

SILICON COMPOSERS INC

FAST Forth Native-Language Embedded Computers

DUP

>R
R>

Harris RTX 2000"" l&bit Forth Chip SC32"" 32-bit Forth Microprocessor
08 or 10 MHz operation and 15 MIPS speed. 08 or 10 MHz operation and 15 MIPS speed.
1-cycle 16 x 16 = 32-bi multiply. 1 -clock cycle instruction execution.
1 -cycle 1 &prioritized interrupts. *Contiguous 16 GB data and 2 GB code space.

*two 256-word stack memories. *Stack depths limited only by available memory.
-&channel 1/0 bus & 3 timer/counters. *Bus request/bus grant lines with on-chip tristate.

SC/FOX PCS (Parallel Coprocessor System) SC/FOX SBC32 (Single Board Computer32)
*RTX 2000 industrial PGA CPU; 8 & 10 MHz. 032-bi SC32 industrial grade Forth PGA CPU.
*System speed options: 8 or 10 MHz. *System speed options: 8 or 10 MHz.
-32 KB to 1 MB 0-wait-state static RAM. 4 2 KB to 512 KB 0-wait-state static RAM.
*Full-length PC/XT/AT plug-in (&layer) board. .100mm x 160mm Eurocard size (+layer) board.

SC/FOX VME SBC (Single Board Computer) SC/FOX PCS32 (Parallel Coprocessor Sys)
*RTX 2000 industrial PGA CPU; 8, 10, 12 MHz. 032-bi SC32 industrial grade Forth PGA CPU.
*Bus Master, System Controller, or Bus Slave. *System speed options: 8 or 10 MHz.
Up to 640 KB 0-wait-state static RAM. 064 KB to 1 MB 0-wait-state static RAM.

-233mm x 160mm 6U size (Slayer) board. *FulClength PC/XT/AT plug-in (Slayer) board.

SC/FOX CUB (Single Board Computer) SC/FOX SBC (Single Board Computer)
*RTX 2000 PLCC or 2001A PLCC chip. *RTX 2000 industrial grade PGA CPU.
-System speed options: 8, 10, or 12 MHz. *System speed options: 8, 10, or 12 MHz.
-32 KB to 256 KB 0-wait-state SRAM. *32 KB to 512 KB 0-wait-state static RAM.
100mm x lmmm size (&layer) board. *100mm x 160mm Eurocard size (+layer) board.

For additional product information and OEM pricing, please contact us at:
SILICON COMPOSERS INC 208 California Avenue, Palo Alto, CA 94306 (415) 322-8763

Features

Character Classification 6 Charles Curley
"In the words of Arlo Guthrie, I'm not proud." While the author was implementing Martin Schaaf's
"Formatted Input Fields," in true Forth-hacker fashion he found some improvements to make. The
resulting utility provides a simple way for applications programmers to classify characters:
printable, control, upper case, etc. Borrowing a useful C routine via reverse engineering along the
way, he even fine-tuned that.

UN*X Tools Used on the FSAT Project 9 Jim Schneider
Continuing the work to provide a Forth environment that incorporates the best features of UWX.. .
This is the first of two installments that introduce the particular UN'X tools which will be cited later
in the series, i.e., the programming commands rn4(11, sh(l1, and make(1). "If you want to swim,
you're going to get wet," so roll up your sleeves for a crash course. You'll learn something about
the UN'X world and probably will appreciate Forth-like simplicity even more!

INTRAN-an Integer Formula manslator 1 6 J. V Noble
To properly extend Forth to accept ordinary, infix mathematical expressions as input and compile
a reliable Forth equivalent, the programmer must design a simple user interface; allow easy porting,
maintenance, and extension; and include bulletprooferror handling. The author of Scientif~cForth
provides this recursive, integer expression parser that directly represents the Backus-Naur
statement of its grammar as Forth code.

Terminal Input and Output

Telephone numbers, social security numbers, times and dates, and a myriad of other kinds of
information have specific formatting conventions that make it easier to read and use them

I accurately. This, the sixth in a series of Forth tutorials, teaches Forth methods of formatting strings
of numbers. Adding to the ability to simply display numerical dlgits, the neophyte programmer
now learns how to present them clearly for practical use by the end user.

Departments 1

4 Editorial Why FIG Chapters?

5 Letters Ready to pay; More good results with Forth.

31 Fast Forthward The Point of No Return

...... 34 resource Listings FIG chapters

38 Advertisers lndex

... 39 On the Back Burner Who's on First?

1 I

Forth Dimensions 3 September 1993 October

Forth Dimensions
Volume XV, Number 3

September 1993 October

Why FIG Chapters?
The newly formed Southern Wisconsin chapter of the Forth Interest Group describes what

happened at one of their first meetings:

Published by the
Forth Interest Grouv

Editor
Marlin Ouverson

"After about half an hour of conversation, Dave Ruske spoke about the use of Forth in
two embedded applications for ICOM, Inc. The first was an 8031-based operator access panel
for an Allen-Bradley PLC-2; the second was a driver that loads onto the Allen-Bradley KT card
(a Z80-based network card for PLC communications). LMI metacompilers were used on both
projects.

"Dr. Bob Lowenstein of Yerkes Observatory told the group about Yerk and how it is

"Matt Mercaldo showed and talked about the Modular Micro~rocessor Trainer being (submit items for publication, the (

Circulation/Or&r Desk
Frank Hall

Forth Dimensions welcomes
letters to the

tor, and comments from its readers.
No responsibility is assumed for
acaracy ofsubmisSiom.

applied to telescope control and data acquisition. Yerk is an object-oriented Forth variant for
the Mac, a public-domain product derived from Neon. One of the things Dr. Lowenstein uses
this for is remotely controlling a telescope in New Mexico via the Internet. Yerk software will
also be used to control two new telescopes being built at the South Pole.

subsa ip t ion tof i r th~ i -~
isincludedwithmembership
Forth Interest Group at $40 per
year ($52 air). For mem-
bership, change of address, and to

the group with copies of a paper describing his work. / Advertising sales: 805-946-2272. 1

-
developed for use at Johns Hopkins University. The unit uses two ~ o t o r o l a ~C68HCllA8s
with New Micros' Max-Forth on chip. The student can prototype projects on the unit and
communicate with it using a terminal, or with a keyboard and built-in LCD. Matt provided

"Glenn Szejna described his use of Forth at Nicolet Instruments. Several people in the
Copyright @ 1993 by Forth In-

group had used Nicolet oscilloscopes, unaware that Glenn's Forth code was running under terest GrouD. Inc,Thematerialcon-

is: Forth interest
P.O. Box 21 54, Oakland, California
94621, Administrative 510-
89-FORTH. Fax: 510-535-1295.

. ,
the hood. tained in this periodical (but not

"Scott Woods discussed his use of Forth, including his current project, firmware for an the code) is copyrighted by the

telephone answering services [see "~o r th -~ased Message ~ e k i c e , " Forth DimensionsXIV/5]. I piled or thd artides, except repro- /

- - .
industrial metal detector. This device will be used for such things as preventing machine
screws from showing up in your breakfast cereal.

"Olaf Meding described Amtelco's use of polyForth in programming their Systems for

authors Of the
and by Forth Interest Group, Inc.,
respectively. ~ n y reproduction or
use of this ~eriodiul as it is com-

a he-Arntelco EVE (Electronic Video Exchange) is the largest and most sophisticated system
of its kind, and has gained 70% of the answering service market.

"James Heichek demonstrated VORCOMP, a public-domain directory and file-compare

build a system to monitor and control model railroads via a Mac."

ductiOm non-commercial pur-
poses, without the written permis-
sion of Forth Interest Group, Inc. is
a violation of the Copyright I~WS.

utility written in his own version of Forth. James talked about why he believed the stack
manipulation words in Forth became a hindrance to his work, and about how he added local
variables to clean up h s code. He is currently developing educational software.

"Olaf Meding gave a brief tour of the 'Introduction to Forth' disk and demonstrated loading
C.H. Ting's tutorial in F-PC. Along the way, the F-PC single-step debugger was also
demonstrated.

"[Asl the meeting began to break up, Dr. Lowenstein took some time to demonstrate Yerk
and to impart some insider information to Paul Anderson. Paul is new to Forth and plans to

real-world needs. Many research
hardware and software desinns that 1 -

. . -
Any code bearing a copyright no-
lice> un be used Only
with permission of the copyright
holder.

The Forth Interest Group
The Fonh Interest Group is the
association of programmers, man-
agers, and engineers who create
Dractiul, ~ ~ ~ h - b ~ ~ ~ d solutions to

It was only a few months earlier that these folks contacted the FIG office for a Chapter kit. I intended to assist each of its mem- I

Thanks to Dave Ruske for providing these notes, and congratulations to the Southern
Wisconsin FIG Chapter for forming what is obviously a dynamic and resource-rich group.

-
will advance the general state of
the art, FIG provides a dimate of
intenectual exchange and benefits

If there is no FIG Chapter in your area, perhaps you should think of doing the same.. .
Regularly scheduled meetings; guest lecturers; planned presentations and demonstra-

tions; advance mailing of meeting details; and plenty of interaction, flexibility, and attention

bers. Publications, conferences,
seminars, telecommunications, and
area chapter meetings are among
i~ activities,

to the particular needs and interests of your groupperhaps including occasional tutorials
or ongoing classes for Forth neophytes-are elements that keep chapter meetings lively and
useful. If there is already a chapter near you, think about how your added participation might
help that group, then talk to the chapter's officers and organizers about volunteering-

-Madin Ouuerson) land, CA 94621 ." I

Dimensions (ISSN 08%
0822) is published bimonthly for
$40/46,52 per by the Forth
I~~,,,,, Group, TPI, 1293 old

whether as stamp-licker, secretary, emcee, program chairman, snack officer, or next chapter
president.

Who knows, maybe you'll even discover-like at least one Forth author-that steady
Forth-related employment is a fringe benefit of the contacts made at your local FIG Chapter.

September 1993 October 4 Forth Dimensions

. .
Mt. view-~lviso ~ d . , sumyvale,
CA 94089. Second-dass postage
paid at San Jose, CA. POSTMAS-
TER:SendaddresschangestoForth
Di-iom, P.O. 2154, Oak-

classes.
I find that I can do projects in days and weeks, instead of

months, by using scripting languages. With Forth as a

Letters to the Editor-and to your fellow readers-are always welcome.
Respond to articles, describe your latest projects, ask for input, advise
the Forth community, or simply share a recent insight. Code is also
welcome, but is optional. Letters may be edited for clarity andlength. We
want to hear from you!

Ready to Pay
Dear Marlin:

Thanks to Markus Dahm for contributing the article about
na tWF in your last issue (FDXV/2). I've dabbled in Forth
since I was a hardware engineer, and this development is
exciting for a lot of reasons. My current work involves
developing presentations andvisual interfaces. I use SuperTalk,
HyperTalk, Openscript, and, if I have to, C++. The first two
run on the Mac, the third on the PC. All three are very similar
to each other and, it turns out, to natOOF.

The concept of n a t W F is exciting because it means that
a scripting language based on Forth is being created that has
a good chance of wide and profitable acceptance by the
public and by the software development community. It is the
ideal way to bypass the engineers and managers who don't
understand Forth, and to take it directly to the public. It is also
a good platform for a visual programming language and for
visual interfaces in general.

It is particularly exciting to me because I can have a simple
scripting language, natWF, based on a simple machine

I use Forth quite frequently for
manufacturing automation,
with good results.
The language is very practical
for our application ...
model, Forth. This means that, unlike the other scripting
languages, I will be able to easily create new methods and
whatever classes of objects I need. I will also have access to
the underlying architecture of the machine if I need it. This
is particularly helpful when tracking down the memory
problems that come up (scripting languages still seem to
mess up memory handling).

Those other scripting languages provide the user with a
limited, albeit flexible, set of classes. Until recently, any
compilation had to be done by creating XCMDs or DLIs in
another language, usually C. Heizer Software now provides
a product that allows you to create XCMDs using HyperTalk
itself; however, one cannot create new classes or modify old

platform, this will be even better. I am ready to pay money
for na tWF now. When can I get it?

Sincerely,
Mark Martino
14115 NE 78th Court
Redmond, WA 78052

More Good Results with Forth
Dear Mr. Ouverson:

I am not in the habit of writing letters to the editor, but the
excellent article by Donald Kenney ("Forth in Search of a
Job," FD XV/l) has prompted me to do it.

The attached memo 1notprintedh~Ed.lresulted from
the fact that the customer, another division of the same
corporation, wanted to use Forth in an automotive controller
we were designing. The project ended up using a dialect of
Modula-2.

Now working for a dfferent corporation, I use Forth quite
frequently for manufacturing automation, with good results.
The language is very practical for our application (STD-based
controllers for various machines), thanks to its ease and
speed of coding, speed of execution, and elimination of the
need for logic state analyzers, in-circuit emulators, and all the
other rather expensive peripherals required with most high-
level languages. Very few programmers are involved (a must
with Forth, in my view), and the typical application requires
only about 500 lines of code.

We use a PC for development, and transfer the code over
an RS-232 port to the PROM-based controller, which com-
piles it. The same port is used to communicate with the
running application during debugging. After release, the
controllers work in standalone mode (no PC); if anything
needs to be changed, or if we need to intervene in order to
facilitate mechanical adjustments, we take a laptop up to the
controller and connect it to the port, making it interactive
again.

A battery-backed RAM (Dallas Semiconductor) in the
program memory chip socket during code development
eliminates having to wait for the program to reloadevery time
the power is turned off. After release, a PROM can replace
that RAM if frequent changes are not anticipated. In one
controller, where some variables may need to be preserved
after a reset, the program is allowed to allocate battery-
backed program memory for those variables, thanks to the
versatility of the system.

Sincerely yours,
Ivan C. Coelho
Manufacturing Engineering Manager
Joslyn Electronic Systems
6868 Cortona Drive
Goleta, California 73116-0817

Forth Dimensions 5 September 1993 October

Character
Classification
Reverse Engineering a C Utility

Charles Curley
Gillette, Wyoming

A simple means of allowing applications programmers to
class@ characters (printable, control, upper case, etc.) is shown.

Historical Note
The version of Forth used here is fastForth, a 68000 JSW

BSR-threaded Forth described in "Optimization Consider-
ations," Forth Dimensions XIV/5. There is minimal code
specific to fastForth, and implementation on other Forths
should be fairly easy. F@ is a fast, word-boundary-only
version of @. Users of other Forths will have to adjust the
code.

Background
While implementing Martin Schaafs "Formatted Input

Fields" (Forth DimensionsXV/l), I examined the code to see
how it was done. The code depended on three words for
detecting the classification of a character. These are: ALPHA,
ALPHA-NUMERIC, and NUMERIC. I thought the code for
these words was a bit crude and could be better done. What

When I learned C,
the first thing I did was
cure one of its lacks.

was needed, I thought, was a much more flexible system
which could also be much faster. A look-up table would be
just the thing.

Having worked in C, I knew exactly where to find such
a lookup table: C's library routines and macros as described
in the header file ctype.h. I decided to implement the C
routines in Forth. In the words ofArlo Guthrie, I'm not proud.
Or tired. Converting the routines and macros to Forth was
easy. Duplicating the table was also easy, but only because
I have experience with Forth and insisted years ago on curing
at least one of the many problems with C.

Yes, folks, I admit it: I actually found something done
better in C than in a Forth program. So one of the questions
I had was whether I could do a better job in Forth than the
implementors of my C compiler had done in C.

Reverse Software Engineering
The first thing I did was examine the header file ctype.h.

This consists almost entirely of a series of macro definitions
(#defines, in C-ese) for use with a lookup table called
- ctype[l. (For those of you who don't speak C, that describes
a character array. On the 68000, that is a byte array as well.
The reason for the - (underscore) in the name has to do with
the kinky requirements of C linkers.)

The first group of macros defines a series of bit masks for
use with the lookup table at -ctype. For example, a bit mask
to identify upper-case characters might be defined as follows:
#define - U 0 1
/ * Upper-case alphabetic * /

The second group defines a series of macros to classify
characters, using -ctype and the bit masks in the first group.
For example, to determine if a character is upper case, use
isuppea, which might be defined as follows:
#define isupper (c)

(-ctype [(c) +I1 &-U)

isuppea uses the character to be classified as an index into
the table at -ctype to fetch a bit mask. This is anded bitwise
(the ampersand operator) with the mask defined above, -U,
to produce a flag. Ifbit 0 is set in that entry in the table, a result
of 1 is returned by the macro, indicating that the test character
is upper case. If bit 0 is reset, the character under test is not
upper case.

Examination of the macros indicated one place where an
improvement could be made: the index into the array is
defined as (c)+l, which would involve at least one instruction
to increment c. Why the table begins at -ctype+l instead of
at -ctype itself is unknown. The reason is most likely lost
among the antiquities of Bell Labs, along with the program-
ming languages A and B, and the Bell Labs version of the Ark
of the Covenant. This instruction can be eliminated by
starting the table at -ctype, so that is how the table will be
implemented in Forth.

It would be possible to build the table at -ctype by
determining each character's mask, and building it by hand.
Instead, I chose to retain compatibility with C by carrying
over the table in its entirety. Not having source for the table

September 1993 October 6 Forth Dimensions

S c r # 1920
0 \ f o r m a t t e d i n p u t f i e l d s (21 5 93 CRC 18:07)
1 \ f rom a r t i c l e by M a r t i n S c h a f f , 5 , 6 93 F o r t h Dimensions
2 f o r g e t t a s k f o r t h d e f i n i t i o n s : t a s k ;
3
4
5 b a s e f @ > r
6
7
8 1 12 t t h r u
9

1 0
11
12
1 3 r > b a s e f ! e d i t o r f l u s h
14
1 5

0 \ c t y p e c h a r a c t e r c l a s s i f i e r
1 c r e a t e - c type
2 \ 0 1 2 3
3 40 c , 40 c , 40 c , 40 c ,
4
5 \ 8 9 Oa Ob
6 40 c, 50 c, 50 c, 50 c,
7
8 \ 1 0 11 1 2 1 3
9 40 c , 40 c, 40 c, 40 c,

1 0
11 \ 1 8 1 9 1 a l b
12 40 c, 40 c, 40 c, 40 c,
1 3 ;s T h i s i s a l o o k u p t a b l e
14 o f c h a r a c t e r s : a l p h a , numer ic ,
1 5

S c r # 1921
(21 5 93 CRC 18:07)

hex
4 5 6 7

40 C, 40 c , 40 c, 40 c ,

l c I d 1 e 1 f
40 c, 40 c, 40 c, 40 c ,

f o r examining c h a r a c t e r i s t i c s
p r i n t a b l e , etc.

S c r # 1922
0 \ c t y p e c h a r a c t e r c l a s s i f i e r (21 5 93 CRC 18:07)

1 \ b 1 20 ! I, Y $ % &

2 90 C, 20 c, 20 c, 20 c, 20 c , 20 c, 20 c , 20 c ,
3
4 \ (2 8) * + - /
5 20 c, 20 c, 20 c, 20 c, 20 c , 20 c , 20 c , 20 c,
6
7 \ 0 3 0 1 2 3 4 5 6 7
8 8 c , 8 c , B c , 8 c , 8 c , 8 c , 8 c , 8 c ,
9

1 0 \ 8 38 9 < - > ? -
1 1 8 c , 8 c , 2 0 c , 2 0 c , 2 0 c , 2 0 c , 2 0 c , 2 0 c ,
12
1 3 ;s The t a b l e a n d i t s u s a g e a r e p a t t e r n e d a f t e r t h e C
14 l i b r a r y r o u t i n e s f o r t h e same pu rpose . See c t y p e . h f o r more
1 5 d e t a i l s .

0 \ c t y p e c h a r a c t e r c l a s s i f i e r (21
l \ @ 4 0 A B C D E
2 20 c , 1 c, 1 c, 1 c , 1 c , 1 c ,
3
4 \ H 4 8 1 J K L M
5 1 c, 1 c , 1 c , 1 c , 1 c , 1 c ,
6
7 \ P 5 0 Q R S T U
8 1 c , 1 c, 1 c, 1 c , 1 c , 1 c ,

S c r # 1923
5 93 CRC 18:07)
F G
1 c, 1 c,

(one of the disadvantages of C
libraries), I had to reverse en-
gineer it.'

Fortunately, I had a ready
solution to that problem. One
of the first things I did when I
determined to learn C was to
cure one of its lacks. I wrote a
memory dump routine, with
the idea that I could build it
into programs and get at least
some ability to see memory
modified as the program p r o
gressed. The syntax is:
dump(addS,len). Forthlike,
isn't it?

An incredbly simple C pro-
gram printed out a hex dump
of the array at -ctype. Using
operating system indirection, I
wrote the output to a file. I
then referred to the output file
from time to time as I edited
Forth screens to implement
the table in Forth.

The Forth Code
The Forth code is included

in the fastForth implementa-
tion of Mr. SchaaPs code, start-
ing on screen 1920. This screen
is a loader screen, and could
contain a vocabulary declara-
tion, if one wanted to hide the
code from the user.

Screen 1921 begins the
lookup table with the phrase
create -ctype on line one.
Each character position has
one hex value installed in it
with the word c, . Above it is
a comment indicating the char-
acter that the entry represents.
For example, position zero,
indicating ASCII value 0, has a
bit mask of hex 40, indicating
a control character. The tab
character, ASCII 9, is both a
control character and a white-
space character, so its bit mask
is hex 50. The table continues
through screen 1924.

The code that uses the table
is on the next screen, in the
word CLASSIFIER. This de-
fining word builds a classifier

1 1. The names have been changed to
protect the publishers.

Forth Dimensions 7 September 1993 October

word, analogous to the sec-
ond group of macros in
ctype.h. On line five is code to
build a header and comma a
bit mask into the dictionary
(see the stack diagram on line
13).

Also on that line, and com-
mented out, is a high-level
DOES> portion of the code.
The code takes a value as
input, leaving the input value
and output flag on the stack
(see the stack diagram on line
14).

The assembly language
version is specific to the 68000
and to fastForth. On line six,
the address of -ctype is
loaded into address register
zero. Line seven sees the re-
turn stack popped into ad-
dress register one. This leaves
the return stack containing the
address of the word which
called the classifier daughter
word. It also leaves the ad-
dress of that daughter word's
argument in a r 1. The next
instruction reads the mask into
data register zero.

On line eight, the code
copies the character to be
tested into data register one. A
commented-out instruction
would provide some range
checking, emulating the C
macro toasciio. The mask for
the and is a 32-bit word value
because only that portion of
the register is used as an in-
dex.

Line nine provides one in-
struction, anding the bit mask
in dr 0 with the contents of the
lookup table. The source-ad-
dressing mode is called "ad-
dress register indirect with in-
dex." It adds the contents of
address register zero to the
word contents of data register
one, and a signextended byte
displacement (here, zero) to
produce the effective address
of the source. Assuming that
data register one contains a
value between zero and 7f,

0 \ ctype character c l a s s i f i e r
l \ @ 6 0 a b c
2 20 c, 2 c, 2 c , 2 c ,
3
4 \ h 6 8 i j k
5 2 c, 2 c , 2 c , 2 c,
6

7 \ p 7 0 q r s
8 2 c, 2 c, 2 c , 2 c,
9

10 \ x 78 y z (
11 2 c, 2 c, 2 c , 20 c,
12
13
1 4
15

Scr # 1924
5 93 CRC 18:07)

f 9
2 c, 2 c ,

.., del
20 c, 40 c ,

Scr # 1925
0 \ ctype character c l a s s i f i e r (21 5 93 CRC 18:07)

1 \ Note the lack of range checking!
2 \ Over 7 f , you're on your own, tovarish!
3
4 : c l a s s i f i e r
5 create c, \ does> >r dup -ctype + c@ r> c@ and ; ; s
6 ;code -ctype *+ arO lea , \ addr of t a b l e
7 rp [+ a r l mov, a r l [drO .b mov, \ mask t o and
8 s [d r l mov, (7f # d r l .wand,) \ the character
9 0 arO 1 & D [drO .b and, \ and the mask

10 drO s - [mov, \ r e s u l t s on the stack
11 next ;c ; S

12
13 compile: mask --- \ compile a mask a f t e r the daughter word.
1 4 run: c --- c f l \ return f l a g as t o c l ass of char.
15

Scr # 1926
0 \ ctype character c l a s s i f i e r (21 5 9 3 CRC 18:07)

1 1 c l a s s i f i e r isupper
2 2 c l a s s i f i e r islower
3 \ 4 i s n ' t used.
4 8 c l a s s i f i e r i s d i g i t
5 10 c l a s s i f i e r isspace
6 20 c l a s s i f i e r ispunct
7 40 c l a s s i f i e r i s c n t r l
8 \ 80 means pr in table but no other c l ass
9

10 1 2 0 r c l a s s i f i e r isalpha
11 20 80 3 8 or or or c l a s s i f i e r i s p r i n t
12 1 2 10 or or c l a s s i f i e r isalnum
13 \ or r o l l your own.. .
1 4
15

(Continuer on page 38.)

September 1993 October 8 Forth Dimensions

UN*X Tools Used
on the FSAT Pmject
(or, "And Now For Something Completely Differentyy) Part I

Jim Schneider
San Jose, California

At some point in the writing of a large project in Forth, the
typical Forth programmer (if I am typical, and if there is such
a thing as a typical Forth programmer) fires up a meta- or
cross-compiler to translate the work into a standalone
application. This works fine as long as the programmer hasn't
done anything that is radically different from what the
metacompiler writer had in mind. If the new project depends
on new defining words, a different dctionary linkage
structure, or a different way of handling code and data space,
the metacompiler (at least those I've worked with) probably
won't be able to handle it without modifications. Addition-
ally, most metacompilers use the host dictionary to save quite
a bit of state information, so a metacompiler can't be used for
a huge project if the host dictionary is very limited. These are
my two primary reasons for using the UN'X toolset to do
much of the development for the project

To ensure that everything I write about in this series of
articles is understood, I'm going to describe several UN'X
tools. My primary emphasis is going to be on the program-
ming commands m4(1), yacc(l), and M l) , but I'm also

The features discussed form a
large enough subset to perform
some useful work, I'm going to
use these features (and only
these) in later articles...

going to touch briefly upon sh(1) and make(1).
sh(l), the default command interpreter (or shell) on most

UN'X systems, allows you to write programs that take
advantage of the abilities of other programs. For example,
this shell script (a script is a program to be interpreted by the
shell, like an MS-DOS batch file) will write the contents of the
files specified on its command line to the standard output,
and provide a header and footer for each:
! /bin/sh
while [-n "$1"]

do
echo " /********** start of $1 ********** / "
cat $1

echo " /*********** e n d of $1 **********/"
shift
done

This is a trivial example, but I used this script several times
to download a small program from a remote UN'X site to my
home box. More complicated scripts can automatically
configure and install s o h a r e , perform periodic backups,
process huge text files and databases, or just about any other
task. In fact, it is so useful that about the only reasons UWX
utilities are written in other languages is that the shell is
expensive in terms of resources used versus results pro-
duced, and it doesn't manipulate binary files all that well.

Because the shell is good for general purpose odd jobs,
but not for jobs that need to be done efficiently and
repeatedly, UN'X has a large assortment of utility programs.
These can be broken down into categories in a variety of
ways, but probably the most useful categories are (tradi-
tional) programming tools, text manipulation utilities, and
miscellaneous. The traditional programming tools include
things like compilers, linkers, library creation and mainte-
nance utilities, source code control packages, and a peculiar
little utility to ensure programs are up to date. This "peculiar
little utility" is called make.

make functions by reading a file called (what else?) a
make file. The make file contains lines that describe which
files depend on other files (dependency lines), and lines to
tell make what to do if a file is out of date (i.e., a dependent
is newer than something that depends on it, called a target).
For example, the following fragment of a make file:
£00.0: f0o.c f0o.h Makefile

cc -c $(CFLAGS) $*.c

tells make that if either foo.c, foo.h, or Makefile
(usually the default name of the make file) were modified
more recently than f oo . o, it is to perform a macro substitu-
tion on the second line and then execute it. make distin-
guishes dependency lines from command lines by the fact
that command lines start with one or more tab characters.
One point to remember about dependency lines: they may
contain any number of dependents, but only one target.
Thus, this would be invalid:

Forth Dimensions 9 September 1993 October

£00.0 bar.0: f0o.c bar.c f0o.h Makefile

An important feature of command lines is the fact that they
can contain any valid UN'X commands.

Macro substitution is a form of text processing that
substitutes any macro name references in the text by a
previously defined substitution. There are two kinds of
macros in make built-in (the $ * in the example) and explicit
(the $ (CFLAGS)). The built-in macros are set by make to
stand for either targets or dependents of the last dependency
line it read. Without going into too much detail, the $ * in the
example stands for f oo, or the target without its extension.
Explicit macros are set in the make file, in the environment,
or are built into make. If make processed a line like this:
CFLAGS=-0 -I./include

before it encountered the two lines in the example, the string
$ (CFLAGS) would be transformed by macro substitution
into -0 -I. /include.

make executes a line by passing it to sh (hey, sh was
designed to execute command lines). Thus, the sequence of
events that make would follow when it encounters the
example above would be:
1. Check to see iff 00. o is out ofdate with respect to f 00. c,

foo.h, or Makefile
2. If £00. o is out of date, transform the line:

cc -c $ (CFLAGS) $*.c
into:

cc -c - 0 -I./include f0o.c
and pass the transformed line to sh. cc(l1, the UN'X C
compiler, uses the arguments -0 and -I . /include as
options. They mean: perform optimization and search
the path . /include for included files, respectively.

Another feature of make is its ability to use built-in
dependency rules. These rules tell make how to transform
one file type to another without explicit rules. For example,
the following two lines:
.c.o:

cc -C $ (CFLAGS) $<

tell make that whenever it finds a dependency line with a
target with an extension of . o and a dependent file with an
extension of . c that has a dependent file newer than the
corresponding target, it would have the second line of the
rule executed by sh, after macro substitution, in the absence
of explicit commands. The macro $< stands for the depen-
dents that are newer than the target in the dependency line.
This means that if make were to process this line:
£00.0: f0o.c f0o.h Makefile

without any line following it, and any ofthe dependents were
newer than the target, make would pass this line to sh:

cc -c -0 -I./include f0o.c

The . c . o in the dependency line is called a suffix rule.
The reason I used $ * . c instead of $< in the first example was
to handle the case where (for example) Ma kefi le was the

September 1993 October

newer file. In such a case, makewould pass the incorrect line:
cc -c -0 -I./include Makefile

to sh to execute. Since Makef ile is not a C language file, cc
will issue unfriendly diagnostics, and return an error code to
muke. The reason this works in the built-in dependency rule
is that the . c in the rule tells make to substitute only the
names of dependents that have an extension of . c. It will
substitute these names (and only these names) into the line,
regardless of which file is newer than the target.

If there is only one suff i on the target line of the built-
in dependency line, it is taken to be the extension of the
dependent file, and the target is the dependent filename
without the suffi. For example, this:
. C :

cc $(CFLAGS) -0 $@ $<
£00: f0o.c

tells make that in order to build £00 from £00. c, it is to
perform macro substitution on the command line, and pass
it to sh. The built-in macro $@ stands for the current target file.
Assuming that the macro CFLAGS is defined as above, the
line will be transformed into:

cc -0 -I./include -0 £00 f0o.c

(cc uses the option -0 to override the default name of its
output file.)

At this point, I should mention a caveat. The suff i rule
in the built-in dependency must be "registered" by make. To
register a suffix rule, it has to be added to the built-in macro
. SUFFIX. For example, if you want to build . s files from . m
files, before you could put this:
.m. s:

m4 $< > $@

into a make file, you would probably need to put this:
.SUFFIX=$ (.SUFFIX) .m. s

into the make file first. Usually, these suff i rules are built into
the macro . SUFFIX:
. c .sh .c.o .c.a .s.o
.y.o .l.o .y.c .l.c

The UWXoperating systemuses the suffies . c, . sh, . o,
.a, . s, . y, and .1 for C language source files, shell scripts,
object files, libraries, assembly langauge source files, yacc
language source files, and lexlanguage source files, respec-
tively. Additionally, the suff i . h is used for C language
header files. I, myself, use the suffixes .m and . i for m4
language source and include files, respectively.

An additional feature of make is the possibility of having
more than one command line for a given dependency line.
For example, the pseudotarget clean is often used to "clean
up" after a project is built. clean is called a pseudotarget
because its commands don't actually create or update a file
with the name clean. clean may have a dependency line
and several command lines, like:
clean :

rm -f * . o core a. out
10 Forth Dimension

cd target1 ; rm -f *.o core a.out
cd target2 ; rm -f *.o core a.out

In this dean has no it is
considered to be "out of date." The three command lines in
this example would be passed to sh, which would execute
the commands. The the second and third
command lines contain two and
m(l- to with a peculiarity WU2ke. As each line is
generated, make passes it to a fresh invocation of sh. Since
each command line in a make file corresponds to a different
shell, all commands that are built into sh (like cd in the
example) have no effect after the end of the line.

Finally, a line starting with a # character is a comment.
To get make to update a specific target, invoke mukewith

that target as an argument. If make is invoked without
arguments, it checks the first target in the make file. For
example, if this was the make file:
.c.o:

cc -c $<
CFLAGS=-0 -I./include
OBJS=foo.o bar.0 baz.0
£00: $ (OBJS)

cc $(CFLAGS) -0 $@ $(OBJS)
£00.0: f0o.c fo0.h Makefile
bar.0: bar.c f0o.h Makefile
baz.0: baz.c Makefile
clean :

rm -f *.o core £00.

the command:
make baz .o

would tell make to check baz . o, while this:
make

would tell muke to check £00.
You now know more about make than I did when I

started using it. In any make file associated with this project,
I will only use the features described above, and I will
explicitly define all explicit macros. I will also explicitly
define any built-in dependencies.

There are several programming tools that also fall into the
text Indeed* many of the tasks we
give to computers are in the realm of text manipulation; if we
broaden our definition of text, they all are. UWX-like
operating systems have many utilities to make the job of
custom text manipulation easier. The two main divisions of
the text processing category relate to how they do the lob.
The first provides the ability to manipulate streams of text.
This is typified by this fragment:
sed '/BEGIN/,/END/~' filex

which tells sed to read the file f ilex, and print all the lines
in the file, but delete (from the output only, not the original
file!)allthelinesafterthefirstoccurrenceofthest.fing~~~~~
(including the line it occurs on) up to the first following line
that contains the string END. So, if this was the contents of
filex:

Forth Dimensions

UN*X mivia
For those of you who are curious, these are explanations
of the names of all the UN*X utilities mentioned in this
article (with the exception ofm4).

yacc-stands for "YetAnotherCompilerCompiler." When
the Unix system was young, almost everyone involved in
the project was fascinated with advances in the field of
compiler theory. When this utility was installed, it was he
fifth or sixth in the series of program that turn grammar
descriptions into parsers.

&- Stands for uLEXical analyzerm

sh- for wSHelln

muke - "makes" an update of a program

cat- "conCATenatesn the contents of its arguments to the
standard output

cc - "C Compiler"

sed - "Stream EDitor"

grep - from the ed vernacular "g/RWpn which stands for
"global scan for regular expression and print resultn

ed- "line EDitor"

awk- stands for its authors' initials: Aho, Wienberger, and
Kernighan. awk is a powerful, stream-oriented, regular-
expression-based programming language

By the way, I refer to Unix-like operating systems by
"UWX' because:

There are several Unix and Unix-like operating
systems available, and only two are actually named Unix.
Since my primary development platform is a a PC done
with both XENIX and Linux (if I ever figure out how to
make it stop fighting XENIX for the disk drives.. .), which
,, Unix-like operating systems, I use the construct UWX
to refer to both of them. I may qui re a Sun SPARCstation
in the near future, which has yet flavor of Unix
(SunOS, a very good port of 4.?BSD unix)

2. Unix was until recently a trademark owned by AT&T.
It is now oMed by Novell. Since no love for either
organization, I'm going to use a name that neither of them
owm,

This is the documentation for filex
(UN*X-type man page here)

uuencOded image
stuff

END uuencoded image

(more verbiage)

11 September 1993 October

the output would be:
T h i s i s t h e documen ta t ion f o r f i l e x
(UN*X-type man page h e r e)
(more m i s c e l l a n e o u s v e r b i a g e)

This is another trivial example, but it is useful for
processing, say, a file containing text, an encoded binary
image, and then more text.

The second division of text processing is macro process-
ing. make does this to generate lines to execute. The UN'X
operating system also provides a macro processor called m4.
(Don't ask me why-I could tell you why "sed' is named sed,
or even why "awF is named awk but I have no idea why
"m4" is named m4.9 The syntax of m4 is very basic. Each
separate word in the input stream is matched against the
symbol table. If a match is found, the symbol is replaced by
the string it stands for, and the process starts again at the
beginning of the substitution. If the word doesn't match a
defined symbol, the word is copied to the output stream.
(Note: because m4 operates literally, and the placement of
new lines is important, I will put a # character in the examples
wherever a new line is supposed to be. So, even though a line
may end at the end of a column in this article, if you are typing
the examples into a computer, don't hit the enter key until
you see the # character.) Thus, this fragment:
d e f i n e (' j i m l , ' i s God') #
j im#

would print out

i s God#

substitution, it's a good idea to quote the arguments to a
macro. m4 will consider a string of text that starts with a
backquote C) and ends with a single quote C) to be a single
word.

m4 provides other macros besides d e f i n e . One of the
most useful is i f e l s e . T ~ I S macro takes any number of
arguments, and if the first argument is equal to its second, the
result is its third. If its first argument doesn't match its second,
and it has enough arguments, it tries to match its fourth and
fifth, seventh and eighth, etc. If none of the pairs it checks
match, and the last argument is its fourth, seventh, etc., that
is its result. If none of these cases work, the result is the null
string.

All of this is much easier to do than to explain. For
example, thls:
i f else (c a t , dog, ' c a t e q u a l s d o g ' ,
' c a t d o e s n o t e q u a l d o g 1) #

would either print out c a t e q u a l s dog, or c a t d o e s n o t
e q u a l dog, depending on whether the macros c a t and dog
were defined to equal the same thing; and this:
i f e l s e (j im , i s God, ' jirn is God t o d a y ' ,
jim, i s D e v i l , ' j im i s D e v i l t o d a y ' ,
' j i r n i s m o r t a l t o d a y ') #

would print one of three messages, depending on what I'd
defined myself to be.

One more example:
ifelse (jim, , ' jirn i s n o t h i n g t o d a y ' ,
f ox , hound, ' t h e f o x a n d t h e hound a r e
o n e ') #

Notice the extra line in the output. This isbecause the new
line at the end of the first line wasn't matched by a macro
name, so it was printed on the standard output. Indeed, the
new-line character can't match a macro name because m4
macro names consist of an upper- or lower-case letter or
underscore followed by any number of letters, digits, or
underscores. Anythlng else is either copied verbatim to the
standard output, or used as punctuation. Macros are defined
as shown in the example. The macro d e f i n e (yes, it's a
macro, too) is called with two arguments. The first is the
name of the new macro, and the second is what the new
macro stands for. Also, notice the quotes around the name
and the substitution of the macro. I used them because m4
will do macro substitution of arguments to macros before the
arguments are passed to the macro. This means that if m4
were to encounter:
d e f i n e (jim, i s n ' t God) #

as the next line it were to process, it would perform macro
substitution on jim, and pass the arguments i s God and
i s n ' t God to d e f i n e . d e f i n e would see that its first
argument doesn't look like a name, and either do nothlng or
cause m4 to bail out. The net result would be printing another
newline(orexitingm4withanerrormessage).m4letsyou
get around this by quoting. When m4is in macrosubstitution
phase and sees a string with quotes around it, it strips off the
outermost set of quotes instead. Because quotes delay macro
September 1993 October

would print out j im is n o t h i n g t o d a y if j im were
defined tobe the null string, or t h e f o x a n d t h e hound a r e
one if the macros f o x and hound were equal, or nothing if
neither of the above were m e .

Since the macros d e f i n e and if else take arguments,
it would be reasonable to expect that other macros can use
arguments as well. Implicitly, all macros have arguments, but
if no arguments are given in the invocation, m4 fills the
argument list of the macro with null strings. Since none of the
macros j i m , c a t , etc. use arguments, there is no difference
(except typing and processor cycles) between:
j im (t h i s , is, an, argument , l i s t) #
and:
j im#

Macros can use arguments, using the ubiquitous UN'X
convention of $1 to stand for the first argument, $2 for the
second, all the way up to $9 for the ninth ($0 stands for the
mauo name, and $1 0 would be the first argument followed
by the character 0). The arguments must be enclosed in
parentheses and separated by commas. The opening paren-
thesis that introduces the arguments must not be separated
from the macro name. For example, if m4 were to process:
define('jim','ifelse($1,$2,'youpassed$O
t h e same arguments ' , ' t h e y d i f f e r ') ') #

and if the next line was:
12 Forth Dimensior

Forth Dimensions 13 September 1993 October

The convention, described in the accompanying article, of using the '#' character to
indicate hard new lines is applied in this source code.

masmmac.i
d n l masmrnac . i #
d e f i n e (' t a b ' , ' i f e l s e (e v a l (l e n ($1) <$2) ,l, ')) dn l#
d e f i n e ('masm-start ' ,' TITLE $1#

. 3 8 6p#
d i v e r t (1) d n l #
EXTRN -next :NEAR,-doc01 :NEAR' ' d e c l a r e (-next) d e c l a r e (-docol) #
d i v e r t (2) d n l #
DATA SEGMENT USE32 BYTE PUBLIC#
ASSUME ES : DATA#
- f i l ename db l e n ($ l) ,"$1", 0#
d i v e r t (3) d n l #
DATA ENDS#
HEADS SEGMENT USE32 DWORD PUBLIC#
ASSUME FS : HEADS#
d i v e r t (4) d n l #
HEADS ENDS#
STACK SEGMENT USE32 BYTE STACK#
ASSUME SS : STACK#
divert (5) d n l #
STACK ENDS#
DICT SEGMENT USE32 BYTE PUBLIC#
ASSUME CS: DICT, DS: DICT#
d i v e r t (6) d n l #
DICT ENDS#
END ') d n l #
d e f i n e (' d e c l a r e ' , ' d e f i n e (' $1-declared' , 1) ') d n l #
d e f i n e (' n a m e l , ' i f e l s e ($ 2 , ,$1 ,$2) l) d n l #
d e f i n e ('qname', ' i f e l s e ($2, ,q t () $1. 'q t () -l#
d e f i n e (' q t l , ") d n l #
d e f i n e (' q t l l , ' d e f i n e (' q t l , ") ') d n l #
changequote (<, >) d n l #
d e f i n e (<qt2>, < d e f i n e (<St>, l) >) dnl#
changequote (' , ') d n l #
d e f i n e (' a t t r i b ' , 1) dn1#
d e f i n e (' set-immediate' , ' d e f i n e (' a t t r i b ' , ' e v a l (a t t r i b 12) ') ') d n l #
de f ine (' unset-inanediate ' , ' def ine (' a t t r i b ' , ' e v a l (a t t r ib&-2) ') l) dnl#
d e f i n e (' x y z z y l a s t ' , O)dnl#
d e f i n e (' 1 a s t I, ' x y z z y l a s t . ' d e f i n e (' x y z z y l a s t h d - $ 1 ') ') d n l #
d e f i n e ('new - w o r d l i s t ' , ' d e f i n e (' x y z z y l a s t , 0) I) d n l #
d e f i n e ('make-word' , 'define (' xyzzycur ren t ' , $1) d i v e r t (1) d n l #
PUBLIC h d - S 1 , c f - $ 1 ' ' d e c l a r e (h d - $ 1) d e c l a r e (c f - $ 1) #
d i v e r t (2) d n l #

~ $ 1 - t a b ($ l , 3) d b l e n (name ($1, $2) ,qname ($1, $ 2) , 0 #
d i v e r t (3) d n l #
- hd-$ 1 t a b ($1 ,3) dd l a s t ($1) , - m $ 1 , a t t r i b 0 ,-cf-$1

dd f i l e n a m e , l i n e n o () ,0,O
d i v e r t (5) d n l #
- cf-$l t a b ($ 1 , 3) dd runt ime () #
d n l l) d n l #
d e f i n e (' r e f 1 ' , ' i f e l s e (-cf-$1-declared, 1, , d i v e r t (1) d n l #
EXTRN c f - $ 1 :NEAR' ' d e c l a r e ($1)) #
d i v e r t (5) d n l #

dd c f - $ 1 #
d n l l) d n l # (masmmaci Iirting continues on nextpage.)

j im (FORTH, l o v e) #

and FORTH was defined to be
love , the result would be:
you p a s s e d j im t h e
same arguments#

If the you made the mistake
of typing:
j im (FORTH, l o v e) #

and FORTH was defined to be
love , the output would end
up being:
you p a s s e d j im t h e
same arguments
(l ove , l o v e) #

(The latter example would
operate like this because m4
will only process an argument
list as an argument list if the
macro name is immediately
followed by an opening pa-
renthesis. This is a result of the
function that parses the input
stream. It can return any of
several values, and the value
returned for a string that could
be a macro name differs from
the value that is returned for a
string that could be a macro
name followed by an opening
parenthesis.)

Some of the other usehl
macros are pushdef (used
like define, pushes the old
definition of a macro onto a
stack), popdef (pops the defi-
nition back), changequote
(changes the quote
from the default ' and '),
e v a l (evaluates its argument
as an arithmetic expression),
i n c l u d e (begins reading from
another named file), d i v e r t
(stores the output in a temp@
rary file), und ive r t (prints
the contents of the diverted
temporary file), d n l (deletes
all the text following it up to
and including the next new
line), i n c l u d e (begins read-
ing from a named file),
s i n c l u d e (also reads from a
named file, but silently ignores
missing files), l e n (returns the
length of its argument), s u b s t r
(returns a substring of its first

argument), and index (re-
turns the position of its second
argument in its first).

The macros d i v e r t and
und ive r t are complemen-
tary. They expect a numeric
argument, which corresponds
to the diversion number. If
d i v e r t is passed a number
outside the range of zero to
nine, inclusive, the output is
thrown away (which is good
for getting rid of lots of new
lines if you're defining several
macros at once). und ive r t
will bring in the diversion that
corresponds to its argument.
If the diversion doesn't exist,
or und ive r t is invoked with-
out arguments, the command
is ignored. Diverting to zero
will actually output tothe stan-
dard output. If und ive r t is
passed several arguments, it
will undivert the output in the
order specified (for example,
undivert (3,4,2) will bring
in diversion 3, then 4, then 2).
If und ive r t is not called, all
diverted output will be added
to the standard output when
m4 runs out of input.

d e f i n e (' r e f 2 I , ' d i v e r t (5) dd
c f - ' 'xyzzycurrent ' ' dn l l) dn1#
d e f i n e (' r e f ' , ' i f e l s e ($1, self,' ref2 0 ','rl#
d e f i n e (' r e f s ' , ' r e f ($1) #
i f e l s e ($ 2 , , , ' r e f ($2) ') ' ' dn l#
i f e l s e ($3,, , ' r e f ($3) ') ' Idnl#
i f e l s e ($4, , , ' r e f ($ 4) ') ' ' dn l#
i f e l s e ($5,, , ' r e f ($5) ') . ' d n l #
i f e l s e ($6, , , ' r e f ($6) I) ' ' dn l#
i f e l s e ($7, , , ' r e f ($7)) ' ' dn l#
i f e l s e ($ 8 , , , ' r e f ($8) I) ' ' dn l#
i f e l s e ($ 9 , , , ' r e f ($9) I) ' ' d n l l) d n l #
de f ine ('xyzzyrun t imel , '-docol') d n l #
Mire (' runtirre', ' ifelse (xyz-, self,pf'' '-, -irre) ' chiL#
d e f i n e (' s e t - runtime','define('xyzzyruntime',S1) ') d n l #
d e f i n e (' l i n e n o ' , 0) d n l #
define('set-linel,'define('linenol,$l) ') d n l #
d e f i n e (' l i t e r a l ' , ' r e f (lit) #

dd $18
d n l l) d n l #

d0t.m
i n c l u d e (masnunac . i) #
masm-start (dot .m) #
make word (do t , .) #
r e f (i t o d) R , l i t e r a l (0) #
r e f s (ddo t r , s e m i s) #

undiver t will throw away the text it is bringing in (i.e., you
can't undivert the same diversion twice). The value of
und ive r t (i.e., the string it returns) is the null suing, not the
diversion it is outputing. Thus, this:
d e f i n e ('mystuff ' , undiver t (2)) #

would define mystuff to be the null string, not whatever
was in diversion 2. In all cases, the diverted text is not re-
scanned for macros when it is brought in. The macro divnum
contains the number of the current diversion.

The macro s u b s t r is called with three arguments. The
first is the string that is to be chopped up, the second is the
index into the string of the substring (zero based), and the
third is the length of the substring. If the length is longer than
the remainder of the string, or the length isn't given, the
substring will be the end of the string starting at the index.
For example, this:
subs t r ('The quick brown fox jumped
over t h e l a z y d o g 1 , 4 , 5) #

would print
quick#

The index macro expects two arguments. The first is the
string to be matched, and the second is the string to be found.
For example, this:
changequote (<, >) #

index(<Why, oh why, c a n ' t he t a l k
about FORTH? ! ?>, <oh why>) #

would print:

5#

The reason I used the changequote macro is that I
wanted to embed a single quote in the first argument to
index. It's generally a good idea to change the default quote
characters if you are going to use a string with an embedded
quote. This will prevent m4 from doing strange things with
the arguments. Also, commas embedded in a quoted string
are protected. Since a quoted string is taken by m4 to be a
single word, the commas in the string are not used as
argument separators.

If you want to separate a word from a macro name,
putting ' ' between them tells m4 to treat them as two
separate words. For example, this:
t ruename (namel, name2) qt () #

(taken from the source code with this article, truename
returns either its second argument if it is non-null, or its first
argument; and qt returns the default quote character) will
print:
name2qt () #

September 1993 October 14 Forth Dimensions

d0t.s

TITLE dot.m#
.38 6p#

EXTRN-next:NEAR,-docol:NEAR#
PUBLIC hd-dot, c f - d o t #
EXTRN-cf-stod:NEAR#
EXTRN c f-lit : NEAR#
EXTRN c f -ddot r :NEAR#
EXTRNcf-semis:NEAR#
DATA SEGMENT USE32 BYTE PUBLIC#
ASSUME ES : DATA#

- filename db 5,"dot.m",0#
nm-dot - db 1," .",O#

DATA ENDS#
HEADS SEGMENT USE32 DWORD PUBLIC#
ASSUME FS : HEADS#
- hd-do t dd 0 ,-mdot, 1, cf-dot#

dd filename, 0,0,0#
HEADS ENDS#
STACK SEGMENT USE32 BYTE STACK#
ASSUME SS: STACK#
STACK ENDS#
DICT SEGMENT USE32 BYTE PUBLIC#
ASSUME CS: DICT, DS: DICT#
- c f-do t dd -docol#

dd cf-stodi
dd cf-lit#
dd O#
dd -c f-ddot r #
dd -cf-semi s #

DICT ENDS#
END #

Since I would actually prefer the output to be (assuming
qt was defined to be "):
nameZW#

I would have to use the line:
t ruename (namel, name2) ' ' qt ()

which does the job. Notice that the parentheses are not
strictly necessary after the invocation of qt, but I leave them
in anyway to remind me that it's actually a macro.

It should be obvious from some of my examples and the
source code with this anicle that I primarily use m4 to
generate assembler source code. Although the examples
have been fairly trivial, it is possible to build a very powerful
maao preprocessor that will transform near English state-
ments into the confusing spaghetti that an assembler expects.
The m4 source code that accompanies this article includes
the macro package that I wrote for that purpose. The file
ma smmac . i contains the definitions of the macros that turn
dot .m into dot. s. The last two files are the m4 and the
assembly language source, repectively, for this:
: . S>D 0 D.R ;

Notice I did this without using anyhng I didn't describe
earlier. I'm still trying to tune the implementation but it is, for
the most part, exactly what I'll use in the core Forth system.

Because m4 writes its output to the standard output
device, to use it as a preprocessor you must use a UWX
facility called L/O redirection. In any of the shells, the
character > means that the standard output of the previous
command is to be put into a file. Thus, this built-in
dependency line from a make file would use m4 to process
macro files and put the results into an assembly language
source file:
.m.s:

m4 $< > $@

which would tell muke that if it found a line like this:
f0o.s: f0o.m

it should pass this to sh :
m4 f0o.m > f0o.s

At this point, I'm beginning to realize that maybe I was a
bit too ambitious to tackle all the UN'X utilities I'll be using
on this project in one article. In my next article, I'll discuss the
complementary utilities &and yacc. In the meantime, if you
want to learn more about the things I discussed in this article
(and believe me, there's a lot more to learn), you can take a
trip either to your local public library, or to your local
computer-oriented bookstore. This article barely scratches
the surface of the UN'X utilities I've briefly outlined. A
definitive treatment of any of these utilities could take a book.
The features I've discussed, however, form a large enough
subset to perform some useful work. Since I'm going to use
these features (and only these features) in later articles, I felt
it would be appropriate to introduce them now.

I Although access to a UN'X system is not 100% necessary
to understand this article, you will probably find it extremely
helpful. You can get access to a UN'X system for less than you
probably think. If you live in California, Netcom Online
provides personal dial-up accounts for $19.50 a month (or
$17.50 if you pay by credit card), which provides you with
a home directory, access to several hundred UN'X utilities,
e-mail services, USENET news, and hundreds of gigabytes of
freely available source code. Although Netcom is based in
San Jose, they have local dial-up lines in most areas of
California, and one in Oregon and one in Washington. If you
don't live in California, get in touch with the computer
department of your local university. They should be able to
steer you to a UN'X service provider.

The introductory article describing the FSAT project, which aims to provide the
advantages of both Forth and UN'X, appears in the last issue. The author's e-mail
address is jimenetcom. corn. He'd appreciate any comments you may care to
make about the project, and will reply to all messages sent to that address,
provided they pertain to technical aspects of the project, and not motivational
aspects.

Forth Dimensions 15 September 1993 October

INTRAN--an Integer
Formula lLanslator
J. K Noble
Charlottesville, Virginia

INTRAN is a simple, recursive, integer expression parser that
permits formulas to be embedded in Forth words. The parser
directly represents the Backus-Naur statement of its grammar as
(recursive) Forth code. The resulting compiled code adds about
1Kb to the Forth kernel.

In a letter to Forth Dimerrsiom (XIV/3), Peter Roeser
presented a wish list for Forths of the future. Some wishes
would require consensus from the Forth community, while
others (like the C interface) are already available. One wish-
that Forth be broadened to encompass arithmetic expres-
sions (including parentheses) 2 la Fortran, Pascal, BASIC, or
C-is w i t h the capacity of individual Forthniks (such as the
author) to grant. This note presents an integer expression
translator-INTRAN-in a little over a kilobyte of code.

To make porting, maintaining,
and modiwing easier, I tried to
keep definitions dialect-invariant.

INTRAN came about because I needed to translate integer
expressions appearing a s indices in Fortran DO loops. That
is, Fortran permits the construction

DO 100 I=(J-K) /2, (J+K)/2+M, K/4
... stuff ...

100 CONTINUE

The formula translator described in my book Scientific
Forth: a Modern Language for ScientiJic Computing (avail-
able from the Forth Interest Group) parses mixed (single- and
double-precision, real and complex) floating-point expres-
sions. Unfortunately, for technical reasons (having to do with
how I implemented operator overloading) the formula
translator was unsuited to simple integer expressions. This
implied a distinct parser for integer expressions. The one I
wrote compiles to 702 bytes and surely could be squeezed
further. Terseness, however, subverts clarity, so here I
present a lengthier but more pedagogical version.

Since INTRAN is intended to be production-quality code,
we must address the following programming issues:

Simple user interface
Ease of porting, maintenance, and extension
Bulletproof error handling

And since this note is intended to illustrate general
principles, I have striven to make INTRAN both clear and well
documented.

We begin with the user interface: what we want INTRAN
to do. Primarily, we want INTRAN toembed infm expressions
into word definitions. Just as HS/FORTH, e.g., allows assem-
bler to coexist with high-level Forth through locutions like
: HI-LEVEL
words ... [% " assembler words " % I ... words ...

,

we would like to insert formulae into words, with their
translations compiled immediately as Forth. My scientific
formula translator uses F" ...I' as in
: FORMULA

F" a = (b+c) / (c+d)" ;

to do precisely this. The notation has proven so convenient
and transparent that I chose a similar one for INTRAN. If we
define a word
: EXPRl
i" (I+J) /2 + K" ;

(I+J)/2 + K should be translated and compiled. When we
decompile EXPR1-in HSRORTH, e.g., using the word
SHOW-we will see
SHOW EXPRl I J + 2 / K + ; ok.

Experience shows the value of dry runs: during testing we
might want INTRAN to translate interactively, without com-
piling. That is, when we type
i" (I+J) /2+Kn

INTRAN should send the Forth translation
I J + 2 / K + ok

to the screen. To make all these things happen, i" must be
state-smart. These abilities alone would make INTRAN the

September 1993 October 16 Forth Dimensions

HARVARD S O F T W O R K S
NUMBER ONE IN FORTH INNOVATION

(513) 748-0390 P.O. Box 69, Springboro, OH 45066

You already know HS/FORTH gives more speed,
power, flexibility and functionality than any other
implementation. After all, the majority of the past
several years of articles in Forth Dimensions has been on
features first developed in HS/FORTH, and many major
applications discussed had to be converted to HS/FORTH
after their original dialects ran out of steam. Even
public domain versions are adopting HS/FORTH like
architectures. Isn't it time you tapped into the source as
well? Why wait for second hand versions when the
original inspiration is more complete and available
sooner.

Of course, what you really want to hear about is
our SUMRlER SALE! Thru August 31 only, you can
dive into Professional Level for $249. or Production Level
for only $299. Also, for each utility purchased, you may
select one of equal or lesser cost free.

Naturally, these versions include some recent
improvements. Now you can run lots of copies of
HSIFORTH from Microsoft Windows in text andlor
graphics windows with various icons and pif files
available for each. Talk about THE tool for hacking
Windows! But, face it, what I really like is cranking up
the font size so I can still see the characters no matter
how late it is. Now that's useful. Of course, you can run
bigger, faster programs under DOS just as before.
Actually, there is no limit to program size in either case
since large programs simply grow into additional
segments or even out onto disk.

Good news, we've redone our DOCUMENTATION!
The big new fonts look really nice and the reorganization,

HWFORTH runs under MSDOS or
PCDOS, or from ROM. Each level includes
all features of lower ones. Level upgrades:
$26. plus price difference between levels.
Source code is in ordinary ASCII text files.

HS/FORTH supports megabyte and larger
programs & data, and runs as fast as 64k
limited Forths, even without automatic
optimization -- which accelerates to near
assembler language speed. Optimizer,
assembler, and tools can load transiently.
Resize segments, redefine words, eliminate
headers without recompiling. Compile 79
and 83 Standard plus F83 programs.

PERSONAL LEVEL $299.
NEW! Fast direct to video memory text

& scaled/clipped/windowed graphics in bit
blit windows, mono, cga, ega, vga, all
ellipsoids, splines, bezier curves, arcs,
turtles; lightning fast pattern drawing
even with irregular boundaries; powerful
parsing, formatting, file and device YO;
DOS shells; interrupt handlers;
call high level Forth from interrupts;
single step trace, decompiler; music;
compile 40,000 lines per minute, stacks;
file search paths; format to strings.
software floating point, trig, transcen-
dental, 18 digit integer & scaled integer
math; vars: A B * IS C compiles to 4
words, 1..4 dimension var arrays;
automatic optimizer delivers machine
code speed.

PROFESSIONAL LEVEL $399.
hardware floating point - data structures
for all data types from simple thru
complex 4D var arrays - operations
complete thru complex hyperbolics;
turnkey, seal; interactive dynamic linker
for foreign subroutine libraries; round
robin & interrupt driven multitaskers;
dynamic string manager; file blocks,
sector mapped blocks; x86&7 assemblers.

PRODUCTION LEVEL $499.
Metacompiler: DOS/ROM/direct/indirect;
threaded systems start at 200 bytes,
Forth cores from 2 kbytes;
C data structures & stmct+ compiler;
MetaGraphics Turbowindow-C library,
200 graphidwindow functions, Postscript
style line attributes & fonts, viewports.

along with some much improved explanations, makes all ONLINE GLOSSARY s 48.

that functionality so much easier to find. Thanks to PROFESSIONAL and PRODUCTION

excellent documentation, all this awesome power is now LEVEL EXTENSIONS:

relatively easy to learn and to use. FOOPS+ with multiple inheritance $ 79.
TOOLS & TOYS DISK $79.
286FORTH or 386FORTH $299.

16 Megabyte physical address space or
And the Tools & Toys disk includes a complete ,gab* vihual for ,,, and data;

mouse interface and very flexible menu support in both
~ ~ ~ ~ ~ ~ ~ ~ p ~ ~ ; ~ ~ ~ , " " $ t ~ ~ , " ~ b l e ;

text and graphics modes. Update to Revision 5.0, ROMULUS HS/FORTH from ROM $99.

including new documentation, from all 4.xx revisions is Shippind8ystem: US: 19. Canada: $21.
$99. and from older systems, $149. The Tools&Toys foreisll: $49. we a.ceptMC, VISA, & AmEx

update is $15. (shipping $5.US, $lO.Canada, $22.foreign)

Figure One. Rules for INTRAN's grammar.

<assignment> -> <id> = <expression>
<expression> -> <term> I <term> & <expression>
<term> -> <fac tor> I <fac tor> % <term>
<fac tor> -> (<expression>) I <id> I < l i t e r a l >
< l i t e r a l > -> d i g i t (d i g i t] *
<id> -> l e t t e r (l e t t e r I d i g i t } * { & I @ I

In an assignment like B=(I+J)/2+K we need to know what
B refers to. A VARIABLE is stored to by the phrase B ! while
a VAR uses the locution I S B. Although good programming
practice frowns on it, we can even modify CONSTANTS with
the phrase ' B ! . Since the latter phrase works equally well
for CONSTANTS, VARIABLES, and VARs, it solves our prob-
lem and requires no decisions (only in HS/FORTH-will not
work in other Forths).

Finally, we want the parser to report bad input, and to
ignore white space inserted for readability. With these
provisos, we have completely specified the user interface.

To make porting, maintain-
ing, and modifying easier, I
have tried to keep definitions
dialect-invariant, to name the
key actions telegraphically, to
comment thoroughly, and to
make the program structure as
transparent as possible. In par-

ASCII + ASCII - a l b + I -
ASCII * ASCII / a l b * I /
ASCII = ASCII = a l b = I =

At run time, the words + I -, * 1 /, and = I = compare the
TOS (top of stack) with two built-in numbers; if either
matches, the words return (-1). The plan is to write a
generic character-finding routine that will search a string byte
by byte, and with each byte EXECUTE one of the above
words. That is, the search word will take as input the location
of the string and the CFA (code-field address) of the word

September 1993 October 18 Forth Dimensions

answer to Mr. Roeser's prayers.
However, experimenting with early versions of INTRAN

has proven the worth of several other features. Sometimes I
need expression fragments, like (I+J)/2+K, that leave a result
on the stack, but other times I wish to embed formulas in
assignment form,
B = (I+J) / 2 + K

that translate to something like
I J + Z / K + B !

Fortunately it is easy to do both with little extra code.
Here is another problem of interface design: what do the

symbols I, J, K, and B represent? Many Forths define words
I, J, and K that fetch the current values of indices (from
nested loops) to the stack. For these we must omit explicit
fetches (@'s). However, our expressions might well incorpo-
rate Forth VARIABLES. But a VARIABLE must be followed
by @ for the translation to work correctly.

What about formulas includng CONSTANTS or VARS
(multiple code-field words--QuANs in MMSForth and VAL.
in other dialects): in either case @ would be incorrect. While
Forth makes it possible to determine, during compilation, the
type of a data structure (e.g., we could look up its CFA), the
simplest course is to require the programmer to keep uack
of VARIABLES. That is, at all costs we should avoid decisions
and keep the program simple, especially since good Forth
style tends to eschew variables (that is, formulas including
variables will be rare). The programmer will indicate a
VARIABLE with a @ at the end of its name; this @ will be
translated (with appropriate spaces) to make the resulting
Forth correcl:

: EXPRl
i" (IO@+JO@)/2 + K 1 " ; ok

SHOW EXPRl
10 @ J O @ + 2 / K 1 + ; ok

ticular, the self-referential na-
ture of the grammatical rules embodied in a formula trans-
lator can be most easily and clearly expressed through
recursion.

The context-free grammar for INTRAN (see Scientific
Fotth and references contained therein) can be expressed as
rules (see Figure One).

The notation for these rules contains some shorthand: &
stands for + or -, % for * or /, and I means "or". A super-
script * means "zero or more". The Greek letter & means
"void", hence {E I @I stands for "nothing or the symbol @".

The preceding grammar lends itself naturally to a recur-
sive programming style. For the pseudo-Forth (also in
reverse order of definition!), see Figure Two.

To implement these ideas as working code we need to
define words that can recognize +, -, *, /, and =, as well as
parenthesized expression fragments and id's. A further
restriction on the words that find numeric operators is that
they must never be enclosed within parentheses. That is, we
want * in (a+b)*(cd) to be found before + or -.

Then we must choose how to represent the input string
(and the substrings obtained as we decompose it into t e r n ,
factors, and parenthesized expressions), as well as the
operators corresponding to each step in the decomposition.

To minimize crashes during development, we begin with
the purely interpretive function of i " . When that works
properly we can worry about its compiling function. As
usual, we begin with the low-level words. We need a word
to find either of a pair of characters. Since we need to do this
with + and -, * and /, and also = and = (this last so we can
use the same word to find =), there are enough cases to justify
the memory overhead of a defining word

: alb
CREATE D,
DOES> D@ ROT UNDER

= -ROT = OR ;

used as

1 Figure Two. INTRAN's BNF grammar expressed as psuedo-Forth . I
: <ass ignment> f i nd "=" found?

i f push { i d " ! ")

push { n u l l " ' " 1
push { e x p r e s s i o n BL 1
< e x p r e s s i o n > p r i n t p r i n t

else push { e x p r e s s i o n BL 1
< e x p r e s s i o n >

t h e n ;

: < e x p r e s s i o n > f i n d "&" found?
i f r e a r r a n g e <expres s ion>
else a r r a n g e
t h e n <term> ;

: <term> f i n d " % " found?
i f r e a r r a n g e <term>
else a r r a n g e
t h e n < f a c t o r > ;

: < f a c t o r > l i t e r a l o r i d ? i f p r i n t e x i t t h e n
(<expr>) ?

i f remove () < e x p r e s s i o n >
else e r r o r . m s s t h e n ;

(difficult in a DO. . .LOOP, where
the limits must be accessible
on the rstack), but the termina-
tion condition(s) are no longer
automatic. Endless loops are
easy to produce inadvertantly.

What about looping by re-
cursion? This is even more
horrible because the CFA,
needed at each iteration, would
be buried if placed on the
rstack, but would be relatively
inaccessible on the parameter
stack as well. It would have to
be off-loaded to a VARIABLE,
which is what we were trying
to avoid. So in the end, com-
promise: I returned to
DO.. .LOOP and off-loaded the
parenthesis count to its own
named variable, () l e v e l .

But I began this section by
advertising a cute trick in
f ind2 . Where is it? In order to
leave the result (-- adr I0), I

"semi-flag": the address of a found operator, or-a zero to
indicate failure. This is tricky to program-one must LEAVE
the loop if the operator is found, but it is then hard to

Forth Dimensions 19 September 1993 October

Stage Stage I Stage 2

determine whether or not the loop terminated early.
Perhaps DO.. .LOOP is not the appropriate looping mecha-

nism. So I tried BEGIN.. .WHILE.. .REPEAT. Now one may
comfortably put the temporary variables on the rstack

corresponding to the particular character(s) being sought.
The generic character-finding routine mentioned above is

f ind2 . The first moderately complex word in INTRAN, it
embodies a not altogether necessary trick, a sort of "hack."
The problem is this: we need to go through the input string
one byte at a time, looking for either of two characters
representing operators. The CFA of the word that tests the
input is one argument, the others being the beginning and
end of the string. Only "exposed" operators-those not
hidden within parentheses-can be "found" So f i nd2 must
also check that the parenthesis-level is also zero (recall the
old trick for balancing parentheses in long Fortran expres-
sions: counting from the left, start at zero and add one for
each "(", subtract 1 for each 9"; if the last ")" coincides with
a zero count, the parentheses are balanced).

All four variables-parenthesis count, string pointers, and
CFA-are temporary, so we are tempted to keep them on the
stack while f i n d 2 searches, and to drop them thereafter. By
using a DO.. .LOOP with the string pointers as limits, we
automatically put two of the arguments on the rstack. Th~s
leaves only the parenthesis count and CFA on the stack;
however, as the DO loop executes, both must be accessed.
m l e not impossible to an accomplishedstack gymnast, the
necessary manipulations tend to hide what is going on. They
are also prone to error. Worse, the search must generate a

A=B+C nop A ! A !
B+C nop C +

B nop

first copy the CFA (of the com-
parison routine x I y) on the rstack with DUP>R, then put it
below the loop limits using -ROT. DO now moves the limits
to the rstack and begins executing. The CFA is on the TOS.
I F an exposed operator is found, we LEAVE the loop early,
replacing the CFA by the current index I. Finally, we retrieve
the saved CFA and compare it to TOS with the phrase DUP
R> o. If the loop terminated normally, TOS is still the CFA
and the comparison yields false. Whereas, when the loop
terminates early (because it has found what it was looking
for), the TOS is the desired address, which cannot be the CFA,
so the comparison yields hue. The final ANDing together of
flag and address then leaves the desired semi-flag.

Another look at the INTRAN listing reveals that, after each
word was tested, I followed it with a comment line "\ OK
t i m e da t e " . This discipline helped me to be both thorough
and systematic in the endless quest for bug-free code. An
editor with a time/date stamp lessens the tedium of th~s
necessary chore.

The next major issue is how to represent the input string,
as well as the substrings we are going to find as we
decompose it. The first time I ever wrote a formula translator,
I actually defined a stack to hold strings, and placed each
string and substring in a separate stack location, with the
operators on a parallel stack. Thus a formula such as A=B+C
would lead to

Some sort of stack is manifestly demanded by recursion.
Eventually I realized a string stack was excessive: since each
fragment appears once and only once, it is enough to store
pointers marking the beginning and end of each fragment,
rather than copying the fragments themselves. We still need
a stack to pass the arguments during recursive calls, however,
so my next try was a stack three cells wide, to hold the
pointers and a token for the operator. For technical reasons,
this is still the method I use in my scientific formula translator.
But several attempts to write INTRAN made clear that the
parameter stack would suffice to store the pointers and
operator. So the words < e x p r e s s i o n > , <term>, and
< f a c t 0 r> will expect the input stack picture

(beg e n d . op)

where . op stands for an operator token, repmented as the
ASCII codes 32d, 42d, 434 45d, and 47d (BL, *, +, -, and /).

The words to determine whether a string is an identifier
or a literal integer are straightforward. They could as well
have been programmed as state machines, which would
have made it simple to enforce length rules (i.e., how long
valid numbers or ID's can be). I chose not to include such
elaborations because my Forth allows ID's up to 32 charac-
ters long, and because I am unlikely to write an excessively
large literal integer.

It is now time to implement the Backus-Naur grammatical
rules in real, rather than pseudo-, code. Consider <expres-
s ion> , whose rule is

<expression> -><term> I <term> "&" <expression>

and whose code is

: < e x p r e s s i o n > (beg e n d . op --) -bl-
>R DDUP CFA' + I - f i n d 2 \ f i n d &
R> OVER \ found?
I F r e a r r a n g e RECURSE
ELSE PLUCK THEN <term> ;

\ OK 17:36:42 3 /2 /1993

With the exception of the word -bl- (discussed below),
I have translated the rule directly into Forth. One crucial
phrase is

CFA' +I- f i n d 2

which locates an exposed + or -. The other is the
IF. . .ELSE.. .THEN that executes < e x p r e s s i o n > <term>
when there is an exposed conjunction, but only <term>
when there is none. The words >R, R>, r e a r r a n g e , DDUP,
and PLUCK are mere "glue" that do not express the algorithm
but are nonetheless necessary to its actual performance.

Of course recursion is not absolutely necessary: by
theorem, recursion can always be removed from a recursive
program (sadly, the theorem does not give specifics).
However, recursion offers a decisive advantage over non-
recursive indefinite loops. The latter demand an explicit
stopping condition such as "test the stack depth to see if there
September 1993 October

are no more arguments"; whereas recursion implicitly keeps
track of execution. To guarantee this with a multiply
recursive algorithm such as INTRAN, we must ensure, first,
that each parsing word takes the same number of arguments;
and second, that each leaves nothing on the stack. Thus, to
make a recursive call to < e x p r e s s i o n > followed by a call
to <term>, we must put twosets of arguments on the stack
which the two calls will consume. This is precisely what
r e a r r a n g e does. On the other hand, the second branch
(that only calls <term>) requires but one set of arguments,
whch PLUCK takes care of.

Note that < f a c t o r > has to call < e x p r e s s i o n > before
the latter has been defined. Some dialects permit forward
vectoring using a word like DEFER, and in fact HS/FORTH
offers several forward-vectoring methods. But all Forths
permit the simple vectoring method I used, namely to define
a VARIABLE to hold the code-field address of the word to
be executed. The phrase ' e x p r e s s i o n @ EXECUTE in
< f a c t o r > will execute whatever word has its CFA stored in
' exp re s s ion .

Finally, executing the phrase

CFA' < e x p r e s s i o n > ' e x p r e s s i o n !

immediately after defining < e x p r e s s i o n > fulfills the for-
ward reference. This reference achieves indirect recursion
(<express ion> calls <term> which calls < f a c t o r >
which calls <expres s ion>) in addition to the direct
recursion found in < e x p r e s s i o n > and <term>.

With all the advantages of brevity, directness, and simplic-
ity that recursion brings to a program like INTRAN, one
wonders whether there are countervailing disadvantages.
The chief one is the ever-present danger of mistreating the
stack in such a way as to produce an endless loop that
overwrites vital things. Debugging tools like HSRORTH's
TRACE and SSTRACE are vital to making sure recursive
definitions behave themselves.

The reader will find the word -bl- sprinkled through the
code. What does it do, and why is it there? I wanted to allow
formulas to contain optional white space for clarity. Unfor-
tunately, there does not seem to be any simple method, short
of redefining it completely, to set my Forth's version of WORD
to ignore blanks. (WORD is the key component of TEXT, that
reads input terminated with a given character, to the
scratchpad (PAD).) Since using TEXT was easier than rede-
fining it from scratch, I was left with a string (possibly) full
of blanks.

How to rid the input of blanks? Apriori, it seems most
efficient to de-blank the entire input string before parsing.
The (two) words in Figure Three accomplish this:

The algorithm is simple: having first used the system word
-TRAILING to eliminate trailing blanks, search (from the
left, rightward) for the first blank. Save the address where this
occurs. Then continue rightward to the first non-blank
character. Compute how many characters are in the tail of the
string. Slide the tail leftward to the first blank, and adjust the
end-of-string pointer. Repeat until all blanks have been
eliminated.

Oddly, the above procedure is neither so compact nor so
20 Forth Dimensions

Figure Three. "De-blanking" the input string before parsing. 1
: s k i p (e n d b e g c h a r c i a -- e n d b e g ') D>R

1- BEGIN 1+ DDUP = OVER C@ DR@ EXECUTE OR UNTIL DRDROP ;

: -BL (end beg -- e n d ' beg)
UNDER - 1+ -TRAILING
OVER + 1- SWAP
DUP>R BEGIN BL CFA' = s k i p

DDUP
BL CFA' <> s k i p
PLUCK
DDUP <

WHILE OVER DDUP - .

-ROT D>R -ROT
DDUP - 1+ DR> ROT
-ROT SWAP - SWAP

REPEAT DDROP R> ;

\ s t r i p b l a n k s o u t of a s t r i n g
\ s t r i p t r a i l i n g b l a n k s
(end" beg)
\ -> 1st BL
(end a d r end a d r)
\ -> non-blank
(end a d r adr+n-1)
\ n o t a t t h e end y e t

(end a d r src dst # b l)
(# b l $end a d r)

CMOVE (# b l $end a d r)

/ Figure Four. Moving the pointers. I
: -bl- (beg end .op -- beg ' end ' .op)

>R 1+ BEGIN 1- DUPC@ BL <> UNTIL \ s k i p l e a d i n g
SWAP 1- BEGIN 1+ DUPC@ BL <> UNTIL \ s k i p t r a i l i n g
SWAP R> ;

efficient as my "afterthought" method (when I realized
blanks should be allowed). Whereas the preceding code
adds 135 bytes, the "afterthoughtn adds 57. How does it work?
We decompose as though the blanks were not present. The
substring pointers point to the ends of (sub)strings with
(possibly) leading and trailing blanks. It is much easier to
advance the beginning pointer rightward past the leading
blanks and the end pointer leftward past the trailing ones,
than to actually compose a new, blankless string from one
with blanks sprinkled through it. So we compose a word that
moves the pointers as noted (see Figure Four), and then
apply it whenever a new substring has been dissected out
and its pointers placed on the stack. The definition -bl- (the
name suggests that blanks are removed at both ends)
requires 47 bytes (in an indirect-threaded system), and the
five subsequent references to it add another ten bytes.

We are nearing the end of the exposition. The final
definition (the initial one, were we so foolish as to design top-
down) is i". Before we add the compiling abilities described
above, we only require that it acquire the text, place pointers
to the ends of the string, as well as a denothing operator
token, on the stack, and invoke the first parsing word,
<assign>:

since this obviates multiple tests of the parenthesis level
during execution.

Having tested the word il' on many different cases and
having tried (unsuccessfully, one hopes!) to make it fail, we
are now ready to try out the most dangerous part of the
development: granting i" the power to compile expres-
sions. Many Forths (and the new ANS standard) include a
wordlike EVAL that will compile directly from astring. If your
Forth can do this, all that is needed is to redirect the output
from the screen to a buffer, convert that to a counted string,
and EVALuate the string. HSEORTH has an equivalent form
of redirection, namely the ability to load from a buffer (the
text in the buffer mustbe terminated by double4). The (non-
standard) word that does this is MLOAD which expects a
segment descriptor and offset on the stack. The definitions
needed to implement expression compilation are then as
shown in Figure Five [on nextpagel. The only major changes
from the non-compiling version of i" are the state-&pen-
dent IF. . .ELSE.. .THEN and making i" IMMEDIATE, so it
can do its work within a word being defined.

. i" ASCII " TEXT o-ok
\ check f o r ba l anced p a r e n s

PAD adr>ends BL CR <ass ign>

Forth Dimensions 2 1 Se~ternber 1993 October

(Code begins on next page.)

OK 17:27:16 3 /2 /1993

We check for balanced parentheses before starting to parse,

JulianV. Noble is a professor of physicsat the Universityofvirginia and theauthor
of Scientific Forth. Heearned his B.S. atCalTechin 1962and his Ph.0. at Princeton
in 1966, and once designed a floating-point co-processor for the Jupiter Ace.

Figure Five. Implementing expression compilation. 1
256 SEGMENT i n t r a n \ make a named segment t o ho ld ou tpu t from i" "

: iV->MEM i n t r a n @ 0 256 0 FILLL \ i n i t i a l i z e b u f f e r
i n t r a n OPEN-MEM >MEM ; \ outpu t -> b u f f e r

: MEM-> i n t r a n @ 0 MLOAD
CLOSE-MEM ;

. i" ASCII " TEXT 0-0k
PAD adr>ends BL CR
STATE @
IF ivv->MEM

<ass ign>
CRT
MEM->

ELSE <ass ign> THEN
\ OK 12:21:28 3/3/1993

\ l o a d from i n t r a n

\
\
\
\
\
\
\

; IMMEDIATE \

i n p u t , check ()

set s t a c k
compiling?
v e c t o r t o i n t r a n
ou tpu t t h e FORTH code
r e t u r n ou tpu t t o CRT
l o a d from i n t r a n
o the rwise -> d i s p l a y

INTRAN code listing.

\ Mini e x p r e s s i o n p a r s e r
\ v e r s i o n of 11:50:06 3/6/1993
\ compiles t o 1239 + 256 b y t e s
TASK INTRAN

\ This program was w r i t t e n t o be used wi th HS/FORTH, an i n d i r e c t -
\ th readed FORTH f o r t h e PC. I t c o n t a i n s s e v e r a l non-standard words
\ and usages (e s p e c i a l l y not ANS !) but has been des igned t o be e a s y
\ t o t r a n s l a t e t o your own d i a l e c t .

: a lb (c l ~ 2 --) CREATE D l
DOES> D@ ROT UNDER = -ROT = OR ; (c -- f)

\ Def in ing word. Ch i ld words c o n t a i n 2 b u i l t - i n c h a r a c t e r s .
\ T e s t c h a r on s t a c k and r e t u r n t r u e i f it is e i t h e r b u i l t - i n c h a r
\ OK 20:31:59 3/1/1993

ASCII + ASCII - a l b + I -
ASCII * ASCII / a l b * I /
\ OK 22:10:12 3/1/1993

/ VARIABLE O l e v e l 0 () l e v e l ! \ holds c u r r e n t pa rens l e v e l I
: i n c () c - - A S C I I) OVER = SWAP ASCII (= - () l e v e l + ! ;

\ increment/decrement O l e v e l ; (increments ,) decrements.
\ OK 20:44:29 3/1/1993

: adr>ends (Sadr -- beg end) COUNT OVER + 1- ;

\ conver t a d d r e s s of counted s t r i n g t o p o i n t e r s t o beg and end of t e x t
\ OK 20:34:18 3/1/1993

: f i n d 2 (beg end c f a -- adrlO)

() l e v e l O ! DUP>R \ i n i t i a l i z e
-ROT DO I C@ DUP i n c () \ a d j u s t 0 l e v e l

OVER EXECUTE (- - c f a f) \ test i n p u t
() l e v e l @ O = \ exposed?

September 1993 October 22 Forth Dimensions

AND \ found?
I F DROP I LEAVE THEN (-- ad r)

-1 +LOOP
R> OVER <> AND ; \ (a d r l O)

\ search t e x t from beg t o end and test using rou t ine pointed t o by c f a
\ leave character-address i f found, 0 otherwise.
\ OK 22:03:34 3/1/1993

: p r i n t (beg end .op --) -ROT \ move op token
DUP C@ >R \ save l a s t char on r s t a c k
OVER - TYPE \ type a l l but l a s t char
R> DUP A S C I I @ = \ l a s t char = @ ?
I F SPACE THEN \ e m i t space
EMIT SPACE \ type l a s t char
SPACE EMIT SPACE ; \ type opera tor

\ p r i n t ou t t h e s t r i n g and operator on t h e s t ack
\ OK 15:17:49 3/2/1993

: WITHIN (k m n --f) ROT UNDER MIN -ROT MAX = ;

\ r e tu rn " t rue" i f n >= k >= m, else " f a l s ew
\ Note : UNDER i s TUCK i n ANS
\ OK 21:44:15 3/2/1993

: d i g i t ? (c -- f) A S C I I 0 A S C I I 9 WITHIN ;
: l e t t e r ? (c -- f) 32 OR A S C I I a A S C I I z WITHIN ;

: <id> (beg end -- f) \ <id> -> let ter { l e t t e r l d i g i t } * { I @)
DUPC@ A S C I I @ = + \ ignore t r a i l i n g @
SWAP DUPC@ l e t t e r ? -ROT
1+ SWAP
DO I C@ DUP

l e t t e r ? SWAP d i g i t ? OR AND
-1 +LOOP ;

\ OK 22:37:51 3/2/1993

: <#> (beg end -- f) \ <#> -> { d i g i t } +
1+ SWAP (end+l beg)
-1 -ROT (-1 end+l beg)
DO I C@ d i g i t ? AND LOOP ;

\ OK 12:55:49 3/2/1993

: simple? (beg end -- f) DDUP <#> -ROT < id> OR ;

VARIABLE BLBL 8224 BLBL ! \ "blank blankw
: NULL BLBL DUP 1+ ; (-- beg end)

\ set up forward re fe rence f o r < fac to r>
VARIABLE 'expression
CFA' NEXT 'expression ! \ i n i t i a l i z e t o something harmless

\ Note: CFA' is nonstandard; it means "get execution token of next word"

: (<expr>) ? (beg end -- f) C@ A S C I I) = SWAP C@ A S C I I (= AND ;

\ is it an expression within parentheses?
\ OK 19:53:31 3/2/1993

Forth Dimensions 23 September 1993 October

: < f a c t o r > (beg e n d .op --) -bl- \ < f a c t o r > -> <#> 1 < i d > I (< e x p r >)
>R
DDUP (< e x p r >) ? \ e n c l o s e d ?
I F 1- SWAP 1+ SWAP \ r e m o v e ()

R> ' e x p r e s s i o n @ EXECUTE \ < e x p r e s s i o n >
EXIT

THEN
DDUP s i m p l e ? \ < i d > o r < l i t e r a l >
I F R> p r i n t
ELSE RDROP CRT ." INCORRECT EXPRESSION" ABORT THEN ;

\ OK 1 1 : 4 6 : 2 5 3 / 6 / 1 9 9 3

\ a u x i l i a r y w o r d s f o r < t e r m >
: -bl- (beg e n d .op -- beg' e n d ' .op)

>R 1 + BEGIN 1- DUPC@ BL <> UNTIL \ end' <- end
SWAP 1- BEGIN 1+ DUPC@ BL <> UNTIL \ beg -> beg'
SWAP R> ;

\ s t r i p b l a n k s f r o m b o t h e n d s o f t e x t
\ OK 2 0 : 0 7 : 3 2 3 / 2 / 1 9 9 3

: 3SWAP (a b c d e f - - d e f a b c) 6 ROLL 6 ROLL 6 ROLL ;

\ N o t e : i n F 8 3 a n d ANS it w o u l d be 5 ROLL

: rearrange (beg e n d adr .op -- a d r + l end .opt beg adr-1 . op)

>R DUP>R (-- beg end adr)
1+ SWAP ROT R@ C@ (-- a d r + l end beg .op t)
SWAP R> 1- R> ;

\ OK 1 7 : 0 5 : 2 4 3 / 2 / 1 9 9 3

: < t e r m > (beg e n d .op --) -bl- \ t r m -> f c t r I f c t r % t r m
DUP>R BL <> \ n o t . n o p ?
I F BL NULL R> 3SWAP RECURSE p r i n t E X I T THEN
\ p u t NULL .op above s t u f f . n o p , <term> p r i n t
DDUP CFA' * I / f i n d 2 \ f i n d %
R> OVER \ f o u n d ?
I F r e a r r a n g e RECURSE
ELSE PLUCK THEN < f a c t o r > ;

\ N o t e : PLUCK i s N I P i n ANS
\ OK 1 1 : 4 6 : 3 1 3 / 6 / 1 9 9 3

: < e x p r e s s i o n > (beg e n d .op --) -bl- \ expr -> t e r m I t e r m & expr
>R DDUP CFA' + I - f i n d 2 \ f i n d &
R> OVER \ f o u n d ?
I F r e a r r a n g e RECURSE
ELSE PLUCK THEN < t e r m > ;

\ N o t e : PLUCK i s N I P i n ANS
\ OK 1 7 : 3 6 : 4 2 3 / 2 / 1 9 9 3

CFA' < e x p r e s s i o n > ' e x p r e s s i o n ! \ resolve f o r w a r d r e f e r e n c e i n < f a c t o r >

: p u t 0 (beg e n d -- beg e n d + l)
DUP>R OVER - 1 + >R DUP DUP 1+ R> <CMOVE
A S C I I 0 OVER C ! R> 1+ ;

\ replace text abcd . . . by Oabcd . . . a n d u p d a t e p o i n t e r s
\ N o t e : u s e CMOVE> i n ANS

I I
September 1993 October 24 Forth Dimensions

: f i x - (beg end -- beg end £1 \ l e a d i n g "-" -> l e a d i n g "0-"
OVER C@ ASCII - = \ l e a d i n g - ?
IF pu t0 THEN ;

\ OK 11:43:23 3/3/1993

ASCII = DUP a l b = I = \ t o f i n d =

: <ass ign> (beg end .op --) -bl- \ e l i m i n a t e s p a c e s
>R DDUP CFA' = I = f i n d 2 \ f i n d =
?DUP \ found?
I F (-- beg end a d r)

DUP>R 1- SWAP ASCII ! SWAP (-- beg adr-1 "!" end)

>R NULL ASCII ' (-- beg adr-1 " ! " beg ' end ' " I ")

R> R> 1t SWAP (-- a d r + l end)
R> -bl - >R \ e l i m i n a t e spaces
f i x - \ 11-11 -> "0-"

R> <express ion> p r i n t p r i n t
ELSE f i x - R> <express ion> THEN ;

\ p a r s e a s assignment s t a t ement
\ i f "=" found, save < i d > e t c . t o a s s i g n on s t a c k
\ i f no "=" is found, p a r s e a s e x p r e s s i o n
\ Note: a s implemented he re , <ass ign> lets you s t o r e t o a c o n s t a n t o r
\ a v a r i a b l e . (l i n e i n v o l v i n g ASCII ')

\ There does not seem t o be any way t o modify a CONSTANT i n ANS.
\ U s e a VALUE i n s t e a d , and rewrite s o it o u t p u t s "TO <id>"
\ OK 11:43:34 3/3/1993

: 0-ok? O l e v e l O ! PAD COUNT OVER + SWAP
DO I C@ i n c () LOOP () l e v e l @
I F CRT ." Unbalanced p a r e n t h e s e s ! " ABORT THEN ;

\ OK 17:52:30 3/2/1993

\ : is' ASCII TEXT 0-ok?
\ PAD adr>ends BL CR <ass ign> ;
\ OK 17:27:16 3/2/1993

256 SEGMENT i n t r a n \ make a segment t o h o l d o u t p u t from i" "

: ill->MEM i n t r a n @ 0 256 0 FILLL \ i n i t i a l i z e b u f f e r
i n t r a n OPEN-MEM >MEM ; \ outpu t -> b u f f e r

: MEM-> i n t r a n @ 0 MLOAD
CLOSE-MEM ;

\ l o a d from i n t r a n

. i" ASCII " TEXT () -ok? \ ba lanced 0 ?
PAD adr>ends BL CR \ set i n i t i a l s t a c k
STATE @ \ compiling?
IF iW->MEM \ v e c t o r t o i n t r a n

<ass ign> \ o u t p u t t h e FORTH code
CRT \ r e t u r n ou tpu t t o CRT
MEM-> \ l o a d from i n t r a n

ELSE <ass ign> THEN ; IMMEDIATE
\ Note: Th i s method of r e d i r e c t i n g o u t p u t t o a memory b u f f e r i s unique
\ t o HS/FORTH. I n ANS you w i l l have t o ou tpu t t o a counted s t r i n g
\ t h e n use EVAL.
\ OK 11:48:06 3/6/1993

Forth Dimensions 25 September 1993 October

FORTH TUTORIAL, LESSON #6

Terminal Input
and Output
C. H. Ting
San Mateo, California

r o work through this tutorial, you will need the random-number
generator presented in the last issue's lesson.]

Format Output Numbers
We have discussed a few of the Forth instructions which

print numbers to the screen. Here is a list of these instructions:

(n - 1
Print signed n followed by a space.

u . (u - 1
Print unsigned u followed by a space.

D . (d -)
Print signed double integer d with a space.

. R (n l n 2 -)
Print n l in n2-column format.

These instructions are sufficient for most applications in
which numbers are displayed on the screen to tell a
programmer to know what's going on in the computer. But
to display numbers to the end user, they have to be formatted
in specific ways not covered by the above list of commends.

Forth provides component instructions that enable you to
format numbers in any desirable fashion. We will discuss
these instructions and use a few examples to illustrate how
they are used to create custom number formats.

The formatting process starts with a double integer on the
top of the stack. The output is a formatted string in the free
memory below the text buffer pointed to by the instruction
PAD. The output string is constructed backwards, one digit
at a time. Whlle constructing the string, any ASCII characters
can be inserted into the string to improve readability. The
building blocks for number formatting are the following:

< # (--
Start the number-formatting process.

added to the output string.

#S (d - 0 0)
Convert all significant digits and add them to the output
string.

> (d - addr n)
Terminate the number string, and leave addr and the count
of the string's length for TYPE.

HOLD (char --)
Add an ASCII character to the output string.

SIGN (n - >
Add a - sign to output string if n<O.

BASE (-- addr)
Memory address containing current radix.

DECIMAL (--
Set rador to 10 for decimal conversion.

The radix number which controls the number conversion
can be changed at will. This flexibility allows the Forth user
to do very interesting and powerful number formatting.

Telephone Numbers
Telephone numbers, including the area code and even an

international dialing code, can be comfortably represented
by double integers. To print a telephone number with the
custom format, we define the word Phone as in Figure One.

A double integer can be entered from the keyboard by
including a period anywhere in the input number string. To
print the phone number shown in the comment in Figure
One, type:
415432.1230 Phone

and the properly formatted string will be printed on screen.

(d l -- d2)
Divide d l by the radix number. The quotient is left on the
stack as d2. The remainder is converted to a digit, which is

Time of Day
Assume that the time of day is represented by an double

integer counting 1/100ths of a second since midnight. The

September 1993 October 26 Forth Dimensions

output format specification is HH:MM:SS.XX, where XX
represents hundredths of a second. (See the code presented
in Figure Two.)

Between midnight and noon, there are 4,320,000 hun-
dredths of seconds. If we type:
4320000. TIME

we should see 12:00:00.00 printed. Do verifjr it.

Angles
For navigational purposes, global positions are repre-

sented in angles of latitude and longitude, in the form of
DDD:MMtSS". (Here we are using : for degrees because we
don't have the proper character for degrees.) This format is
only slightly differrent from the above time format, and can

be defined as in Figure Three.

Radix for Number Conversions
By changing the radix stored in BASE, the Forth user can

freely convert numbers from one base to another, according
to the needs of the moment. Programmers must often convert
numbers from decimal to hexadecimal, octal, and binary, and
vice versa. The number conversions can be done simply by
changing the radix with the following instructions:

DECIMAL
: OCTAL 8 BASE ! ;

: HEX 16 BASE ! ;
: BINARY 2 BASE ! ;

: RADIX36 36 BASE ! ;
: RADIX19 19 BASE ! ;

: Phone (d --
< #

45 HOLD

32 HOLD
41 HOLD

40 HOLD
#>
TYPE SPACE

Special radix bases are

, p r i n t t h e telephone number i n [415] 432-1230 format)

(s t a r t o u t p u t s t r i n g)

(c o n v e r t t h e l a s t 4 d ig i t s)

(i n s e r t - s i g n)

(c o n v e r t t h e n e x t 3 d i g i t s)

(a d d a s p a c e)

(add r i g h t p a r e n t h e s i s)

(a d d a r e a code)

(a d d le f t p a r e n t h e s e s)

(done f o r m a t t i n g)

(p r i n t t h e o u t p u t s t r i n g)

Figure One. Telephone numbers.
ticular situations. For example
ra&x 36 is very convenient
when compressing alphanu-
merical string to fit into tight
memory spaces, because it
encompasses the ten numeri-
cal digits and the 26 characters
of the alphabet. My favorite
radix is 19, which is useful in
encodng board locations in
the Chinese (or Japanese) game
of Go.

, sometimes very useful for par-

Try converting numbers
among different radices:

: :SS (dl -- d2 , div ide d l by 60 and add t h e remaider as 2 d i g i t s)

(t o t h e o u t p u t s t r i n g)

(c o n v e r t 1 dig i t i n dec ima l)

S e x t a l # (c o n v e r t n e x t d i g i t i n s e x t a l)

DECIMAL (r e s t o r e r e a d i x t o dec ima l)

58 HOLD (add : t o o u t p u t s t r i n g)

Figure TWO. The time of day. I DECIMAL

: Time (d --)

< #

46 HOLD
: SS
: SS
#S
>
TYPE SPACE

: S e x t a l (--)

6 BASE ! (set r a d i x t o 6)

(s t a r t o u t p u t s t r i n g)

(c o n v e r t hundred th o f s econd)

(add .
(c o n v e r t s econds)

(c o n v e r t minu te s)

(c o n v e r t h o u r s)

(t e r m i n a t e c o n v e r s i o n)

(p r i n t r e s u l t s)

12345 HEX .

HEX
ABCD DECIMAL U.

DECIMAL
100 BINARY .

BINARY
101O101O1O1O DECIMAL .

Real programmers impress
novices by carrying a H-P cal-
culatorwhich can convennum-
bers between decimal and
hexadecimal. A Forth computer
has this calculator built in, be-
sides other functions.

Message Coding
After you have entered the

code from the preceding sec-
tion, try this:

Forth Dimensions 27 September 1993 October

: Message
THE. WOLVES. ARE.

COMING. ;

DECIMAL

RADIX36

Try the following and you
will see how the message is
coded and decoded:
RADIX36
Message D . D . D . D .

Figure Three. The degrees, minutes, and seconds of angles.

DECIMAL
Message D . D . D . D .

Please note that the words
in Message are appended
with periods to force them to
be converted to double inte-
gers in radix 36. By the way,
the largest number represent-
able in radix 36 is 1214123. It
is, therefore, possible to r e p
resent any six-character alpha-
numeric string as a double
integer in radix 36.

Terminal Input and
output

The Forth user interacts
with Forth through the terrni-
nal: a keyboard to enter num-
bers and instructions, and a
screen to display results and
other information. The most
elementary Forth instructions
controlling the terminal I/O
are:

KEY (-- char)
Accept a keystroke from the
keyboard and return the cor-
responding ASCII code.

KEY? (- - f >
Return a true flag if a key was
pressed.

EMIT (char --)
Display the character whose
ASCII code is on the top of
stack.

TYPE (addr n --)
Display a string n characters
long from memory location
addr.

September 1993 October

: Angle (d -- , p r i n t a n g l e i n t h e DDD:MM'SSW fo rma t)

< # (s t a r t o u t p u t s t r i n g)

34 HOLD (add " f o r s econds)

(dec ima l d i g i t f o r s econd)

S e x t a l # DECIMAL (s e x t a l d ig i t f o r s econd)

39 HOLD (add ' f o r m i n u t e s)

: SS (c o n v e r t m i n u t e s)

#S (c o n v e r t d e g r e e s)

> (done f o r m a t t i n g)

TYPE SPACE (p r i n t)

,

Figure Four. Printing the PC's character set. 1
: P r i n t a b l e (n -- n , conver t non-pr in tab le c h a r a c t e r s t o spaces)

DUP 1 4 < (7-13 a r e s p e c i a l f o r m a t t i n g)

I F DUP 6 > (c h a r a c t e r s n o t d i s p l a y a b l e)

I F DROP 32 THEN (s u b s t i t u t e a s p a c e)

THEN

: Hor izon ta lASCI I t ab l e (--)

CR CR CR
5 SPACES
16 0 DO I 4 . R LOOP
CR
16 0 DO

CR I 16 * 5 . R

16 0 DO
3 SPACES
J 1 6 * I +
P r i n t a b l e
EMIT

LOOP
LOOP
CR

(show s e q u e n t i a l column h e a d e r)

(do 1 6 rows)

(p r i n t row h e a d e r)

(p r i n t 16 c h a r a c t e r s i n a row)

(c u r r e n t c h a r a c t e r v a l u e)

(p r i n t it)

(l o o p f o r n e x t c h a r a c t e r)

(l o o p f o r n e x t row)

: V e r t i c a l A S C I I t a b l e (--)

CR CR CR
5 SPACES
16 0 DO I 16 * 4 .R LOOP (show column h e a d e r s)

CR
16 0 DO (d o 16 rows)

CR I 5 .R (p r i n t row h e a d e r)

256 0 DO (do 16 columns)

3 SPACES
J I t (c u r r e n t c h a r a c t e r)

P r i n t a b l e EMIT
16 +LOOP (s k i p 15 c h a r a c t e r s between columns)

LOOP
CR

I

28 Forth Dimensions

Figure Five. The love letter. /
1

VARIABLE NAME 1 2 ALLOT
VARIABLE EYES 1 0 ALLOT
VARIABLE ME 1 2 ALLOT

Forth Dimensions 29 September 1993 October

: ENTER (addr n -- , accept a s t r i n g u p t o n c h a r a c t e r s t o t h e)

(m e m o r y area s t a r t i n g a t addr .)

2DUP BLANK (c lea r t h e m e m o r y area t o spaces)

EXPECT (w a i t f o r a s t r i n g u p t o n)

(c h a r a c t e r s o r a r e t u r n)

: VITALS (-- , get and store t h e names a n d t h e e y e color i n ar rays)

CR ." E n t e r your n a m e : "
ME 1 4 ENTER (get your n a m e)

CR ." E n t e r her n a m e : "
NAME 1 4 ENTER (get h e r n a m e)

CR ." E n t e r her eye color: "
EYES 1 2 ENTER (get her eye co lor)

: LETTER (--)

CR CR CR CR
. " D e a r "
NAME 1 4 -TRAILING TYPE
. I' , " CR
." I go t o h e a v e n w h e n e v e r I see y o u r deep "

EYES 1 2 -TRAILING TYPE
." eyes. Can " CR
.'I y o u go t o t h e m o v i e s F r i d a y ? "
CR 3 0 SPACES
. " L o v e , "
CR 3 0 SPACES
ME 1 4 -TRAILING TYPE CR
. " P . S . Wear s o m e t h i n g "
EYES 1 2 -TRAILING TYPE
." t o s h o w off those eyes! "
CR CR CR

,

Type
H o r i z o n t a l A S C I I t a b l e
or
V e r t i c a l A S C I I t a b l e

to display the complete IBM
PC character set in two differ-
ent forms. Many of the graphic
characters are interesting be-
cause they allow the user to
draw fairly nice forms on the
screen for business applica-
tions. These instructions are
also handy if YOU want to use
the graphic characters to con-
struction unique screen dis-
play~.

A Love Letter
Figure Five presents a very

interesting example adapted
from Leo Brodie's Starting
Forth. The program allows you
to print a love letter inviting
your girl friend to see a movie.
After entering the code, type
VITALS and enter all the infor-
mation requested; then type
LETTER. You will see the very
moving letter.

In this example, we also
introduce several important
Forth instructions dealing with

EXPECT (addr n --)
Accept n characters from the keyboard and store them at
memory location addr. If the string is terminated by a return,
the number of characters accepted is stored in the variable
SPAN.

ASCII Character Table
In most computers, characters, numerals, and punctua-

tion are represented in eight-bit bytes. The American Stan-
dard Characters for Information Interchange (ASCII) use byte
values from 32 to 127 to represent printable symbols. These
symbols can be printed on the terminal screen and on any
standard printers. Outside of this range, symbols are repre-
sented differently by different computers. The IBM PC
displays graphic symbols when byte values outside the
above range are sent to the screen. The code in Figure Four
allows you to display the regular character set, with the
graphic characters, in a nicely formaued table.

strings and memory:

ALLOT (n - -)
Allocate n bytes of memory following a variable, creating an
array to store a string of characters.

F I L L (addr n char --)
Fill a memory array, n bytes long from memory addr, with the
character char.

-TRAILING (a n l -- a n2)
Modifiy string length n l to exclude trailing spaces.

Notice that the suing arrays ME, NAME, and EYES must be
cleared to spaces before calling EXPECT in order to enter
new information, because we don't know how many
characters will be entered into these arrays. After the
information is entered, the strings can be retrieved using
-TRAILING to strip off the trailing spaces.

/ Figure six-a. HOW CONVERT works. 1

Number Input
On many occasions, it is

necesary to ask the user to
type a number as a string.

CONVERT (d l a d d r l -- d2 addr2)
Convert t h e s t r i n g a t a d d r l t o a double i n t e g e r and add it t o d l .
Leave t h e sum a s d2 on t h e s t a c k ; addr2 p o i n t s t o t h e f i r s t non-digi t
i n t h e s t r i n g .

After the string is accepted, we
have to convert it into a num-

/ An example of how to ask the user for a number:

and push it On the data
stack for subsequent instruc-
tions t~ use. The primitive

< r e p e a t - c l a u s e >

(f) UNTIL

: GetNumber (--)
CR . Enter a Number: ,, (show message)

PAD 20 ENTER (g e t a s t r i n g)
instruction to convert a nu-
meric string to a binary num-
ber is CONVERT-see Figure
Six-a.

You can jump out of the
loop by typing the instruction
EXIT, which skips all the in-

0 0 PAD 1 - CONVERT (conver t s t r i n g t o a double)

ZDROP (l e a v e a s i n g l e i n t e g e r on s t a c k)

;

structions in a ~ o i t h definition
up to ; (the semicolon&
thus terminating execution of
the current definition and con-
tinuing to the next definition.

Dr. C.H. Ting is a noted Forth authority
who has made many significant conlri-
butions to Forlh and the Forth Interest
Group. His tutorial series will continue in
succeeding issues of Forth Dimensions.

With this useful instruc-
tion, we can write the game

CR
CHOOSE

a shown in
Figure Six-b. Type GUESS to

the game, and the
computer will entertain a user
for a while. Note theuse of the
loop structure:
BEGIN

(choose a random number)

(between 0 and l i m i t)

Figure Six-b. Number-guessing game.]
: Ini t ia lNumber (-- n , s e t up a number f o r t h e p l a y e r t o guess)

CR CR CR . m a t l i m i t do you want ?"
GetNumber (ask t h e u s e r t o e n t e r a number)

CR ." I have a number between 0 and " DUP .
CR ." Now you t r y t o guess what it i s . "

: Check (n l -- , a l low p l a y e r t o guess , e x i t when t h e guess i s c o r r e c t
BEGIN CR . " P l e a s e e n t e r your guess ."

GetNumber
2DUP = (equa l?)

I F 2 DROP (d i s c a r d bo th numbers)

CR . " C o r r e c t ! ! ! "
EXIT

THEN
OVER >
IF CR ." Too High!"
ELSE CR ." Too low."
THEN CR

0 UNTIL (always r e p e a t)

: G r e e t (--)

CR CR CR . " GUESS A NUMBER"
CR . " This i s a number guess ing game. I ' l l t h i n k "
CR . " of a number between 0 and any l i m i t you want ."
CR . " (I t should be s m a l l e r than 32000.) "
CR ." Then you have t o guess what it i s . "

: Guess (-- , t h e game)

Greet
BEGIN Ini t ia lNumber (set i n i t i a l number)

Check (l e t p l a y e r guess)

CR CR ." Do you want t o p l a y aga in? (Y / N) "
KEY (g e t one key)

32 OR 110 = (e x i t i f it i s N o r n)
UNTIL
CR CR . " Thank you. Have a good day." (s i g n o f f)

CR

September 1993 October 30 Forth Dimensions

I A Forum for Exploring Forth Issues and Promoting Forth

The Point of No Return
Mike Elola
San Jose, California

Forth Dimensions 3 1 Se~tember 1993 October

Most professional programmers have abandoned inter-
preted languages in favor of languages with highly evolved
compiling systems. Forth's compiling tools remain simple by
comparison.

The ability to merge independently compiled code has
been a widely appreciated strategy employed by these
compiled languages. The term used to describe the strategy
is separate compilation. Function libraries are a trivial
extension of that particular strategy for developing applica-
tions.

Interpreters usually do not compare favorably to compil-
ers, because they perform a translation step at each run of the
program. Besides the ensuing performance problems, there
are other perceived problems for interpreters. For example,
source code is considered a troublesome format in which to
distribute applications.

The key virtue of an interpreted language is the hardware
independence it accords to source code. Independence from
operating systems, processing units, and particular periph-
era1 devices are possible benefits. A "standard" interpreter
that runs on microprocessors inside a wealth of devices
creates a standard way of controlling those devices. It also
accords the source code a considerable level of transportabil-
ity between the devices. The most favorable conditions for
transportability occur when one company controls the
language definition. Adobe is the company in control of
PostScript, an interpreted pagedescription language.

A PostScript description of a printed page always causes
the same page to be printed. The page is printed faithfully,
regardless of the computer platform sending the job, and
regardless of the type of PostScript device receiving the job-
although quality and print resolution may vary. The PostScript
language improves the transportability of printers, helps
simplify device drivers and other applications on the host
computer, and helps make families of devices more compat-
ible, including printers, typesetters, and plotters.

To avoid re-translation of source code each time a
program is run, compilers capture the translated source code
into a new file. The new file is the executable file. Besides

1 running faster, such an executable file runs with less
1 supporting software. m e processing hardware suffices to

interpret the low-level instructions generated by most com-
pilers.)

Major benefits are associated with compiled applications.
One of them is speed. Another benefit is that the form that
the executable file takes is not source code. While a different
executable file is required for each different hardware
instruction set, this has not proved to be a liability. There are
many compiler vendors helping to ensure that you can write
a program in the compiled language of your choice and still
produce executable files to suit your choice of computer
hardware.

Divide and Conquer
Separate compilation is the feature of modern compiling

systems that supports the partitioning of programs during
development. It allows each subdivision of a program to be
independently refined.

Each translated subdivision is stored in a form that is
neither a source format nor an executable format. Separate
compilation introduces a new file format that is suitable for
processing by a link editor, or "linker." The linker can process
the translated subdivisions of a program to create an
executable file. I am calling the format of the intermediate
files produced by such compilers a "linker-ready" file format.
See Figure One for an illustration of the processing involved.

Each linker-ready file contains routines that can be
thought of as services, particularly if the corresponding
subdivision of the program is stable. The clients for those
services are any other subdvisions of the program that need
to use the services. It's possible for the service and client roles
of various subdivisions to alternate over time, but a thought-
ful design should eliminate the need to do so.

Once translated to a linker-ready format, the stable
subdivisions of the program need only be processed by the
linker. The remaining source code is changed and recompiled
until it is processed without error. (The interfaces between
the service and client routines must not be violated as
changes are made.) Then the linker can create a new version
of the whole program for testing.

The advantage of a type-checking compiler is that it can
certify that the interfaces to precompiled routines are strictly
followed. Although the service routines are not repeatedly

recompiled, a type-checking compiler normally processes a
source language description of the interface to each
precompiled function.

The header file should contain the names of each of the
precompiled routines, any parameters they use, and the data
types of those parameters. A header file usually resides close
to the source code file that actually defines the routines.
Sometimes you may have no other source code but the
header file, such as when you use a library for which source
code is not included.

The compiler's processing of these interface descriptions
does not generate code for the linker-ready file, nor for any
other file. The interface description files exist merely so the
compiler can detect misuses of the interfaces to the
precompiled functions inside existing linker-ready files.

(To change a function's interface, several source language
files must be brought into agreement: the source file for the
service function, the source file for the interface description,
and all the source files containing client functions. Then any
linker-ready files that were based upon the old interface must
be deleted and regenerated. Finally, the executable file can
be rebuilt.)

Because of this layered approach to the creation of an
executable file, the linker never needs to process the syntax
or grammar of any high-level language (nor any assembly
mnemonics). For each processor family, associated compil-
ers transform source code in various languages into roughly
equivalent types of linker-ready files.

Because it works with previously translated code, the
linker lends support for development using a mix of high-
and low-level programming languages. Accordingly, assem-
blers often rely on subsequent linker processing to generate
executable files.

Some of the problems you confront for mixed language
development are also problems for same-language develop-
ment through the auspices of separate compilation. For
example, the size of integers passed between service func-
tions and their clients must be the same. Because PC-based
applications can be compiled to a tiny, medium, or large
memory model, addresses passed between service functions
and their clients must be based upon the same memory
model.

Other troubles for mixed-language development include
(1) parameter-passing conventions used by the service
functions created in one language as opposed to the
conventions used by the client functions created in a different
language; and (2) the library file format used by one language
compiler as opposed to that used by a different compiler.

Some mixed-language pitfalls are not insurmountable.
Certain problems may be overcome by supplying "glue"
around the client code that calls the service. The glue must
resolve any differences in the run-time assumptions made by
the service functions and their clients.

A Rainbow o f Storage File Need.
To better grasp how compiling technology has evolved,

let's reexamine the files required by an interpreter, by a basic
compiler, and by a modern compiling system. Generally, the
process of creating executable files has become more
September 1993 October

piecemeal, and the ease-of-use of basic compilers and
interpreters has been abandoned.

The interpretation strategy uses just one file containing
code that serves all the required purposes. The source code
for an application and the executable file are the same file.

Progressing to a compilation strategy, two files must be
maintained: (1) a source code file; and (2) an executable file.

Progressing from all-at-once compilation to separate
compilation, three types of files must be maintained: (1)
several source code files; (2) several linker-ready files
produced by compilers or assemblers; and O an executable
file produced by a linker.

(To anticipate future trends, consider this scenario: To
progress from separate compilation with all-at-once linking
to separate compilation and dynamic linking, no additional
files are necessary at compile time. However, the main
executable file may later require the linking of it and
accompanying linker-ready files. Therefore, the end-user
computing platform must be equipped with suitable "link-
ing" software and linker-ready files to successfully run
programs that take advantage of this feature.)

The maintenance of many files is the price paid for the
improved ability to partition programs. Nevertheless, such
partitioning helps support greater code reuse as well as
parallel development by several programmers. The efi-
ciency gained from these practices is often a critical factor
contributing to the success of a project. Very small program-
ming projects may be the only cases where separate compi-
lation hinders more than it helps.

Taking Up Collections
The modern compiler consists of two or more layers of

tools, as well a s collections of files maintained by you or by
various build processes (see Figure One).

The raw material for building an application is a pool of
files that you bring together. One or more files in the pool
may already be in a linker-ready format. Perhaps one file was
reused from another project. Perhaps no changes will be
required for that item. If so, access to the associated source
code is not a requirement.

The pool of files must be processed in an appropriate
manner so that they can generate a pool of linker-ready files.
The processing is carried out by compilers or assemblers, and
possibly by various preprocessors or code generation tools.
Once the pool of files has been processed correctly, a
corresponding pool of linker-ready files is created that the
linker converts into an executable file.

A build processing utility such as "make" uses a descrip
tion of the files and the processes for building a particular
executable file, as shown in Figure One. By readng the last-
modified date stamped on each file, as well as using the
information in the make source file, the make utility can
determine the minimum processing required to create a new
executable that is up-to-date relative to its subcomponents.

Well-Traveled Paths to Code Reuse
Through the strategy of separate compilation, several

different applications may be produced by linking different
combinations of linker-ready files. Some subdivisions of an

32 Forth Dimensions

I Figure One. 1
I

info about build interface file for interface file for
files and assoc 17 commands -1 -1

I

included in the executable file by the linker.
Routines that reside in library archive files are
included in the executable only if the linker
determines the need for them by scanning

date
last

program
source file for

the other linker-ready files that comprise the
application. If a routine in the library archive
is referenced by the external code in a normal

last executable file
mod

date
last linker-ready file, the linker extracts its

precompiled code from the archive and
includes it in the executable file. If a routine
in the library is not referenced by external
code, it is not included in the executable file
(unless an already extracted routine depends
on it).

At least for library files, the linker must
determine which routines are called by other
routines, accounting for all the interdepen-
dencies among the routines. To speed this
process, traversal information included in-
side the archve usually encodes all the
interdependencies that exist among the li-
brary routines.

Most of the content of the linker-ready
files is dictated by hardware rather than high-
level languages. This helps make libraries
fundamentally language-independent. The
"intermediate code format" is much closer to
the machine language than to any high-level
language. Even if we are considering the
linker-ready file for the Standard C Library,
we cannot assume that its language of origin
is C. (Was that a challenge you heard?)

The source language in which accompa-
nying interface descriptions are supplied tends
to wed a library to a high-level language.

program
source file for

application may be used repeatedly in a variety of applica-
tions. A more common term for the subdivisions of applica-
tions is "modules." When referring to the linker-ready file for
a module, the term "object module" is frequently used.

Linker-ready files that are reused can be viewed as
libraries because their handling is more alike than different.
As shown in Figure One, the compilng of module 2 requires
two interface files as well as the source code for module 2.
One of the interface files serves the library, and one serves
module 1. Once module 1 is stable, the make utility uses the
same minimal processing for it that is used for library A. The
minimum processing for module 1 eliminates the compila-
tion step because the previously created object module
remains upto-date.

The modules that are reused the most are usually collec-
tions of routines that perform one type of service, such as string
processing. To make these collections of routines easier to
r e m i t h e r individually or as a group-additional develop
ment tools can be used to repackage them as library files.

Libraries involve a slight elaboration of the feature of
separate compilation. First, they establish an alternative
format for files that are considered linker-ready files. Second,
they are processed differently by the linker.

Routines that reside in normal linker-ready files are

However, a vendor is able to add support for another
programming language with a minor addtion. By supplying
several interface (header) files-one for each different lan-
guag-ne object module is allowed to serve multiple
programming languages. So a Pascal compiler, if fed a suitable
"interfacen declaration file, could perform type checks against
the parameters being passed to a C function for which no
defining source code was submitted.

Your Turn Now
The sophistication of library tools, and of the underlying

technique of separate compilation, deserves our attention
and our assimilation into Forth. For good reasons, there is
never likely to be a retreat to simpler methods or tools. So we
should plan on adding this support to Forth as a complement
to Forth's native compiling provisions.

We have explored the advances that have occurred with
regard to application development tools, particularly in terms
of compiling strategies. I hope I have not made any major
guffaws in this attempt to create a tutorial out of my limited
understanding of this material. If so, I apologize. (Okay, so
I might have stretched the truth when I said that three kinds
of files were needed for support of separate compilation. I
overlooked the header files.)

Forth Dimensions 33 September 1993 October

FIG Chapters
I

The Forth lnterest Group Chapters listed below are currently
registered as active with regular meetings. lfyour chapter listing
is missing or incorrect, please contact the FIG office's Chapter
Desk. This listing willbe updatedregularly in Forth Dimensions.
If you would like to begin a FIG Chapter in your area, write for
a "Chapter Kit and Application. "

Forth lnterest Group
P.O. Box 2154
Oakland, California 94621

U.S.A.
ALABAMA
Huntsville Chapter
Tom Konantz
(205) 881-6483

ALASKA
Kodiak Area Chapter
Ric Shepard
Box 1344
Kodiak, Alaska 99615

ARIZONA
Phoenix Chapter
4th Thurs., 7:30 p.m.
Arizona State Univ.
Memorial Union, 2nd floor
Dennis L. Wilson
(602) 381-1146 '

CALIFORNIA
Los Ange la Chapter
4th Sat., 10 a.m.
(except Nov., Dec.)
Joslyn Center
339 Sheldon, El Segundo
John LuValle
(818) 797-1820
Howard Rogers
(301) 532-3342

North Bay Chapter
2nd Sat.
12 noon tutorial, 1 p.m. Forth
2055 Center St., Berkeley
Leonard Morgenstern
(415) 376-5241

Orange County Chapter
4th Wed., 7 p.m.
Fullerton Savings
Huntington Beach
Noshir Jesung (714) 842-3032

Sacramento Chapter
4th Wed., 7 p.m.
17W59th St., Room A
Bob Nash
(916) 487-2044

San Diego Chapter
Thursdays, 12 Noon
Guy Kelly (619) 454-1307

Silicon Valley Chapter
4th Sat., 10 a.m.
Applied Bio Systems
Foster City
John Hall
(415) 535-1294

Stockton Chapter
Doug Dillon (203) 931-2448

COLORADO
Denver Chapter
1st Mon., 7 p.m.
Clifford King (303) 693-3413

FLORIDA
Orlando Chapter
Every other Wed., 8 p.m.
Herman B. Gibson
(305) 855-4790

GEORGIA
Atlanta Chapter
3rd Tues., 7 p.m.
Emprise Corp., Marietta
Don Schrader (404) 428481 1

ILLINOIS
Cache Forth Chapter
Oak Park
Clyde W. Phillips, Jr.
(708) 713-5365

Central Illinois Chapter
Champaign
Robert Illyes (217) 359-6039

INDIANA
Fort Wayne Chapter
2nd Tues., 7 p.m.
I/P Univ. Campus
871 Neff Hall
Blair MacDermid
(219) 749-2042

IOWA
Central Iowa FIG Chapter
1st Tues., 7 3 0 p.m.
Iowa State Univ.
214 Comp. Sci.
Rodrick Eldridge
(515) 294-5659

Fairfield FIG Chapter
4th Day, 8:15 p.m.
Gurdy Leete (515) 472-7782

MARYLAND
MDFIG
3rd Wed., 6:30 p.m.
JHU/APL, Bldg. 1
Parsons Auditorium
Mike Nemeth
(301) 262-8140 (eves.)

MASSACHUSE-ITS
Boston FIG
3rd Wed., 7 p.m.
Bull HN
300 Concord Rd., Billerica
Gary Chanson (617) 527-7206

MICHIGAN
Detroit/Ann Arbor Area
Bill Waiters
(313) 731-9660
(313) 861-6465 (eves.)

MINNESOTA
MNFIG Chapter
Minneapolis
Fred Olson
(612) 588-9532

MISSOURI
Kansas City Chapter
4th Tues., 7 p.m.
Midwest Research Institute
MAG Conference Center
Linus Orth (913) 236-9189

St. Louis Chapter
1st Tues., 7 p.m.
Thornhill Branch Library
Robert Washam
91 Weis Drive
Ellisville. MO 6301 1

NEW JERSEY
New Jersey Chapter
Rutgers Univ., Piscataway
Nicholas G. Lordi
(908) 932-2662

NEW MEXICO
Albuquerque Chapter
1st Thurs., 7:30 p.m.
Physics & Astronomy Bldg.
Univ. of New Mexico
Jon Bryan (505) 298-3292

NEW YORK
Long Island Chapter
3rd Thurs., 7:30 p.m.
Brookhaven National Lab
AGS dept.,
bldg. 911, lab rm. A-202
Irving Montanez
(516) 282-2540

Rochester Chapter
Monroe Comm. College
Bldg. 7, Rm. 102
Frank Lanzafame
(716) 482-3398

OHIO
Columbus FIG Chapter
4th Tues.
Kal-Kan Foods, Inc.
5 115 Fisher Road
Terry Webb
(614) 878-7241

Dayton Chapter
2nd Tues. & 4th Wed., 630 p.m.
CFC
11 W. Monument Ave. 6 1 2
Gary Ganger (513) 849-1483

PENNSnVANIA
Villanova Univ. Chapter
1st Mon., 7:30 p.m.
Villanova University
Dennis Clark
(215) 860-0700

TENNESSEE
East Temessee Chapter
Oak Ridge
3rd Wed., 7 p.m.
Sci. Appl. Int'l. Corp., 8th FI.
800 Oak Ridge Turnpike
Richard Secrist (615) 483-7242

T E X A S
Austin Chapter
Matt Lawrence
PO Box 180409
Austin, TX 78718

Dallas Chapter
4th Thurs., 7:30 p.m.
Texas Instruments
13500 N. Central Expwy.
Semiconductor Cafeteria
Conference Room A
Warren Bean (214) 4%3115

September 1993 October 34 Forth Dimensions

N. Alta. 1nk. of ~ e c h .
Tonv Van Muvden 1

INTERNATIONAL
Houston Chapter AUSTRAUA
3rd Mon., 7 3 0 p.m. Melbourne Chapter
Houston Area League of 1st Fri., 8 p.m.
PC Users (HAL-PO Lance Collins
1200 Post Oak Rd. 65 Martin Road
(Galleria area) Glen Iris, Victoria 3146
Russell Harris 03/889-2600
013) 461-1618 BBS: 61 3 809 1787

VERMONT Sydney Chapter
Vermont Chapter 2nd Fri., 7 p.m.
Vergennes John Goodsell Bldg., RM LC19
3rd Mon., 7 3 0 p.m. Univ. of New South Wales
Verge~es Union High School Peter Tregeagle
RM 210, Monkton Rd. 10 Bin& Rd.
Hal Clark (802) 453-4442 Yowie Bay 2228

02/524-7490
VIRGINIA Usenet:
First Forth of tedr@usage.csd.unsw.oz
Hampton Roads
William Edmonds BELGIUM
(804) 898-4099 Belgium Chapter

4th Wed., 8 p.m.
Potomac FIG Luk Van Loock
D.C. & Northern Virginia Lariksdreef 20
1st Tues. 2120 Schoten
Lee Recreation Center 03/658-6343
5722 Lee Hwy., Arlington
Joseph Brown Southern Belgium Chapter
(703) 471-4409 Jean-Marc Bertinchamps
E. Coast Forth Board Rue N. Monnom, 2
(703) 442-8695 B-6290 Nalinnes

071/213858
Richmond Forth Group
2nd Wed., 7 p.m. CANADA
154 Business School Forth-BC
Univ. of Richmond 1st Thurs., 7:30 p.m.
Donald A. Full BCIT, 3700 Willingdon Ave.
(804) 739-3623 BBY, Rm. 1A-324

Jack W. Brown
WISCONSIN (604) 596-9764 or
Lake Superior Chapter (604) 436-0443
2nd Fri., 7:30 p.m. BCFB BBS (604) 434-5886
1219 N. 21st St., Superior
Allen Anway 015) 394-4061 ~o,-th- Chapter

4th Thurs.. 7 - 9 3 p.m.

ENGLAND JAPAN
Forth Interest GroupUK Japan Chapter
London Toshio Inoue
1st Thurs., 7 p.m. University of Tokyo
Polytechnic of South Bank Dept. of Mineral Develop
RM 408 ment
Borough Rd. Faculty of Engineering
D.J. Neale 7-3-1 Hongo, Bunkyo-ku
58 Woodland Way Tokyo 113, Japan
Morden, Suny SM4 4DS (81)3-3812-2111 ext. 7073

FINIAND REPUBLIC OF CHINA
F W I G R.O.C. Chapter
Janne Kotiranta Ching-Tang Tseng
Arkkitehdinkatu 38 c 39 P.O. Box 28
33720 Tampere Longtan, Taoyuan, Taiwan
+358-31-184246 (03) 4798925

GERMANY SWEDEN
Germany FIG Chapter SweFIG
Heinz Schnitter Per Alm
Forth-Gesellschaft e.V. 46/8-92963 1
Postfach 1110
D-8044 Unterschlei13heim SWITZERLAND
(49) (89) 317 37 84 Swiss Chapter
Munich Forth Box: Max Hugelshofer
(49) (89) 871 45 48 Industrieberatung
8N1 300,1200,2400 baud Ziberstrasse 6
e-mail uucp: 8152 Opfikon
secretary@ forthev.UUCP 01 810 9289
Internet:
secretary@Admin.FORTW-eV.de

Why FIG Chapters?
See the editorial on this issue for news from the
new chapter in southern Wisconsin.. .

SPEClAL GROUPS
Forth Engines Useis Grou

(4031 4 8 6 d (days)
(403) 962-2203 (eves.) HOLLAND

Holland Chapter

Dr. N. Solntseff
(416) 525-9140 x3443

Southern Ontario Chapter
Quarterly: 1st Sat. of Mar.,
June, and Dec. 2nd Sat. of Sept.
Genl. Sci. Bldg., RM 212
McMaster University

ITALY
FIG Italia
Marco Tausel
Via Gerolamo Forni 48
20161 Milano

Maurits Wijzenbeek John carpenter
Nieuwendammerdijk 254 1698 Villa St.

IX Mountain View, CA 94041
The Netherlands (4 15) W-1256 (eves.)
++(20) 636 2343

Forth Dimensions 35 September 1993 October

September 1993 October 36 Forth Dimensions

("Back Burne~, " continued from page 39.)

nents of the Forth environment reside in application RAM, so
they must be created anew each time the application
hardware is powered up or reset.

Once initialization is complete, the Forth virtual machine
must be started (i.e., activated). The machine is started by
assigning it a word-the application program-to execute.
Once started, the machine never stops, apart from reset, a
system crash, or power failure. The programmer must ensure
that the machine always has something to do. He does thls
by writing the application program in the form of an endless
loop.

The Bare Essentials
We shall assume the following resources:

the application hardware: a ROM-based computer, such as
the 8051 trainer presented in column #5, with serial
interface
the development system: a computer of the IBM PC genre,
providing mass storage (futed disk) and serial interface, as
well as keyboard and text-oriented screen for operator
interface
(alternative A) a cross-assembler and a compatible text
editor, both running on the development system; the cross-
assembler produces code which is to execute on the
application hardware
(alternative B) a Forth environment, sans metacompiler,
running on the development system

Although we will use as our application platform the 8051
trainer, the term application does not imply a limitation of
capability: in general, the application system may itself be a
development system, and the Forth environment imple-
mented on the application hardware may include a meta-
compiler. Indeed, the application system and the develop-
ment system may be identical, even to the extent that they are
one and the same. This latter case occurs particularly if you
are implementing Forth without having access to a Forth
development ~nvironment, or if you are reconfiguring an
existing Forth environment.

The Scenic Route
Given these resources, there are two alternative routes by

which we may reach our goal.
What at first appean to be the most straightforward

approach utilizes assembly language to define each compo-
nent of Forth for the application environment. The assembler
or cross-assembler runs on the development system, produc-
ing code which is to run on the application hardware. Once
the assembly source has been debugged and a Forth
environment has successfully been implemented on one
application platform, the same source code may be used as
the basis for implementing Forth on other platforms.

The assembly language approach is used by R.G. Loeliger
in his book 7Waded Zntepretive Languaga (Byte Books,
Peterborough, New Hampshire, 1981). The approach is also
the method originally used to distribute fig-Forth circa 1980
and is, in principle, the approach used in the eFORTH system
of C.H. Ting. If you take the trouble to inspect Loeliger's book

or one of the fig-Forth listings and the accompanying
implementation notes, it should quickly become apparent
that the assembly language approach is rather convoluted,
and not for the faint of heart.

Interestingly, Ting utilizes the Microsoft 80x86 macro
assembler, rather than a cross-assembler, regardless of the
application hardware. If, however, a cross-assembler is used,
porting (transporting) Forth between various platforms will
be considerably simplified when the cross-assembler is of the
"universal" (i.e., table-driven) variety. Such assemblers retain
the same syntax, irrespective of the processor; the table for
each processor provides a set of processor-specific opcodes.
The process of converting an assembly language file for one
assembler to work with another assembler of incompatible
syntax can involve long hours of tedious editing. Represen-
tative universal assemblers are TASM (shareware by Speech
Technology, Issaquah, Washington) and Cross-32 (Universal
Cross Assemblers, Nova Scotia, Canada).

The metacompilation approach makes use of Forth in the
development environment to define Forth for the application
environment. The approach is not generally understood and
has been shrouded with an undeserved mystique. Many
consider it an esoteric technique which is strictly within the
domain of the Forth guru. This is a false impression.
Metacompilation is the most simple, most direct method of
porting Forth from one system or platform to another.
Granted, you must know what you are doing. However, once
you understand what is going on, the process frees you from
a confusing mass of detail and from a multitude of con-
straints.

Follow the Yellow Brick Road
With metacompilation, the procedure is as follows: within

the Forth development environment, we write:
an assembler for the instruction set of the application
processor
a metacompiler which incorporates the assembler
application source (a mixture of Forth code words and
high-level Forth words)
application startup code, i.e., source for initialization of the
application system (Forth code words)

While we are in the Forth development environment, we
load the metacompiler, just as we would load any other Forth
application which runs on the development system. We then
load the source code for the application. The metacompiler
operates on the source code as it is loaded, producing
application object code. Finally, we copy the application
object code from the development system to ROM or floppy
disk.

Although the assembly language approach is adequate
for the task of creating a new Forth environment, metacom-
pilation facilitates the process by placing at the disposal of the
programmer the full resources of the Forth language. Specific
advantages of metacompilation over the assembly language
approach include:

The word compilation mechanism inherent in Forth is
utilized to create heads and parameter fields within the

I a~~ l i ca t ion Dlatform (the 8051) as did Pavne is ~ure lv / main~nterests lie in writing and teaching, and in workingwith embedded systems

believe that Payne's approach is unnecessarily complex:
there is too much source code and the procedures are too
involved. After all, the complete body of source code for
native-mode plyFORTH for the DEC PDP/LSI-I I-a micro-
computer with the instruction set of a minicomputer (a really
mawelous machine, a joy to program)-occupies only 83
sparsely populated 1024-byte screens. Moreover, the poly-
FORTH system has an integral metacompiler.

Pulling Yourself Up
by Your Own Bootstraps

If you find yourself without access to a Forth development
environment, it would not be unreasonable to reson to the
assembly language approach in order to build a Forth
development environment, so as to enable further develop-
ment to be conducted via metacompilation. In fact, Payne's
book assumes just such a scenario, and Payne provides code
for virtually everything in the way of software needed by
those taking this tack.

Whence?
Since this column (6)) is devoted to the matter of

orientation, perhaps we should recall what we have covered
in previous columns. Column #3 announced a focus upon
the field of embedded systems, with special emphasis on the
subject of metacompilation. Column #4 described and pro-
vided listings for an 8051-family assembler, a key component
of a metacompiler. The fifth column (no pun intended)
presented plans for an 8051-family single-board computer
for use as a metacompilation trainer. Column 6 consisted of
a foray into the terminology associated with metacompila-
tion. Column #7 dealt with the Forth vocabulary structure and
with the utilization of vocabularies in the process of meta-
compilation. Column #8 dscussed pointers and some of the
intricacies of stack implementation.

Whither?
What's in store? If we simply sit down in front of a terminal

and begin typing

: METACOMPILER

we won't get very far unless we have in our minds a clear
picture of the elements which comprise a Forth system and
how each element fits into the whole. Thus, you see the
reason for digressions to discuss matters such as assemblers
and vocabularies. Our next investigation will explore thread-
ing and the inner interpreter. Stay tuned. Meanwhile, drop
me a line.

R.S.V.P.

I

Admittedly, my effort in thls metacompilation series is
parallel to that of Payne. The fact that I chose the same

' 1 in the fields of instrumentationand machinecontrol. Hewelcomesclientswhooffer a matter circumstance. my pur- him the opportunity to work with Forth. He can be reached by phone at 7 13461-
pose is not to duplicate Payne's treatment of the subiect. I 1618, by facsimile at 713-461-0081, by mail at 8609Cedardale Drive, Houston,

application dictionary.
The programmer is free to implement whatever assembler
syntax he finds convenient.
Diagnostic words may be defined and executed interac-
tively.

Checking Out the Competition
The book Embedded ControllerForth forthe8051 Family

by W.H. Payne (Academic Press, Boston, 1990) follows the
metacompilation approach. I hesitate to recommend the text,
inasmuch as I find it rather disorganized andunapproachable.
Moreover, I disagree with a number of Payne's statements
and the conclusions they imply. One paragraph in particular
illustrates my objections; in it, Payne says:

The text of this book is its least important aspea. The code
presented in this book warrants your greatest study. Charles
Moore's genius is brought you members of the Forth
Interest Group. Jerry Boutelle's genius with metacompilers
allows us to generate Forth from source. You can figure out
what Charles Moore had in mind fairly easily. Understanding
what Jerry is doing in the metacompiler baffles the best
programmers.

In this OntheBackBurnerseries on metacompilation, the
code is the least important aspect. Code fragments which I
present are not optimized (nor are they guaranteed to work
correctly). They are only examples, to facilitate your compre-
hension. If you understand the text, you will be able to write
your own code, and your code will, in most cases, be
superior to that of the examples.

It should be noted that, whereas the metacompiler to
which Payne refers apparently is straight from the hand of
Boutelle, the fig-Forth listings to which Payne refers do not
necessarily convey the genius of Chuck Moore, inasmuch as
they are removed by several generations from his direct
influence.

A metacompiler is not inhemtly a complex application,
nor is metacompilation inhemtly a complex process. A
properly designed metacompiler should not baMe a pro-
grarnrner. A design is a solution to a problem. A fundamental
criterion of excellence in design is simplicity. Simplicity in
design is the hallmark of a designer who understands the
problem.

Designs of the Rube Goldberg variety typically indicate
either that the designer did not understand the problem at
hand, or that he faced overwhelming constraints. (It may well
be that adding metacompilation capability to dudFORTH
admits of no good solution.)

The foregoing is not meant to imply that every code
segment should be transpamt. As with a mating combina-
tion in chess, excellent code may sometimes be abstruse,
although it often is the essence of simplicity. Code of h s
category should always be documented.

Russell Harris is an independent consultant providing engineering, program-
mma, and technical documentation services to a varietv of industrial clients. His

I - / Texas 77055. or on GEnie (address RUSSELL.H)

Forth Dimensions 37 September 1993 October

(Character classrjication, continued fronapage 8.)
the source operand is somewhere in the lookup table at

- ctype, as indicated by that register.
Had we wanted to emulate the C code exactly, the place

to implement the necessary 1+ would have been to change
the byte displacement value to a 1. This would have added
two bytes to the size of the table: the byte at -ctype, and
one byte of wastage due to word alignment required by the
processor. But, unlike the C macros, it would not have added
any instructions to the code.

Line ten places the results on the stack, and line 11 sets
our return to the calling code.

Note that the result is not necessarily a one, minus one,
or a zero. The result is the product of the and between the
bit mask in the classifier word and the mask in the array. Thls
is not a "standard" implementation. However, the user may
find the resulting bit mask useful for further processing, and
the zero or non-zero result is useful.

Even with fastForth's efficient compiler, the assembly
language version of the code is somewhat faster than the
high-level version, and considerably smaller.

Screen 1926 uses the defining word CLASSIF IER to
build several classification words, analogous to the macros
in the second group in ctype.h. There are single-bit mask
words, such as ISLOWER and ISUPPER. Masks may be or'd
together to produce larger classifications. An example of the
latter is ISALPHA, which tests for a character being either an
upper- or lower-case character.

Results
The exercise produced clean code, easily understood

(with the possible exception of the assembly language), and
very fast. The code probably takes more space than the code
it was written to replace, but the user may find that the added
flexibility is well worth it.

The whole processfrom being dissatisfied with Mr.
Schaaf's code, reverse engineering the C code, writing the
code in Forth (including the assembly language), and testing
the Forth code-took less than two hours. It took longer to
write this article.

FORTH and Classic
Computer Support

For that second view on FORTH appli-
cations, check out The Computer Journal. If you
run a classic computer (pre-pc-clone) and are
interested in finding support, then look no
fbrther than TCJ. We have hardware and soft-
ware projects, plus support for Kaypros, S 100,
CP/M, 6809's, and embedded controllers.

Eight bit systems have been our mainstay
for TEN years and FORTH is spoken here. We
provide printed listings and projects that can run
on any system. We also feature Kaypro items
from Micro Cornucopia. All this for just $24 a
year! Get a FREE sample issue by calling:

(800) 424-8825

TCeB:Eter
Lincoln, CA 95648

Availability
This code is released to the public

domain. Enjoy it in good health, and toast
the health of contributors to the public
domain from time to time.

CharlesCurley, a long-time Forth nuclear guru, has his own
private postal code: 827 17-207 1.

Computer Journal38
Forth Interest Group centerfold, 40
Harvard Softworks. 17
Miller Microcomputer Services38
Silicon Composers2

THIRTY-DAY FREE OFFER - Fma MMSFORTH
GAMES DISK worlh $39 95 wltn pbrcnase of MMSFORTH
Svsfem CRVPTOOUOTE HELPER OTHEL-0. BREA<-
FORTH and others

September 1993 October 38 Forth Dimensions

A Panorama
Several readers have expressed confusion concerning

both our ultimate goal and the means of achieving it.
Our goal is to implement a Forth environment on a

Conducted by Russell L. Harris
Houston, Texas

Who 'S on First3

Column #7 generated a brief flurry of response, a total of
ten contacts (from a circulation of 1600?). I need feedback on
a continual basis, in order to match the presentation to your
background and level of understanding. Particularly, I need
to hear from anyone who finds details of a presentation
unclear. If you don't quite understand what's going on,
you're probably not alone. However, since we're not in a
classroom where I can look for blank faces and puzzled
expressions, you must take the initiative and contact me
whenever you hit a snag. I will try to get you over the
immediate hurdle; then, in a subsequent column, I will
backtrack and elaborate on those areas you found unclear.

cornput& we term the mlication hadware. We accom-
plish ou goal by using a computer, the deaelqnentsystem,
to generate code which, when executed on the application

Breaking the Ice
Don't let things pile up: In any classroom environrnent,

as soon as you see that you're lost, interrupt the lecture and
state the area in which you are confused. You will be
surprised how many of your fellow students are confused on
the same point, but were too embarrassed to be the first to
admit it. By speaking out, you benefit everyone: you, your
classmates, and the teacher. Understanding is built upon
understanding: Fundamental concepts which are not mas-
tered at first encounter can quickly snowball into insur-
mountable barriers.

An aside: A lecturer who disallows interruptions, insists
upon unquestioning submission to his "authority," or brands
as heresy any challenge of "facts" or theories he presents,
should immediately be suspect. Truth welcomes--nay,
demands-scrutiny. In this regard, you may find interesting
Albert Einstein's essay "On Education" (1936).

Regarding the level of presentation, I intend this column
to be easily comprehensible by anyone who has successively
navigated the text Stam'ng Folth by Leo Brodie/FORTH, Inc.
Our current topic, metacompilation, is not a terribly ad-
vanced subject!

Another aside: I doubt if even half thase who think they
have mastered Starting Forth have in reality done so.
Although the topics covered in Statn'ng Fotth are not difficult,
the book itself is deceptively elementary. Unless you have
personally worked through each of the exercises, you
probably have failed to comprehend a number of critical
concepts.

hardware, first creates a Forth environment and then acti-
vates the environment.

Having generated executable application code in the
development environment, we copy the code to disk or to
ROM, according to the configuration of the application
hardware. On hardware such as the IBM PC, application
code typically executes from RAM and must be loaded into
RAM from disk. On hardware such as the 8051 single-board
computer (SBC) presented in column 6, application code
executes directly from ROM.

The Kick-Off
The segment of the application code which first receives

control of the processor is termed the initialization code. In
our usage, the term will embrace creation and activation of
the Forth environmen4 as well as configuration of the
hardware.

Most computer systems contain one or more hardware
components which can assume a variety of configurations
(i.e., behaviours). The processor, the serial interface adapter,
and the parallel interface adapter typically are of this nature.
Serial communication parameters and the direction (i.e.,
input or output) of parallel ports are representative of
behaviours which vary with component configuration. Origi-
nally, component configuration was accomplished by
jumpering pins of the respective integrated circuit. Now,
however, configuration is typically done under program
control, by loading specified values to registers within the
devices.

Hardware configuration is the first task performed by the
initialization code. After configuring the hardware, many
initialization routines perform a checksum or cyclic redun-
dancy check (CRC) on system ROM and a read/write
diagnostic on system RAM.

If the application hardware is a disk-based system such as
the IBM PC, the ROM BIOS furnished with the PC is
responsible for hardware initialization. Thus, the initializa-
tion portion of Forth application code running on a PC need
concern itself only with setting up and activating the Forth
environment. If the application hardware is a ROM-based
system such as our 8051 trainer, the application code we
generate will both configure the hardware a n d set up and
activate the Forth environment.

The Set-Up
The process of setting up the Forth environment involves

reassignment of interrupt vectors, definition and initialization
of pointers which bring into existence the stacks, buffers,

I dictionary, etc., and definition and initialization of pointers
which constitute the user area of OPERATOR. These compc-

Forth Dimensions 39 September 1993 October

6 s 5 nal techcal conference
rogrammers, managers, vendors, and users

Following Thanksgiving
November 26-November 28,1993

Asilomar Conference Center
Monterey Peninsula overlooking the Pacific Ocean

Pacific Grove, California U.S.A.

Theme: Forth Development Environment
Papers are invited that address relevant issues in the establishment and use of a Forth development
environment. Some of the areas and issues that will be looked at consist of networked platform
independence, machine independence, kernel independence, development system/application system
independence, human-machine interface, source management and version control, help facilities, editor
development interface, source and object libraries, source block and ASCII text independence, source
browsers including editors, tree displays and source data-base, run-time browsers including debuggers
and decompilers, networked development/target systems.

Mail abstracts of approximately 100 words by September 1,1993.
Completed papers are due November 1,1993.

Registration fee for conference attendees includes registration, coffee breaks, notebook of papers submitted, and for everyone
rooms Friday and Saturday, all meals including lunch Friday through lunch Sunday, wine and cheese parties Friday and
Saturday nights, and use of Asilomar facilities.

Conference attendee in double room- $380 Non-conference guest in same room - $260 Children under 18 years old in same
room - $160 Infants under 2 years old in same room - free Conference attendee in single room - $490

*** Forth lnterest Group members and their guests are eligible for a ten percent discount on registration fees. ***

John Hall, Conference Chairman Robert Reiling, Conference Director
Register by calling, fax or writing to:

Forth Interest Group, P.O. Box 2154, Oakland, CA 94621, (510) 893-6784, fax (510) 535-1295
This conference is sponsored bv FORML, an activity of the Forth Interest Group, Inc. (FIG).

I The Asilomar Conferencecenter combines excellentmeeting and comfortable living accommodations with secluded forestson aPacific
ocean beach. Registration includes use of conference facilities. deluxe rooms. all meals. and nirrhtlv wine and cheese ~arties. I

