

SILICON COMPOSERS INC

FAST Forth Native-Language Embedded Computers

DUP

>R
R>

Harris RTX 2000"" l&bit Forth Chip SC32"" 32-bit Forth Microprocessor
08 or 10 MHz operation and 15 MIPS speed. 08 or 10 MHz operation and 15 MIPS speed.
1-cycle 16 x 16 = 32-bi multiply. 1 -clock cycle instruction execution.
1 -cycle 1 &prioritized interrupts. *Contiguous 16 GB data and 2 GB code space.

*two 256-word stack memories. *Stack depths limited only by available memory.
-&channel 1/0 bus & 3 timer/counters. *Bus request/bus grant lines with on-chip tristate.

SC/FOX PCS (Parallel Coprocessor System) SC/FOX SBC32 (Single Board Computer32)
*RTX 2000 industrial PGA CPU; 8 & 10 MHz. 032-bi SC32 industrial grade Forth PGA CPU.
*System speed options: 8 or 10 MHz. *System speed options: 8 or 10 MHz.
-32 KB to 1 MB 0-wait-state static RAM. 4 2 KB to 512 KB 0-wait-state static RAM.
*Full-length PC/XT/AT plug-in (&layer) board. .100mm x 160mm Eurocard size (+layer) board.

SC/FOX VME SBC (Single Board Computer) SC/FOX PCS32 (Parallel Coprocessor Sys)
*RTX 2000 industrial PGA CPU; 8, 10, 12 MHz. 032-bi SC32 industrial grade Forth PGA CPU.
*Bus Master, System Controller, or Bus Slave. *System speed options: 8 or 10 MHz.
Up to 640 KB 0-wait-state static RAM. 064 KB to 1 MB 0-wait-state static RAM.

-233mm x 160mm 6U size (Slayer) board. *FulClength PC/XT/AT plug-in (Slayer) board.

SC/FOX CUB (Single Board Computer) SC/FOX SBC (Single Board Computer)
*RTX 2000 PLCC or 2001A PLCC chip. *RTX 2000 industrial grade PGA CPU.
-System speed options: 8, 10, or 12 MHz. *System speed options: 8, 10, or 12 MHz.
-32 KB to 256 KB 0-wait-state SRAM. *32 KB to 512 KB 0-wait-state static RAM.
100mm x lmmm size (&layer) board. *100mm x 160mm Eurocard size (+layer) board.

For additional product information and OEM pricing, please contact us at:
SILICON COMPOSERS INC 208 California Avenue, Palo Alto, CA 94306 (415) 322-8763

Features
I 7 Sparse Matrices Rick Grehan

The technical director of BK'Emagazine's lab was doing some research dealing with potentially
very large spune matrices-two-dimensional arrays, mostly filled with zeroes-which can fill a
substantial portion of memory with.. . well, nothing. Knuth suggests an alternate storage structure,
on which this Forth implementation is loosely based. Here, each sparse-matrix element is a data
structure consisting of row and column coordinates, right and down pointers, and the payload.

i t Forth and the Rest of the (DOS) World Richard Astle
Sometimes it is nice to use other people's libraries and code, particularly if we can do so without
losing the interactive, incremental, soul of Forth. Of several ways to do this, the author began,
not with assembler or C, but with Forth itself. He added external references to C functions, saved
the new Forth memory image as an object module file, and linked that module with C libraries
and object modules into an EXE which makes the new functions available as normal Forth words.
The result is a Forth system which can be extended further via the linker, but also via normal
Forth compilation.

26 Where Do You Go From Here?
The six preceding tutorials have introduced you to a very minimal set of Forth instructions. There
are different directions in which you may now proceed, depending on your needs and interests. Here,
the author points the way for further exploration by listing some of the key reference sources for
learning more about Forth and how to use it to solve practical problems in the programming world.

P 27 Drawing BMP Files Hank Wilknson
Microsoft Windows comes with the drawing program Paintbrush, which saves filenames with a .BMP
extension. Paintbrush drawings may be printed, or inserted and otherwise linked to other documents.
Forth-generated pixel drawings can be handled as ifthey were Paintbrush fdes. Black-and-white pixel
drawing simplifies the general case, while allowing enough functionality to be practical.

R 32 UN*X Tools Used on the FSAT Project Jim Schneider
This article continues toward the goal of building a Forth-like environment that incorporates the
best of UN'X. Whether you hate it or love it, UN'X does provide many tools for sophisticated pattern
matching. The lex(l)utility, a programming language in its own right, is used to create programs
that recognize and manipulate strings. It is normally used in conjunction with the yacc(1) parser
generalor. But yacc can do more than just recognize grammatically correct statements-it can
operate on them.

4 Editorial . A wholly unlikely alliance?

5 Letters

31 Advertisers Index

. 42 Fast Forthward

Forth's real problem; Pipe dreams; Amended attribution & a
snap-able stack; Another vote for natOOF.

Preparing a press release
L
Forth Dimensions 3 November 1993 December

Forth Dimensions
Volume XV, Number 4

November 1993 December

A Wholly Unlikely Alliance?
Is it time for the Forth Interest Group and Forth vendors/developers to link arms and walk

into the future (or even the present) side-by-side, as a team?
There is something to be said for an alliance of forces w i h n the global Forth community.

Vendors could pool some resources to generate more collective clout and a larger market
presence than they can achieve individually. The non-profit sector (of which FIG is the largest
and oldest representative) could do the same, reducing redundant overhead by consolidating
operations that support publishing and conferences, although retaining the autonomy and
unique flavor of each organization.

More could be said in favor of collaboration between the non-profit and for-profit sectors
of our industry. Profitable enterprises could underwrite development of Forth marketing
tools, which have been sorely lacking. Non-profit groups using those tools to generate broad-
spectrum interest in Forth could, in turn, refer new inquiries to the Forth companies that
supported the marketing effort. And companies that routinely provide FIG literature and mail-
order forms to their customers could receive preferred placement or special discounts on
advertising in FIG publications.

There would be other less tangible, but equally beneficial, results from more cooperation.
Understanding each other better, learning from each other's vision of Forth, and developing a
consistent way of talking about Forth's advantages could create a stronger community and would
provide leverage for makingForthls viability obvious to those we want to reach with our respective
messages and-products. But, traditionally, there have been obstacles to such cooperation.

Vendors sometimes have objected to FIG'S distribution of "free" Forth systems. The best
response I know is that FIG cannot provide the quality control, documentation, technical
support, custom programming, and other services customers expect of commercial-grade
systems. As any competitive business knows, success is based on much more than possession
of a product, regardless of its quality. Seen this way, FIG provides entry-level systems to those
who aren't convinced or who don't yet need to invest in a commercial product, and
experimental ones that are otherwise unavailable at any price. Forth innovation often has
come from the grass roots, like the language itself; public-domain systems sometimes
introduce technology that actually benefits commercial enterprise by preventing stagnation
and by pushing the state of the art. (One also must wonder how many successful vendors
actually could be sustained by sales to the relatively small number of people who acquire
only such inexpensive systems.)

But what if professional programmers use those freebies as the basis of programs developed
for heir employers and clients?They should realize that the overall health of the Forth industry
will, sooner or later, affect their ability to sell Forth-based solutions. Over the long haul, we
succeed or fail together. Clients should acquire, as part and parcel of any software they contract
for, a legitimate license to an underlying commercial Forth system.

Any community can founder on the shoals of special interests, but it can also navigate
around such hazards and find open water. As significant as our differences may be, there is
more to gain by focusing on our common interests and concerns, and by concentrating on
how our unique strengths can complement one another.

Related material from Don Kenney and from Charles H. Small (senior technical editor at
EDN) is printed in thls issue's "Letters." Please read them closely and respond to us with a
letter of your own. Further food for thought was offered by Tyler Sperry in an editorial
published in Embedded Systems Programming.

". . .At the other end ofthe political spectrum, the anarchists who embrace Forth canexpect
an interesting year as well. The usage of Forth by Embedded Systems Programming readers
has dropped significantly in the last few years. The reasons are many, but they include the
Forth user community's sporadic support of vendors, its blind acceptance of substandard
tools simply because they're free or shareware, and-most damning of all-its hesitation to
adopt programming conventions that the rest of the programming world has long taken for
granted. The coming year will probably bring Forth's last chance for respectability, as the
appearance of the ANS Forth standard brings with it a new understanding of how Forth should
work in embedded systems. If the Forth community decides not to adopt the standard,
however, that's fine with me. By not working in embedded systems, they'll clear the way for
more 'happening' languages, such as Smalltalk and APL."

-Marlin Ouverson

Published by the
Forth Interest Group

Edfor
Marlin Ouverson

Circulafion/Order Desk
Frank Hall

Forth Dimensions welcomes
editorial material, letters to the edi-
tor, and comments from its readers.
No responsibility is assumed for
accuracy of submissions.

Subscriptionto ForthDimensions
is included with membership in the
Forth Interest Group at $40 per
year ($52 overseas air). For mem-
bership, change of address, and to
submit items for publication, the
address is: Forth Interest Group,
P.O. Box 2154, Oakland, California
94621. Administrative offices: 51C-
89-FORTH. Fax: 510-535-1295.
Advertising sales: 805-946-2272.

Copyright O 1993 by Forth In-
terest Group, Inc. The material con-
tained in this periodical (but not
the code) is copyrighted by the
individual authors of the articles
and by Forth Interest Group, Inc.,
respectively. Any reproduction or
use of this periodical as it is com-
piled or the anides, except repro-
ductions for non-commercial pur-
poses, without the written permis-
sion of Forth Interest Group, Inc. is
a violation of the Copyright Laws.
Any code bearing a copyright n e
tice, however, can be used only
with permission of the copyright
holder.

The Forth Interest Group
The Forth Interest Group is the
association of programmers, man-
agers, and engineers who create
practical, Forth-based solutions to
real-world needs. Many research
hardware and software designs that
will advance the general state of
the art. FIG provides a climate of
intellectual exchange and benefits
intended to assist each of its mem-
bers. Publications, conferences,
seminars, telecommunications, and
area chapter meetings are among
its activities.

"Forth Dimensions (ISSN 0884-
0822) is published bimonthly for
$40/46/52 per year by the Forth
Interest Group, c/o TPI, 1293 Old
Mt. View-Alviso Rd., Sumyvale,
CA 94089. Second-dass postage
paid at San Jose, CA. POSTMAS-
TER: Send address changes to Forth
Dimensions, P.O. Box 2154, Oak-
land, CA 94621 ."

November 1993 December 4 Forth Dimensions

Letters to the Edltor-and to your fellow readers-are always welcome.
Respond to articles, describe your latest projects, ask for input, advise
the Forth community, or simply share a recent insight. Code is also
welcome, but is optional. Letters may be edited for clarity andlength. We
want to hear from you!

Forth's Real Problem
Dear Mr. Ouverson,

I'm glad to see that my article "Forth in Search of a Job"
(FD XV/l) drew some response. Regrettably, I seem not to
have communicated all that well, because Elizabeth Rather
spent a lot of time and effort (FD XV/2) responding to the
wrong issue. The issue isn't that I'm not especially bright and
didn't do my homework. The issue is that a very large portion
of Forth's potential customer community behaves as if they
are rather slow and don't do their homework.

Possibly corporate America is educable, and educating
them is worth trying. But bear in mind, we're dealing with
people who, for the most part, believed until very recently
that PCs would never replace their godawful mainframes.
They are not long on insight or foresight. Education, if it's
possible, may take many years.

Ms. Rather's reply consists mostly of anecdotal evidence
of Forth's great worth. I am very skeptical that anecdotal
evidence of Forth's virtues is going to influence corporate
American (but I've been wrong before). The problem isn't

The community persists in
trying to popularize Forth
by using the absolutely
least-effective means.

I think the real problem is how to orchestrate a systematic
marketing effort for a language when there is no large
organization with "unlimited" funds to structure the effort,
prioritize targets, pay its employees to write articles, pay for
advertising.. . Possibly the Forth Interest Group would help,
at least by sewing as a clearing house for identifying markets
and thoughts on what is needed to penetrate them.

Sincerely,
Don Kemey
Essex Junction, Vermont

On a related note, Maris Ambats forwarded this excerpt from
EDN 's BBS.. .

"I have been an editor at EDNfor ten years. We have done
extensive research on the best ways to reach engineers. The
Forth community persists in trying to popularize Forth by
using the absolutely leasteffective means. Forth proponents
have consistently tried to prove that Forth is an effective,
compact, speedy program-development system with case
histories and proof by repeated assertion. In a survey asking
engineers to rank 24 kinds of things that could be said about
a product, the engineers ranked case histories dead last.
Proof by repeated assertion, a style of argumentation en-
demic to the software world, unfortunately, needs no
comment.

"What do engineers want? For a new software system,
engineers want self-taught tutorials that they can use to bring
themselves up to speed, real-world examples that apply to
their jobs, and libraries of functions, routines, and schemas
that they can plug into their problems.

"I should mention that I have programmed professionally
in polyFORTH and that I am quite aware that Forth is indeed
an effective, compact, and speedy software development
system. Further, good Forth programming is simply good
programming. I find myself using Forth style even when I
program in other languages. I am saddened and frustrated
that Forth usage is in decline among WNreaders. EDNis an
information provider, not creator. If the Forth community
does not create the lund of material that engineers are -

looking for, then we cannot, obviously, pass it along."
--Charles H. Small

Senior Technical Editor, ELIN

Forth, but the fact that every language monger claims the
same virtues and has lots of anecdotal evidence to back up
their claims. This is not to say that good stories about Forth's
capabilities don't have their place. But I fear that place may
be in quelling customer doubts, rather than in arousing initial
interest. In working the customer rather than in getting them
to bite.

So I think things are hopeless? No, actually I don't. There
are niche markets where I think Forth could do well, were
they systematically targeted. Some examples:

memory-constrained applications
dead-iron situations-new hardware with no software
prototyping
independent software developers

Pipe Dreams
I very much enjoyed the FSAT Project article (FD XV/2).

I'm not sure how compatible BLOCKS are with POSIX, but the
idea of melding ideas from Forth, UN'X, and POSIX, and
possibly the GNU Project, seems attractive.

Despite the fact that UNIX systems tend to involve "evil"
things like preemptive multi-tasking, dynamic memory man-
agement, and stream files (note that my tongue is firmly in
my cheek!), there are some qualities similar to those of Forth:

Diverse sets of tools.
Systems for getting the tools to communicate with one
another in order to create applications. In Forth, one uses
words, compiled into a dictionary, arranged in vocabular-
ies such as FORTH, ASSEMBLER, EDITOR, . . . that tend to
communicate through two stacks. In UNIX, one uses

Forth Dirnens~ons 5 November 1993 December

programs i la bc, grep, awk, tr, mypmg, aa.out, . . . arranged
in directories such as /bin, /usr/bin, /ucb/bin, /usr/local/
bin, /u/cbbrowndbin, . . . that tend to communicate via
pipes.
I don't know of a precise parallel to CREATE ... DOES>

other than the UNM concept of "little languages," but then
I also am not sure about what to do with RCS or make,
which are things that I tend to want to use with Forth, and
often can't.
Opinionated hackers.
Religious wars.

I think that, in order for Forth to survive, it needs to take
advantage of those parallels and, moreover, take advantage
of more ideas that were Not Invented Here. Dynamic
allocation, streams, and (a logicalextension to streams) pipes
being three such.

Wouldn't it be neat to have a Forth that would automati-
cally spawn a process for every word invoked from interpre-
tation mode? It might not run happily on an 8051, but then
I'm trying to figure out a way to get some form of RISC
workstation onto my desk. I'm not thinking about running an
8051. With a suitable tasking model, this sort of system might
be a real performer as compared to the direct competition,
which is sh scripts running under UNIX. And it might even
work on an 8051.

What 1 really would like to see is a Forth-like approach
to pipes.

"On the Back Burner" is always interesting. The philo-
sophical side is neat; the "educational part" on the strange
origin of the term "dead reckoning" was illuminating.

We are, I suspect, of somewhat different opinions about
some of the other issues; I'm one of those people who likes
to claim that Forth is a language with at leasttwo stacks, and
probably more.. .

Thank you for some interesting reading.

menting the sum of odd integers algorithm. It's astonishing
how well the Forth primitives work to implement this
algorithm. So far it's the only gooduse for the special features
of the Forth33 +LOOP I have found.

I offer my original implementation as more elegant and
efficient than the version that was published.

: sqroot (radicand -- r o o t)

-1 SWAP OVER
DO (t e r m) 2 + DUP +LOOP

2 /

Although it performs very well for small values, this
algorithm is grossly inefficient for large values. If you only
need it occasionally for large values that's not important, but
you should have an industrial strength definition in your
library [see Figure One, belowl.

This a direct translation of the pencil-and-paper method
taught in high school.

Except for +UNDER and NOT the code is ANS Forth. I hope
that +UNDER is a primitive in your system. It aIlows an
element on the stack otherthan the top to be an accumuhtor
without intermediate stack manipulation. As UNDER+ it is
recommended by Charles Moore in Leo Brody's Thinking
Forth. I changed the name to be analogous with + ! and other
words.

: +UNDER (a b c - - a + c b)
ROT + SWAP

A debugging device that ought to be better known is to
redefine " (" to be a print instruction followed by a stack
dump. This turns stack comments into snapshot traces.

This can be implemented in any Forth, but it is particularly
easy to do with PLEASE in this Forth.

(Continues on page 41 .)
Yours uuly,
Christopher B. Browne
Toronto, Ontario
Canada

Amended Attribution
and a Snapable Stack

To the Editor and C.H. Ting:
In a recent issue (FD XV/2, "More on

Numbers"), Ting hsien-sheng was very kind
in attributing an algorithm for square root to
me. It was in fact invented by the ancient
Greek mathematicians, as well as the Chi-
nese of course.

It is the classical method for calculating
square roots by taking the sum of odd
integers. It works for all unsigned numbers
from 0 to FFFFFFFF (or FFFF). Try:
-1 sqroot .

Figure One. Baden's "industrial strength" square root. /
: sqrt (radicand -- r o o t)

0 (radicand roo t)
0 ADDRESS-UNIT-BITS CELLS 2 -
DO (X Y)

2 *
OVER I R S H I F T (. y x ')
OVER 2 * 1+ (. . x' y ')
< NOT I F (X y)

DUP (X . y ')
2" 1+ I L S H I F T NEGATE

+UNDER (X Y)
1+

THEN
-2 +LOOP

N I P (r o o t)

I ;

I discovered the Forth code when imple- (
November 1993 December 6 Forth Dimensions

Sparse Matrices

1 Rick Grehan
1 Peterborough, New Hampshire

The program presented here is a spin-off of some
research I was doing for BYZE magazine's lab. The project
involved linear programming, which had me dealing with

Row and column coordinates, which specify the element's
position within the array.
Right and down pointers, which are the means by which

I potentially very large matrices. In most cases, the matrices in / elements are chained to one another.

1 structures. / You can see how this data structure can be used to build

question were spane matrices (described below), and I

developed this program as a means of handling these data

1 Simply put, a sparse matrix is a large ZD array that's mostly
/ zeroes. If you store such a matrix in s~andard fashio-i.e.,

The payload, which is the actual data.

a sparse matrix if you examine Figure Two, which shows a
portion of a sparse matrix. As mentioned above, the sparse

(elements stored row-order in a large buffer of contiguous (matrix elements are placed into two singly linked lists: one

1 bytes-a substantial portion of memory will be filled with.. . 1 connecting all elements in the same column, the other
(well, nothing. / connecting all elements in the same row.

I In his now-legendary FundarnentalAlgoritbms,, D. Knuth 1 The heads of these linked lists are two one-dimensional

suggests an alternate storage structure for sparse matrices. I
based my implementation loosely on Knuth's, which uses

described in Algorithm. The fundamental component of the
sparse-matrix storage structure is shown in Figure One. This Figure Two.lnsideasparsematrix. Membersof the]

arrays of integers I'll call "anchor" arrays (so named because
they anchor the lists of rows and columns). Hence, the

circularly linked lists. The technique shown here is com-
posed of singly linked lists, but the spirit is close to that

sparse-matrix element (as I will refer to it for the remainder
of this article) is itself a data structure consisting of: i -

zero-th element of the row anchor array points to the first

/ Figure One. Sparse matrix element structure.

ROW I COL

RIGHT

DOWN

PAY LOAD

"row anchors" array are the heads of the lists linking
elementsin thesame row. Similarly, "column anchors"
ooint to lists of elements in the same column.

COLUMN
ANCHORS a

.....--... ...-- ... to next
member in row . -.... Ff member . . .to next -a in column

r'\ I I
I I -1.-..

Forth Dimensions

/' .

November 1993 December

- - -

ROW
ANCHORS

the sparse matrix; the ixre th / \: Each sparse matrix element consists of 5 components : I
elementofthezero-throwin

element ofthe column anchor 1 \ 1) A row value (byte) 1

Listing One. Sparse matrix code. I
\ .

the sparse matrix; and so on. I ! 5 A pay load. . . the actual value 1

array points to the first ele-
mentof the zero-thcolumn in

The right pointer of each \ In this implementation, the payload is a 10-byte floating-
sparse-array element leads to 1 ' \ point number. The total size of an element is 16 bytes.

\ 2) A column value (byte)
\ 3) A right-pointer ...p oints to next member in same row (word)
\ 4) A down-pointer. . .points to next member in same column (word)

the next element in the same
row. Similarly, the down
pointer of each sparse-array
element points to the next
element in the same column.
A special constant (65535,
defined as NIL) acts as an
end-of-list indicator.

Space Considerations
In terms of physical space,

a sparse-matrix element (as I

\ *****************
\ * * CONSTANTS * *
\ *****************
65535 CONSTANT NIL \ Indicates end of list

\ *****************
\ * * VARIABLES * *
\ *****************
\ SMATRIX-BASE holds the base address of the memory block
\ holding the sparse matrix elements
VARIABLE SMATRIX - BASE

\ Sparse matrix elements not in use are kept on an available
\ list. SMATRIX-AVAIL-BASE is the root pointer of that list
VARIABLE SMATRIX-AVAIL-BASE

words and modfying specific
constants in the source code.
The right and down pointers
are 16-bits each, allowing for a

total of 64K elements.

The payload in my
implementation is a ten-byte,

extended floating point (as
defined in Apple's SANE docu-
mentation). Consequently,

have defined it) requires 16
bytes. Each row and column
entry is one byte, allowing
matrices with logical dimen-

up to 256 rows by 256
columns.Youcaneasil~extend
this limit by changing the row
and column entries to 16-bit

\ Routines that add to and remove elements from the matrix need
\ to know the previous element in the current vector.
\ We'll keep that item here.
VARIABLE PREV ELEM -

\ #SMATRIX-ELEMS holds the number of elements in the
\ sparse matrix.
VARIABLE #ISMATRIX - ELEMS

\ We need two 1-dimensional arrays to "anchor" the sparse
\ matrix. . .one anchors the rows, the other anchors the columns.
\ These are arrays of 16-bit words.
VARIABLE ROWS-ARRAY \ Pointer to base of row-anchoring array
VARIABLE COLS - ARRAY \ Pointer to base of column-anchoring array

\ Operations on the sparse array usually take place on row or
\ column vectors. This variable points to the address of the
\ anchoring pointer to the current row or column vector we're
\ working in.
VARIABLE R/C - BASE

\ The sparse matrix has to know how big it is; these variables
\ hold the dimensions.

element in a standard array
implementation.

When should you use a
sparse matrix storage method
like the one shown here? k t a
equal the number of rows in a
matrix, and b equal the num-

each sparse array element
requires six bytes beyond an

\ Following variables are vectors to functions that indicate
\ whether we're searching down through a column or across
\ through a row.
VARIABLE NEXT FUNC
VARIABLE IDX-FUNC

VARIABLE #SMATRIX-ROWS
VARIABLE #SMATRIX-COLS

\ * * LOW-LEVEL DEFINITIONS * *
\

ber of columns in a matrix. If

you're going to use a sparse

: -ROT ROT ROT ;
: ENDIF [COMPILE] THEN ; IMMEDIATE

matrix, then some of the ele- \ Following words calculate the address of various components

November 1993 December 8 Forth Dimensions

\ of a sparse matrix

\ Return address of ith sparse array element.
: SMATRIX - ELEM ADDR (i -- addr) -
16* \ Get byte offset into memory block
SMATRIX-BASE @ + \ Add offset to base

,
\ Return address of row member
: &SMATRIX.ROW (i -- addr)
SMATRIX-ELEM-ADDR

\ Return address of column member
: &SMATRIX.COL (i -- addr)
SMATRIX - ELEM ADDR 1+ -

,
\ Return address of right-pointer member
: &SMATRIX.RIGHT
SMATRIX-ELEM-ADDR 2+

\ Return address of down-pointer member
: &SMATRIX.DOWN
SMATRIX-ELEM - ADDR 4 +

\ Return address of paylod
: &SMATRIX.VAL (i -- addr)
SMATRIX-ELEM-ADDR 6 +

\ Set the NEXT function to point to down
: NEXT-IS-DOWN (--)
[COMPILE] LIT [FIND &SMATRIX.DOWN ,] NEXT-FUNC !

\ Set the NEXT function to point to the right
: NEXT IS-RIGHT (-- 1
[COMPILE] LIT [FIND &SMATRIX.RIGHT ,] NEXT-FUNC !

\ Get the NEXT pointer for vector operations
: &SMATRIX.NEXT (i -- addr)
NEXT - FUNC @ EXECUTE

\ Set the IDX function to point to ROW
: IDX IS ROW (--)
[C O ~ I ~ E] LIT [FIND &SMATRIX.ROW ,] IDX - FUNC !

\ Set the IDX function to point to COL
: IDX ISCOL (--)
[COMPILE] LIT [FIND &SMATRIX.COL ,] IDX - FUNC !

\ Get the IDX member
: &SMATRIX.IDX (i -- addr)
IDX - FUNC @ EXECUTE

\ Set the row base pointer
: SETROW-BASE (n --)

2 * \ 2 bytes per 16-bit word
ROWS ARRAY @ + \ Add offset to base address
R/C - BASE ! \ Store

\ Set the column base pointer
: SET COL BASE (n --) - -

2 * \ 2 bytes per 16-bit word
COLS-ARRAY @ + \ Add offset to base address
R/C - BASE !

\ .
\ Build the sparse matrix available list
: BUILD-SMATRIX-AVAIL (--)

ments are going to be empty;
I'll represent the number of
empty elements with e. The
point at which it becomes ben-
eficial to use a sparse matrix is
when the following equation

is satisfied:
lOab > 2(a+b)+l6(abe)

That is, using standard tech-
niques to store a matrix of

extended reals requires lO(ab)
bytes. A sparse array would
require 2(a+b) bytes for the
anchoring arrays plus 16(abe)
bytes for the elements actually
active in the array. This equa-

tion assumes a payload of ten
bytes, and a sparse-array ele-
ment size of 16 bytes.

You can determine how
many empty elements would
make using a sparse array "prof-

itable" by re-arranging the
above equation to:
(a+b+3ab)/8 < e

So, for example, if you are
working with a 50 x 50 matrix,
it becomes worthwhile to look

into using the sparse matrix
storage format if more than

950 elements are empty.

The Code
The complete source code

appears in Listing One. In prac-
tice, the first word your program
must call is INIT-SMATRIX,
which allocates space for the
sparse-matrix elements as well

as the anchor arrays (via
INIT-ANCHOR-ARRAY).

INIT - SMATRIX also places

all sparse-matrix elements on
an "available list" (the word
BUILD-SMATRIX-AVAIL per-

forms this task), yet another
singly linked list that holds all
unusedsparse-matrix elements.

Forth Dimensions 9 November 1993 December

Initially, then, the two anchor-
ing arrays point to empty lists;
all sparse matrix elements are
on the available list.

You build a sparse matrix
by repeated calls to
FROM - SMATRIX - AVAIL and
I N T O - S M A T R I X .

FROM-SMATRIX - AVAIL pulls
an unused element from the
available list and leaves that
element's "identifier" on the
stack. This identifier is a unique
handle to the element, and is
the means by which the pro-
gram references an element
whether it is in the array or on

the available list. You load the

0 SMATRIX-AVAIL-BASE ! \ A n c h o r f i r s t e l e m e n t
#SMATRIX - ELEMS @ 1- 0
DO

I 1+ \ E a c h e n t r y p o i n t s t o next h igher
I &SMATRIX.RIGHT W! \ S t o r e address i n r igh t po in te r

LOOP
N I L \ A c t s as terminator
#SMATRIX ELEMS @ 1- \ G e t address of l a s t guy
& SMATRIX~RIGHT w ! \ A t t a c h t e r m i n a t o r

\ F o l l o w i n g are a c o u p l e of l o w - l e v e l d e f i n i t i o n s
\ t h a t provide access t o s o m e M a c i n t o s h t r a p s .
\ T h e s e t raps a l l o w us t o a l locate and release non-
\ relocatable c h u n k s of m e m o r y .

\ -NEWPTR a l loca te s n bytes and r e tu rns po in t e r t o t h e m e m o r y
\ l o c a t i o n . R e t u r n s N I L on f a i l u r e .
<CODE NEWPTR (n -- ptr/O)

POPDO,
MAC NEWPTR W,
PUSHAO,
NEXT,

returned element's payload 1 - .

with the appropriate value and
execute INTO - SMATRIX. This

andcolumncoordinatesspeci- \ .

\ -DISPOSPTR releases t h e a l loca ted m e m o r y
<CODE -DISPOSPTR (p t r --)

POPAO,
word wires the element into
the sparse matrix at the row

MAC DISPOSPTR W,
NEXT,

given coordinates, the system : I N I T ANCHOR ARRAY (addr --) -
exits with an error condition.) I D u e T* \ # of bytes t o a l l o c a t e

fiedonthestack.(Ifanelement
is already in the matrix at the

The word & SMATRIX - VAL

\ I n i t i a l i z e an anchor ing a r ray [t h e r o w o r c o l u m n anchors
\ a r r a y s] . addr i s t h e address i f t h e base var iab le , and n
\ i s t h e number of e l e m e n t s

- NEWPTR
?DUP O=

\ A l l o c a t e m e m o r y
\ A l l o c a t i o n f a i l ed?

identifier on the stack and

returns the address of that
element's payload component.

As you perform mathemat-

ics on the matrix members-
pivoting operations, for exam-
ple-some elements' payloads

will be reduced to zero. (You'll
have to decide what a zero is
for your particular applica-

tion. It might mean anything
from an "honest-to-goodness
zero" to "a very small num-

ber.") In that case, your code
should call OUTOF - SARRAY.

This word accepts on the stack
a sparse-matrix element iden-

provides access to the pay-
load. It expects an element

\ Now set a l l e l e m e n t s t o O x F F F F
SWAP 0 DO

N I L OVER I 2 * + W !
LOOP
DROP \ C l e a n s t a c k

ABORT" Anchor a r r a y a l l o c . error"
ROT OVER SWAP ! \ S a v e base address

\ I n i t i a l i z e a sparse m a t r i x . P r e s u m e s #SMATRIX - ROWS and
\ #SMATRIX-COLS have been properly i n i t i a l i z e d
: INIT-SMATRIX (--)

\ I n i t i a l i z e t h e r o w s a r r a y
ROWS - ARRAY #SMATRIX - ROWS @ I N I T ANCHOR - ARRAY

\ I n i t i a l i z e t h e c o l u m n s a r r ay
COLS - ARRAY #SMATRIX - COLS @ INIT-ANCHOR-ARRAY

\ I n i t i a l i z e t h e sparse m a t r i x m e m o r y
#SMATRIX ELEMS @ 1 6 * -NEWPTR
?DUP O= ABORT" S p a r s e array a l l o c error"
SMATRIX BASE !
BUILD-SMATRIX - AVAIL

I ;
tifier; theelementis presumed

(~ a t a ~ d ~ ~ & ~ ~ t i n ~ ~
on page 38.)

\ .
\ D i s p o s e of a l l t h e m e m o r y space t a k e n up by t h e sparse m a t r i x

November 1993 December 10 Forth Dimensions

Forth and the
Rest of the (DOS) World

1 Richard Astle
La Jolla, California

Most computer languages implemented for MS-DOS on
the IBM-PC have a compile-link cycle which interferes with
interactivity but allows them one advantage Forth rarely has:
the ability seamlessly to include functions written in other
languages.. It has been said, with some justification, that this
foreign code is often of poor quality, unsuitable and slow,
and if we really want to do it right we should do it ourselves.
But blind self-reliance can be expensive. Sometimes time is
too tight or sources unavailable. And sometimes we actually
can't do it better. In these cases, at least, it would be nice to
be able to use other people's libraries and code, particulary
if we can do so without losing the interactive, incremental,
soul of Forth.

There are several ways to go about using the resources of
other languages from within Forth. One is to put functions,
procedures, or subroutines written in the other language(s)
into a 1'SR and have Forth communicate with them through
an interrupt or a jump table at a known location in memory.
This method isn't difficult, at least on the Forth side, and it can
be useful in some situations, but basically it's just a way

Nothing is portable except
ideas, in C, Forth, or,
for that matter, life.

around the fact that most Forths can't link.
Another method is to write Forth in C or assembler or

some other language, and link the desired external functions
at the beginning or add them later by recompiling. Forth has,
in fact, often been written in assembler, either as a way of
bootstrapping or in the perhaps mistaken idea that assembler
is easier or more transparent than meta-compilation. Itwould
be easy to extend these Forths through the linker. One
problem is that this method makes it impossible to add new
external references without starting again from the assembler
source; another is that, once you've appropriated external
functions, it is difficult to save and reload the Forth image
without going through the linker step all over again. As a
consequence, you have to keep the .LIB or .OBJ files
containing the object code for the appropriated functions in
your working environment, and take them with you when

you travel, with your system, to another machine.
A third method, the one I shall discuss, is to start, not with

assembler or C, but with Forth itself. I have taken a
straightforward, single-segment, indirect-threaded, 83-stan-
dard Forth, added a variety of external references to functions
written in C, saved the Forth memory image containing these
references as an object module (OBJ) file, and linked that
module (using Borland's TLINK) with C libraries and object
modules into an EXE which, when run, makes those
functions available as normal Forth words. At the end of thls
process I have a FORTH.EXE which I can extend with further
external functions via the linker, but also via normal Forth
incremental compilation without the linker.

1. The Source Forth
Every Forth system is idiosyncratic, especially at the

edges, and this topic is pretty edgy. The relationships to the
operating system, to extended memory, and to the native
machine language of the real machine (as opposed to the
Forth pseudo-machine) are not, and cannot, be made
standard. The particular Forth I begin with here conforms
closely to the Forth-83 Standard, having been written as a
teaching tool by Guy Kelly, the chair of the Forth Standards
Team, but it of course has certain extensions. For memory
access outside the 64K Forth segment, I assume the existence
of the following semi-standard words, with these stack
pictures:

@L (seg offset --- n)
C@L (seg offset --- C)
!L (n seg offset ---)

C!L (c seg offset --- 1
CMOVEL (source-seg source-off dest-seg

dest-off len ---)

I also assume the existence of a few utility words like CS@,

DS@, and ES@, trivial to define in assembler (or directly in
machine code with C,), which push the contents of the
segment registers onto the stack. Of course, in a single-
segment model they'll all return the same value. I also assume
the familiar F83 vectored execution mechanism using
DEFER, [' I , and IS.

For DOS file access I assume the existence of the

Forth Dimensions 11 November 1993 December

following words:

MAKE

(f b u f ---)

FREOPEN

(f b u f ---)

FCLOSE

(f b u f ---)

WRITE
(addr l e n fbu f ---)

READ

(addr l e n f b u f ---)

SEEK
(u d O f f s e t fbu f ---)

FILENAME

(f b u f ---)

These words call DOS int
21 functions 3C through 40
and 42. They assume the 16-
bit addr is relative to DS and
that the unsigned double off-
set for SEEK is from the begin-
ning of the file. The parameter
fbuf is a stand-in for the DOS
file handle. In this Forth, FBUF
is a defining word that creates
an object which contains a
space for a filename, a handle,
and a few file statistics. The
word FILENAME is used as in

FBUF FBUFl
FBUFl FILENAME
FORTH. OBJ

to assign a filename to an
FBUF since words like MAKE

and FREOPEN need a name
rather than a handle. The word
FREOPEN is a safety word:
first it closes a file that might
have its handle in the FBUF in
question, then it opens the file
which has its name in the
FBUF. This prevents a careless
loss of handles. The word
2"-which handles the em-
bedding of null-terminated C-
like string-uses the words
ASCII and (") which aren't
quite standard though they or
their equivalents must exist in
nearly all Forths. A S C I I is
sometimes called C ' and just
leaves the ASCII value of the
following character on the

November 1993 December

S c r e e n 0
T h i s f i l e c o n v e r t s G u y K e l l y ' s PC-FORTH 1 . 4 6 , a n 8 3 - S t a n d a r d

F o r t h i m p l e m e n t a t i o n , f r o m a COM t o an EXE f i l e , w i t h l i n k s t o
ex t e rna l f u n c t i o n s w r i t t e n i n C . S i n c e t h e p r o g r a m began as a
COM f i l e w h e n it b e c o m e s an EXE t h e area f r o m b e l o w lOOh is
ava i lab le f o r s c r a t c h data.

R i c h a r d A s t l e

POBox 8 0 2 3
L a J o l l a , CA 9 2 0 3 8
6 1 9 4 5 6 - 2 2 5 3

S c r e e n 1
\ USEFUL THINGS 0 2 J A N 9 3 RA 29DEC92
HEX

ONLY FORTH ALSO DOS ALSO FORTH DEFINITIONS
. IFNDF OFBUF FBUF OFBUF .ENDIF \ f b u f f o r t h i s w o r k
: WALL ; \ m a r k e r f o r FORGET
RE- : BYE 4C BDOS ; \ 0 BDOS i s f o r . c o m f i l e s
-->

S c r e e n 2
\ USEFUL THINGS: DOS READ WRITE SEEK 1 0 F E B 9 3 RA 29DEC92
: WRITE (addr l e n f b u f ---)

-ROT WRITE? O = I F CR ." WRITE ERROR " QUIT THEN ;
: READ (addr len f b u f ---)

-ROT READ? O = I F CR ." READ ERROR " QUIT THEN ;
: SEEK (doffset f b u f ---)

SEEK? O = I F CR ." SEEK ERROR " QUIT THEN ;
: MAKE (f b u f ---)

MAKE? O= I F CR ." MAKE ERROR " QUIT THEN ;
-->

S c r e e n 3
\ REDEFINITIONS RA 1 6 J A N 9 3
\ r e d e f i n i t i o n s t o correct p a r a m e t e r order
RE- : @ L (seg o f f --- n) SWAP @ L ;
RE- : C@L SWAP C@L ;

RE- : ! L (n seg off ---) SWAP ! L ;

RE- : C ! L SWAP C ! L ;

RE- : CMOVEL (seg of f seg o f f l e n ---)

>R SWAP 2SWAP SWAP 2SWAP R> CMOVEL ;
-->

S c r e e n 4
\ USEFUL THINGS @ L &c DUMPL RA 1 6 J A N 9 3
DECIMAL

: DUMPL (seg adr c n t --- 1
BASE @ >R HEX
0 DO CR OVER 5 U.R DUP 5 U.R 2 SPACES

1 6 0 DO 2DUP C@L 3 U.R 1+ LOOP

1 6 - 2 SPACES
1 6 0 DO 2DUP C@L DUP BL < OVER A S C I I - > OR

I F DROP A S C I I . EMIT ELSE EMIT THEN 1+
LOOP
KEY? ?LEAVE

1 6 +LOOP 2DROP R> BASE ! ;
-->

12 Forth Dimensions

Screen 5
\ BOOTZ to avoid default drive problem
: BOOTZ

FBUFS-INIT FYLO FYL ! SETABREAK
SET-#DRIVES
(BOOT) ;

stack. (") is embedded in a
word before a compiled
counted string. Its action is to
leave the address and count of
the string on the stack and to
skip over it to the word follow-
ing the string. Its definition is
as follows:

['] BOOTZ IS BOOT
default-drive# ON

LATEST 8 +ORIGIN ! \ top nfa boot
HERE 22 +ORIGIN ! \ fence UP
HERE 24 +ORIGIN ! \ dp literals
VOC-LINK @ 26 +ORIGIN ! ; \ voc list

HEX

Screen 6
\ USEFUL THINGS SET-BOOT 02JAN93 RA 29DEC92
DECIMAL
: SET-BOOT \ sets boot-up variables

: GET-MSGS CS@ 1000 + 0 CS@ FIRST 200 CMOVEL ;
: @ ! (addrl addr 2 ---) SWAP @ SWAP ! ;

\ : NIP SWAP DROP ; \ if you need it
: UMIN (ul u2 --- umin) 2DUP U< IF DROP ELSE NIP THEN ;
-->

: (" 1 (--- a& count)
R> COUNT 2DUP + >R

; COMPILE-ONLY

Screen 7
\ ZSTRING RA 05FEB93
: $MOVE ($adr dest ---) \ moves string including count

OVER C@ 1+ CMOVE ;
: Z,"
ASCII WORD HERE $MOVE
1 HERE +C!
HERE C@ ALLOT 0 C, ;
: Z" COMPILE (") Z, " COMPILE DROP ; IMMEDIATE COMPILE-ONLY
-->
Z" compiles an in-line string and appends a byte of 0.
At run-time it leaves the address of the first byte of
the string on the stack, suitable for passing as a character
string pointer to a C function. It is thus comparable to "
which in this Forth leaves address and count and, of course,
doesn't append a 0 byte.

Screen 8
\ FINDING THE PSP AND ENVIRONMENT SEG 15FEB93 RA 16JAN93
HEX
CODE PSP@ (--- psp-seg)

BE C, 00 C, 51 C, \ mov ax,5lh
CD C, 21 C, \ int 21h
53 C, \ push bx

NEXT,
END-CODE
: ENV@ PSP@ 2C @L ;
CODE DS@ 1E C, NEXT, END-CODE CODE ES@ 06 C, NEXT, END-CODE
-->

Screen 9
\ EXTERN: LINKED LIST

I explain these details so
that you will know how to
write equivalent words in the
Forth you use if you don't
already have them, and/or
understand my code well
enough to adapt it. Nothing is
portable except ideas, in C,
Forth, or, for that matter, life.

2. EXE Files And Link
A COM file is just a memory

image, with the restriction that
it cannot be more than 65,178
bytes in length. An EXE file, by
contrast, consists of two parts:
a header and a "load module."
The load module is approxi-
mately a memory image of the
executable program repre-
sented by the EXE file. The
reason the memory image is
"approximate" has to do with
the way the 80x86 processors
address memory in real mode.
Any reference (CALL, JUMP,
etc.) to a memory address more
than 64K away has to include
an actual segment reference.
These segment references can-
not be known at compile time:
on the contrary, they have to
be "futed up" when the prc-
gram is loaded and run.

It is possible to have an
EXE file without fix-ups. A
Forth system I use daily has
four 64K segments and sleeps
in an EXE file, but since only
one of these segments con-
tains executable code, there is
no need for so-called reloca-
tions: when the program loads,
the DS, ES, and SS registers are
set to appropriate offsets from
CS and everything runs

Forth Dimensions 13 November 1993 December

smoothly. This EXE file was
not created by LINK, how-
ever, and has no way to speak
to anything it doesn't compile
or metacompile for itself.

When the linker links OBJ
and LIB files to create the EXE,
it creates an almost execut-
able image that could run if it
could be loaded at the very
bottom of memory, without a
PSP or a memory allocation
block below it. In otherwords,
the linker makes all segment
references in the load module
relative to the beginning of
the load module. When DOS
loads the load module into
memory it always does so on
a segment boundary. All that
is necessary, then, to "fur up"
the file for execution is to take
the load address as a segment
value and add it to all segment
references in the loaded im-
age.

To facilitate this futing up,
the EXE header contains a
"relocation pointer table."This
table is poorly named: noth-
ing is actually relocated. What
it actually contains is just a list
of pointers to segment refer-
ences in the load module,
represented as segment:offset
pairs, relative to the beginning
of the load module. This is
exactly enough information
to find the locations,in the file
that need to have their con-
tents adjusted. In fact, this is all
very simple: the hard work is
done by the linker and, before
that, by the language com-
piler/translator that creates the
OBJ files.

3. External References
Functions written in C are

accessed by calls. The basic
format of these calls is de-
scribed in the mixed-language
programming sections of C
and assembler manuals and
books, where you can also
find details of calling conven-
tions for Pascal, Fortran, BA-
SIC, etc. Parameters are passed
on the stack and (unlike most

VARIABLE LAST-XLINK \ pointer to last extern in linked list
VARIABLE 1ST-XLINK \ pointer to first extern
0 DUP 1ST-XLINK ! LAST-XLINK ! \ mark list empty

: EXT-LINK, \ install the link
LAST-XLINK @ ?DUP \ is there already at least 1 extern?
IF HERE SWAP ! \ store fwd link in previous extern
ELSE HERE 1ST-XLINK ! \ or in linked list base pointer
THEN HERE LAST-XLINK ! \ store current link in head pointer
0 , ; \ terminate list

-->

Screen 10
\ EXTERN: LINKED LIST TRAVERSAL RA 03JAN93
: XLINK>FIXADR (ext-link --- patch-adr) 2- @ ;
: XLINK>XNAME (ext-name --- xname-adr) 2+ ;
VARIABLE CUR-XLINK VARIABLE XREF#
: >1ST-XLINK 1ST-XLINK CUR-XLINK @ ! 1 XREF# ! ;
: >NXT-XLINK CUR-XLINK @ CUR-XLINK @ ! 1 XREF# + ! ;
: NEXT,

AD CI \ LODSW
93 C, \ XCHG AX, BX
FF C, 27 C, ; \ JMP [BXI

-->

Screen 11
\ EXTERN: SAVE-REGS & RESTORE-REGS 04FEB93 RA 03JAN93
HEX CREATE RG-SV 8 ALLOT
HERE

89 C, 2E C, RG-SV , \ BP -> RG-SV FORTH RP
89 C, 1E C, RG-SV 2+ , \ BX -> RG-SV+2 FORTH W
89 C, 36 C, RG-SV 4 + , \ SI -> RG-SV+4 FORTH IP
8C C, 06 C, RG-SV 6 + , \ ES -> RG-SV+6
C3 C, \ RET

CONSTANT SAVE-REGS
HERE

8B C, 2E C, RG-SV \ BP
8B C, 1E C, RG-SV 2+ , \ BX
8B C, 36 C, RG-SV 4 + , \ SI
8E C, 06 C, RG-SV 6 + , \ ES
C3 C, \ RET

CONSTANT RESTORE-REGS -->

Screen 12
\ EXTERN: CODE-EXTERN 15FEB93 RA 03JAN93
HEX
: CODE-EXTERN (#out #in --- cfa patch-address)

HERE \ -- #out # i n cfa
E8 C, SAVE-REGS HERE 2+ - , \ CALL SAVE-REGS
9~ C, HERE 0 , 0 , \ -- #out #in cfa patch \ CALL 0000:0000
ROT ?DUP
IF \ -- #out cfa patch-addr #params

\ clean up the stack in C fashion
83 C, C4 C, 2 * C, \ ADD SP,2*#params

THEN \ -- #out cfa patch-addr
E8 C, RESTORE-REGS HERE 2+ - , \ CALL RESTORE-REGS
ROT ?DUP \ -- cfa patch 0 I cfa patch n n
IF 50 C, 1- \ PUSH AX

November 1993 December 14 Forth Dimensions

I F 52 C, THEN \ PUSH DX
THEN NEXT, ; -->

Screen 1 3
\ EXTERN 15FEB93 RA 03JAN93
\ : HEADER CREATE -2 ALLOT ; \ i f you need it
: CREATE-EXTERN (c f a pa t ch -add r ---)

HEADER \ l a y s down F o r t h name and l i n k f o r t h i s word
SWAP , , EXT-LINK, \ I c f a I p a t c h I n e x t - e x t e r n I
BL WORD
\ HERE $MOVE HERE \ i n c l u d e i f WORD d o e s n ' t work a t HERE

C@ 1+ ALLOT ; \ I l inker -name I

: EXTERN (#out # i n ---) (. . . --- a x dx I a x I)

OVER 0 2 W I T H I N O= I F ." INVALID # OUT PARAMS " ABORT THEN

CODE-EXTERN \ c f a pa t ch -add r
CREATE-EXTERN ;

--> USAGE: #out # i n EXTERN DOG -dog
c r e a t e s F o r t h word DOG t o e x e c u t e e x t e r n a l -dog
w i t h # i n params on s t a c k b e f o r e and #ou t a f t e r

Sc reen 1 4
\ SHOW-FIXUPS U T I L I T Y WORD RA 17JAN93
: 4H.R BASE @ SWAP HEX 4 . R BASE ! ;
: SHOWlFIXUP (x l i n k ---)

DUP 4 H . R 2 SPACES \ X L I N K

XLINK>FIXADR DUP 4H.R 2 SPACES \ FIXADR
2@ SWAP 4H.R ." :" 4H:R SPACE \ FIXUP
DUP 2+ COUNT TYPE ;

: SHOW-FIXUPS
CR . " FIXUPS "
CR . " X L I N K FXADR SEG:OFF l a b e l "
CR 1ST-XLINK
BEGIN @ ?DUP
WHILE DUP SHOWlFIXUP CR
REPEAT ; -->

Screen 1 5
\ SAVE-OBJ: OBJ RECORD WRITING 03JAN93 RA 29DEC92
HEX FFFF CONSTANT TOP-ADDR \ w e s a v e up t o t h i s a d d r = 64K
VARIABLE RECBUF \ h o l d s a d d r e s s o f r e c o r d b u f f e r
VARIABLE RECBUFP \ p o i n t e r i n t o r e c o r d f b u f f e r
: OBUF RECBUF RECBUFP @ ! ; \ sets p o i n t e r t o b e g i n n i n g o f buf
: REC.HERE RECBUFP @ ; \ a minor convenience

: BUF$, (Sadr ---) \ move and "comma-in" a s t r i n g
REC.HERE $MOVE REC.HERE C@ 1+ RECBUFP + ! ;

: (BUF,") \ b a s e d on (. " 1
R> DUP COUNT + >R BUF$, ; COMPILE-ONLY

: BUF, " COMPILE (BUF, ' I) I ; IMMEDIATE COMPILE-ONLY 11

: BUFC, (c ---) REC .HERE C! 1 RECBUFP + ! ;

: BUF, (n ---) REC.HERE ! 2 RECBUFP + ! ;

-->
: DMP.REC RECBUF @ REC.HERE OVER - DUMP ;

Screen 16
\ SAVE-EXE: WR.REC RA 29DEC92
VARIABLE REC-FBUF \ o t h e r F o r t h DOS i n t e r f a c e s u s e a h a n d l e

other languages) are left there
for the caller to clean up. Func-
tions that return values return
them in registers: in Borland
and Microsoft C, 16-bit values
are returned in AX and 32-bit
values in DX;AX. Since Forth
tends to live in (single or mul-
tiple) 64K segments, the exter-
nal C (or other) functions we
use will have to be referenced
by long calls (segment:offset)
and should therefore be com-
piled in the medium, large, or
huge models, or at least be
declared as "far" or "huge."
The huge model, though of
course slowest, is the most
straightforward, since huge
functions save and set the DS
register when they're entered
and restore it when they leave,
keeping Forth from having to
know where C keeps its data,
and preventing unexpected
access to Forth's own. The
only data we have to share is
passed (directly or by refer-
ence) on the stack, which had
better be big enough.

So in Forth we need a way
to make long calls to places we
don't know about, in such a
way that the Microsoft or
Borland linker can fur them up
for us. I have written a defining
word, EXTERN, which lays
down code for long calls and
links all the words it creates
into a forward-linked list of
external references so they can
be found easily when we write
out the OBJ file.

EXTERN takes two param-
eters on the stack and is fol-
lowed by two names: the Forth
word that will invoke the long
call, and the external reference
that the linker will use to re-
solve the address of the call
with the appropriate C func-
tion. The usage is

EXTERN <Forth-name>

Forth Dimensions 15 November 1993 December

1 2 EXTERN GETPIXEL

- getpixel

This expression defines a
Forth word GETP IXEL, which
has a stack picture:

GETPIXEL
(y x --- color)

The parameters to EXTERN
indicate that GETP IXEL takes
two 16-bit values from the
stack and returns one. Note
that these are not parameters
in the C sense, but rather the
number of 16-bit values that
make u p those parameters: an
int is worth one 16-bit param-
eter, a double two, a far pointer
also two. Since a C function
returns at most one parameter
and, in Borland C at any rate,
the maximum size of that pa-
rameter is 32 bits, the first
parameter to EXTERN can be
only 0, 1, or 2. There can, of
course, be any number of in-
put parameters. The reason
EXTERN wants to know how
many there are is so that the
word it defines can clean u p
the stack by adjusting S P be-
fore it pushes its return value,
if any. This is the way C does
it. Of course EXTERN could be
written more simply, even
more generally, to leave the
input parameters on the stack
and push both AX and DX on
top of them. For those few
functions, like p r i n t f () ,
which take a variable number
of parameters, we'll have to
clean u p the stack in high level
anyway, but we're Forth pro-
grammers, we can handle it.

Note that C, unlike Pascal
for example, pushes its func-
tion parameters on the stack
from right to left, so that, in
this example, y x GETPIXEL
corresponds to:
getpixel (x , y)

The final term in the
E X T E RN express ion ,

- getp ixe l in the example,
is the actual external refer-
November 1993 December

: REC-SIGNATURE, (b ---)

0 BUF \ i n i t i a l i z e bu f f e r
BUFC , \ s i g n a t u r e byte
0 BUF, ; \ p l a c e h o l d e r f o r l e n g t h

: CHKSUM, (---
0 BUFC, ; \ f a k e , i r r e l e v a n t , c h e c k s u m

: (WR.REC) (---)

RECBUF @ REC.HERE OVER - REC-FBUF @ \ addr l en fbuf
WRITE ;

: !RECLEN \ c a l c u l a t e and store record l e n g t h i n record
REC.HERE RECBUF @ - 3 - \ l e n g t h of record a f t e r c o u n t
RECBUF @ 1+ ! ;

: WR.REC CHKSUM, !RECLEN (WR.REC) ; --> \ w r i t e record

S c r e e n 1 7
\ SAVE-OBJ: RECORD TYPES: THEADR LNAMES MODEND RA 29DEC92
HEX
: WR . THEADR

8 0 REC-SIGNATURE, \ s i g n a t u r e by te & space f o r l e n g t h

BUF," FORTHw \ C o n t e n t of f ie ld, a c o u n t e d s t r i n g
WR.REC ; \ do c o u n t and f a k e c h e c k s u m &

: WR . LNAME S

9 6 REC-SIGNATURE,
BUF, " " BUF, " FORTH TEXT" - BUF, " CODE"
WR. REC ;

: WR.MODEND

8A REC-SIGNATURE,
0 0 BUFC,
WR. REC ;

-->

S c r e e n 1 8

\ SAVE-OBJ: RECORD TYPES: SEGDEF 2 2 J A N 9 3 RA 29DEC92
HEX

: WR.SEGDEF (c l a s s - i n d e x seg-index l e n ACBP --- 1
9 8 REC-SIGNATURE,

BUFC, \ ACBP 6 2 = r e l o c a t a b l e , para a l i g n e d , no c o m b i n
BUF, \ 0 0 0 0 = 64K s e g m e n t

BUFC, \ s e g m e n t n a m e index T h e s e indexes refer t o
BUFC, \ class n a m e index n a m e s i n t h e LNAMES

1 BUFC, \ o v e r l a y n a m e index - ignored
WR.REC ;

-->

S c r e e n 1 9
\ SAVE-OBJ: RECORD TYPES: EXTDEF RA 02JAM93
HEX

: WR . EXTDEF

8C REC-SIGNATURE,
>1ST-XLINK \ p o i n t t o t h e f irst ex t e rn
BEGIN CUR-XLINK @ ?DUP \ does t h e ex t e rn e x i s t ?
WHILE XLINK>XNAME BUF$, \ w r i t e t h e l i n k e r n a m e

0 BUFC, \ type = none
>NXT-XLINK \ get t o t h e next e x t e r n

REPEAT

WR. REC ;
-->
An EXT-DEF c o n t a i n s l i s t o f n a m e s i m p o r t e d f r o m o t h e r m o d u l e s ,

16 Forth Dimensions

f o u n d by stepping t h r o u g h t h e EXTERN l i n k e d l ist

S c r e e n 2 0
\ SAVE-OBJ: RECORD TYPES: PUBDEF RA 29DEC92
HEX
: WR.PUBDEF

9 0 REC-SIGNATURE,
0 BUFC, \ group index
1 BUFC, \ seg index

BUF, " - fo r thm
1 0 0 BUF, \ o f f s e t

0 BUFC, \ type = none
WR-REC ;

-->
PUBDEF c o n t a i n s a l i s t of n a m e s i n t h i s m o d u l e t o be exported
t o o t h e r m o d u l e s

S c r e e n 2 1
\ SAVE-OBJ: RECORD TYPES: LEDATA RA 29DEC92

HEX
VARIABLE MEMP

: MEMP@ MEMP @ ;

VARIABLE SEG-INX
: WR. LEDATA (l e n g t h ---)

OBUF A0 BUFC, \ s i g n a t u r e b y t e
DUP 4 + BUF, \ l e n g t h
SEG-INX @ BUFC,
MEMP@ BUF,
(WR. REC) \ w r i t e h e a d e r o n l y

MEMP @ \ -- l e n addr
OVER 1+ \ -- l e n addr l e n + c h k

REC-FBUF @ \ -- l e n addr l e n + c h k fbuf
WRITE \ -- l e n
MEMP + ! ; -->

S c r e e n 2 2
\ SAVE-OBJ: RECORD TYPES: LEDATA RA 0 3 J A N 9 3
HEX
: WR.PATCH.TARGET

A0 REC-SIGNATURE,
SEG-INX @ BUFC, \ s e g m e n t (b y index)
MEMP @ BUF , \ o f f s e t i n s e g m e n t
0 BUF, 0 BUF, \ dummy t a rge t

WR . REC
4 M E M P + ! ; -->

\ WR.LEDATA w r i t e s a 1K o r s m a l l e r c h u n k of code w i t h o u t any
\ f i x u p s i n i t . WR.PATCH.TARGET i s f o r those 4 - b y t e s e c t i o n s
\ of code t h a t require a f i x u p t o a s e g m e n t : o f f s e t of a long
\ c a l l t o a n o t h e r object m o d u l e . T h i s i s t h e s i m p l e s t w a y t o dc
\ i t . T h e w o r d t h a t w r i t e s t h e code t o t h e . O B J f i l e j u s t step3
\ t h r o u g h t h e m e m o r y i m a g e w r i t i n g t h e t w o k i n d s of records a s
\ it c o m e s t o t h e m .

S c r e e n 2 3
\ SAVE-OBJ: RECORD TYPES: F IXUPP
HEX
: WR.FIXUPP

9C REC-SIGNATURE,

ence, the linker name of the C
function we want to call when
we execute GETPIXEL. Note
the leading underscore. The
actual C function is
getpixel (1 , but the C com-
piler adds the underscore when
it creates the object module
containing the code for the
hnction, so it is a s g e t p i x e l
that the linker recognizes it.
Other languages may mangle
their function, procedure, or
subroutine names in different
ways (C++ is particularly elabo-
rate) which you'll want to know
about if you plan to link with
them.

According to my experi-
ments, I can access most any C
function with this technique.
There are some restrictions.
Some functions in the Borland
library reference aren't really
hnctions but macros. For ex-
ample, you can't use Borland's
r a n d o m () , which is a macro,
but you canuse rand () ,which
is a function. Other functions
require examination to use
correctly. Some list parameters
which have symbolic names.
These are, of course, really
numbers, usually listed in
header files. Others are ini-
tially surprising or perhaps
peculiar. For example, we can
define a call to p r i n t f () as

0 0 EXTERN P R I N T F
q r i n t f

p r i n t f () doesn't return any-
thing (which accounts for the
first zero above) and it takes an
indeterminate number of pa-
rameters (which accounts for
the second zero), which causes
all input parameters to be left
on the stack for us to clean up
afterwards. This is the best we
can do. The parameters to
p r i n t f () are a pointer to a
formatting string and zero or
more arguments. The format-
ting string is a standard C null-
terminated string with embed-
ded escape sequences (such
as \ n , which indicates a new

Forth Dimensions 17 November 1993 December

line) and format specifiers (such as %d, which says to print
the top stack word as a decimal integer). When printf ()

executes, it prints the string, acting on the escape sequences
and replacing the format specifiers with values from the
argument list. If you're thinking of linking Forth and C you
already know this, and know that the fragment

int x;
. . .
x = 1234;
printf("\nHere's an integer
value : \nx=%d. ", x) ;

will print

Here's an integer value:
x=1234

We can go partway with this in Forth. The following
sequence

: PRINT-INT
Z" \nHere1s an integer value:\nx=%d."
PRINTF ;

1234 PRINT-INT

will yield

\nHere1s an integer value:\nx=1234.

at least with Borland C. This
shouldn't have been surprising:
since the escape sequences
are unambiguous at compile
time the C compiler can pro-
cess them before writing the
OBJ file, but the format speci-
fications can only be replaced
by strings representing the
appropriate values at run time.

For further examples of C
function calls, see the sample
code. One is particularly
important: the call to the C
function exit () , defined as

0 1 EXTERN C-EXIT

- exit.

Because a C program sets
up certain parameters, cap-
tures various interrupts, etc.,
when it starts up, and we
really don't want to know what
those are, we need to exit
from Forth in a way that will
cause C to clean up after itself
as well. The way to do this in

C is either to exit through the bottom of the main () function
or to call exit () explicitly with a parameter that tells DOS
what the exit condition was (zero means "good," anything
else means "bad"). So instead of BYE we can execute GOOD-
BYE defined as

: GOOD-BYE 0 C-EXIT ;

and avoid having our machine lock up on us unexpectedly
while we're in the middIe of something else later.

Portability issues aside, the actual coding of EXTERN and,
later, SAVE-OBJ and SAVE-EXE is also necessarily some-
what implementation (and personal preference) dependent.
I chose an 83-standard, indirect-threaded Forth for this
project because it is probably still the most widely available
model, and I used Guy Kelly's implementation because it's
the single-segment version I'm most familiar with. I could
have used F83 with perhaps no changes not already men-
tioned except the need to use an unfamiliar editor. More
serious adjustments would have to be made for direct-
threading or subroutine-threading (one hesitates to contem-
plate token-threading), not to mention other standards,
including the forthcoming ANS.

The code works and, working, should speak for itself, but
here's a little more detail:

The definingword EXTERN has two parts. CODE-EXTERN
creates Forth code words by compiling bytes in memory with
C, . This is not a job for CREATE.. .DOES> since each external
reference needs its own code body. The only unusual things

\ no thread field
\ locat

CC BuFC, \ M=l, loc = segment:offset
0 BUFC, \ offset in record, in 4Z .LEDATA always 0

\ fixdat
56 BUFC, \ F=O, frame det by target, T=O, ext index
XREF# @ BUFC,
WR.REC ;

-->
\ For details of the FIXUPP record try the MS-DOS ENCYCLOPEDIA.

Screen 24
\ SAVE-OBJ: WR.CODE 01JAN93 RA 29DEC92
HEX DEFER 'WR.SEG DEFER 'WR.FIX
: WR.FIX WR.PATCH.TARGET WR.FIXUPP ;

: WRlCODEREC \ step through the memory image
CUR-XLINK @ ?DUP \ and the EXTERN linked list
IF XLINK>FIXADR MEW@ - ?DUP

IF 400 UMIN 'WR.SEG ELSE 'WR.FIX >NXT-XLINK THEN
ELSE TOP.ADDR MEW@ - 400 UMIN 'WR.SEG
THEN ;

: (WR.CODE)
0 MEMP ! >lST-XLINK
BEGIN WRlCODEREC MEMP@ TOP.ADDR U< O= UNTIL ;

: WR.CODE 1 SEG-INX !
['] WR. LEDATA IS 'WR. SEG
[']WR.FIX IS 'WR.FIX

1 I

November 1993 December 18 Forth Dimensions

Screen 25
\ SAVE-OBJ: WR.OBJ.RECORDS 03JAN93 RA 29DEC92
HEX
: WR.OBJ.RECORDS

WR . THEADR
WR. LNAMES
3 2 0 62 WR. SEGDEF
3 2 200 60 WR.SEGDEF \ a little room for Forth msgs
1ST-XLINK @ IF WR.EXTDEF THEN
WR. PUBDEF
WR .CODE
WR.MODEND ; -->

Screen 26
\ SAVE-OBJ SAVE FORTH AS .OBJ FILE RA 29DEC92
HEX
: SAVE-OBJ

PAD 100 + RECBUF ! \ set buffer address
OFBUF REC-FBUF !
REC-FBUF @ FILENAME FORTH.OBJ
REC-FBUF @ MAKE \ create file
REC-FBUF @ DUP FREOPEN FYL ! \ open & make current
EMPTY-BUFFERS FLUSH
SET-BOOT GET-MSGS
EMPTY-BUFFERS FLUSH
WR.OBJ.RECORDS
REC-FBUF @ FCLOSE \ flush it to be sure
CR ." OBJECT FILE WRITTEN " ;

DECIMAL

Screen 27
\ SAVE-EXE: NAVIGATING THE ENVIRONMENT RA 16JAN93

: OSKIPL (seg addr --- seg addr')

\ skip past end of zstring at seg:addr
BEGIN 2DUP C@L WHILE 1+ REPEAT 1+ ;

: OLENGTHL (seg addr --- len)

\ get length of zstring at seg:addr
2DUP OSKIPL \ seg addr seg addr'
NIP SWAP - NIP ; \ len

: OOSKIPL (seg addr --- seg addr')

\ skip past double-zero at end of environment variables
BEGIN 2DUP @L WHILE 1+ REPEAT 2+ ;

Screen 28
\ SAVE-EXE: FIND-PROGNAME !FORTH-OFFSET 18JAN93 RA 16JAN93
DECIMAL
ZVARIABLE FORTH-IMAGE-OFFSET
: FIND-PROGNAME (--- addr zlen)

ENV@ 0 OOSKIPL \ seg name-addr
OSKIPL \ get past sring count
2DUP OLENGTHL \ seg name-addr zlen

Forth Dimensions 19

 bout this code body are (1)
hat it is laid down in memory
xfore, rather than after, its
leader (which makes finding
xher things in the header
:asier), and (2) that it contains
I long call to segment:offset
1000:0000, which won't work
~ e r y well if the word is ex-
~ u t e d before it's linked.

While it is laying downcode,
:ODE-EXTERN consumes the
w o stack parameters already
mentioned and saves two
addresses on the stack: the
address of the beginning of the
code word and the address of
h e null long call. The second
part of EXTERN, CREATE-
EXTERN, creates an extended
header for the word being
defined. The word HEADER in
Kelly's Forth is a factor of
CREATE, and does everything
CREATE does except lay down
the CFA. It can be replaced by
CREATE -2 ALLOT for port-
ability. After the header is the
CFA which, for a code word in
an indirect-threaded Forth,
contains the address of the
executable code. Normally this
code immediately follows the
CFA, so the CFA can be com-
piledbythe phrase HERE 2+ , .
For these EXTERNS, however,
the executable code has
already been laid down. Its
address is on top of the stack at
this point, and can be com-
piled by , (comma). After the
CFA, there are two more fields:
the patch address passed to
CREATE-EXTERN by CODE-
EXTERN, and the linker name
for the EXTDEF record of the
OBJ file, which is parsed out of
the input stream by WORD.

The linking of the list of
EXTEms is straightforward.
Variables point to the first and
last elements in the list, each
element in the list points to the
next, and each time a new
element is added LAST-XLINK
and a pointer in the previously
last EXTERN are adjusted by
EXT-LINK, . What makes this
list different from most others

November 1993 December

in Forth (the dictionary, the list of vocabularies) is that the
links point forward rather than backward, which is what we
want, since this is the order we'll need them as we write the
records of the OBJ file. The words XLINK>FIXADR and
XLINK>XNAME, factored to make redesign easier, will be
used to find the patch address field and the linker name field
from the external link field in each header, and >lST-XLINK
and >NXT-XLINK manage stepping through the list.

In memory, EXTERN lays down something like this:

I long call code I next, I
1 name I link 1 cfa I patch I fwd link I linker-name I

image of the linked M E file. Strings in object records are the
kind we're used to, beginning with a count byte rather than
ending with a null.

Each record type does one thng well enough. We need
eight different record types and, since they tend to refer to
each other, order for the most part matters. 1'11 describe each
as briefly as possible, in the order we need to use them. For
further information, or to puzzle it out yourself, consult the
MS-DOS Encyclopedia For clarification, consult the code.

The THEADR or translator header record (I'm using
names given from the MS-DOS Encyclopedia) just gives the
module a name, and must be first. It's almost the simplest

CS@ HERE ROT DUP >R CMOVEL HERE R> ;

4. Object File Records
After we create references

to external functions, we have
to save the running Forth im-
age as an OBJ file. Most sys-
t e m have a SAVE-FORTH
word which saves the Forth
image as an executable file,
either a COM file or a work-
able facsimile of an EXE with-
out f ~ - u p s . What we need is a
bit more complicated but, in
the end, more tedious than
difficult.

The record types for OBJ
files are described completely,
if not quite lucidly, in the MS-
DOS Encyclopedia, though I
must add that the formats of
these records are twisted
enough that they perhaps can-
not be described clearly. The
important thing for us is that
there are things about them
we do not need to know, and
some that we do.

All OBJ records begin with
a one-byte signature and a
two-byte length, and end with
a checksum byte. The Borland
and Microsoft linkers, at least
the versions I've used, ignore
the checksum, so we don't
have to care what's in it. The
length is the length of the
record after the l e n g t h i n
other words, three less than
the length of the whole record
in bytes. The contents of ob-
ject records-between the
count and the checksum-are
strings, tightly packed bit-field
bytes, index bytes (pointing at
or into other records), and (for
two record types) data des-
tined to compose the memory

November 1993 December

: HEADERPARS@ (--- n o BLOCK 8 + @ ;
: !FORTH-OFFSET (--- doffset)

HEADERPARS@ 16 UM* \ offset of code portion in EXE file
CS@ PSP@ - 16 UM* \ offset of Forth from PSP i n memory
256. D- \ subtract psp size
D+ FORTH-IMAGE-OFFSET 2! ;

-->

-

Screen 29
\ SAVE-EXE: WRITE-FORTH-IMAGE SAVE-EXE RA 20JAN93
: WRITE-CHUNK (len ---) MEMP@ SWAP DUP MEMP + ! OFBUF WRITE
: SKIP-FIXUP (---) \ +SEEK would be useful here

4 MEMP + ! FORTH-IMAGE-OFFSET 2@ MEMP@ 0 D+ OFBUF SEEK ;
: WRITE-FORTH-IMAGE

!FORTH-OFFSET FORTH-IMAGE-OFFSET 2@ OFBUF SEEK
[' 1 WRITE-CHUNK IS ' WR . SEG
[I] SKIP-FIXUP IS 'WR.FIX
(WR.CODE) ;

: OPEN-PROGFILE
FIND-PROGNAME OFBUF Z>BUF OFBUF FREOPEN OFBUF FYL ! ;

: SAVE-EXE
OPEN-PROGFILE SET-BOOT GET-MSGS
WRITE-FORTH-IMAGE OFBUF FCLOSE ; -->

Screen 30
\ EXTERN TEST WORDS
0 1 EXTERN C-EXIT exit - \ returns code to DOS
: GOOD-BYE 0 C-EXIT ; \ use C1s cleanup
2 0 EXTERN CORELEFT -coreleft (--- dPars)

1 2 EXTERN SETBLOCK -setblock
1 1 EXTERN MALLOC -malloc
0 1 EXTERN FREE -free -->

Screen 31
\ EXTERN TEST WORDS
1 2 EXTERN GETPIXEL getpixel 0 3 EXTERN PUTPIXEL gutpixel
0 6 EXTERN GR.INIT -initgraph 0 0 EXTERN GCLOSE -closegraph
VARIABLE GMODE
VARIABLE GDRIVER

: (GINIT)
cse zm \BORLANDC\BGI - CS@ GMODE CS@ GDRIVER GR.INIT ;

20 Forth Dimensions

: (VGAHI) 9 GDRIVER ! 2 GMODE ! ;
: (CGAC3) 1 GDRIVER ! 3 GMODE ! ;
: CGA-INIT (CGAC3) (GINIT) ;
: VGA-INIT (VGAHI) (GINIT) ;
DECIMAL

: GTEST CGA-INIT
100 30 DO
100 30 DO I J + 8 MOD I J PUTPIXEL LOOP
LOOP ; -->

Screen 32
\ EXTERN TEST WORDS: PRINTF RA 05FEB93
0 0 EXTERN PRINTF p r i n t f \ w e ' l l have t o c l e a n up s t a c k

: TEST-STRING
CS@
Z " HERE'S A PRINTSTRING TEST " ; \ s e g a d d r

: TEST-PRINTSTRING TEST-STRING PRINTF ;
: TS2 CS@ Z " \nHEREVS A NEWLINE OR NOT" ;
: TS3 CS@ Z " HERE'S AN INT % d OKAY? " ;
: TEST2 TS2 PRINTF ;
: TEST3 12345 TS3 PRINTF ;

\ n n o t hand led b u t % d i s

Sc reen 33
\ EXTERN TEST WORDS: CGA GRAPHICS
DECIMAL
0 2 EXTERN LINETO - l i n e t o
0 1 EXTERN SETCOLOR - s e t c o l o r
1 0 EXTERN RAND - r a n d
: GTEST2

CGA-INIT
1000 0 DO

RAND 200 MOD RAND 300 MOD LINETO
RAND 4 MOD SETCOLOR

LOOP
KEY DROP GCLOSE ;

Screen 34
\ MORE .OBJ GRAPHICS WORDS
DECIMAL
\ 0 0 EXTERN VGAINIT - v g a i n i t

: GTEST3
VGA-INIT
1000 0 DO
RAND 480 MOD RAND 640 MOD LINETO
RAND 16 MOD SETCOLOR
LOOP
KEY DROP GCLOSE ;

possible: between the count
and the checksum, it contains
only a counted string, in our
case "FORTH." The linker uses
this name in error messages.

The LNAMES record con-
tains a list of group and/or
segment names other records
will refer to by number, count-
ing the first as one, not zero.
For us, only SEGDEF records
refer to this list. Imitating other
object modules I've examined,
I've included, as the first name
in the list, a blank name of
length zero. This isn't really
necessary: using an index of
zero seems to have the same
effect as using an index of one
to point to this zero-length
string. The other two names
will be used for the segment
name and the class name of
our single Forth code segment.
(But see the "More Implemen-
tation Details" section, later.)

The SEGDEF record de-
fines a memory segment. It
contains a number of fields: an
"ACBP byte," a two-byte
segment length, and three
name index bytes which con-
tain references to names in the
previous LNAMES record.

The ACPB byte encodes
various attributes of the seg-
ment. Ours is 62H, or 01 1 000
1 0. The three highest bits
inlcate the segment alignment,
which in this case is relocatable
and paragraph aligned (i.e., it
will begin on a 16-byte bound-
ary). The paragraph alignment
is important, since we want to
set the segment registers to the
beginning of the Forth address
space. The next three bits are
the combine type, which in
this case indicates that the seg-
ment cannotbe combined. This
is the safest value for this field,
though 010, which would
allow concatenation with an-
other segment of the same
name, would work as well.
The penultimate or "B" (for

Forth Dimensions 2 1 November 1993 December

"big") bit combines with the
following two bytes to give
the length of the segment. In
our case, the segment is 10000
hex bytes, or 64K, supposedly
the maximum segment length,
and is what we want. The last
bit is the "Page resident" flag,
which the MS-DOSEncycbpe-
diasays is unused and should
always be zero.

The three bytes after the
length bytes are indexes into
the list in the LNAMES record
to assign segment, class, and
overlay names to the segment.
Actually, the overlay index is
ignored, so pointing it at a
blank string as I have done is

Sc reen 35
\ PRINT FIXUP TABLE FROM EXE
HEX
VARIABLE TABLE-OFFSET
VARIABLE TABLE-ENTRIES
2VARIABLE TABLE-ENTRY
: PT-FIX-TABLE

OPEN-PROGFILE
0000.0006 OFBUF SEEK TABLE-ENTRIES 2 OFBUF READ
0000.0018 OFBUF SEEK TABLE-OFFSET 2 OFBUF READ
TABLE-OFFSET @ 0 OFBUF SEEK
CR
TABLE-ENTRIES @ 0 DO

TABLE-ENTRY 4 OFBUF READ
TABLE-ENTRY 2@ 4H.R SPACE 4H.R
I 1+ 8 MOD O= IF CR ELSE SPACE THEN

LOOP ;

superfluous. The other names
appear in MAP files and help control segment ordering and
combination. Unless its normal operation is overridden with
command line switches, LINK will combine segments with
the same segment and class name, and concatenate seg-
ments with the same class name, in the order in which the
linker encounters them. This order is controlled, within an
OBJ file, by the order of their declarations within it and,
among object files, by the order in which they're listed as
parameters to LINK on the command line or in the makefile.
In our case, our CODE segment will be concatenated with
other CODE segments from other object modules, but it won't
combine with anything that is not also called "FORTH-TEXT".

WR. SEGDEF, which writes this record, takes its param-
eters (name indexes, length, and ACBP byte) from the stack,
to make it easier to define multiple segments.

The EXTDEF record contains a list of external references,
names of functions defined elsewhere that will be called from
Forth: in other words, an imports list. We want to put the
linker names here from the words we defined with EXTERN.
The linker will use these names to resolve our patch
addresses with the addresses of C functions with the same
linker names. Each name in the EXTDEF record is followed
by a type index byte but, since we have no TYPDEF records,
these bytes are all just set to zero.

The PUBDEF record contains the names of symbols
exported by the OBJ file. In this case we have only one,

- f o r t h , which will be used to resolve the calling address of
a C function called f o r t h () . Before the name field in the
PUBDEF record are a group index and a segment index, and
after the name are an offset into the indicated segment and
a type index. We have no GRPDEF or TYPDEF records, and
don't need them, so these bytes are set to zero. The segment
index is set to one for the first segment and, since this Forth
began life as a COM file, the offset into the segment is set to
(hex) 100. Using this information the linker can link f o r t h
to a C function called f 0 1 t h () so that calling that Lnction

will execute our familiar Forth image, almost as though it
were still a COM file.

(You will notice that by making C call Forth we are, in
some small way, giving precedence to C. We could, in fact,
put the symbol -main rather than - f o r t h in this PUBDEF
record and let Forth start immedately when the EXE file is
loaded. The problem with this is it doesn't allow C to perform
its initalization correctly, and some C functions don't quite
work. The fact that it makes the MODEND record more
difficult to construct is only a minor inconvenience.)

The LEDATA ("logical enumerated data") and FIXUPP
records occur together. The LEDATA records contain the
actual code, the contents of the Forth image in memory at the
time they are written out. (This is where our activity most
dffers from that of a C or other language compiler: we're
writing code out of memory, code that for the most part is
actually running whle it's being written, rather that merely
translating text from a source code file.)The maximumamount
of object code one record can contain is lK, so we could write
it out as 64 1K blocks if it weren't for the patch addresses we
want the linker to resolve. Simplicity is a practical virtue: the
method I've adopted is to write two kinds of LEDATA records:
pure object code records, which can be up to 1K in length and
have nothing to resolve, and pure@-up target records, which
are always four bytes long and all zeros.

Each fu-up target LEDATA record needs to be followed
immediately by a FMUPP record. The FIXUPP record type

I has twelve pages in the MS-DOSEncyclopedia, with a fairly
bewildering variety of options. We need only one.

FIXUPP records can contain thread fields and fur-up
fields. We don't need a thread field. The four bytes between
the signature and the checksum in our FIXUPP record make
a single fm-up field. It's identified as such by having the high
bit set in the first byte. The other bits in that byte and the next

I indicate that the fix-up field is segment-relative and refers to 1 a segment:offset at offset zero of the LEDATA record it

November 1993 December 22 Forth Dimensions

Forih Dimensions 23 November 1993 December

follows. The other two bytes are called the "furdat" field. The
bits in the first indicate that the "frame" is determined by the
target and that the target is specified by an external index.
Trust me: this is what we want. What h s comes to so far is
the three bytes CC 00 56. The last byte before the fake
checksum is an index into the list of external references in the
previous EXTDEF record, indicating which external function
is to be resolved to this patch address.

The MODEND record is the simplest of all: since the Forth
object module isn't going to be the "main" program module
(it won't contain the entry point for the EXE file), it only marks
an end, and is just one byte of zero between the length and
the checksum.

Most of these object records get constructed in memory
before being written to disk. SAVE-OBJ sets up this buffer,
and creates and opens a DOS file to put the records in. Almost
everyhng in this word is implementation dependent, and
already explained. (SET-BOOT and GET-MSGS are imple-
mentation peculiarites that will be discussed later.) I've
defined a set of words to compile bytes, words, and strings
into this buffer. In some implementations it might be possible
to construct these records at HERE by saving and restoring the
DP each time: in that case, you could just use , (comma), C,
(c-comma), and (if you have it) , " (comma-quote) instead.

With these core words, I've defined words which compile
the record signature, (fake) checksum, and length into the
record and then actually write it out. These words make
writing most records easy and uniform. The exceptions are
the EXTDEF record, which contains the linker names of the
external references defined by EXTERN, and the LEDATA
and FIXUPP records, which contain the actual Forth-image
machine code.

The variables CUR-XLINK (current external link), MEMP
(memory pointer), and XREF# (external reference number)
are used to keep track of what's been written from the Forth
memory image to the OBJ file. The words >1ST-XLINK and
>NXT-XLINK step CUR-XLINK through the linked list of
words defined with EXTERN, and keep a count in XREF#.

CUR-XLINK always points to the next external reference that
needs to be written, or to zero to indicate that none are left.
WR. EXTDEF uses these words to find the linker names, and
WR . CODE uses them to find the patch addresses.

The EXTDEF record is composed in the same buffer as the
other records. WR . CODE works a little differently. Except for
the signature, length, and fake checksum of each LEDATA
record WR. CODE writes memory directly to the file.

When MR. CODE begins, MEMP is set to zero, CUR-XLINK
is set to the contents of 1ST-XLINK (the first EXTERN), and
XRE'!?# is set to one, the index of the linker name associated
with the first external reference in the EXTDEF record. (The
variable SEG-INX is also set to one, to point at the first
SEGDEF record, since this is the one associated with the
memory segment we're writing out to the OBJ file.) Then
WR . CODE executes WRlCODEREC in a loop.

During each pass through the loop, CUR-XLINK either
points at a link, or it does not (indicated by a value of zero).

If not, WRlCODEREC writes a record containing a maximum
1K from memory (it may be less if it's the last record), starting
with the address pointed to by MEW. Before it writes the
record, WRlCODEREC knows its length so it can write the first
three bytes of the record, then the 1K or smaller body, then
the fake checksum. (Tlus allows the record buffer to be
relatively small, even though many records will be 1028
bytes.)

If, on the other hand, there are EXTERNs left to write,
M E W either points to the patch address of the next one or it
does not. I~MEMF has reached a patch address, WRlCODEREC

writes a four-byte LEDATA record filled with zeros followed
by a FIXUPP record, then calls >NXT-XLINK to advance
CUR-XLINK and increment XREF#; otherwise WRlCODEREC
writes a record similar to the one described above, 1K or less
from memory, starting from MEMP, and stopping at or before
the next patch address.

The format of the FDCUPP record has already been
described: the important thing here is that the value in XREF#
is included, which tells the linker which name in the EXTDEF
record refers to this particular fur-up so it can patch its address
correctly. In all cases, WRlCODEREC advances MEMP to point
to the first byte of memory not yet written and, so long is there
is memory left to write, the loop repeats.

5. Linking Forth and C
It is possible to write out a Forth image, without any

EXTERNs, as an OBJ file and use L I N K to create an EXE. This
is the simplest situation and, though interesting, not very
useful (except as a step in the development of the method).

To link inC functions, we have to have a main () function
and link in the initializaton module and libraries for the huge
model. We can make Forth the main module by calling it
- main in the THEADR object record but, as mentioned
earlier, this doesn't quite work. In order for C to do its
initialization correctly, main () has to be a C function,
however trivial. The file F0RTHC.C is just:

v o i d f a r f o r t h () ;
main ()

{
f o r t h () ;

1

This is all the C we need. We declare f o r t h () as a far
function-that is, one that is called with a long call-and then
make the call by invoking the function.

But C not only has some initialization to do before calling
main () , it also wants to clean up after itself. Since Forth
changes all the segment registers, including SS, to point to
itself-losing, in the process, the return address left on the
stack-the function f o r t h () will never return; therefore, to
be really safe, we need to redefine BYE as a call to the C
function e x i t 0 . This is redundant, but it's important.

After we write the OBJ file, all that remains is to call L I N K

(or TLINK). I won't go into detail about this except to note

November 1993 December 24 Forth Dimensions

that our object file, FORTH.OBJ or whatever, should be put
in the TLINK command line just like a C object file, after the
initialization module (COH.OBJ or COFH.OBJ for TLINK). If
you want to link Forth and C, you already know how to use
LINK and probably MAKE, and if you don't there are far better
explanations, even in the Borland and Microsoft compiler
manuals, than I can give here; but just as an example, here's
the makefile I used:
FORTH. EXE : FORTH. OBJ GINIT. OBJ FORTHC . OBJ
TLINK /d/m/s/Tde COfH FORTHC FORTH CGA
EGAVGA GINIT,

FORTHC,,CH.LIB GRAPHICS.LIB
FORTHC-OBJ: F0RTHC.C

BCC -mh -c F0RTHC.C
GINIT.OBJ: GIN1T.C

BCC -mh -c GIN1T.C

6. Saving Without Re-linking
Once we have C routines linked into FORTHEXE, we

might want to go away from the C environment and still be
able to add words and save the image. It would be
inconvenient to have to use LINK in these circumstances
and, if we're careful, we don't have to. What we do have to
do is figure out where in FORTH.EXE the Forth image is and
write the new image right back there.

There are three steps to this: finding the EXE file on disk,
finding the location of the Forth image in the EXE file, and
writing the Forth image from memory back into the EXE file
without destroying the fix-up records.

To find, on disk, the EXE file of the program that is actually
running, we need to find what the DOS books call its "fully
qualified filename." The string representing this filename,
which includes the "canonical pa th (drive and path from the
root directory, with any re-directions imposed by APPEND
resolved), can be found at the end of the running program's
environment block.

We can find the program segment prefur (PSP) of the
running program through a DOS call, int 21h function 51h (or
62h). At offset 2Ch of the PSP is the segment address of the
environment. The environment consists of a series of null-
terminated strings terminated (depending on how you look
at it) by a zero-length string or an extra null. Right after the
environment is another set of strings. First there is a count of
these strings (which may always be one), followed by a null,
then by the string representing the "fully-qualified filename"
we're looking for. No matter what we've renamed it, no
matter where it is on our path or how we've called it, h s
string can be used to locate the file and open it. FIND-
PROGNAME finds this string, moves it-with its null-termina-
tor-to HERE, and leaves its address and count on the stack.

The next thing we want to do is open this file for reading
and writing. We can do this because, although we are
running the program contained in the file, the file is not now
open. (In a multi-user or multi-tasking system, someone
could come along and delete, rename, or remove the file
before we get to it.)The word OPEN-PROGFILE does all this.

The phrase

OFBUF Z>BUF OFBUF FREOPEN OFBUF FYL !

which is highly implementation dependent, moves the
filename to the FBUF OFBUF, opens the file, and makes it
current, so that BLOCK will refer to blocks in this file. Your
technique may vary. The important thing is to open the EXE
file so we can read its header.

There's lots of possibly interesting information in the
header, but really all we need to know is how big it is so we
can find the rest of the file. The number of 16-byte paragraphs
in the header is stored in the word at byte offset 8 in the header.
We also know the address, in memory, of the PSP for our
program and the segment address (from CS@) of the Forth
segment Since the PSP is 256 (decimal) bytes long, and resides
just before the image of the EXE program in memory, and since
we know and trust that the code portion of the EXE file is the
same as the memory image less the fuc-ups to specific
addresses in it, finding the Forth portion of the EXE file is p t
arithmetic. !FORTH-OFFSET performs this arithmetic and
stores the result in the variable FORTH-IMAGE-OFFSET.

After we've found this offset, we use SEEK to get to the
right place in the file, and then write the memory image in
much the same way we wrote LEDATA records. The
operations are similar enough that I've used the same loop,
vectoring the action words that handle the code and fm-up
parts of the operation; the differences are that the pieces of
memory we write go directly into the EXE file instead of into
OBJ file records and, instead of writing four-byte fix-up
targets, we just carefully skip their places in the file.

(The reason we have to be careful about these fur-ups is
that they no longer contain zeros, either in memory or in the
EXE file. Further, their contents in memory and in the file are
different. In the EXE file, these locations containsegment:offset
addresses relative to the beginning of the executable portion
of the file, while in memory these addresses are fixed up to
actual addresses.)

So now we have two ways to save Forth: when we've
added new external references with EXTERN we save it as an
OBJ file and use LINK, including re-linking all the things
we've linked before; when we have no new references to
link, we can just save the image into the current EXE file. (A
simple extension would be a word which would check the
f i -up list to see whether we have to use SAVE-OBJ or can
get by with SAVE-EXE.) There are two small problems with
SAVE-EXE: one is the checksum in the EXE header, which
doesn'tget updated by this technique. But, like the checksums
in the OBJ records, this one doesn't seem to matter except,
perhaps, to virus-checking programs. The second problem
is that you can't use LZEXE or EXEPACK or any other EXE-
file-compression programs on the EXE file and hope to save
the Forth image back into it.

7. More Implementation Details
A couple of implementation peculiarities of Kelly's Forth

are encapsulated in the words SET-BOOT and GET-MSGS.
The boot-up values of LATEST, FENCE, DP, and VOC-LINK
are stored in low Forth memory in this implementation. If
they are not set before the image is saved, nothing compiled
since the previous save will be available when the file is re-
loaded. The words will be in memory but nothing will point
to them, so they won't be found. This can be a useful feature:
you can, for example, execute SET-BOOT before you
compile the code to save the system, which will then
effectively be discarded by the save. However, for what I like
to think of as simplicty and clarity, I have chosen to include
SET-BOOT in SAVE-OBJ and SAVE-EXE.

The other implementation peculiarity, GET-MSGS, is more
interesting in the current discussion because of the problem it
caused and the solution I found. In Kelly's FORTH.COM, the
system messages are in the FIRST block buffer. As part of the
boot-up process, the contents of this block buffer (actually, the
first half of it) are moved to just beyond the 64K boundary, from
where they are accessed by CMOVEL when needed. Conse-
quently, before the Forth image is saved, whether by SAVE-
FORTH, SAVE-OBJ, or SAVE-EXE, these messages have to be
moved back into the FIRST block buffer or they will be lost.
(With SAVE-EXE, they will be lost only indrectly, since they
remain in the file but will be over-written by whatever happens
to be in the FIRST block buffer when the system boots.) This
is the function of GET-MSGS. A consequence of this location
for the messages is that, in order to have them, I had to define
a segment to keep them in. In WR.OBJ.RECORDS, the second
invocation of WR. SEGDEF defines a 0.5K segment for the
messages with-and this is important-the same class and
segment names as the main Forth segment. The size is
different, and the "B" bit of the ACBP byte is turned off, but
since these two segments have the same pair of names, and
since their ACPB bytes indicate that they cannot be combined,
the linker will see that they are concatenated, in the order in
which they are declared. This is just what I needed and it
suggeststhat if you wanted, for example, a four-segment Forth,
with separate 64K segments for code, lists, data, and headers,
you could define their segments in this kind of way. Note that
no LEDATA records (or LIDATA records, a type not discussed
here) are written for this segment: it just reserves space for
Forth to put its system messages.

Conclusion
I hope this relatively simple recipe for accessing external

functions and libraries from Forth will prove helpful to those
who feel isolated in our high-performance ghetto, or who
feel they have to work in some less altractive language just
to get work done. Its value for some may be as a method for
gluing together other things in a way that provides familiar
control and semi-interactive development and testing. But it
would be foolish for me to guess the uses of this tool: if it is
a good one, it will find homes. My interest has, so far, mainly
been in learning how to do it, rather than finding something
to do with it. I feel confident that the techniques I've used-
writing main () in C, using exit () for BYE, using huge
functions to isolate data segment references-have pro-

duced a sound method of linking C and Forth in a way that
is less annoying than might have been expected.

Extensions to this method might include (1) creating a
segmented linkable Forth with, for example, data in a
segment addressed by DS, code referenced from CS, lists
from ES, and a stack segment big enough to handle the
hungriest set of C functions; (2) object linking to other, more
interesting, languages such as Prolog and Lisp; 0) linking to
"extended" or "new exe" format files such as those used by
Windows and OS/2. Have fun.

Bibliography
Ray Duncan, ed., TheMS-DOSEncyclopedia, ~icrdsof t Press,

1988.
Ray Duncan, Advanced MS-DOS Programming, Microsoft

Press, 1986.
Mark Ludwig, 7he Little Black Book of Computer Viruses,

American Eagle Publications, 1991. I am indebted to this
book for its discussion of the structure of EXE files,
particulary the function of the "relocation index table."

Turbo Assembler 3.0 User's Guide, Borland International,
1991.

Richard Astle has been programming in Forth for about eight years, most of that
time developing and maintaining a rather large database management set of
programs. In the process, he has re-written the underlying Forth system more than
once for speed and capacity He has a bachelor's degree in mathematics from
Stanford University, a master's in creative writing from San Francisco State, and
a Ph.D. in English literature from the University of California (San Diego).

Forth Dimensions 25 November 1993 December

FORTH and Classic
Computer Support

For that second view on FORTH appli-
cations, check out The Computer Journal. If you
run a classic computer (pre-pc-clone) and are
interested in finding support, then look no
further than TCJ. We have hardware and soR-
ware projects, plus support for Kaypros, S 100,
C P N , 6809's, and embedded controllers.

Eight bit systems have been our mainstay
for TEN years and FORTH is spoken here. We
provide printed listings and projects that can run
on any system. We also feature Kaypro items
from Micro Cornucopia. All this for just $24 a
year! Get a FREE sample issue by calling:

(800) 424-8825

TC J :B:r JourDa'
Lincoln, CA 95648

L

Where Do You Go
3 From Here.

C. H. 7ing
San Mateo, California

This series of tutorials has only scratched the surface of
Forth and F-PC. Its goal is to expose you to a very minimum
set of Forth instructions s o that you can start to use Forth to
solve practical problems in the shortest possible time. What
is intentionally neglected is why and how Forth works, as a
language and as a n operating system, in addition to a host of
topics about various features of Forth and F-PC.

There are different directions you may proceed from here,
depending upon your needs and interests:

1. For the practical engineer, the next logical step is to
work on 7heForth Couneby Dr. Richard Haskell. In fact, this
tutorial was developed to complement %e Forth Coune,
which skims too fast over the elementary Forth instructions
and dives too quickly into the advanced topics of an upper-
level college microcomputer laboratory. 713eForth Course is
available from Offete Enterprises for $25.

2. If you are more interested in Forth as a programming
language and want to learn more about the language aspects
of Forth, you will enjoy Leo Brodie's books on Forth:
Starting Forth, Prentice Hall, 1982
%inking Forth, Prentice Hall, 1984

These two books are classics in the Forth literature and are
pleasant reading. The only problem is that some of the code
examples might not work in F-PC without modification,
because of the difference between the block-based source
code in the books and the file-based source code in F-PC.

3. If you are interested in using F-PC and getting the most
out of your PC for a specific project, you need to know more
about the structures and the special features of F-PC, such as
the DOS interface, file-access mechanism, color control on
the display, hardware input and output, interrupts, etc. For
this, you need a complete F-PC system for exploration. My
following manuals can be of great help:
F-PC User's Manual, Offete Enterprises, 1989, $20
F-PC Technical Reference Manual, Offete Enterprises, 1989,

$30
F-PC System Disk Set, Offete Enterprises, $25
F-PC User Contributions Disk Set, Offete Enterprises, $25

The F-PC materials are also available from:
Forth Interest Group
P.O. Box 2154
Oakland, CA 75621
5 10-89-FORTH

The address of Offete Enterprises is:
1306 South B Street
San Mateo CA 94402
415-574-8250

4. For commercial and professional applications, you may
want to consider buying a commercial Forth system which
is supported by a real software company. You will get
documentation, and you can get help when in trouble. A few
of the commercial Forth vendors are:

Forth, Inc.
11 1 N. Sepulveda Blvd.
Manhattan Beach, California M266
213-372-8493

Laboratory Microsystems, Inc.
P.O. Box 10430
Marina del Rey, California 90295
2 13-306-741 2

Miller Microcomputer Services
61 Lake Shore Road
Natick, Massachusetts 01760
617653-6136

/For easy access to many of the materials listed here, reJer to
the mail order form included as the centefloki in this issue of
Forth Dimensions. Other vendors of Forth products may be
located via their advertisements in ourpages.-Ed./

Dr C.H. Ting is a noted Forth authority who has made many significant contribu-
tions to Forth and the Forth Interest Group.

November 1993 December 26 Forth Dimensions

Rudimentary drawing into Windows Paintbrush files
requires the following functions:
a) Loading file into memory
b) Drawing a pixel

Drawing c) Saving image to d sk

Knowing a pixel's state may increase utility, so we include
the following: BMP Files d) Reading a pixel

Black-and-white pixel drawing simplifies the general case
of Paintbrush files, while allowing enough "drawing" to be

To better follow, here is my system. My computer is a VSI

Hank Wilkinson PC 286 name-brand "compatible," with VGA, 40-meg. hard
drive, both 5 1/4" and 3 1/2" floppy drives, a mouse, H-P

Greensboro, North Carolina DeskJet 50, a modem, and four megs. of memory. I have
DOS 5, Windows 3.1, and HS-Forth 4.11 (regular-i.e., uses
segmented memory).

of practical use. A blank drawing, created and saved using
Paintbrush, serves as the starting point. When Paintbrush
saves an image on dsk, it tries to give the filename an
extension of .BMP.

These .BMP files contain a 62-byte header consisting of

Microsoft provides with Windows the useful drawing
program Paintbrush. Paintbrush drawings may be directly
printed, inserted, or otherwise linked to other documents.
Forth pixel drawing performed in memory and stored in a file
may be handled as if it were a Windows Paintbrush file.
Simplifying assumptions make this process easy enough to
conceive, do, and (perhaps) explain.

One use of computer-generated drawing is graphing math-
ematical results. Dr. J.V. Noble's ScienhJic Fo7th: A M o d a n
Language For ScienhJic Computing (Mechum Banks Publish-
ing, 1332) provides a college/graduate-level text in numerical
methods using Forth. Though not up to the quality ofDr. Noble's
text, rudmentary methods discussed below expose a founda-

attributes describing the image. Loading an image restores
the attributes from its header. For this article we use black-

Simplifying the drawing process to black-and-white draw-
ings 640 pixels by 880 pixels results in an image space of
70,400 bytes (640*880/8=70400). I have no method of
accessing this image space without using paragraph/offset
memory addressing. Again I point to Dr. Noble's text, this
time for a lucid explanation of paragraph/offset addressing.

Of the ways I have to perform paragraph/offset addressing,
the simplest uses HS-Forth's SEGMENT command. SEGMENT
expects the number of bytes (plus one) to allocate, and creates
a named array holding a pointer and other variables. Fetching
thls pointer provides the memory paragraph segment

HS-Forth provides a large set of commands accessing
segmented memory via paragraph and offset. However,

and-white images that are 640 pixels wide and 880 pixels tall.
Except to copy, we ignore the header.

The image directly follows the header, with its rows
ordered sequentially from 879 to zero (i.e., the rows are in
reverse order). Conceptually, the image is the set of (x,y)
points ranging from (0,O) to (639,879). One bit represents one
pixel for black-and-white images.

When the pixel value equals zero, the pixel is shown as
black, on both the printed page and the screen. With the bit
equal to one, the pixel is displayed as white on the screen and
is not printed on the page. For completeness, we represent
below a sheet of paper with a black-and-white "image,"
dimensioned 640 pixels wide and 880 pixels tall.

tion for graphing into Windows Paintbrush files.
Programming is the process of discovering and commu-

nicating details necessary for desired functionality. Forth
routines used to dscover the details presented here are not
shown. My general goal is to use Forth "in" Windows. Black-
and-white drawing into a file represents only a small
increment toward this goal.

Forth Dimensions 27 November 1993 December

none were found for bit accessing, so we use C@ L and C ! L.
C@L expects paragraph and offset on the stack, and returns
a byte. C ! L expects a byte, paragraph, and offset, and stores
the byte.

For navigation (see code at the end of the article), we
define three SEGMENTS: HEADER. SEG, IMAGE. BOT . SEG,
and IMAGE. TOP. SEG. IMAGE. BOT . SEG holds image rows
879 through 440, while IMAGE. TOP. SEG holds rows 439
through zero. (Recall that Paintbrush reverses the order of the
image rows.)

To get an image of the Paintbrush .BMP file into memory,
we use GET-IMAGE. First, GET-IMAGE uses HS-Forth's
OPEN-Rto find the file whose file-spec address is passed, and
OPEN-R obtains a file handle. The handle is stored on the
return stack.

ymax

Using HS-Forth's READH command, GET-IMAGE then
fills the respective memory areas with a file's contents.
READH expects a memory paragraph segment, offset, file
handle, and number of bytes to read. It returns on the stack
the number of bytes it read into the memory location.

GET-IMAGE "anchors" the image at IMAGE. BOT . SEG. In
other words, after the first half of the image is loaded into
memory, the location of the second half is computed relative
to the first. (Math for the last segment takes advantage of the
fact that eighty divided by sixteen equals five.) CLOSEH
consumes the file handle as it closes the file.

PUT-IMAGE works analogously to GET-IMAGE. Neither
command tests the header or image, but simply moves the
data. Both commands need rewriting for better error han-
dling, if needed.

The image is accessed relative to its first row, which
happens to be its last row in memory. The arcane method of
calculating the paragraph's segment of the first row of the
image is shown next in the code. Fetching the

adding the result to the location of row zero (which is last in
memory).

Dividing x by eight converts the pixel number into the
byte number in the row. Adding that to the offset indexes into
the image row. (For several reasons, the beginning offset of
each of the image rows is zero, so some of these steps are
superfluous for the images we are accessing.)

The remainder of x divided by eight points to the pixel,
as shown below.

bit position 7654321 0

The above is performed inside the PIXEL command by
8 MOD (obtaining the bit position) and the data structure
CLEAR. BIT. CLEAR. BIT provides a mask for ANDing the
bit clear (i.e., to zero), thus forcing the pixel lit. In our case,
Paintbrush thinks a zero pixel is lit (black) while a pixel equal
to one is white. (PIXEL performs no range checking, so
either make your own, or be careful.)

O+ xmax

ymax

The PIXEL? command works like PIXEL except a flag
is returned instead of the pixel being set. PIXEL? selects a
bit, then tests it. When the pixel tested is zero, we say it is lit,
or true. Otherwise, PIXEL? returns false.

Finally, we have filename buffers and (rather uninterest-
ing) test code. TEST1 fills an entire Paintbrush page with
black pixels in about twenty-five seconds on my system.

O+ xmax

IMAGE. BOT . SEG paragraph starts the process. Indexing to
the very first image row requires moving the pointer down
879 rows. One VAR receives the segment value, another
receives the offset.

Mappingx and y coordnates to the image byte containing
the pixel uses the command XY->ADR. Notice the use of
high-level words to write a machine language command
using the HS-Forth OPT" command. XY->ADR converts y
into a paragraph segment by multiplying y by minus five and

ymax

TEST2, TEST3, and TEST4 draw lines. TI sets the filenames
buffers and loads an image. GBS is set to a blank page
previously created in Paintbrush, while PBS is set for keeping
results.

These tests were used to verify PIXEL and, oddly
enough, GET-IMAGE and PUT-IMAGE. Strangely, I still
haven't completely figured out HS-Forth's SEGMENT com-

November 1993 December 28 Forth Dimensions

HARVARD S O F T W O R K S
NUMBER ONE IN FORTH INNOVATION

(513) 748-0390 P.O. Box 69, Springboro, OH 45066

You already know HSEORTH gives more speed,
power, flexibility and functionality than any other
implementation. After all, the majority of the past
several years of articles in Forth Dimensions has been on
features first developed in HSIFORTH, and many major
applications discussed had to be converted to HSIFORTH
after their original dialects ran out of steam. Even
public domain versions are adopting HSEORTH like
architectures. Isn't it time you tapped into the source as
well? Why wait for second hand versions when the
original inspiration is more complete and available
sooner.

Of course, what you really want to hear about is
our SUMMER SALE! Thru August 31 only, you can
dive into Professional Level for $249. or Production Level
for only $299. Also, for each utility purchased, you may
select one of equal or lesser cost free.

Naturally, these versions include some recent
improvements. Now you can run lots of copies of
HSIFORTH from Microsoft Windows in text andlor
graphics windows with various icons and pif files
available for each. Talk about THE tool for hacking
Windows! But, face it, what I really like is cranking up
the font size so I can still see the characters no matter
how late it is. Now that's useful. Of course, you can run
bigger, faster programs under DOS just as before.
Actually, there is no limit to program size in either case
since large programs simply grow into additional
segments or even out onto disk.

Good news, we've redone our DOCUMENTATION!
The big new fonts look really nice and the reorganization,
along with some much improved explanations, makes all
that functionality so much easier to find. Thanks to
excellent documentation, all this awesome power is now
relatively easy to learn and to use.

And the Tools & Toys disk includes a complete
mouse interface and very flexible menu support in both
text and graphics modes. Update to Revision 5.0,

HSIFORTH runs under MSDOS or
PCDOS, or from ROM. Each level includes
all features of lower ones. Level upgrades:
$25. plus price difference between levels.
Source code is in ordinary ASCII text files.

HS/FORTH supports megabyte and larger
programs & data, and runs as fast as 64k
limited Forths, even without automatic
optimization -- which accelerates to near
assembler language speed. Optimizer,
assembler, and tools can load transiently.
Resize segments, redefine words, eliminate
headers without recompiling. Compile 79
and 83 Standard plus F83 programs.

PERSONAL LEVEL $299.
NEW! Fast direct to video memory text

& scaled/clipped/windowed graphics in bit
blit windows, mono, cga, ega, vga, all
ellipsoids, splines, bezier curves, arcs,
turtles; lightning fast pattern drawing
even with irregular boundaries; powerful
parsing, formatting, fde and device 1/0;
DOS shells; interrupt handlers;
call high level Forth from interrupts;
single step trace, decompiler; music;
compile 40,000 lines per minute, stacks;
file search paths; format to strings.
software floating point, trig, transcen-
dental, 18 digit integer & scaled integer
math; vars: A B * IS C compiles to 4
words, 1..4 dimension var arrays;
automatic optimizer delivers machine
code speed.

PROFESSIONAL LEVEL $399.
hardware floating point - data structures
for all data types from simple thru
complex 4D var arrays - operations
complete thru complex hyperbolics;
turnkey, seal; interactive dynamic linker
for foreign subroutine libraries; round
robin & interrupt driven multitaskers;
dynamic string manager; file blocks,
sector mapped blocks; x86&7 assemblers.

PRODUCTION LEVEL $499.
Metacompiler: DOS/ROM/direct/indirect;
threaded systems start at 200 bytes,
Forth cores from 2 kbytes;
C data structures & struct+ com~iler:
MetaGraphics TurboWindow-C library,
200 graphidwindow functions, PostScript
style line attributes & fonts, viewports.

ONLINE GLOSSARY $ 45.

PROFESSIONAL and PRODUCTION
LEVEL EXTENSIONS:

FOOPS+ with multiple inheritance $79.
TOOLS & TOYS DISK $ 79.
286FORTH or 386FORTH $299.

16 Megabyte physical address space or
gigabyte virtual for programs and data;
DOS & BIOS fully and freely available; 32
bit addresdoperand range with 386.
ROMULUS HSJFORTH from ROM $99.

including new documentation, from all 4.xx revisions is Shippind8ystem: US: 19. Canada: 121.
$99. and from older systems, $149. The Tools&Toys foreign: $49. We accept MC, VISA1 &-x

update is $15. (shipping $5 .US, $lO.Canada, $22.foreign)
Forth Dimensions 29 November 1993 December

mand. When I first wrote these
routines, I u sed both
IMAGE. BOT. SEG and
IMAGE. TOP. SEG, but could
never get the halves to align.
Anchoring the image relative
to IMAGE. BOT . SEG in both
GET-IMAGE and PUT-IMAGE
works around this confusion.

Much still is left to learn.
HS-Forth already has graphics
commands that, perhaps, may
interface to a Paintbrush file.
The .BMP file's header needs
to be understood as well.
Surely the desire to use color
will become overwhelming.
Additionally, different rules for
drawing, IikeXOR, OR, NAND,
etc., could be accommodated.
Solving these requirements will
open the way for error han-
dling, range checking, and
optimizing for speed. How-
ever, as they are, the routines
shown here draw.

\ ll:19PM 1/29/93 by Hank Wilkinson
\ Code for drawing into Windows Paintbrush ".BMPn files
\ Reads and writes black and white 640 by 880 images
\ Draws via PIXEL (x y --)
\ Assumes .BMP image, 640 bits wide and 880 bits long
\ & page header (first 62 bytes of file)

DECIMAL
FIND SEQ-FND O= ? (((
FLOAD C:\HSFORTH\FASTCOMP
FLOAD C:\HSFORTH\AUTOOPT
FLOAD C:\HSFORTH\TOOLBOX
\ FLOAD C:\HSFORTH\8088ASM
FLOAD C:\HSFORTH\DOSEXT
\ FLOAD c : \WINDOWS\DOCS\TOOLS\GETPUT . FTH
))
TASK HANK

\ code below is for article
\

62 1+ SEGMENT HEADER.SEG \ header
440 80 * VAR 440*80
440*80 1+ SEGMENT 1MAGE.BOT.SEG \ top half
440*80 1+ SEGMENT 1MAGE.TOP.SEG \ bottom half

\ Use: $" \path\filenameH GET-IMAGE
: GET-IMAGE (adr --)
OPEN-R >R

HEADER. SEG @ 0 62 R@ READH DROP
IMAGE. BOT . SEG @ 0 440*80 R@ READH DROP
1MAGE.BOT.SEG @ 440 5 * + 0 440*80 R@ READH DROP
R> CLOSEH ;

\ Use: $" \path\filenameM PUT-IMAGE
: PUT-IMAGE (adr --)
MKFILE >R

HEADER.SEG @ 0 62 R@ WRITEH DROP
1MAGE.BOT.SEG @ 0 440x80 R@ WRITEH DROP
1MAGE.BOT.SEG @ 440 5 * + 0 440*80 R@ WRITEH DROP
R> CLOSEH ;

\ set up pointer to memory location of first row of image
1MAGE.BOT.SEG @ \ segment of last row
879 80 16 / * \ 80 bytes/l6 = segments per row

+ VAR FIRST.ROW.SEG
0 VAR FIRST.ROW.OFF

-5 VAR -5
\ given X and Y, divine a paragraph and offset (address)
CODE XY->ADR (X Y -- PARAGRAPH OFFSET)

OPT"
-5 * FIRST.ROW.SEG +

SWAP
8/ FIRST.ROW.OFF + " END-CODE

\ To convert x 8 MOD POWER into bit mask
\ x 8 MOD yields the bit# of the byte to bit
\ position of pixel (BIT#->POSITION)

8 lVAR CLEAR.BIT
127 0 IS CLEAR. BIT
191 1 IS CLEAR. BIT
223 2 IS CLEAR. BIT
239 3 IS CLEAR. BIT
247 4 IS CLEAR. BIT

November 1993 December 30 Forth Dimensions

251 5 IS CLEAR. BIT
253 6 IS CLEAR. BIT
254 7 IS CLEAR. BIT

\ given X and Y, l i g h t t h e p i x e l
CODE PIXEL (x y --) \ set p i x e l a t x, y
OPT"

OVER >R
I

XY->ADR
DDUP C@L
R> 8 MOD CLEAR.BIT AND
-ROT C!L " END-CODE

8 lVAR SELECT.BIT
128 1 IS SELECT.BIT
64 2 IS SELECT.BIT
32 3 IS SELECT.BIT
16 4 IS SELECT.BIT
8 5 IS SELECT-BIT
4 6 IS SELECT-BIT
2 7 IS SELECT.BIT
1 0 IS SELECT.BIT

\ given X and Y, s e e i f p i x e l is lit
CODE PIXEL? (x y -- f)
\ TRUE, x y " p i x e l lit"
\ FALSE, X Y " p i x e l dark"
OPT"
OVER >R

XY->ADR C@L
R> 8 MOD SELECT.BIT AND
0= " END-CODE

: TEST1
T1
880 0 DO 640 0 DO I J PIXEL LOOP LOOP
PB$ PUT-IMAGE ;

1 : TEST2 640 0 DO I I PIXEL LOOP ;

: TEST3 880 0 DO I 2 / I PIXEL LOOP ;

: TEST4
880 0 DO

I 3 / I PIXEL
I 2/ I PIXEL
0 I PIXEL

I 639 < IF I 879 I - PIXEL THEN
LOOP :

: DO.TEST
T 1
TEST2 TEST3 TEST4
PB$ PUT-IMAGE ;

\ t o put t h e f i l e names i n
CREATE GB$ 128 ALLOT \ f o r GETB f i l e
CREATE PB$ 128 ALLOT \ f o r PUTB f i l e

I
: T1
$" C:\WINDOWS\DOCS\TOOLS\ARTICLE~\BLNKPAGE.B" GB$ $!

$" C:\WINDOWS\DOCS\TOOLS\ARTICLE~\RESULTS.B" PB$ $!
GB$ GET-IMAGE ;

....... The Computer Journal 25

Forth Interest Group 44

Harvard Softworks 29

Laboratory Microsystems .. .41

Miller Microcomputer
Services31

Silicon Composers 2

Forth Dimensions 31 November 1993 December

Part 2

UN*X Tools Used
on the FSAT Project
Jim Schneider
San Jose, California I

November 1993 December 32 Forth Dimensions

As you will recall, I concluded the last article with a
discussion of m4(1). This is a continuation of that article.

While m4 is very powerful (indeed, I use it instead of
mmm(1)'s macro processor), everything has to be spelled
out explicitly. For example, there's no practicable way to
match a string that starts with a letter, and is followed by any
combination of letters or digits. UN'X provides many tools
that allow you to do this kind of pattern matching. In fact,
almost all of the stream-based text processors will do this. If
you wanted to print out all the lines of a file that started with
a letter followed by any combination of letters or digits, this
is one of many commands that would work:
g r e p ' ^ [a-zA-Zl [a-zA-20-91 * $ I f i l e x

The group ofsymbols in the quotes is a regular expression
(see the sidebar "Regular Expressions"). The RE (regular
expression) in the example says: "At the beginning of a line,
match a string composed of an instance of a character in the
set lower-case 'a' to lower-case '2' inclusive, or upper-case 'a'
to upper-case '2' inclusive, followed by any number of
instances of characters in the set above plus the digits to the
end of the line." Thus, if filex contained
Th i s i s a l i n e

i n t h e f i l e
f i l e x

which c o n t a i n s
a
l o t o f
(d i f f e r e n t t y p e s
#of l i n e s
9 9 ~ x 9
xx99sdf

to be matched and manipulated. Additionally, UN'X has a
utility to create programs that recognize and manipulate
strings that match regular expressions. This utility is called
lex(1). It is normally used in conjunction with the yacc(1)
parser generator, because the lexical elements of a program-
ming language (the "words," things like identifiers or opera-
tors) can usually be easily represented as regular expres-
sions.

lexis a programming language in its own right. It can be
called a non-procedural programming language. Instead of
a linear sequence of statements (or procedures), lex uses a
list of independent pattern action pairs. These patterns are
regular expressions, and the actions are C statements that,
more often than not, operate on the strings that match the
regular expression. A program for lex consists of three
sections: a definitions section, a &language section, and a
'literal' section. The definitions and 'literal' sections don't
have to be present in the file. The definition section can be
used to declare frequently used regular expressions andwhat
are known as start states (which will be discussed later). The
'literal' section is called that because everything in it is copied
verbatim to the output file. The language section consists of
the set of pattern-action pairs. lex generates a scanner that
will "look for the patterns in the input stream, and when it
"finds" one, it executes the associated action.

The definitions section of lexis an outgrowth of the fact
that it is easier to remember (and easier to type) t I d e n t 1
rather than [-a-zA-21 [-a-zA-20-91 * (the regular ex-
pression that matches an identifier in most programming
languages). The definitions section is also used to declare

/ start states. These are used to specify what is known as left
1 context. Although some left context (basically, what's hap-

the command in the example would print:
f i l e x
a
xx99sdf

Regular expressions are very important in the area of
automated text processing. They are useful whenever you
wish to find a list of possible strings that match a specific
pattern. Because it is easy to construct a routine that matches
RE's, most UN*X text utilities will allow you to specify RE's

pened to the left of the current position in the input) can be
specified by the 'A' metacharacter (which matches the
beginning of a line), in general, a regular expression can't
"remember" what happened before it got to the point where
it is at now. This has important consequences. For instance,
there is no regular expression that can match the set of all
strings of balanced parentheses. (This is not a regular set.) lex
lets you get around this by specifying a start state. For
example, the lex file in Figure One will recognize balanced
parentheses.

I Figure One. I
% S t a r t AA
% S t a r t BB
% {

i n t pnest=O;
d e f i n e MATCHED 1
d e f i n e ERROR 0
% }
9 9
0 0

<BB>\) (pnes t - - ; i f (!priest) (BEGIN 0; r e t u r n MATCHED; }

else yyrnore () ;)

<AA>\) (pnes t - - ; i f (!priest) {BEGIN 0; r e t u r n MATCHED;)

else { y y m o r e o ; BEGIN BB;})

<BB>\ ((f p r i n t f (stderr, "improper n e s t i n g \ n V) ; r e t u r n ERROR;)

< A D \ ({ priest++; yymore 0 ; I
\ ({ BEGIN AA; p n e s t ++; yymoreO;}

{ f p r i n t f (s t d e r r , " ' %c' n o t a parenthesis\nW,*yytext); r e t u r n ERROR; }

The rules that are active in a start state are preceded by
the start state name surrounded by the characters < and >.
Notice that the characters (and) were preceded by a \
character. This is because the parentheses characters are
used for grouping regular expressions. To match a (or a)

character, they must be either quoted or escaped. The \
character is used as an escape character throughout the UN'X
operating system. It should be interpreted as: ignore the
special meaning of the following character (for
metacharacters), or add a special meaning to the following
character (for ordinary characters). To enable the rules with
specific start states, the macro BEGIN is used, followed by the
name of the start state. (BEGIN is a C preprocessor macro. In
essence, it expands to "start-state = ".I To disable rules with
start states, use the phrase BEGIN 0. Finally, the function
yymore is used to tell l a not to discard the buffer it saves
matched input in, but to append whatever is matched later
to the buffer. This is necessary because, by default, l a will
discard the buffer it is using at the end of an action.

At this point, I should probably point out a few things.
Since lexwas designed to be used with the UN'X operating
system, and the only truly well supported language on UN'X

/ Figure Two-a. I

is C, lex will produce a C language file, and the actions for
the associated patterns must be in C. The definition section
is separated from the lex language section by a line that
contains two '%' characters (and only two '%' characters).
Literal C code can be included in the definition section by
including it between two lines of the form '%I' and I%}'.

Although there is no literal section in this file, if one were
present it would be delimited from the language section the
same way the definition section is delimited from the
language section. &stores the string it is processing in the
character array y y t e x t , and the length of the string in the
integer variable yylen .

Although start symbols are usehl for extending kc to
allow it to recognize h n g s that are not regular expressions,
the primary use is for simplifying regular expressions. For
example, the regular expression to recognize a quoted string
in C is quite complicated:
\ " [^ " \ n \ \ I * (\ \ [. \ n l [" " \ n \ \ I *) *\I1

A somewhat easier to recognize way of recognizing
quoted strings is shown in Figure Two-a.

% S t a r t QT1
% S t a r t QT2
% (
d e f i n e STRING 1
d e f i n e ERRSTRNG -1 / * f o r i n c o r r e c t l y t e r m i n a t e d s t r i n g s * /
9 9
0 0

\ " (BEGIN QT1; y y m o r e o ;] / * s t a r t o f a q u o t e * /
<QTl> [" " \ n \ \] * { BEGIN QT2; y y m o r e o ; } / * a l l b u t newl ine , \ o r " * /
<QT2>\\ [. \ n] I BEGIN QT1; yymore 0 ; } / * a \ e s c a p e * /
<QT2>\" { BEGIN 0; r e t u r n STRING;) / * a t e r m i n a t i n g " * /
<QTZ>\n { BEGIN 0; r e t u r n ERRSTRNG; } / * e r r o r , newl ine * /

Forth Dimensions 33 November 1993 December

Regular Expressions

Regular expressions are a powerful way of specifying groups
of related strings. The lexical elements of a language (the "words"
of the language) are usually most conveniently represented by
regular expressions. (For this discussion, an "alphabet" should be
understood to be an ordered set of symbols. These symbols are
the "letters" of the alphabet. Unless otherwise specified, the
alphabet under discussion will be a standard computer character
set.)The set of stringsspecified by a regular expression is known
asa regular set. Astring in a regular set issaid to match the regular
expression. These are the basic properties of regular expressions:
1 . Any symbol in the alphabet is a regular expression, whose

corresponding regular set contains one element: a string
consisting of the symbol.

2. Any two regular expressions may be combined under the
operation of alternation. The alternation will be symbolized
with the 'I' metacharacter. The regular set corresponding to
the new regular expression is the union of the regular sets of
the original expressions. For example, the expression:
alb
would match a strlng composed of either a single 'a' or a
single 'b' character.

3. Any two regular expressions may be combined under the
operation of concatenation. The concatenation will be sym-
bolized by abutting the two regular expressions. The regular
set of the new regular expression will be the set of strings that
can be decomposed into two strings such that the first
substring is in the regular set of the first expression, and the
second substring is in the regular set of the second expres-
sion. For example, this:
ab
would match astring composed of the character'a' followed
by the character 'b'.

4. A regular expression may be extended under the operation
of Kleene closure. This means zero or more concatenations
of the original regular expression. Kleene closure will be
symbolized by appending the "' metacharacter to the
original regular expression. The regular set of the new
regular expression will consist of all strings that can be
decomposed intooneor moresubstr~ngs--each amember
of the original regular set-and the null string. For example,
this:
a*
would match a string composed of zero or more instances
of the character 'a'.

5. The null string may be added to any regular set. Th~s is

/ symbolized by appending the '7' metacharacter to the
corresponding regular expression. For example:
a?
would match a string of zero or one 'a' characters.

6. A regular expression may be delimited by matching paren-
theses. These are used for grouping.

7. If the regular sets corresponding to two regular expressions
are identical, the regular expressions are said to be equiva-
lent. For example, these expressions are equivalent:
(a'b)l(ab')
(ab*)l(a'b)
and they both match strings composed of either zero or
more 'a' characters followed by a single 'b' character, or a
single 'a' character followed by zero or more 'b' characters.

From these basic definitions, several properties should also
be obvious:
1. Any finite set of strings is a regular set. If the strings are

symbolized s l , s2, etc., acorresponding regularexpress~on
for the set is: slls21 ...

November 1993 December

2. A regular expression may be extended under the operation of
positive closure. This is similar to Kleene closure, except that
the regular set does not contain the null string. This is equiva-
lent to: RERE', but is symbolized by appending a '+'
metacharacter. In kiyman's terms, one or more instances of
the preceding regular expression.

3. If we consider the '=' character to symbolize equality, the '0'
character to symbolize the null string, and the characters 'R',
'S', and 'T' to sybolize arbitrary regular expressions, then:

a. RIS = SIR
b. (RIS)IT = RI(SIT)
c. (RS)T = R(ST)
d. R(SIT) = RSIRT, and (RIS)T = RTlST
e. OR = RO = R
f. R** = R*
g. (R) = R

Although as many levels of parentheses as wanted are allowed,
they tend to reduce the readablility of the regular expression. To
remove the need for them, UN'X adopts certain conventions:
1. All operators and operations on regular expressions are taken

to be left associative.
2. The closure operations (symbolized by "' and '+') have the

highest precedence. Although the operation symbolized by
'?' is not properly aclosure, it also hasthe highest precedence.

3. Theconcatenationoperationhasthenexthighestprecedence.
4. The alternation operation has the lowest precedence.

Thus, (a)l((b)*(c)) is equivalent to alb'c, while ((a)l(b)*)(c) is
equivalent to (alb*)~.

Usually, certain shorthands are available to simpliQ the con-
struction of regular expressions:
1 . If a regular set consists only of strings of single characters, an

abbreviated regular expression may be constructed by con-
catenating the strings and enclosing the resulting string in
square brackets. Thus, theset (a, b, c) may be symbolized by
[abc], which is equivalent to the regular expression alblc. The
resulting regular expression is called a character class.

2. If certain characters ~n a character class form a "run" in the
alphabet (i.e., [abcedfg]), the class may be further con-
densed by substituting the4-' metacharacterfor the intervening
characters (l.e., [a-g] is equivalent to [abcedfg]).

3. Since the alphabet is f~nite, the complement of a character
class (~.e., all strings of one character not in the regular set of
the class) IS also a regular expression, and a character class.
This is symbolized by inserting the ' A ' metacharacter as the
flrst character ~n the class. For example, [Aabc] is a character
class corresponding to all the characters in the alphabet,
except a, b, or c.

4. The ' A ' metacharacter, when prepended to a regular expres-
sion, matches the beginning of a line. The '$' metacharacter,
when appended to a regular expression, matches the end of
a line.

5. The '.' metacharacter is a character class that consists of all
characters in the alphabet, except for the newline character.

6. When a metacharacter must be used literally in a regular
expression (for example, you want a regular expression to
match '8'3'), it can be escaped with the 1' metacharacter.

7. TO include non-graphic characters in the alphabet in a regular
expression, these escape sequences are used:
\t matches the tab character
\n matches the newline character
The space character may be included in a character class
literally, or it may be escaped with the'\' metacharacter. Thus,
[I is acharacterclass thatwill only match the spacecharacter.

34 Forfb Dimensions

Forth Dimensions 35 November 1993 December

Another advantage to using start states is the ability to
recognize an erroneous construct, without needing an
explicit regular expression for it. If the above example had
been written using only regular expressions, it would look
like that in Figure Two-b.

Which would you rather debug?
Start states are also useful if a regular expression can be

used in more than one way. For example, the C convention
of enclosing comments in / * * / pairs can cause confusion
with arbitrary pathnames used in C preprocessor statements
such as this:
i n c l u d e <sys /* .h>

Although this does have the potential for causing prob-
lerns, they can be avoided either by using start states, or by
realizing that the scanner will have to return a token
coresponding to the string < s y s / * . h> rather than a com-
ment starting with / * . h. However, if the '<' character were
left out (a rare, but possible, error), the scanner will probably
scan thestring s y s , return it, and then scan in / * . h, followed
by the rest of the file, until either the end of the file, or until
it finds a closing * / , which will have the effect of comment-
ing out whatever is in the intervening code. Although thls
provides quite a bit of motivation for start states, this error
syndrome is not quite as bad as it looks. (I'll take this up later
in the discussion of yacc.)

Since any legal C statement can appear in the action part
of a pattern-action pair, a common usage of h i s to generate
lexical analyzers for compilers from a set of regular expres-
sions describing the lexical elements of the language being

I compiled. The typical usage is:
1. The lagenerated scanner, which is usually called by the

parser, recognizes a lexical element of the language
2. The actions section for the particular regular expression

does whatever miscellaneous setup and conversion is
necessary.

3. The last action in the actionsection returns a small integer,
or token, to the caller.

Typically, a l a generated lexical analyzer is used as the
front end for a yacc generated parser. yacc is a utility that
turns a grammar specification into a C function that will
accept a "statement" that is "grammatically correct." The
specification for the grammar is written in a modification of
"Backus Naur Form" (usually called "modified BNF," see the
sidebar called "Grammar"). The yacc file also consists of
three sections: the declarations section, the rules section, and
the last section, which is copied verbatim into the output file.

Figure Two-b.

% {

Although a set of productions written in BNF is a concise
description of a grammar, BNF is not without some draw-
backs. The two major ones are: It's hard to tell which tokens
are terminals and which are nonterrninals using ordnary
character sets. It's also difficult to construct an unambiguous,
efficient grammar that obeys the precedence rules of the
language it defines.

yacc gets around these limitations by requiring that all
terminal tokens be declared in the declarations section, and
adding precedence declaratation rules. Addtionally, the
conventions of using all upper-case letters for terminals and
all lower-case letters for nonterrninals are often used. In yacc,
a token is declared by using the keyword %token in the
declarations section. More than one token can be declared
on a line. This line would declare the tokens b a r and baz:

%token b a r baz

To determine the precedence of a terminal (or operator),
the keywords % l e f t , % r i g h t , and %nonassoc are used,
depending on whether the operator is left, right, or non-
associative. The first declared operators in the file are the
ones with the lowest precedence, and operators declared on
the same line have the same precedence. If more than one
production can be used to reduce the input stream, the one
with the highest precedence operator will be used (and if
there are two or more operators in the same production, the
one the farthest to the right will set the precedence for the
production). If the two productions have the same prece-
dence, the associativity rules are used (right associative
operators reduce the rightmost part first, and left associative
operators reduce the leftrnost part first). If the two produc-
tions have the same precedence, and the operator involved
is nonassociative, or no explicit precedence or associativity
rules are given, yacc will report a conflict.

There are two types of conflict: a "shiftlreduce" conflict,
or a "reduce/reduce" conflict. The conflicts are given their
peculiar names because of the way the yaccgenerated parser
operates. At any given point, the parser is in one of several
states. When the parser gets a token from k, it can do one
of two things (depending on the token): It can use the token
to reduce the production it is working on and go to another
state, or it can shift the token and the current state onto a stack
and go to another state. Without rules to the contrary, when
yacc has a choice between shifting and reducing, it will
choose the shift (which means it will attempt to find a longer
string of tokens to convert to a nonterminal). If yacc has a
choice between two reductions, it will take the one that
corresponds to the earlier production in the file.

Generally, conflicts are best avoided. Although the parser
will probably do what you want it to do with a shift/reduce

d e f i n e STRING 1
d e f i n e ERRSTRNG -1

% 1
% %

\ " [" \ n \ \] * (\ \ [. \ n l [" " \ n \ \] *) * \ " { r e t u r n STRING; } / * RE f o r a s t r i n g * /
\ " tA \n \ \1 * (\ \ [. \ n] [" " \ n \ \] *) * \n { r e t u r n ERRSTRNG; } / * RE f o r e r r o r * /

conflict, and you do have (rather crude) control over which I terminal UMINUS (pseudo because it never appears in a 1
rule is reduced in a redudreduce conflict, it is generally a
bad idea to rely on ambiguous grammars. Almost any
grammar can be rewritten to remove these conflicts.

Sometimes, an operator may have more than one prece-
dence, depending on the context. For example, in algebraic
notation, the unary minus operator should be evaluated
sooner than the binary minus. Indeed, it should be evaluated
before any binary operator. Thus, the correct order of
evaluation of -a&b (where & issome binary operator) should
be (-a) &b, and not - (a&b) , which it would be if & had a
higher precedence than -. yaccallows you to get around this
by tagging a production with the precedence it should use
with the keyword %prec. Thus, if we define the pseudo-

production, except as used in the example) to have a higher
precedence than any binary operator, the following frag-
ment:
expr: I-' expr %prec UMINUS

will tell yacc that this production should use the precedence
of UMINUS, instead of -.

The yacc parser generator can do more than just recog-
- nize grammatically correct statements: It can also operate on

them. To do this, you can add actions to the productions. The
actions are C language statements that are enclosed in curly
braces. If the action is at the end of the production, the action
is triggered when the rule it corresponds to is reduced. If the

Grammar
BNF (Backus Naur Form) is a compact way of describing the

syntactic structure of a language. It describes-what is knodn as
a "context-free grammar," or one where the current fragment
under examination doesn't dependon what has come previously.

A grammar may be specified as follows:
1. A set of terminal symbols IS given. These correspond to the

lexical elements of the language and can either be called
tokens or terminal symbols.

2. A set of nonterminal symbols IS given. These correspond to
the grammatical elements of the language. These can be
called nonterminals or nonterminal symbols.

3. A set of rules is given that map a string of symbols (either
terminal or non-terminal) to nonterminals. These are called
productions. There may be more than one production for a
nonterminal.

4. A special nonterminal symbol called the start symbol is
given. All productions must eventually map to the start
symbol.

The production is said to produce the (or reduce to the)
corresponding nonterminal. A sequence of symbols containing
terminals and nonterminals can be transformed into an equiva-
lent sequence of symbols by replacing a nonterminal di th a
corresponding production. This is called a derivation. For ex-
ample, if this was the grammar under discussion (using the yacc - ~

conventions that an u e r - c a s e string or a quoted single character
is a nonterminal, lower-case strings are nonterminals, and
nonterminals are separated from their corresponding produc-
tions by a colon):

s: g
e: ID

the nonterminal s (which is the start symbol for this example)
would derive g. A sequence of derivations for s might take the
form:

The set of all strings of terminal symbols that can be derived
from the start symbol is the language corresponding to the

grammar. Any string of the set is called a sentence of the language.
A string containing both terminals and nonterminals that is
derivable from the start symbol is called a sentential form of the
grammar. A language that can be generated from such a grammar
is called a context-free language. I f the languages derived from two
grammars are identical, then the grammars are said to be equivalent.

A sequence of derivations may replace any nonterminal in a
sentential form with an equivalent production, but for convenience
in classification, we may wish to restrict ourselves to derivations
that always replace either the leftmost or the rightmost nonterminal.
These derivations are known as, respectively lek sentential form
and right sentential form (the example was derived in right
sentential form). A viable prefix is a string of symbols that
coresponds to a proper prefix of a sentential form (i.e., it contains
u p to the first n-1 symbols, where n is the total number of symbols
in the sentential form).

There are two general methods of constructing parsers from
grammars. The first is a top-down technique called LL (which
stands for left-to-right traverse, left sentinel form). The second is a
bottom-up technique called LR (which stands for left-to-right
traverse, right sentinel form). An important result of compiler
theory states that any language that can be parsed by an LL parser
can be rewritten so that it can be parsed by an LR parser.
Additionally, parsing techniques can be characterized by the
number of tokens they look ahead into the input stream. For
example, a parser that is able to use everything it has seen so far
(its left context) plus the next terminal token to be returned from
the lexical analyzer, has one token of lookahead. This is symbol-
ized by placing a numeral corresponding to the number of
lookahead tokens the parser can use in parentheses after the name
of the parsing technique. Thus, you will see references to LR(0)
grammars, etc.

There are three major divisions of LR(k) parsing, where k is
greater than zero: simple LR (or SLR), canonical LR (abbreviated
as LR), and lookahead LR (or LALR). The chief difference between
these methods is: SLR builds an LR(0) parser, and then adds states
to the parser to take lookahead into account; LR constructs the
parser taking lookahead into account in the first place, and LALR
constructs the parser by using the lookahead, and;rying tocollapse
similar productions into the same rule. The yacc parser generator
uses the LALR approach. This will generate an efficient parser for
most grammars forwhich an LR parser can be constructed. Ifa parser
cannot be generated for a grammar, the grammar is said to be "not
(w h i c h ~ p a r s e technique is used." For example, a grammar that
can't be converted to an LR parser is said to be "not LR."

November 1993 December 36 Forth Dimensions

action is embedded in the production (like this: r educe :
f oo { misc . C verbiage) bar), the action is triggered
when the token string leading up to it is seen. Notice that this
will cause a reducdreduce conflict if two rules have the same
viable prefut, even if the actions are identical. To get around
this, split the two productions into three, and perform the
action at the end of the production that is common to both
of the originals. If the actions required are not identical, you
either have to find some way to postpone the action to the
end of the production, or you will have to use some parser
generator besides yacc. For example, this:
£00: f o o t o k e n l { f o o f u n c () ; 1 footoken2

I f o o t o k e n l (f oof unc () ;) f oo token3

must be rewritten as:
f o o p r e f i x : f o o t o k e n l { f o o f u n c 0 ; 1
£00: f o o p r e f i x footoken2

I f o o p r e f i x foo token3

and this:
£00: f o o t o k e n l { f o o f u n c l 0 ;) footoken2

I f o o t o k e n l I foo func2 0 ;) footoken3

must be rewritten to move the action to the end of the
productions, or at least past the point where the productions
share a viable prefix.

Each token in yacc can have an associated value. This
value is set in the actions associated with productions for
nonterminals, or the lexical analyzer for terminals. It can be
accessed in a similar fashion to the arguments to macros in
m4, by $ (some d ig i t) , where the digit corresponds to the
token in the production. The value is set by assigning a value
to $ $ in the action corresponding to the production. Thus, this:
e x p r : \ - I e x p r % p r e c UMINUS { $$ = - $2; }

for any sequence of input that doesn't form a valid production
in the current context. For example, since a C statement must
end with a ';' character, h s production would recognize an
erroneous statement:
s t a t e m e n t : e r r o r ' ; '

This works by getting tokens from the lexical analyzer
until the token or tokens following the psuedo-terminal
e r r o r are seen. These tokens are discarded. This is very
handy for resynchronizing the input stream after an error
condition. Although this won't correctly handle the case
described above, where the opening '<' character is left off a
file name, it will make it possible to pinpoint the source of the
error. For example, the code in Figure Three would suffice.

One final note on yacc. In specifying a context-free
grammar for a language, it is necessary to specify the "goal"
of the language. The grammar needs a "start" symbol. (This
shouldnot be conf'used with a lexstart state.) Then, any token
string that can be reduced to the start symbol is a "sentence"
in the generated language. In yacc, this symbol can be declared
with the % s t a r t directive in the declarations section. If the
start symbol is not declared, yaccwill use the first nonterminal
in the language section as the start symbol by default.

This brief introduction to a few UN'X tools should not be
taken as definitive, as a definitive treatment would take at
least an article of this length for each of the tools I've briefly
described. Again, if you want to learn more, there are several
good books on the UN'X operating system.

For those of you who went to sleep during h s and the
last article, please bear with me. My next two articles will be
about extending Forth to support porting C programs. In the
articles that follow that, I'll be dscussing a compiler that turns
C programs into Forth.

would set the value of the left-hand e x p r to minus the right-
hand exp r . The lexical analyzer can set a token value by
assigning global yylval' The type
of the values $$, $1, etc. Can either be Set by defining the

YY~TYPE to something, or by the command
%un ion in the declarations section. Since the FSAT project's
C-to-Forth compiler will need to operate on strings and an

The introductory article describing the FSAT Project, which aims to provide the
advantages of both Forth and UN'X, appears in FD XV/2; the first part of the
discussion of UN'X tools appears in FD XVl3. The author's e-mail address is
jirnenetcom. corn. He'd appreciate your comments about the project, and will
reply to all messages sent to that address, provided they pertain to technical
aspects of the project, and not motivational aspects.

associated type, I'll be using
the first method, kludged to
allow me to store both a string
and a type value. If neither
y y s ~ y p ~ is defied nor the
keyword %union is used, the
type will default to i n t .

Of course, we'd be in a
pretty sorry state if our compil-
ers couldn't handle syntax er-
rors. yacc does have a way to
easily integrate error handling,
however. It uses the psuedo-
terminalerror. e r r o r stands

Figure Three.
'

% t o k e n INCLUDE / * # i n c l u d e t o k e n * /
% t o k e n FILENAME
% {
i n c l u d e " l e x . h" / * l ex f u n c t i o n d e f i n i t i o n s f i l e * /
% 1
% %
i n c l u d e - f i l e : INCLUDE FILENAME (do-include ($2) ; }

I INCLUDE e r r o r '>'
{ e p r i n t ("badly formed p r e p r o c e s s o r f i l ename") ;)

Forth Dimensions 37 November 1993 December

(Sparse matrices, continued f impage 10.)

to be currently active in the

sparse matrix. OUTOF-SARRAY

unwires the element from the

sparse matrix and places it on
the available list.

Ofcourse, actually manipu-

lating matrix members means

your code has to locate a par-

ticular element within the ma-

trix. You accomplish this with
the word S [I , which accepts

row and column coordinates

atop the stack. S [] will return
the sparse-matrix identifier of

the element at that location, or
N I L if the coordinates are

empty.

S [1 is only as smart as it

can be. Notice that the struc-

ture I've described allows you

to locate a member of a sparse
array by walking either the

row-based linked list to that

member or the column-based

: ZAP-SMATRIX (--)
ROWS ARRAY @ DISPOSPTR
COLS-ARRAY @ D I S P O S P T R
SMATRIX - BASE @ - DISPOSPTR

\ .
\ P l a c e a s p a r s e m a t r i x e lement on t h e a v a i l a b l e l i s t .
: ON SMATRIX AVAIL (i --)

SGTRIX AVAIL-BASE @ \ F e t c h o l d head
OVER & SMATRIX . RIGHT w ! \ S t o r e it
SMATRIX AVAIL BASE ! - - \ Element i s new head

\ .
\ F e t c h a m a t r i x a r r a y e lement from t h e a v a i l a b l e l i s t
: FROM SMATRIX-AVAIL (- - i)

SMATRIX AVAIL-BASE @ \ F e t c h head of l i s t
DUP N I L = \ L i s t empty

ABORT" No more a r r a y space"
DUP &SMATRIX.RIGHT W@ \ F e t c h p o i n t e r t o next
SMATRIX AVAIL BASE ! - -

\ Return t h e e lement number of an e lement a t i n d e x i d x i n a
\ v e c t o r .
\ Retu rns i=e lement # i f found, N I L o t h e r w i s e . T h i s word
\ a l s o sets t h e PREV ELEM v a r i a b l e f o r a t t a c h i n g / d e t a c h i n g
\ e l emen t s from v e c t o r s .
: < S [] > (i d x -- i)

R / C BASE @ W@ \ Fe tch b a s e of v e c t o r
DUP-PREV - ELEM W ! \ I n i t i a l p r e v i o u s e l emen t
BEGIN

whatever list had the fewest / 2DUP &SMATRIX.IDX C@ \ Fe tch index

linked list. S [1 would be
really smart if it followed

number of elements between

the list head and the target

DUP N I L = \ A t end?
I F SWAP DROP E X I T \ Return N I L i f s o
ENDIF

2DUP = \ D i d w e f i n d a match?
I F 2DROP SWAP DROP \ C l e a r s t a c k i f s o

E X I T
element. of course, there's no j ENDIF

ing the intervening members- 1 &SMATRIX:NEXT W@ \ Fe tch n e x t e lement

way S [1 can know this pre-

cisely without actually count-

but to do that would mean REPEAT I . 2DROP N I L
S [I would have to walk both .

> \ A r e w e p a s t where w e s h o u l d l ook?
WHILE

DUP PREV ELEM W! \ Save wrevious e lement

lists to the target and compare

the results. So S [1 simply
chooses the path most likely to

be shortest, which is the path

identified by the smaller coor-

dinate. (I.e., if the row coordi-

nate specified is smaller than

the column coordinate, s []
searches the row list.)

\ D i d n ' t f i n d it . . . r e t u r n N I L

\ .
\ P r e p a r e t o p l a c e a s p a r s e m a t r i x e lement i n a v e c t o r .
\ i i s t h e s p a r s e m a t r i x e l emen t . W e assume t h a t &SMATRIX.NEXT
\ and &SMATRIX.IDX have been set p r o p e r l y .
\ R e t u r n s :
\ f l a g = 0 i f i i s NOT i n t h e v e c t o r
\ f l a g = 1 i f i i s i n t h e v e c t o r
\ f l a g = 2 i f someone else i s i n t h e v e c t o r where i wants t o b e
\ n = p r e d e c e s s o r of i i n t h e v e c t o r , N I L i f i is o r s h o u l d be
\ t h e head member of t h e v e c t o r .
: WHERE I N VECTOR (i -- n f l a g)

DUP &SMATRIX. IDX C@ <S [I > \ Search t h e v e c t o r
I PREV ELEM W@ -ROT \ Save p r e v i o u s e lement

are plenty of opportunities for (IF 1

Conclusion
As mentioned above, there

DUP NIL =

I F 2DROP 0
ELSE =

\ Was i found?
\ Nope
\ Y e s . . i z z i t me? O r someone e l s e ?
\ It 's me!

extending the code. Increasing

the row and column compo-

\ I t ' s someone e l s e ! ELSE 2
ENDIF

ENDIF

November 1993 December 38 Forth Dimensions

\ Locate i i n row.
\ See WHERE-IN-VECTOR f o r r e s u l t s on pa rame te r s t a c k .
: WHERE IN-ROW (i -- n f l a g)
NEXT-IS RIGHT \ S e t NEXT f u n c t i o n
I D X IS ?OL \ Index t o modify is COL
W H E ~ - IN-VECTOR \ F i n d him

\ Locate i i n column.
\ See WHERE-IN-VECTOR f o r r e s u l t s on pa rame te r s t a c k .
: WHERE I N COL (i -- n f l a g)

NEXT-7s %WN \ S e t NEXT f u n c t i o n
I D X IS ROW \ Index t o modify is ROW
WHERE - YN - VECTOR \ F i n d him

\ .
\ * * INSERTING/REMOVING MATRIX ELEMENTS * *
\ .

\ W i r e a sparse m a t r i x e l emen t i n t o a row o r column v e c t o r .
\ i is t h e s p a r s e m a t r i x e l emen t , n i s t h e p r e d e c e s s o r i n t h e
\ v e c t o r . n = NIL i f i i s t o b e w i red i n a t t h e head of t h e l is t
: WIRE-IN (n i --)

OVER NIL = \ Wiring i n a t head?
IFSWAP DROP \ D i s c a r d NIL

R/C BASE @ W@ \ G e t o l d head
OVER &SMATRIX .NEXT w ! \ Old head i s o u r n e x t
R/C BASE @ W! \ W e a r e new head

ELSE OVER &SMATRIX.NEXT W@ \ F i x o u r n e x t
OVER &SMATRIX.NEXT W!
SWAP &SMATRIX.NEXT W! \ F i x p r e d e c e s s o r n e x t

ENDIF

\ Unwire a s p a r s e mat r ix e l emen t from a row o r column v e c t o r .
\ S t a c k a c t s same a s WIRE-IN.
: UNWIRE (n i --)

OVER NIL = \ A r e w e head?
IFSWAP DROP \ D i s c a r d NIL

&SMATRIX.NEXT W@ \ Our n e x t i s new head
R/C BASE @ W!

ELSE &SMATRIX .NEXT W@ \ Our n e x t . . .
SWAP &SMATRIX.NEXT W! \ . . . i s p r e d e c e s s o r ' s n e x t

ENDIF

\ Given i -- i n d e x t o a s p a r s e m a t r i x e lement -- l i n k t h i s
\ e l emen t i n t o t h e s p a r s e m a t r i x a t r o w , c o l .
: INTO - SMATRIX (row c o l i --)

>R \ Save i
\ S e t t h e row & column m e m b e r s
OVER R@ &SMATRIX.ROW C ! \ S e t row
DUP R@ &SMATRIX. COL C ! \ S e t column
\ Wire e l emen t i n t o row
SWAP SET ROW BASE \ S e t t h e row b a s e a d d r e s s
R@ WHERETIN - %W \ Loca te where t o w i r e i n
O= \ Flag=O means s l o t i s f r e e
I F R@ WIRE-IN \ Wire him i n
ELSE ." E r r o r a t t a c h i n g t o row" CR

ABORT
ENDIF
\ Wire new e l emen t i n t o column
SET - COL - BASE \ S e t t h e column b a s e a d d r e s

nents of an element would

allow for truly gargantuan

sparse matrices. I suppose if

you needed sparse multi-

dimensional arrays, you could

add the necessary anchoring

arrays, extend the element

structure, and add the neces-

sary words for access to

element components. Off the

top of my head, I can't imagine

an application for such

structures.. . but I'll bet there's

one out there somewhere.

Rick Grehan is the Technical Director of
BYTE Labs. He wrole the code for this
article with CreativeSolutions' MacForth.

Forth Dimensions 39 November 1993 December

\ Locate where t o w i r e i n
\ A s be fo re . s l o t must b e f r e e

IFR> WIRE I N - \ Wire him i n t h e column
ELSE ." E r r o r a t t a c h i n g t o c o l " CR

ABORT
ENDIF

\ .
\ Given i -- index t o s p a r s e m a t r i x element -- u n l i n k him
\ from t h e s p a r s e m a t r i x .
: OUTOF-SMATRIX (i -- 1

>R \ Save i
\ Look f o r t h i s guy i n t h e row
R@ &SMATRIX.ROW C@ SET - ROW - BASE\ S e t row base p o i n t e r
R@ WHERE I N ROW - - \ Search f o r i i n row v e c t o r
1 = \ i h a s t o be t h e r e
IFR@ UNWIRE \ Disconnect
ELSE ." E r r o r removing from row" CR

ABORT
ENDIF
\ Look f o r t h i s guy i n column
R@ &SMATRIX.COL C@ SET-COL - BASE\ S e t column base p o i n t e r
R@ WHERE I N COL - - \ Search f o r i i n column v e c t o r
1 = \ i h a s t o be t h e r e
IFR@ UNWIRE \ Disconnect
ELSE . " E r r o r removing from column" CR

ABORT
END I F
R> DROP \ Clean r e t u r n s t a c k

\ .
\ * * SEARCHING FOR MATRIX ELEMENTS * *
\ .
\ .
\ Look f o r a s p a r s e m a t r i x e lement a t row, c o l by row. That is ,
\ t h e s e a r c h beg ins a t t h e base of t h e row and proceeds " a c r o s s " .
\ Return i o r NIL (i f no th ing e x i s t s a t t h a t l o c a t i o n)
: S [] BYROW (row c o l -- i)

IDX-IS COL \ Watch column index
NEXT I? RIGHT \ Scan a long a row
s WAP-s E ~ R O W - BASE \ S e t t h e row/column b a s e
< S [l > \ Go g i t it

\ .
\ Look f o r a s p a r s e m a t r i x e lement a t row,col by c o l . That i s ,
\ t h e s e a r c h b e g i n s a t t h e t o p of t h e column and p roceeds "down".
\ Return i o r N I L
: S[]-BYCOL (row c o l -- i)

I D X I S ROW \ Watch row index
NEXT IS DOWN \ Scan a l o n g column
SET FOL-BASE - \ S e t t h e row/column base
<S [T> \ Go g i t it

\ .
\ Find a s p a r s e m a t r i x e lement a t row,co l .
\ This r o u t i n e selects a s e a r c h by row o r column depending
\ on which index i s s m a l l e r .
: S [l (row c o l -- i)

\ Search by row o r by column?
2DUP
>
IF S [I -BYCOL \ Find by column
ELSE S [1 -BYROW \ Find by row
ENDIF

November 1993 December 40 Forth Dimensions

(Letters, continued fivmpage 6.)

variable BUGFALSE bug !
variable TRACE TRUE trace !

: ([chrl) parse
bug @ if

please ' ." - " . S CR '
else 2drop then

; immediate

: snap trace @ bug ! ; immediate
: unsnap FALSE bug ! ; immediate

The comparison ofwhat you say is on the stack with what
is actually there usually identifies the problem very quickly.

You can also trace just to see what's going on.
If you type snap and recompile SQROOT, typing 1 8 0

sqroot . gives you:
term -1
term 1
term 3
term 5
term 7
term 9
term 11
term 13
term 1 5
term 1 7
term 1 9
term 2 1
term 23
term 25
13

Procedarnus in pace,
Wil Baden
Costa Mesa, California

Another Vote for natOOF
Dear Marlin,

I really enjoyed the article fromMarkus Dahrn about natOOF
(FD XV/2). I second the comments that were made by Mark
Madno ("Letters," FD XV/3). Mark is a good guy and his
enthusiasm is contagious. I hope that Markus Dahrn makes his
natOOF and other developments available. As Mark said, "I am
ready to pay money for natOOF now. When can I get it?"

Thanks to everyone who supports the Forth Interest
Group. You folks have been a real contribution to my life.

Gus Calabrese, President
WFT
Denver, Colorado

To avoid too much output in SQRT I bracket the
stack comments I want printed with snap and unsnap.

UNSNAP Total control
: sqrt (radicand -- root)

0 (radicand root)
0 ADDRESS-UNIT-BITS CELLS 2 -
DO (X y)

2 *
OVER I RSHIFT (. . x')
OVER 2* 1+ (. . x' y')

snap (. . x' y') unsnap
< NOT I F (X y)

DUP (x . y')
2* 1 + I LSHIFT

snap (x . y') unsnaD
NEGATE +UNDER (X y)
1+

THEN
-2 +LOOP
N I P (root)

Typing 1 8 0 sqrt . gives:
. . x' y' 1 8 0 0 0 1
. . x' y' 1 8 0 0 0 1
. . x' y' 1 8 0 0 0 1
. . x' y' 1 8 0 0 0 1
. . x' y' 1 8 0 0 0 1
. . x' y ' 1 8 0 0 0 1
. . x' y' 1 8 0 0 0 1

with 1MI FORTHTM
For Programming Professionals:
an expanding family of compatible, high-
performance, compilers for microcomputers

For Development:
Interactive Forth-83 InterpreterICompilers
for MS-DOS, 80386 32-bit protected mode,
and Microsoft WindowsTM

Ed~tor and assembler included
Uses standard operating system files
500 page manual written In plain English
Support for graph~cs, floating point, native code generation

For Applications: Forth-83 Metacompiler
Unique table-driven multi-pass Forth compiler
Compiles compact ROMable or disk-based applications
Excellent error handling
Produces headerless code, compiles from intermediate states,
and performs conditional compilation
Cross-compiles to 8080, 2-80, 64180, 680x0 family, 80x86 family,
80x96197 family, 8051131 fam~ly, 6303, 6809, 68HC11
No license fee or royalty for compiled applications

I

Laboratory Microsystems Incorporated
Post Ofice Box 10430, Manna Del Rey, CA 90295

Phone Credit Card Orders to: (310) 306-7412
Fax: (3 10) 301 -0761

Forth Dimensions 41 November 1993 December

A Forum for Exploring Forth Issues and Promoting Forth 1

Preparing a Pmss Release / word" rise u p from the page like a rifle shot whizzing by.
You need the equivalent of a bullet's dense packaging

bullet3 dense packaging when 1 You help immensely if you separate your coverage of a 1

Mike Elola
San Jose, California

Press releases can b e your most powerful tool to promote
business. The cost effectiveness of a well-received press
release is unsurpassed. Although advertising guarantees you
coverage, it does so at a much higher initial cash outlay.
Furthermore, cost recovery for an ad may not be possible
even with a mildly response, YOU need to be able
to pay for advertising with disposable income, particularly
new advertising for which a response has never been
measured. The same is true about the overhead for a press
release, but that overhead is relatively minor.

The process of creating ads and press releases can be very
enlightening. That's because it forces you to think like your
customers do. It also forces you to think about how your
product meshes with the industry that you serve.

Because of their lower overhead, press releases can be
utilized with more impunity, Nevertheless, there are impor-
tant guidelines to follow, some of which I will get to shortly.

A failed press release may indicate that you haven't yet
been able to illuminate your product in words and ideas that
capture its value. Failures may also lead to new insights. If

YOU need the equivalent of a

you tell about the benefits of a 1 new product from your coverage of established products.
You should at least treat old products differently than new

product or service. (ones. I suggest that you limit their discussion to one

when you tell about the benefits of a product or service.
Concise and direct expression can pick u p the reading pace.
Fast pacing gives your messages increased impact.

Before you reach for those favorite stories and messages,
however, you need to ensure that other elements are present.
An essential factor is newsworthiness (or timeliness). The
element of newsworthiness might be a company milestone,
such as reaching one million in sales revenue for the first
time. It might be a promotional event, such as an opening
celebration after moving into a new facility. Often it will be
a new product or service that You offer.

Press releases should also create a trail of product
milestones reached. A product milestone could be hitting a
sales target, such as 5,000,000 cheeseburgers sold; it could be
a market-share target, such as Apple exceeding IBM in terms
of sales market share for one quarter; or it could be a
performance breakthrough, such as the San Francisco
Chronicle's ability to publish an earthquake version of their
newspaper using backup emergency power only.

AS a reader of Press releases, 1 look for a timely element
first, discarding anything that doesn't have one. I have been
befuddled by Press releases that are little more than product
brochures and price lists. Without any milestone event, a
news release is not the news iLs name would imply.

If You include coverage of old products with new
products, You probably reduce Your chances of getting Press
coverage rather than increase them. Don't b e greedy. If you
can obtain a paragraph of coverage for a new product and
one-line mention of existing products or services, you have
fared well.

-

your surefire appeal fails to motivate the prospects you have
targeted, you may be able to glean from its failure a better
understanding about the values of that particular market
segment. Perhaps you will discover a way to reposition your
product to appeal to those values.

A press release offers you a chance to haul out those
carefully honed stories and refined messages that you believe
best capture your product or your service. I like the metaphor
of a rifle shot to describe highly prepared marketing mes-
sages.

You should b e fashioning those messages at least as
carefully as you d o your products. You don't just write them,
you "engineer" (design) them. If your product can offer
significant benefits for your target customers, then you ought
to be able to find a way to express that potential s o that the

paragraph.
Similarly, offer distinctly different treatments fora product

upgrade and a new product introduction. If one follows on
the heels of another, consider generating more than one
press release-perhaps a press release for each product that
is new or upgraded.

If a product is complex due to its having many optional
components, be absolutely clear about what comes and what
doesn't come with each product package. If one quick
reading does not accurately convey the various forms the
product can take, it's not ready for general consumption. Test
your press releases (and product sheets and brochures) by
letting someone who is not acquainted with your products
read the release, then asking them to tell you about your
product's configurations and options.

If your information is unclear, you can hardly lay claim to
November 1993 December 42 Forth Dimensions

its being "released" (in a form that can be distributed and still
be a service to readers).

Review:
I n s W s Gut& to Getting Your

Press Releases Publfshed
This slim guide about press releases has been prepared

by Win-Win Marketing, whose mission is to provide market-
ing advice to small businesses. (Although they are intended
to illustrate various types of press releases, the sample press
releases in this guide provide us with a glimpse of the broad
campaign that Win-Win Marketing has undertaken to estab-
lish its credibility.)

Topics covered in the guide's introduction include when
to write press releases, how to target the "presses" to which
you send informational releases, and some journalistic
guidelines that help you write a press release. The book by
Strunk and White, 7beElementsofSlyleis referenced. Besides
re-emphasizing various journalistic guidelines, guidelines
are also offered that apply to press releases exclusively.

In any case, you can't afford to ignore basic advice that
you've already heard over and over, such as: Use short
sentences andshort paragraphs ofno more than 50 or60 words.

(As an aside, here's how the press releases I read for
Product Watch fared: Five out of six violated the 60 word
maximum paragraph length in their lead paragraph. One
started with a paragraph of 134 words. One had a short letter
that referenced new products described in a catalog. T t h q
don't bother to give their newproducts a journalistic treat-
ment, whyshouldl! For its professionalism and conformance
to guidelines, the news release I liked best was from a small
company announcing a holder for H-P DeskJeNriter Ink-

narrative. These sections include a sequence of example
press releases, a list of suggestions about how article reprints
might be used promotionally, a one-page press-release
checklist, a list of library resources (such as directories) which
can help you survey the publications that are available, and
a short bibliography.

Overall, this guide offers a quick schooling in the subject
of press releases. It introduces you to all the essential writing
elements for various types of press releases as well as all the
essential format elements of all press releases, such as the
date of release, the requested release date, the headline, the
continuation header, the continuation footer, the story-end
indication, and a possible dateline (which is the city and state
where the story originates when it is being released to a broad
geographic area).

On the down side, I had a jarring experience when I tried
to jump from the table-of-contents to the examples section.
I became confused because I never saw the "Examples"
chapter headline that I expected to see.

In most respects, the publication has a professional
appearance, with the possible exceptions of its binding and
its use of one-sided printing. Even though the body text is in
large-size fonts, the pages still have room for an inside margin
containing occasional quotations. The guide is printed on
standard (U. S.) letter-size stock that is three-hole punched
to fit into a report folder. Although it doesn't lie flat, your arms
should not tire even if you read it without a break.

The number to call for further information about either the
guide or a subscription to the Win-Win Marketing Newsletter
is 408-247-0122 or 1-800-292-8625; or write to Win-Win
Marketing, 662 Crestview Drive, San Jose, California 951 17.

Jet cartridges so that they are less likely to dry up. It consisted
of about four or five short and simple paragraphs that easily
fit onto one sheet of paper.)

Win-Win Marketing suggests that you write a press
release to target just one type of medium or a specific
publication that you are interested in. The guide talks about
when to use photos as well as how they should be prepared
for the demands of the print medium.

Besides photographic advice, YOU are offered advice
about distributing the press release, about how to find the
names of editors, and about using reprints of articles for your
own self-promotion.

That covers the first ten pages of this short guide of about
30 Pages. You get the idea that a lot of ground is covered
quickly.

The offerings of advice continue with tips from editors of
publications. They offer an assortment of insights: Do You
want your envelope to be opened? If so, hand-write it. DO
you want timely coverage? If SO, understand the lead times
for each publication you target.

The many guidelines and tips offered in the beginning
sections eventually make way to reference information in the
second half of the guide. In between, there is an informative
section about the various types of press releases you might
prepare.

The last five sections of this guide (about a dozen pages)
are in reference format, with an occasional sprinkling of

Forth Dimensions

P ~ ~ d a ~ f f Wkaffeh
SEPTEMBER 1993

FORTH, Inc. announced a new release of its EXPRESS
Event Management and Control System for process control
and factov automation applications, ~t features high-
speed I/O scan rates and improved connectivity. A new
~ ~ d b ~ ~ plus hiver helps achieve scan times under 10 ms.
The graphical user interface in EXPRESS makes it a
comprehensive development system without add-on prod-
ucts. Its appearance is similar to that of the OSF/Motif
standards. Like other parts of the development system, the
GUI is event-&iven. "Rulesn allow events to be generated
and handled. Rules are similar to C switch statements.
constructs of this kind let you implement the state
machines that serve most embedded applications.

Companies Mentioned

FORTH, Inc.
N. Sepulveda Blvd,

Manhattan Beach, California 90266-6847
Fax: 213-372-8493
Phone: 800-55-FORTH

43 November 1993 December

enth annual ache 1993

Asilomar Conference center
Monterey Peninsula overlooking the Pacific Ocean

Pacific Grove, California U.S.A.

Theme: Forth Development Environment
Papers are invited that address relevant issues in the establishment and use of a Forth development
environment. Some of the areas and issues that will be looked at consist of networked platform
independence, machine independence, kernel independence, development system/application system
independence, human-machine interface, source management and version control, help facilities, editor
development interface, source and object libraries, source block and ASCII text independence, source
browsers including editors, tree displays and source data-base, run-time browsers including debuggers
and decompilers, networked development/target systems.

Completed papers are due November 1,1993.
Registration fee for conference attendees includes registration, coffee breaks, notebook of papers submitted, and for everyone
rooms Friday and Saturday, all meals including lunch Friday through lunch Sunday, wine and cheese parties Friday and
Saturday nights, and use of Asilomar facilities.

Conference attendee in double room - $380 Non-conference guest in same room - $260 Children under 18 years old in same
room - $160 Infants under 2 years old in same room - free Conference attendee in single room - $490

*** Forth Interest Group members and their guests are eligible for a ten percent discount on registration fees. ***

John Hall, Conference Chairman Robert Reiling, Conference Director
Register by calling, fax or writing to:

Forth Interest Group, P.O. Box 2154, Oakland, CA 94621, (510) 893-6784, fax (510) 535-1295

