

SILICON COMPOSERS INC

FAST Forth Native-Language Embedded Computers

DUP

>R
R>

Harris RTX 2000"" l&bit Forth Chip SC32'" 32-bit Forth Microprocessor
08 or 10 MHz operation and 15 MIPS speed. 08 or 10 MHz operation and 15 MIPS speed.
-1-cycle 16 x 16 = 32-bit multiply. 1 -clock cycle instruction execution.
01 -cycle 14-prioritized interrupts. *Contiguous 16 GB data and 2 GB code space.
*two 256-word stack memories. *Stack depths limited only by available memory.
-&channel I/O bus & 3 timer/counters. *Bus requestlbus grant lines with on-chip tristate.

SC/FOX PCS (Parallel Coprocessor System) SC/FOX SBC32 (Single Board Computer32)
*RTX 2000 industrial PGA CPU; 8 & 10 MHz. 032-bit SC32 industrial grade Forth PGA CPU.
*System speed options: 8 or 10 MHz. *System speed options: 8 or 10 MHz.
-32 KB to 1 MB O-wait-state static RAM. 032 KB to 512 KB O-wait-state static RAM.
-Full-length PC/XT/AT plug-in (6-layer) board. .100mm x 160mm Eurocard size (4-layer) board.

SC/FOX VME SBC (Single Board Computer) SC/FOX PCS32 (parallel Coprocessor Sys)
-RTX 2000 industrial PGA CPU; 8, 10, 12 MHz. -32-bit SC32 industrial grade Forth PGA CPU.
-Bus Master, System Controller, or Bus Slave. *System speed options: 8 or 10 MHz.
*Up to 640 KB O-wait-state static RAM. 064 KB to 1 MB O-wait-state static RAM.
0233mm x 160mm 6U size (&layer) board. *Full-length PC/XT/AT plug-in (6-layer) board.

SC/FOX CUB (Single Board Computer) SC/FOX SBC (Single Board Computer)
*RTX 2000 PLCC or 2001A PLCC chip. .RTX 2000 industrial grade PGA CPU.
-System speed options: 8, 10, or 12 MHz. *System speed options: 8, 10, or 12 MHz.
*32 KB to 256 KB O-wait-state SRAM. -32 KB to 512 KB O-wait-state static RAM.
01 00mm x l m m m size (4-layer) board. -100mm x 160mm Eurocard size (Clayer) board.

For additional product information and OEM pricing, please contact us at:
SILICON COMPOSERS INC 655 W. Evelyn Ave, #7, Mountain View, CA 94041 (415) 961-8778

I Features I

E 6 Debugging ANS Forth Joerg Ple we
Something was missing from several Forth systems compliant, or at least nearly compliant, with
ANS Forth: the debugger. It can be challenging to design a debugger working strictly within
an ANSI Forth system. ANSI Forth systems may generate code in widely differing ways. So how
to write a debugger? When considering some clear facts, there seems to be a clear path to the
solution.. .

16 Distributed Shared Memory Jeff Fox
Distributed Shared Memory is a simple construct upon which to build inexpensive parallel
processing systems. It is widely accepted that workstation farms are more economical than
supercomputers. Since these networks of workstations are often already available and
interconnected, DSM software permits these machines to be used as supercomputers. This paper
will discuss the use of DSM in parallel programming in the Forth programming language.

Forth Link to C Subroutines Michael Christopher
This article describes a technique for using C subroutine libraries with Forth. It was born out
of the need to use-within a Forth prograrn-existing C routines that came with a nine-track
tape system. This is done using software interrupts. To use this method, a C and a Forth
program must be written, both provided here.

Yet Another Interpreter Organization Mitch Bradley
There has been a mild controversy in the Forth community about how to implement the text

(3) interpreter. The particular Problem is how the distinction between compiling-and interpreting
should be coded. At least three distinct solutions have been advocated over the years. The author
proposes a fourth one, and claim that it is the best solution yet.

30 Case Cookbook Walter J. Rottenkolber
Over a decade ago, there arose the great Case Controversy, an attempt to extend to Forth a
familiar control structure. The great Case Contest elicited several versions, many published in
volume two of Forth Dimensions. They demonstrated the means for extending Forth to
generate your own control structures. So, for the Forth beginner, here is the Case Cookbook.

Departments /
4 Editorial A common language; FIG Board election; Forth conferences.

5 Letters Market appeal; Program note; Accident reconstruction.

3 3 Forth Vendors List

3 4 Stretching Forth Macro processing for Forth.

3 6 Advertisers Index

38 Fast Forthward.. For want of a kernel development environment.

Forth Dimensions 3 May 1995 June

Forth Dimensions
Volume XVII. Number 1

May 1995 June

A Common Language
When the idea of developing an ANS Forth was discussed by a FORML Conference

working group several years ago, it was not without controversy. The community had only
recently recovered from efforts that resulted in the Forth-83 Standard, which had met a
mixed reception; and developing a new standard was sure to be both exhausting and
expensive. But the group generally agreed that an ANS Forth could achieve greater industry
recognition than any standard not mediated by ANSI, that it might result in easier sales to
government bodies and certain large corporations, and that it could form a common dialect
for communication about Forth both to the public and among Forth users.

Now, of course, we have ANS Forth in the form of the official ANSI document. (For
those who are reluctant to pay its price, an electronic version, with or without HTML
formatting, of the somewhat-less-than-official dpANS document is circulating.) The walls
have not come tumbling down-after all, adoption of a new standard is a process, not
an event-but the Forth Vendors List that is resurrected in this issue shows that a number
of companies already are supporting ANS Forth in some way.

FIG Board Election
The Forth Interest Group is a non-profit organization governed by a Board of

Directors. The Board determines the overall direction of the group and oversees its
operations.

All of the seats on the current Board are up for election, and more candidates have
applied than the number of positions will accommodate. At press time, statements
submitted by candidates are scheduled to be included with this issue, along with a voting
ballot. This means that current members of FIG (i.e., readers of Forth Dimensions) will
be able to vote to select the members of the new Board.

I encourage you to use your vote-read the candidates' statements, mark your choices
on the ballot, and return it promptly.

Forth Conferences
As of this writing, we're informed that euroForth conference dates have not been

finalized, but that the event will be held this autumn in Marienbad, Germany, or at
Dagstuhl Castle. Typically, euroForth has been praised for both its atmosphere and its
content, and has attracted leading theorists, developers, and users from many countries.
Organizer Marina Kern has extended a special welcome to North Americans.

More information will be available at the euroForth office in Hamburg:
Phone: +49 40 28015210
Fax: +49 40 28015290
E-mail: deltat@hamburg.com

Also, the annual Rochester Forth Conference has been scheduled forJune 21-24,1995.
Those who might like to attend should contact The Forth Institute in Rochester, New York
at 716-235-0168.

-Marlin Ouuerson
FDeditor@aol.com

May 1995 June

Published by the
Forth Interest Group

Editor
Marlin Ouverson

Circulation/Order Desk
Frank Hall

Forth D i m i o n s welcomes
editorial material, letters to the
editor, and comments from its read-
ers. N o responsibility is assumed
for accuracy of submissions.

Subscription to Forth Dimen-
sions is included with membership
in the Forth Interest Group at $40
per year ($52 overseas air). For
membership, change of address,
and to submit items for publication,
the address is: Forth Interest Group,
P.O. Box 2154, Oakland, California
94621. Administrative offices:
510-89-FORTH. Fax: 510-535-1295.
Advertising sales: 805-946-2272.

Copyright Q 1995 by Forth In-
terest Group, Inc. The material con-
tained in this periodical (but not the
code) is copyrighted by the indi-
vidual authors of the artides and by
Forth Interest Group, Inc., respec-
tively. Any reproduction or use of
this periodical as it is compiled or
the articles, except reproductions
for non-commercial purposes, with-
out the written permission of Forth
Interest Group, Inc. is a violation of
the Copyright Laws. Any code bear-
ing a copyright notice, however,
can be used only with perrnission
of the copyright holder.

The Forth Interest Group
The Forth Interest Group is the
association of programmers,
managers, andengineen whocreate
practical, Forth-based solutions to
real-world needs. Many research
hardware and software designs that
will advance the general state of the
an. FIG provides a climate of
intellectual exchange and benefits
intended to assist each of its
members. Publications, conferences,
seminars, telecommunications, and
area chapter meetings are among
its activities.

"ForthDimeruions(1SSN 088443322)
is published bimonthly for $40/46/
52 per year by the Forth Interest
Group, 4800 Allendale Ave.,
Oakland, CA 94619. Second-class
postage paid at Oakland, CA.
POSTMASTER: Send addres:
changes to Forth Di-ions, P.0
Box2154, Oakland, CA 94621-0054.'

Forth Dimensions

systems to package
tracking for Federal

Fully configurable for custom hardware.
Compiles and downloads entire program in seconds.
Includes all target source, extensive documentation.
Full 32-bit protected mode host supports interactive
development from any 386 or better PC.
Versions for 8051, 80186188, 80196, 68HC11,
68HC16,68332, TMS320C31 and more!

Go with the systems the pros use... Call us today!

Market Appeal
Dear Mr. Ouverson:

I have enjoyed comments from other readers about the
state of Forth and the future of the language. It is difficult
to compete with various versions of C, C++, BASIC, and
Visual BASIC, especially when those languages are taught
in most colleges and most businesses use those tools for
development of applications.

There are few books available which explain and teach
the Forth language (been to a bookstore lately?). And there
are no books available which provide an example busi-
ness application in Forth. How do you develop an
accounting, inventory, or other type of business applica-
tion using Forth? Proponents of Forth indicate the lan-
guage can support standard business applications, as well
as embedded or special-purpose applications. Then let's
have some Forth books on business projects in the
bookstores! (Examples are helpful to most users.)

If you know of text, articles, or books which provide
examples of meeting standard business requirements in
Forth, then publish appropriate articles in industry jour-
nals or magazines. The Forth magazine needs to be on the
magazine racks in most bookstores to assist in making the
language known and to share its capabilities. With Win-
dows-type environments becoming the standard on most
desktops, how do you interface Forth to the windowing
environment? Windows v3.1, Windows NT, or theMacintosh,
how do you use these environments with Forth? How do

should have appeared:

0 k
~ f r p t ~ g ~ ~ ~ k ~ , , DRY IWEmSTIC UOLUO

~ l r
~F?ER0:ro?~o~ M I N E ~ S I I C x 20 ROLWII OIC

Our aplogies to the author and to any readers whose
Volvos did not roll as expected when they attempted to
verify the author's data.

you interface Forth to commercial database products? Or
is a Forth db available?

In a word, communication will help Forth maintain a
future.
Thank you,
Gary Weseman
Plano, Texas

Program Note
Correction to the program listing that accompanied "An

Assembly Programmer's Approach to Object-Oriented
Forth" in our previous issue: some TeX formatting com-
mands appear twice in the listing and are deceptively
similar to ANS Forth comments:
\ e n d I v e r b a t i m)
\ p a g e b r e a k
\ b e g i n { v e r b a t i m }

They should have been deleted from the listing, and we
apologize for any inconvenience.

Reconstructing Accident Reconstruction
In our last issue, Julian Noble's "Vehicular Rollover in

Accident Reconstruction" was missing an illustration. On
page 24, the two illustrations immediately following the
cross-sectional view of a change-of-grade curb should
have preceded the paragraph beginning "If there is any
truth.. ." and, in their place, the following two illustrations

Forth Dimensions 5 May 1995 June

ANS FORTH

Debugging A NS Forth

Joerg Ple we
Muelheim an der Ruhr, Germany

Since the ANSI Forth Standard has been released, there
are already several implementations of Forth systems
compliant, or at least nearly compliant, with this docu-
ment. In at least three (near) ANSI Forth implementations
I know, one thing is missing: the debugger.

Of course, Forth does not need a debugger. Forth
programs are always well factored and very highly struc-
tured. And Forth is interactive, so all components can be
tested separately. But sometimes, when we do not have to
convince someone of Forth's strength, having a debugger
might be useful.

I found it challenging to design a debugger working
only with the possibilities of an ANSI Forth system.
Normally, a debugger works very closely to a compiler. It
has to know everything the compiler does.

Well, a pure ANSI Forth debugger cannot be of this
kind. ANSI Forth systems may be of different types
concerning their methods of code generation and vary
widely concerning creation style. There are systems built
by assembler generating native code; others written in a
high-level language, also generating native code; and
high-level, highly portable implementations creating code
somehow. The same diversity shows in the structure of the
dictionaries: linear lists, hash tables, trees.. . The standard
does not impose anything on a compliant system concern-
ing generation of code or internal structure. In fact, it
cannot, because it is meant to be a standard for the Forth
language, not for a language on a limited circle of
machines.

So how to write a debugger? When considering some
clear facts, there seems to be a straight way to the "must
be" design of a debugger.

You cannot access code!
Once code is generated by the compiler, there is no

possibility to access it any more. There is not even a legal
way to find out where it is in memory, nor whether it
actually is in memory-it may be anywhere. Even if we
knew where the code is, we cannot rely on anything about
its structure.

So it is clear: an ANSI Forth debugger has to do at least
part of its work before, or while, the code is generated.

And because not too much can be done with code at run
time, it has to have some kind of "self-debugging" ability.

You cannotpatch the interpreter!
Some debuggers rely on patching the interpreter/

compiler in order to generate the appropriate code for
debugging. Sometimes COMPILE, or a word nearby is
vectored and can be patched. Not so in an ANSI system.
So if you want to manipulate the generation of code, you
will have to write an outer interpreter. (There is another
possibility: defining a vocabulary of "shadow wordsn for
all words in the system. These can then compile debug-
ging stuff. This solution is complicated and error prone.
And if you want a shadow to be created with each new
word, again you will have to write a new interpreter.)

You cannot access the dictiona y!
There is no possibility to find a word's name from its

execution token. In former times, when the execution
token was called CFA, some systems provided words (like
>NAME) which could do that. ANSI Forth does not! For this,
it is not sufficient to compile the execution token some-
where and later recall the source representation of the
code. You will have to reference the source in some way.

You cannot access source!
When compiling from blocks, it should be possible to

compile also BLK and >IN so the source becomes
available at run time. When compiling from a file, it is more
complicated, because the file may be represented by a
single, 0s-dependent number. A standard FILE wordset
does not have to provide the possibility to reaccess a file
from a formerly assigned number. If you want to make this
possible, you will have to write a second-level FILE
wordset. I did not intend to do that.

When the source comes from TIB or a string, it is gone
at run time anyway. So the source, as far you can get hold
of it, will have to be compiled with the code.

Now it is clear, how a debugger has to be designed!
I do not want to describe how an outer interpreter can

be built. The standard words WORD and REFILL provide

(Text continues on page 12.)

May 1995 June Forth Dirnensio,

\ .
\ * *
\ * Debugger for ANSI Forth Programs *
\ * *
\ * Contr ibuted t o t h e community by
\ * Joerg Plewe, ldec94
\ *
\ * This code can be used and copied f r e e of charge. *
\ * A l l r i g h t s reserved . *
\ * *
\ * Comments, h i n t s and bug r e p o r t s a r e welcome. P l ease email t o *
\ * jps@Forth-eV.de *
\ * *
\ * t e s t e d with: F68KANS (> jan94) , pfe0.9.7, ThisForth *
\ * Spec ia l thanks t o Ulr ich Hoffmann and Bernd Paysan *
\ * f o r t e s t i n g and commenting. *
\ * *
\ * V O . l : Added t rea tment of n e s t i n g l e v e l s *
\ * V0.2: Decompiler f e a t u r e *
\ * V0.3: worked i n h i n t s from t h e n e t *
\ .

\ The fo l lowing code provides a simple debugging t o o l f o r ANSI For th programs.
\ I t may be used t o debug colon- and DOES>- and :NONAME-code on source l e v e l .
\
\ The debugger expects your system t o be a well-behaved For th system.
\ (Like my F68KANS : -)
\ When you suspect t h a t your problems a r i s e from t h e compiler i t s e l f
\ (do you use an o p t i m i z e r ?) , p l ease use another t o o l .
\
\ Usage:
\ There a r e two p a i r s of words switching t h e debugger on and o f f .
\
\ +DEBUG, -DEBUG
\ These two c o n t r o l a g loba l swi tch , which has e f f e c t s both a t compile t ime
\ and run t ime. When used a t compile t ime, -DEBUG w i l l completely switch
\ o f f t h e debugger, so no debugging code i s genera ted . This a l lows you
\ t o l eave your code with a l l debugging s ta tements i n it and t e s t it
\ without t h e debugger.
\ A t run t ime, -DEBUG switches o f f t h e eva lua t ion of debugging code,
\ so your code w i l l behave a s normal, j u s t a b i t s lower.
\
\ [DBG, DBG]
\ You w i l l have t o u se [DBG a t compile t ime i n f r o n t of a ' : ' o r a DOES>
\ t o t e l l t h e debugger t o genera te s p e c i a l debugging code. [DBG i s
\ v a l i d u n t i l switched o f f with DBG]. DBG] may appear anywhere i n t h e source!
\ So it i s p o s s i b l e t o debug only t h e f i r s t p a r t of a word and t h e n t o switch
\ o f f t h e debugger, causing ' o r i g i n a l ' code t o be genera ted f o r t h e rest.
\ I t i s not p o s s i b l e t o gene ra t e normal code a t t h e beginning of a d e f i n i t i o n
\ and debugging code i n t h e end!
\
\ E.9.
\ : FOO CREATE [DBG 0 , DOES> @ ; DBG]
\ w i l l on ly debug t h e DOES> p a r t of t h e d e f i n i t i o n . The reason i s t h a t [DBG
\ only swi tches t h e behaviour of ' : ' and DOES>.
\ Think about t h e d i f f e r e n c e of +-DEBUG and [DBG]!
\
\ There some a d d i t i o n a l words t o c o n t r o l t h e debugger a run t ime. These words
\ have s h o r t names t o be typeab le a t debug t ime. But of course you may a l s o
\ compile them i n t o your code. This g ives you t h e p o s s i b i l i t y of breakpoin ts , e t c
\

I \ [+ I] , 1-11
\ I n t e r a c t i v e . This switch c o n t r o l s whether you do s ing le - s t epp ing o r a
\ kind of code animation. When s ing le - s t epp ing , you can t y p e any number

I \ of For th s ta tements between two s t e p s . The next s t e p i s performed by
\ simply p r e s s i n g < r e t u r n > .
\
\ [+VI, 1-VI
\ Verbose. [+V] adds a s t a c k dump t o t h e output of each s t e p .

Forth Dimensions 7 May 1995 June

\ [+SI , [-SI
\ S i l e n t . [+S] swi tches o f f a l l ou tpu t s and t h e program begins t o run.
\ Pres s ing a key swi tches it back t o i n t e r a c t i v e mode.
\
\ [>Ll (n --)
\ Goto Level of n e s t i n g . This op t ion r ece ives a parameter (d o n ' t f o r g e t) .
\ I t l e t s t h e debugger run i n ' [+S] [- I] [-V] ' mode u n t i l t h e given
\ l e v e l of n e s t i n g i s reached t h e next t ime. Then t h e previous s t a t e of
\ t h e debugger i s r e s t o r e d .
\ Note t h a t t h e given l e v e l may be lower, h ighe r o r equal t o t h e c u r r e n t l e v e l .
\ You can ove rwr i t e t h e s e t t i n g s invoked by [>L] wi th f u r t h e r debugger commands.
\ Suppose you a r e on l e v e l 1 -- t hen
\ 1 [>Ll [-Sl
\ w i l l g i v e you an animation of your code u n t i l t h e next word on n e s t i n g l e v e l 1
\ i s reached.
\
\ [Yl
\ S t e p over . This command w i l l avoid n e s t i n g t o deeper l e v e l s . I t i s
\ equ iva l en t t o a [>L] wi th t h e c u r r e n t l e v e l . So t h e example above can
\ be w r i t t e n a s :

\ [DEF]
\ Defau l t : [+ I] [-V] [-S] , no n e s t l e v e l t a r g e t i n g
\
\ The debugger a l s o suppor t s a decompiler f e a t u r e f o r words compiled wi th t h e
\ debugger on. The decompiler i s invoked by
\ DSEE <name>
\ and decompiles t h e whole word a t once. This decompiler works completely
\ d i f f e r e n t l y from t h o s e you maybe know; it has , e . g . , t h e p o s s i b i l i t y t o
\ decompile even t h i n g s which were i n your source wi th t h e compiler o f f .
\ This means, sequences l i k e I... [1 2 3 + +] LITERAL ...I w i l l r eappear
\ whi le decompil ing.
\
\ O!DBG
\ This i s t h e debugger ' s r e s e t . I t s e t s back e .g . t h e l e v e l of n e s t i n g .
\ You should u se t h i s a t t h e beginning of a f i l e you compile, e . g .
\ O! DBG
\ i n t h e f i r s t l i n e .
\
\ .
\ WORKS WITH
\ F68KANS (>jan94) p o r t a b l e 68K na t ivecode Fo r th by me
\ pfe0.9.7 by D i r k Z o l l e r
\ ThisFor th by W i l Baden
\
\ Reported t o work with:
\ g f o r t h by Bernd Paysan (paysan@informatik.tu-muenchen-de)
\ i F o r t h by Marcel Hendrix (mhx@bbs.forth-ev.de)
\
\ .
\ ENVIRONMENTAL DEPENDENCIES
\ When t h e decompiler op t ion i s used:
\ The Cont ro l Stack (CS) has t o be t h e d a t a s t a c k .
\
\ .
\ RESTRICTIONS:
\ The gene ra t ion of debugging code can only be invoked wi th t h e words
\ ' : ' , DOES>, and :NONAME (o r words which use them, a f t e r t h e debugger
\ has been compiled) .
\
\ The debugger i s s t e e r e d by some s t r i n g l i t e r a l s : debugging i s switched
\ o f f when t h e debugger ' s o u t e r i n t e r p r e t e r f i n d s t h e words DBG] o r '; '.
\ The words a r e compiled a s s t r i n g l i t e r a l s i n t o t h e debugger, s o no
\ d e f i n i t i o n s i nc lud ing them w i l l be a b l e t o do t h e i r jobs!
\ Fur the r , t h e words ' ; ' and ' [I have a s p e c i a l meaning f o r t h e
\ debugger (t hey both swi tch o f f t h e Fo r th compi l e r) .
\

I \ I n t h e c u r r e n t s t a t e , t h e debugger cannot handle f l o a t i n g - p o i n t I
I I

May 1995 June 8 Forth Dimensions

\ literals. This will be removed in one of the next releases.
\
\ .
\ REMARKS
\ V0.2 initially did not work with Wil Baden's ThisForth.
\ The reason seemed to be
\ that VALUES cannot be POSTPONEd in ThisForth. So I turned the VALUE
\ 'decompile' into the VARIABLE 'nodecomp'.
\ ThisForth had (has?) some problems with its REFILL. Wil Baden sent
\ me a valid definition:
\ : REFILL (-- flag) next-char eof <> ;
\
\ Don't wonder about what you see when debugging ThisForth programs!
\ The debugger also sees ThisForth's macro expansions!!

CR . (ANSI Forth debugger V0.3 by Joerg Plewe, ldec94) CR

MARKER *debugger*

\ customization
\
\ Compile the decompiler feature?
\ This will introduce an environmental dependency!

\ TRUE CONSTANT withDSEE

\ Try to find out whether the control stack is the data stack.
\ In this case, the system fulfills the environmental dependency
MARKER *check~for~controlstack*
FALSE VARIABLE CSisDS CSisDS !
VARIABLE saveDEPTH

: checker
[DEPTH saveDEPTH !]
IF \ IF should change the controlstack
[DEPTH saveDEPTH @ > CSisDS !] \ datastack changed?
THEN ;

CSisDS @ *check~for~controlstack* CONSTANT withDSEE

: is-defined (<name> -- flag)
BL WORD FIND NIP ;

\ prelude
\ is-defined ON is-defined OFF AND O=
\ [IF1
: ON (addr --) TRUE SWAP ! ;
: OFF (addr --) FALSE SWAP ! ;
\ [THEN]

\ switching debugger globally
\
VARIABLE use-debugger use-debugger ON

\ use the debugger at all?
VARIABLE nodecomp nodecomp ON

\ controls decompiling vs. debugging at runtime
VARIABLE creating-dbgcode creating-dbgcode OFF \ internal switch
VARIABLE nestlevel 0 nestlevel ! \ level of nesting

: +DEBUG (--)
use-debugger ON ;

: -DEBUG (--)
use-debugger OFF ;

Forth Dimensions 9 May 1995 June

\ w e need some r o u t i n e s f o r s e r v i c e I
\ i s a s t r i n g a number?
\
: ? n e g a t e (n s i g n -- n ') O < I F NEGATE THEN ;
: ? d n e g a t e (d s i g n -- d ') O < I F DNEGATE THEN ;

: number? (a d d r c -- FALSE I u 1 1 ud -1)
\ T r i e s t o f i n d o u t whe ther t h e g i v e n s t r i n g can be
\ i n t e r p r e t e d as a numeric l i t e r a l .
\ R e t u r n s a f l a g and t h e c o n v e r t e d number, i f p o s s i b l e

0 >R \
OVER C@ [CHAR] - - I F R> DROP -1 >R THEN \
OVER C@ [CHAR] t - I F R> DROP 1 >R THEN \
R@ ABS /STRING
0 . 2SWAP >NUMBER (ud2 c-addr2 u2)
?DUP O= I F DROP D>S R> ? n e g a t e 1 EXIT THEN (
1 = SWAP C@ [CHAR] . = AND \
I F R> ? d n e g a t e -1 EXIT THEN (
R> DROP 2DROP FALSE

push d e f a u l t s i g n
- s i g n ?
+ s i g n ?

e x i t : s i n g l e)
w i t h a ' . ' , it i s double
e x i t : d o u b l e)

\ t h i n g s t o be done w h i l e debugging

CREATE debugTIB 80 CHARS ALLOT
: eval-debug-statements (--)

\ A s i m p l e o u t e r i n t e r p r e t e r f o r i n t e r a c t i v e i n p u t a t
\ debug t i m e .

BEGIN
CR ." > " debugTIB DUP 80 ACCEPT SPACE DUP

WHILE
[' I EVALUATE CATCH I F . " Oops!?" CR THEN

REPEAT
2DROP ;

: . nex t - s t a tement (a d d r l e n --)
\ a d d r l e n shows t h e name o f t h e f o l l o w i n g s t a t e m e n t i n t h e
\ s o u r c e code . .next-s ta tement f o r m a t s and p r i n t s it.

n e s t l e v e l @ 2 * SPACES
nodecomp @ I F

. " Nxt [" n e s t l e v e l @ S>D <# #S #> TYPE ."] : "
THEN
TYPE

\ s t e e r i n g t h e debugger

VARIABLE d e b u g s t a t e 0 d e b u g s t a t e !
\ B i t 0 = I n t e r a c t i v e
\ B i t 1 = S i l e n t
\ B i t 2 = Verbose

: t d e b u g s t a t e : (s t a t e <name> --)

CREATE ,
DOES> @ d e b u g s t a t e @ OR d e b u g s t a t e ! ;

: - d e b u g s t a t e : (s t a t e <name> --)
CREATE INVERT ,
DOES> @ d e b u g s t a t e @ AND d e b u g s t a t e ! ;

: ? d e b u g s t a t e : (s t a t e <name> --)
CREATE ,
DOES> @ d e b u g s t a t e @ AND O<> ;

1 DUP t d e b u g s t a t e : (+ I) DUP - d e b u g s t a t e : [- I] ? d e b u g s t a t e : [? I]
2 DUP t d e b u g s t a t e : [+S] DUP - d e b u g s t a t e : [-S] ? d e b u g s t a t e : [?S]

day 1995June 10 Forth Dimensions

4 DUP +debugstate: [+V] DUP -debugstate: [-V] ?debugstate: [?V]

\ define some additional rules

: [+I] (--) \ interactive can never be silent
[-SI (+I) ;

VARIABLE target-nestlevel -1 target-nestlevel !
VARIABLE savedebugstate debugstate @ savedebugstate !

: check-nesting (--)
\ Checks whether the execution has reached a defined level of nesting
\ (target-nestlevel) . In this case, it switches off targeting (-I!) and restore
\ the previously saved state of the debugger.

target-nestlevel @ nestlevel @ =

IF
-1 target-nestlevel ! \ switch targeting off
savedebugstate @ debugstate !

THEN ;

: [>L] (n --) \ goto level
target-nestlevel !
debugstate @ savedebugstate !
[+Sl [-I1 1-VI

: [Yl (-- 1 \ step over
nestlevel @ [>L]

: [DEF] (--) \ the default behaviour
-1 target-nestlevel !
[+I1 t-v1 1-SI ;

[DEFI

\ check: what has to be displayed?

: ?.next-statement (addr len --)

\ When the debugger is not running silent, the following has to be displayed.
\ When not being interactive, a CR has to be added.

[?Sl o=
IF

.next-statement
[?I] O= IF CR THEN

ELSE 2DROP THEN

: ?eval-debug-statements (--)
\ When the debugger is interactive but not silent, we want
\ to evaluate statements.

[?I] [?S] O= AND
IF eval-debug-statements THEN ;

: ?.s (--)
\ Perhaps a stackdump is needed. This is indicated by the verbose mode.

[?V] [?S] O= AND
IF .S CR THEN ;

: ?>[+I] (--)
\ Oh-oh. Return to interactive mode when a key is pressed.

KEY? IF KEY DROP [+I] THEN ;

: dodebug (addr len --)
\ This word is executed between two statements in the source.
\ Note I had to do some stack juggling, for the stack has to
\ be 'original' when showing the stackdump!

Forth Dimensions 1 1 May 1995 June

(Tat continued from Dane 6.) " A -

all things needed. Without RE-
FILL, itwould have been harder.. .
I will focus on how to create self-
debugging (and self-decompiling)
code.

What Should the
Debugger Do?

Some common needs for a
debugger have to be implemented:

single stepping
breakpoints
nesting control
decompilation
expression evaluation at debug
time

All these points require one to
create a specific kind of code. The
idea is that running the code itself
means to debug it.

The generation of code, not
taking decompilation into account,
proceeds according to the follow-
ing scheme:

Get a word from the input source
(WORD) and store it somewhere.

use-debugger @ I F \ wonna debug anyway?
check-nesting
? > [+ I]
>R >R ?.s R> R> (>R's for addr len)
? . next-statement
?eval-debug-statements

ELSE 2DROP THEN

\

\ this section is to create debugging code I \
\ T H I S word is the main point:
\ It compiles code suitable for debugging.
\ O r better: it compiles self-debugging code

: .source, (c-addr --)
STATE @ DUP >R O= I F] THEN \ switch compiler on for

\ SLITERAL
COUNT
POSTPONE SLITERAL (POSTPONE) ALIGN
POSTPONE dodebug
R> O = I F POSTPONE [THEN \ switch compiler off when

\ it was off

CREATE wordbuf 64 CHARS ALLOT

Compile the word as a string : >wordbuf (c-addr --)

literal t o the dict ionary DUP C@ CHAR+ wordbuf SWAP CHARS MOVE ;

debugging ~unctidnal i t~ for de-
bug time. This definition may
print the string provided by

(SLITERAL).
Compile a definition (COM-
PILE,) , which provides the

SLITERAL (the source), accept
command lines, and whatever
you want.
FIND the word in the dictionary.
If found, compile or execute it
(according to its IMMEDIATE
status and the compiler's state
held in STATE).
If not found, try to convert the
string to a number and, if suc-
cessful, look at STATE and com-
pile (LITERAL, LITERAL) or
push the (double) number to
the stack.
If all this fails, THROW an error
code.
Proceed from the beginning.

: C$= (c-addr addr u -- flag)
ROT COUNT COMPARE O= ;

To make these steps a little clearer,
let us see what is generated from
a single word in the source.

Suppose there is a word de-
fined with the debugger called
dodebug, which takes a string,

: $;= (c-addr -- flag) S" ;" C$= ;
: $DBG] = (c-addr -- flag) S" DBG] " C$== ;
: $ [= (c-addr -- flag) S " [" C$= ;

: apply-semantic (xt +-1 -- ?)
O< STATE @ AND
I F COMPILE, ELSE EXECUTE THEN ;

: compile-number (u 1 I ud -1 --)
STATE @ 0-3
I F

O< I F POSTPONE 2LITERAL ELSE POSTPONE LITERAL THEN
ELSE DROP THEN ;

: compiler-error (c-addr --)
." Not found in dictionary: " wordbuf COUNT TYPE
-13 THROW ;

\ handling the nesting level

: +nest (--)
1 nestlevel + ! ;

: -nest (--)
-1 nestlevel + ! ;

: endof-dbgd-def? (-- flag) \ end of debugged definition?
wordbuf $;=
wordbuf $DBG]= OR

May 1995 June 12 Forth Dimensions

: compiler-off? (-- flag) \ a word, which switches
\ the compiler off?

wordbuf $;=
wordbuf $ [= OR

compile conditinal branches to skip 'real'
code for decompiling

1 withDSEE [IF]
CREATE CSbuffer 20 CELLS ALLOT
VARIABLE decompilerIF decompilerIF OFF
VARIABLE saveDEPTH 0 saveDEPTH !
VARIABLE CSsaved 0 CSsaved !

: saveCS (? --)
\ Save control structure information from the data stack
\ to a special buffer.
\ The variable saveDEPTH has to be set!!

0 CSsaved !

prints it, and lets you enter Forth
lines:
dodebug (addr u --)

When you now compile a source
where the word <word> is con-
tained, the following code will be
generated:
... 1 S1' <word>" I
SLITERAL dodebug <word>

When this code runs, the source
(<word>) is presented to the user
(by dodebug) before it is ex-
ecuted.

Now, dodebug is a simple,
high-level word which can do
everything Forth can do. My

BEGIN
DEPTH saveDEPTH @ <>

WHILE
CSbuffer CSsaved @ CELLS + !
1 CSsaved t!

REPEAT ;

: restoreCS (-- ?)
\ restore control structure information from the
\ buffer to stack

BEGIN
CSsaved @

WHILE
-1 CSsaved + !
CSbuffer CSsaved @ CELLS + @

REPEAT ;

: decompiler-jump (--)
\ Under right conditions, compile a 'nodecomp @ IF'
\ The possible change on data stack (IF) is cleared, so that
\ words like LITERAL do not come into trouble.
\ The Control Stack CS defined in ANSI document may consist
\ of some entries on the common data stack (which, indeed, is
\ implemented in most Forth systems). But the data stack has
\ to be unchanged by the debugger when compiling a word:
\ ' ... [1 2 3 + t] LITERAL ... '
\ In this example, 'LITERAL' wants to compile the number 6,
\ and not some token left on the stack by the decompiler's IF.
\ Because it is not known what IF will place in an arbitary
\ Forth system, this complicated construction has to be made.

STATE @ compiler-off? 0= AND
IF
DEPTH saveDEPTH ! \ DEPTH of stack 'before'
POSTPONE nodecomp POSTPONE @
POSTPONE IF \ now compile IF. It may change stack!
saveCS \ stack effect of IF removed
decompilerIF ON \ ok, there is an IF

THEN

: decompiler-target (--)
\ Resolve the decompiler IF compiled

decompilerIF @
IF
restoreCS \ prepare stack with IF-values
POSTPONE THEN \ and resolve the jump.
decompilerIF OFF \ done!

Forth Dimensions 13

dodebug uses flags to control its
actions. Typing the source and
accepting a command line can be
switched on and off separately.
Making dodebug completely si-
lent lets the code run as normal,
just a bit slower. Placing the
switches in the source allows one
to realize breakpoints.

Nesting Control
The debugger allows one to

delve into deeper nesting levels,
or to stay at the current nesting
level, or even to go forth until a
specified level of nesting is
reached. This feature is imple-
merited by using the
switches mentioned above, to-
getherwithavariablewhichholds
the current level. The level is in-
creased by words starting the defi-
nition of code* like :
DOES>, and :NONAME. These
words have to be redefinedfor the
debugger anyway, so it was easy
to make them increment the level
of nesting. ; (semi-colon) de-
Creases the level again.

Decornpilation
Some ANSI systems already

have a decompiler. For those that
have not, the debugger also imple-
ments a decompiler feature. For
that, the creation of debugging
code is extended a little.

When you compile source in
which the word <word> is con-
tained, the following code will be

May 1995 June

generated:
...
[S" <word>"] SLITERAL
dodebug nodecomp @
IF <word> THEN

THEN

[ELSE] (withDSEE)
: decompiler-jump ; IMMEDIATE
: decompiler-target ; IMMEDIATE
[THEN] (withDSEE)

This construction executes, when
nodecomp is FALSE, only the \ now construct a complete outer interpreter
debugging part of a word, not the
code itself. So you can let the code
go, and it will decompile itself
without being actually executed!
(It's a funny thing, I know.)

Because this mechanism caused
some difficulties when compiling
control structures, LITERAL, or
such things, there appeared to be
an environmental dependency: the
control stack has to be the data
stack. (If the standard provided
something like CS>R and R>CS,
this dependency could have been
avoided.) For this reason, the
decompi ler feature
switched off by means
tional compilation.

can b e
of condi-

First Experience
I tested the debugger with three

(near) ANSI Forth systems:
oF68KANS my own creation

for 68K
l pfe by Dirk Zoller
OThisForth by Wil Baden

It was reported by kind people
from the net (thank you) to run on
three additional systems.

This debugger shows a prop-
erty which I have never seen else-
where: it also shows code ex-
ecuted at compile time! So se-
quences like
... [1 2 3 + +] LITERAL

will uniquely be displayed while
debugging! (Think about it. It is
clear from principles of its work.)

A funny thirlg happens with
Wil BadenlsThisForth, which does
macro expansion into the input
source. Because the debugger
works directly on the source, you
later will see the original code and
its expansion:

\ a special hack to allow F68KANS to handle files with tabs, etc.
is-defined F68kAns

[IF] blankbits [ELSE] BL [THEN]
CONSTANT whitespace

: create-debugging-code (--)
POSTPONE +nest
creating-dbgcode @ >R creating-dbgcode ON
BEGIN \ loop to EOF
BEGIN \ loop to EOL
whitespace WORD DUP C@

WHILE
>wordbuf
wordbuf .source,
endof-dbgd-def? IF POSTPONE -nest THEN
decompiler-jump
wordbuf FIND (c-addr 0 I xt +1 1 xt -1) ?DUP
IF apply-semantic
ELSE (caddr)

COUNT number? ?DUP
IF compile-number ELSE compiler-error THEN

THEN
decompiler-target
endof-dbgd-def? IF R> creating-dbgcode ! EXIT (* *) THEN

REPEAT DROP
REFILL O= UNTIL
R> creating-dbgcode !

\ Define the decompiler

withDSEE [IF]
: DSEE (<name> --)

\ Show a decompiler listing of a word compiled with the
\ debugger. A non-debugger word will be executed instead.

CR
nodecomp @ >R FALSE nodecomp !
debugstate @ >R [-I] [-V] [-S]
' EXECUTE
R> debugstate !
R> nodecomp !

[ELSE]
: DSEE (<name> --)

CR BL WORD DROP
." Debugger compiled without decompiler option! "

[THEN]

\ Now the replacements for the code-beginning words.

: debug: (<name> --)
: create-debugging-code ;

: debug:NONAME (-- xt)
:NONAME create-debugging-code ;

I I

May 1995 June 14 Forth Dimensions

: debugDOES>
creating-dbgcode @ IF POSTPONE -nest THEN

\ when the decompiler is invoked between I : ' and 'DOES>',
\ there has to be a '-nests compiled before 'DOES>'.

POSTPONE DOES> create-debugging-code ;

1 \ switching the debugger on and off

VARIABLE debugging debugging OFF

: [DBG
debugging ON ; IMMEDIATE

: DBG]
debugging OFF ; IMMEDIATE

\ reset the debugger
0 nestlevel !
POSTPONE [DBG
+DEBUG
[DEE']
creating-dbgcode OFF

I ~
/ \ redefinition of the code generating defining words

: : (<name> --)
use-debugger @ debugging @ AND
IF debug: ELSE : THEN ;

: DOES> (<name> --)
use-debugger @ debugging @ AND
IF debugDOES> ELSE POSTPONE DOES> THEN ; IMMEDIATE

: :NONAME (<name> --)
use-debugger @ debugging @ AND
IF debug:NONAME ELSE :NONAME THEN ;

\ OK
\
CR
. (The words for you are:) CR
- (+DEBUG -DEBUG to switch debugging on/off globally) CR
. ([DBG DBG] to invoke and terminate generation) CR
. (of debugging code at compile time) CR
- ([+I] [-I] Interactive mode on/off) CR
. ([+Sl [-Sl Silent mode on/off) CR
- ([+vl [-v] Verbose mode on/off) CR
- ([>Ll [y] level-targeting control) CR
- ([DEFI DEFault settings) CR
withDSEE [IF]
. DSEE Decompile words compiled with debugger) CR
[THEN]
. (0 ! DBG Reset the debugger when something goes wrong) CR

: TEST (--)

S q v Hello" ;

DSEE TEST
S" \ o r i g i n a l
c 'I \ expansion of
count \ S" i s
t y p e \ c" count type
,

So the debugger gives you the
possibility to analyze what
ThisForth is doing with your code!

(It turned out that it is good
advice to give the system enough
space in its code area, because the
code really blows up.)

Future Work
I already have some ideas for

the future. I think some kind of
profiling can be done in a similar
way decomposing is done now.
Additionally, a thing commonly
called "watch" would be nice to let
the code run until a condition-
e.g., a variable reaching a certain
value-is fulfilled, then the
debuggerenters its interactive state.

Thanks to all the people who
reviewed and commented on the
code.

The code that accompanies this articlecan be
downloaded via anonymous ftp from
taygeta.oc.nps.navy.mil, thesame system that
hosts the Forth Scientific Libraty, and can be
found in /pub/Forth/ANS/debugger.ans.

The author is 30 years old, married, and the
father of three children. He received his master
of science in physics degree in 1991. After that.
he worked for a Forth company and in a main-
frame environment. For the last three years, he
has worked for a scientific institute dealing with
database developrnentforresearchers. In 1988.
he started to develop Forth systems for 68000
machines. The ANSI-compliant F68KANS is the
latest result ol that developmenl.

Readers who want to contact the author di-
rectly can use the JPS@Forth-eV.de e-mail
address.

Forth Dimensions 15 May 1995 June

Jeff Fox
Berkeley; California

Distributed Shared Memory, or DSM, in these days of
increasingly networked computers has been widely recog-
nized as a simple construct upon which to build inexpen-
sive parallel processing systems. It is widely accepted today
in supercomputing that workstation farms are more eco-
nomical than supercomputers. Since these networks of
workstations are often already available and intercon-
nected, DSM software permits these machines to be used as
supercomputers. This paper will discuss the use of DSM in
parallel programming in the Forth programming language.

Multitasking in Forth
Forth does not provide a standard multitasking mecha-

nism. Multitasking in Forth is usually either done in a
simple, portable, cooperative scheme orwith OS multitasking
services. Forth is often used in embedded applications
where Forth is the OS and on small computers that may
have no hardware memory protection. Figure One shows
a memory map for a typical cooperative multitasking Forth
application. There is no physical memory protection to

The number of operations to
extend Forth to a parallel-
programming language has
been reduced from five to two.

prevent one task from crashing the Forth 0 s . Instead, each
task has its own stacks and user variables, but all memory
is shared and available to all tasks. However, each task must
have a certain amount of local memory for its stacks and
local user variables. In a traditional Forth multitasker, the
word PAUSE would switch control from one task to
another, which simplifies task synchronization.

In a computer that provides memory protection in
hardware, the OS used often provides services to limit the
memory that a program or task may access. Any access to
memory through protected memory hardware, or through
memory access services from an OS, can provide error
traps for attempts to access protected memory. Certain
tasks and programs may be able to run with access to only

one section of memory, but many others will need a
certain amount of memory to be available to more than
one program or task. Figure Two is an example of a
protected-mode operating system running three tasks that
are physically separate in memory except for a small area
of shared memory used for data only.

In the protected-mode OS example, the shared memory
is logically separated using memory-protection hardware
or OS services. Often, only a small amount of memory
need be global or shared. This is a form of parallelism, as
tasks may logically execute in parallel even though they
are still physically time-sharing the CPU. In the case task2
and task3 are copies of the same task, just operating on
different data, they could share the same memory for code
but would still require a local (protected) memory for
stacks and user variables.

Coupled Multiprocessors
Multiprocessors do not really have "centraln proces-

sors; instead, they have multiple processors The proces-

Figure One. Cooperative multitasker memory map. I -
Task3
Task3 user variables
Task3 stacks

Task2
Task2 user variables
Task2 stacks

Forth interpreter Taskl
Taskl user variables
Taskl stacks

Forth kernel
boot code

May 1995 June 16 Forth Dimensions

sors on these machines can be tightly coupled
or loosely coupled. Tightly coupled machines
use memory that is physically shared, so that
part or all of the memory available to a proces-
sor is also available to other processors. Figure
Three shows a multiprocessor with four proces-
sors and a shared memory.

The advantage of the tightly coupled design
is that memory is physically shared, so access
may be very fast and, in the example in Figure
Three, all of the memory is available to each
processor. In the case of the Cray I1 memory
interface, there are four sections ofmemory that
may be accessed simultaneously. So only when
processors access a region that another proces-
sor is using will bus arbitration be needed. The
disadvantages of the tightly couple design are
the high cost and the physical constraints on the
hardware interconnect at the memory-access
level.

In Figure One, most memory is shared and
each task has some local memory. In Figure
Two, each task has a separate memory space, but
some memory is shared for global
variables. In Figure Three, each
processor can have its own memory
space, andshared memory is avail-
able to all processors. In Figure
Four, a system with a networked
ring of four computers is shown
with the memory physically dis-
tributed across the four machines.

The arrow indicates a network
interconnect between machines.
In this case, a ring is depicted, but
other topologies are possible. The
memory in each of the machines
is physically separate, but shared
memory can easily be simulated
in software using the network.
The Distributed Shared Memory,
or DSM, is just a portion of memory
o n each machine that is identical
on all machines. Physically, the
memory on these machines is
separate, but logically it can be
shared. To be DSM, it must be
written to via an OS service. This
service will actually update all of
the memories on the computers
on the network, so that all ma-
chines have their own copy of this
global, shared memory. This por-
tion of memory that is declared

1 global is duplicated on each ma-
chine on the network. Since there
is a local copy of this memory on
each machine, there is no need to
access the network to read from

Forth Dimensions

Figure Two. Protected-memory OS multitasking memory map.

Figure Four. Four computers on a network ring.

Computer 1

Computer 2

-

Figure Three. Four-processor, shared-memory muItiprocessor.

17 May 1995 June

Processor 2 ++

-

Processor 1

v
250 M Memory e+

A
Processor 4

Processor 3

this memory. However, writes to this memory must be
performed via an OS service that guarantees atomic access
to this memory.

Forth-Linda
Forth-Linda provided a "Linda" extension to the Forth

language. Linda provides access to a "tuple" space, which
is a form of DSM. In Linda, global data is written to and
read from the DSM in passive tuples. These tuples have
neither a name nor an address, but are accessed by a
description of the tuple. In Linda, programs are executed
remotely on other machines via active tuples.

Forth-Linda was much simpler than conventional Linda
implementations for several reasons. Forth-Linda was
intended for homogeneous environments, while Linda is
actually designed for the more general-purpose, heteroge-
neous computing environments. Forth-Linda was also
intended for a single network protocol, as well. Thus,
Forth-Linda was really intended for the simpler case of
symmetric-multiprocessing.

Forth-Linda was implemented on a simulated multipro-
cessor using multitasking, and experiments were done on
a Novel1 network. Forth-Linda only needed five operations:

EVAL(s t r i n g) Remote execution of
"string" somewhere

RD (t u p l e - d e s c r i p t i o n) Read tuple matching
description

OUT (t u p l e - d e s c r i p t i o n) Write tuple or create
tuple from description

RM(t u p l e - d e s c r i p t i o n) Read and Remove
tuple from description

RQ (Request an active
tuple to execute

Parallel Channels
Dr. Michael Montvelishsky published a parallel-pro-

gramming extension to Forth based on a combination of
Forth-Linda and OCCAM. This wordset takes advantage of
the concept of synchronizing multiprocessing execution
through data channels, as in OCCAM.

Dr. Montvelishsky kept the active tuple concept from
Forth-Linda, but replaced the cumbersome passive tuples
for data exchange with parallel channels. The parallel-

network. In fact, there will be provision for declaring a
subset of machines on the network to be a group, and for
broadcasting directly to this group of machines with a
single transmission. The use of G ! rather than passive
tuples also simplifies the implementation. F'F is also a
simpler and easier to use programming environment than
Forth-Linda. The minimal number of operations needed to
extend Forth to a parallel-programming language has
been reduced from five to two. F'F will also include
network tools and Dr. Montvelishsky's parallel-channel
wordset.

Ultra Technology is considering an implementation of
F'F under a portable Forth in C, and using TCP/IP across
the Internet to deliver supercomputing power to certain
applications.

In Forth-Linda or F'F, one of the machines on a
network runs as a master and manages the queue of tasks
and passive tuples or global-memory writes. Then, many
machines on this network run identical copies of F'F. This
is shown in Figure Five.

F21 DSM Hardware
Ultra Technology is developing an inexpensive, high-

performance microprocessor called the F21. F21 will
demonstrate that minimal hardware is needed to imple-
ment the network interface upon which DSM may be built.
The network interface on F21 will provide two hardware
services. A CPU interrupt or a DMA transfer may be sent
to a machine or a group of machines on the F21 ring. The
serial-network interface on F21 will only require a few
transistors to implement, will add only a few cents to the
cost of the chip, and should perform one to two orders of
magnitude faster than Ethernet. F'F will be very simple to
implement on F21, as most of the function of RX () and
G ! will be performed by hardware. Figure Six is a function
diagram of the F21 chip.

F21 Status
F21 is still being designed by Charles Moore, the

inventor ofForth. Ultra Technology plans to prototype F21
in .8 micron CMOS VLSI technology at MOSIS around the
date of this article's publication. Volume production
should follow later in the year.

systems.

F'F

channel wordset-was published in FD in 1334 a fairly
portable form, and has been optimized for several Forth

comp~lers, assemblers, and other general-purpose tools in Forth. After a ten-
year consulting contract with Pacific Bell's training department, he has focused
on Chuck Moore's technology and the development of a cuslom VLSl chip for
parallel processina and multimedia. For acouple of years, he has been work in^

Jeff Fox programmedvoice-recognition systems, digital video. legal transcrip-
tion, office automation, and telecommunication applications before he learned
Forth in 1978. Since then, he has done 3D interactive games, expert systems,

F'F is the name of the ~~~~h parallel-programming Dr. ~ o n t v e l i ~ h s k ~ on optimizing and paralleliring compilers for ~ortF
is also working on Al in Forth, using a combination of experl

extension that has evolved from Forth-Linda. F'F is even networks, and a loaic-reduc~ion enaine based on the Laws 01

simpler than Forth-Linda, because passive tuples have
been replaced with an atomic, network-global store. The
implementation of F'F requires the extension of network
services to provide a remote program execution queue
similar to Forth-Linda, but simpler. This is R x (st r i n g) .
Access to the DSM is provided by G ! . G ! acts like a normal

Fbrm. Jeff also has more than thiyty years' experhnce in martial arts, anc
studies and teaches Aikido.

He says, 'The parallel-processing community has a strong prejudice agains
Forth, and it seems there is little interest in the Forth community for paralle
processing. I hope F21 and the chips that follow it will find a niche and somc
interest " Fox likes to talk and give presentations, and to spout off on lhe ne
about complexity in hardware and software.

Forth ! in that it writes data an address* but ! must The author can be contacted via his jfox@netcom.com address or via http://
write to the distributed memory of all the machines on the www.dnai.com/-jfox on the Web.

May 1995 June 18 Forth Dimensions

Figure Five. Forth DSM in Forth-Linda or F'F.

1 1 1 1 1

Network Interconnect

Figure Six. Functional diagram of F21 I

I I
Forth Dimensions 19 May 1995 June

Forth Link to
C Subroutines
Michael Christopher
Dayton, Ohio

A "C" program in our beloved Forth publication? Rest
easy, it is only enough C to allow us to use Forth in those
cases where it would be impractical because we must link
to existing C subroutines.

This article describes a technique for using C subrou-
tine libraries with Forth. It was born out of the need to
use-within a Forth program-existing C routines that
came with a nine-track tape system.

This "linking" is done using software interrupts. This
technique is not really new, IBM used it as a core
technology when they created the PC! Software interrupts
are familiar to most PC programmers; calls to DOS
(interrupt 21H) and BIOS (int 10H) are made using them.
The ability to "plug in" new behavior for a specific
interrupt has made the PC adaptable as different I/O
devices were added to the original PC realm: networks,
mice, and so forth were all added using additional
software interrupts.

For example, the mouse interrupt can easily be called
from Forth, as Tom Zimmer's F-PC system so aptly
demonstrates. The example I will show uses his Forth, but
this technique can be adapted easily to any other Forth
you might have that can call interrupts.

Most manufacturers of PC adapter cards provide a set
of C-callable routines to access their cards. For example,
a GPIB card would have routines to initialize the card, as
well as readwrite routines. Using the technique I will now
describe, you could easily use these functions from Forth.

To use this method, two programs must be written. The
first is a C program that is installed as a Terminate and Stay
Resident (TSR) software interrupt handler. The second
program is the Forth program with routines that invoke the
software interrupt, passing parameters between the two
programs as needed.

The C Part
I used Borland's 3.1 C/C++ compiler for this example.

This C program will install an interrupt handler for
Interrupt 68H. This interrupt is typically unused, although
you might need to change it for your application.

Listing One shows all that is required to make a TSR
program to "house" the C routines.

May 1995 June

The Forth Part
The Forth program required to call the C routines will

vary according to the number and type of C routines that
are used. In this example, it is quite simple.

See Listing Two: that is what the Forth program must
be to allow calling the C routines.

Using This Example
1. Compile the C program using Borland C:
c : \ > BCC - m l ART1CLE.C / / Note t h e
argument i s a n 'el ' n o t a 'one1

2. Load the TSR:
c : \ > ARTICLE

3. Start F-PC:
c : \ > f

4. Load the Forth sequence file:
f l o a d a r t i c l e . s e q

5. Test it:
c-sound \ y o u ' l l h e a r some n o i s e
c -quie t \ it w i l l g o away
99 c - fo rma t - in t ege r t y p e

\ w i l l d i s p l a y : 000099
bye \ e x i t F o r t h

Minimizing TSR Memory Usage
You can use some public-domain utilities to remove

the TSR after usage. I use MARK.COM and RELEASE.COM.
This way, the TSR is only present when needed by the
Forth program that uses it.

Conclusion
This technique has been very useful for me. I hope it

finds a use in your toolbox. I have placed the source code
shown in this article in the Forth section of the GEnie dial-
u p service under the name LINKT0C.ZIP.

Michael Christopher currently manages the Embedded Software Department
for Ohio Electronic Engravers and lives with his wife Cindy and twovery fat cats
in Dayton, Ohio. He has loved and used Forth for 14 years. His largest Forth
accomplishment was using it to create the page-description language for the
world's fastest laser (-like) printer. ltprints 300 two-sided pages per minute. He
can be reached at savvyside@aol.com.

20 Forth Dimensions

Listing One. TSR program in C. I
1 I T h i s Bor land C 3 . 0 + program w i l l c r e a t e a t e r m i n a t e and s t a y r e s i d e n t program. I

Michae l C h r i s t o p h e r J a n u a r y 8, 1 9 9 5
T h i s program i s r e l e a s e d t o t h e p u b l i c domain.

T h i s w i l l i n s t a l l i t s e l f a s I n t e r r u p t 68 H E X . Change it i f needed. I I*
Use t h e ARTICLE.SEQ F o r t h program (F-PC 3.5 o r l a t e r) t o c a l l t h i s set o f
C s u b r o u t i n e s .

These r o u t i n e s u s e s i m p l e C l i b r a r y c a l l s b u t t h e y c a n e a s i l y b e a d a p t e d
t o a commercia l l i b r a r y .

I t c a n b e t r i c k y t o t e s t r o u t i n e s a c c e s s e d v i a a TSR. I u s u a l l y
t e s t t h e r o u t i n e s u s i n g a s t a n d a r d C program s t u b s h e l l f i r s t . Tha t way
you c a n e a s i l y debug them u s i n g t h e normal debugger b e f o r e a d d i n g them t o
t h i s TSR s h e l l .

* /

To b u i l d t h i s s o f t w a r e , u s e t h e s e s Bor land Commands:
(f rom DOS command l i n e)

I BCC - m l ART1CLE.C / / NOTE: t h e argument is a n 'el' n o t a 'one'

I I g n o r e t h e warn ings a b o u t unused r e g i s t e r s . Those warnings a r e NOT e r r o r s
] i n t h i s c a s e .

/ * i n c l u d e some s t a n d a r d C h e a d e r f i l e s . * /
i n c l u d e < s t d i o . h >
i n c l u d e < s t r i n g . h >
i n c l u d e < c o n i o . h >
i n c l u d e <dos .h>

/ / t h i s sets t h e i n t e r r u p t v e c t o r w e w i l l hook i n t o
d e f i n e HOOK-VECTOR 0x68

/ * G l o b a l V a r i a b l e s * /
i n t paragraphs-to-keep; / * number of 16 b y t e p a r a g r a p h s t o r e s e r v e * /
c h a r t e s t - s t r i n g [300] ; / * a temp s t r i n g b u f f e r * /
uns igned c h a r f a r * t e m p g t r ; / * a p o i n t e r u s e d t o a c c e s s a s t r i n g * /

/ *
The f o l l o w i n g f u n c t i o n i s what i s c a l l e d by F o r t h .
T h i s i n t e r r u p t r o u t i n e i s i n s t a l l e d f o r i n t e r r u p t number 0x68 HEX.
I t s e r v e s t o p r o v i d e a s o f t w a r e i n t e r r u p t s e r v i c e f o r a c c e s s i n g some C
f u n c t i o n s i n a way s i m i l a r t o a c c e s s i n g (INT 21H) DOS f u n c t i o n s .

* /

v o i d i n t e r r u p t my-handler (

u n s i g n e d bp, u n s i g n e d d i , u n s i g n e d s i , u n s i g n e d d s ,
u n s i g n e d es, u n s i g n e d dx, u n s i g n e d cx , u n s i g n e d bx,
u n s i g n e d ax , u n s i g n e d i p , uns igned c s , uns igned f l a g
1

Forth Dimensions 21 May 1995 June

/ *
These p a r a m e t e r s a r e p s e u d o - r e g i s t e r s t h a t a l l o w a c c e s s t o t h e
p r o c e s s o r s t a t e t h a t e x i s t e d when t h e i n t e r r u p t i n s t r u c t i o n was i s s u e d .
The c o n t e n t s o f t h e s e r e g i s t e r s w i l l be s t u f f e d back i n t o t h e r e a l
registers when t h i s r o u t i n e r e t u r n s , s o you can p a s s v a l u e s back a l s o .

They a r e u s e d t o g e t and g i v e p a r a m e t e r s t o t h e F o r t h program t h a t
i n v o k e s t h i s SOFTWARE i n t e r r u p t s e r v i c e r o u t i n e .

Bor land C a l l o w s g e t t i n g t h e CURRENT v a l u e of a r e g i s t e r
u s i n g t h e -DS (e tc .) command. That can be u s e f u l f o r p a s s i n g back
t h e segment of d a t a s t r u c t u r e s u s e d i n t h e TSR t o t h e c a l l i n g r o u t i n e .

The u s a g e of t h e r e g i s t e r s u s e d t o a s i n and o u t p a r a m e t e r s a r e
u s e r d e f i n e d . These s i m p l e examples a l l assume t h a t t h e AX r e g i s t e r h a s
t h e f u n c t i o n number you wanted.

* /

1
u n s i g n e d i n t i; / / temp i n t e g e r v a r i a b l e u s e d a s a l o o p i n d e x

s w i t c h (a x)
I

/ / t h i s f u n c t i o n w i l l make a sound
c a s e 0:

a x = 0 ; / / p a s s back some s t a t u s
sound(300) ; / / c a l l a C l i b r a r y r o u t i n e
b r e a k ;

/ / t h i s f u n c t i o n w i l l s t o p t h e r a c k e t
c a s e 1:

a x = 1; / / p a s s back some s t a t u s
nosound () ; / / c a l l a C l i b r a r y r o u t i n e
b r e a k ;

c a s e 2 :
/ / t h i s w i l l f o rmat a 16 i n t e g e r i n t o a 6 d i g i t s t r i n g w i t h l e a d i n g
/ / z e r o s .

/ / INCOMING PARAMETERS:

/ BX - 16 b i t i n t e g e r t o be f o r m a t t e d
/ / CX - Segment where t o s t o r e t h e newly f o r m a t t e d s t r i n g
/ / DX - o f f s e t of same

/ / make s u r e t h e s t r i n g is l a r g e enough t o s t o r e t h e new s t r i n g

/ / c r e a t e a p o i n t e r i n t o t h e a r e a where w e were t o l d t o p l a c e t h e new
/ / s t r i n g .
t e m p - p t r = (u n s i g n e d c h a r f a r *) MK-FP(cx , d x) ;

/ / f o r m a t a n i n t e g e r argument i n BX r e g i s t e r i n t o a s t r i n g .
s p r i n t f (t e s t - s t r i n g , "%06dW, bx) ;

/ / s t o r e t h e r e s u l t a s a c o u n t e d s t r i n g f o r F o r t h

/ / s t o r e t h e l e n g t h o f t h e r e t u r n s t r i n g i n f i r s t b y t e
" t e m p g t r = (u n s i g n e d c h a r) s t r l e n (t e s t - s t r i n g) ;

May 1995 June 22 Forth Dimensions

-

/ / now s t o r e t h e s t r i n g c o n t e n t s a f t e r t h e c o u n t b y t e
/ / r e p e a t a s many t i m e s a s t h e coun t b y t e i n d i c a t e s
f o r (i = 0; i < (i n t) * t e m p g t r ; i + +) {

* (t e m p - p t r + i + l) = t e s t - s t r i n g [i] ;
1

b r e a k ;

c a s e 13 :
/ * t h i s f u n c t i o n can b e u s e d t o check i f t h e t s r i s i n s t a l l e d * /
/ * i f i n s t a l l e d , a x w i l l r e t u r n a s -13. * /

a x = -13; / * t s r i n s t a l l e d f l a g * /
b r e a k ;

/ / some unknown f u n c t i o n was c a l l e d
d e f a u l t :

a x = 0;
b r e a k ;

1
1

v o i d main (v o i d)
(
/ / c l e a r t h e s c r e e n
clrscr () ;

/ / set t h e i n t e r r u p t v e c t o r t o p o i n t t o o u r r o u t i n e
s e t v e c t ((u n s i g n e d) HOOK-VECTOR, my-handler) ;

p r i n t f (" \ n F o r t h t o C i n t e r f a c e . V 1 . 0 0 ") ;

/ / t h i s sets t h e memory t o be r e s e r v e d i n 16 b i t p a r a g r a p h s .
paragraphs-to-keep = 4096;

/ / i n s t a l l a s a TSR

- dos-keep(0,paragraphs-to-keep);
1

Listing Two. Forth program to call the C routines.

comment :
A r t i c l e . s e q --- F-PC v 3 .5 o r l a t e r F o r t h s o u r c e f i l e
T e s t i n g t h e F o r t h t o C i n t e r f a c e example.
MDC J a n 8 , 1995
T h i s program i s r e l e a s e d t o t h e p u b l i c domain.

comment ;

p o s t f i x

\ make a s t r i n g f o r u s e f o r t e s t i n g
c r e a t e t e s t s t r i n g 250 a l l o t

\ t h i s i s t h e PC i n t e r r u p t # t h a t t h e C r o u t i n e i s a c c e s s e d v i a
\ T h i s may b e changed t o any UNUSED i n t e r r u p t .
\ T h i s one i s s a f e a c c o r d i n g t o my r e f e r e n c e s .
$ 6 8 c o n s t a n t HOOK-INTERRUPT

\ The f o l l o w i n g word w i l l l o a d a x w i t h a f u n c t i o n t o b e pe r fo rmed .

Forth Dimensions 23 May 1995 June

\ It can be changed as needed. Just make sure that both sides of the
\ interface (the ISR and this program) expect arguments in specified
\ registers.
code simple-call (func# - return-code)

ax POP \ get the function the ISR will perform
HOOK-INTERRUPT int \ and call the ISR
ax push \ return a status
next \ do the next forth word
c;

\ This is an example of how you can perform a more complex call such as
\ subroutines that require that addresses be passed as parameters.

\ This subroutine takes an integer, and a segment:offset where we will
\ store the resulting Forth string.

\ input parameters to the C routine
\ BX integer to format
\ CX - Segment of a Forth style string at the address n
\ Dx - offset 11

\ output parameters from the C routine is the modified string in given address
\ and a return code in ax

code complex-call (segadr ofsadr integer func# - return-code)
ax POP \ function number
bx POP \ integer
CX POP \ string segment
dx POP \ string offset
HOOK INTERRUPT int \ call the interrupt
cx push \ the segment
dx push \ the offset
ax push \ the status
next
c;

\ This Forth word will test to see if the C TSR is already installed
: IsItInstalled? (-)

cr ." The interrupt is "
13 \ function to perform is # 13,"IS THE TSR INSTALLED?"
simple-call \ call ISR written in c.
-13 0 if \ if it doesn't return -13, it is not installed

.Iv not "
then ." installed." cr

\ make a beep sound by calling a C function in the C TSR
: C-beep (-

0 \ function # 0, "BEEP!"
simple-call
drop \ return status is meaningless, drop it from the stack
I

\ Turns off the darn racket!
: C-quiet (-

1 \ function # 1, "QUIET"
simple-call
drop
I

May 1995 June 24 Forth Dimensions

\ T h i s c a l l s a f u n c t i o n t h a t i s NOT a v a i l a b l e i n t h e C TSR.
\ I ts p u r p o s e it t o show t h e b e h a v i o r f o r a n u n d e f i n e d r o u t i n e . I t s h o u l d
\ r e t u r n a 0
: t e s t F u n c t i o n 9 9 (- n)

9 9 s i m p l e - c a l l
,

\ Format a 16 b i t i n t e g e r a c c o r d i n g t o a fo rmat s p e c i f i e d i n t h e
\ C program (6 d i g i t s w i t h l e a d i n g z e r o s) .
\ F o r even more f l e x i b i l i t y , you c o u l d p a s s a z e r o t e r m i n a t e d s t r i n g
\ (a C s t y l e s t r i n g) t h a t would s p e c i f y t h e fo rmat t o u s e i n s p r i n t f s t y l e .
\ I ' l l l e a v e t h a t a s a n e x e r c i s e !
: C-format-integer (n - a n)

>r \ s a v e i n t e g e r t o fo rmat on t h e r s t a c k
t e s t s t r i n g \ o f f s e t of s t r i n g t o s t o r e f o r m a t t e d d a t a

\ segment of s t r i n g t o s t o r e f o r m a t t e d d a t a
\ r e t r i e v e i n t e g e r t o fo rmat f rom r s t a c k
\ f u n c t i o n number, "Format a n i n t e g e r "

complex-call
--

d r o p \ t h e s t a t u s r e t u r n s a r e n o t u s e d
d r o p
d r o p
t e s t s t r i n g c o u n t \ r e t u r n t h e f o r m a t t e d s t r i n g

OFFETE ENTERPRISES
1306 South B Street

San Mateo, California 94402
Tel: (41 5) 574-8250; Fax: (41 5) 571 -5004

M e 2 1 Products
4010 MuP21 Chip designed by Chuck Moore, $25 4015 MuP21 eForth V2.04, C.H. Ting, $25

MuP21 in low-cost plastic DIP package. 5V only Simple eForth Model on MuP21 for first time
with timing constrain on a!. MuP21 users.

4011 MuP21 Evaluation Kit, $100 4016 Ceramic MuP21 Prototype Chip, $150
MuP21, a PCB board, a 128KB EPROM, instructions MuP21 packaged in ceramic DIP package. 4-6V,
and assembler diskette. no timing constrain.

4012 Assembled MuP21 Evaluation Kit, $350 4017 Early MuP21 Prototype Chips, non-functional,
401 1 and 1014 with 1Mx20 DRAM, and I/O ports. $50. Lid can be removed to show the die in bonding

Assembled and tested. cavity. Great souvenir/demo.
1014 MuP21 Programming Manual, C. H. Ting, $15 4118 More on Forth Engines, V18, $20, June 1994.

Primary reference for MuP21 microprocessor. Chuck Moore's OK4.3 and 4.4, Jeff Fox's P21Forth,
Architecture, assembler, and OK. and C.H. Ting's eForth kernel.

4013 Me21 Advanced Assembler, Robert Patten, $50 4119 More on Forth Engines, V19, $20, March 1995.
Enhanced MuP21 assembler for coding large MuP21 MuP21 eForth by Ting. MuP21 Macro Assembler
applications. on MASM by Mark Coffman.

4014 P21Forth V1.O.l, Jeff Fox, $50
ANS Forth with multitasker, assembler, floating point
math and graphics.

Checks, bank notes or money order.
Include 10% for surface mail, or 30% (up to $10) for air mail to foreign countries

L California residents please add 8.25% sales tax.

Forth Dimensions 25 May 1995 June

Yet Another
Interpreter Organization
Mitch Bradley
Mountain View, California

Editor's note: Zbis paper represents work the author did
manyyean ago, in the context of the systems of that time;
it does not represent his current thinking in all details.

There has been a mild controversy in the Forth commu-
nity about how to implement the text interpreter. The
particular problem is how the distinction between compil-
ing and interpreting should be coded. At least three distinct
solutions have been advocated over the years. I propose a
fourth one, and claim that it is the best solution yet.

fig-Forth Solution
fig-Forth used a variable STATE whose value was zero

when interpreting and (hex) CO when compiling. The
interpreter was coded as a single word INTERPRET which
tested STATE to determine whether to compile or to
interpret. Here is the code:
: INTERPRET (--)

BEGIN -FIND
I F STATE @ <

I F CFA , ELSE CFA EXECUTE THEN
ELSE HERE NUMBER DPL @ I+

I F DROP [COMPILE] LITERAL
ELSE [COMPILE] DLITERAL
THEN

THEN ?STACK
AGAIN

Forth uses the two words [and I . [is immediate and
simply stores zero into STATE.] is not immediate and
stores (hex) CO into STATE. Compilation is typically
started with : (colon), which is defined something like:
. . . .

<some i r r e l e v a n t s t u f f >
] ;CODE
<some a s s e m b l y l a n g u a g e s t u f f >

END -CODE

The important point here is that when : executes to
define a new word, the I just sets the STATE to compiling,
then the ;CODE proceeds to execute. (The purpose of
;CODE is to patch the code field of the word defined by
: so that it does the appropriate thing for a high-level Forth
word.) The interpret word INTERPRET doesn't notice that
STATE is now compiling until the ; CODE finishes.

So we see that [and] are pretty innocuous; they just
change the value of a variable.

polyFORTH Solution
Forth, Inc. decided it would be better to have two

separate loops for the two separate functions of compiling
and interpreting. The compiling loop was called 1 , so]
actually executed the compile loop directly, rather than
just setting a variable. This has two subtle side effects.

If you loop at the previous definition of : and now
pretend that, instead of just setting a variable,] actually ,

The STATE @ < phrase is pretty clever (or disgusting,
however you wish to look at it). Since the value stored in
STATE is (hex) CO when compiling, and since the length
byte of a defined word (which is left on the stack by -FIND)
is in the range (hex) 80-BF for a non-immediate word and
in the range (hex) CO-FF for an immediate word, the
STATE @ < test manages to return trueonly if the STATE
is compiling and the word is not immediate. This fact is not
salient to our discussion, but is included here to prevent
confusion.

STATE is explicitly tested once inside this loop, but if
you look at the code for the word LITERAL, it too tests
STATE to decide whether to compile the number or not.

To switch between compiling and interpreting, fig-

executes the compiler loop, you will see that the ;CODE
following it doesn't actually get executed until after the
compiling is finished. This, in itself, doesn't cause a
problem for : , but the use of I inside programmer-defined
words sometimes caused unexpected behavior because
stuff after the I would get executed after a bunch of stuff
had been compiled.

The other subtlety relates to how the loops are termi-
nated. Note that the INTERPRET loop shown above never
terminates! We all know that it really does terminate, and
the mechanism is pretty kludgey. What happens is that
there is a null character at the end of every line of text in
the input stream, and at the end of every BLOCK of text
from mass storage. The text interpreter picks up this null
character just like a normal word. The dictionary contains

May 1995 June 26 Forth Dimensions

an entry which matches this "null word." The associated
code is executed, and it plays around with the return stack
in such a way that the INTERPRET loop is exited without
ever knowing about it.

The problem with the dual-loop interpreter/compiler is
that the end of each line of input from the input stream
kicks our system out of whichever loop it was in. If the user
is attempting to compile a multi-line colon definition from
the input stream, he must start each line after the first with
an explicit] because, once the compiler loop is exited at
the end of the first line, the system doesn't remember that
it was compiling.

One key thing to remember is that the compiler loop
(which was named [) is executed from within the inter-
preter loop.

Coroutines (Patton/Berkey)
At FORML '83, Bob Berkey presented a paper about

using coroutines for the interpreter loop and the compiler
loop, instead of having the compiler loop run inside the
interpreter loop. This means that executing 1 kicks out the
interpreter loop and runs the compiler loop instead;
similarly, executing [kicks out the compiler loop and runs
the interpreter loop instead. The subroutine versions of
these loops are present in his scheme, named COMPILER
and INTERPRETER.

Bob feels this scheme is more symmetrical than the
polyFORTH approach, and that it eliminates some of the
counter-intuitive behavior.

This scheme still requires that multi-line colon defini-
tions compiled from the keyboard have a I at the beginning
of each line after the first.

What is Wrong
With All This

These different schemes
do not at all address what I
consider to be the funda-
mental problems with the
interpreter/compiler.

Fundamenta LPmblem #I:
The compiler/inter-

preter has a built-in infinite
loop. This means you can't
tell it to just compile one word; once you start it, off
it goes-and it won't stop until it gets to the end of
the line or screen.

into one or two relatively large words. Changing this
behavior can be extremely useful for a number of appli-
cationsmetacompiling, for example.

Fundamental Problem #4:
If the interpreter/compiler can't figure out what to do

with a word (it's not defined and it's not a number), it aborts.
Worse yet, the aborting is not done directly from within the
loop, but inside NUMBER. This severely limits the usefulness
of NUMBER because, if the string NUMBER gets is not
recognizable as a number, it will abort on you. (The Forth-
83 Standard punted on this issue by not specifying NUMBER
except as an uncontrolled reference word.)

Solution
As I see it, several distinct things are going on inside the

interpreter/compiler. A proper factorization of the inter-
preter/compiler into words which each d o one thing
solves all these problems.

The outermost thing is the loop. The loop's job is to
repetitively get the next word from the input stream and
do something with it. The loop should terminate when the
input stream is exhausted. [See Figure One.]

The next level down is the "do something with it." This
ought to be a separate word so that it may be called by
other words which would like to compile/interpret a
single word. This layer is here called "COMPILE because
it takes a string representing a single word and compiles
(or interprets) it. "COMPILE'S main job is to decide what
kind of word it is dealing with. There are three choices:

, Either the word is already defined, or it is a literal (i.e., a

Figure One. Terminate loop w h e n input is e x h a u s t e d .

: NEW-INTERPRET (S --)

BEGIN BL WORD (s t r)

MORE? (s t r f)

(f l a g t r u e i f i n p u t s t r e a m n o t e x h a u s t e d)

WHILE
"COMP I L E

REPEAT
DROP

t

Fundamental Problem #2:
The reading of the next word from the input

stream is buried inside this loop. This means you
can't hand a string representing a word to the
interpreter/compiler and have it interpret or com-
pile it for you.

Fundamental Problem #3:
The behavior of the interpreter/compiler is hard

to change, because all the behavior is hard-wired
Forth Dimensions 27 May 1995 June

Figure Two. Compile (o r interpret) a s t r i n g .

: "COMPILE (s t r -- ? ?)

F I N D (s t r 0 1 cfa -1 I cfa 1)

DUP
I F DO-DEFINED (? ?)

ELSE DROP (s t r)

LITERAL? (s t r f a l s e I ? ? t r u e)

I F DO-LITERAL (? ?)

E L S E DO-UNDEFINED (? ?)

THEN
THEN

,

Figure Three. Deferred versions of key words.

DEFER LITERAL? (s t r -- n t r u e I d t r u e I s t r f a l s e)

DEFER DO-DEFINED (c f a -1 I c f a 1 -- ? ?)

DEFER DO-LITERAL (l i t e r a l -- ? ?)

DEFER DO-UNDEFINED (s t r --)

: (LITERAL? (s t r -- s t r f a l s e I l i t e r a l t r u e)

>R R@ NUMBER? (1 f)

IF R> DROP TRUE
ELSE DROP R> FALSE
THEN

' (LITERAL? IS LITERAL?
: INTERPRET-DO-DEFINED (c f a -1 I c f a 1 -- ? ?)

DROP EXECUTE
,
: COMPILE-DO-DEFINED (c f a -1 I c f a 1 --)

O > IF EXECUTE (i f immediate)

ELSE , (i f no t immediate)

THEN

: INTERPRET-DO-LITERAL (d -- d I n)

DOUBLE? O = IF DROP THEN

: COMPILE-DO-LITERAL (d --)

DOUBLE? IF [COMPILE] DLITERAL ELSE [COMPILE] LITERAL THEN
,
: INTERPRET-DO-UNDEFINED (s t r --)

COUNT TYPE . " ? " CR
QUIT

: COMPILE-DO-UNDEFINED (s t r --)

COUNT TYPE . " ? " CR
COMPILE LOSE

number), or it is neither. [See
Figure Two.]

Finally, at the lowest layer,
is the code which does the
appropriate thing for each of
these three possibilities. This
level is represented by the
words DO-DEFINED, DO-
LITERAL, and DO-UNDE-
FINED. It is onlyat this low-
est layer that the system cares
at all whether it is compiling
or interpreting. One of the
benefits claimed for the
polyFORTH scheme is speed.
This is due to the elimination
of tests of the STATE vari-
able within the loop.

Clearly, my scheme has
to do something to distin-
guish between compiling and
interpreting. An obvious so-
lution wouldbe to test STATE
insideeach DO-DEFINED,
DO-LITERAL, and DO-UN-
DEFINED. This would slow
the system, of course.

A more interesting alter-
native is to make each Do-
DEFINED, DO-LITERAL,
and DO-UNDEF INED a de-
ferred word. (Deferred
words are sometimes called
execution vectors. Basically,
they are like variables which
hold the address of a word
to execute, except that the Figure Four. The new [and 1. I

: [
['I INTERPRET-DO-DEFINED IS DO-DEFINED
['I INTERPRET-DO-LITERAL IS DO-LITERAL
['I INTERPRET-DO-UNDEFINED IS DO-UNDEFINED
STATE OFF

; IMMEDIATE

: I
['I COMPILE-DO-DEFINED IS DO-DEFINED
[I] COMPILE-DO-LITERAL IS DO-LITERAL
['I COMPILE-DO-UNDEFINED IS DO-UNDEFINED
STATE ON

,

@ EXECUTE is done
automatically.)

If these words are deferred, they can be changed
when the system goes from compiling to interpret-
ing, and vice versa. [See Figure Three.]

Then [and I would be defined as in Figure Four.
(IS is the word which sets the word to execute for
a deferred word.)

Executing a deferred word need not be slow.
Deferred word are so useful that they should be
coded in assembler for speed. On my system, they
are only very slightly slower than normal colon
definitions.

So What?
This may seem to be more complicated than the

schemes it replaces. It certainly does have more words. On
the other hand, each word is individually easy to under-
stand, and each word does a very specific job, in contrast
to the old style, which bundles up a lot of different things
in one big word. The more explicit factoring gives you a
great deal of control over the interpreter.

Following are some interesting things you can do with

this new scheme. One of my favorite words is TH (for
Temporary Hex):
: TH (--word ? ?)

BASE @ >R HEX
BL WORD COMPILE
R> BASE !

; IMMEDIATE
May 1995 June 28 Forth Dimensions

This word temporarily sets the base to hexadecimal, Instead of outputting unrecognized words, I actually just
interprets a word, and restores the base. It works for ignored them in this application-but the technique is the
numbers or definedwords, either interpreting or compiling. same in either case.

For example:
DECIMAL
TH 10 . (system prints--> 16
10 TH . (system prints--> A
: STRIP-PARITY

(char -- char-without-parity)

TH 7F AND

Liberal use of this word markedly
reduces the need to switch bases,
especially in source code, and thus
reduces the chance of errors.

[Figure Five shows1 a common word
that is trivial to implement with this
kind of interpreter:

Here's a word [Figure Six1 which
allows you to make a new name for an
old word. It is smart, in that when the
new word is compiled, the old word
will actually be compiled instead, elimi-
nating any performance penalty. Fur-
thermore, it even works for old words
that are immediate! As you will see, the
vectored DO-DEFINED does exactly
the thing we want.

Finally, [Figure Seven gives1 a re-
ally neat way to write keyword-driven
translators. Suppose you have some
kind of file that contains a bunch of
text. Interspersed throughout the text
are keywords that you would
like to recognize, and the pro-
gram should d o something spe-
cial when it sees a keyword. For
things that aren't keywords, it
just writes them out unchanged.
Suppose the keywords are
.PARAGRAPH, . SECTION, and
. END.

I have used this technique
very successfully to extract spe-
cific information from database
files produced by a CAD system.

Mitch Bradley is President of Firmworks, a
company specializing in products and ser-
vices related to Open Firmware. Open Firm-
ware, defined by IEEE Standard 1275-1994.
is a processor-independent, bus-indepen-
dent architecture for boot firmware. Open
Firmware is based on ANSI Forth, and its
standard user interfaceis aForth interpreter.
Open Firmware is currently used on over a
million SPARC workstations, and has been
selected as the standard firmware for PCI-
bus PowerPC systems, including Apple's
new PCI-bus-based systems.

http://ww.firmworks.com

I Figure Six. I

Figure Five.

: ASCII (--name char)

BL WORD 1+ C@ (char)

-1 DPL ! \ make sure it's not
\ handled as a double number

DO-LITERAL

: ALIAS (--) (Input stream: new-name old-word)
CREATE
BL WORD FIND (cfa -1 I cfa 1 I str false
DUP IF

, , IMMEDIATE
ELSE
DROP ." Can't find " COUNT TYPE

THEN
DOES> 2@ (cfa -1 I cfa 1)

DO-DEFINED
,
(Examples)

ALIAS D@ 2@
HERE D@ (actually executes 2 @)
: FOO HERE D@ ; (actually compiles 2@)
ALIAS FOREVER AGAIN
: LOOP-ALWAYS BEGIN FOREVER ;
(actually executes AGAIN, which is immediate)

Figure Seven.

VOCABULARY KEYWORDS DEFINITIONS
: .PARAGRAPH

(whatever you want to happen when you see paragraph)

I

: .SECTION
(whatever you want to happen when you see paragraph)

,
: KEYWORDS-DO-UNDEFINED (STR --)

COUNT TYPE

: .END
ONLY FORTH
[' I (LITERAL? IS LITERAL?
[' I INTERPRET-DO-UNDEFINED IS DO-UNDEFINED

,
ONLY FORTH ALSO KEYWORDS
: PROCESS -KEYWORDS

[' 1 FALSE IS LITERAL?
[' I KEYWORDS-DO-UNDEFINED IS DO-UNDEFINED
ONLY KEYWORDS

Forth Dimensions 29 May 1995 June

Case
Cookbook

unless you're writing an editor and have 20 selections. Also,
the DROP at the end (to eliminate the duplicated test value)
will interfere with data left on the stack.

B 3 has OVER duplicate the test value, instead of DUP.
DROP has been moved to just after I F and the final ELSE.
It's a bit more complicated, but it eliminates interference
with stack data. Also, we now have OVER = I F DROP
grouped together. This makes it simpler to duplicate the
function of these words with a single code primitive.

Screen seven lists Dr. ~harles- Eaker's -CASE state-
A Study of the CASE Statement I ment-the winner of the Case Contest-in the original fig-

I Forth. Some enhancements suggested by ~ l f r e d ~ o n r o e

Walter J. Rottenkolber
Mariposa, California

Newcomers to Forth are sometimes dismayed by its
primitiveness. It's like buying a car and receiving a crate
of parts with the instructions, "Some assembly required."
By design, Forth is more a mechanism for being extended
into the new structures and functions required to solve a
problem, than a language in the traditional sense.

Most languages come with an extensive list of preor-
dained data types and keyword functions. Programming
consists of forcing the problem onto this list, and of
working around their bugs and limitations.

Over a decade ago, there arose the great Case Contro-
versy, an attempt to expand Forth with a more familiar
structure, and a tribute to Pascal's popularity. The Forth
Interest Group sought to calm heated passions by spon-
soring the great Case Contest. It sparked several Forth
versions, and some 20 were published in volume two of
Forth Dimensions alone. Most were variations on a theme,
either of the CASE syntax or of improvements to the
original. More importantly, they demonstrated the means
for extending Forth to generate your own version. So, for
the Forth beginner, I present the Case Cookbook.

Selectors
The ability of a program to choose alternate pathways

is what turns a calculator into a computer. The simplest
mechanism is the branching statement. Think of the IF
THEN branch as a single-function selector, and of the I F
ELSE THEN branch as a two-function selector.

The CASE statement (and its alter ego in C, switch) is
simply a clearer format for selecting among more than two
options. It's important to realize that other methods can also
act as selectors; namely, jump tables and execution tables.

Branches and the Case Statement
Branches can be extended to select more than two

functions. The accompanying screens show a number of
branching arrangements, as well as two CASE words
derived from them.

B1 uses multiple I F THENs. The disadvantage here is
that, even after a function is selected, the remainder of the
comparisons have to be made. This wastes time.

B2 nests I F ELSE THENs, causing the program to jump
to the end of the word after a selected function is completed.
But now we have all those THENs at the end. Not so bad,

are in screen eight. He used theprimitiv; (OF) to reduce
the amount of code compiled by OF. The ?PAIRS word
was fig-Forth's way of checking syntax.

The enhanced version, modified for Forth-83, is in
screen three. This became popular because it not only
mimicked the Pascal CASE, but extended its capability to
include greater-than, less-than, and range comparisons.

CASE puts the contents of CSP on the stack. Then, it
saves the current data stack pointer (SP@) in CSP. Now you
can track the growth of the data stack as the ELSEs leave
the flag and address to be resolved. ENDCASE then uses the
current andstarting data stack pointers to determine the end
point for a WHILE loop that generates multiple THENs. CSP
is restored from the value on the stack. The end result is a
code structure resembling B3 , although its complexity is
hidden from the programmer. The branch words are the
primitives used by IF, ELSE, and THEN.

B5 , in screen six, uses the word E X I T to solve the
endless THEN problem. This word works like the opcode
RETurn in assembler, and causes the program to exit the
word at that point. Wil Baden used it to design a flexible
CASE that allowed for a variety of comparison operations
(screen four). This code works just fine as it is, but it
doesn't look like a CASE statement.

Screen five shows a better version-I merged Dr.
Eaker's and Wil Baden's CASE statements. By ignoring the
COMPILE words, you can see that it generates the code in
B 5 . By using [COMPILE I , we can now compile I F itself,
instead of its components as in the original Eaker code. I
moved several words into (RANGE) , trading a lower
number of words compiled by RANGE for a slight loss of
speed. If need be, they can be returned to inline code. An
example of its use is C2 (screen six).

Comparing the code in B 5 and C2 shows why the CASE
statement is popular. It demonstrates the idea of abstrac-
tion, that is, gathering a group of functions into a single
word. Incorporating OVER = I F DROP into OF eliminates
the clutter of the underlying machinery. You can more
easily focus your attention on the selector value and its
<code> response.

Other CASE statements were proposed. One that
achieved some attention was developed by Neptune UES
for their proprietary Forth-85. Its syntax was:
DO-CASE (n)

n ' CASE <code> END-CASE
n 1 CASE <code> END-CASE
n 1 CASE <code> END-CASE

END-CASES

May 1995 June 30 Forth Dimensions

However, Eaker's version won out because it was more
familiar to users.

Wrapping Up
One advantage of the Forth way is that you can extend

a structure, such as CASE, to solve new problems. Sup-
pose you want your CASE to have a comparison like (n =
n') OR (n = n"). You can develop something like:
: (=OR) (n n ' n l ' -- n f)
2 PICK TUCK = -ROT = OR ;

: =OR (n n ' n" -- In)

COMPILE (=OR) [COMPILE] IF
COMPILE DROP
; IMMEDIATE

Now you can write a CASE code line such as:
ASCII Y ASCII y =OR <yes-code> ENDOF

A standardized CASE statement is useful in teaching
and code sharing. However, I believe you are better
served by understanding the data structure and algorithm
underlying statements like CASE, as this will enable you
to write simpler, more creative code.

References I Charles Eaker, Forth Dimensions (11/3), 1980.
Alfred J. Monroe, Forth Dimensions (III/6), 1982.
Wil Baden, "Ultimate CASE Statement," Forth Dimensions
orIII/5), 1987.

Figure One-a. Define these words in your system.

: CASEl DUP + ;

: T1 2 CASE1 . ;

: CASE2
COMPILE DUP COMPILE + ; IMMEDIATE

: T2 2 CASE2 . ;

Figure One-b. Disassemble the new words.

see tl --> : T2 2 CASEl . ;
s e e t2 --> : T2 2 DUP + . ;

1
B \ Branching
t
i

? : t i $. " T h i s i s " ;
3 : ore t i t . " o n e . " ;
4 : t w o t i $. " t w u . " ;
5 : three t i 8 ." three." ;
6 : four t i9 ." four." ;
7
8 : Pi (n)
9 DUP 1 = !F ~ n e T E N

1B DW 2 = IF two THW
11 MIF' 3 = IF three THEN
12 DL! 4 = IF four THEN
13 DROP ;

2
B \ Branching
1
2 : R (n)
3 DIP 1 = IF one ELSE
4 DUP 2 = IF two ELSE
5 DLP 3 = I F three ELSE
6 DUP 4 = IF four ELSE
7 THEN THEN THEN THEN DROP ;
8
9 : B S (n i

I@ 1 OVER = IF DROP one ELSE
i l 2 OVER = I F DROP two ELSE
12 3 OVER = IF DROP three ELSE
13 4 EVER = IF DROP four ELSE
14 DRIP THEN THEN THEK ?HER ;
15

Compiler Words
For the beginner to Forth, the CASE words demonstrate

how compiler words can simplify the syntax of a more
complicated function. These words behave like a macro in
assembler or define in C. They substitute other words for
themselves.

Compiler words use COMP I LE and [COMPILE 1 . When
the compiler word containing them is run, they prevent
the next word in the parameter list from executing.
Instead, it is compiled into the word being defined that
called the compiler word. Compiler words can contain
other compiler words, i.e., they can be nested.

COMPILE (word) is used for regular words, and
[COMPILE] (word) is used for immediate words. The
latter is necessary, as immediate words normally run even
in compiling mode and have to be deactivated first. Some

Forth Dimensions 3 1 May 1995 June

Forths use the word POSTPONE to combine the functions
of both COMPILE words. Since compiler

for must be immediate
words, and must only be used in colon definitions.

Try this experiment. First, compile the words in Figure

Walter J. Rottenkolber bought his first computer in 1983. Early on, he experi-
mented with fig-Forth andother languages, but gravitated toassembler until re-
introduced to Forth in 1988. He notes that Forth provides the same close-to-the-
silicon feeling as assembler, but without the pain, Interests include small
embedded systems, programming, and computer history, about which he

One-a. Now look at those words with SEE (the Forth
disassembler), as in Figure One-b. Notice the difference
between T1 and T2.

Because CASE2 is an immediate word, it runs even in
compiler mode. Its action is to compile DUP and + into the
word being compiled, which is T2. In the new CASE
(screen five), by taking the COMPILE words away, you can
see what the compiler words generate:
OF --> OVER = IF DROP
ENDOF --> EXIT THEN

3
0 \ Dr. Eakerls Case Statement -- for Farth 83
I

2 : CRSE CS? Cd S;l@ CSP ! ; 1MED:RiE
3 : CC COMPILE OVER CMPILE = COAPILE ?BRRlrlCH
4)YAK< CDNPILE DSW ; IXEDIRTE
5 : EIUKF CONPILE BRR3M)?iRX< Ni?P)RESOLE ; 13MEDIRTE
6 : ENSC9SE CO?!?ILE D3CP E S I % SF@ E P id = @= WHILE
7)RESOLVE REPERT ! ; 1!4EEDIRTE
8 : 1 5 CDPILi EdER C%P:LE (CO3PILi ?BRRCif
3)ERR% CDApILE DROP ; TMEDIRTE

18 : (Oc C&PILE OVER CONPILE) X%lILE ?BNNCS
11 IYRRX COYPILE DROP ; IYFEDfRTE
+:, ., . , RRXGE CCEPI-E 2 ZOW!iE PIC% PC%ILE -90T

13 CO!F*?LE BE~WEEN COXPILE ?B~RIRNCH) YARK
!4 CC%PZ:E D??;' ; IMBE3lQii
15

5
\ Dr. EakerlHadeniWJR Case Statement -- Forth 83
: CRSE (n - n) ;
: DF (n n - 1 ril COMF'lLE OVER CfMPILE =

[CMilP!:EI !C COMXLE DROP ; IMMEDIRTE
: EttDOF COW!LE EXIT TCDMPILEI THEN ; IMMEDIRTE
: ENDCRSE (n) CDRILE DRDP ; IMEDIRTE
:) 9 F (n n - ~ n) CDNPILEDVER COMPILE(

[COEPILE! !F CMPILE DRDP ; IMEEDIRTE
: (OF ! n n - i n) MfiPILE OVER COWILE)

ICONPILEI IF COBPILE DW ; IMEDlRTE
: (RANGE) (n n ri - n f) 2 PICK -ROT BETWEW ;
: RRNSE (n n n - !n) COEPILE (RMGE)

ICOFPILE! IF WMPILE DROP ; IMEDIRTE

7
B \ Dr. C'tarles Rkerls CRSE
f

2 : CRSE (ni lCOMFt CSP !? !CSP 4 ; IMREDIRTE
3
4 : OF i ri n1 - In) 4 ?PRIRS COYPf:E WER CWFi!LE =
5 COMPILE t i ~ i ~ 9 ~ c f i ~ i k e , cwri: DROP 5 ; I ~ E D I R T E
6
7 : ENDOF 5 1PRIRS CMPILE BRRRCK HERE @ ,
B swap T C ~ P I L E I E?IDIF 4 ; IMYESIRTE
3

10 : E99CRSE t n) 4 1PRIIIS CDMPILE 9322
11 EGIN SKd ESP @ = $=

12 IJHILE 2 [CCYPILE! ENSIF REPERT CS? i ; IXEDIRTE
! 3
14
i5

:P4 (n)
Dii! i = IF DROP cirie EXIT THa
D'JP 2 = IF DROP two EXIT TRE%
DSP 3 = IF DRCP three EXIT THEN
DEP 4 = IE DROP four EXIT THEX
D R P ;

\S
i &i!1 Baderr's Case Statemnt
: CRSE DUP ;
: OF IMRFILEI IF W I L E DROP ; IMMEDIRTE
: WIiRTEVEW (ri)

mSE 7 = OF ." Ycu w;nN EXIT THEFi
CRSE :I = 3 ." Yal; win" EXIT THEW
DRP ;

6
i CASE example

: W [r11
: OVER = IF DROP one EXIT THEN
2 OVER = I f DRW tw EXIT TEN
3 OVER = IF DRCP three EXIT TYEN
4 OVES = IF DROP four EXIT ?YEW
DROP ;

: C 2 (n)
CRSE
! OF one ENDOF
2 OF two ENDE
3 DF three ENDOF
4 OF four ENDOF
ENDCRSE ;

8
0 \ Rlfred Wonroels CRSE Erisancerflerits
! : (OF) f n r;' - n f) OVER = !' DROP 1 E:S '2 CNG-IF ;
E : OF t n r? - In1 4 ?PR!RS CONP!tE (OF)
2 CLMPILE 81RNC5 HERE 1 , 5 ; IMYEDIRTE
4 : ((OF) (n n1 - rl f) WE3) IF DRDP ! E9 9 EUIC ;
5 : (OF (ri r? - in) 4 ?PRIRS COXPILE (i3F)
6 COMPILE 0BRFINCY HERE 1 , 5 ; !#MEDIRTE
7 : ()OF) (n n1 - n f l EVER (IF DRCP 1 ELSE ti END!F ;
8 :)OF (n n1 - In1 4 /?RIRS WMPILE OC?)
3 CONP!LEBBRR!4Ct! KEREB, 5 ; I*rldED:RTE

I$
11 : 4RNE (rr n1 ri" - n f)
12)RO\IERDUPR) :+ (IFSt lRP!-)
13 IF DROP ! ELSE IZ1 EqDIF ELSE ERO? DROP B END:' ;
14 : RN6-OF i n n' nw - !rr) 4 ?='RIRS CDYPItE RRNEE
15 CO!?PILE @BRRNCi qERE 8 , 5 ; IV#Ei)IFl7E

I

May 1995 June 32 Forth Dimensions

Forth Vendors
In an effort t o increase awareness of, and access to, Forth

vendors, the Forth Interest Group is resuming the Forth Vendors
List. We are gathering up-to-date information on as many
vendors w h o offer Forth-related products as we can identify.
The primary method of gathering data is by sending question-
naires, preferably by e-mail.

It is currently planned t o periodically publish a subset of this
information in Forth Dimensions. The listing below is a n
example of what w e plan t o publish, using those who have
responded t o date. Further use and/or publication of the
information is t o be determined a s the project proceeds. In
particular, w e will be looking at maintaining a copy of the full
database on-line somewhere.

One gap that has not yet been filled is a way t o indicate
processors supported. Many vendors support only one or two
processors, while a few support a broad list. We are looking
for suggestions o n how to compile this information in a
concise form; perhaps a separate table for those who support
a large list of machines would be best.

If you have any questions, suggestions, o r submissions,
contact:

Lyle Greg Lisle, P. E.
L Squared Electronics
2160 Foxhunter Court
Winston-Salem, North Carolina 27106-9621
910-924-0629
L.SQUARED@GEnie.geis.com

Offerings codes:
L = Literature, S = Software,
H = Hardware , C = Consulting,
T = Training

Forth standards supported:
FIG = fig-Forth
F79 = Forth-79
F83 = Forth-83
ANSI = ANS Forth

4th Wave Computers Ltd.
C ANSI
2314 Cavendish Drive
Burlington, Ontario L7P 3P3 Canada
905-335-6844
p.caven@ieee.org

A Working Hypothesis, Inc
C
P.O. Box 820506
Houston, Texas 77282 USA
713-293-9484
70410.1173@Compuserve.com

AM Research
LSHC ANSI
4600 Hidden Oaks Lane
Loomis, California 95650-9479 USA
800-949-805 1
sofia@netcom.com

Bernd Paysan
S ANSI BigForth
Stockmannstr. 14
81477 MuenchenFRG Germany
++49 89 798557
paysan@informatik.tu-muenchen.de

Blue Star Systems
S ANSI Forth/2
P.O. Box 4043
Hammond, Indiana 46324 USA
ka9dgx@interaccess.com

Delta Research
S F83 JForth
P.O. Box 151051
San Rafael, California 94915 USA
415-453-4320
~hi l@3do.edu

FORTH, Inc.
LSHCT ANSI polyFORTH, chipFORTH
111 N. Sepulveda Blvd. Ste. 300
Manhattan Beach, California 90266 USA
800-553-6784
ERATHER@aol.com
FORTHSA@aol.com

Forth Interest Group
SL
P.O. Box 2164
Oakland, California 94621 USA
5 10-893-6784
JDHALL@netcom.com

Frank Sergeant
SC ANSI Pygmy
809 W. San Antonio St.
San Marcos, Texas 78666 USA
F.SERGEANT@GEnie.geis.com

Frog Peak Music
S F83 HMSL
P.O. Box A36
Hanover, New Hampshire 03755 USA
603-448-8837
phil@3do.edu

L Squared Electronics
SC Pygtools, Pygmy
2160 Foxhunter Ct.
Winston-Salem, North Carolina 27106 USA
910-924-0629
L.SQUARED@GEnie.geis.com

Laboratory Microsystems, Inc. (LMI)
S F83 URIFORTH
12555 W. Jefferson Blvd., #313
Los Angeles, California 30066 USA
3 10-306-74 12
duncan@nic.cerf.net

MicroProcessor Engineering Ltd.
HCLS ANSI PowerForth, ProForth
133 Hill Lane
Southampton SO15 5AF England
+44 1703 631441
sales@mpeltd.demon.co.uk

Miller Microcomputer Services
LSHCT F79 MMSFORTH
61 Lake Shore Road
Natick, Massachusetts 01760-2039 USA
508-653-6136
dmiller@im.lcs.mit.edu

Mountain View Press, Div. of
Epsilon Lyra
LSHCT ANSI MVP-Forth
Star Rt. 2, Box 429
La Honda, California 94020-9726 USA
415-747-0760
ghaydon@forsythe.stanford.edu

Redshift Limited
S
726 No. Locust Lane
Tacoma, Washington 98406 USA
206-564-3315
RedForth@AOL.com

Rob Chapman
SbotKernel, Timbre
11120 - 178 St.
Edmonton, Alberta T5S 1P2 Canada
403-430-2605
rob@idacom.hp.com

Science Applications
International Corp.
CSTH ANSI Until, LMI, Uniforth
301 Laboratory Road
Oak Ridge, Tennessee 37831 USA
615-482-9031
smithn@orvb.saic.com

T-Recursive Technology
C ANSI
221 King St. East, Suite 32
Hamilton, Ontario L8N 1B5 Canada
905-308-3698
B.RODRIGUEZ2@GEnie.geis.com

Ultra Technology
LSCT ANSI P21Forth
2510 - 10th St.
Berkekey, California 94710 USA
510 -848-2149
jfox@netcom.com

Forth Dimensions 33 May 1995 June

ANY FORM WITH EVALUATE

Macro Processing
for Forth
Wil Baden
Costa Mesa, California

The most popular programming language automati-
cally pre-processes source through a macro processor
before compiling. This augments the power of the lan-
guage tremendously. For a long time, I wanted macro
processing for Forth. The problem for Forth is aggravated
because it has an additional complication that macros
must work when interpreting as well as when compiling.

Like so many things in life that you keep putting off,
when you finally get around to doing it, it's easy. All that
is needed is a variation of EVALUATE that will make
substitutions for a parameter flag before evaluating. I call
this EVALUATED. Given EVALUATE, EVALUATED is easy
to write. EVALUATED makes substitutions in a string, and
then uses EVALUATE. See Listing One.

I use the swung dash ' I -" (often miscalled "tilden) as the
parameter flag. As such, I call it "twiddle" or "parameter."
This seems the least likely character to conflict with
existing Forth words. If a swung dash is needed in a macro,
S" -I1 can be used as a parameter.

The actual parameters for a macro are selected by
looking ahead in the input source. Words like PARSE-
WORD, defined

: PARSE-WORD (-- string .)

BL WORD COUNT ;

are used to pick up an actual parameter.
Within a macro-template, twiddle - is used as a place-

holder for a parameter. The actual parameters are charac-
ter-string (c-addr len) pairs on the stack.

Example One: Ox
Here is a useful macro that temporarily

changes the value of BASE.

: Ox parse-word
S" HEX - DECIMAL" evaluated
; IMMEDIATE

Ox takes the next word from the input
source andsandwiches it between HEX and
DECIMAL. [See Figure One.]

It works for input, too:
Ox FF is 255.

Try:
-1 ox u.

Example Two: [Ox]
Ox FF always gives you 255 only when interpreting.

For sedecimal numbers when compiling, [Ox] should be
used.
: [Ox] parse-word

S " [HEX] - [DECIMAL] "
evaluated ; IMMEDIATE

Thus:
: low-byte (n -- x)

[Ox] OOFF AND ;

: RAND (-- random)

RANDSEED @ (random)
1103515245 * 12345 +
DUP RANDSEED !

16 RSHIFT [Ox] 7FFFF AND

Example Three: ??
?LEAVE, ?EXIT, ?NEGATE, ?DNEGATE, andso on are

found for convenience in many systems. Instead, just
define
: ? ? parse-word
S" IF - THEN" evaluated ; IMMEDIATE

Figure One.

Ox mumble becomes HEX mumble DECIMAL
OX . HEX . DECIMAL
Ox ? HEX ? DECIMAL
OX .S HEX .S DECIMAL
Ox U.R HEX U.R DECIMAL
32 0 DO I 4 Ox .R LOOP 32 0 DO I 4 HEX .R
DECIMAL LOOP

May 1995 June 34 Forth Dimensions

and write
? ? LEAVE ? ? EXIT
? ? NEGATE ? ? DNEGATE and SO on.

2 SWAP has been used to change the order of parameters.

s e t X X @ 5 *

(This word was first defined by NEIL BAWD in 1986. This
word also defined NEIL BAWD.)

Example Four: [1
The examples so far suggest that macros replace

POSTPONE. Indeed, in some systems POSTPONE can be
defined by a macro. Many state-smart definitions can be
written using macros to be apathetic about state. However,
it will be useful to have [' 1 state-smart so it can be used
in definitions that are otherwise state-stupid.

: ['1 STATE @ IF
parse-word S" [' - 1 LITERAL" e v a l u a t e d
ELSE ' THEN

; IMMEDIATE

Example Five: TO
Most definitions of TO are state-smart. Here, only [' 1

in the definition is smart:

: TO
par se -word S" ['I - >BODY ! " e v a l u a t e d

; IMMEDIATE

Example Six: SAY
As we all know, we can use string-quote S" to get a

character-string that doesn't contain a quote-character.
We can use a character other than a quote-character as

the delimiter for a character-string in this round-about way
in Standard Forth (using I as delimiter).

: r a v e n [CHAR I
PARSE Q u o t h t h e r a v e n "Nevermore"

I] SLITERAL TYPE ;

This lets us define templates for macro expansion that
contain quote-characters.

Now we can define defining words that define words
that can display their own name.

: s a y
pa r se -word 2DUP
[CHAR I PARSE : - ." - " ; I] SLITERAL
e v a l u a t e d

; IMMEDIATE

becomes

and

se t X 5 ; se t Y X @ 10 +

becomes

5 X ! X @ l O + Y !

Example Eight: AGAIN, ANDIF, ORIF, OF
When a macro doesn't have a parameter, EVALUATE

should be used on the template.

: AGAIN S" FALSE UNTIL" EVALUATE
; IMMEDIATE

-
Here is some syntactic sugar:

: set pa r se -word [CHAR] ;

: ANDIF S" DUP IF DROP" EVALUATE
; IMMEDIATE

: ORIF S" ?DUP O= IF" EVALUATE
; IMMEDIATE

: OF S" OVER = IF DROP" EVALUATE
; IMMEDIATE

Conclusion
Macros are a convenient way to extend the power of

Forth. They are also generally easier to use than POST-
PONE, >IN, and SOURCE.

When target-compiling, macros on the host let you use
high-level definitions that do not exist on the target.

Macros can be used to copy code inline to avoid
subroutine linking in time-critical sections.

It has not been shown here, but macro expansions can
be made conditional.

This package has certain limitations and can be im-
proved. What would you do? How should errors be
handled?

Thanks to NEIL BAWD, RAUL D. MILLER, and UWCH
HOFFMANN for inspiration and guidance.

Note how 2DUP has been used to make two parameters
out of one.

I Example Seven: SET I

PARSE 2SWAP S" - - ! " e v a l u a t e d
; IMMEDIATE

Wil Baden is a professional programmer with an interest in Forth. He can be
reached at e-mail address wilbaden@netcom.com.

Forth Dimensions 35 May 1995 June

Listing One. Baden's approach to macro processing.

1 (EVALUATED EVALUATE w i t h P a r a m e t e r S u b s t i t u t i o n . WWB 95-03-15)

3 VARIABLE pushback-ptr HERE UNUSED + pushback-wtr !

5 : pushback-char (c h a r --)
6 pushback-~tr @ HERE 2 0 0 CHARS + < ABORT" Buffer Error."
7 -1 CHARS ~ushback-~tr + !
8 pushback-~tr @ C! ()
9

11 CHAR - CONSTANT parameter

13 : pushback-string (s t r i n g . --)
1 4 BEGIN (s t r i n g .)

15 DUP
1 6 WHILE
1 7 1- 2DUP CHARS + C@ pushback-char
1 8 REPEAT 2DROP
19

2 1 : pushback-parameter (param . s t r i n g . -- s t r i n g .)

2 2 DEPTH 4 < ABORT" Macro Parameter Error. l1

2 3 2 > R pushback-string 2 R > (s t r i n g .)
2 4

2 6 : evaluated (. . . s t r i n g . - - ? ? ?)
2 7 pushback-~tr @ >R
2 8 BEGIN (. .. s t r i n g .)

2 9 DUP
3 0 WHILE
3 1 1- 2DUP CHARS + C@ (. . . s t r i n g . c h a r)
32 DUP Darameter = I F DROP (. .. s t r i n g .)
3 3 pushback-parameter
3 4 E L S E (. .. s t r i n g . c h a r)
3 5 pushback-char
3 6 THEN (... s t r i n g .)
3 7 REPEAT 2DROP (. . .)
3 8 pushback-~tr E R@ OVER - 1 CHARS / EVALUATE (???)
3 9 R> pushback-~tr !
4 0 ;

May 1995 June 36

The Computer Journal 37

................................. FORTH, Inc. 5

..... Forth Interest Group centerfold

Miller Microcomputer
Services 36

Offete Enterprises 25

Silicon Composers 2

Forth Dimensions

(Fast Forlhward, continued frompage 39.)
often need to receive kernel services that are uniquely
suited to their needs.

Further, a Forth assembler can improve the perfor-
mance of the extension. But what if some speedier or more
expansive file 1 /0 hooks into the kernel are needed? Then
you may be forced to undertake an overhaul of the kernel,
where you don't have the clarity and other advantages of
a high-level programming environment.

With Forth, there is no layer "in between." Either you
resort to regenerating the kernel in assembly, or you resort
to a Forth and assembly mixture that talks to a less than
custom-fitted kernel. The C technology is more granular in
this regard. Libraries permit a very broad code base to be
mutable even while it remains specified in a portable,
highly standardized, high-level language.

(In C, you can also be locked out of certain layers of the
code base, such as when a proprietary operating system
takes u p residence. Still, at least in theory, you could write
your own operating system in C to show its ability to
exercise control over the full expanse of the code base
using a single language. This is part of the appeal of UNIX
when full source is provided.)

Using lots of execution vectors in a Forth kernel gives
us a somewhat similar flexible code base in a Forth
environment. Kernel extensions can be coded in high-
level Forth, with only slight additional calling overhead.

But in contrast to Forth, C permits equivalent code base
changes without introducing any inefficiencies. For example,
you would not be required to call a library-code routine from
a wrapper routine. That way, I could supplant the C routine
fopen0 using a library I write myself, and it will remain a
direct call away-no function pointers are required.

The receptacles for plug-and-play Forth kernel compo-
nents can b e vectors or deferred words. To make the Forth
kernel extensible through such provisions requires the
kernel developer to insert these hooks into the kernel in
the first place. So you are free to extend the kernel this
easily, if at all, thanks only to the far-sightedness and
desire of its author to accommodate you.

As soon as you don't find a vector or deferred word
where you need one (which is likely to be the case
because of the usual penchant of the kernel developer to
create a minimal Forth), you are back to square one. Forth
and C should be able to redefine every symbol that you
might want to retrofit with new functionality (C, of course,
won't let you redefine any of its syntax keywords).
Further, both Forth and C should let you specify the new
behavior in a high-level language with no added penalty
in terms of calling overhead. I believe C can provide a clear
advantage over Forth in terms of creating mutable code
bases at the present time.

The Long-Suffering Development Environment
I also claim that Forth's relatively weaker support of

mutable code bases has been an impediment to the
evolution of Forth's development environment. If this is
not true in every respect, at least it is true in the respect that
new development environment tools are likely to lack
portability for the foreseeable future.

As evidence of progress, certain Forth vendors are
supplying new Forth development environments, some of

which include visual development tools. Nevertheless, I
believe that the level of standardization and ease-of-change
represented by C library and linking technology has no
Forth equal in these vendors' systems. Accordingly, Forth
development environments, and the code bases of which
they are part, are likely to continue to be slow in coming.
When they do come, they are more likely to be limited in
platform availability, they are more likely to evolve slowly,
and they are more likely to impede customization.

The need for us to be able to experiment at the kernel
level remains strong. I don't see that activity subsiding due
to ANS Forth, or even GUI Forths. As long as this situation
cannot be reversed, we might as well move ourselves u p
a notch in terms of the sophistication of the resources we
use to tackle kernel retooling. A more scaleable and
mutable Forth kernel would seem to be appropriate.

The time has come to build a common vessel (or
framework) upon which all of our individual kernel
embellishments can be conveyed, either above the kernel,
or inside the kernel, or below the kernel. The kernel
should become less static, and should become part of a
bigger, mutable code base that supports interchangeable
parts. Kernel extensions and interchangeable kernel parts
should be maintained using a Forth-like facility, not
nonportable assembly, nor confusing metacompiling se-
mantics.

This is an architectural problem. The time has come to
take the Forth kernel further Forthward. As far as I can see,
this also means taking Forth further C-ward.

Forth Dimensions 3 7 May 1995 June

. ,

FORTH and Classic
Computer Support

For that second view on FORTH applica-
tions, check out The Computer Journal. Ifyou run
an obsolete computer (non-clone or PCIXT clone)
and are interested in finding support, then look no
fbrther than TCJ We have hardware and soilware
projects, plus support for Kaypros, S100, CP/M,
6809's, PC/XTts, and embedded systems.

Eight bit systems have been our mainstay
for TEN years and FORTH is spoken here. We
provide printed listings and projects that can run on
any system We provide old fashioned support for
older systems. All this for just $24 a year! Get a
FREE sample issue by calling:

(800) 424-8825

TC JWter
Lincoln, CA 95648

A Forum for Exploring Forth Issues and Promoting Forth

For Want of a
Kernel Development Environment
Mike Nola
San Jose, California

A couple of years ago, I undertook a year-in-review
look at the opinions that had run in Forth Dimensions. The
Forth development environment emerged as our leading
concern at that time. The consensus was so strong that this
topic was also chosen as a theme for the 1333 FORML
Conference, as well as that year's Forth Dimensionsarticle
contest theme.

The following year, an official ANSI-sanctioned Forth
standard was born. As far as I can tell, we have not looked
toward the standard to address our concerns with regard
to Forth's development environment. The standard has
correctly tried to stay clear of implementation issues, and
that seems to include the development environment.

However much the ANSI Forth standard holds promise
of greater code portability, the development environment
is not so likely to benefit from it. It's also likely that Forth
vendors cling to the hope of differentiating their products
through the development environments they can create
for them.

However, I feel there are also technical problems that
prevent us from developing uniform development envi-
ronments across computing platforms.

Architectural Support for Kernel Extension
Extending the kernel is the great Forth pastime. The

adventures we embark upon are sometimes shared in
these pages. Take the last issue; it gave us one article
describing a kernel that supported objects through vo-
cabularies. Such offerings are very educational, so no
doubt they will continue to be pursued and published.

Nevertheless, outsiders can easily be critical of us for
retooling the kernel so much. How d o we defend our-
selves against such criticism?

(Perhaps explanations of successful Forth applications
seem relatively drab alongside kernel enhancements.)
Forth is perfectly suited to experimentation. While we
experiment, we often need to fiddle with the kernel.
Naturally, we shape the kernel to our every desire.
However, by pursuing our changes at the level of the
kernel, the development environment becomes the do-
main of the individual Forth developer or vendor.

By preoccupying ourselves in this way, we become too
firmly wedded to a particular kind of kernel, the kind upon
which our home-grown development tools depend.

The situation could improve dramatically if we could
find a way to allow kernel enhancement code to be moved
around more easily. However, the kernel is typically
written in assembly language. How do we obtain the
desired kernel embellishments without descending into
that nonportable code?

One superficial and one genuine way to avoid the need
to traffick with this nonportable software layer can be
identified: (1) a metacompiler can allow the kernel to be
regenerated in a more Forth-like way, using the assembler
conventions and text-interpretation conventions of Forth
rather than those of a foreign assembler (nevertheless, even
Forth assemblers are by nature nonportable); and (2) an
easily retrofitted kernel can be built through a process of
compilation using a translation-affording language such as C.

A third option exisB that I don't think has been
attempted before. A kernel can be fashioned as a frame-
work upon which new functionality is easily hung. (The last
"Fast Forthward" installment suggested a text-interpretation
framework and tried to demonstrate how a preprocessor
attuned to Forth could be fashioned from that framework.)

I More on this a bit later under "Mutable Forth Kernels."

Mutable Code Bases
Even if written in assembly language, the Forth kernel

is able to impart substantial portability to Forth applica-
tions, despite its own lack of portability. To further this
kernel-derived application portability, the ANS Forth stan-
dard sought to define only the interfaces (Forth word
behavior) and not the implementation of many new kernel
routines. The effect of this expanded, yet fixed, code base
will address many portability troubles of the past.

Note that the code base represented by the Forth kernel
imparts to Forth applications all their processor-native
computational abilities. Often, this code base is called a
Forth virtual processor.

I have repeated many times the claim that Forth needs
the equivalent of C libraries and linkers. I see as their
principal advantage a more rapidly evolving, yet standard,
code base that can be built with a single language without
resort to assembly or meta-language environments inside
of a language.

(Certain function domains-including those beyond
the reach of the Standard C library-are less standardized.

May 1995 June 38 Forth Dimensions

However, library vendors tend to establish their own de
facto standards through the popularity of their offerings.
Library vendors such as Zinc Software, the vendor of the
Zinc Application Framework, are even able to surpass
many of the language vendors in terms of their visibility.
Furthermore, because you get the C source, you can be
reasonably certain they are able use C as a single homo-
geneous language with which to create their code base.)

Now that we have a few Forth systems capable of
talking to Windows, a Forth GUI is able to ride the wave
of enhancements to various code bases. For example,
when the look and feel of the Windows user interface is
enhanced, those Forth applications that are moderated
through Windows will benefit-if not automatically, then
through simple relinking.

Let's not ignore that someone has to be able to build
and release enhancements to these code bases. Forth has
the drawback that its principal code base is the kernel,
which is written in a processor-specific assembly language
and which the author often tends to consider static.
Metacompiling is Forth's handy alternative, but
metacompiling is usually the purview of the elite. Contrast
this with the ease of relinking inside a C programming
environment, which is a standard operating procedure to
everyone who learns C. Thus, C provides non-intermittent
support for a continually evolving code base.

The better maintained and faster-evolving C code bases
are partly due to the use of a single, consistent language
for their development. In contrast, a Forth metacompiler
introduces the semantics of several languages simulta-
neously-including a helping of "target assembler."

The kernel is a springboard to a Forth style of program-
ming. Thus, tools such as metacompilers are a means to an
end. I suspect we don't really want touse such metacompilation
environments any longer than absolutely necessary to bring
up an improved kernel or a retargeted application.

Code Base Evolution Within the
C Programming Environment

Using C, a code base for many applications can be fully
written in C. As long as the header file declarations are not
in need of change, the code base can be re-created in
whole or in part. Then an unchanged library client (an
application) can be relinked with the new library to derive
the benefits of an enhanced code base. The expanded
code base might, for example, insert some memory-
monitoring provision to help detect memory leaks due to
improper use of dynamic memory provisions.

Not only can the code base be expanded and scaled
back to improve the abilities of the developer to develop
an application, but the code base can be expanded in ways
that benefit end-user applications, as in the case of better
looking and behaved Windows windows.

The application source code can be compiled without
there first being a full disclosure of the contents of the
underlying code base. The separate linking pass takes care
of plugging together all the routine call and caller points.
Before linking, the application, the code base, or both can
be swapped out for an improved version.

This underscores the importance of the linker step in
the processing typically employed by compiled languages

such as C: It leads to interchangeable and insertable code-
base components. (While routine interfaces must remain
static, behavioral factors such as its boundary conditions,
error conditions, performance, memory efficiency, side
effects, and other aspects can be affected.)

As an example of an insertable component, consider
the Win32 dynamic link library (DLL). If you configure this
DLL to Windows, you can change the overall behavior and
appearance of Windows. Because it is dynamically linked,
many already compiled and linked applications can take
advantage of the enhanced code base without developer
intervention.

Forth does not compare as favorably.
Surely Forth has the factoring ease to create code bases

that can be transitioned into and out of with amazing
grace. But if the code transition involves a kernel modifi-
cation, Forth has nothing comparable to offer.

Because C's Standard Library reaches so deeply into the
language, things like the I/O file functions are not actually
part of the language-but are part of the library base.
Further, the linking technology permits you to swap out
that file I/O component if you care to do so (along with
numerous other components that are part of the standard
C library). You can make such a transition by using high-
level C to alter the library code base to suit your problem,
even to the extent of supporting the special needs of
embedded systems.

A true language-translation technology is also better
suited to Forth kernel development, because of the
flexibility it can bring. Because a kernel so written is
specified in a high-level language, it can be more subject
to programmer control (as opposed to vendor control).
Without descending into assembly language, it is fast.
Finally, while offering more portability, it can also create
a kernel that is "component oriented," where each com-
ponent of the kernel code base can be selectively removed
and reinserted.

The time has come to build a
common framework upon which
our kernel embellishments
can be conveyed.

Mutable Forth Kernels
Us Forth developers can benefit from a more flexible

and scaleable kernel built as part of a mutable code base.
Consider our intermittent need to use tools such as
profilers, sophisticated debuggers and tracers, editors,
optimizers, version control, and the like. Likewise, appli-
ca tion-specific libraries might be better managed as mono-
lithic packages, such as a package for dynamic memory
management or a database library.

Can we make the Forth kernel "plug and play" with
regard to these extensions? Certainly database, dynamic
memory, and other Forth extensions have been layered on
top of Forth. But for a serious application, these extensions

(Continues on page J 7.)

May 1995 June Forth Dimensions

Be sure to Vote!

"...FORTH is not usually en-
countered within the context
of scientific or engineering
computation, although most
users of personal computers or
workstations have unwittingly
experienced it in one form or
another. FORTH has been
called "one of the best-kept
secrets in computing". It lurks
unseen in automatic bank teller
machines, computer games, in-
dustrial control devices and
robots. ...
Some scientists and engineers
have gained familiarity with
FORTH because it is fast, com-
pact, and easily debugged; and
because it simplifies interfac-
ing microprocessors with ma-
chines and laboratory equip-
ment
... FORTH has the ability not

Scientific Forth rithms and ideas behind these
extensions, as well as their nuts

by Julian V. Noble and bolts"

Scientific Forth extends the Forth kernel in the direction of scientific
problem-solving. It llustrates advanced Forth programming techniques
with non-trivial applications: computer algebra, roots of equations,
differential equations, function minimization, functional representation
of data (FIT, polynomials), linear equations and matrices, numerical
integration1Monte-Carlo methods, high-speed real and complex floating
point arithmetic. (Includes disk with programs and several Utilities)

$50.00

A modern huwage for scfeatific computing

I

4

JOUM v. Noble
Pm- of PhY'iCs, Unl"u.sity Of vlrpln(. -

hlcchum Banks Publishing

only to reproduce all the func-
tionality of FORTRAN -us-
ing less memory, compiling
much faster and often execut-
ing faster also-but to do
things that FORTRAN could
not accomplish easily or even
at all
One reason FORTH has not
yet realized its potential in sci-
entific computing is that sci-
entists and programmers tend
to reside in orthogonal com-
munities, so that no one has
until now troubled to write the
necessary extensions. One aim
of this book is to provide such
extensions in a form I hope
will prove appealing to cur-
rent FORTRAN users.
Since time and chance happen
to everything, even FORTH, I
have devoted considerable ef-
fort to explaining the algo-

