the better.

Forth's customary VIEW or SEE provisions are de-
mand-driven ways to look at just the code we want to see.
However, I suppose their ever-so-incremental nature and
limited reach (compiled words only) make them poor
candidates to fulfill all our code browsing needs.

Still, I'll bet there is a way to dynamically compute a
virtual browsing sequence, such as one that consolidates
the source code for the words from one vocabulary as if
it were a linear expanse of code. Related challenges are
computing these browse sequences before compilation
occurs (industrial-strength preprocessing?) and storing
any changes back to the true location of the source code
(recalled how?).

I suspect this is an area of great opportunity.

Reaching the Limits of Vocabularies
Forth possesses code subdivisions that are fairly mun-

dane, considering that they are mostly homogeneous. The
dictionary is an array of definitions, each made up of an
array of words.

Vocabularies are a different kind of creature, however.
Perhaps they can be seen as a refinement of the dictionary
data structure itself. In any case, if we judge them based
upon their effectiveness as tools for organizing source
code, they don't measure up.

A Forth vocabulary is an impractical means of organiz-
ing source code because of a very annoying outside
hindrance: Words residing in the same vocabulary are
haphazardly organized, due to the compiler's requirement
for code to be encountered in a sequence that satisfies
load-order dependencies. The final result is that the
compiled code for the words in a given vocabulary is
strewn throughout the dictionary (held together as a group
by the associated chain of link pointers); and the source
code for those same words is dispersed throughout our
July 1995 August

source code file(s1.
So, at least in terms of its physical layout, our code is

typically not more organized due to its thoughtful place-
ment in vocabularies. Vocabularies as we know them
today have another role to play-resolving search-order
problems arising due to name collisions.

Nevertheless, once code is compiled, enhanced brows-
ing can be supported by exploiting the extra diversity
introduced by vocabularies: An outline view of the dictio-
nary can be supported that is vocabulary-disciplined. A
toggle could allow the outline to be restricted to only those
words in the current search order.

This helps reveal that vocabularies perform a virtual re-
sorting of code. Vocabulary tools link compiled words in
accordance with their vocabulary affiliation, while the
source can be ordered distinctly differently.

Notice how easy it is to get carried away with these
thought experiments: While we're viewing the dictionary
in an outline form, a drag-and-drop interface for move-
ment of words between vocabularies could be a nice
accompanying touch. Implementation-wise, however,such
a change to a word's vocabulary affiliation would not be
an easy one to propagate back to the source code.

A New Direction to Take Forth
The chief culprit that eclipses our attempts to better

organize our application code is the banal requirement of
having to satisfy load-order dependencies. So despite all the
freedoms Forth has brought us, it has not given us the
freedom to organize code as well as could be desired.

With C, a similar requirement is imposed, but a means
has been provided to circumvent it. This is a means that
involves no additional overhead. In C, interface declara-
tions (function prototypes) can hold the place for a routine
whose definition you don't want to supply near the
location where the compiler needs to be able to recognize
the associated symbol.

These placeholders are easy to supply near the point
of need. The point of need is before references to any as-
yet-undefined, or externally defined, functions. However,
any point earlier than that will work equally well. In a
header-file fashion, you are free to provide a complete list
of function prototypes (interface declarations) as a pre-
amble to your code. In so doing, you gain the freedom to
define functions in whatever order suits you (and using
whatever file subdivisions suits you).

Often, this practice is not enlisted wholesale, but only
when a conflict arises due to the compiler's requirements
and the programmer's preference. So sporadic use of this
technique permits the C programmer to come out as the
winner of these periodic struggles.

(At least one C text* advises the wholesale approach to
this function-prototype-before-definition rule. It offers
some simple code for header-file-generating tools based
upon UNIX awk scripts.)

Deferring words is Forth's equivalent technique, but it
introduces overhead that C's separate "interface declara-

'Portable C and UNlXSystem Programming, J .E. Lapin (Prentice-Hall, 1987)

36 Forth Dimensions

tion" technique does not. Furthermore, the use ofC Function
prototypes serves multiple purposes, including allowing
"safen references to precompiled functions inside of librar-
ies, allowing references to as-yet-uncompiled functions for
which definitions appear in another file, or allowing
forward references to as-yet-uncompiled functions that are
defined at a more distant place in the same file.

For Forth's future evolution, we should seek a new
provision that can take us out of the straightjacket in which
we find ourselves in terms of flexibility of organization of
source code. Vocabularies are not the answer, because
they act more as organizers in the domain of compiled
code than in the domain of source code.

Files
Part of the ingenious simplicity of Forth is its blurring

ofthe ordinarily strong distinction between data structures
and procedures. Nevertheless, who wants to confront a
large Forth application treated as an unbroken linear
expanse of definition after definition?

Certainly, we can and should support files. Many Forth
systems that have files also permit us to have blocks inside
files.

While files do not overcome the hindrance of ordering our
code according to the dictates of load-order dependencies,
they are an important way to maintain clusters of definitions.

Files and blocks are among the few organizational tools
that we can deploy on the side of source code, while
vocabularies can help organize things on the side of
compiled code.

Managing Code with Library Protocols
Library archive files support a protocol through which

a conventional (C) compiler admits a routine into an
application automatically upon determining the call for it
in a particular application.

By permitting the programmer to refrain from duplicat-
ing reused code in the files and directories that house the
source code of several applications, a significant mainte-
nance burden is avoided. The shared source code can be
maintained in just one place. (This also lends support for
mutable code bases, which I described in the last "Fast
Forthward" installment.)

Furthermore: (1) the calculation of the load-order is still
automated; (2) the function prototypes in the header files
bring automatic interface-checking; and (3) the header files
also bring the freedom to reference the library functions at
any point within any file that needs to reference them. It's
hard to imagine a more complete solution than this!

Through conditional compilation or interpolation of
files, we can approximate such a library protocol. How-
ever, relying upon preprocessing provisions to achieve
this goal produces a cumbersome solution.

Contrast this with the user interface for a C library
archive or a C++ class hierarchy: These tools allow code
to be incorporated into an application on a demand basis
alone. No distracting conditional compilation directives
need intrude their way into the code. The code just needs
to be written normally.

Forth Dimensions

Nevertheless, if mixing-and-matching bits of code from
several code bases is what you need to do today, elaborate
text-interpreter processing is one way to achieve the goal
(see the previous installment for a related discussion). We
already have made headway in this direction because of
words like INCLUDE in the ANS Forth standard.

To be more innovative, we can start looking for
solutions more on a par with those of C and C++.

Consider an abstract class (or class library). The ab-
stractness of an abstract class derives from the fact that we
are not normally permitted to instantiate an abstract class.
We can only inherit from it.

This is a form of library-like protocol, because if the
application fails to inherit from an abstract class, the
application does not need to engage any of its functions.
Upon detecting this, the compiler can remove the routines
and data structures of the abstract class from the applica-
tion. (Because it never inserts them, their removal is a
matter of doing nothing.)

So a proliferation of abstract classes should be able to
encapsulate a library-style protocol for code reuse. This
protocol would exploit one of the simplest possible user
interfaces conceivable: "reference it or lose it."

Progress Marches On
I appreciate the ease with which I can create both

character and paragraph styles in my favorite word proces-
sor. Ultimately, it saves me work to delimit text with both
types of styling provisions. Despite the sophisticated
interleaving of these two distinct styling provisions, I am
able to easily anticipate and obtain the formatting I desire.
This illustrates to me how a richer palette of formatting
units creates more powerful word processors.

Rich partitioning of source code can lead to a variety of
sought-after benefits: safer code reuse, better code en-
capsulation, and better provisions for code reuse (a.k.a.
inheritance or template provisions). Greater code clarity
brought about through its richer delimitingis significant, too.

Unfortunately, as qualitatively different units of code
are interleaved to gain all of these valuable benefits, the
added complexity can be daunting. For example, C++
went way overboard.

Signs of relief have appeared, however, indicating that
C++ has exacerbated the complexities unnecessarily.

Judging from what I've been reading about Borland's
release of Delphi, the merits of diversely partitioned code
can be delivered in a much simpler language and pro-
gramming environment. However, seeing how I have
already consumed a considerable quantity of column-
inches, I'll leave a discussion of certain Object Pascal wins
to a future gathering of the "Fast Forthward" kind.

Before I go, however, I can't resist repeating this
statement from Larry Constantine, which he made in his
"Peopleware" column in SofhuareDeuelopmentUune 1995):

Forget the hype of the true believers who tell you it's a
new paradigm for thinking about ~roblems; it's all about
better packaging. 'lasses, which are the
components of object-oriented programming, are just
better containers for code.

37 July 1995 August

A Forum for Exploring Forth Issues and Promoting Forth

Organizing Code-Hindrances and Aids

Mike Nola
San Jose, California

The partitioning of Forth source code into lines can be
an arbitrary business. For improved readability, we devise
line-break conventions. With these conventions to help
compel us to write code more consistently, we are better
equipped to improve the reading comprehension of those
who study our code.

Imagine the difficulty of comprehending written lan-
guage if it lacked subdivisions. Continuous expanses of
text with no sentence, paragraph, or section endings
would seriously hinder our comprehension of it.

For lengthy documents, we employ still other special
conventions, such as numbered paragraphs or sections to
help establish smaller frames of reference.

For lengthy listings of program code, we need similar
conventions.

Blocks and files can create frames of reference by their
attachment of a number or a name to an expanse of code.
In object-oriented languages, class names and class hierar-
chies help chop u p the application and make it more
manageable.

Vocabularies act more as
organizers in the domain
of compiled code than in
the domain of source code.

Like files, classes are of arbitrary length. Classes also
merit attention because the object-oriented languages can
understand and can meaningfully process a class name as
a scoping mechanism. In contrast, line numbers, blocks,
and file names play a role closer to bookmarks.

Furthermore, class hierarchies can organize program
code in gross as well as refined ways.

Responsiveness to Units of Code
Consider how well hierarchies of file-system folders

can organize our files. Consider how outlining modes are
increasingly supported by popular word processors.

A hierarchical or outline organization is perhaps the best
means we have to organize information, so why not also

suggests viewing our source code as outlines or charts.
If we overlook more granular subdivisions of code, a

huge opportunity is missed. In the world of object
languages, the equivalent capability takes the form of
"code browsers."

While object-oriented languages are sensitized to more
granular code units, conventional languages lag far be-
hind. Specifically, when preprocessors unravel the code
from multiple files into a single continuous stream, the
compiler (the programming language) misses the oppor-
tunity to be able to respond appropriately.

For C, sensitivity to file-level scope is more a linker
function than a language function. This is not the case
when the "external" keyword gives notice to the compiler
that a nearby symbol is not defined in the same file. Even
in the presence of such cues, however, C does not know
or even care to determine which file ultimately defines the
symbol. That task is deferred to the linking step, which I
consider a language-independent processing step.

In C's favor, the compiler requires knowledge about
the interface, if not the actual definition of externally
defined symbols. However, this once again requires the
intervention of programmers to provide the necessary
clues in the form of function prototypes. These clues are
provided in header files which, in accompaniment with
the C preprocessor, dispense knowledge to the compiler
of as-yet-undefined symbols or previously compiled func-
tions that reside in a library archive.

The use of a separate declaration of the function
interface and the function definition may create an added
maintenance burden. However, this was also a stroke of
genius on the part of C's designers. Interface-checking
remains an important feature of both C and C++.

1 The Catalyst for Browsers
Witness that, for conventional compiled languages,

several types of files are common. The trend is for code to
be partitioned in a rich variety of ways, most of which can
be categorized in one of two ways:

One way involves homogeneous subdivisions, such as
statement-oriented syntax units that are repeated often.

apply such a structure to the source code within a file?This 1
July 1995 August 38

(Continues on page 36.) I
Forth Dimensions

Readers are encouraged to respond to "Fast Forth ward. "Here, Doug Philips probes k @ the preceding installment ("For Want o l a Kernel Development Environmentn).

"Architecturak Support for Kernel Extension" is a greai
idea, especially the framework for hanging new bnction-
ality. However, as you noted, ANS Forth backed away
from, or didn't even try to approach, the "development
environment." I suspect that it will be very tough to come
up with a development environment/Forth system which
is extensible, yet does not specify implementation details
at too fine a level. I am not even sure yet that a kernel
extension environment is in any way different from a
specified implementation.

I must point out that Mac-based Forth systems have been
around for a long time, so I take you task for assuming that
any kind of GUI enhancements are tied to Windows. If I were
to be a Mac snob, I might notice that the Mac has been doing
GUI for a lot longer than Windows, and that if Windows
needs GUI refinement or interface enhancement, it is be-
cause it is so much more immature. But I digress. I just wanted
to point out a Windows-centrism that I think is irrelevant to
the points you are making in this article. Back on track.. .

I am most puzzled by your scorn of metacompilation.
There have been several articles in FDalone, over the past
few years, that have tried to debunk the myth that "oooh,
metacompilation is hard." Clearly, they have failed. One
thing that remains puzzling, though, is why you don't
consider simplifying or regularizing metacompilation just
like you want to do with the Forth kernel itself. Instead,
you are advocating (if I read you correctly) that C become
the assembly language for Forth, and that metacompila-
tion be replaced by ordinary C compilation. I don't see this
as a particularly attractive tradeoff, though I once thought
it was. The advantage to it seems to lie in writing the Forth
kernel in as common a dialect of C as you can, to enhance
portability. However, using C means having a different
language that someone needs to know in order to make
certain kinds of kernel enhancements, or to deal with C
compiler portability issues, or to depend on having a C
com~i ler (or cross-com~iler) available to get to a new
platfbrm. Attractive as C is as a "universal" assembler, both
in terms of "I already know C" and "C is everywhere, writing
a C compiler is someone else's problem, and besides there
are C compilers for every platform that Icare about," I think
it is the wrong approach. As to being able to link with C
code, yes, I think that is very important. Again, I am worried
about being seduced by the apparent ease of doing so
simply because linking C with C is easy.

Why not address the problem of being "linker friendly"?
On many Unix systems, one can link C, Fortran, Pascal, etc.
together in the manner you describe. In fact, once you have
a library file, it is completely irrelevant what language it was
built from. Again, I don't think having a component-oriented
Forth requires building Forth from C, though that is a very
attractive and "it can be done now" possibility. In fact, it might
even be worth doing as a step along the path to getting a real
metacompilable Forth that is no harder to understand than
simple Unix makefile technology. What bothers me about it
is that it would not be an absolutely trivial effort and I am not
convinced that it really would be a step in the metacompila-
tion-knowledge-enhancing direction-at least not a big
enough step to make the effort worthwhile.

On page 37, near the top of the first column on that page,

you say: "But what if some speedier or more expansive
file I/O hooks into the kernel are needed? Then you may
be forced to undertake an overhaul of the kernel, where
you don't have the clarity and other advantages of a high-
level programming environment." This has me com-
pletely baffled! It makes sense only if you consider the
alternative to C to be assembly language (and not
metacompilation); it also assumes the assembly language
implementation has somehow lost the component-ness
you were giving to it earlier. Furthermore, I think you are
making assumptions which are just not reasonable. The
dangeddownside of an assembly language kernel is that
the assembly language is at too low a level. You never
raise the consideration that what is needed can't be done.
However, that is a much greater danger when you have
to write your kernel on top of C. What if you need to have
functionality changes, not just at the Forth kernel level,
but also at the component level? This happens a lot with
C, in that you need to plug in your own memory-
management functions. But the C library comes with its
own memory-management functions and, even worse,
other functions in the C library that you want to use will
be using the C library's memory-management functions.
Boom, you are hosed. Many, many times, the only
solution is to create yet another layer of indirection
(my-malloc, my-free) which can be hidden behind a
clever layer of macros, but that in turn has its own
problems! Yes, you might argue that the problem is that
the C library is too monolithic, and that C compiler/
runtime vendors ought not to bundle it that way. But they
do. And while you might find more component-oriented
systems (GNU C might be amenable to being modified in
this way, though maybe not.. . at least you can get the
source code to experiment with!), that drastically reduces
the portability of the code that depends on it. Such a
reduction would completely undermine the portability

I don't see this as a
particularly attractive tradeoff,
though I once thought i t was.
justification for using C.

Further down that same page, you say, "Using lots of
execution vectors in a Forth kernel gives us a somewhat
similar flexible code base in a Forth environment." I
would assert that they give you exactly the same flexibil-
ity. The mild performance hit isn't a matter of flexibility,
but merely a side effect of how it is implemented. In fact,
it gives you an even greater amount of flexibility, because
there is no widespread ability in C to revector function
calls on the fly. Yes, you can use function pointers in C,
but they are exactly the same as DEFERed words. The
"plug and play" linking process resolves the symbols
once and for all. The difference here is that, in Forth, the
user of the word can benefit from using a DEFER^^
without knowing it is deferred, whereas C requires you
to write function calls through function pointers differ-
ently ... you can't merely change the definition of the

(Continues on page 30.)
- --

Forth Dimensions 39 July 7995 August

CALL FOR PAPERS
FORML CONFERENCE

The original technical conference for professional Forth programmers and users.

Seventeenth annual FORML Forth Modification Laboratory
Conference

Following Thanksgiving November 24-26,1995

Asilomar Conference Center
Monterey Peninsula overlooking the Pacific Ocean

Pacific Grove, California USA

Theme: Forth as a Tool for Scientific Applications
Papers are invited that address relevant issues in the development and use of Forth in scientific applications,
processing, and analysis. Additionally, papers describing successful Forth project case histories are of
particular interest. Papers about other Forth topics are also welcome.

Mail abstract(s) of approximately 100 words by October 1,1995 to FORML, PO Box 2154, Oakland, CA
94621. Completed papers are due November 1, 1995.

The Asilornar Conference Center combines excellent meeting and comfortable living accommodations with
secluded forests on a Pacific Ocean beach. Registration includes use of conference facilities, deluxe rooms,
meals, and nightly wine and cheese parties.

Skip Carter, Conference Chairman Robert Reiling, Conference Director

Advance Registration Required Call FIG Today 510-893-6784
Registration fee for conference attendees includes conference registration, coffee breaks, and notebookof papers
submitted, and for everyone rooms Friday and Saturday, atl meals including lunch Friday throughlunch Sunday, wine
and cheese parties Friday and Saturday nights, and use of Asilomar facilities.

Conference attendee in double room-$395 Non-conference guest in same room-$280 Children under 18 years
old in same room-$1 80 Infants under 2 years old in same room-free Conference attendee in single mom-$525

Forth Interest Group members and their guests are eligible for a ten percent discount on registration fees.

Registration and membership information available by calling, fax or writing to:

Forth Interest Group, PO Box 2154, Oakland, CA 94621, (510) 893-6784, fax (510) 535-1295

Conference sponsored by the Forth Modification Laboratory, an activity of the Forth Interest Group.

