

SILICON COMPOSERS INC

FAST Forth Native-Language Embedded Computers

DUP

>R
R>

Harris RTX 2000tm l&bit Forth Chip SC32tm 32-bit Forth Microprocessor
-8 or 10 MHz operation and 15 MIPS speed. *8 or 10 MHz operation and 15 MIPS speed.
1-cycle 16 x 16 = 32-bi multiply. 1 -clock cycle instruction execution.
1 -cycle 1 Cprioritiied interrupts. *Contiguous 16 GB data and 2 GB code space.

*two 2Sword stack memories. *Stack depths limited only by available memory.
*&channel I/O bus 81 3 timer/counters. -Bus request/bus grant lines with on-chip tristate.

SC/FOX PCS (Parallel Coprocessor System) SC/FOX SBC32 (Single Board Computer32)
*RTX 2000 industrial PGA CPU; 8 & 10 MHz. -32-bi SC32 industrial grade Forth PGA CPU.
-System speed options: 8 or 10 MHz. *System speed options: 8 or 10 MHz.
032 KB to 1 MB 0-wait-state static RAM. -32 KB to 512 KB 0-wait-state static RAM.
Full-length PC/XT/AT plug-in (6-layer) board. elOOmm x 160mm Eurocard size (4-layer) board.

SC/FOX VME SBC (Single Board Computer) SC/FOX PCS32 (Parallel Coprocessor Sys)
*RTX 2000 industrial PGA CPU; 8, 10, 12 MHz. 032-bi SC32 industrial grade Forth PGA CPU.
*Bus Master, System Controller, or Bus Slave. *System speed options: 8 or 10 MHz.
-Up to 640 KB 0-wait-state static RAM. 064 KB to 1 MB @wait-state static RAM.
*233mm x 160mm 6U size (Slayer) board. *FulClength PC/XT/AT plug-in (Slayer) board.

SC/FOX CUB (Single Board Computer) SC/FOX SBC (Single Board Computer)
RTX 2000 PLCC or 2001 A PLCC chip. =RTX 2000 industrial grade PGA CPU.

*System speed options: 8, 10, or 12 MHz. *System speed options: 8, 10, or 12 MHz.
-32 KB to 256 KB 0-wait-state SRAM. 032 KB to 512 KB &wait-state static RAM.
-1 00mm x 1 OOmm size (+layer) board. -1OOmm x 160mm Eurocard size (Clayer) board.

For additional product information and OEM pricing, please contact us at:
SILICON COMPOSERS INC 655 W. Evelyn Ave. f l , Mountain View, CA 94041 (415) 961-8778

Features

6 Zero-Overhead Forth Interrupts Garth Wilson
The author provides high-level Forth interrupts in a simple way that works for most typical
indirect-threaded systems. The zero-overhead interrupt support is simple, adds only about 100
bytes to the overall code, and can be nested as many interrupt levels deep as you wish. No
additional stacks are required. It's another natural for Forth. (Some assembly required.)

j2 Generation and Application of
Random Numbers Dr. Everett F. Carter, Jr.
(Concluding from preceding issue.) The world's computers generate ten billion random
numbers per second. Various compromises have to be made in order to even pretend to
generate random numbers with a computer. This article explores the generation of random
numbers and some important applications that use such numbers.

25 Top f 0 List-Ways to Simplify Programming Mike Nola
In the language of moderm programming paradigms, why do you use Forth? Here's one way
to explain your choice of language, and perhaps to persuade others, in ten easy steps ...

34 Forth Nano-Compilers K. D. Veil and P.J. Walker
This paper describes a highly efficient microcontroller programming system which could offer
significant advantages in a wide variety of Forths.The authors' alternative approach to Forth
object code generation makes each Forth keyword a small and highly specialised "nano-
compilern which generates the optimal target machine code for that particular keyword.

38 Some Vulgar Functions Gordon Charlton
This article expands on the earlier article, "Rational Numbers, Vulgar Words." The author notes
that much is to be gained from the graphical representation of data. A review of work in Logo
showed that, in addition to the arithmetic primitives, frequent use is made of square roots and
random numbers. These constitute an acceptable subset of vulgar math functions.

45 Convert Real Numbers to Fractions Walter J. Rottenkolber
Most math formulas use real numbers, but Charles Moore prefers Forth to use scaled integers.
So how do you find the fraction that best describes a real number, especially if the fraction
needs to be small enough to use in signed numeric operations? This program generates a list
of fractions equivalent to a real number by means of the concept called continued fractions.

-
Departments /

.................. 4 Editorial Easier done than said; X3J14, done but not forgotten; and
two-way-street graffiti.

5 Letters Mildly eccentric; "wordlists" in dp-ANS Forth; behind bars;
Open Firmware and TILE, Forth at both ends of the spectrum;
Forth's three problems; and interfacing with electric dreams.

....... 50 Fast Forthward.. Answering Leo Brodie's OBJECTions; new reuse architectures;
regulating reuse; other modularization benefits; ANS Forth
debuts; and for vendors only.

37 Advertisers Index

Forth Dimensions 3 July 1994 August

Easier Done Than Said
Some find Forth easier to use than to describe. But we must speak intelligently and

convincingly about Forth if it is to find understanding and acceptance among the
uninitiated. The "Top 10 List" in this issue depicts Forth in terms familiar to many denizens
of other, contemporary programming environments. It was prepared and distributed by
the Forth Interest Group (FIG) at the 1333 Embedded Systems Conference. Since then,
it has been reprinted in EmbeddedSystems News, AM Research's company newsletter. FIG
chapters, Forth vendors, and others seeking permission to reprint it should contact FIG
for details.

X3J14: Done but Not Forgotten
Whether or not you are a Forth vendor or developer, be sure to read this issue's letter

entitled "Forth's Three Problems," and the responses following it. You will find
discussion of ANS Forth, the standardization process, and a proposal that FIG rather
sweepingly endorse the new standard.

We invite you to further that discussion by submitting your own views and suggestions
on the topic of ANS Forth and FIG's role in positioning it at the hub of the modern Forth
community.

Mike Elola, FD columnist, FIG board member, and author of the "Top 10 Listn and
FIG's ANS Forth quick-reference guide, notes that the standard is a monumental piece
of work which will be appreciated fully only if those who participated in its formulation
will now step forward to point out its nuances, departures from past standards, and
implications for Forth's future. How about it, X3J14 members? The best way to rally
support around the fruit of your labors now is by helping us to understand it better. FD
invites your contributions!

Two-Way-Street G d t i
We are pleased to present this 52-page issue of ForthDimmbns. It is the largest yet,

thanks to authors and correspondents who, like you, are regular readers and FIG
members. We encourage you to participate by writing articles and letters which help to
shape the direction of this publication and its member-driven, parent organization.

We also wish to thank the individuals who generously support the Forth Interest
Group in the form of contributions above and beyond the amount of the basic
membership rate, and who introduce FIG and Fortb Dimensions to friends and
colleagues. Word-of-mouth recommendations, mention of Forth (including FIG's ad-
dress!) in letters to other publications, and Forth vendors who include FIG literature in
their customer mailings keep our organization alive and healthy, and will help to support
expanded services and special projects benefitting everyone involved with Forth. Such
generous, volunteer efforts are vital to our continuing success.

-Marlin Ouverson
ouversonm@aol.com

P.S. On the subject of generosity, check out the offer on page 11.. .

July 1994 August 4

Forth Dimensions
Volume XVI, Number 2

July 1994 August

Published by the
Forth Interest Group I

Editor
Marlin Ouverson

Circulation/Order Desk
Frank Hall

Fortb Dimensions welcomes
editorial material, letters to the
editor, and comments from its read-
ers. No responsibility is assumed
for accuracy of submissions.

Subscription to Fortb Dimen-
sions is included with member-
ship in the Forth Interest Group at
$40 per year ($52 overseas air).
For membership, change of ad-
dress, and to submit items for
publication, the address is: Forth
Interest Group, P.O. Box 2154,
Oakland, California 94621. Ad-
ministrative offices: 510-89-
FORTH. Fax: 510-535-1295. Ad-
vertising sales: 805-946-2272.

Copyright O 1994 by Forth In-
terest Group, Inc. The material con-
tained in this periodical (but not the
code) is copyrighted by the indi-
vidual authors of the articles a d by
Forth Interest Group, Inc., respec-
tively. Any reproduction or use of
this periodical as it is compiled or
the articles, except reproductions
for non-commercial purposes, with-
out the written permission of Forth
Interest Group, Inc. is a violation of
the Copyright Laws. Any code bear-
ing a copyright notice, however,
can be used only with permission
of the copyright holder.

The Forth Interest Group
The Forth Interest Group is the
association of programmers,
managers, andengineen whocreate
practical, Forth-based solutions to
real-world needs. Many research
hardware and software designs that
will advance the general state of the
art. FIG provides a climate of
intellectual exchange and benefits
intended to assist each of its
members. Publications, conferences,
seminars, telecommunications, and
area chapter meetings are among
its activities.

"ForthDimenrionr(ISSN 0884-0822)
is published bimonthly for $40/46/
52 per year by the Forth Interest
Group, 4800 Allendale Ave.,
Oakland, CA 94619. Second-class
postage paid at Oakland, CA.
POSTMASTER: Send address
changes to Forth Dimenn'otzs, P.O.
Box 2154, Oakland, CA 946214054.''

Forth Dimensions

Forth Dimensions 5 July 1994 August

Letters to the Editor-and to your fellow readers-are always we/-
come.Respondtoarticles, describeyourlatestpro~ects.askforinput,
advise the Forth community, or simply share a recent insight. Code is
also welcome, but is optional. Letters may be edited for clarity and
length. We want to hear from you!

Mildly Eccentric
Dear Marlin,

Garth Wilson's claim in "Readability Revisited (FDXV/
6) that his Listing Two-b is "far more confusing" than Listing
Two-a seems mildly eccentric, but to label Listing Two-b
"The scrambled-eggs version" is a calumny. Far from being
scrambled, it is rigorously systematic. Try modifying
SAMPLEWORD by deleting one of the THENs and changing
the corresponding ELSE to THEN and it is immediately
clear how the layout of Listing Two-b should be revised for
the new definition. Conversely, a quick glance at the new
layout will reveal how the pattern of control structures has
altered. But with Listing Two-a it is far from obvious how
the layout should be changed, if at all. The options seem
limited to inserting or deleting blank lines. Listing Two-a
distinguishes the various parts of the definition very tidily
but says little about the relationships between them.
Perhaps it is not so surprising if, in a very narrow sense, the
layout of Listing Two-a seems less confusing than that of
Listing Two-b, since it carries less information. But the
missing information is still needed, and if it is not made
apparent by the layout, we have to work all the harder to
discern it at the semantic level.

There is one respect in which I prefer Listing Two-a to
Listing Two-b. I have always felt that the Forth I F belongs
on the same line as the conditions it tests. Now Garth
Wilson has provided a principle to underpin this gut
feeling-the zero-stack-effect line. I do not know if this is
an original concept, but it is new to me and it is one of the
best ideas I have read for a long time. It is very simple, yet
it accounts for many examples of good Forth phrasing,
which I previously assumed depended on subjective
judgment. Like most good ideas, it seems glaringly obvious
once somebody else has pointed it out!

Strangely, when Garth Wilson moves from the abstract
example of Listing Two-a to the real code examples of
Listing One and Listing Eight-b, he reverts to the common
practice of putting I F at the start of a new line even though
this contravenes the principle of the zero-stackeffect line.
The effect of this on the program comments is significant.
In both examples, a single Forth I F in the code requires
two English IFs in the comments. If the zero-stack-effect

line is used in the layout of IF structures, the wording of
comments can be made much simpler and the code itself
becomes correspondingly easier to comprehend, whether
or not comments are actually provided.

The vertical alignment of related control structure
words, the systematic indentation of control structures,
and the zero-stack-effect line may appear to be mutually

incompatible. But I remember reading several years ago of
a layout strategy that can accommodate all three prin-
ciples. ~t was probably in F ~ & Dimemiom but I cannot
give a reference. Briefly, it requires lines of program text
to be right-justified (leaving a ragged left margin) and the
end-of-line inside control structures to be offset to the left.
This results in a kind of postfix indentation ideally suited
to Forth. It looks a bit weird at first but, when you get used
to it, it provides a very readable and very compact layout.
Its main drawback is that, without specialized editing
facilities, it can be tedious to write and maintain, which
may be why it never caught on. If we stick with the more
conventional, left-justified program text, something has to
go. Garth Wilson is willing to abandon systematic inden-
tation. I believe a better choice is to keep indentation,
keep the zero-stack-effect line, and sacrifice vertical
alignment.

Yours sincerely,
Philip Preston
London, United Kingdom

Garth Wilson replies:
Dear Editor,

I was very pleased that my article "Readability Revis-
ited" in FDXV/6 has produced three letters so far. I don't
remember ever seeing an article attract this number of
letters in the time I've been a FIG member. Even if none
of my recommendations had been accepted, the fact
remains that the issue of readability is getting some
desperately needed attention. Perhaps this "Letter to the
Editor" section will serve as a forum for continuing the
discussion even beyond this issue of FD.

While the subject of readability is in desperate need of
attention, I was not terribly pleased with my treatment of
it. My now infamous Listing Two seems to have struck out,
since all three of the letter writers mention it negatively.
Because of copyrights, I was not able to put in the
examples I really wanted to use, so I only showed the
form. Much of what I was getting at is given on page 85
of Starting Forth (2nd ed.), in the example of sorting eggs
by size. This example would be a nightmare in the Listing
Two-b format. (Perhaps the scrambled-eggs title I gave the
listing was more appropriate than I realized.) Brodie ends
five successive lines with ELSE, does not use indentation,
and preserves vertical alignment. A few paragraphs later,
he says, "Notice that the definition is visually organized to
be read easily by human beings."

The factoring referred to by two correspondents is
beautifully illustrated on pages 232-234 of Thinking Forth
(original edition), in the example of the automated teller
machine. One point I tried to make, however, is that

factoring does not always work out so nicely. Sometimes
the shortest truly descriptive name for the factor is almost
a sentence, and anything shorter forces us to do the many
levels of nesting mentally. We have to interrupt the
definition we're reading to go figure out or review what
the factor does. I've experienced this too many times. On
page 183, one of Brodie's tips is to be sure you can name
what you factor. On page 130, he says we shouldn't factor
just for the sake of factoring. I don't think I'm being too
bold to suggest that we not insist on factoring something
that is not practical to factor.

When I follow the guidelines set out in the article, aging
in those "cool dark places" (as Mr. Rottenkolber put it) has
very little effect on my source code.

Tom Napier should be pleased that, in the article on
interactive embeddedsoftware development, I was able to
fit all the comments in without abbreviations and acre-
nyms, and so use lower case. Since then, I found a
programmers' text editor which will support my high-
resolution monitor with up to 132 columns and 60 lines (a
whole page!). It is Multi-Edit, by American Cybernetics in
Tempe, Arizona. Now I shouldn't have to abbreviate
anything. The difference is like getting a good seat at the
ball game after having to watch it through a knothole in
the fence. It also has a myriad of other nice features for
programming.

Concerning his comment on using THEN instead of
END IF, THEN seems to be almost as universal in Forth as
@, !, , , and #, against which I have no complaints. If Mr.
Napier likes END IF, however, I don't think any of us will
complain.

Sincerely,
Garth Wilson
Whittier, California

"Wordlists" i n dpANS Forth
Dear Marlin,

In the preceding issue of Forth Dimensions (XVI/l),
Mike Elola mentioned saving and restoring contexts in
Forth by saving the values of variables on the stack. As an
example, he mentioned that LOAD saves the state of >IN
and BLK system variables on the stack, then restores them
when done. This permits a block that is being LOADed to
LOAD another block; after the second block has been
 LOAD^^ and interpreted, interpretation of the first block
resumes at the point where it was left off.

Mike went on to point out that a serious deficiency
exists in terms of saving and restoring the vocabulary
search order in the F83 standard, since there is no standard
mechanism for accessing the current search order directly.
(Of course, vendor implementations of F83 may include
such a mechanism.) This could cause problems where
words require the search order to be changed.

The new dp-ANS Forth, as described in Jack Woehr's
book Forth: The NewModel, includes a mechanism to save
and restore the search order. GET-ORDER pushes a copy
of the current search order onto the stack, in the form of
a sequence of wordlist addresses followed by a count.
July 1994 August

SET-OmER POPS a similar count and sequence of wordlist
addresses, and replaces the current search order with the
sequence of wordlist addresses. ("~ordlists" are used in
dp-ANS in lieu of vocabularies. A wordlist can be thought
of as an unnamed vocabulary; WORDLIST creates a new
wordlist, then returns its address on the top of the stack.)

Yours,
David M. Sanders
Sari Francisco, California

Behind Bars
Dear Mr. OuverSon:

The definition of ZCHKSUM in "Print ZIP Barcodes" (FD
XV/6) is not complete. If the least significant digit of the
sum of the zip code's digits is zero, Z~HKSUM calculates
a value of ten as input to P Z I P #. It should calculate a value
of zero.

A complete definition for ZCHKSUM would be:

: zchksum (* --) 1 0 t u c k mod - dup 9 >
i f d r o p 0 t h e n p z i p # ;

For example, BDS Software's zip code is 60025-0485:

6 + 0 + 0 + 2 + 5 + 0 + 4 + 8 + 5 = 3 0

30 10 mod -> 0 and 10 - 0 = 10

When 10 is added to ZBARCODE's pfa in P Z 1 P #, it
points beyond the valid array and unexpected results
occur.

USPS Publication 25 (page 24) gives the definition,
"The correction character is always the number which,
when added to the sum of other digits in the barcode,
results in a total that is a multiple of 10."

Very truly yours,
M. David Johnson
BDS Software
P.0. Box 485
Glenview, Illinois 60025-0485

Open Firmware and TILE,
Forth at Both Ends o f the Spectrum

Greetings:
I recently started working for a company which designs

and builds processors and modules based on the SPARC
architecture. Our product is used in notebooks, worksta-
tions, and super-computers. I was both surprised and
pleased to find Forth alive and well here. Although most
of the final testing and system software is written in C,
Forth is still actively used during debugging, in the
generation of special test cases, and in the development
of the boot PROMS.

It turns out that Forth has a long association with
SPARC-based computers. Mitch Bradley's Forth Monitor

(Continued on page 4 7.)

6 Forth Dimensions

Zero-Overhead
Forth Interrupts
Garth Wilson
Whittier, California

In a previous article, 1 wrote about completely interac-
tive embedded-systems software development on the
target itself (FDXVI/l). I mentioned zero-overhead high-
level Forth interrupt response, saying a description of that
would have to wait.

A number of good articles have been published on
providing Forth interrupt response. Without invalidating
the work of others, I wanted to meet the challenge of
accomplishing high-level Forth interrupt response in a
much simpler way that would still work for most situations
in typical indirect-threaded systems. The result is de-
scribed here.

One man told me recently that he always does inter-
rupts in assembly for speed, so he wasn't very interested
in high-level interrupt service. The nice thing here is that
when you eliminate the overhead, the speed increases
substantially.

The zero-overhead interrupt support is very simple,
adds only about 100 bytes to your overall code, and can
be nested as many interrupt levels deep as you wish. No
additional stacks are required. It's another natural for
Forth. As usual for interrupts, some assembly is required,
but very little.

I call it "zero-overhead interrupt response because
when an interrupt occurs, the Forth system moves right
into the interrupt-service routine just as if it were part of
the normal code. It is not necessary to first save any
registers or prepare to use a different stack. Here's the
summary: it is as if a new word was suddenly inserted into
the executing code-a word whose stack effect is (--) .

To illustrate, suppose we had an interrupt service
routine (word) which, for the sake of simplicity, only
consisted of
: I (--) 1 COUNTER + ! SYSRTI ;

and Forth was executing the 2 in the line
PRINTER 2 SPACES BOLD-ON

when an interrupt was requested. The effect would be the
same as if there were no interrupts and the line had said
PRINTER 2 I N C - COUNTER SPACES BOLD ON -

1 where INC-COUNTER had been defined as

: INC-COUNTER (--) 1 COUNTER + ! ;

like ISR above. As you can see, the main program and the
interrupt can both execute without interfering with each
other, even though they use the same stacks and other
resources. It is not necessary to save anything before
executing the ISR or restore anything afterward. The only
exception is that the SYSRTI above is just an ordinary
u n n e s t (or E X I T , ; S, etc.) which also restores the ability
to accept interrupts if appropriate. You may even decide
to omit the SYSRTI. If you use the SYSRTI, the semicolon
after it has no effect at run time.

Since servicing the interrupt does not require saving
things, the interrupt service routine does not need any
more stack space than other Forth words. Assuming we
already had enough stack space to run Forth normally, we
shouldn't have to worry about running out just because of
the interrupts.

The only possible drawback with this method is that a
primitive cannot be interrupted. Whatever is requesting
service must wait until the current primitive is finished.
This would only be a problem ifyou have primitives that
take a long time to execute, and ifthose primitives are
used at the times interrupt service is requested, and ifthe
interrupt can't wait that long.

Otherwise, consider that it will typically take many
primitives to service the interrupt, and it would be an
insignificant delay to wait for one primitive in the main
program to finish executing. It typically takes far less time
to finish the currently executing primitive than to do all the
register-saving and other setups required by other meth-
ods of high-level-language interrupt service.

The only return-from-interrupt overhead that is almost
necessary with this method is that of re-enabling inter-
rupts. If you don't need this done on a return from
interrupt, the interrupt service routine can be a normal
colon definition, ending with the standard u n n e s t which
is compiled by ; (semicolon), and there will be absolutely
zero overhead for return from interrupt, too.

Here comes the assembly. We have to make some small
changes in NEXT that basically amount to polling, and
these changes slow down the Forth execution by about

Forth Dimensions 7 July 1994 August

Listing One-a. Original version of NEXT (no interrupt support). I
NEXT: LDY # 1 ; Load Y f o r i n d i r e c t index ing . Next, l o a d accumulator

LDA (I P) , Y ; w i t h h i b y t e of c e l l p o i n t e d t o by i n s t r u c t i o n p o i n t e r .
STA W + 1 ; S t o r e it i n h i b y t e of word p o i n t e r .

DEY ; Decrement Y . Some p r i m i t i v e s e x p e c t Y t o c o n t a i n 0.
LDA (I P) , Y ; Load accum wi th l o b y t e o f c e l l p o i n t e d t o by i n s t r u c t i o n
STA W ; p o i n t e r , & s t o r e t h a n i n l o b y t e of word p o i n t e r .

CLC ; S t a r t a d d i t i o n wi th c a r r y f l a g c l e a r .
LDA I P ; Load accumulator w i t h i n s t r u c t i o n p o i n t e r l o b y t e ,
ADC #2 ; add two t o it,
STA I P ; and s t o r e it back where you g o t it.

BCC n e x t 1 ; I f t h e a d d i t i o n above d i d n ' t c a u s e a c a r r y , b ranch around
I N C I P + 1 ; t h e inc rement ing of t h e h i b y t e . Otherwise , inc rement .

n e x t l : JMP W - 1 ; Jump t o where i t s a y s "jump i n d i r e c t W", s o w e g e t a
----------------- , ; doubly i n d i r e c t jump.

one-thirtieth (in my system). If the interrupt requests come
often enough, this method will run considerably faster
than other methods, since you don't have to pay a big
overhead penalty.

In the F83 system where I have implemented this (with
an eight-bit CMOS 6502 processor), a couple of machine-
language instructions added to NEXT load a byte from
memory while simultaneously examining it to see whether
it is zero or not. A branch is taken if appropriate. The
choices are either to continue on as usual in NEXT, or to
load the word pointer with the interrupt vector instead of
with the contents of the address pointed to by the
instruction pointer.

Some of the time taken by the extra pair of machine-
language instructions is saved by the fact that we only
allow two values for the byte which is fetched to see if
interrupt service is necessary. These are values we would
have to load into the processor's Y register anyway, even
if we could somehow execute the right part of NEXT
without testing.

If there is an interrupt to service, the new part of NEXT
also turns off the bit in memory which records that there
is interrupt service due. This takes less time than
incrementing the instruction pointer, and loading the
interrupt vector into the word pointer requires no indirect
addressing. This means that the n e s t (or DOCOL, etc.)
instruction in the interrupt handler actually gets executed
sooner than the next instruction in the main code would
have been executed had there been no interruption.

My original version of NEXT (before interrupt service
implementation) was right out of the public-domain fig-
Forth 6502 assembly source listing. The code in Listing
One-a is what it looked like. (I have put all the assembly
example listings here in a format used by "normaln
assemblers, and commented them profusely especially for
those few readers to whom 6502 assembly language is
total Greek.)

After the modification, NEXT looks like the code in
Listing One-b. Notice how much shorter the code is for

July 1994 August

responding to an interrupt than for continuing on with the
next instruction in the main Forth code. This makes the
relative interrupt response time very short. If we were to
increment the instruction pointer when going to the
interrupt-handling word, then the latter would be replac-
ing the next Forth instruction in the main code instead of
delaying it.

You will need a piece of machine code at the address
pointed to by the machine-recognized interrupt vector
location. If interrupts are enabled, this piece of code will
be executed like any short machine-language interrupt
service routine as soon as the hardware interrupt-request
line goes true and the currently executing machine-
language instruction finishes. This code only needs to put
a byte in memory which can later be tested by NEXT, and
disable the machine interrupt response so that the same
code doesn't get executed over and over. Mine looks like
Listing Two.

Next, you will need Forth words that enable and
disable interrupting. These will probably have to be
primitives, since most Forths won't have any words to
access the pP status register. I called them IRQOK and
NOIRQ. Another primitive, IRQOK?, returns my interrupt-
disable flag.

A byte in RAM called i r q o k ? (lower case) is used as
a flag to record whether or not Forth interrupts are being
allowed. i r q o k ? is checked by SYSRTI, my Forth return-
from-interrupt word. When a peripheral requests inter-
rupt, s e t i r q (in Listing Two) disables further interrupt-
ing but leaves i r q o k ? alone.

You will usually leave interrupts disabled while the
Forth interrupt service word is executing, and re-enable
them when the interrupt service word finishes. SYSRTI is
nothing more than unnes t preceded by a few machine-
language instructions to examine the content of i r q o k ?
and set or clear the processor's interrupt-disable bit
accordingly. If you don't ever need to change the value of
that bit immediately upon return, you can omit SYSRTI
and the service word can be like any other colon defini-

I Forth Dimensions

Listing One-b. NEXT modified for interrupt support. I
NEXT: LDY i r q n o t ; Load Y wi th 0 i f i n t e r r u p t r e q u e s t e d , o t h e r w i s e 1.

BEQ runISR ; Branch i f i n t e r r u p t r eques ted , e l s e c o n t i n u e h e r e .
; Y = l now f o r i n d i r e c t index ing . Load accumula to r

LDA (I P) , Y ; w i t h h i b y t e of c e l l p o i n t e d t o by i n s t r u c t i o n p o i n t e r .
STA W + 1 ; S t o r e it i n h i b y t e of word p o i n t e r .

DEY ; Decrement Y t o 0 . Some p r i m i t i v e s w i l l need Y t o b e 0 .
LDA (I P) , Y ; Load accum w i t h l o b y t e of c e l l p o i n t e d t o by i n s t r u c t i o n
STA W ; p o i n t e r , & s t o r e t h a t i n l o b y t e of word p o i n t e r .

CLC ; S t a r t a d d i t i o n wi th c a r r y f l a g c l e a r .
LDA I P ; Load accumulator w i t h i n s t r u c t i o n p o i n t e r l o b y t e ,
ADC #2 ; add two t o it,
STA I P ; and s t o r e it back where you g o t it .

BCS inc-hi ;
JMP W - 1

inc-hi: I N C IP+1
J M P W - 1 t

.------------------

runISR: I N C i r q n o t

LDA FIRQVEC+l
STA W+1
LDA FIRQVEC
STA W

J M P W - 1

I f t h e above a d d i t i o n caused a c a r r y , b ranch t o increment
h i b y t e of i n s t r u c t i o n p o i n t e r . E l s e you ' r e done. Done
w i t h two J M P r s because a branch n o t t a k e n s a v e s a c y c l e .
Increment h i b y t e of i n s t r u c t i o n p o i n t e r .
You're done.

; P i c k up h e r e i f i n t e r r u p t was r e q u e s t e d .
; S e t i r q n o t =1, meaning no f u r t h e r F o r t h i n t e r r u p t
; s e r v i c e r e q u e s t e d a f t e r t h i s y e t .
; Load t h e word p o i n t e r wi th t h e a d d r e s s p o i n t e d t o
; by FIRQVEC , a u s e r v a r i a b l e .
; Load h i b y t e f i r s t , t h e n l o b y t e . FIRQVEC i s a RAM
; a d d r e s s which h o l d s t h e F o r t h i n t e r r u p t r e q u e s t
; v e c t o r CFA.
; Jump t o where it s a y s "jump i n d i r e c t W", s o w e g e t a
; doubly i n d i r e c t jump.

Listing Two. This registers the interrupt request for NEXT.

i r q r o u t i n g : ; Machine-recognized i n t e r r u p t v e c t o r p o i n t s h e r e .
JMP (MIRQVEC) ; Jump t o a d d r e s s p o i n t e d t o by my machine-language

; i n t e r r u p t v e c t o r (MIRQVEC) , which i s i n i t i a l l y s e t i r q .

s e t i r q : ; Use t o r e c o r d I R Q f o r NEXT. Put t h i s a d d r e s s i n MIRQVEC.
STZ i r q n o t ; Record t h a t i n t e r r u p t was r e q ' e d by s t o r i n g 0 i n i r q n o t .
STA tempA ; Temporar i ly s a v e accumulator i n tempA t o p u t back l a t e r .
P LA ; P u l l saved p r o c e s s o r s t a t u s b y t e o f f of pP s t a c k ,
ORA # 0 4 ; s e t t h e b i t co r respond ing t o i n t e r r u p t d i s a b l e ,
P HA ; and push t h e r e v i s e d s t a t u s b y t e back o n t o t h e s t a c k .
LDA tempA ; R e s t o r e t h e accumulator c o n t e n t .
RT I ; Return from i n t e r r u p t . pP s t a t u s g e t s r e s t o r e d modi f i ed . .---------------

tion. (If you do use SYSRTI, remember that it should be
followed by the semicolon to make the compiler happy.)
My SYSRTI looks like the code in Listing Three.

To allow multiple-nested interrupts, an interrupt ser-
vice word mustre-enable interrupts (by invoking IRQOK).
If you choose to do this, you might also want to push or
otherwise save the content of i r q o k ? and change it. This
is so each return from interrupt leaves the interrupt-disable

flag in the appropriate state. Obviously, if the flag is put
back to the way it was just before the interrupt, it will
always allow interrupts again. This is what SYSRTI will
give you unless there was something in the interrupt
service word that turned off i rqok? . The purpose of
i r q o k ? is to tell SYSRTI whether or not to re-enable
interrupts.

With indirect-threaded code, the average Forth primi-
Forth Dimensions 9 July 1994 August

tive takes about 80 clocks to execute on the eight-bit
CMOS 6502 with no wait states. Since, on the average, an
interrupt will hit in the middle of an executing primitive,
and since NEXT is quicker at starting interrupt service than
it is at normal code, the average interrupt response time
will be about 90 clocks, or 9 pS at 10 MHz. This includes
the time taken by the short machine-language routine
pointed to by the machine interrupt request vector,
MIRQVEC. Many of the slower microprocessors cannot
respond this quickly even in machine language; so to do
it in Forth with an eight-bit pP is excellent. 10 MHz is the
fastest bus speed currently available on the 6502 from
Western Design Center in Mesa, Arizona. This makes for
about 125,000 Forth primitives per second. They will be
introducing faster ones in the near future. There are also
16-bit versions (the 65816 and its derivatives) and WDC is
developing a 32-bit version.

A Forth interrupt service routine that only looks at an
asynchronous communications interface adapter (ACIA)
might look like this:
: SYSIRQ POLL-ACIA DROP SYSRTI ;

Since here we only have one possible source of
interrupts, we can DROP the flag telling whether or not it

was the ACIA that requested service. If we had several
possible interrupt sources, our SYS I R Q might look like
the code in Listing Four-a. Listing Four-b is an alternative
that uses a support word. ?EXIT is just my word to factor
out occurrences of I F E X I T THEN. Any prioritized
polling of interrupt sources can be put or called between
SYSIRQ and SYSRTI above.

Table One gives a summary of the changes and
additions used to accomplish zero-overhead high-level
Forth interrupt response. A list of requirements is first,
followed by a list of enhancements.

If you have a processor with several interrupt inputs,
each associated vector would put the appropriate inter-
rupt handler address in the FIRQVEC variable.

If you have hardware that prioritizes interrupts and
gives the processor a byte to read to determine the source
of an interrupt without polling, it may be appropriate to
have a look-up table to convert the byte into a CFA of an
interrupt handler.

Hopefully it won't take too much head-scratching or
meditation for this to all make sense. It really is quite
simple as high-level interrupts go; and if multiple nesting
doesn't make it irresistible, the elimination of overhead
and separate stacks certainly should.

Listing Three. Forth return-from-interrupt.

CODE SYSRTI ; Lay h e a d e r & code f i e l d down.
S E I ; S t a r t w i t h i n t e r r u p t i n g d i s a b l e d .
LDA i r q o k ? ; Load & test b y t e a t a d d r IRQOK? t o see i f I R Q s a r e o k .
BEQ unnes t+2 ; I f n o t ok, d o n ' t e x e c u t e n e x t (C L I) i n s t r u c t i o n .
C L I ; E l s e c l e a r i n t e r r u p t d i s a b l e f l a g .
BRA u n n e s t t 2 ; Branch t o body o f u n n e s t (1st a d r a f t e r code f i e l d) .

.-----------------

Listing Four-a. Interrupt-handler that polls potential interrupt sources.

: SYSIRQ
POLL TIMER - NOT I F
POLL-ACIA NOT I F
POLL - KEYBOARD NOT I F
POLL P R I N T E R DROP THEN THEN THEN
SYSRTI ;

Listing Four-b. Alternative with a support word.

: POLL POLL TIMER ?EXIT
P O L L A C I A - ?EXIT
POLL-KEYBOARD ?EXIT
POLL-PRINTER DROP ;

: SYSIRQ POLL SYSRTI ;

Garth Wilson began programming in Fortran and assembly in
college in 1982. Three types of BASIC and Forth were among the
languages he later used for data acquisition and automated test
equipment. He wrote the code for a flight-following computer in
assembly. Much of his early programming was on a series of TI
and HP hand-held programmables, which he used to facilitate a
wide range of work. A friend told him a little about Forth in 1985,
but it wasn't until 1989 that he picked up Brodie's bookand started
getting to know Forth. As a project to learn Forth, he wrote a cross-
assembler and linker program. He enjoyed the language im-
mensely, and was delighted to see development time plunge.
Programming has been apart of his job since 1986. Now he is part
owner of anaircraftcommunicationscompany. Hecan be reached
by phone at 310-695-7054 or by mail at 11 123 Dicky Street.
Whittier, California 90606.

July 1994 August 10 Forth Dimensions

Table One. Summary of new code. I
Necessarv:
NEXT Inner interpreter.
i r q n o t RAM byte to record whether or not interrupt pending.
N O I R Q Primitive to set pP interrupt disable bit (--).
IRQOK Primitive to clear pP interrupt disable bit (--).
s e t i r q Machine-language interrupt routine that puts 0 in i r q n o t so NEXT knows an interrupt was

requested.
SYS I R Q Secondary for actual high-level interrupt service. No special rules except that it usually will have

SYSRTI just before the semicolon (--).
COLD (Modified, not new.) Before the first execution of NEXT, put 1 in i r q n o t , and make sure interrupts

are disabled so you don't get into trouble before potential interrupt sources are set up. Invoke
IRQOK and (optionally) set i r q o k ? when Forth is ready to accept interrupts.

Qbtional:
IRQOK? Primitive to read pP interrupt disable bit (-- f).
i r q o k ? RAM byte to record whether or not to restore interrupt capability upon return from interrupt.
SYSRTI Primitive (unnest version for return from interrupt) examines i rqok? .
MIRQVEC Variable containing an address used by the machine interrupt-service routine for a jump indirect.

Not needed if you only have one routine.
FIRQVEC Variable containing the Forth interrupt vector. If you have more than one high-level interrupt service

word, put the CFA of one of them here. NEXT uses it to load the word pointer from in order to
service the interrupt.

11 Special Offer for FIG Members Only

SPECIAL DISCOUNT ON 16-bit polyFORTH!

II Now is your chance to try this powerful system including data base tools, graphics, floating point, multi-user support, source
for most functions, extensive libraries and utilities, and our outstanding documentation package.

I
11 This great, one-time offer made possible with the cooperation of the Forth Interest Group, includes:

For a limited time only, FORTH, Inc. is offering FIG members a chance to buy our 16-bit "segmented
model" version of polyFORTHm for all DOS-based PCs at a drastically reduced price of only $295,; a
70% reduction of our standard list price of $995!

Complete system, including source (no Target Compilefl), all electives, and on-line Shadow Block documentation.
Documentation set, including the polyFORTH Reference Manual (500 pp.), 80x86 CPU Supplement (200 pp.),
Programmer's Pocket Reference.
One month of free technical support via FAX or Electronic Bulletin Board (I-day response)

I I ACT NOW! This offer will be good only until July 31, 1994. All you have to do is sign our Master Software License
Agreement and send your check. We also accept payment by Mastercard or VISA.

II Attractive discounts are also available on our other products, including our 32-bit "protected mode" plyFORTH for
803861486 CPUs with GUI toolkit extensions; chipFORTHa for embedded microcontrollers; and our powerful, .,
object-oriented EXPRESS" system for industrial controls.

CALL US TODAY at 1-800-55-FORTH!
Ask for the FIG Special!

FORTH,lnc.
11 1 N. Sepulveda Blvd. #300
Manhattan Beach, CA 90266

I I Plus $10 shipping (UPS Ground US &Canada) and applicable sales tax. For
foreign sales, shipping billed at actual cost.

800-55-FORTH 31 0-372-8493
FAX 31 0-31 8-71 30

I'
- - -

Forth Dimensions 11 July 1994 August

Generation and
Application of
Random Numbers
Dr. Everett E Carter, Jr.
Monterey, California

Continued from last issue.. .

6. Shuffling Numbers
Sometimes it is desired to randomize a small set of

numbers so that a non-repeating sequence is obtained. An
obvious application is in games, but there are other places
where shuffling is useful. An example of this is in the
oceanographic RAFOS float (Carter & Rossby, 1986).
These freely drifting subsurface devices take measure-
ments of the ocean for u p to two years. After their
measurement mission has ended, they go to the surface.
They then broadcast their data to a satellite in 30-byte
packets. Because of the limited lifetime of the instrument
on the surface, and the fact that the satellites are not
continuously above the horizon, it is possible that the
instrument will fail on the surface before all the data is
transmitted. Given the possibility that not all the data will
be returned, it is best to have some data thmughout the
mission, and not just data from only one portion of the
mission. To accommodate this, the packets are sent out in
shuffled order, only repeating a given packet once all the
packets have been sent.

When shuffling numbers, the important thing is to not
repeat a number that has already been used. This means
that taking the modulus of a generator such as r2 5 0 won't
work, because the numbers could repeat themselves.

A simple way to do this is described in Knuth (1981) as
Algorithm P. The technique is to put the values to be
shuffled into an array and to use a random number
generator to generate indices into that array to actually
shuffle the numbers. This array is then accessed sequen-
tially to get the current number. A nice thing about this
approach is that it will shuffle any predetermined se-
quence, not just a consecutive list of numbers. One just fills
the array with the possible choices and runs s h u f f l e .
The example in Listing Three uses ramp to fill the array
with consecutive numbers. The word s h u f f l e - test in
Listing Two demonstrates the algorithm.

7. Quasi-Random Numbers
The previous generators are all properly known as

pseudo-random number generators-they all attempt to

act like they are randomly picking numbers out of a hat.
It turns out that for some applications pseudo-random
numbers are a little too random. If you look back at Figure
One, you will notice that there are places that are relatively
undersampled and other places that have clusters of
points.

If we change our generator so as to maintain a nearly
uniform density of coverage of the domain, then we have
a random number generator known as a quasi-random
number generator. Figure Three shows a two-dimensional
scatter plot of some quasi-random numbers. As you can
see, the coverage has a distinctly different pattern from
pseudo-random numbers. Quasi-random numbers give
u p serial independence of subsequently generated values
in order to obtain as uniform as possible coverage of the
domain. This avoids clusters and voids in the pattern of a
finite set of selected points.

The generation of these maximally avoiding random
numbers requires a good deal of bit twiddling. We will
briefly describe here a rather efficient method using what
is known as a Sobol' sequence. This method uses a set of
binary fractions called direction numbers (these are the i v
values in Listing Three).

The jth number is generated by doing a bitwise
exclusive-or of all the direction numbers so that the ith bit
of the number is non-zero. The effect is such that the bits
toggle on and off at different rates. The kth bit switches
once in 2k-1 steps so that the least significant bit switches
the fastest, and the most significant bit switches the
slowest.

The implementation shown of q u a s i in Listing Three
(due to Antonov and Saleev, 19791, uses the Gray code of
the number instead of the number itself. The use of the
Gray code makes the generator very efficient. This is due
to the fact that adjacent Gray codes differ from each other
in just one bit position. This makes it possible to get the
next quasi-random number by just doing oneexclusive-or
operation.

The direction numbers must be calculated according to
the number of dimensions that the quasi-random numbers
are to be used in. The word quasi-in it is designed to
calculate the proper direction numbers for up to seven

July 1994 August 12 Forth Dimensions

dimensions. The mathematics behind the generation of
the direction numbers is not trivial, but fortunately is not
necessary in order to implement and use this generator.
We will leave the mathematics to the references listed at
the end of this article (Press & Teukolsky, 1989).

8. Monte Carlo Calculations
The only good Monte Carlo is a dead Monte Carlo

-Trotter & Tixkey, 1954

by the fraction of the area that g(x) occupies. The
integration scheme is then to take a large number of
random points with the box and count the number that are
within g(x) to get the area,

1 where, n*is the number of points within g(x), nis the total

lerns in probabilistic terms (these are generally called
sophisticatedMonte Carlo methods). We will just focus on
sophisticated Monte Carlo here.

While there are descriptions of something that could be
described as a Monte Carlo method in the Bible, the
method did not have any real practical application until
computers became electronic. The first major application
was solving neutron-diffusion problems during World
War I1 (i.e., part of the calculations necessary to make the
atomic bomb). The import of the statement of Trotter and
Tukey is that Monte Carlo methods tend to be slower and
less accurate than more traditional methods, ifthere is a
deterministic method to solue thepmblem. When a deter-
ministic method is developed to solve a problem, the
Monte Carlo version generally turns out to be inferior.

Where Monte Carlo methods are used to advantage
are: cutting-edge problems for which no deterministic
method is known, problems involving a large number of
dimensions (for which a deterministic method is either
very time consuming or impractical to implement), prob-
lems involving complicated boundaries or other special
conditions (which again may be difficult to implement
using a deterministic algorithm), or problems where the
needed solution is only part of the actual solution (say,
finding only four or five out of 1000 unknowns). We will
use small examples here for the purposes of illustration.

We will first look at using Monte Carlo to evaluate
definite integrals. There are two major Monte Carlo
techniques for evaluating such integrals. The first method
is based upon an idea similar to the rejection method of
generating random variables for arbitrary distribution
functions. Suppose we wish to evaluate the integral,

The class of algorithms that solve problems
probabilistically are known by the (purposely) colorful
name of Monte Carlo methods. There are two types of
Monte Carlo methods. One is the direct modeling of a
random process (this is sometimes called simple Monte
Carlo); queuing problems are a good example. The other
class of Monte Carlo methods recasts deterministic prob-

if we define f(x) as,

number of points generated, and V is the volume of the
bounding box.

This method is very ineficient, many points are re-
quired to make (8) converge towards (7) with any degree
of precision.

A more efficient approach is to note that we can write
(7) as,

1 if x is in the domain
0 otherwise (10)

(again V is the volume of the domain). (9) can be
interpreted as the expectation of the function, h(x) = g(x)
f(x) V; for the random variable x which is uniformly
distributed within the domain. This then gives an approxi-
mate procedure,

Estimates based upon (1 1) converge much more quickly
than those using equation (8).

If pseudo-random numbers are used for the Monte
Carlo evaluation of integrals then, because of the clumps
and voids in any given sample, there will be regions of the
integral that are under-represented as well as over-
represented. In the long run it is not a problem, since we
know that the numbers represent a uniform distribution
well. But "the long runn means using lots of iterations.

Probably the most effective way to speed up the
convergence of Monte Carlo integration is to use quasi-
random numbers instead of pseudo-random numbers for
choosing the points. In general, this change will cause the
integration estimate to converge towards the actual solu-

I tion like On n)N/n (where N is the number of dimensions

Forth Dimensions 13 July 1994 August

If we Put a bounding box around the function g(x), then
the Of g(x) can be to be the fraction
of the bounding box that is also within g(x). So if we
choose a point at random uniformly within the bounding
box, the probability that the point is within g(x) is given

in the integral) instead of the usual I/+. This improved

convergence is considerably better, almost as fast as i/n.
The Forth word m c i n t - t e s t in RANTST. SEQ dem-

onstrates the use of (1 1) to evaluate the two-dimensional
integral,

The standard finite difference approximation to this (as-
sume the same size grid, h, in both x and y) is,

July 1994 August

A test of 5000 iterations (using quasi-random numbers)
gives a value of 0.6664 (the exact value is 2/3). The same
calculation using the same number of iterations with
pseudo-random numbers (the code for this is not shown),
gives an estimate of 0.6632.

Quasi-random numbers helped in improving integral
estimates by attempting to cover the domain with a
uniform density of points. Could we get even better results
by sampling mostly where the function is large (where it
contributes most heavily to the integral)? It turns out that
the answer to this question is, yes. The general Monte
carlo technique of concentrating the sampling where the
system is most influential is known as i W r t a m e Sam-
pling. By reducing the variance of the estimates, impor-
tance sampling can have a dramatic effect On the esti-
mates. There are problems, however; for many problems
we have no idea a priori where the regions that will
contribute the most are at, and the problem of finding
them can be as complicated as solving the original
problem. When estimating an integral like (12) above, this
is not a problem but we are faced with another difficulty:
generating the sample distribution. Finding the inverse
~ r o b a b i l i t ~ for the function is probably going to be at least
as hard as solving the original problem, and using the
rejection method to get the distribution is probably more
expensive than just using quasi-random numbers in the
first place.

One of the classic scientific applications of the Monte
Carlo method is in the solution of differential equations.
The cautions about the applicability of Monte Carlo,
mentioned earlier, are especially important here. Using
Monte Carlo to solve differential equations is very ineffi-
cient but, if there are special conditions, then it might be
the best way to g ~ . The idea here is to set up a random
walk within the domain that the equation applies, starting
at the point at which we want the solution. The probability
of moving in each possible direction is determined by the
differential equation that is being solved-it is not neces-
sarily the same in each direction. The random walk
continues until the particle reaches the boundary of the
domain. ~t this point, the particle may be absorbed; the
probability of this occurring depends upon the type of
boundary condition that applies at that point. 1f the
particle is not absorbed, the walk continues until it reaches
a boundary and finally does get absorbed.

AS a simple example, let us consider the steady-state
temperature distribution of an annulus. Let's assume that
the inner radius (r = 1.0) is held at a constant 40 degrees,
and the outer radius (r = 3.0) is held at 60 degrees. The
equation describing this situation is:

d2T d2T
, + 2 j 7 = O (13)

I x = (I - A)-] f
14

(T * ~ , . + T~~ . + T~ + T~ . - 47;: .)
h2 -0 (14)

This can be rearranged to,

1 1 1 1
Tu = ?Ti, + ?Tcl j + ?Tij+ 1 + ?Ttkl (1 5)

Now we interpret equation (15) to mean that ifat some
time we are at position (i,j), then at the next step we go
to one of each of the four surrounding points with
probability 1/4. This is the standard random walk.

SO to solve the problem, we start out at the position we
would like to have the solution at-say (2.0,O.Oband do
our random walk until we reach a boundary (because the
mean squared distance from a starting point is linearly
proportional to time, we will eventually reach a bound-
ary).

For our example problem, the temperature is given on
two boundaries, so when we reach a boundary we keep
that value. We do many such walks, and our estimate will
be the mean of the boundary values that we encountered.
me program laplace implements this (try it
for a couple thousand walks), the value it returns can be
compared against the exact answer T = 40.0 + 20.0 log(+

/ log(3) where r = d n 2 and X and Y are positions
within the domain.

Markov Chains
A Markov chain is a sequence of random values whose

probabilities at a time interval depend upon the value of
the number at the previous time. A simple example is the
non-returnini? random walk, where the walkers are re-
stricted to not go back to the location just previously
visited.

The controlling factor in a Markov chain is the t r a ~ i -
tionpmbability, a conditional probability for the system to
80 to a particular new state, given the current state of the
system. Formany problems, such as simulated annealing,
the Markov chain obtains the much-desired importance
sampling. This means that we get fairly efficient estimates
if we can determine the proper transition probabilities.

Markov chains can be used to solve a very useful class
of problems in a way that seems almost magical. We will
illustrate with the following problem: suppose we wanted
to find the value of the vector x that is the solution to,

x =Ax +f (16)

where the n x n matrix A and the vector f are known. By
setting up a random walk through matrix A we can solve
for any single component of x.

A little mathematics is needed to see how this woulc
work. First let's symbolically solve (16),

(17) 1
Forth Dimensions

I This can be expanded to,

Now let's suppose we have an n x n matrix of
probabilities, P, such that,

I and we have an array,

J
further, we will define,

Pcan then describe a Markov chain where the states of
the chain are n integers. The element pq gives the transi-
tionprobability for the random walk to go from state i to
state j. As long as g is not zero, the walk will eventually
terminate. The probability that the walk will terminate after
state i is given by gi.

While taking the random walk, we need to accumulate
the product,

and the sum,

Then we take a random walk until the walk terminates,
accumulating the product V and the sum W.
Then we take the average of the Wvalues over several
walks to obtain our estimate of xi.

This will work as long as equation (18) converges; this
will happen if the norm of A,

is less than one (the smaller IlAll is, the faster the Monte
Carlo estimate will converge). If the norm is larger than
one, all is not lost, there is usually some manipulation that
can be done to get a new matrix that has a small norm.

The code in Listing Four, MARKOV . SEQ, row-solve
follows our above recipe almost directly. It first calls
i n i t p to set u p the probabilities. Then it calls
w a l k 2 h a i n to take the individual random walks and
accumulate the Vand Wvalues each time. Then it performs
the averaging. Fortunately, it is easier to write the code
than it is to wade through the mathematics that justifies the
algorithm. These programs give reasonable results for
4000 or so iterations.

It turns out we can use this idea for all sorts of problems
1 that have the same general form as (16). If write (16) as,

and now consider A to be anything that can operate on x
in a linear way, not just a matrix multiply. The mathemati-
cal jargon for such a beast is linear operator. Given the
appropriate operator for a given problem, we can use the
above method to solve several kinds of problems. We can
do a matrix inverse, i.e., solve,

I k i, ik -1 (inverse, Hii . This calculation is demonstrated in

The final Wvalue is important because its mean value
(averaged over the walks that start at index i) is,

-
w = x x . . . x piil . . . PiLlikViil . . . V i L l i k f k /gi4

(24)
Notice that the final form of (24) is exactly the ith

element from equation (18). So to solve this problem we
have three major steps:

Set up the probabilities p and g and start off the system
at the index at which we want to solve for x. Let's call that
index i.

f = ~-tx (27)

if we let A = I- H. Starting out at index i will give us row
i of HI. The Forth word row-inve r t (Listing Four) does
this calculation. If we restrict the chains to start at index i
and end at index j, then we obtain a single element of the

e l e m e n t - i n v e r t . Other problems that can be solved
this way include the determination of eigenvalues and
eigenvectors, and integral equations of the second kind
such as,

Notice that equation (28) has the same kind of form as
equation (26), (integration is a linear operator). If we made
a discrete grid upon which we wanted to solve (28) then
we could use exactly the same code that we used to solve
equation (16). However, in a practical application the
dimension of equation (28) would be extremely large, or

Forth Dimensions 15 July 1994 August

A(s,O would be so complicated to calculate that it is not
really practical to create a giant matrix to approximate the
integral. Instead we free up our random walk to apply
continuous& within the range [a, b I . Then the system is
solved with a program that otherwise looks very much like
row-solve.

Conclusion
In this article we have looked at several uses of random

numbers. Because of the different demands of applica-
tions upon the numbers, there is no one universal genera-
tor. The LCM generators are simple to code but they need
care in choosing their parameters, are relatively slow, and
their period is controlled by the size of the random
numbers generated. Shift-register sequences like r 2 5 0
are fast and have large periods that are independent of the
size of the random numbers, but r 2 5 0 has a large startup
and storage overhead.

Quasi-random numbers prove to be useful for applica-
tions that need the distribution to be uniformly covered,
as in Monte Carlo integration.

And, finally, we looked at applications where a ran-
domly generated Markov chain can be used to solve
problems involving linear operators.

References
Antonov, I.A. and V.M. Saleev, 1979; USSR Comput. Math.,

Math. Phys., V. 19, p. 252.

Everett Carter is an Assistant Professor of Oceanography at the Naval Post-
graduate School. Prof. Carterwrote the Forth system forand helped design the
RAFOS float which is being used internationally as part of the World Ocean
Circulation Experiment. Back on land, he generates several billion random
numbers a week running stochastic models of oceanic currents.

Box, G.E.P, M.E. Muller 1958; "A note on the generation
of random normal deviates," Annals Math. Stat, V. 29,
pp. 610-611.

Binder, K. and D.W. Heerman, 1992; Monte Carlo Simu-
lation in Statistical Physics, An Introduction, Springer-
Verlag, Berlin, 129 pages.

Carter, E.F., and H.T. Rossby, 1986; "A Forth controlled
oceanographic instrument," J. of Forth Application and
Research, V. 4 , No. 2, pp. 309-312.

Cooper, N.G., ed., 1989; Fmm Cardinals to Chaos, Reflec-
tions on the Life and Legacy of Stanislaw Ulam, Cam-
bridge Univ. Press, New York, 316 pages.

Knuth, D.E., 1981; meArt of ComputerPrograrnrning, Vol.
2 Seminumerical Algorithms, Addison-Wesley, Reading,
Mass., 688 pages.

McCracken, D.D, 1955; "The Monte Carlo Method," Scien-
tflc American, V. 192, No. 5 (May), pp. 30-96

MacDougall, M.H., 1987; Simulating Computer Systems,
M.I.T. Press, Cambridge, Mass., 292 pages.

Maier, W.L, 1331; "A Fast Pseudo Random Number Gen-
erator," Dr. Dobb's Journal, May, pp. 152-157.

Park, S.K, and K.W. Miller, 1988; "Random Number
Generators: Good Ones are Hard to Find," Comm. ofthe
A m , V. 31, NO. 10, pp. 1192-1201.

Press, W.H., and S.A. Teukolsky, 1989; "Quasi- (that is,
Sub-) Random Numbers," Computers in Physics, V. 3,
No. 6, pp. 76-79.

Trotter, H.F. and J.W. Tukey, 1956; "Conditional Monte
Carlo for Normal Samples," Symposium on Monte Carlo
Methods (University of Florida, 1954), H.A. Meyer, ed.,
John Wiley, New York, pp. 6679.

Rubinstein, R.Y., 1981; Simulation and the Monte Carlo
Method, John Wiley & Sons, New York, 278 pages.

1 / 1 8 / 9 4 EFC)

Listing Three. RANDSSEO I
\ r a n d s - s e q I n t e g e r Random number g e n e r a t i o n
\ NOTE: 32 b i t d o u b l e s , u s e s DMULDIV.SEQ
\ (c) C o p y r i g h t 1994 E v e r e t t F . C a r t e r . P e r m i s s i o n i s g r a n t e d by t h e
\ a u t h o r t o u s e t h i s s o f t w a r e f o r any a p p l i c a t i o n p r o v i d e d t h e c o p y r i g h t
\ n o t i c e i s p r e s e r v e d .

: rand- task ;

n e e d s d m u l d i v . s e q

c r . (RANDS. SEQ V 1 . l

d e c i m a l

\ m i s c s u p p o r t s t u f f

: d a r r a y c r e a t e 4 * a l l o t (n - - 1
d o e s > swap 4 * + ; (n -- a d d r)

: s a r r a y c r e a t e 2 * a l l o t (n - - 1
does> swap 2* + ; (n -- a d d r)

July 1994 August 16 Forth Dimensions

Figure Three. The two-dimensional scatter plot for 2000 points generated from a quasi-random
number generator.

q u a s i . d a t 0

: d x o r (d l d2 -- d) \ d o u b l e x o r
r o t x o r - r o t x o r swap

: d o r (d l d 2 -- d) \ d o u b l e o r
r o t o r - r o t o r swap

: d a n d (d l d 2 -- d) \ d o u b l e a n d
r o t a n d - r o t a n d swap

,

65535. 2 c o n s t a n t m a x l 6

2147483647 . 2 c o n s t a n t max32

2 v a r i a b l e seed 1 2 3 4 . seed 2 !

\ L i n e a r C o n g r u e n t i a l Method, t h e " m i n i m a l s t a n d a r d g e n e r a t o r "
\ P a r k & M i l l e r , 1988 , Comm o f t h e ACM, 3 1 (1 0) , p p . 1192-1201
: lcm-rand (-- d) seed 2@ 1 6 8 0 7 . umd*

2147483647 . umd/mod
2 d r o p
2 d u p seed 2 !

(Continued.)

Forth Dimensions 17 July 1994 August

\ Another linear congruential generator with poor choice of parameters
: lcm bad (-- d) - seed 2@ 1277. umd*

131072. umd/mod
2drop
2dup seed 2 !

: lcm-init (d --)
seed 2!

defer lcm-32 ' lcm-rand is lcm-32

: lcm16 (-- n) \ 16 bit LCM random number
lcm-32 drop

\ R250 code --- 16 bit (unsigned) version
\ irkp pat rick & Stoll, 1981; Jour. Computational Physics, 40, p. 517
variable r2 50-index
variable mask
variable msb
250 sarray r250-buffer

I 250 0 do lcm16 i r250-buffer ! loop I
250 0 [hex 1

do
lcm16 04000 >
if i r250-buffer dup >r @ 08000 or r> ! then

loop

08000 msb !
Offff mask !

I [decimal] I
16 0 do

i 11 * 3 + r250-buffer dup >r
@ mask @ and

msb @ or
r> !
mask dup @ 2/ swap !
msb dup @ 2/ swap !

loop

I r250-index @ dup 146 > if 147 - else 103 + then I
r250-buf fer @
r250 index @ r250-buffer @ xor -

dup r250 index@ r250-buffer ! -

1 r250-index + !
r250 - index @ 248 > if 0 r250-index ! then

1 I
July 1994 August 18 Forth Dimensions

\ R250 code -- 31 bit version
2variable dmask
2variable dmsb

250 darray r250d-buffer I
250 0 do lcm-32 i r250d-buffer 2! loop

250 0 [hex I
do

lcm-32 020000000. d>
if i r250d - buffer dup >r 2@ 040000000. dor r> 2! then

loop

040000000. dmsb 2!
07fffffff. dmask 2!

[decimal]

31 0 do
i 7 * 3 + r250d buffer dup >r
2@ dmask 2@ dand

dmsb 2@ dor
r> 2!

dmask dup >r 2@ d2/ r> 2!
dmsb dup >r 2@ d2/ r> 2!

loop
,

: r250d (-- d) \ 32 bit positive (i.e. 31 bit) number

~250-index @ dup 146 > if 147 - else 103 + then I
r250d-buffer 2@
r250 - index @ r250d-buffer 2@ dxo r

2dup r250 - index @ r250d-buf fer 2 ! I
1 r250 index +!
r250-index @ 248 > if 0 r250-index ! then

\ set the default 16 bit generator
defer rand-init r250-init is rand-init
defer randgen r250 is randgen
defer maxrand maxl6 is maxrand

\ set the default 32 bit generator
defer rand-dinit r250d-init is rand-dinit
defer drandgen r250d is drandgen
\ max32 is maxrand

\ Quasi-random number generation (up to dimension 7)
\ Press & Teukolsky, 1989; Computers in Physics, V3, No. 6, pp. 76-79

Forth Dimensions 19 July 1994 August

7 constant maxdim
30 constant maxbit
1073741823. 2constant quasi-max

variable dimension
2variable quasi-index
12 sarray ip
12 sarray mdeg
maxdim maxbit * darray iv
maxdim darray ix

: reduce-index (i j -- k)
1- maxdim * +

I

: bit-shift (n -- d) \ perform 1. << n
>r 1. r> 0 ?do

2. d*
loop

,

: iv-normalize (k j --)
maxbit over - -rot
reduce-index iv dup >r >r
bit - shift r> 2@ d* r> 2 !

I

: Gray-Code (k j -- d)
over over over
mdeg @ -
reduce-index iv dup >r 2@
0. 5 pick mdeg @

bit - shift umd/mod 2swap 2drop

r> 2@ dxor

3 pick ip @ \ get ip[kl

\ now do the "L loop"
\ stack at this point: k j xor-dbl ip[kl

4 pick mdeg @ 1- \ get mdeg[kl - 1
dup 0 > if
1 swap do

dup 1 and if
>r 3 pick 3 pick i - reduce-index iv 2@
dxor r>
then

2 /
-1 +loop

else
drop

then

drop rot drop rot drop

: quasi-init (dim --) \ initialize for specified dimension

dup maxdim > if ." quasi-init: dimension ., .
July 1994 August 20 Forth Dimensions

" must be <= " maxdim . cr abort then

dimension !

maxdim 0 do 0. i ix 2! loop
maxdim maxbit * 0 do 0. i iv 2! loop

\ fill ip
O O i p ! l l i p ! 1 2 i p ! 2 3 i p ! 1 4 i p ! 4 5 i p !
2 6 i p ! 4 7 i p ! 7 8 i p ! 1 1 9 i p ! 1 3 1 0 i p ! 1 4 1 1 i p !

\ fill mdeg
1 0 mdeg ! 2 lmdeg ! 3 2 mdeg ! 3 3 mdeg ! 4 4 mdeg !
4 5 mdeg ! 5 6 mdeg ! 5 7 mdeg ! 5 8 mdeg ! 5 9 mdeg !
5 10 mdeg ! 5 11 mdeg !

maxdim 0 do .1 i iv 2! loop
\ fill in the other elements of iv
3. 7 iv 2! 1. 8 i v 2 ! 3. 9 i v 2 ! 3 . 1 0 i v 2 !
1. 11 iv 2! 1 . 1 2 i v 2 ! 3 . 1 3 i v 2 !
5. 14 iv 2! 7 . 1 5 i v 2 ! 7 . 1 6 i v 2 ! 3 . 1 7 i v 2 !
3. 18 iv 2! 5. 19 iv 2! 5. 20 iv 2!
15. 21 iv 2! 11. 22 iv 2! 5. 23 iv 2! 15. 24 iv 2!
13. 25 iv 2! 9. 26 iv 2! 7. 27 iv 2!
17. 28 iv 2! 13. 29 iv 2! 7. 30 iv 2! 5. 31 iv 2!
25. 32 iv 2! 3. 33 iv 2! 31. 34 iv 2!

maxdim 0 do
\ normalize the set iv values
i mdeg @ 1t 1 do

j i iv-normalize
loop

\ calculate the rest of the iv values
maxbit 1+ i mdeg @ 1t do

\ calculate Gray code of iv
j i Gray-code
j i reduce-index iv 2!

loop

loop

0. quasi-index 2!
,

: quasi (--) \ values returned in ix

quasi-index 2@ 2dup 1. d+ quasi-index 2!

maxbit 1- -rot
maxbit 0 do \ find rightmost zero bit

2 dup
O= if

1 and 0= if rot drop i -rot leave then
else drop then

0. 2. umd/mod 2swap 2drop
loop

2drop
maxdim *

Forth Dimensions 2 1 July 1994 August

dimension @ 0 do
dup i + iv 2@
i ix 2@
dxor
i ix 2!

loop

drop

\ print iv values, useful for debugging : .iv (- -
cr
maxdim 0 do

maxbit 1+ 1 do
i 6 mod 0= if cr then
j i reduce-index iv 2@ ud
loop cr

cr
loop

I

: .ix (--) \ print ix values
dimension @ 0 do i ix 2@ ud. loop cr ;

\ the Shuffling algorithm, for producing a particular set of numbers
\ in random order, Knuth, 1981 (Vol. 2) Algorithm P

\ uses space at sh-ary to shuffle, change s! and s@ to use
\ some other location if necessary

52 sarray sh-ary
: s! sh-ary ! ;
: s@ sh-ary @ ;

\ shuffle up to 52 items

: choose (n -- m) \ choose a value from O..n-1 at random
randgen swap mod

: exchange (nl n2 --) \ exchange element nl and n2 in buffer
over over
s@ swap s@
rot
s! swap s!

: shuffle (n --) \ shuffles n elements
dup 0 do

dup choose i exchange
loop
drop

I

: ramp (n --)
0 do
i i S !

loop

\ produces a simple increasing sequence

July 1994 August 22 Forth Dimensions

Study These Great Offers. $20 OFF ANUPGRADE i . i en~ t i c i t c 1- \ , lid for i I I OFF a rriral or P ? I OFF
iipgsrddr. ch,~rrc\.

operated nationwide to ensure a I . OIII\ one cr;titic~tc~>cr rental. not to he liccd 111 coirjuncrloli
I

The smart nloney is on Alamo.
Now you can enjoy $10 OFF any unifornl standard of quality. \\ 1t11 .~n\ oriicr icn~t~c.irc\/ot~>n. I

I . (:cnificite mu\r he rc\ciitcd ,I[the Al.ri~io ~nun te r oil am\al 1
rental of three days or nlore or A~ nlenlber, you'll T ~ I S u s A. C L . ~ I ~ ~ C . I I C onlv. Once I\ ~ ~ ~ ~ ~ ~ I I I , I I) I ~ rcdccmcd. this JII AI'IIIIO cerntic.itr I<I(..I~IOTI\ I \ \ old III the

$20 OFF an upgrade on rentals of other valuable coupolls throughout I . TIIP ~e r t l t i~a t r a n ~ i the car rcnul pur\u.wir ro ~t rrc \ul?ert to
I

Al,imo'\ ioniilrrom nr rhc nnlc ot rent~l M I I ~ I I I ~ L I ~ I I ,I+, tor two days or more with Alanlo's
I

the year that will save you I rr.i~r,iI I, 21. .U rci~rcr, I I I U , ~ l~avc a v~ l id driver', I~cerire.

Association Program. And as 7111, crrt~tiiatc Ir null and v o ~ d iialterrd. irvlred 01 iiupIic.~ted
I

On each So these offers I I r i an\ \vav In r~ic cvci~t oiio5r or expiratioi~. rert~tic.ite ~ I I I 1
always, you'll get ~ l / l l i r r ~ i t e d ~ f i r r and select the one that is best for I . not & rcpl'iicd

OEcr \ ~ l l d rh rou~h lulv 21. I'1i)4. except 02/17/104- I
ruilea'qr on every rental in the U.S. you. For nlenlber reservations call 1 ,,,,,,,,),, 113/31 /9i_1h/ l ,2/94. 11j12(1/~~4.1)3,28:~)4 .lnd I

06~3 i1~~~4-1 l7 '~1~ /04 . addition' you'll receive frequent your *gent 1 . No re[illld \\l,]he g\cil o,l an\. ur lu~edponlol l ofccmfiiarc 1
flyer mileage credits with Alaska, or Alaino's Menlbership line at Ccnific.~te 15 nor redre~iiable ioi ca\ii

Delta, Hawaiian, United and I A ??-hour ddvaircr resm.,lrior ir required, licacn..rtron\ arc^
I

1-800-354-2322. Use Rate Code I sub~ccr ro .~v'~llabili& at tliiie o i b o "711 oi

USAir. Alaiilo features a fine fleet BY and ID# 3 7 8 A / O ivbell Rate Code BY and I I). I I U I I I ~ I ~ I I I I > .
I

of General Motors cars and all making reservations. If $10 Offa Rental is chosen: I
I V.illd oti ~~iri.niird~att. rhrouqli llux~in car i.ircg<~y

locations are con~pany-owned and o t ~ i . ~ V , I I I ~ "11 rcirtok of 3 d i \ \ to 7X'd.1\,
I

I . 1 he tI~,x\miulr \ ,IIUV 0ith1, i.cmficari. \\hlch ma\ hc .ip ,hcd 1
I ton.ird unm.rde charge, I \ Slll o iT(~~or \.llld on ~ I I I I ~ A I I ~ I

I If $20 off an Upgrade is chosen: I - 0th vdlld (111 rcnralr of .I iliinlrnum o f ? d,i>r 'ind .I rna\~~n~ii i i -

/ G t i n g Four. MARKOV.SEQ I

. .
For re\rwation\ call \our Profc~?~onal Ti-avrl Agent or c.111 I

' -1 Rental
WheR all (he nules

mhee I
37876ASJ L,,,,,,,,----,---

\ markov.seq Examples of u s i n g Markov Chains
\ (c) Copyr ight 1 9 9 4 E v e r e t t F . C a r t e r . Pe rmiss ion i s g r a n t e d by t h e
\ a u t h o r t o u s e t h i s s o f t w a r e f o r any a p p l i c a t i o n p r o v i d e d t h e c o p y r i g h t
\ n o t i c e i s p r e s e r v e d .

\ The t r u e v a l u e of x f o r t h e problem x = A x + f i s :
\ 7 . 5
\ 8.75
\
\ The a c t u a l m a t r i x i n v e r s e f o r A i s :
\ 2 . 8 5 7 1 -1 .4286
\ - 2 . 1 4 2 9 3 .5714

: markov-task ;

needs £ f l o a t - s e q
needs r a n d s . s e q

1 / 2 5 / 9 4 EFC)

decimal

\ t h e s e nex t two a r e i n STATS.SEQ and RANTST-SEQ and a r e r e p e a t e d h e r e

: f i a r r a y (n --)

c r e a t e dup , 0 do £0 . O f , l o o p

Forth Dimensions
--

July 1994 August

does>
swap dup 0<

if drop @
else

8 * 2 + +
then

I

: ran£ (f: -- num)

drandgen float maxrand float f/
I

: fmatrix (n m --) \ defining word for a 2-d matrix
create over , * 0 do £0.0 f, loop
does>

>r r@ @ * +
8 * 2+ r> +

I

variable maxwalk
variable n
£variable p

2 fiarray f
2 2 fmatrix a

\ rands-start is defered so that the actual initialization only
\ happens one time

defer rands-start

: rands-dummy ;

: rands-init (--)

[' I r250d is drandgen
[' I r250d-init is rand-dinit
[' I max32 is maxrand
1234. rand-dinit

\ only do rands-init once
[' I rands-dummy is rands-start

' rands-init is rands-start

: initg (n --)

dup dup * swap 1-
ifloat ifloat f/ p f!

: adjust-a (n --) \ convert A to I - A

(Listing Four continues on page 29.)

July 1994 August 24 Forth Dimensions

Fortb is profoundly subroutine-oriented.
Like most programming languages, Fortb lets

you create named subroutines and c o l k
them into larger units known as programs.

In Fortb, program are just subroutines
set to run nonstop.

At Forth ? center lies an enginefor running
subroutines. Forth systems are set up to run a

command-inte face routine at startup.
Ymr commands cause otherprovisions to

run, such as those that create (compile) and
save new routines and those that locate and

dzicard already compiled routines.

"(Forth ?] modularity and other fom of
error control allow production of remarkably

bug-fee application program-perhaps more
than any other language in common use. "

-John James

Top 10 List-Ways to
Simplify Programming

10. Optimize the benefits of subroutines
Choose a language that minimizes the run-time overhead of subroutines.
That way, your use of many small, discrete, and reusable ftnctions pays
even greater rewards.

Forth minimizes subroutine overhead, heightening the appeal of a modular
programming style based on subroutines. Languages such as C set up and
break down stack frames before and after each subroutine call. By avoiding
this burdensome stack-management activity, Forth liberates subroutine calls
from ungainly run-time overhead.

Like applications in other operating environments, Forth subroutines can be
run as commands. This leads to quick turnaround times for each change-
compile-test cycle. For a C subroutine to run as a discrete unit, source code
must be altered and recompiled to meet the operating system's definition of
an executable code resource. Through its incorporation ofa run-time engine,
Forth can dictate the forms executable resources may take. One of those
forms is simple, efficient subroutines.

Forth can be characterized as a lean execution engine that is accompanied by
an impressive collection of reusable subroutines. Each command you enter
starts an execution sequence that can thread its way through many different
routines. Execution threads direct the interplay of these routines so that
various functions can spring to life, such as a compiler, an editor, and a host
of other development tools.

9. Modularize down to the subroutine level
Choose a language suited to a programming style involving many short
subroutines that are easily understood, easily tested, and easily reused.

Forth lets you compose a long program as a moderate-length collection of
short subroutines. For example, the broad functionality ofForth results from
a collection of about one hundred subroutines, most of which call about
seven others. When an execution thread is unwound, a lengthy execution
sequence is often produced. Yet because each subroutine is defined and
compiled only once, a compact, memory-conserving program can result.

Astyle ofprogramming based on many small subroutines has been practiced
by virtually all vendors of commercial Forth systems. Because of this, Forth
provides access to a large number of useful and trivial-to-reuse data process-
ing functions.

Forth Dimensions July 1994 August

8. Scalability that does not sacrifice cohesiveness
Choose a programming language that is seamlessly extensible and scalable, so
the system is not disturbed by your extensions or cutbacks. Such a system
remains cohesive despite its reconfiguration.

Because Forth is subroutine-based, subroutines are the natural way to expand
Forth or to scale it back. The Forth dictionary is designed to offer seamless
expansion of the Forth environment. Of course, your newly compiled routines
are accorded exactly the same treatment as the original, vendor-supplied rou-
tines. And by unlinking subroutines from the Forth dictionary, you can prune
the dictionary and free memory.

Code resources are created in several ways. One way is to compile source code.
Alternately, code resources may be supplied by the Forth vendor. However code
resources came to be, a single Forth execution engine handles them exactly the
same way. This regularity permits a run-time system that is small and efficient.
Accordingly, applications derived from Forth can be pared down to very small
sizes. Even large Forth systems can usually produce small applications to suit
embedded applications (ranging between 2 and 30 kilobytes).

Forth is profoundly extensible. Unlike most languages, Forth extensibility is not
limited to "functions," nor to any other restricted language element. For
example, you can add new control-flowdirectives. For an embedded application,
you might add a compiler directive that is equivalent to a C switch.

7. Syntactically lean programming languages
Languages that are syntactically lean encourage you to create source code that
is readily understood and easier to maintain. You should not have to think like
a parser to untangle the meaning of source code! Forth shows how a language
of homogeneous elements defeats the need for syntax-processing-both by
humans and by computers.

Forth's regularity eliminates the need for a parser to discriminate between
different kinds of elements that may be deeply nested inside one another.

In contrast to the multiple-try algorithms ofother compilers, the Forth compiler
uses algorithms that are orders of magnitude simpler. A Forth system has the
simple task of recognizing word-size elements only. (Forth routines named using
one or more punctuation symbols are nevertheless the same homogeneous
language elements as Forth routines named more descriptively.) Asimple lookup
table for subroutine names suffices for most of its needs.

6. Meaning directly conveyed by source code
Choose a language that makes the meaning ofsource code obvious. Accordingly,
programming systems should not steal any ofyour control over the evaluation
sequence. To regain the control that should be exclusively yours, avoid
languages with precedence rules and with evaluation-altering parentheses.

"Forth reduces the cost of a subroutine to vny
little, and the whole language r j built on
finctions that are like subroutine callr.
The programmer keeps defining new word
(new finctions) fiom old ones until,finally,
one of them is the whole job. "-John James

"Never befre in a high-he[Language
h a it been so easy to add newfeatures, new
data types, and new operators to a language.
Unlike other Languages, these new words
(everything in Fortb is called a word) have
the same priority and receive the same
treatment a words defined in the
standard Fortb vocabulary."
-Greg Willhmr

You may already consider it a hindrance, this distasteful practice of peppering
your source code with parentheses. This process is actually an encoding process,
after which the meaning of source code is a step removed from your view. A
substantial "decoding step is required to account for precedence rules and for
the locations of open and close parentheses.

July 1994 August Forth Dimensions

You fequently order operations to control
their mutual effect. For example, you know
better than to expect increment(print(l0))
to print the value ehen. You understand

how the parentheses elicit a right-to-@
evaluation order. To obtain consistently

k--to-right evaluation, the printfirnction
and all other firnctions must be madepostf;c,

in which operands appear in advance of
operations. The computer ultimately receives

translated code ordered that way--as your
debugger telh you. So why shouldn 't you also

see it that way? Why tokrate intrusive
compiler actions that t w i t your code around!

"The whok system is written in Forth,
right down to the bits-your application

program, the compiler, the operating
system, the I/O drivers, etc.

You do not have to barn
some other language or be a

systems specialist to mod$ it."
-John James

This affliction can be completely remedied through the liberal application of
postfix notation. In Forth, you establish the order of evaluation by arranging the
source code into the desired sequence. That way, the sequence you see is always
the evaluation sequence you get (WYSIWYG). Because there is only one possible
way it will be handled, Forth code is more likely to behave as you expect it to.

Computers require postfix ordering of operations. (An add operation is mean-
ingless if the operands are not identified first.) When you adopt postfi notation
too, your source code can more accurately convey your intentions on down to
the computer chip doing the work.

Let's lay to rest the myth that you need computer assistance in this regard. You
should be able to determine the meaning of source code without the hardship of
nontrivial, code-resequencing rules. Parentheses are a nuisance rather than a
convenience. This grievous type of activity leads to unexpected bugs, extra hours
of debugging, and greater maintenance costs.

5. Seamless development and run-time environments
Development environment tools should offer you a faithful preview of how
code will behave when run in an unembellished target environment.

The Forth user interface joins Forth's development and execution environments
so searnlessly and transparently that a hybrid of the two is produced.

Nothing of substance distinguishes the execution environment for the target
hardware and the execution environment used while you develop your applica-
tion. The development system's execution environment is merely extended with
more subroutines suited for development tasks. A core set of routines (arun-time
system) travelswith your applications. Those core routines are also present in the
development system along with a fair number of additional tools providing
services such as command handling.

Accordingly, test results obtained in the full Forth environment are much more
trustworthy than those obtained using development tools that emulate the
execution environment rather than incorporate it.

4. Support for rapid development
Choose a development system that lets you conveniently exercise recently
compiled code, that supports incremental compilation, and that offers a way
to minimize recompilation efforts. One consistent user interface for dl
development tools can also boost productivity by reducing errors and learning
difficulty.

To exercise recently compiled code without delay, you need a run-time facility
that is continuously available as part of your development environment. The
run-time engine must be able to respond to you, letting you determine when and
how code you have compiled will run. Forth responds to commands you enter
to compile or edit source code-and commands to run, debug, or discard
compiled code. In these and other ways, Forth offers you a host ofintegrated tools
for constructing programs rapidly.

With Forth tools, you can incrementally exercise and verify components of your
application even when you have programmed only a small fraction of it, such as
one subroutine.

Forth Dimensions July 7994 August

Forth supports its own form of incremental compilation. First you compile and
fix the lowest level of subroutines. Afterwards, you pay similar attention to the
subroutines that rely on the ones you just refined. In the process, youdiscard only
a portion of the previous compilation efforts-the portion you need to refine and
recompile.

Forth comes pumped up with many tools for programming, including those for
extending the compiler and those for compiling data structures. (The latter give
you control over howvalues are actually stored in memory for variables and other
types of data.) You can also extend the user interface or craft new tools to better
facilitate development.

3. Friendly compiled-code tools (debuggers, etc.)
Choose a development environment that provides powerful tools for inspect-
ing and testing compiled code.

When compiling a new Forth routine, the compiler stores the executable
addresses of its constituent subroutines in memory (or an equivalent process,
depending on the Forth you use). This makes the memory image of a compiled
routine subject to meaningful inspection. By passing a decompiler an appropri-
ate address to start examining, theForth source code that led to the values stored
in memory can be closely reconstructed. Likewise, the debugger's display of
Forth execution flow can closely match source code listings.

2. Interoperability
Choose a development system that takes advantage of your computer's
operating system. That way you retain the help of popular tools and applica-
tions during development.

Most Forth vendors offer systems designed to run under a host operating system.
Many can take advantage of editors and code-management tools from numerous
vendors. Recently, Forths have begun to appear that can use code resources
(object files) created using other programming languages.

1. Forth
Choose Forth. It is by far the most convenientwayto meet the goals mentioned
here.

Most embedded systems programmers using Forth have little or no need for
linkers, preprocessors, logic analyzers, in-circuit emulators, specialized debuggers,
object-oriented tools and libraries, real-time operatingsystems, cross-compilers,
and so on down the list of currently available tools.

Forth orbits closely around an efficient engine for subroutine execution. It has
been adorned with just the right initial subroutines to provide functionality that
you normally would associate with a much larger development system. Never-
theless, Forth's simplicity serves your needs while increasing your productivity.

Copyright O 1993 by Forth Interest Group, Inc. All rights reserved.

Quotationsfrom John James and Greg Williams originally appeared in the August 1980 issue
of BYTErnagazine.

"Forth alro allows (and o& encourages)
programmers to completely understand the
entire computer and run-time system.
Forth supports rwtremely f i i b l c and
productive application devrlopment whih
making ultimate control of both the
Language and hardware easily attainable."
-Phil Koopman

The non-projt Fottb Interest Group helps
support your use ofForth. FIG carries a
complete line ofFortb books, dkks.
conference proceedings, and other literature.
Membership entith you to dkcounts on books
and confiences as well as a subscription
to Forth Dimensions.

To inquire about FIG membership
benefits, call or write the
Forth Interest Group at:
P.O. Box 2154 l Oakland, CA94621r 510-893-6784

July 1994 August 28 Forth Dimensions

(Listing Four, continued fmmpage 24.)

dup 0 do
dup 0 do j i = if £1.0 else £0.0 then

j i a dup f@ f- f!
loop

loop

drop

: walk-chain (nl -- nlast, f: -- g)

f 1.0

begin
ranf
p f@ f/ int drop dup
n @ <

while
swap over a f@
p f@ f/ f*

repeat

drop

: row-solve (r -- , f: -- x) \ solve x = A x + f for element x[r]

n @ init-p

0
£0.0

begin
over

walk-chain

f f@ f*
f+
1+ dup \ increment loop count

maxwalk @ > until

ifloat f /
n @ ifloat f*

drop
I

: element-invert (r c --, f: -- inv) \ solve for Inverse (A) [r] [c]

swap

n @ dup initg adjust-a

0 £0.0

Forth Dimensions 29 July 1994 August

beg in
over

walk-chain

swap 1+ \ increment loop count

>r >r over r> = r> swap \ is last walk at desired column

if f+ else fdrop then \ if so, add to sum

maxwalk @ > until

drop drop
,

: row-invert (r --) \ solve for Inverse(A) row r
\ result returned in array f

n @ dup initg adjust-a

n @ O d o £0.0 i f f! loop

begin
over

walk-chain

f dup f@ f+ f!

\ increment loop count

maxwalk @ > until

n @ 0 do fdup i f dup f@ f* f! loop

drop fdrop
I

floats

: row-solve-init (maxit --)

maxwalk !
2 n !

July 1994 August 30 Forth Dimensions

0.5 0 0 a f! 0.2 0 1 a f!
0.3 1 0 a f ! 0.4 1 1 a f!

: row-solve-test (r maxit --, f: -- x)

rands-start

row-solve-init

row-solve

: element-inv-test (r c maxit --, f: -- x)

rands-start

row-solve-init

element-invert

I

: row-inv-test (r maxit --)

rands-start

row-solve-init

row-invert

: .f (- - 1 \ print array f

cr 2 0 do i f f@ f. loop cr ;

: .a (- -) \ print matrix a
cr
2 0 do

2 0 do
j i a f@ f. loop

cr loop

Forth Dimensions 31 July 1994 August

Listing Five. FILEIO.SEQ I
\ f i l e i o . s e q Words t o make w r i t i n g ASCII t o a f i l e
\ s i m p l e r (u s e s t h e HANDLE code)
\ (c) Copyr ight 1994 E v e r e t t F . C a r t e r . Pe rmiss ion i s g r a n t e d by t h e
\ a u t h o r t o u s e t h i s s o f t w a r e f o r any a p p l i c a t i o n p r o v i d e d t h e c o p y r i g h t
\ n o t i c e i s p r e s e r v e d .

needs f f l o a t . s e q

c r . (FILEIO. SEQ V1.3

\ t o hand le i n p u t of f l o a t s

1 /4 /94 EFC)

dec imal I
: ?wf a i l (t / f --

0= a b o r t " f i l e w r i t e e r r o r " :

: htype (a d d r n --) \ f o r r e p l a c i n g t y p e when w r i t i n g t o a f i l e
seqhandle+ h w r i t e
?wf a i l

: h c r l f (--)

2573 sp@ 2 seqhandle+ h w r i t e
? w f a i l
d r o p

: i t s - t r u e (n -- t)

d r o p -1

: i t s - f a l s e (n -- f
d r o p 0

,

: i s w h i t e ? (c -- t / f)

c a s e
9 of -1 endof

10 of -1 endof
11 of -1 endof
12 of -1 endof
13 of -1 endof
32 of -1 endof

i t s -£ a l s e
endcase

\ s k i p t o f i r s t non-whitespace, s t o r e s it a t a d d r
\ n = -1 i f f i l e r e a d e r r o r
\ n = count of whi tespace s k i p p e d (0 i f none)
: s k i p w h i t e (a d d r -- a d d r n)

0
b e g i n

o v e r dup

July 1994 August 32 Forth Dimensions

1 seqhandle+ h r e a d
1 = i f c @ i s w h i t e ?

e l s e d r o p d r o p -1 e x i t t h e n
whi le

1+
r e p e a t

: hscan (a d d r -- a d d r coun t)

s k i p w h i t e

0 < i f
0

e l s e
1 b e g i n

over over + dup
1 seqhand le+ h r e a d
1 = i f c @ i s w h i t e ? 0=

else d r o p 0 t h e n
w h i l e

1+
r e p e a t
o v e r o v e r + b l swap c ! \ pad wi th a s p a c e a t t h e end

t h e n

: hrewind (--)

seqhand le+ h c l o s e a b o r t " f i l e c l o s e e r r o r "
seqhand le+ hopen a b o r t " f i l e reopen e r r o r "

c r e a t e iobuf 128 a l l o t \ i n p u t d a t a b u f f e r

\ r e a d a s i n g l e f l o a t v a l u e from t h e c u r r e n t l y opened f i l e , p u t on f s t a c k
: read- f loa t (-- n, f : -- x i f ok) \ 1 OK, 0 F a i l

iobuf 1+ hscan swap 1- c ! iobuf c @ 0 >
i f

iobuf fnurnber
f l o a t i n g ? 0= i f f l o a t t h e n \ i f it p a r s e d a s a d o u b l e (i n t) c o n v e r t
1 \ it t o a f l o a t

e l s e
0 \ z e r o i n d i c a t e s a f a i l u r e

t h e n

'brth Dimensions 33 July 1994 Augusi

Forth Nano-Compilers
for Microcontrollers and Beyond

K. D. Veil and P J. Walker I
Sydney, Australia

This paper describes a highly efficient microcontroller
programming system based on Forth. The architecture of
the particular target systems for which this was first
developed demanded an unorthodox compilation method.
During the process, it has become evident that this method
could offer significant advantages in a wide variety of
Forth systems.

Introduction
The Forth programming paradigm exhibits a number of

unusual and desirable features [1,2,31. Forth is inherently
simple, extensible, interactive, and produces very com-
pact code, significant advantages in any environment but
particularly for embedded microcontrollers. Unfortunately
the architectures of many microcontrollers and other
embedded devices (e.g., DSPs) do not lend themselves to
interactive development; worse, the run-time overhead of
Forth's address interpreter can impose an unacceptable
penalty in time-critical applications.

Most of Forth's shortcomings
are a consequence of the
implementation methods,
rather than of the
underlying language concept.

Microcontrollers such as the 8051 family feature a strict
Harvard architecture (code and data spaces are physically
separate), and software development is typically based on
cross-compilation and download of complete object code
programs. This approach has limited interactivity but
overcomes the run-time performance penalty inherent in
native Forth implementations.

Nano-Compi1ers-A Different Approach
We have developed an alternative approach to Forth

object code generation, initially as a cross-compiler for the
Intel 8051 family and subsequently for other processors,
including the 8048, 280, 80x86, and 680x0 families. Our
approach makes each Forth keyword a small and highly

specialised "nano-compiler" which generates the optimal
target machine code to effect the function of that particular
keyword. The current system has been implemented as a
PC-based cross-compiler for a number of microcontroller
targets and also includes a complete native code nano-
compiler set for the host system.

If the target system is on-line via a serial port and
running a minimal interface program, the incremental
code produced can be automatically downloaded from
the development host for immediate execution. It is thus
possible, for example, to type PI. 0 o f f at the host
console with virtually immediate effect at the target port
pin. Typically one would employ Forth extensibility to
rename the relevant part according to its function and
actually type LED o f f or something similar.

The target system is configured as a typical Forth two-
stack machine [4,51, with the top items of both stacks held
in dedicated processor registers for increased speed and
efficiency 161. All standard stack operators are defined and
the target can be set to automatically return its stack
contents to the host after each operation. It thus becomes
possible to interactively program the target processor, to
directly control peripheral devices, and to build defini-
tions in the target memory. It is easy to forget and replace
definitions, as is normal with Forth; it is also easy to
compile standalone modules from source code and down-
load to the target via the serial link. With these facilities,
a complete application can be built word by word and
debugged without the need for a hardware emulator.
Object code for completed applications can be stored in
host files (typically in Intel hex format) for production of
firmware.

The example [given in Figure One1 shows a typical
mixture of immediate access to hardware devices and
high-level definition. It also shows a number of features
discussed in detail in later sections of this paper.

The change to nano-compilers is largely transparent to
the user. If the code generated is not being compiled into
a definition, it is compiled into a dedicated area for
immediate execution after the entry of an end-of-line
character. The traditional interactivity and extensibility of
Forth have been retained but nano-compilation provides

July 1994 August 34 Forth Dimensions

Figure Two. Nano-compiler for 8051 target.

: t (n l n2 - n l t n 2)

IDEPTHl c a s e (s p e c i a l DEPTH; how many v a l u e s
(known a t compi l e t i m e ?)

0 o f (SP) A c c ADD (None, compi l e TOS <- NOS+TOS)

SP INC endof (remove NOS f rom s t a c k)

1 of (TOS i s known)
dup c a s e (check i t s v a l u e)

-1 o f Acc DEC endof (-1 s o u s e machine DEC)

0 o f endof (i t ' s 0 s o n o t h i n g t o c o m p i l e)

1 o f A c c I N C endof (+1 s o u s e machine I N C)

A c c AD1 (else some o t h e r v a l u e ;
compi l e immedia te a d d)

e n d c a s e
+ (else b o t h known; e x e c u t e + a t

(compi l e t i m e)

e n d c a s e ;

a number of significant
advantages over
threaded code interpre-
tation.

As an example, con-
sider the standard Forth
word tused toadd the
toptwostackitems and
leave the result on top
of stack (TOS). If + is
used inside a definition
of a new word, tradi-
tional Forth systems will
compile a reference (di-
rect, indirect, or token)
to the most recent defi-
nition of + found in the
dictionary search path.
In contrast, the nano-
compiler+canoptimise
the code it produces on
the basis of compile-time
information. For ex-
ample, if one or both of
thenumberstobeadded
at run time was entered
as a literal, it is possible
to improve run-time per-
formance by compiling
code appropriate to the
situation.

Figure One. Typical mix of high-level and hardware access. I
rename: P I .0 LED (f o r better r e a d a b i l i t y)
3 c o n s t a n t : b l i n k - f r equency
1 2 0 0 0 c o n s t a n t : c r y s t a l - f r e q u e n c y
v a r i a b l e : c o u n t e r

c r y s t a l - f r e q u e n c y 12 / b l i n k - f r e q u e n c y / c o n s t a n t : r e l o a d - v a l u e
(NB: a l l t h e s e c a l c u l a t i o n s a r e p e r f o r m e d a t c o m p i l e t i m e !)

(Immedia te i n s t r u c t i o n s :)

LED on (u s e r - f r i e n d l y s y n t a x)

~2 . 4 @
LED ! (set LED t o i n d i c a t e

p o r t p i n s t a t e)

c o u n t e r @ l a s t - c o u n t ! (N . B . d a t a - t y p e d ' @)

c o u n t e r @ LED ! (n o t e d a t a t y p e c a s t i n g .
(LED o f f o n l y i f c o u n t e r 0)

(I n a d e f i n i t i o n :)

: c o u n t e r - s t a t u s (- 1
" T o t a l number o f t i c k s i s : " o u t p u t
c o u n t e r @ o u t p u t ; (h i g h l e v e l word ' o u t p u t 1

(i s d a t a t y p e d a c c o r d i n g t o
(" c l a s s l i b r a r y ")

The nano-compiler t
for the 8051 target shows
the basic principle. [See
Figure Two.] Note that
the top stack item is kept
in the 8051's accumula-
tor register to enhance
execution speed.

The nano-compilers
use an embedded as-
sembler, written in Forth,
to generate the target
code. The example
above uses the CPU-spe-
cific instruction set di-
rectly, and the system is
therefore not portable.
More advanced imple-
mentations [I41 enhance
portability by compiling
to target machine code
via a translation layer of generic operations pertaining to
a two-stack virtual machine. This minimises the work
required to port the system to a new target processor. It
also allows each implementation to transparently take
optimal advantage of the particular instruction set of its
target CPU.

The compile-time optimisation principle can be ex-

tended to include automatic removal of redundant opera-
tions. As shown in the example above, top stack items are
typically kept in CPU registers for increased execution
speed; redundant register and memory shuffling can be
easily detected at compile time and eliminated. The
resulting code executes at speeds typical of "hand-tuned"
assembler but with all definitions coded in high-level

Forth Dimensions 35 July 1994 August

Forth. In fact, with the inclusion of interrupt-controlling
words in the compiler described here, complete multi-
interrupt embedded controller applications have been
written without a single line of assembly code 181.

The automatic optimisation produces a simpler and
more "programmer-friendly" interface. ~t relieves the pro-
gammer of the need to know special words like 1+, I-, 2 *,
2 /, and also obviates "tricks" like [<numberl> <num-
be r2> +] LITERAL.

The definition of nano-compilers in high-level code,
such as the c a s e conditional structure in the example
above, enables the user to easily extend the optimisation
if required. The user is also quite free to define new nano-
compilers if the need arises, maintaining Forth's tradition
of providing open and extensible systems.

Extensive user/programmer support is provided by the
compile-time intelligence, for example to compare the
stack comment of a definition with the stack effect in the
definition code, or to check matching of >R and R>
operations with warning messages to the programmer
during compilation but with no run-time penalty. The
repartitioning of cornpile/execute functions confers other
advantages also, for example the removal of the normal
constraint of conditional constructs (IF ,.. ELSE ... THEN,
BEGIN ... UNTIL, etc.) only being able to be used inside
definitions. If being used interactively, execution of com-
piled code is simply deferred until the conditional con-
struct is complete. This feature also allows for conditional
compiling without the need for special compiler directive
words, providing a simpler and more intuitive Forth
system.

A further powerful feature can be added to the system,
using compile-time intelligence to effect "object-oriented
data typing" [91. Even in a relatively simple microcontroller
application, several different data objects and their opera-
tions are likely to be used, for example bit, digit, byte,
word, double, quad, float, as well as port and others
(including special Function register, or SFR, and external
RAM on the 8051). Typically Forth implementations define
special operators for different data types, so the data fetch
operator will have a proliferation of variants: B@, N@, c@,
@, D @ , Q@, F@, P @ , etc. Compile-time detection of object
data type allows the compilation of appropriate code for
the data type, but is invoked by the single orthogonal
operator @. To achieve the performance required by real-
time and embedded applications, it is essential that this
processing occurs at compile time rather than run time [lo,
111.

Rather than embodying the data-type decision process
in a single nano-compiler @, different @ nano-compilers
can be defined in different vocabularies, one for each data
type. This relieves the programmer from having to delve
into a multiplicity of kernel definitions when defining a
new data type. It also allows the use of a vocabulary
search-order mechanism to provide easy inheritance of
methods when defining new data types. By adding
vocabularies of functions for, say floating-point or com-
plex numbers, the equivalent of "class librariesn can be
achieved.
July 1994 August

The option is available to the Programmer of casting
the data type, for example by entering w- @ forcing the
compilation of code for fetch from the word-type vocabu-
lary (w-). The "operator overloading," normally associ-
ated with object-oriented programming, results in a sig-
nificant simplification of the programming task without
taking ultimate control from the Programmer.

Beyond ...
This development was prompted, indeed forced, by

the peculiar limitations of particular microcontroller archi-
tectures. Its usefulness has, however, extwtded well
beyond those initial needs and we believe that the
approach successfully addresses some of Forth's limita-
tions, particularly in meeting the more general require-
ments of scientists and engineers [12].

A significant factor distinguishing scientists and engi-
neers from, say, computerscientists is that whilstscientists
and engineers are often familiar with the fundamental
nature and operational principles of computers, they are
generally more interested in Computer programming as a
means to an end rather than as an end in itself. In general,
the programming environment should be as transparent
as possible, providing a simple and direct linguistic bridge
between problem 2nd solution domains, but without
being an inaccessible "black box."

The scope of scientific and engineering applications
extends over a wide range-from, at one extreme, time-
critical control of hardware interfaces to the manipulation,
analysis and presentation of complex data structures at the
other. It is more than possible that this full range would
be needed in a single system, for example a custom data
acquisition and analysis instrument incorporating an
e d x d d e d microcontroller.

Forth perhaps comes closest to providing scientists
and engineers with the ideal combination of access to
underlying hardware, simplicity, and reconfigurability. It
is very important in experimental and Prototype systems
to be able to develop and test methods quickly; many
systems are constructed on a "one-off" basis with an
inherently limited lifetime. Forth's inherent extensibility
and syntactic freedom provide the possibility of specify-
ing the solution to a problem in language close to the
language of the problem itself rather than having to be
translated via an intermediate (programming) language.
Forth Programs can produce highly self-documenting
code, allowing high-level code sharing by non-expert
colleagues. With Forth, one effectively builds the lan-
guage to meet the problem rather than breaking down the
problem into elements simple enough for a fixed lan-
guage to deal with.

It has even been suggested that Forth could replace the
scientists' outmoded mainstay, Fortran 1131. We do not
intend in this article to attempt an analysis of cultural
factors and fashion trends; factors which may partly
explain Fortran's longevity as well as the recent ascen-
dancy of other languages (particularly C) in engineering
and science applications. We propose however that

36 Forth Dimensions

irrespective of these non-technical factors, Forth itself has
shortcomings that limit its simplicity at the programmer/
user interface and impair its run-time performance in
application to science and engineering problems. Data-
typing complications, distracting stack manipulation, posffi
awkwardness, run-time overhead, and poor facilities for
linkage to non-Forth code collectively mean that Forth is
still an unlikely competitor to more established program-
ming environments. We do however consider most of
these shortcomings to be more a consequence of the usual
implementation methods rather than of the underlying
language concept. We believe that the implementation of
Forth we have outlined in this article may contribute to the
ongoing development of Forth as a rich and powerful
programming tool.

References
1. Harris, K. "The FORTH Philosophy," Dr. Dobb's Jmr-

nal, Sept 1981
2. Kogge, P. "An Architectural Trail to Threaded-Code

Systems," ZEEE Computer, March 1982, p22.
3. Brodie, L. Thinking FORm, Englewood Cliffs (N.J.):

Prentice-Hall, 1984
4. Malinowski, C. "A New 16-bit Realtime Controller sets

new Performance Standards through Direct Execution
of Forth," Harris Corp., 1988

5. ANSUIEEEX3.215-l99x draft proposedANS1 standard
document for Forth.

6. Veil, K. "THInC -An Interactive and Extensible FORTH
Compiler," Proceedings of the Australian Forth Sympo-
sium, Sydney 1988

7. Hand, T. "Forth Readability," Proceedings of FORML
Conference 1%4, p83

8. Medical monitoring products CT100, CT200, CT300,
CS2600, CS3000. Macquarie Medical Systems, Sydney
Australia

9. Pountain, R. Object-Oriented Forth, Academic Press,
London 1987

lO.Paquet, E. "FORTH: Another Dimension," Computer
Language, Vol 3, Dec 1986, p75

11. Noble, J.V. "Scientific Computation in FORTH," Com-
puters in Physics, Sep/Oct 1989 p31.

12. Noble, J.V. ScientiJic FORTH.: A Modem Language for
Scientific Computing, Mechum Banks, 1992

13.Noble, J.V. "FORTRAN is Dead! Long Live Forth,"
Journal of FORTHApplication and Research, Vo15 No
2, 1988

14.Veil K.D. and Walker P.J. "Two-stack Virtual Machine
Simplifies Forth portability," to bepublished,

Klaus D. Veil has a particular interest in programming productivity and code
efficiency. He has used Forth since 1981 in the design of products with
embedded controllers. includina a familv of cardiac monitorino eoui~ment. a

(Fast Forthward, fmmpage 51 .)
While vocabularies give namespace management ben-

efits, they stop short of offering private and public
namespaces, and they stop short of managing routine
interdependencies. Forth also lacks a standard way to
perform module management operations such as those to
specify module interdependencies, to load and release
modules, and so forth.

Small Forth programs certainly don't need any more
partitioning than is provided by a hierarchy of subrou-
tines. But does such a means for reuse scale up well for
larger programming tasks? Perhaps more ambitious Forth
programs would be written if Forth had more provisions
for partitioning and managing large programs.

Join me for similar ponderings (rethinking Thinking
Forth?) in the next installment. The plot is bound to
thicken due to the many subtle twists and turns inherent
in Forth.

11 FORTH and Classic 11
I/ Computer Support I

For that second view on FORTH applica-
tions, check out The Computer Journal. Ifyou run
an obsolete computer (non-clone or PCIXT clone)
and are interested in finding support, then look no
further than TCJ. We have hardware and software
projects, plus support for Kaypros, S 100, CP/M,
6809's, PC/XT's, and embedded systems.

Eight bit systems have been our mainstay
for TEN years and FORTH is spoken here. We
provide printed listings and projects that can run on
any system We provide old fashioned support for
older systems. All this for just $24 a year! Get a
FREE sample issue by calling:

TC J Z i Z P "o""~')I
Lincoln, CA 95648

.. Alamo 23
The Computer Journal 37

" . .
range of ECG recordeis, and a ;;ledical ambulatory monitoring system. Klaus FORTH, I nc. 1 1
is Senior Manager IT at Macquarie Health Corporation (Sydney, Australia) and
past President of the Society of Medical and Biological Engineering. (Forth interest Group .. centerfold, 52
Paul J. Walker has been a lecturer in physics in Australian universities since
1982. He has taught Forth in Physics Instrumentation courses since 1984, and
uses Forth in solar energy and biophysics research proiects. He was convenor
of the Australian Forth Symposium held in Sydney in 1988.

L"I .. 49
MMS41

......................... Silicon Composers 2

Forth Dimensions 37 July 1994 August

Some Vulgar
Functions
Gordon Charlton
Hayes, Middlesex, England

This article develops the ideas presented in the article
"Rational Numbers, Vulgar Words" (FDXV/5) by present-
ing a small selection of higher functions and discussing
their implementation.

A rational representation is of most use in areas of
computation such as combinatorial analysis and probabili-
ties which typically involve the use of simple fractions.
Care still has to be taken to avoid extremely large or small
intermediate results, but rounding errors, such as may be
experienced with floating-point numbers, can be safely
assumed not to occur.

Computations involving the use of irrational numbers
are not any better, on the other hand, done with a rational
representation than with floating point. Although in the
best case a rational representation may represent an
irrational quantity to higher precision than a similar sized
floating-point representation, the worst case may be
worse than floating point. As good floating-point routines
exist for many of the higher functions, it is probably
sensible to restrict the use of rational representations to

A rational turtle,
on the other hand,
is quite appealing

those areas that they are unarguably best at.
It is not, therefore, very profitable to develop a full set

of higher functions for a vulgar wordset. There are,
however, a small set of operators which are of obvious
use. In particular we note that there is much to be gained
from the graphical representation of data. This need not be
very sophisticated, and the familiar turtle graphics nota-
tion is quite suited to the task. I have found integer turtles
to be unsatisfactory. (In part, this is to do with having had
extensive experience with Logo prior to coming to Forth.)
A rational turtle, on the other hand, is quite appealing. All
that is needed for this is a vulgar sine and cosine function.

A review ofwork I have done in Logo and of those Logo
books in my possession showed that, in addition to the
arithmetic primitives, frequent use was made of square

roots and random numbers. These, then, constitute (at
least for my own personal use) a minimum acceptable
subset of mathematical functions for a vulgar wordset. No
doubt, with time additional functions will be added as and
when required, but this is a good starting point.

Vulgar Trig
Having identified not only a set of functions but also

their primary usage, I am able to tailor them to suit that
particular usage. In particular, graphical usage of trig very
often requires both the sine and cosine of a given angle at
the same time. Turtle graphic systems usually expect
angles in degrees, rather than radians or some other
representation which may be more convenient for the
computer or the programmer. Finally, typical usage of
turtle graphics is that the turtle is turned through simple
fractions of a full circle.

Turtle graphics requires a very high degree of accuracy
in its plotting routines, as users expect that, even after an
extremely extended sequence of turns and moves, if the
mathematics says that the turtle should be back at its
starting position, then that is where it should be, not even
one pixel out. Finally, the turtle should have a reasonable
turn speed, which means fairly fast trig routines.

This is a fairly exacting specification, and meeting it
meant a lot of code for something as simple as a sine
function. (In fact, my one-screen development version
grew six-fold meeting the spec.)

For speed, we need to drop out of a vulgar represen-
tation and into scaled integer; and for precision, we will
use double-length numbers and rounding rather than
truncation.

In the code that accompanies this article, I assume that
the code given in the previous article is present on the
system.

We start by looking at the two words UFSIN and
UFCOS. These calculate sine and cosine, respectively, by
Taylors series expansion. As they are set u p initially, they
are good for approximations between zero and one
radians. We will use these to set u p a lookup table for sines
(and, hence, also cosines) between zero and ninety
degrees in degrees, and further extend the range by

July 1994 August 38 Forth Dimensions

making use of the symmetries of the trigonometric func-
tions. UFS IN and uFCOS take their arguments as unsigned
double-length integers, scaled so that the numbers they
represent lie in the range Old<l. (In other words, the high
bit is 1/2, the next bit 1/4, and so on.)

The two preceding screens give us the functionality we
require to use this representation. To multiply two such
numbers, we multiply them as integers giving a quad-
length result, and then rescale by discarding the low-order
cells. (In fact, we do not discard them entirely, but use
them to round off the result using "round to evenn with
Q>UF. Experimentation shows this does improve the
accuracy of the results without significant loss of speed.)
Next we need to be able to &vide such a number by an
integer, again with rounding. MU/R does this.

No special words are required for addition or subtrac-
tion, D+ and D- work just fine.

Finally, we need to convert to and from a vulgar
representation. Converting to is done using the largest
representable scaled number (all bits set) as an approxi-
mation to unity. (We need to shift these one bit to the right
because REDUCE, the vulgar approximation word, ex-
pectssignednumbers.Thisisdonewithrounding.Again,
experimentation has shown this does improve results.
You may notice that a rounded shifted one does still have
the high bit set. I have taken advantage of my knowledge
of the implementation of REDUCE here. I know I can get
away with it!) Converting from is done without rounding,
because experimentation showed it made no significant
difference, and would have increased the amount of code
required.

The words INT-SIN and INT-COS use the sine table
to give very fast sines and cosines of degrees in the range
0 to 360 degrees. As the results are unsigned, the sign
information is carried out by the back door, in the
variables -SIN? and -COS?. This is a bit naughty, but
convenient. These words are not intended to be reusable,
they are merely steps on the way to the vulgar trig words.

Now we can screw down the effective range of UF-
S I N and UF-CoS by reducing the maximum number of
times that they iterate. This is done by 3 SIN-LOOPS !
and 4 COS -LOOPS ! . (These figures are for a 32-bit
implementation, and will be smaller for a 16-bit system, as
would the initial values of ten for both. To figure them out,
add something like " I . " to UFS I N and UFCOS and count
how many times they loop for an argument equal to one
degree, in radians, before LEAVEing. The last trip round
was unnecessary. You may find that you only need one or
two trips round, in which case it is worth unraveling the
loop, and defining words called, say, FRAC-SIN and
FRAC-COS that just do the required. They are one-liners,
and, as authors say when they can't be bothered to do the
work themselves, are left as an exercise for the reader.)

Time for a bit of algebra:

s i n (A + B) = s i n A c o s B + c o s A s i n B
c o s (A + B) = c o s A c o s B - s i n A s i n B

These are the addition formulae for sine and cosine. By
Forth Dimensions

making use of them, we can compute both the sine and
cosine of an angle almost as fast as we can compute the
sine or cosine alone. This is our reason for dealing with the
integral and fractional parts of the angle separately.
Basically, the integral part is A and the fractional part is B.
Having calculated sine and cosine ofA and B once, we can
combine them in two different ways to obtain sine and
cosine of A+B. The word VSINCoS does this, along with
converting from and to a vulgar representation, and
between degrees and radians as required, and reducing
the range to 0 to 360 degrees. For simplicity, I have mostly
forsaken the stack in favour of variables. I'm not proud.

To finish off, I have given the basic trig functions in a
more recognisable form for the sake of completeness,
although, as noted above, it was vS INCOS I really wanted.

Vulgar Square Roots
Although it is possible to derive square roots of vulgar

fractions directly from their continued fractions, it is
quicker to slip into scaled integers again, so this is what I
do. First of all we note that;

sqrt (A / B) = sqrt (A * B) / B

This means we need only compute one square root. A little
thought shows that the minimum necessary representa-
tion for best accuracy is scaled quad-length integer. This
is achieved by the classic longhand method, for the simple
reason that I have played with this a lot, so found it easy
to adapt to deal with quad-length numbers. Note, how-
ever, that in order to provide a definition that runs
equivalently on 16- and 32-bit systems, I have used a
recursive definition that really hammers the stack. In 32
bits, in the worst case, it puts around 64 items on both the
data and return stacks before bottoming out. It is an easy
enough task to flatten out the recursion (an exercise for the
reader!) at the cost of portability.

Note also that QSQRT cannot handle numbers with
either of the two most significant bits set, because the
remainder, which is accumulated as a double number, will
overflow. This is not so dreadful. It means that, on a 32-
bit system, the largest number it can handle is around 85
sextillion (85 undecillion in the American system) rather
than 340 sextillion if all the bits were available. (For 16 bits,
the numbers are 4.6 trillion-USA 4.6 quintillion-and 18
trillion.) If the third most significant bit is set, as it will be,
the remainder can overflow on the way out of the routine,
but this does not affect the result, other than destroying the
possibility of rounding off. We do not need this facility to
obtain best precision in the vulgar square root.

The word >TOP does the opposite of normalising a
vulgar number, by ensuring it occupies as many bits as
possible, short of the sign bit. This is done so that QSQRT
will give as many significant bits as possible in its result.
This form of scaling takes advantage of a different way of
interpreting a vulgar number. Instead of thinking of it as
a numerator and denominator, we can regardit as ascaled
integer accompanied by its scaling factor, so 1/2 is one
scaled by a factor of two, which is equal to hex 2000 scaled

39 July 1994 August

ccV~lgar" Glossary

: T* (ud u- -u t)
Multiply unsigned double by unsigned single, giving unsigned
triple result.

: D= (d l d2--f)
Return true if double d l is equal to double d2, otherwise false.

: Q* (u d l ud2--uq)
Multiply unsigned double by unsigned double, giving unsigned
quad result.

: Q>UF (uq--uf)
Convert scaled quad to scaled double with rounding. Scaling is
such that represented numbers are in the range Mx<l. Rounding
is "round to even."

: UF* (u f u f - - u f)
Multiply unsigned scaled double by unsigned scaled double,
giving unsigned scaled double result. See Q>UF for details.

: MU/R (u d u--ud)
Divide unsigned double by unsigned single with rounding,
giving unsigned double result. Rounding is to even.

: T/ (u t u--ud)
Divide unsigned triple by unsigned single, giving unsigned
double result.

: M*/ (u d u l u2--ud)
Multiply unsigned double by unsigned single u l , and divide by
unsigned single u2, giving unsigned double result. Triple-length
intermediate product is used to avoid overflow.

c o n s t a n t ONE
Nearest approximation to unity allowed in scaled system de-
scribed in Q>UF.

: UF>V (uf- -v)
Convert scaled double (as above) to vulgar.

: V>UF (v--uf)
Convert vulgar to scaled double (as above). Vulgar should have
no integral component, and be positive.

2 c o n s t a n t P I
Vulgar approximation to pi.

: DEG>RAD (v--v)
Convert angle expressed in vulgar degrees to angle expressed
in vulgar radians.

: RAD>DEG (V--v)
Convert angle expressed in vulgar radians to angle expressed in
vulgar degrees.

v a r i a b l e ' D-
State variable for D-.

: D- (d l d2--d3)
D- alternately adds d l t o d2 or subtracts d2 from d l , giving result
d3 on successive calls.

2 v a r i a b l e XA2
Used by UFSIN and UFCOS as a multiplier for the recurrence.

v a r i a b l e SIN-LOOPS
Used by UFSIN to control the maximum number of iterations, for
optimisation purposes. Values are implementation dependent.

: UFSIN (uf --uf)
Returns sine of argument in scaled format as above. Argument
is also unsigned scaled double, in radians. Valid range is 0 to 45
degrees, later reduced to 0 to 1 degree.

v a r i a b l e COS-LOOPS
Used by UFCOS to control the maximum number of iterations,
for optimisation purposes. Values are implementation depen-
dent.

: UFSIN (uf - -u f)
Returns cosine of argument in scaled format as above. Argument
is also unsigned scaled double, in radians. Valid range is 0 to 45
degrees, later reduced to 0 t o 1 degree.

: MAKE-TABLE ()
Constructs parameter field of SIN-TABLE.

c r e a t e SIN-TABLE
Holds sines of angles 0 to 90 degrees in degrees as scaled
doubles, as above.

: SIN@ (n--uf)
Returns sine of integer n, range 0 to 90 degrees, in scaled format.

v a r i a b l e -SIN?
Tnreif argument most recently returned by INT-SIN should be
negative, fake otherwise.

: INT-SIN (n--uf)
Returns sine of integer n, range 0 to 360 degrees, in scaled
format.

v a r i a b l e -COS?
Trueif argument most recently returned by INT-COS should be
negative, false otherwise.

: INT-COS (n--uf)
Returns cosine of integer n, range 0 to 360 degrees, in scaled format.

2 v a r i a b l e COSI
Used by VSIN-COS. Holds cosine of integer part of argument.

2 v a r i a b l e COSF
Used by VSIN-COS. Holds cosine of fractional part of argument.

2 v a r i a b l e SIN1
Used by VSIN-COS. Holds sine of integer part of argument.

2 v a r i a b l e SINF
Used by VSIN-COS. Holds sine of fractional part of argument.

: STRIP .SIGN (v--f v)
Returns absolute value of vulgar. Flag is true if vulgar was
negative, fake otherwise.

: PARTIAL.RESULTS (v)
Sets variables used by VSINCOS, based on argument, a positive
vulgar representing an angle in degrees.

: DO-SIN (f--v)
Returns sine of argument to VSINCOS, as a vulgar. Result is
negated iff is true, i.e., argument to VSINCOS was negative.

: DO.COS (--V)

Returns cosine of argument to VSINCOS, as a vulgar.

: VSINCOS (V--vl v 2)
Returns sine (vl) and cosine (v2) of argument, an angle in
degrees, expressed as a vulgar.

July 1994 August 40 Forth Dimensions

: VSIN (v--v)
Returns vulgar sine of vulgar argument, in degrees.

: VCOS (v--v)
Returns vulgar cosine of vulgar argument, in degrees.

: VTAN (v--v)
Returns vulgar tangent of vulgar argument, in degrees.

: VSEC (v--v)
Returns vulgar secant of vulgar argument, in degrees.

: VCOSEC (v--v)
Returns vulgar cosecant of vulgar argument, in degrees.

: VCOT (v--v)
Returns vulgar cotangent of vulgar argument, in degrees.

: >> (u--u)
Returns top two bits of number, shifted to extreme right.

: 4U/MOD (ul--u2 u3)
u3 is result of dividing unsigned number u l by four; u2 is the
remainder. Uses bit-masking for speed.

: 4Q/MOD (uql--u uq2)
uq2 is the unsigned quad result of dividing unsigned quad uql
by four; u is the remainder. Uses bit-masking for speed.

QO= (q-- f)
Flag is true if quad argument is zero, false otherwise. I -
: D2* (d--d)
Doubles double number.

: D4* (d--d)
Multiplies double number by four.

: (QSQRT) (u uq--ud ud)
Recursive portion of QSQRT.

: QSQRT (uq--ud)
Returns double square root of quad number. Result may be in
error if uppermost two bits of uq are 1.

: >TOP (v--v)
Denormalises vulgar number by shifting numerator and
denominator as far left as possible without altering the value
of v.

: VSQRT (v--v)
Returns vulgar square root of vulgar number.

: DNOT (d--d)
Returns bit-wise inverse of double number.

: DXOR (d l d2--d)
Returns bit-wise exclusive-or of doubles d l and d2.

: FUNC-G (d d c l dc2--d)
Weird. See Numerical Recipes for details.

: PSEUDO-DES (d d--d d)
Weird. See Numerical Recipes for details. For 16-bit version,
omit portion of double literals after the comma. In ANS
systems, the comma should be a period.

2 v a r i a b l e COUNTER
State variable for RANDOM.

2 v a r i a b l e SEQUENCE#
State variable for RANDOM.

: START-SEQUENCE (d d)
Initialises random-number generator. TOS specifies which
random sequence is to be generated. All double numbers
specify different sequences. 2 0 s specifies where in the
sequence to commence. All double numbers specify different
starting positions.

: RANDOM (--d)
Returns the next double number from the specified sequence
of random numbers. All numbers are equally likely.

: VRAND (--v)
Returns a random vulgar in the range OIv11. Sequences are
as per RANDOM.

41 July 1994 August Forth Dimensions

by hex 4000 after >TOP is applied in a 16-bit system.

Vulgar Random Numbers
As I have no idea what REDUCE would do to a number

generated by, say, a linear congruential generator, I have
assumed that it is probably death to anything but the most
robust random-number generators. Therefore, I have used
the best one I could find, which is RAN 4 from the second
edition of Numerical Recipes by Press, et al. This has been
extended using the method they advise to generate 64-bit
random numbers. (16 bitters, omit the part of the double
number that comes after the comma. This gives 32-bit
random numbers on a 16-bit system. My system uses
commas, not periods, in double numbers.)

To start up, the generator takes two double numbers.
The top one selects which sequence will be generated,
and the second indicates where in the sequence to start
from. RANDOM then spits out successive numbers in that
sequence. All the bits are good, so the range can be
reduced using MOD with impunity. How RANDOM works is
very technical; see Numerical Recipes and be prepared to
have your thinking gland put through the wringer.

VRAND returns uniform deviates in the range 0911.
(Rounding is the nature of the beast; if you prefer O<V<l,
test explicitly for zero and one and call RANDOM again.)

Conclusion
This completes, at least for the time being, my exposi-

tion of rational number representations. I would be
pleased to hear from anyone who cares to define addi-
tional higher functions, or who can suggest improvements
to the code given here.

References
In addition to the references given in the previous

article, I mention the Longman Mathematics Handbookby
Keith Selkirk, which now falls open on the pages about
sine and cosine if I even glance in its general direction.

Good books about Logo and turtle graphics are Com-
puter Science Logo Style by Brian Harvey, and Turtle
Geometry by Harold Abelson and Anrea diSessa.

Doing square roots longhand is clearly explained in the
Encyclopaedia Britannica.

been
tall, handsome, witty, intelligent, charming, and world famous. Gordon is also
quite tall. He wishes to thank readers of Forth Dimensions for not responding
to his request for a rigorous descriptionof the Ratcliffe-Obershelp algorithm, as
this prompted him to develop a rather better one himself.

Listing: Vulgar Functions

\ unsigned double-length fractional multiplication
: T* (ud u--ut) t u c k um* 2swap um* swap >r 0 d+ r> - r o t ;

I : D= (d d--£) r o t = - r o t = and ; I

: Q* (ud ud--uq) swap 2over r o t >r >r >r t *
r o t r> r> r> t * r o t >r r o t 0 d+
swap >r 0 d+ r> r> swap 2swap ;

: Q>UF (uq--uf) 2over 0 h i g h b i t d=
I F 2swap 2drop over 1 and

ELSE 2swap 0 h i g h b i t ud< n o t n e g a t e THEN 0 d+ ;

: UF* (uf u f - -u f) q* q>uf ;

\ UD-fractional conversion routines
: MU/R (ud u--ud) >r 0 r@ um/mod r@ swap >r um/mod r>

r o t 2* dup r@ =

I F r> 2drop dup 1 and ELSE r> u> n e g a t e THEN 0 d+ ;

: T / (u t u--ud) dup >r um/mod - r o t r> um/mod n i p swap ;
: M*/ (ud u u--ud) >r t * r> t / ;

-1, 2 c o n s t a n t ONE
: UF>V (uf--v) 2 mu/r [one 2 mu/r 1 d l i t e r a l r educe ;
: V>UF (v--u£) one 2swap m*/ ;

July 1994 ~ u ~ u s t Forth Dimensions

3,141592653589793238 v u l g a r i s e 2 c o n s t a n t P I
: DEG>RAD (v--v) [p i 180 s > v v /] d l i t e r a l v* ;
: RAD>DEG (v--v) [180 s>v p i v /] d l i t e r a l v* ;

\ UD-f rac t iona l s i n e , c o s i n e (by T a y l o r s series expansion)
v a r i a b l e Id-

: D- (d d--d) Id- @ dup n o t Id- ! I F d t ELSE d- THEN ;

2 v a r i a b l e XA2
v a r i a b l e SIN-LOOPS 10 s i n - l o o p s !
: UFSIN (uf--uf) 0 Id- ! 2dup 2dup 2dup u f * xA2 2 !

s i n - l o o p s @ 1 DO xA2 2@ i 2* dup 1+ * mu/r u f *
2dup o r 0- I F LEAVE THEN
2dup >r >r d- r> r> LOOP 2drop ;

v a r i a b l e COS-LOOPS 10 cos - loops !
: UFCOS (uf--uf) 0 Id- ! 2dup u f * xA2 2! one one

cos - loops @ 1 DO xA2 2@ i 2* dup 1- * mu/r u f *
2dup o r 0- I F LEAVE THEN
2dup >r >r d- r> r> LOOP 2drop ;

\ i n t e g e r - f r a c t i o n a l s ine and cosine (by t a b l e lookup)
: MAKE-TABLE 4 6 0 DO i s > v deg>rad v>uf u f s i n , , LOOP

0 44 DO i s > v deg>rad v>uf u f c o s , , -1 +LOOP ;

c r e a t e SIN-TABLE make- table
: SIN@ (n--uf) 2* c e l l s s i n - t a b l e + 2@ ;

v a r i a b l e - s i n ?
: INT-SIN (n--uf) dup 189 > dup - s i n ? ! IF 180 - THEN

dup 90 > I F 180 swap - THEN s i n @ ;

v a r i a b l e -cos?
: INT-COS (n--uf) dup 180 > IF 360 swap - THEN

dup 8 9 > dup -cos? ! I F 90 - ELSE 90 swap - THEN s i n @ ;

\ v u l g a r s i n e - c o s i n e (by serial e x p a n s i o n / t a b l e h y b r i d) ...
3 s i n - l o o p s ! 4 cos- loops ! \ UFSIN, UFCOS l i m i t e d t o 0-1 d e g

2 v a r i a b l e COSI 2 v a r i a b l e COSF 2 v a r i a b l e SIN1 2 v a r i a b l e SINF

: STRIP-SIGN (v--f v) 2dup vO< - r o t vabs ;

: PARTIAL.RESULTS (V)

2dup v>s 360 mod dup i n t - s i n s i n i 2 ! i n t - c o s c o s i 2 !
v f r a c deg>rad v>uf 2dup u f s i n s i n £ 2 ! u f c o s cos f 2 ! ;

: DO.SIN (f--v) s i n i 2@ c o s f 2@ u f * c o s i 2@ s i n £ 2@ u f *
- s i n ? @ -cos? @ = IF d + ELSE d- THEN
uf>v r o t - s i n ? @ x o r I F vnega te THEN ;

\ v u l g a r s i n e - c o s i n e (by serial e x p a n s i o n / t a b l e h y b r i d)
: DO.COS (--v) c o s i 2@ cos f 2@ u f * s i n i 2@ s i n f 2@ u f *

- s i n ? @ -cos? @ = IF d- ELSE d+ THEN
uf>v -cos? @ I F vnega te THEN ;

I 1
Forth Dimensions 43 July 1994 August

: vSIN (v--v) v s i n c o s 2drop ;
: VCOS (v--v) v s i n c o s 2swap 2drop ;
: VTAN (v--v) v s i n c o s v/ ;

: VSEC (v--v) vcos r e c i p r o c a l ;
: VCOSEC (v--v) v s i n r e c i p r o c a l ;
: VCOT (v--v) v t a n r e c i p r o c a l ;

\ quad square root -- low-level b i t manipulation
: >> (U--u) dup 1 and I F [h i g h b i t 2 / h i g h b i t x o r] l i t e r a l

ELSE 0 THEN
swap 2 and IF h i g h b i t o r THEN ;

: 4U/MOD (U--U U) dup 3 and
swap 2 / 2 / [h i g h b i t 2 / n o t] l i t e r a l and ;

\ quad and vulgar square root
: (QSQRT) (u q--ud ud) 4dup qO=

I F 2drop 0 - r o t
ELSE 4q/rnod RECURSE

d2* 2dup >r >r
d2* 1, d+ 4dup ud<
I F 2drop d4* 0 - r o t d+ r> r>

ELSE d- d4* 0 - r o t d+ r> r> 1, d+ THEN THEN ;

: QSQRT (uq--ud) >r >r 0 - r o t r> r> (q s q r t) 2swap 2drop ;

: >TOP (v--v) BEGIN 2dup o r h i g h b i t 2 / and 0=
WHILE 2* swap 2* swap REPEAT ;

: VSQRT (+v--v) > t o p dup >r urn* 0 0 2swap q s q r t 0 r> reduce ;

\ vulgar random-number generator -- 32-bit Version
: DNOT (d--d) swap n o t swap n o t ; hex
: DXOR (d d--d) r o t x o r >r x o r r> ;
: FUNC-G (d d c l dc2--d) >r >r dxor 2dup urn* 2swap dup urn*

d n o t r o t dup um* d+ swap r> r> dxor d+ ;

: PSEUDO-DES (d d--d d)
2swap 2over BA~96887,E34C383B 4~OF3B58,3D02B5F8 func-g dxor
Zswap 2over 1E17D32C139F74033 E874FOC3,9226BFlA func-g dxor
2swap 2over 03BCDC3C160B43DA7 6955C5A6,1D38CD47 func-g dxor
2swap 2over OF33D1~2~65E9215B 5 5 ~ 7 C ~ 4 6 , ~ 3 5 8 B 4 3 2 func-g dxor ;

2 v a r i a b l e COUNTER 2 v a r i a b l e SEQUENCE#
: START-SEQUENCE (d c o u n t e r d s e q #) sequence# 2 ! c o u n t e r 2 ! ;
: RANDOM (--d) sequence# 2@ c o u n t e r 2@ pseudo-des

2swap 2drop c o u n t e r 2@ 1, d+ c o u n t e r 2! ;
: VRAND (--v) random h i g h b i t n o t and

[-1 -1 h i g h b i t x o r] d l i t e r a l r educe ; dec imal

July 1994 August Forth Dimensions

Run the program by typing 3 1 4 1 6 10 0 0 0 FRACLIST
As a first approximation, we have 3 + (1416/1OOOO).
The remainder is then processed as 1/1/(1416/10000)

Numbers
Convert Real

+ 1/16 + (8/88) or 355/113 + (8/88).
The last step is 355/113 + 1/1/(8/88) or 355/133 +

1/(88/8) or 355/113 + 1/11. Now, there is no remainder,

or 1/(10000/1416) or I n + (88/1416). So, pi now is 3 +

1/7 + (88/1416) or 22/7 + (88/1416).
This remainder can be further processed as 1/1/(88/

1416) or 1/(1416/88) or 1/16 + (8/88). So pi now is 22/7

1 Walter J. Rottenkolber

to Fractions
I Mariposa, California

so we should have the original fraction or its equivalent.
Calculatingitout (355 11 22+) / (113 11 ' 7 +)or3927/

= 3.1416. and the process en..
Usually, the larger fractions are more accurate, but not

necessarily, so you need to check. In the above list, 355/
113 = 3.1415929, and 3927/1250 = 3.1416. Since pi =

3.14159265, you can see that the smaller fraction is actually
the more accurate.

decimal places.
The program generates such a fraction series, and sums

it at each step into a single fraction so that a list of fractions
is created.

To run the program, you must first convert the real
number to a fraction to the base (radix) ten. If you start
with pi = 3.1416, convert it first to a fraction by dividing
by an appropriate multiple of ten, i.e., 31416/10000.

Most formulas use real numbers, especially in the odd
constant, logarithm, or trigonometric value. Charles Moore
prefers Forth to use scaled integer arithmetic. So how do
you find the fraction that best describes the real number,
especially if the fraction needs to be small enough to use
in signed number operations?

This program generates a list of fractions equivalent to
a real number by means of a mathematical concept called
continued fractions. This is based on Euclid's algorithm
for the greatest common denominator, and Knuth ex-
plores it in depth. A more popular description for C
mavens was given by Mark Gingrich.

A short version of pi = 3.1416 could be represented by
a continued fraction:

3 + 1

7 + 1

16 + 1

11 + ...

Mathematicians use the shorthand [3;7,16,11,. . .I which
eliminates the denominator of 1 for the initial integer, and
the numerator of 1 for the fractions.

This fraction series can be rewritten as:
3 / 1 + 1 / 7 + 1 / 1 6 + 1/11 ...
If the IZal number is rational, the series will Stop; but if the
number is irrational, as most are, the series continues
indefinitely. As you add up the fractions, the real number
generated by dividing through the summed fraction will
oscillate about the true value of the real number while
steadily approaching it. In the above series of fractions, the

1 first three add up to 355/113, which approximates pi to six

If you attempt to define a substitute word, e.g.,
: 2R> (- n n) R > R > ;
you will only mess up the return stack and cause a system crash.

Running the program with pi = 3.1415 will produce a
longer and somewhat different list.

The precision and range of the program depends on
the size of the integers used (i.e., 16- or 32-bit integers) and
whether unsigned integers are used. It's important that
you double-check the value of the real number generated
by the fraction (I use a pocket calculator), and that the size
of the numbers in the fraction match the range of the
scaling operators (e.g., '4 used in the calculation. Remem-
ber, most scaling operators use signed integers.

Two programs are listed. The first is based on unsigned
16-bit integers, because Laxen and Perry's F83 has limited
double-arithmetic routines. This restricts the range of real
numbers that can be processed, though accuracy can be
surprisingly good. The second program can be used if your
Forth has a double, unsigned multiply and divide. The
double-integer routines of Tim Hendtlass work just fine.'

References
Knuth, Donald E. 7be Art of Computer Programming, Vol. 2:

SeminumencalAlgoritbm, 2nd ed., pg. 339. Reading, Massa-
chusetts: Addison-Wesle~.

Gingrich, Mark. 75e C Users Journal, Feb. 1393. Vol. 11, no. 2,
pp. 35-43.

Hendtlass, Tim. "Math-Who Needs It?" Forth Dimensions, Vol.
14, no. 6.

*In Tim Hendtlass' 32-bit routines ("Math-Who Needs It? FD
XIV/6), he uses some words that d o not grace Laxen and Perry's
F83. These are best handled by in-line expansions as follows:
2 x 1 => >R >R
2R> => R> R>
2 R @ => R> R @ OVER >R
DUP>R => DUP >R

Walter J. Rottenkolber bought his first computer in 1983. Early on, he experi-
menled withfig-forth and other languages, but gravitated toassembler until re-
introduced to Forth in 1988. Forth provides the same close-to-the-silicon
feeling as assembler, but without the pain. Interests include small embedded
systems, programming, and computer history, about which he enjoys writing.

Forth Dimensions 45 July 1994 August

Convert Real Numbers to Fractions I

11
0 \ Real Number t o Fraction Generator
1
2 W R I W DLDMCl W R I W NEWH
3 WRlRBLE DUlDENOn W R l W NEWm
4
5 : W (u u - u) U # t D R O P ;
6 : UlrWD (u u - ur uq 1 0 SWAP UH/HOD ;
7 : U/ (u u - uq 1 UllWD NIP ;
8 : W l D (u u - u r 1 UIMDDDROP;
9

10 : INITFIWC (- 1
11 0 W ! l N E W !
12 1 UDENOW! BNEHDENUM! ;
13
14 --)
15

12
0 \ Real Nurber t o Fraction Generator
1
2:slwNlJH (- 1 N E W N U I P ~ ! ;
3:SCWDENOn (- - I NEUDENOIIP~DENOII!;
4
5:CRLCNUl (u - 1
6 NBJNUM@WolDNur@tsFKMUrNEWNUl!;
7
B:CRLCMNM4 (u - 1
9 ~ e ~ ~ D E N O W e + s R v w r o M H E W D E N O l l ! ;

16
11 :PRNFRRC (- -)

12 R W M ~ ~ ~ I F C R N M N U ~ ~ P ~ U . R
13 ." /"NEUDENDn@U.THEN;
14
15 -)

14
MIRBlHRR93 \ Real Number to Double Fraction b r a t o r

: INITFIWC (- 1
0. OiDNM 2! 1. NEWH 2!
1. w m 2! 0. NUDENOn 2! ;

15
WJRlWR93 \ Real Number t o Double Fraction Generator tUR15WIR93

: S M (- 1 t €wM2@omLM2! ;
:SCWDENOCI (- 1 NEWDENOn2@Du)DDWm2!;

:CRLWM (u d - 1
NEuN!M2@UDtomLM2@D+MNRMUl2! ;

:CWCMNOCI (u d - 1
N E W D E N O ~ ~ ~ ~ D E N O I I ~ D ~ ~ N E W D E N ~ ~ ~ ! ;

: PRNFIWC (- 1
NEWNUl 2@ DS NOT IF CR t€wM 2@ 11 UD.R ." /"NEWDENm2@UD.THEN;

-)

13 16
0 \ Real Number t o Fraction Generator M IR1~R93 \ Real nu be^ t o Double Fraction Generator kJR1511FIR93
1
2 : NXTFRRC (num d e m - num' denon' 1 TUM(WIOD ; : NXTFRRC (ud-nun u d d m -- ud-nu' ud-dem9 1
3 : W W ? (n ludeno rs - - f WDb; 2swRp2WERUDllOD;
4
5 : CRLCFRiX (n w denom - 1 : ENDFRRC? (ud-nu u d d e m - f 1 UDIIOD DS ;
6 2WUI WJPCRLW
7 CRLCDENOCI PRNFRRC NXTFRRC ; : CWCFIWC (ud-nu ud-dem - 1
B 4 w UD/ rn mm
9:LRSTFRRC (u u - 1 UU-ERRC2DROP.~neUCR; CRLCDENOM PWYFIWC NXTFRRC ;

10
11 : FRRCLIST (num d e m - 1 : LRSTFRRC (u d u d - 1 CCYCFWX:2DRDPi?DR[W,." DoneTR;
12 INITFRK
13 BEGIN WERE 2 W ENWRRC? UNTIL : DFWKXIST (ud-nu uddenoa - 1
14 LRSTFW ; INITFW BEGIN CRLCFW 4DUP ENDFRRC? M I L

1 15 LffiTFRRC ;

I Forth 83 W e l

July 1994 August 46 Forth Dimensions

(Letters, from page 6.)
has been used by many to develop applications and
perform system integration without having to deal with the
complexity of a full-blown UNIX environment up front.
Traces of this Forth heritage still exist in the boot process
on most SPARC-based UNIX workstations. Today we see
that this heritage is being extended to other systems as
well, in the form of Open Firmware.

Open Firmware is an outgrowth of the IEEE PI275
working group on boot firmware which promises to
provide a high degree of processor and peripheral inde-
pendence. The goal is that the processor will not have to
have prior knowledge about which specific peripherals
happen to be connected. During the boot process, all
peripherals will be probed to identify themselves and to
provide their software drivers as needed. True indepen-
dence is achieved by using Fcode, a kind of Forth, both in
the processor's boot process and in the peripheral's BIOS.
The processor gains the advantage of not having to be
aware of all the various kinds and models of peripherals
that might possibly be connected. Instead, each peripheral
is responsible for telling the processor what it is and how
to communicate with it. The peripheral gains the advan-
tage of being able to specify a common interface and
software driver regardless of which specific processor it is
connected to. Once probed, it provides a universal soft-
ware driver (written in Fcode) to the processor which is
interpreted or compiled to establish the communication
link. The communication is two-way, so if there happens
to be an advantage to the processor or the peripheral to
use other than this Fcode interface, that information can
be passed on and utilized to establish a specific link. A
good, one-page description of this is found in the April
1994 issue of BY7E (page 63).

Also, I have found Forth in high use at the other end
of the computing spectrum, application-specific languages
and environments. FIG offers a small book titled Write
Your Own Programming Language Using C++ which
gives a taste of this, but the one premier example I found
of this is TILE.

TILE is a Forth written in C and intended for use in the
UNIX environment. It is not a toy language nor is it just an
educational example. (This is not to imply that other
Forths are toys.) Rather, it allows interactive development
of applications without continuous recompilation and
without exhibiting the performance degradation that
plagues most interpretive programming environments.

As the application environment develops, selected
pieces of code can be compiled as new Forth primitives
and/or re-coded and compiled in C or another language
of choice. This is not new to Forth. We have always
allowed recompilation of the kernel to take advantage ol
the speed of compiled code. What makes TILE interesting
is the ease in which this is done. TILE also allows dynamic
linking with compiled modules from other languages, and
in this sense it maximizes code reuse.

Also note that, by building on C, no special handles 01

modifications of the environment commonly found ir
UNE systems had to be generated. Common UMX tools
like profiles, linkers, editors, and such are all still available

Forth Dimensions

'et while running in TILE you have the look and feel of
full-blown Forth development environment. If you

lesire to explore the use of Forth or application-specific
anguages under UNIX, you should take a look at TILE. (By
he way, early versions ofTILE were easily ported to DOS.)

As a Forth enthusiast, I am glad to see these develop-
nents. I feel lucky that my job allows me to work at both
:rids of the computing spectrum and that I can use a
:ommon programming tool throughout: Forth.

Warren Bean
iustin, Texas

Forth's Three Problems
]ear Mr. Ouverson:

Before I launch into what will be a very critical letter,
et me say that nothing I say should be taken personally,
~y you or by any of the many people who have brought
:orth and FIG to where they are today. Your contributions
Ire all selfless and noteworthy. To introduce myself, I am
lot a professional programmer, though I was a project
:ngineer on a vacuum tube computer in 1949-1952, and
nave programmed professionally in the distant past and so
am not without some perspective.

However, I am disappointed! I recently rejoined FIG
after an absence of some four years. What I find is no
2vidence at all that the four years have led to any progress.
Quite the opposite, when I left I had the feeling that the
then-new progress toward an ANSI standard would move
Forth into the mainstream and make of it the serious
programming system I was looking for. What I find now
is that the ANSI standard is not listed or even mentioned
in the FIG publications insert and appears to have been
relegated to only occasional reference here and there in
FD.

Before going on, let me say amen to Jim Mack's letter
in FD W/5). It had the effect of inspiring me to write a
similar, if somewhat narrower, opinion. Meuris, Vande
Keere, and Vandewege also made some telling, if less
emotional, points. Their thrust toward embedded real-
time control is of course valid, but if that is all Forth can
be then it is not for me!

Forth has only three problems: no effective standard,
no effective standard, and no effective standard. ANSI may
exist (I cannot even tell from FD), but if FIG does not
support it strongly, its existence is academic! What do I
suggest? In a word, leadership!

Clearly, the creative thrust that has taken Forth so far
in so many directions must not be blunted. Rather, a
common origin for that thrust must be established. In what
follows, I use the ANSI standard as a target. I recognize my
own limited knowledge in this respect and would readily
accept the substitution of a different standard if those more
knowledgeable than myself can agree upon it. Some, not
which, standard is what is important, but widespread
acceptance is essential.
1. FIG must make the ANSI standard its centerpiece. If the

standard exists, copies must be made available to all
FIG members at nominal or no cost. If the standard

July 1994 August

does not yet exist, the main focus of FD should be to
bring it into existence quickly and spread the good
news.

2. FD should publish no code that is not ANSI standard,
or made to be ANSI standard by an appropriate and
required prefix. No exceptions!

3. Advertisements from Forth vendors must be required to
state clearly the status of all products advertised regard-
ing the ANSI standard, and further to offer ANSI
standard upgrades if they do not meet the standard.

4. The creation of a low-cost basic ANSI standard Forth
system must have high priority. We had fig-Forth
before, what we need now is ANSI fig-Forth (FIGA-
Forth?) for all of the popular platforms.

5. All products distributed by FIG must meet the same
requirements placed on advertisers.

The above is probably not sufficiently complete, but I
hope it conveys the message-namely, Leadership!

For myself, I can only say that unless I see strong
leadership emerging, I must once again abandon the ship.
The current version of FIG simply does not deserve
support! I love Forth, but it is dying and crying out for
leadership!

With great hope,
Bernard H. Geyer
Prescott, Arizona

Editor's reply:
As a preface, I should note that creation of an ANS
languagestandard usually requires years of collaboration
between interested parties who follow a process that is
strictly controlled and supervised by ANSI. The lengthy
process appears to be designed to ensure access, complete-
ness, care, and fairness, and toprevent special interests or

We strongly advise professional

debated again in the case of ANS Fortb. I will just say
that, while this seemingly small step would put a tidy
organizational seal of approval on ANS Fortb, it ako
would greatly diminish FD's support of readers who
choose not to adopt the new standard immediately or
who are notyetskilled enough in Forth to translate from
one dialect to another, and it would censor some
valuable authors whose work is not written in the
cuwmt standard of choice.

3. I wouldn't want to require advertisers to do this, but
smart vendors of ANS-compliant products certainly
should trumpet that news in FD advertising. That's
basic business sense. (Right?)

4. You really lit thefuse with this one. Vendors historically
have complained that FIG3 distribution ofany low-cost
orpublic-domain Fortb system hurts theirsales. On the
other hand, such systems' use as outreach tools, intro-
ductions to Forth, and platforms for experimentation
and innovation probably provide some benefits to ev-
eryone in the Forth business. On the other, otherhand.. .
the arguments go on and on.

As John Hall recently wrote in apress release regarding
ANSForth, 'Forserious development, we strongly advise
professional Forth programmers to take advantage of a
product from one of the Forth vendors. Those vendors
can offer the technical support, bug fkes, and stability
that soware developers cannot afford to be without.. . "
I wonder how the incidental sales of public-domain
Forths can compete in any serious way with profs-
sionalsystems. '(here is no tech support, no RCD budget,
little or no documentation, no consulting semice, and
no marketing. Someone will undoubtedly provide a
public-domain ANS Forth, if history repeats itselJ but
surely that would not have any real impact on those
business-minded vendors who create, market, andsup-
port the professional-quality systems that professional-
qualityprogrammen and developers should be buying
and using.

Forth programmers to take
advantage of a product from

5. I wore out my typing fingers on the last point, and will
simplypass your comment along to FIG management
for consideration.. .

one of the Forth vendors.

factions from co-opting any standard. (The mill grinds
slowly but, it is hoped, very finely.) I'm just the editor
around here, not the apologist orpolicy m a k e but I will
respond briefly to the abovepoints and let others take more
time to distill their thinking ontopaper or diskette andsend
it to FD for the next issue(s).

1. FIG President John Hall says FIG does support ANS
Forth. And while ANSI controk the publication and
distribution of the official standard document, FIG has
been working on a quick-referenceguide to ANSFortb
which may (if ready in time) be included free to
members with this issue.

2. This point has been debated whenever a new Forth
standard has been published. It undoubtedly will be

Disclaime~ Ido not attempt speak forANSI, not even forthe
X3J14 technical committee that formulated ANS Forth. I
encourage WJ14 participants-collectively or individu-
ally-and others knowledgeable about ANS Forth to write
articles or letters to Forth Dimensions about the standard,
thestandardizationprocess, orspecific issues such as those
raised in the Mr. Geyer's letter.

-M.D.O.

WJ14 Chair replies:
Dear Marlin:

I heartily sympathize with Mr. Geyer's amazement and
frustration at the excruciatingly long time it has taken for
ANS Forth to become final. For the last two years we have
made only fine-tuning corrections and clarified explana-
tory text; the last actual technical change was voted in

July 1994 August 48 Forth Dimensions

January, 1 9 3 . ANSI's machinery grinds slowly. We re-
ceived notice only recently of their final official approval,
which occurred March 26, 1334.

As you note, publication of the standard is controlled
by ANSI, and it is not cheap: drafts were priced at $60, and
I doubt the final standard will be any cheaper. This is
typical of prices charged for language standards. X3J14 has
explored the feasibility of electronic publication, but have
not received a definitive answer. Meanwhile, copies of a
draft published in August, 1993, for "typo editingn are still
available on most Forth BBSs (GEnie, CompuServe, Internet,
etc.). Differences between this document and the official
standard are typographical only.

The official standard bears the designation ANSI
X3.215.1994, Programming Language Forth. It will be
available "soonn from Global Engineering Documents, 15
Inverness Way East, Englewood, Colorado 80112-5704,
800-854-7179, or fax 303-843-9880.

As you note, vendor compliance both in their products
and advertising will respond to market pressure. We have
evolved our systems toward the standard, and are compli-
ant in most respects. Most vendors I know are working on
fully compliant versions, but it may take a while. We, like
others, have many thousands of lines of code to be
evaluated, possibly modified and re-tested, not to mention
extensive, expensive documentation changes. Our cus-
tomers have millions of lines of code, and would be
justifiably outraged if we switched overnight, even assum-
ing we could. Compatibility shells will help, and some
compliant PD systems are emerging.

The suggestion that FDset a requirement for published
code to be ANS compatible is a good one. A similar
requirement was instituted by (then) editor Leo Brodie
with respect to Forth-83. It shouldn't be too hard for most
authors to comply. ANS Forth can immediately serve to
unite the community beyond the "Tower of Babel" of
dialects by providing a common communication medium.

Sincerely yours,
Elizabeth D. Rather, President
FORTH, Inc.
11 1 N. Sepulveda Blvd.
Manhattan Beach, California 90266-6847

Interfacing with Electric Dreams
Dear Marlin,

I then tried to design something like SuperCard in
Forth while using SuperCard to d o animation. This proved
to be difficult because I could not find a job or sell a
product that allowed me to pursue either of these direc-
tions. I then tried to cram both pursuits into the little time
I had after trying to make a living. With this conflicted and
small amount of time, I did not make much progress on
either front.

I decided to focus my time, energy, and money on
creating animation using the scripting languages. I hope
that someone with more of a focus on Forth will design
a "Forthcard" for me and the rest of the world.

Such an application would allow the user to have the
ease of use of SuperCard, but its engine could be smaller.
It would allow users to create new types of objects. It
would provide non-programmers with a means of getting
their OM special tasks done and a way for them to
become programmers. Such a friendly, object-oriented,
and media-oriented product would prove that Forth is the
way to program computers.

Perhaps once I can get my animation career off the
ground I will re-subscribe and return to using Forth to
create the scripting language I imagine. For now, thanks
to Forth Dimensions for many years of electric dreams.

Regards,
Mark Martino
Redmond, Washington

Total control
with [MI FORTHTM
For Programming Professionals:
an expanding family of compatible, high-
performance, compilers for microcomputers

For Development:
Interactive Forth-83 lnterpreter/Compilers
for MS-DOS, 80386 32-bit protected mode,
and Microsoft WindowsTM

Editor and assembler included
Uses standard operating system files
500 page manual written in plain English

uplease cancel my subscriptionn is normally all I would
write for a letter of cancellation, but Forth Dimensions
E!preSents more to me than iust a magazine. It represents

= suppofi for graphics, floating point, native code generation

F~~ Applications: Forth-83 ~ ~ ~ ~ ~ ~ ~ ~ i l ~ ~
Uniaue table-driven multi-t ass Forth com~iler - the way I believe ought to be programmed.

However, the way computers ought to be programmed is

I I

allow me to create animation tools. I saw other people do Laboratory Microsystems Incorporated
similar things, but they did not provide what I needed and post Office BOX 10430, Marina Del Rey, CA 90295

they did not provide an interface that lent itself to artistic Phone Credit Card Orders to: (310) 306-7412
Fax: (31 0) 301 -0761 spontaneity. I found this spontaneity and control in

- compiles compact ~ 0 ~ a b l e or dlsk-based appl~cations
Excellent error handling . Produces headerless code, compiles from Intermediate states,

no longer my focus.
My focus is and has been computer animation. I

believed that the control and interactivity of Forth would

1 SuperCard, Hypecard, ~ e t a ~ a r d , ToolBox, and ScriptX.
Forth Dimensions 49

and performs conditional compilation
Cross-compiles to 8080, 2-80, 64180, 680x0 famlly, 80x86 famlly,
80x96197 family, 8051131 family, 6303, 6809, 68HC11 - NO license fee or royalty for compiled applications

July 1994 August

designer enables reuse through a protocol and infrastruc-
ture known as inheritance.

In object-oriented languages (OOLs), reuse takes a
form that is not so granular or direct as calling a shared
subroutine. The OOLs treat the subroutine call hierarchy
as a simplified case of reuse. A greater commitment to
reuse requires accounting for data structures as well as

Mike Elola
San Jose, California

Answering Leo Brodie's OBJECTions
In ninking Forth, Leo Brodie criticized software

layers, objects, and modules. Brodie sees lost opportuni-
ties for reuse whenever routines are made inaccessible by
our placing them in the private part of a module or class.
He raises a legitimate concern that the same primitive
routines might be implemented repeatedly inside such
modules.

Brodie praises Forth for its egalitarian treatment of low-
and high-level routines. He emphasizes how Forth allows
the same programming philosophy to apply at all levels of
coding in statements such as "All code should look and
feel the same."

Much of what Brodie says has a true ring to it. But even
he wants to see a richer Forth landscape than data
structures and routines. He espouses the virtues of com-
ponents as an important unit to be nurtured within
programs. Even though the two are very much alike,
components receive his praise while modules (objects)
are disparaged.

By offering only some of the
benefits of modules, Forth
subtly sabotages more
complete implementation^..^

Moreover, components seem to exist in the eye of the
beholder. They don't require adding anything to Forth. No
new namespace management tools are needed, nor are
additional scoping rules.

Components only require adherence to a modular
programming style and philosophy. For example, Brodie
lauds information-hiding as an important part of compo-
nent design. But it takes the shape of a programmer
discipline rather than a namespace management facility.

Accordingly, you might not see where one component
ends and another begins. Unfortunately, this status-quo
style of thinking can lead us to overlook the benefits
offered by full-blown modularization tools.

A Forum for Exploring Forth Issues New Reuse Architectures
Classes may indeed hide some routines from view as

and Promoting Forth Brodie warns-but it's no mistake that they do. The class

July 1994 August

routines. Data structuring is elevated in importance. The
reuse of routines is regulated according to the data
structures they use.

Even the module support in languages such as Ada and
Modula-3 offer enhanced reuse provisions, such as formal
mechanisms to generate generic operations. Brodie's
components do not help diversify or extend reuse provi-
sions as do OOLs and such languages as these.

To better ground this discussion, let's identify the
benefits we shouldexpect to be delivered by modularization
tools. Two of them are: (1) refined control over the
visibility of routines (improved namespace management
facilities); and (2) improved management of the interde-
pendencies between units of code.

Components don't deliver either of these benefits.
C libraries offer the benefit of improved management

of code modules. For example, they manage and track the
dependencies between routines. The C language also has
facilities for verifying the proper use (call parameters and
return values) of functions inside a library module.

C libraries also offer improved namespace manage-
ment facilities, but in a dispersed fashion. Through the
associated header file that you reference with an IN-
CLUDE statement, an object module's symbol table be-
comes visible in whole or in part, depending on what was
declared in the header file. So with the proper coordina-
tion of original code and header file code, routine visibility
is subject to refined control, although perhaps not very
straightforward control. It is also not a tamper-proof form
of control from the perspective of the author of the
module.

The object class provisions of a typical OOL are able to
offer both of the basic benefits of modules in a more
straightforward and better-regulated fashion. Likewise,
the modules of Modula-3 and Ada deliver the benefits that
we expect.

Regulating Reuse
An underlying assumption of recent programming

languages is that reuse is better served by more regulation.
Certain kinds of code should not be made available for
reuse.

The visibility of routines across modules ought to be
controlled very discreetly. A distinction ought to be made
between interface code that is available universally (as
long as the module is loaded) and the module's private
code. Besides making modules more robust and change-
resistant, these different levels of visibility can help
synchronize the code maintained in multiple modules.

50 Forth Dimensior

ANSI Forth Standard Makes Debut
As you probably have heard, the ANSI Forth standard

has been approved. My personal opinion is that the
caliber of this standardization work was excellent, and
that we will be reaping the benefits of it for many years
to come.

FIG will honor the occasion by releasing a quick
reference card to all its members. Non-members can pur-
chase the card for a small fee. @IG plans to carry the standard
document as well. Look for it in the mail-order form.)

(As the author of the quick reference card, I have tried to
abbreviate a ton of information yet still do the standard
justice. I urge you refer to additional study materials as well.)

FIG is distributing its own press release heralding the
arrival of the standard. It will have gone out to 67 editors
and technical journalists at a variety of journals by the time
you read this. If you spot media coverage of ANS Forth,
drop me an e-mail message telling me of its whereabouts.
The objective is that FIG will be mentioned (along with
contact information) as part of the coverage.

For Vendors Only
I would appreciate your sending me an e-mail notice

each time you send FIG a press release announcing a
new product. The deadline for submissions is supposed
to be the second week of odd months. However, with e-
mail notification, I can reserve the space for you for an
additional week.

-Mike Elola
elolam@aol.com

APRIL 1994
RAM Technology Systems Ltd. introduced their Smart-

ICEPIC-20E in-circuit emulator and Interactive Remote
Target Compiler (IRTC678). Together, these products
provide a low-cost, IBM PC-based, interactive develop
ment environment for PIC microcontrollers.

The PC's parallel port can support one Smart-ICEPICTM
device. Multiple parallel ports can support the develop
ment of multiple-processor targets. Each Smart-ICEPIC
has an 18pin DIL lead. Larger microcontroller packages
require an included *remoten cable. Currently, the
PIC16C.64, PIC16C71, and PIC16C84 are supported.

The 1RTC678 offers a hypertext editor, assembler,
simulator, talker, Forth-to-native-code compiler, and
library compiler. Source may be compiled and simulated
on the PC or programmed interactively into the PIC
microcontroller and executed in real time.

COMPANIES MENTIONED
RAM Technology Systems Ltd.
Clump Fram Industrial Estate
Higher Shaftesbury Road
Blandford Forum
Dorset DTl 1 7TD
United Kingdom
Fax: (0258) 456410

Forth Dimensions 5 1 July 1994 August

P.S. Don't miss the generous discount offer from Forth,
Inc. announced on page 1 I!

even paged memory-mapped modules. John James has
written a couple of these papers, and Stephen Pelc and

Careful programming style is still needed to make the
best use of objects or other modularization tools. For
example, if some general-purpose code creeps unnoticed
into a module, it should be identified and moved to
another location where its reuse is not restricted. The
original module can include a statement of dependency
for the outlying code, if necessary (if it has been placed in
yet another module, as it probably should be).

Other Modularization Benefits
Improved code management facilities accompany most

module implementations. The organization of code into
modules helps make possible operations such as compil-
ing modules, loading and running modules, and releasing
modules.

If a module is already loaded, subsequent requests to
load it can be automatically suppressed. Unfortunately,
most Forth module implementations seize upon this as the
sole purpose of modules, and they offer no other benefits,
not even the basic ones I already enumerated.

On FORML proceedings, I have found proposals that
address the issues of public and private code visibility,
module relocatability, intermodule communication, and

Neil Smith wrote another.)
In any case, neither complete nor minimal implemen-

tations of modules have earned much popularity in the
Forth community. Perhaps Forth impedes the acceptance
of new programming practices. I'll hazard a guess that our
much-admired Forth programming freedoms predispose
us to dislike the extra regulation imposed by a module
mechanism.

Forth usually offers some ways to control routine
visibility, such as vocabularies, same-name words in one
vocabulary, name-stripping, and unlinking of words from
the dictionary.

Vocabularies can even be considered a germinal form
of module mechanism--one that controls routine visibil-
ity. Vocabularies are one way that Forth has achieved at
least a minimal level of parity with modern languages. (In
the next installment, I'll explore how vocabularies are
superior in certain ways to equivalent, but lexically
delimited, modules.)

However, by offering some of the benefits without a
full realization of all of the benefits of modules, Forth
subtly sabotages more complete and formal implementa-
tions of the same.

(Continued on page 3 7.)

The European Forth Conference, EuroForth'94
November 496,1994

Exploiting Forth: Professionally, Commercially, & Industrially

EuroForth, the annual European Forth Conference is celebrating its tenth anniversary this year in England. The Conference
title, "Exploiting Forth", reflects the need in todays economic climate to make the best use of all the features that Forth provides.
In particular this year's conference will show all the benefits and capabilities of merging Forth with modem programming
environments.

Conference delegates are welcome and encouraged to give papers on subjects related to the conference topics. These papers
should be no more than 6 pages. Suggestions for any topic not listed will be gladly considered. Papers should take between 20
and 25 minutes to deliver including questions.

Abstracts should be submitted as soon as possible for acceptance by the committee. Refereed papers were required by May
3 1 st. Camera ready copy is required by 10 October 1994, so that delegates can receive the papers at the conference. Late papers
may be accepted at the discretion of the committee.

EuroForth'94 is being held in a pleasant hotel situated in the heart of Winchester, a lovely medieval city fzaturing the well known
Winchester Cathedral. The city is only a 50 minute train journey from London to Winchester, with easy access from both Gatwick
and Heathrow airports. Many activities can be found less than 25 miles away including:

Resident delegate £290.00 + VAT. (including conference fee, hotel accommodation, and all meals)
Nonresident delegate £2 15.00 + VAT. (includes conference fee. lunch on Friday. Saturday, and Sunday
Resident visitor £140.00 + VAT. (including shared accommodation and all meals.)
Student Rate £192.00 + VAT. (To obtain this rate you must have a National Union of Students card.

Also accommodation will be shared.)
VAT - Please note that VAT (sales tax) is charged at 17.5% in addition to the above prices.

Registration: For further information please contact:
The Conference Organizer, EuroForth'94; c\o Microprocessor Engineering Limited
133 Hill Lane, Southampton SO1 5AF, England
Tel: +44 703 631441, Fax: +44 703 339691 ; net: mpe@cix.cornpulink.co.uk

1994 FORML Forth Conference
Conference Theme:

Interface Building
November 25-27,1994

Time allotments for presentations will favor early submittials and/or theme relevance.
Abstracts are needed by September 1, 1994

Mail your submissions to:
Forth Interest Group

Attn: Mike Elola
P.O. Box 21 54

Oakland, CA 94621

