

SILICON COMPOSERS INC

FAST Forth Native-Language Embedded Computers

DUP

>R
R>

Harris RTX 2000"" l&bit Forth Chip SC32"" 32-bit Forth Microprocessor
08 or 10 MHz operation and 15 MIPS speed. 08 or 10 MHz operation and 15 MIPS speed.
1-cycle 16 x 16 = 32-bi multiply. 1 -clock cycle instruction execution.
1 -cycle 1 &prioritized interrupts. *Contiguous 16 GB data and 2 GB code space.

*two 256-word stack memories. *Stack depths limited only by available memory.
-&channel 1/0 bus & 3 timer/counters. *Bus request/bus grant lines with on-chip tristate.

SC/FOX PCS (Parallel Coprocessor System) SC/FOX SBC32 (Single Board Computer32)
*RTX 2000 industrial PGA CPU; 8 & 10 MHz. 032-bi SC32 industrial grade Forth PGA CPU.
*System speed options: 8 or 10 MHz. *System speed options: 8 or 10 MHz.
-32 KB to 1 MB 0-wait-state static RAM. 4 2 KB to 512 KB 0-wait-state static RAM.
*Full-length PC/XT/AT plug-in (&layer) board. .100mm x 160mm Eurocard size (+layer) board.

SC/FOX VME SBC (Single Board Computer) SC/FOX PCS32 (Parallel Coprocessor Sys)
*RTX 2000 industrial PGA CPU; 8, 10, 12 MHz. 032-bi SC32 industrial grade Forth PGA CPU.
*Bus Master, System Controller, or Bus Slave. *System speed options: 8 or 10 MHz.
Up to 640 KB 0-wait-state static RAM. 064 KB to 1 MB 0-wait-state static RAM.

-233mm x 160mm 6U size (Slayer) board. *FulClength PC/XT/AT plug-in (Slayer) board.

SC/FOX CUB (Single Board Computer) SC/FOX SBC (Single Board Computer)
*RTX 2000 PLCC or 2001A PLCC chip. *RTX 2000 industrial grade PGA CPU.
-System speed options: 8, 10, or 12 MHz. *System speed options: 8, 10, or 12 MHz.
-32 KB to 256 KB 0-wait-state SRAM. *32 KB to 512 KB 0-wait-state static RAM.
100mm x lmmm size (&layer) board. *100mm x 160mm Eurocard size (+layer) board.

For additional product information and OEM pricing, please contact us at:
SILICON COMPOSERS INC 208 California Avenue, Palo Alto, CA 94306 (415) 322-8763

I Features

7 Formatted Input Fields Martin Schaaf
5108936784 or 510-8936784? Why should users of your application do without the commas,
hyphens, parentheses, and other special characters that make humans' VO (e.g., reading and
typing) so much more accurate? They shouldn't-and now you won't have to devise the requisite
software from scratch. Just fold this routine into your code, and see what a tangible cfifference a
friendly interface can make!

Interface for the GPIB (aka IEEE-488) Bob Thompson O If you do much work with engineering-related applications or otherwise communicate with
electronic devices, someday you'll wish for a software tool to smooth the way to easy access to
GPIB functions which allow you to control devices on the bus. Whether you call it the general-
purpose interface bus, the H-P IB, or the IEEE-488, this tool's for you.

Forth in Search of a Job Donald Kenney 24 It's easy to gripe about Forth's lack of acceptance in large, corporate (and also, therefore, computer
science) settings. What's harder is to gain enough objectivity to see both sides of the fence and
to understand the circumstances that give rise to the condition. Defining the problem accurately
is at least half the battle.. .

25 Integer Date Calculations Richard de Rozario
Useful business applications often require routines that manage calendrical information--e.g.,
what will the day of the week be one hundred days from now, exactly how many days will pass
before the mortgage is paid. They must take into account the odd twists and turns our calendars
take to stay in sync with the seasons. Here's a way to do it in Forth with integer arithmetic.

Forth: The New Model Reviewed by Charles Curley 27 The fist major offshoot from traditional Forth since the 1983 standard is likely to require careful
study before its implications can be understood. Jack Woehr's book attempts to dissect the draft
proposed ANS Forth, layingbare its innards for both the curious and those who really need to know
what makes it tick. Our reviewer pronounces no prognosis for the patient, but does help
prospective purchasers of the book.

Calendars &The Game of Life C. H. Ting 30 m e n climbing a programming language's learning curve, it's surprising to suddenly find that a
few added operators are all it takes to make meaningful things happen. Dr. Ting's fourth tutorial
applies Forth to the interesting problem of generating calendars and to the entertaining, classical

. sym-biosystem known as Life. A little thought will prompt you to add plenty of permutations..

Math-Who Needs It? Tim Hendtlass 38 Concluding the code presented in our last issue. This complete our math professor's toolbox of
integer, double-precision, futed-point, and floating-point routines. If you missed issue XIV/6,
which contained the explanatory text in addition to the bulk of the code, order it soon!

4 Editorial Forth after fifteen, contest, public defender, wit's end

5 Letters Of saints and spaghetti; smell the earth, hear the seagulls;
roving reporter at Silicon Valley.

34 Advertisers Index

35 Reader ProfileMark K. Malrnros

36 Fast Forthward Hardware as a creative mecfium

42 resource Listings A N S Forth, on-line connections

... 43 On the Back Burner The king is dead, long live the king!

Forth Dimensions @ PRINW ON RECYCLED PAPER
May 1993 June

Forth Dimensions
Volume X V . Number 1

May 1993 June

I Published by the
Forth Interest Group 1

Editor
Marlin Ouverson

Circulation/Order Desk
Frank Hall

w ith this issue, we begin our fifteenth year of publication, an anniversary of Sorts.
Looking back, the times have certainly changed, but has Forth? We certainly
are no longer as separatist-it took years for many in our community to

reluctantly accept a vision of Forth that would allow it to run under another operating system,
even (gasp) using standard disk formats. But &spite those and perhaps more fundamental
changes, Forth retains its unique signature, its fork undiminished. And although C firmly

~orth Dimensions welcomes
editorial material, letters to the edi-
tOr~andcomme"tsfromitsreaders~
No responsibility is assumed for
accu,cY of submissions,

Subsuiption to ~ ~ ~ t h ~ i - -
siotrris included with membership

squashed any dreams of becoming the next Pascal, Forth does occupy a small butapparentl;
stable niche.

Will our language of choice ever become others' language of necessity? Should it evolve

Donald Kenney, who describes himself as a "reformed software manager," bluntly 1 946-2272.
-

I

in the Forth Interest Group at $*O
per year ($52 overseas air). For
membership, change of address,
and to submit items for publics-

in more revolutionary than incremental ways? I suspect that A k Forth will prove to be only
the next shaping influence, and possibly not the most powerful, of many we will encounter.

Those still harboring dreams of grandeur would do well to consider the (inherent?)
obstacles to Forth's breakthrough into broader arenas. One author in this issue has done that.

tion, the address is: ForthA1nterest

P.O. Box 2154~ Oakland,
California 94621. Administrative
offices: 510-89-FORTH, Fax: 510-
535-1295. Advertising sales: 805-

Contest for Authors

enumerates in his "Forth in Search of Work the items many managers see as stumbling
blocks.

tained in this periodical (but not
the code) is copyrighted by the

Copyright O 1993 by Forth In-
terest Group, Inc. The material con-

announcement on page six (which lists the cashprizesthe winners will receive and the contest piled or the artides, except repro-

deadline) and the FOWL ad on the back cover for iust a few ideas. We welcome anv and ductiO" for non-commercial pur-

Not unrelated to the above is this year's FOFWL Conference theme and the subject of FDs
current contest. "Forth Development Environments" encompasses a wide range of possible
topics, and we look forward to hearing your take on the subject. See the contest

authors of the
and by Forth Interest Group, Inc.,
,spectively, Any reproduction or
use of this periodical as it is =om-

Public Defender
Computers in Physics (500 Sunnyside Blvd., Woodbury, NY 11797) published an article

about programming languages and tools which neglected to mention Forth. Fortunately,
Edgar T. Lynk-their reader and ours-took steps to correct that oversight. His prompt letter
appeared in their January/February 1993 issue, reminding them of Forth's ubiquity across
many CPUs, its object-oriented characteristics, and its availability in both professional and
public-domain implementations. And his letter included the current address and telephone
number of the Forth Interest Group.

As part of our Author Recognition Program, we will be sending Edgar a certificate
redeemable for his next year's membership in FIG. Efforts like his, which inform the broader
community of Forth's conhued vigor and relevance, are crucial to keeping Forth in the
public's awareness and to telling the uninformed about the Forth Interest Group. In the
absence of corporate mega-fundng and widespread adoption by universities (remember C's
beginnings?), we appreciate and encourage grass roots actions that, simply and directly, keep
Forth part of the mainstream dialog.

all submissions that address the general contest theme, from the mundane to the exotic. Take
this opportunity to get involved and get paid!

Any code bearing a copyright no-
tice, however, can be used only
with permission of the copyright
holder.

poses, without the written permis-
sion of Forth Interest Group, is
a violation of the Copyright ~aws .

The Forth Interest Group
The Forth Interest Group is the
association of programmers, man-
agers, and engineers who create
practical, Forth-based solutions to
real-world needs. Many research
hardware and software designs that
will advance the general state of
the art. FIG provides a dirnate of
intellectual exchange and benefits
intended to assist each of its mem-
bers. Publications, conferences,
seminars, telecommunications, and
area chapter meetings are among
its activities.

libertarian language-where else can you say, "STATE OFF"?

Wit's End
In a letter accompanying his latest submission, Charles Curley suggests that, if I am going

to print bad puns, I should include Charlie Johnsen's observation that Forth is a very
& , - -

Ave., Suite D, San Jose, CA 95128.
Second-dass postage paid at San

"Forth Dimensions (ISSN 0884-
0822) is published bimonthly for
$40146152 per year by the Forth
Interest Grou~. 1330 S. Bascom

Jose, CA. POSTMASTER: Send ad-
-Marlin Ouuenon (dress changes to Forth D i m i o n s >)

I P.O. Box 2154, Oakland, CA94621." /
May 1993 June 4 Forth Dimensions

Letters to the Editor-and to your fellow readers-are always welcome.
Respond to articles, describe your latest projects, ask for input, advise
the Forth community, or simply share a recent insight. Code is also
welcome, but is optional. Letters may be edited for clarity andlength. We
want to hear from you!

Of Saints and Spaghetti
Dear Mr. Ouverson,

Forth Dimensions ~ 1 ~ 1 6 is great. Tim Hendtlass asks,
"Math-Who Needs I F I do, I do! The Laxen & Perry F83 I
use runs a bit short of math power when it comes to double
and float routines. I don't need them all the time, but it's good
to have them in the toolbox when I do. Looking forward to
[the rest of the codel.

Gordon Charlton's "Unified Control Structure" seems to
be a case where too much simplicity actually creates
complexity. By having the control structures use differently
namedwords-e.g., I F THEN or I F ELSE THEN for branches,
and BEGIN AGAIN, BEGIN WHILE REPEAT, BEGINUNTIL,
or DO LOOP, DO +LOOP for loops-the type and function of
the control structure is more obvious than if you try to use
fewer words in endless permutations.

I could see a need for something like WHEN in the BEGIN
AGAIN loop, which would allow for multiple exits from the
loop. Right now I would use EXIT , but the contruct isn't
perfect. Might also have a ?WHEN and a ? OWHEN to exit the
loop on true or false flags on the stack. In that regard, multiple
WHILE and UNTIL statements would be more confusing to
me. These loops are better left in their classic form.

Charles Moore's "Fireside Chat": Forth as Zen! Just when I
was beginning to understand Forth, Moore comes up with
spagheni code written in machine language as the new way in
Forth. Saints preserve us, Paddy! I hope you can implore C.H.
Ting to expand the explanation of what goes on in 386 OK.

Yours truly,
Walter J. Rottenkolber
P.O. Box 1705
Mariposa, California 95338

Smell the Earth, Hear the Seagulls
Dear Mr. Ouverson,

Mike Leavitt, Utah's new governor, tells an anecdote
about his grandfather, a farmer. His grandfather made do
with an old tractor for years and years, while his neighbor on
the farm next door always had to have the latest time-saving
farm implement. When asked about his philosophy, the
grandfather said, "I like to stick with what's real and right."

Over time, the neighbor went broke paying for his

Forth Dimensions

equipment, while Mike's grandfather thrived. This story has
struck such a chord with Utahns that "real and right" has
1

-
become a motto and a budget criterion for the state.

To me, Forth is "real and right." It may not be glitzy, and
sometimes I curse its quirks just as Mike's grandfather must
have done with his old tractor; but when it comes to doing real
work at reasonable cost, it can't be beat. There's a definite
advantage to having simple tools ha t you know extremely well.

It's difficult to justify this attitude in the current software
community's attitude that more powerful tools are the
answer to our programming dilemmas. Strong voices, such
as that ofTyler Sperry, editor of EmbeddedContmlmagazine,
have called for Forth to catch up with the world and
implement all the popular programming tools. To an extent,
I agree with these people. I prefer to program in F-PC Forth,
which is considered by many to be a "fat Forth," with more
tools than I really need. There are times when these features
come in really handy, but as I analyze my programming
practices, the more I use Forth, the more I find that I use a
very small, core set of tools and techniques to implement
extremely powerful functionality.

I contrast this with the attitude at my work, where the
latest CASE tools, emulators, processors, and C compilers
must be used in the products we design. The cost of doing
this has been much more expensive development, higher
product cost, lower processor efficiency (which translates to
sluggish product performance), longer development times,
and (still hard to believe, but true) reduced portability. The
single benefit I have seen from it so far is that the generated
software has had higher quality in terms of bugs found after
product release, as compared with previous assembly lan-
guage development.

I think the call for more powerful tools and standards is
justified in order to make Forth more friendly to new users.
I'm even looking forward to the 32-bit, flat address space
Windows NT Forths that must certainly be in development.
But I hope the implementors make efforts to provide paths
and incentives for new users to move naturally to the "real
and right" Forth that places the emphasis on results instead
of on tools. The power of tools is often mistakenly perceived
as form (windows, colors, graphics, etc.) rather than sub-
stance (what you can do with it). CREATE DOES> is the most
powerful tool I've seen in any language, including object-
oriented ones.

I think if I were a farmer, I'd rather smell the earth and hear
the seagulls than sit way up in an air-conditioned cab
listening to heavy metal.

Thanks for your efforts,
Glen Dixon
587 N. 2575 W.
West Point, Utah 84015

Roving Reporter at Silicon Valley
For the longest time, I just didn't give a FIG! That's right,

it had been 15 years since my last FIG experience. Ah, gone
are the days of Bill Ragsdale's original FIG meetings in
Hayward, California-no more bulging programmer bellies
stuffed inside silly FIG T-shirts. Well, at least most of the T-

May 1993 June

shirts are gone.. .
Saturday's Silicon Valley

FIG Chapter meeting was a
fascinating experience that
could, of course, only occur in
a room full of 40-50 Forth
programmers. The format was
pretty much the same as the
early days: the first part of the
day-long affair was directed
toward "nuts-and-bolts" Forth
issues, the next part for "stand
up and introduce yourself or
plead your case," then a guest
speaker, an informal discus-
sion break, and then the Zen
period. That's right, Zen. More
on that later.

Andrew delivered a scintil-
lating overview of using text
files instead of those pesky
disk screenshlocks for deal-
ing with Forth text. Blocks are
simple and easy, and are the
simplest and easiest method
to implement on new hard-
ware. But, take it from this
author, if you have to support
any large Forth system that
someone else has written,
blocks are a nightmare! You'll
always have to re-document
the whole damn thing to fig-
ure out what's going on.

Before Andrew knew what
was going on, a heated debate
broke out among audience
members over the specific
definition of a "line"! Just what
does a line end with: <CR>?
<FF>? the 80th character?After
the shooting was over, there
were only three casualties.
Andrew did a great job, and
even provided printouts of his
code, a disk containing the
code (!I, and free balloons for
the kids.

Next, Shannon cruised by

May 1993 June 6 Forth Dimensions

W r i t e about libraries,

source management,

user interfaces,

Forth
kernel independence,

for the upcoming

FORML conference,

or any other subjects

related to the theme.

CALL
f r

PAPERS
for an overview of object-

Cash awards and publication

for the articles judged best.

$500 - 1st place
$250-2ndplace
$100 - 3rd place

Entries will be refereed. Papers to be presented at FORML

are eligible, but aseparate, complete copy must be received

at our editorial office by the contest (notFORMLs) deadline.

Mail a complete hard copy and a diskette

(Macintosh 800K or PC preferred) to:

The Editor, Forth Dimensions
P.O. Box 2154

Oakland, California 94621 . Deadline tor contest entries is August 1, lws.

was a blistering comment by someone with a pony tail, who
oriented programming in Forth. His company did not just
dump everything and convert to Oops, they only went Oops
when needed. As explained by Shannon, this seemed a most
practical approach. A general discussion around the room
concluded that the best way for Forth programmers to get
familiar with Oops is to convert something they've already
written-something which lends itself to Oops. There were
many harrumphs in support of ths. Oops, like ridlng a
bicycle, seems difficult to teach. A programmer simply needs
to sit down and do Oops. I suppose they could even do Oops
loops. . . not!

The final word regarding object-oriented programming

shall remain nameless because I don't know his name. He
observed, to the general agreement of our august, duly
assembled Forth body, that more money has probably been
made selling Oops languages (C++, for instance) than has
been made by pmgrammingin Oops. There was the typical
roar of iconoclastic Forth programmer laughter. (Plus a few
belches.)

Speaking of belches, about this time (high noon) the
Great Pizza Wizard arrived bearing several of those tell-tale,
flat, white boxes with thick grease stains on the bottom.

Next was the stand-upand-be-counted session in which

(Continues on page 9.)

Formatted Input Fields

I Martin Schaaf
1 San Mateo, California

Writing the user interface is almost always the most
tedious part of any project. Tools that will prompt for input,
format input and output, and automatically check for correct
input, make the job much easier. Allowing the user to edit
input strings by backspacing over them makes for a "user
friendly" interface.

The following >PICTURE tool was inspired by the
PICTURE statement in Cobol. (I dropped out of the Cobol

course when one error produced approximately 50 error
messages!) In my version, I split the function into input and
output words. I can then use data in a normal Forth manner,
and worry about formatting only during input and output. At
the end of this article is an example of formatted input of a
phone number, followed by conversion to a double-preci-
sion number on the stack.

c r e a t e t a s k v a r i a b l e p - t e s t \ Used t o save t h e p i c t u r e type o p e r a t o r .
v a r i a b l e echo \ Flag i f inpu t i s t o be echoed.
: b s l s 0 do 8 e m i t l oop ; \ Backspace over a f i e l d on t h e c r t

: alpha dup 6 4 > over 98 < and over \ Check f o r c h a r a c t e r s t h a t
dup 96 > swap 123 < and o r \ might be used i n an
over a s c i i - = o r over a s c i i " = o r \ ALPHA f i e l d
over a s c i i : = o r over a s c i i + = o r \ True i f found
over a s c i i & = o r over a s c i i ; = o r \ F a l s e i f not found
over a s c i i $ = o r over a s c i i = o r
over a s c i i . = o r over b l = o r ;

: alpha-numeric dup 31 > over 127 < and ; \ D i t t o f o r ALPHA-NUMERIC
: numeric dup 47 > over 58 < and ; \ D i t t o f o r NUMERIC f i e l d s

: bl-mask 0 do \
2dup swap i + c @ dup \
a s c i i - = i f \
drop b l then \
swap i + c ! loop 2drop ; \

\
\
\

Mask ou t t h e under l ine
c h a r a c t e r s whi le moving
t h e p i c t u r e t o t h e d a t a
f i e l d . This way, i f t h e
u s e r p r e s s e s [ENTER]
before t h e end of t h e
f i e l d , t h e remainder of
t h e f i e l d w i l l be b lank .

: ?echo echo @ i f dup else a s c i i * then e m i t ; \ I use t h i s t o t u r n o f f
\ echoing on passwords

: ? b s l s (D P I1 - D P I 2) 0 over 1 - do
1 < i f 7 e m i t 0 l eave else
2dup i t u c k + c @ dup 8 emit emit 8 e m i t (Code ontinues on nextpage.)

Forth Dimensions 7 May 1993 June

(Code continued f r o m p r m ' ~ ~ (~ p a g e .)

dup a s c i i - = i f drop b l - r o t + c ! i leave e l s e
- r o t + c ! i then then -1 +loop ;

\ When t h e u s e r p r e s s e s t h e backspace key, you have t o backspace
\ over p r i o r inpu t bu t l eave fo rmat t ing c h a r a c t e r s i n t a c t . I a l s o
\ l eave t h e r e v i s e d index on t h e s t a c k , t o be used t o decrement
\ t h e loop coun te r i n (> p i c t u r e) .

The following run-time word performs the work of
pictured input, using the above subwords.

: (> p i c t u r e) (i -) pad +
r> dup @ p - t e s t !
2+ count 2dup + >r
2dup tuck type
b s l s
3dup r o t swap bl-mask 0 do
2dup i + c@ dup a s c i i - - i f
tuck e m i t i + c ! 1 e l s e
drop key dup 13 = i f
2drop l e a v e else dup 8 = i f
2drop i ? b s l s i - else
p - t e s t perform i f
?echo swap i + c ! 1 e l s e
2drop 7 e m i t 0 then
then then then +loop

, echo on 2drop ;

\ Address of t h e d a t a a r e a
\ Save t h e f i e l d type o p e r a t o r
\ G e t t h e p i c t u r e f i e l d s t r i n g
\ Display it with under l ines
\ P o s i t i o n c u r s o r a t beginning
\ Write t h e p i c t u r e t o d a t a a r e a
\ I f c h a r a c t e r of p i c t u r e is not
\ an under l ine , e m i t it
\ I f inpu t c h a r a c t e r i s [RETURN]
\ e x i t , o therwise i f BS
\ BS t o beginning of f i e l d
\ otherwise test membership
\ c o n d i t i o n a l l y echo then s t o r e
\ Beep on i l l e g a l c h a r a c t e r o r
\ end of l i n e
\ Turn on echo f o r next u s e . . .

The >PICTURE operator is a compiler word. All work that
can be done ahead of time is done while compiling. The
usage is:

- NN >PICTURE TYPE " "

where NN is the offset into pad of the field and TYPE is the
ALPHA, NUMERIC, or ALPHA-NUMERIC type word (other
special type words could be defined). " is the usual delimiter
character, though other delimiters could be used.

- - --- is the picture string-non-underline char-
acters will be preserved in the final input (in this case, a
telephone number).

: > p i c t u r e compile (> p i c t u r e) \ Compile t h e p i c t u r e o p e r a t o r
[compile] [compile] \ Compile t h e fo l lowing t y p e
b l word 1+ c @ \ Get t h e d e l i m i t e r c h a r a c t e r
word c@ 1+ a l l o t ; \ and enc lose t h e p i c t u r e s t r i n g
immediate \ It 's a compiler word, s o it

\ has t o run immediately

May 1993 June 8 Forth Dimensions

A typical usage of this tool would be:

- - 5 >PICTURE NUMERIC " " \ G e t t h e d a t a i n t h e f i e l d
5 pad + phone-swap \ Swaps t h e f i r s t two d ig i t s o f t h e area code t o keep

\ doub le number p r e c i s i o n
0 . 0 4 pad \ conve r t t h e phone number i n t o
c o n v e r t c o n v e r t c o n v e r t d r o p \ double number on t h e s t a c k

The same type of tool could be used for pictured output
(in this case, a social security number):

nn PICTURE> TYPE " 11 - - ---

I leave PICTURE> as an exercise for the reader.
Having completed this tool, I can code user input and

output much faster. There's just one problem: It's now much
more boring!

Martin Schaaf is a Forth programmer in San Mateo, California. In the early 1980s,
he initiated the FORTH-BIT discussion group, which inspired a number of
hardware implementations of Forth. Mr. Schaaf currently is the sysop of "the BBS
from 38 NORTH - 122 WEST" and can be reached at:

Voice: 4 15-344-8820
BBS: 415-343-7517, v.32bis

1 NETMAIL: 1:125/121

/ (Letters, continued frompage 6.) I
everyone introduced themselves. However, no one stood
up. Too much pizza all around, I suppose. At this point, this
author was harshly interrogated regarding his successful
contract at the capital airport of Saudi Arabia, where he

.managed the largest Forth control system in the world for
over two years, and also learned how to ferment his own
wine. This enormous control system is a network of 700
polyFORTH computers interconnected via high-speed hard-
ware and the ClusterForth layer to allow easy programmer
and software tie-in to any other computer on the network.

The control system can monitor and control 26,000
points, 800 cardreaders, and 12,000employees. It is database
driven, and the current database is 53 megabytes. One guy
works full time just maintaining that humongous database-
except five times a day, when he goes to pray. He probably
prays for database integrity a lot.. . Allaht? Not!

Working in Saudi Arabia is a real adventure. However,
I've seen too many marriages break up there to recommend
it to anyone except those with a little bit of the crusader in
them. Basically, you must ask yourself, "Self, how long will
my wife put up without basic American freedom? She'll
typically give you her answer the first night she's there!

Speaking of the fair sex, I was shocked to see that there
was not one woman at the FIG meeting! How odd. There are
women working all over the San Francisco Bay area, in all
walks of life, in numbers almost equal to men. I've worked
with several lady programmers through my years. And
everyone's heard of Liz Rather! But at the Silicon Valley KG
Chapter? No females. Maybe the guys there have a repub-
tion, I don't know. Maybe there's something about Forth that
attracts men but repels women-sort of like The Three
Stooges. Nyuk, nyuk!

Next, a fairly lucid young fellow went over the current
DNA analysis and cloning techniques, 'cause that's what the
company does that hosted our meeting. 1 particularly en-
joyed (even waking up for) his ruthless political lambasting
of Proxmire's Golden Fleece award regarding wasting money
on DNA genorning. Anyway, each time the lecturer men-
tioned how much DNA acted like software, many of the Forth
programmers squirmed excitedly in their seats.

Forth Dimensions

Next, Dr. Ting, our illustrious leader, gave a revelatory
treatise on "Zen is to other religions as Forth is to other
software." Or was it the other way around7 Well, I guess it
doesn't matter from a yin/yang perspective. Or does it?
Anyway, it was a fascinating story about many of the
characters responsible for Chinese Zen. There were even
some keen observations and commentary from the audi-
ence.

For instance, Ting revealed that the Buddha is within all
of us. It is a special feeling or situation within, perhaps akin
to one cup of coffee too many. Anyway, someone asked, if
it's within us all, is it within Forth? Many suspected the
interpreter.. .

Then there was that old "Is man essentially good?" thing,
to which someone quipped, "Naah, he's a selfish mofo!" To
which the good Dr. Ting corrected, "Selfish genes!" Fortu-
nately, there were no Genes in the audience.

It was generally agreed that Charles Moore was fer sure
an avatar and would make a bodacious Zen master. Unfor-
tunately, though expected, Chuck d d not show up and
missed his chance for world-wide fame, fortune, and, of
course, a gift mantra (we all pitched in).

Next, Dr. Ting presented his work on a book, each page
of which contains English, Chinese, and Forth, all three
saying the same thing-sort of an engineer's Rosetta Stone.
A motion was made to bury a copy of this book, for future
generations to dig up and revere. Someone cleverly sug-
gested that Leo Brode illustrate the new Gospel/Sutra. Dr.
Ting's book was to be titled EFOR7R Someone explained to
me h s stands for "Evangelical Forth."

What a fun meeting it had been! How informative! And I
was warmly pleased to see that the humor and spirit of the
Forth programmer lives on despite Oops, recessions, and,
especially, 3860K!

But then it grew late, we were all hungry, and I heard a
Miller Draft calling my name from far across the San Mateo
bridge. . .

-Reporting from the Silicon Valley, this has been yourroving
Forthprogrammer, DougBell. htemek dougbell@netcom.com

9 May 1993 June

Interface for the GPIB
(aka IEEE-488)

Robert Thompson
Hattiesburg, Mississippi

a successll call, I had to figure h s out by using a little
creative reverse engineering and an assembly language
debugger. The h r d point is that one must be careful to
preserve registers that Forth uses around this call to the

The general purpose interface bus (GPIB) is a link or
interface system through which interconnected electronic
devices communicate. The original GPIB was designed by
Hewlett-Packard (where it is called the HP-IB) to connect
and control programmable instruments manufactured by
Hewlett-Packard. Because of its high data transfer rate of
from 250 kilobytes to one megabyte per second, the GPIB
quickly gained popularity in other applications, such as
intercomputer communicationand peripheral control. Itwas
later accepted as the industry standard IEEE-488. The versa-
tility of the system prompted the name General Purpose
Interface Bus.

National Instruments expanded the use of the GPIB
among users of computers manufactured by companies
other than Hewlett-Packard. They design hardware inter-
faces and software that helps users bridge the gap between
their knowledge of instruments and computer peripherals,
and of the GPIB itself.

National Instruments provides software interfaces to its
GPIB handler in several languages (BASIC, Pascal, C, etc.)
except Forth. Since Forth is frequently used for instrument
control, it would be useful to have an interface written in
Forth.

In our laboratory, we are using a frequency counter to
acquire data in real time from a piezo-electric quartz crystal
used as a mass-to-frequency transducer. Some biochemical
and electrochemical reactions are accompanied by mass
changes large enough to be detected when they are carried
out on the surface of the crystal. We are using an IBM AT
clone computer, a GPIB-PC11 board from National Instru-
ments, a model P M m frequency counter from Philips, and
crystal oscillating circuitry built in our laboratory. The Forth
system being used is F-PC v3.53, written by Tom Zimmer.
This article will describe how an interface to Forth was
written and how it has been used to acquire frequency data.

There are several interesting points I would like to make.
The first is how to use the DOS I/O control interrupt to access
the device driver. The second point, and I think the most
important, is how to call this device driver from within the
Forth environment. This is the part of the program that took
the most time and effort to work out. Since National
Instruments does not document the parameters needed for

May 1993 June

device drive;. These are documented in the F-PC manual, but
there is nothing like a concrete example to drive the point
home. The fourth point illustrates how to use Forth to transfer
information across the GPIB. Finally, I have implemented a
neat feature using the multitasking part of F-PC: real-time
display of data and error messages from the frequency
counter. I have written words which can send messages to
a device on the GPIB when Forth is interpreting and
compiling. When an error occurs, the counter displays an
error number on its &splay. At the same time, it can be set
to assert the service request line of the GPIB. Forth can be
programmed to detect this, and one of my routines will get
the error message from the counter and display it on the
screen. This is a background processing loop that runs as
long as F-PC is running. Another background loop will
collect data from the counter and save it to a text file. A third
background loop will display this data on the screen in real
time. I think these are good examles of the multitasking
abilities of Forth.

System Description
The GPIB handler is implemented by National Instru-

ments as a CONFIG.SYS handler. This Forth program is an
interface to the National Instruments GPIB handler. 30
commonly used GPIB funcitons can be accessed to control
devices on the bus. The function codes are given as constants
in the source code. Forth words are provided to print and
decode the status variables set by the GPIB handler, to
decode errors and print messages, and to call the GPIB
handler. Forth words are also presented which acquire data
from the Philips timedcounter and save it to a text file which
can later be imported into a spreadsheet program.

The handler is installed in the computer at boot-up time by
MS-DOS as a CONFIG.SYS driver, and its location in memory
is returned to the Forth program by using the DOS IOCTL
function. The heart of the application, then, is the Forth word
which calls this handler, passing the GPIB function number to
it, and returning with data and status information.

After the Nation1 Instrument GPIB handler has been
installed, the first thing Forth must do is get the address of the
handler for subsequent calls to it. This is done by the Forth
word IOCTLREAD, which is coded in assembly. This word
uses the DOS IOCTL function $44, sub function $2 (read from
device). The parameters passed to IOCTLREAD are:

10 Forth Dimensions

nbytes The number of bytes to read. In our case, this
number is not used, so we pass in zero.

adr-buf Thls is the address of the buffer in which the
segment and offset of the GPIB handler will
be returned. The device descriptor will be
returned in this buffer also. The device de-
scriptor is a temporary identification number
used by the handler, and is not related to the
GPIB address.

device-name ..%s is the buffer containing the symbolic
device name. The names of devices are
dev0, d e v l , ..., devl5. Sixteen devices can
be connected to each GPIB board. In our case
the name of the Philips frequency counter is
dev l0 . The frequency counter has a set of
dip switches in back to set the address of the
device. Each device connected to a GPIB
board must have a unique address.

To initialize a device, call I B F I N ~ to open each device
you will use. The stack action for IBFIND is (buf-adr --
descriptor), where buf-adr is the buffer containing the
symbolic device name, and descriptor is an integer value
returned by the handler. Save this descriptor and use it in
subsequent function calls. If IBF IND fails to find the device,
it will abort and print an error message saying that the file has
not been found. If this occurs, the program should check to
see that the correct device name has been passed to it.

The Forth word CALLGP IB is the keystone of this applica-
tion. It actually passes program control to the handler. After the
handler has performed its function, it returns control to Forth.
All registers used by the device driver, as well as by F-PC, must
be saved around this call; in thls case, these are bp, ds, es, and
si. The first two parameters passed to CALLGPIB (adr-buf, cnt)
will vary, depending on the function call; the other parameters
are needed in every case. It is only necessary for the
programmer to supply the parameters, descriptor, and GPIB
function. The other parameters (segment and offset of GPIB
handler, and address of status words) are always required, so
these are supplied by the program.

The high-level Forth word GPIB actually performs each
/ interface bus function. The syntax is:

buf -adr c n t dev-descr ib-fcn g p i b
or
v a l u e dev-descr ib-fcn g p i b

where:
v a l u e is any value needed by a function,
buf-adr is the buffer address,
c n t is the length of the buffer,
dev-descr is the device descriptor, and
ib-f cn is one of the constants given in the source code.

Note that buf -adr and c n t are required for functions
such as reading, writing, and sending commands to a device.
Other functions require that a different parameter replace
buf -adr and c n t .

In the source code after GP I B are some words which get
me character and get a string of characters from the GPIB
jevice. Characters from the device are fetched one at a time
ind stored in PAD. They are concatenated into a working
nffer called STmGBUF.

The Philips frequency counter sends numbers inscientific
lotation, which is not valid and convertible by NUMBER. So
$>D is used to change the letter " E to a blank, then the string
:an be converted to a double by NUMBER. This, in effect,
gnores the exponent.

The word called KLUDGE deserves special mention. In
zonverting scientific notation to a number, the leading "+" in
iont of the exponent is not recognized by NUMBER. Gener-
illy, if we can ignore the exponent, the mantissa will be
zonverted to a double. In cases where one wants to use
software floating point, the + needs to be converted to a zero.
The work KLUDGE does this. The hardware floating-point
routines do not need this. Alternately, one could rework
NUMBER to account for the leading plus sign. (Note: these are
the software and hardware floating-point packages provided
with F-PC from the Forth Interest Group. Both packages were
written by Robert Smith.)

Words whch set the various operating modes of the
Philips frequency counter make up the next section of the
source code. The counter can accept two inputs, and can be
selected to read the frequency of a o rb channels, revolutions
per minute or period of a, totalize a or b, or the ratio of a to
b. Other words open and close the gate for manual operation,
set the measurement time and time-out values, set triggering
modes, service request mask, output mode, and output
separator. There are also words which query the counter to
return the operating modes.

The word INITFREQ initializes the frequency counter
with the default operating parameters. It will abort if I B F IND
cannot find the device on the interface bus; otherwise, it will
print the return code (or device descriptor) that was assigned
to the frequency counter by the National Instruments han-
dler.

The Forth word XTAL takes a filename, aborts if the file
already exists, otherwise opens the file, then starts reading
values from the timedcounter, printing elapsed time and the
value both on the screen and to the given file in ASCII format.
This file can later be imported into a spreadsheet program,
with whch a 2-D graph can be generated.

References
Philips Test and Measurement Department Inc., 12882 Valley

View Street, Suite 9, Garden Grove, CA 92645.
National Instruments, 12109 Technology Boulevard, Austin,
TX 787276204.

Forth Interest Group, P.O. Box 2154, Oakland, CA 94621.

Robert Thompson started programming in Fortran in 1976 in college, then later
advanced to BASIC. By the time he graduated from college in 1980. he had
mastered the art of punching Hollerith cards and using line numbers. Around
1982, he started programming in Turbo Pascal on Zenith and IBM microcomput-
ers while working toward a master's degree in chemistry. A couple of years later,
he was introduced to Forth by one of his college professors. Being of a curiously
bent nature, he obtained a copy of F83 and began to undo all his laboriously
learned thought processes. He now works as a chemist in an environmental
testing laboratory, and programs in his spare time.

Forth Dimensions I May 1993 June

Interface for the GPlB 1 Code can be downloaded from GEnie's Forth RoundTable.
I

\ source code s t a r t s he re
\ f i l e g p i b s t u f f . s e q s t a r t s he re
hex
\ t h e s e a r e t h e v a r i o u s func t ions t h a t gp ib can do ...
\ t h e y a r e def ined a s cons tan t s
\ h i l e v e l syntax f o r c a l l i n g a func t ion is:
\ parms dev-handle ibxxxx gp ib
\
\ func t ion cons tan t d e s c r i p t i o n syntax f o r usage

0 cons tan t IBWAIT \ wait f o r s e l e c t e d event : mask dev ibwai t gp ib
1 cons tan t IBONL \ p l a c e device o n l i n e / o f f l i n e : v dev i b o n l gp ib
2 cons tan t IBRSC \ r e q u e s t / r e l e a s e system c o n t r o l : v dev i b r s c gp ib
3 cons tan t IBSIC \ send i n t e r f a c e c l e a r : dev i b s i c g p i b
4 cons tan t IBSRE \ s e t / c l e a r remote enable l i n e : v dev i b s r e g p i b
5 cons tan t IBLOC \ go t o l o c a l : dev i b l o c g p i b
6 cons tan t IBRSV \ reques t s e r v i c e : v dev i b r s v gp ib
7 cons tan t IBPPC \ p a r a l l e l p o l l configure: v dev ibppc gp ib
8 cons tan t IBPAD \ change primary address: v dev ibpad gp ib
9 cons tan t IBSAD \ change secondary address: v dev i b s a d gp ib
Oa cons tan t IBIST \ s e t / c l e a r ind iv idua l s t a t u s b i t : v dev i b i s t gp ib
Ob cons tan t IBDMA \ enab le /d i sab le dma: v dev ibdma gp ib
Oc cons tan t IBEOS \ change/disable eos mode: v dev ibeos gp ib
Od cons tan t IBTMO \ change/disable t i m e l i m i t : v dev ibtmo gp ib
Oe cons tan t IBEOT \ enab le /d i sab le end message: v dev i b e o t gp ib
Of cons tan t IBGTS \ go from a c t i v e c o n t r o l l e r t o standby: v dev i b g t s g p i b
10 cons tan t IBCAC \ become a c t i v e c o n t r o l l e r : v dev ibcac gp ib
11 cons tan t IBRDF \ read d a t a t o f i l e : fname-adr c n t dev i b r d f g p i b
12 cons tan t IBWRTF \ w r i t e d a t a from f i l e : fname-adr c n t dev ibwrtf gpib
1 3 cons tan t I B W P \ conduct a p a r a l l e l p o l l : ppr-adr c n t dev ib rpp gpib
1 4 cons tan t IBPOKE
15 cons tan t IBSTOP \ a b o r t asynchronous operat ion: dev i b s t o p gpib
16 cons tan t IBCLR \ c l e a r s p e c i f i e d device: dev i b c l r gp ib
17 cons tan t IBTRG \ t r i g g e r s e l e c t e d device: dev i b t r g gp ib
18 cons tan t IBPCT \ pass c o n t r o l : dev i b p c t gp ib
19 cons tan t IBRSP \ r e t u r n s e r i a l p o l l byte: spr-adr c n t dev i b r s p gp ib
l c cons tan t IBRD \ read d a t a : rd-buf c n t dev i b r d gp ib
I d cons tan t IBRDA \ read d a t a asynchronously: rd-buf c n t dev i b r d a gp ib
l e cons tan t IBWRT \ w r i t e da ta : wrt-buf c n t dev ibwrt gp ib
I f cons tan t IBWRTA \ w r i t e async: wrt-buf c n t dev ibwrta gp ib
20 cons tan t IBCMD \ send commands: cmd-buf c n t dev ibcmd gp ib
21 cons tan t IBCMDA \ send commands async: cmd-buf c n t dev ibcmda gp ib
22 cons tan t IBDIAG
23 cons tan t IBXTRC
24 cons tan t IBTRAP

\ g p i b commands
\ one of t h e s e va lues can rep lace v above
01 cons tan t GTL \ goto l o c a l
04 cons tan t SDC \ s e l e c t e d device c l e a r
05 cons tan t PPC \ p a r a l l e l p o l l conf igure
08 cons tan t GET \ group execute t r i g g e r
09 cons tan t TCT \ t a k e c o n t r o l
11 cons tan t LLO \ l o c a l lock ou t
1 4 cons tan t DCL \ device c l e a r
15 cons tan t PPU \ p a r a l l e l p o l l unconfigure
18 cons tan t SPE \ s e r i a l p o l l enable
19 cons tan t SPD \ s e r i a l p o l l d i s a b l e
3f cons tan t UNL \ u n l i s t e n
5f cons tan t UNT \ unta lk
60 cons tan t PPE \ p a r a l l e l p o l l enable
70 cons tan t PPD \ p a r r a l l e l p o l l d i s a b l e

\ g p i b s t a t u s b i t v e c t o r and mask va lues f o r ibwai t

May 1993 June 12 Forth Dimensions

1 8000 cons tan t ERR \ e r r o r d e t e c t e d
4000 cons tan t TIM0 \ t imeout
2000 cons tan t UEND \ e o i o r eos d e t e c t e d
1000 cons tan t SRQI \ s r q d e t e c t e d by c i c

800 cons tan t RQS \ dev ice needs s e r v i c e
100 cons tan t CMPL \ i / o completed

80 cons tan t LOK \ l o c a l lockout s t a t e
40 cons tan t REM \ remote s t a t e
20 cons tan t CIC \ con t ro l l e r - in -charge
10 c o n s t a n t ATN \ a t t e n t i o n a s s e r t e d

8 cons tan t TACS \ t a l k e r a c t i v e
4 cons tan t LACS \ l i s t e n e r a c t i v e
2 cons tan t DTAS \ dev ice t r i g g e r s t a t e
1 cons tan t DCAS \ dev ice c l e a r s ta te

decimal

\ va lues t o use f o r t ime ou t
0 cons tan t Otimeout
1 cons tan t lOusec
2 cons tan t 30usec
3 cons tan t lOOusec
4 cons tan t 300usec
5 cons tan t l m s e c
6 cons tan t 3msec
7 cons tan t lOmsec
8 cons tan t 30msec
9 cons tan t lOOmsec

10 cons tan t 300msec
11 cons tan t l s e c
12 cons tan t 3sec
13 cons tan t lOsec
1 4 cons tan t 30sec
15 cons tan t 100sec
16 cons tan t 300sec
17 cons tan t lOOOsec

comment: .
t h e f i r s t t h r e e words i n GPIBBUF a r e s e t by IBFIND (r e a l l y by DOS

1/0 c o n t r o l and t h e Nat ional Ins t ruments dev ice d r i v e r) . IBFIND c l e a r s
t h e next t h r e e words. They w i l l be f i l l e d by t h e device d r i v e r a f t e r
each g p i b f u n c t i o n c a l l . The dev ice d r i v e r expec t s t h e s e v a r i a b l e s t o be
contiguous i n memory.

diagram of g p i b b u f f e r :
o f f s e t segment handle i b s t a t u s i b e r r o r ibcount
[2 b y t e s] [2 b y t e s] [2 b y t e s] [2 b y t e s] [2 b y t e s] [2 b y t e s]

I I I I I I
I I I v v v
I 1 V s e t by d r i v e r wi th each c a l l

V V handle of device re tu rned from d r i v e r
address of dev ice d r i v e r

.
comment;

12 cons tan t b/gpibbuf
c r e a t e gpibbuf b/gpibbuf a l l o t
gpibbuf b/gpibbuf e r a s e \ zero b u f f e r

\ These names r e t u r n t h e address so t h e y can be accessed
\ j u s t l i k e r e g u l a r v a r i a b l e s
: i b s t a (-- a d r) gpibbuf 6 + ; \ s t a t u s word
: i b e r r (-- a d r) gpibbuf 8 t ; \ g p i b e r r o r code
: i b c n t (-- a d r) gpibbuf 10 + ; \ number of b y t e s s e n t o r dos e r r o r

Forth Dimensions 13 May 1993 June

: .vars (-) \ p r i n t i n t e r f ace bus variables
." ibs ta=" i b s t a @ .
." iber r=" i b e r r @ .
." ibcnt=" ibcnt @ . c r ;

: . i b s t a (-)

c r ." i b s t a tus : " c r
." etesr c l r ca t ldd" c r \ read these mnemonics v e r t i c a l l y
." r in rq moeitaatc" c r
." rmdqs pkmcnccaa" c r
." o i 1 ssss" c r
base @ i b s t a @ 2 base ! [decimal]

dup 0>= i f 16 e l s e 15 then .r base !
c r ;

: . i b e r r (-)

." i b e r r o r : "
i b e r r @
dup 0= i f ."
dup 1 = i f ."
dup 2 = i f . "
dup 3 = i f . "
dup 4 = i f ."
dup 5 = i f ."
dup 6 = i f ."
dup 7 = i f . "
dup 10 = i f ."
dup 11 = i f . "
dup 12 = i f . "
dup 1 4 = i f ."
dup 15 = i f ."
dup 1 6 = i f . "
drop c r ;

no e r r o r o r dos er ror" then
gpib-pc must be c i c " then
no l i s t e n e r on wri te function" then
gpib-pc not addressed correct ly" then
bad a rg t o function c a l l " then
gpib-pc not system cont ro l le r " then
i / o aborted" then
no gpib-pc board" then
i / o s t a r t e d before prev op compl" then
no capabi l i ty f o r operation" then
f i l e system e r ro r " then
command e r r o r during device c a l l " then
s e r i a l p o l l s t a t u s byte l o s t " then
s r q stuck i n on posi t ion" then

comment: .
This routine was wr i t ten t o c a l l t h e National Instruments device

dr iver , and ask it t o address a device on the GPIB.
We use DOS 1/0 control t o ge t addr of t he device dr iver , and pass

it t h e handle of t h e device we want t o access. adr-buf i s a buffer t h a t
i s f i l l e d with information, according t o t h e above t ab l e , by DOS and t h e
device d r ive r . I t i s information t h a t w i l l be needed f o r accessing a
device. A buffer must be a l loca ted and a handle put on stack p r i o r t o
ca l l i ng t h i s funct ion.

.
comment ;

hex
code ioc t l r ead (nbytes adr-buf handle -- nbyteslerrcode carry)

pop bx \ handle
mov ax, # 4402 \ i o c t l , subfn read
pop dx \ adr of data area
pop cx \ nbytes, value doesn ' t matter
i n t 21
push ax \ push nbytes o r e r r o r code
lahf \ get t h e f l ags
mov a l , ah
xor ah, ah
and ax, # 1 \ i s o l a t e t he carry b i t , i f s e t then e r r o r
lpush
end-code

decimal

May 1993 June
- -- -

Forth Dimensions

\ devlO i s t h e name by which t h e Nat ional Instruments device d r i v e r
\ w i l l r e f e r t o device number 10 (our frequency counter) on t h e gpib.
\ Other dev ices have s i m i l a r monikers.
handle pm6680handle pm6680handle !hcb devlO
handle pm6665handle pm6665handle !hcb d e v l l \ our o l d f r e q counter
handle gpibohandle gpibohandle !hcb gpibO
\ f o r example: i f you had a p l o t t e r a s device # 6 then u s e . . .
\ handle p l o t t e r h a n d l e p l o t t e r h a n d l e !hcb dev06

\ The fol lowing handles should be d i f f e r e n t f o r each device on t h e gpib.
0 value pm6680 \ gpib handle number, va lue re tu rned from i b f i n d
0 va lue pm6665
\ I t s p o s s i b l e t o have only two boards i n one computer.
0 value gpibO \ two boards a r e named gpibO and g p i b l

: i b f i n d (hcb -- handle#)

\ IBFIND f i n d s t h e board o r device from t h e i n s t a l l e d gp ib d r i v e r
\ t h e board and/or device names a r e i n handle c o n t r o l blocks.
\ IBFIND r e t u r n s t h e board o r device number, which i s -1 i f e r r o r
\ board o r device numbers should be pu t i n g l o b a l v a r s f o r l a t e r use.

read-only def-rwmode \ s e t read only mode
dup>R hopen
O= i f

0 gpibbuf R@ >hndle @ i o c t l r e a d

\ not i f abor t " e r r o r i n i o c t l r e a d " then drop
2drop
gpibbuf 4 + @ dup \ put handle on s t a c k
0<= i f

drop -1
then
R@ hc lose drop

then R> drop

: g e t d r i v e r (-- seg o f s)

\ r e t u r n s s e g , o f s of dev ice d r i v e r from g loba l b u f f e r GPIBBUF
1 gpibbuf 2+ @ \ segment

I gpibbuf @ ; \ o f f s e t

comment: .
This r o u t i n e was w r i t t e n t o pass parameters t o t h e Nat ional

Instruments device d r i v e r .
A l l r e g i s t e r s t h a t FPC uses must be saved around t h i s r o u t i n e ,

t h e s e a r e : bp, ds , e s , and s i
CALLGPIB c a l l s a TSR program o u t s i d e of FPC, passing some parms

t o it; then r e t u r n s t o FPC. The f i r s t two parms (adr-buf, c n t) w i l l vary
depending on t h e func t ion c a l l , o t h e r parms a r e needed i n any case . The
i n v a r i a n t panns (segment and o f f s e t of device d r i v e r , and i b s t a t u s word)
a r e pushed by t h e f o r t h word GPIB; o t h e r s a r e t h e r e s p o n s i b i l i t y of
t h e u s e r .

.
comment ;

code c a l l g p i b (adr-buf c n t handle func t ion seg o f s i b s t a --)

\ 1 4 12 10 8 6 4 2 < -of f se t from bp
push bp \ f p c uses bp a s ret s t k p o i n t e r

mov bp, SP
push d s
push es \ d r i v e r uses e s a s segment t o s t o r e i b s t a , i b e r r , i b c n t
push s i
mov ax, 8 [bp] \ func t ion i n ax
push d s

Forth Dimensions May 1993 June

pop e s \ make s u r e e s p o i n t s t o da ta segment f o r d r i v e r
mov s i , 2 [bp] \ s i p o i n t s t o i b v a r s
mov bx, 10 [bp] \ device handle i n bx
mov dx, 14 [bp] \ buf-adr i n dx
mov cx, 12 [bp] \ count i n cx
c a l l f a r [I 4 [bp] \ c a l l d r i v e r
pop s i \ r e s t o r e regs . . .
pop es
POP d s
pop bp
next
end-code

comment: .
h i - l e v e l syntax f o r gp ib func t ions w i l l be:

parms dev-handle ibxxxx gp ib

parms i s whatever t h e p a r t i c u l a r func t ion requ i res
handle i s handle of dev ice t o address .
ibxxxx i s one of t h e func t ion name cons tan t s
On r e t u r n from t h i s c a l l , we drop t h e junk l e f t on t h e s t a c k .

.
comment ;

: gpib
g e t d r i v e r i b s t a

EXEC :

\ 0
2drop

\ 8
2drop

\ 10
2drop

\ 18
drop

\ 20
3drop

c a l l g p i b 3drop
\ numbers i n hex
1 2 3

2drop 2drop drop
9 0 a Ob

2drop 2drop 2drop
11 12 13
3drop 3drop 3drop
19 1 a l b
3drop noop noop
2 1 22 23
3drop 3drop 3drop

5
drop
Od
2drop
15
drop
I d
3drop

6 7
2drop 2drop
Oe 0 f
2drop 2drop
16 17
drop drop
l e I f
3drop 3drop

0 va lue dev
\ use t h e cons tan t DEV t o s t o r e c u r r e n t device handle
\ t h i s w i l l make it e a s i e r t o send commands t o device while i n t e r p r e t i n g .
\ make t h e device c u r r e n t by typing: pm6665 >dev
\ then a l l commands s e n t wi th IB" w i l l go t o t h i s device
: >dev (handle --) =: dev ;

comment: .
W e can send a command d i r e c t t o t h e frequency counter by

typing: i b " <command>" . Be c a r e f u l NOT t o use t h i s when
c o l l e c t i n g d a t a i n background with t h e mul t i t a sker .

.
comment ;

\ ib" sends a s t r i n g t o a gp ib device i n i n t e r p r e t i v e s t a t e
\ use > i b i n compiling s t a t e
\ examples:
\ f i r s t s e t d e s i r e d device with >DEV
\ pm6680 >dev
\ i b " * r s t W \ r e s e t s t o d e f a u l t s t a t e
\ i b " :acq:aper 1" \ s e t s count t ime t o 1 second
: i b " (I s t r i n g " --) \ f o r i n t e r p r e t i n g , p r i n t t o gpib

a s c i i " p a r s e dev ibwrt gpib ;

May 1993 June 16 Forth Dimensions

: > i b (a d r l e n --) \ f o r compiling, p r i n t t o gp ib
dev ibwr t g p i b ;

255 cons tan t len-of-buf
c r e a t e s t rngbuf len-of-buf 1+ a l l o t \ 1 b y t e s f o r l e n g t h
strngbuf len-of-buf blank

\ f e t c h one c h a r a c t e r from a device
: i b - l i n (-- c h a r) pad 1 dev i b r d g p i b pad C@ ;

: ib - in (-- a d r)

\ f e t c h a l i n e of i n p u t from a dev ice
\ we could b u i l d on IB-1IN and g e t one char a t a t i m e u n t i l
\ no more a r e a v a i l a b l e , bu t t h i s way i s f a s t e r .
\ NOTE: Be s u r e t h a t EOI i s enabled

s t rngbuf 1+ len-of-buf dev i b r d g p i b \ g e t l i n e of i n p u t from g p i b
i b c n t @ 1- st rngbuf c ! \ s t o r e l e n g t h b y t e less I f a t end
s t rngbuf \ r e t u r n address on s t a c k

\ f i n d ou t i f pm6680 dev ice i s connected and hea l thy
\ method: t r y t o o b t a i n t h e s t a t u s by te , t h e n check f o r t imeout .
\ i f t imeout rece ived , t h e n dev ice i s ' t u r n e d o f f , r e t u r n f a l s e f l a g
: awake? (dev -- f l a g)

pad 1 r o t i b r s p g p i b
i b s t a @ TIM0 and 0= i f t r u e e l s e f a l s e then

\ f i l e s t r i n g s - s e q s t a r t s h e r e
\ words t o m n i p u l a t e s t r i n g s
\ add two s t r i n g s t o g e t h e r (concatenate)
\ s t r i n g 2 i s added t o t h e end of s t r i n g l
254 cons tan t buf len
c r e a t e tempbuf buf len 1+ a l l o t
tempbuf buf len e r a s e
: $+ (s t r i n g l s t r i n g 2 -- s t r i n g l + s t r i n g 2) \ s t r i n g i s a d r l e n
\ dup>R pad 1+ swap cmove pad 1+ R@ + swap dup>R cmove pad
\ R> D + swap c ! pad count ;

dup>R 2swap dup>R 2dup tempbuf 1+ swap cmove tempbuf + 1+
n i p swap cmove D D + tempbuf c !
tempbuf count ;

\ make a s i n g l e number i n t o a s t r i n g
: n>$ (n l -- a d r l e n) S>D <# #S #> ;

\ make a double number i n t o a s t r i n g
: D>$ (d -- a d r l e n) <# #S #> ;

: F>$ (F: r -- ; -- a d r c n t) \ f l o a t t o s t r i n g
\ : F. (F: r --)

FXPLACES @ 1 MAX 10 M I N
FDUP O=
IF FDROP FO. 0 THEN
[ALSO HIDDEN] (F. 1)
IF DROP FNIP [LAST @ NAME>] LITERAL 64 FPERR

IF FNEGATE THEN 10 (E.)
ELSE FSWAP (F . FRACT) (F . INTI)
THEN \ TYPE SPACE

; PREVIOUS

: dash 196 emit ;
\ draw horz l i n e n c h a r s long
: dashes (n --) 0 do dash loop ;

Forth Dimensions 17 May 1993 June

\ r e t u r n l e f t m o s t c h a r s i n a s t r i n g
: l e f t $ (a d r l e n c n t -- a d r ' l e n ') min ;

\ r e t u r n r ightmost chars i n a s t r i n g
: r i g h t $ (a d r l e n c n t -- a d r ' l e n ')

dup>R - + R> ;

\ r e t u r n s u b s t r i n g of a s t r i n g
: mid$ (a d r l e n index c n t -- a d r ' l e n ')

>R r o t + 1- swap R> min ;

\ p r i n t s t r i n g c e n t e r j u s t i f i e d
: $.C (a d r l e n f i e l d - l e n --) 2dup >R >r

<= i f R> R> over - 2/ dup>R spaces type R> spaces
else R> R@ t u c k - 2/ R> mid$ t y p e
then ;

\ 1 2 3 4
\ 12345678901234567890123456789012345678901
\ : t e s t " 0123456789this i s a test string987654321OW ;

\ : s l " ... This i s t h e f i r s t s t r i n g . . ." ;
\ : s2 " ... The second s t r i n g i s t h i s one. How about t h a t ? . .." ;

\ remove l e a d i n g spaces and n u l l s from a s t r i n g
: - leading (a d r l e n -- a d r ' l e n ')

begin
over c @ dup 0= swap b l = o r whi le

1- swap 1+ swap
repea t

\ f i l e t i m e s t u f . s e q s t a r t s h e r e
: get- t ime (-- dmin)

\ r e t u r n s t i m e i n minutes
g e t t i m e
>R dup $FF and >R 256 / R>
R> dup SFF and >R 256 / R>

3 r o l l 60 *
3 r o l l + 10000 um*
3 r o l l 100 *
3 r o l l +
100 60 * /
S>D D+

\ t u r n s my t i m e i n t o a s t r i n g
: time>$ (dmin n -- a d r l e n)

<# 0 do # loop a s c i i . hold #S #> ;

: . t i m e (--) \ p r i n t s t ime i n minutes
get- t ime time>$ t y p e ; !

\ f i l e pm6680.seq s t a r t s h e r e
\ anew x t a l f i l e

\ f l o a d g p i b s t u f . s e q
f l o a d mul task.seq \ from f-pc
\ f l o a d s t r i n g s . s e q
\ f l o a d t i m e s t u f . s e q

FORTH and Classic
Computer Support

For that second view on FORTH appli-
cations, check out 7he Computer Journal. If you
run a classic computer (pre-pc-clone) and are
interested in finding support, then look no
hrther than TCJ. We have hardware and soft-
ware projects, plus support for Kaypros, S100,
CP/M, 6809's, and embedded controllers.

Eight bit systems have been our mainstay
for TEN years and FORTH is spoken here. We
provide printed listings and projects that can run
on any system. We also feature Kaypro items
from Micro Cornucopia. All this for just $24 a
year! Get a FREE sample issue by calling:

(800) 424-8825

TCJ EBZF JoyOla'
Lincoln, CA 95648

May 1993 June 18 Forth Dimensions

comment: .
The next word, DATAREADY?, w i l l examine t h e s t a t u s byte which i s

returned from t h e frequency counter when t h e gpib i s t o l d t o p o l l t h e
device and f e t c h it. We could f e t ch t h i s byte by d i r e c t l y sending
commands t o t h e counter , but it makes b e t t e r sense t o l e t t h e gpib do t h i s
work. After a l l , t h a t ' s what we have it f o r ! A f l a g i s l e f t on t h e s tack
when t h e counter has a s se r t ed t h e request se rv ice l i n e of t h e gpib (due t o
t he re being a message ava i l ab l e i f 16; or due t o t h e enabled operat ion
having occurred i f 128) .

.
comment ;

var iab le spb \ s e r i a l p o l l byte
: getsb (-- n) \ re turn t h e s t a t u s byte from pm6680

spb 1 pm6680 i b r s p gpib spb @ ;

: dataready? (-- f l a g)

getsb 128 and 0> i f t r u e e l s e f a l s e then \ enab op . s t a t occurred

: msgavail? (-- f l a g)

getsb 1 6 and 0> i f t r u e e l s e f a l s e then \ mes.avai1

: e r r o r ? (-- f l a g)

getsb 4 and 0> i f t r u e e l s e f a l s e then \ e r r . ava i1

\ funct ion se l ec t ing commands
: l oca l pm6680 ib loc gpib ;
: r e s e t " * r s t W pm6680 ibwrt gpib l oca l ; \ r e s e t s counter t o defaul t values
: c l e a r " *c l sW pm6680 ibwrt gpib l oca l ; \ c l ea r s cormand and e r r o r queues
: freq-a " :func ' f r e q 1 '" pm6680 ibwrt gpib l oca l ;
: freq-b " :func ' f r e q 2 ' " pm6680 ibwrt gpib l oca l ;
: per-a " :func ' pe r 1"' pm6680 ibwrt gpib l oca l ;
: tota-b " :func ' t o t 1,2"' pm6680 ibwrt gpib l oca l ;
: rat io-ab " :func ' f r e q : r a t 1 , 2 ' " pm6680 ibwrt gpib l oca l ;

\ input s e t t i n g commands
: t r ig-pos " : inp :s lop pos" pm6680 ibwrt gpib l oca l ;
: t r ig-neg " : inp:slop neg" pm6680 ibwrt gpib l oca l ;

\ measurement cont ro l commands
: mtime (hund-sec --) \ s e t measuring time

" :acq:aper " r o t S>D <# # # a s c i i . hold #S #>
$+ pm6680 ibwrt gpib

comment: .
In t h e following i n i t i a l i z a t i o n of t h e counter, we t e l l it t o

l e t us know when a measurement has stopped. This way we can monitor t h e
s t a t u s of t h e counter, and while waiting f o r it t o f i n i s h a measurement,
we can t e l l Forth t o do something e l s e . This i s necessary f o r mult i tasking.

The statement " :s tat :oper:enab 256" says "enable t h e change t o t h e
operation s t a t u s when a measurement has stopped". (256=wait f o r meas s top;
64=wait f o r bus arming; 32=wait f o r t r i gge r ; 16=wait fo r meas s t a r t) .
Add these values toge ther t o wait f o r a combined event.

The statement "*sre 132" says "enable t he s t a t u s request l i n e when
the enabled operat ion has occurred (128) and event s t a t u s b i t (32)" . We could
a l so say "*sre 20" which says "enable t h e s t a t u s request l i n e when a
message i s ava i l ab l e (16) o r e r r o r ready (4) " . Both of these appear t o
work equal ly well .

The statement "*ese 36" i s command error=32, execution error=16,
device dependent error=8, query error=4.

These statements must be used t o properly enable

Forth Dimensions 19 May 1993 June

t h e coun te r t o a s s e r t t h e reques t s e r v i c e l i n e of t h e g p i b s o we
can do d a t a c o l l e c t i o n i n background.

.
comment ;

\ meas.times given i n hundredths of seconds
100 cons tan t meas-time \ 1 second

\ t h e fol lowing a r e b i t masks f o r s t a t u s even t s
\ s t a t u s o p e r a t i o n enab le
256 cons tan t meas-s top
64 cons tan t arm.wait
32 cons tan t t r i g . w a i t
16 cons tan t m e a s . s t a r t

\ s tandard event s t a t u s enab le
128 cons tan t power. on
64 cons tan t u s e r - r e q
32 cons tan t com.err
16 cons tan t e x e c . e r r
8 cons tan t d e v - e r r
4 cons tan t query. err
2 cons tan t req. c o n t r
1 cons tan t op-compl

s e r v i c e reques t enab le
128 cons tan t o p - s t a t
64 cons tan t req. s e r v
32 cons tan t e v . s t a t
16 cons tan t mes.avai1
8 cons tan t ques . s ig
4 cons tan t e r r . a v a i 1
1 cons tan t d e v . s t a t

\ i f e r r o r , then p r i n t s t a t u s and e r r o r messages and a b o r t
\ e l s e set s t a t u s r e q u e s t s , meas.time, and r e t u r n counter t o l o c a l mode
: i n i t f r e q (-)

gpibohandle i b f i n d dup ." board handle=" . =: gpibO
pm6680handle i b f i n d dup ." , device handle=" . =: pm6680 c r
gpibO pm6680 o r O< i b e r r @ o r a b o r t " a b o r t on i b f i n d "
r e s e t
" : s t a t :oper :enab " meas.stop N>$ $+ pm6680 ibwrt g p i b
" *ese " com.err q u e r y . e r r + op.comp1 + N>$

$+ pm6680 ibwr t gp ib
" * s r e " o p . s t a t r e q . s e r v + e v . s t a t + d e v . s t a t + N>$

$+ pm6680 ibwr t gp ib
meas-time m t i m e l o c a l
pm6680 >dev \ make t h i s device c u r r e n t

\ ." Be s u r e f r e q co.unter i s tu rned on, o r FPC w i l l hang. "
c r

comment: .
A f t e r r e c e i v i n g a s t r i n g of c h a r a c t e r s from t h e frequency coun te r ,

which r e p r e s e n t a frequency (o r o t h e r) reading, because of some l i m i t a t i o n s
i n For th , we have t o fudge some c h a r a c t e r s i n t h e s t r i n g . P a r t i c u l a r l y
annoying, i s t h e l e a d i n g p l u s s i g n , on which NUMBER w i l l (but s h o u l d n ' t)
a b o r t . So, w e change it t o a ze ro . W e a l s o have t o r i d ourse lves of
t h e E b e f o r e t h e exponent. Change it t o a blank and NUMBER w i l l
i gnore t h e exponent. Simple! For th d o e s n ' t know t h a t t h e number from
t h e coun te r i s a f l o a t anyway, it i s t r e a t e d a s a double. (There i s a l s o
a l i m i t on how many d i g i t s i n t h e number For th w i l l conver t
t o a double .) Too many and t h e va lue t h a t can be contained i n a double
overflows.

.
comment ;

/ \ put a ze ro a t p l u s s i g n i n f r o n t of mant issa . number needs t h i s .
/ \ p u t a space a t p o s i t i o n of exponent. number needs t h i s .
/ \ ignore t h e exponent.

\ could use hardware f l o a t i n g p o i n t ve r s ion of number,
\ it reads number wi th l e a d i n g ' + ' . sof tware ve rs ion does n o t .

May 1993 June 20 Forth Dimensions

\ From t h e pm6680, t h e s t r i n g of c h a r a c t e r s i s always t h e same leng th .
: freq$>d (a d r - d)

dup 1+ ' 0 ' swap c ! \ r e p l a c e + with 0
dup 12 + b l swap c ! \ put space a t E
number ;

\ g e t s f r e q from counte r a s double.
\ m u l t i t a s k i n g a l lowed. assumes t h a t s t a t :opera t ion :enab le i s t r u e

I \ when measurements s t a r t e d . s e r i a l p o l l s t h e r q s l i n e , and pauses
\ u n t i l l i n e i s t r u e (o r measurement has s topped) .
: g e t d a t a (-- d) " :read?" pm6680 ibwr t gp ib

1 \ g e t one read ing and r e t u r n a s double va lue on s t a c k
begin msgavail? n o t whi le pause repea t
ib - in f req$>d

handle x t a l h a n d l e
c r e a t e c r l f $ $OD c , $OA c ,

comment: .
COLLECT i s a background t a s k t h a t w i l l f e t c h frequency d a t a from

t h e coun te r and s t o r e t i m e and frequency readings i n t o a d i s k f i l e . Once
it i s running, it can be i n t e r r u p t e d by t y p i n g SINGLE and r e s t a r t e d by
t y p i n g MULTI, bu t s e t t i n g s on t h e frequency coun te r cannot be changed
i n t h e between t i m e . This w i l l cause For th t o c r a s h .

.
comment :

v a r i a b l e d a t a c n t \ number of t h i s d a t a p o i n t
2 v a r i a b l e s t a r t t i m e
2 v a r i a b l e c u r r t i m e \ c u r r e n t t i m e
\ 2 v a r i a b l e f r e q d a t a
80 cons tan t f r e q l e n
c r e a t e f r e q d a t a f r e q l e n a l l o t \ t h i s holds t h e l a s t p o i n t c o l l e c t e d
f r e q d a t a f r e q l e n e r a s e
v a r i a b l e gooddata \ a f l a g t h a t i s s e t when datum i s c o l l e c t e d
\ gooddata i s c l e a r e d when t h e d a t a has been d i sp layed on sc reen
gooddata o f f
\ w r i t e t h e e l a p s e d t ime and f r e q t o f i l e
\ s t o p when a w r i t e e r r o r occurs
background: c o l l e c t

d a t a c n t o f f c r
begin

i n c r > d a t a c n t
get- t ime s t a r t t i m e 2@ d- 2dup cur r t ime 2!
4 time>$ x t a l h a n d l e hwr i t e drop
" " x t a l h a n d l e h w r i t e drop

\ g e t d a t a 2dup f r e q d a t a 2!
" read?" > i b begin msgavail? n o t whi le pause repea t i b - i n
dup c@ 1+ f r e q d a t a swap cmove
gooddata on pause
f r e q d a t a count x t a l h a n d l e hwr i t e drop

\ D>$ x t a l h a n d l e h w r i t e drop
c r l f S 2 x t a l h a n d l e h w r i t e drop

f a l s e u n t i l
x t a l h a n d l e hc lose drop l o c a l

comment: .
This TASKl i s an experiment i n mul t i t a sk ing . I t simply p icks

up d a t a from memory and d i s p l a y s it i n a c u t e window on t h e sc reen . The
COLLECT t a s k must be running and c o l l e c t i n g d a t a b e f o r e TASKl w i l l do
anything. The sc reen d i s p l a y can be t u r n e d o f f by typ ing : 'showdata o f f '

Forth Dimensions 2 1 May 1993 June

A f l a g i s used (t h e v a r i a b l e GOODDATA) t o t e l l when a
datum should be d i sp layed . COLLECT w i l l set GOODDATA t o t r u e a f t e r it h a s
c o l l e c t e d one p o i n t , TASKl w i l l s e t GOODDATA t o f a l s e a f t e r t h e number has
been d i sp layed on t h e sc reen . This p reven t s TASKl from c o n s t a n t l y
r e d i s p l a y i n g t h e same number.

.
comment;

v a r i a b l e showdata \ f l a g f o r screen d i s p l a y of d a t a
showdata on \ yes we w i l l d i s p l a y d a t a
\ t a s k l w i l l g e t d a t a from memory and p r i n t it on t h e sc reen
\ depending on i f showdata i s t r u e .
\ t h i s depends on c o l l e c t t o a c t u a l l y g e t d a t a from t h e f r e q coun te r .
\ t h i s runs i n t h e background.
background: t a s k l

begin pause
showdata @ i f

gooddata @ i f
savecursor 4 5 1 78 3 b o x & f i l l
46 2 a t d a t a c n t @ . " " t y p e
cur r t ime 2@ 4 time>$ t y p e " " t y p e
f r e q d a t a count t y p e

\ 62 2 a t f r e q d a t a 2@ 15 d . r
gooddata o f f
r e s t c u r s o r

then
then

aga in ;

c r e a t e errmsg 52 a l l o t
errmsg 50 blank
v a r i a b l e d i d e r r o r d i d e r r o r o f f \ d i d w e a l ready show t h i s e r r o r ?
: geterrormsg (-- a d r)

" : s y s t : e r r ? " pm6680 ibwr t gp ib ib - in
d i d e r r o r o f f

v a r i a b l e showerror \ f l a g f o r screen d i s p l a y of e r r o r msg
showerror on \ yes w e w i l l d i s p l a y e r r o r msg
\ t a s k 2 w i l l g e t e r r o r no. from f r e q coun te r and p r i n t msg on sc reen
\ depending on i f showerror i s t r u e .
\ t h i s runs i n t h e background.
background: t a sk2

begin pause
showerror @ i f \ i f we a r e t o show t h i s e r r o r

e r r o r ? i f \ i f an e r r o r has occurred
savecursor
geterrormsg count 78 over - 1- dup>R 1 78 3 b o x & f i l l
R> 1+ 2 a t t y p e
r e s t c u r s o r 10 m s \ r e s t o r e cursor , and wai t a s h o r t whi le

then
then

aga in ;

v a r i a b l e showsb \ f l a g f o r sc reen d i s p l a y of s t a t u s b y t e
showsb on \ yes we w i l l d i s p l a y s t a t u s b y t e
\ t a s k 3 w i l l g e t s t a t u s b y t e from f r e q coun te r and p r i n t it on sc reen
\ depending on i f showsb i s t r u e .
\ t h i s runs i n t h e background.
background: t a s k 3

begin pause
showsb @ i f \ i f we a r e t o show t h i s s t a t u s b y t e

savecursor 69 4 78 9 b o x & f i l l

May 1993 June 22 Forth Dimensions

FIG
MAIL ORDER FORM

HOW TO USE THIS FORM: Please enter your order on the back page of this form and send with your payment to the Forth Interest Group.
All items have one price and a weight marked with a # sign. Enter weight on order form and calculate shipping based on location and delivery method.

"Were Sure You Wanted To Know ..."
Forth Dimensions, Article Reference 151 - $4 O# * An index of Forth articles, by keyword, from Forth Dimensions

Volumes 1-13 (1978-92).

FORML Article Reference 152-$4 O#
jr An index of Forth articles by keyword, author, and date from the

FORML Conference Proceedings (1980-91).

FORTH DIMENSIONS BACK VOLUMES
A volume consists of the six issues from the volume year (May-April)

1 Forth Dunensions (1979-80) 101 - $15 1#
Introduction to FIG, threaded code, TO variables, fig-Forth.

Volume 6 Forth Dimensions (1984-85) 106-$15 2#
Interactive editors, anonymous variables, list handling. integer
solutions, control structures, debugging techniques, recursion,
semaphores, simple VO words, Quicksort, high-level packet
communications, China FORML.

1981 FORML PROCEEDINGS 311 - $45 4#
CODE-less Fonh machine, quadruple-precision arithmetic, I
overlays, executable vocabulary stack, data typing in Forth,
vectored data structures, using Fonh in a classroom, pyramid
files, BASIC, LOGO, automatic cueing language for multimedia,
N E X 0 S - a ROM-based multitasking operating system. 655pgs

1982 FORML PROCEEDINGS 312 -$30 4#
RockweliForthprocessor,virtual execution.32-bit Forth, ONLY
for vocabularies, non-IMMEDIATE looping words, number-
input wordset, UO vectoring, recursive daia structures, program-
mable-logic compiler. 295 pgs

1983 FORML PROCEEDINGS 313 -$30 2#
Non-Von Neuman machines, Forth instruction set, Chinese
Forth, F83, compiler & interpreter co-routines, log &exponential
function, rational arithmetic, transcendental functions in
variable-precision Forth, portable file-system interface, Forth
coding conventions, expert systems. 352 pgs

1984 FORML PROCEEDINGS 314-$30 2# 1

strings.

107 - $20 2# Volume 7 Forth Dimensions (1985-86)
Generic sort, Forth spreadsheet, control structures, pseudo-
interrupts, number editing. Atari Forth, pretty printing. code
modules, universal stack word, polynomial evaluation, F83

Volume 8 Forth Dimensions (198687) 108 . $20 2#
Interrupt-driven serial input, data-base functions. TI 99/4A,
XMODEM, on-line documentation, dual CFAs, random
numbers, arrays, file query, Batcher's sort, screenless Forth,
classes in Forth, Bresenham line-drawing algorithm, unsigned
division. DOS file 110.

Forth expert systems, consequent-reasoning inference engine,
Zen floating point, portable graphics wordset, 32-bit Forth,
H W l B Forth, NEON-object-oriented rogramming, decom-
piler design, arrays and stack variables. 978 pgs

Volume 9 Forth Dimensions (1987-88) 109 - $20 2#
Fractal landscapes, stack enor checking, perpetual date routines,
headless compiler, execution security, ANS-Forth meeting,
computer-aided instruction. local variables, transcendental func-
tions, education, relocatable Forth for 68000.

i
Volume 10 Forth Dimensions (1988-89) 110-$20 2#

L st dBase file access, string handling, local variables, data structures,
object-oriented Forth, linear automata, stand-alone applications,
8250 drivers. serial data compression.

Volume 11 Forth Dimensions (1989-90) 111 -$20 2#
Local variables, graphic filling algorithms, 80286 extended
memory, expert systems, quatemion rotation calculation,
multiprocessor Forth, double-entry bookkeeping, binary table
search, phase-angle differential analyzer, sort contest.

Volume 12 Forth Dimensions (1990-91) 112-$20 2#
Floored division, stack variables, embedded control, Atari Forth,
optimizing compiler, dynamic memory allocation, smart RAM.
extended-precision math, interrupt handling, neural nets, Soviet

1986 FORML PROCEEDINGS 316 - $30 2#
Threading techniques, Prolog, VLSI Forth microprocessor,
natural-language interface, expert system shell, inferenceengine,
multiple-inheritance system, automatic programming environ-
ment. 323 pgs

1987 FORML PROCEEDINGS 317 - $40 3#
Includes papers from '87 euroFORML Conference. 32-bit Forth.
neural ndtworks, control structures, AI, optimizing compilers;
hypertext, field and record structures, CAD command language.
object-oriented lists, trainable neural nets, expert systems.
463 pgs

1988 FORML PROCEEDINGS 318 - $40 2#
Includes 1988 Australian FORML, Human interfaces, simple
robotics kernel, MODUL Forth, parallel processing,
programmable controllers, Prolog, simulations, language topics,
hardware, Wil's workings & Ting's philosophy, Forth hardware
applications, ANS Forth session, future of Forth in A1
applications. 310 pgs

1989 FORML PROCEEDINGS 319 - $40 3#
Includes papers from '89 euroFORML. Pascal to Forth,
extensible optimizerforcompiling,3Dmeasurement with object-
oriented Forth, CRC polynomials, F-PC, Hams C cross-
compiler, modular approach to robotic control, RTX recom iler
for on-line maintenance, modules, trainable neural nets. 43fpgs

1990 FORML PROCEEDINGS 320 - $40 3#
Forth in industry, communications monitor, 6805 development,

Last

* These are your most up-to-date indexes for back issues of Forth Dimensions and the FORML proceedings.

Fax your orders: 510-535-1295

FORML CONFERENCE PROCEEDINGS
FORML (Forth Modification Laboratory) is an educational
forum for sharing and discussing new or unproven proposals
intended to benefit Forth, and is an educational forum for
discussion of the technical aspects of applications in Forth.
Proceedings are a compilation of the papers and abstracts
presented at the annual conference. FORML is part of the Fonh
Interest Group.

1980 FORML PROCEEDINGS 310 - $30 2#
Address binding, dynamic memory allocation, local variables.
concurrency, binary absolute & relocatable loader, LISP, how to
manage Forth projects, n-level file system, documenting Forth,
Forth structures, Forth strings. 231 pgs

3-key keyboard, documentation techniques, object-oriented
programming, simplest ~ o r t h decompiler, error recovery, stack
operations, process control event management, control structure
analysis, systems design course, group theory using Forth.
441 pgs

1991 FORML PROCEEDINGS 321 - $50 3#
Includes 1991 FORML (Asilomar), euroFORML '91
(Czechoslovakia) and 1991 China FORML (Shanghai).
differential file comparison, LINDA on a simulated network,
QS2: RISCing it all, A threaded microprogram machine, Forth in
networking, Forth in the Soviet Union. FOSM: A Forth String
Matcher, VGA Graphics and 3-D animation, Forth and TSR,
Forth CAE system, applying Forth to electric discharge
machining, MCS96-FORTH single chip computer. 500 pgs

I BOOKS ABOUT FORTH

ALL ABOUT FORTH, 3rd ed., June 1990, Glen B. Haydon 201 - $90 4#
Annotated glossary of most Forth words in common usage,
including Forth-79, Forth-83. F-PC, MVP-Forth. Implementation
examples in high-level Forth andlor 8086188 assembler. Useful
commentary given for each entry. 504 pgs

THE COMPLETE FORTH, Alan Winfield 210 -$I4 1#
A comprehensive introduction, including problems with answers
(Forth-79). 131 pgs

eFORTH IMPLEMENTATION GUIDE, C.H. Ting 215 - $25 1#
eForth is the name of a Forth model designed LO be portable to a
large number of the newer, more powerful processors available
now and becoming available in the near future. 54 pgs (wldisk)

Embedded Controller FORTH, 8051, William H. Payne 216 - $65 2#
Describes the implementation of an 8051 version of Forth. More
than half of this book contains source listings (See disks C050)..
Made available at the request of members. 511 pgs

F83 SOURCE, Henry Laxen & Michael Perry 217 -$20 2#
A complete listing of F83, including source and shadow screens.
Includes introduction on getting started. 208 pgs

FORTH: A TEXT AND REFERENCE 219 - $31 2#
Mahlon G. Kelly & Nicholas Spies
A textbook approach to Forth, with comprehensive references to
MMS-FORTH and the '79 and '83 Forth standards. 487pgs

(LIBRARY OF FORTH ROUTINES AND UTILITIES,
James D. Tern
Comprehensive collection of professional quality computer code 1 for ForthUI: routines that can be gut to in almost any Forth
application, including expert sysiems and natural-language
interfaces. 374 pgs

OBJECT-ORIENTED FORTH, Dick Pountain 242 - $35 1#
Implementation of data structures. First book to make object-
oriented programming available to users of even very small home
computers. 118 pgs

SEEING FORTH, Jack Woehr 243 - $25 1# 1 "...I would liketo share afew observations on Forthandcom~uter
science. That is the purpose of this monograph. It is offered h the
hopethat it will broaden slightly the streams of Forth Literature ..."

THE FIRST COURSE. C.H. Ting 223 - $25 1#
This tutorial's goal is to expose you to the vely minimum set of
Forth instructions you need to use Forth to solve practical
problems in the shortest possible time. "... This tutorial was
developed to complement The Forth Course which skims too fast
on the elementary Forth instructions and dives too quickly in the
advanced topics in a upper level college microcomputer
laboratory ..." A running F-PC Forth system would be very useful.
44 PKS

THE FORTH COURSE, Richard E. Haskell 225 - $25 1#
This set of 11 lessons. called The Forth Course, is designed to
make it easy for you to leam Forth. The material was developed
over several years of teaching Forth as part of a seniorlgraduate
course in design of embedded software computer systems at
Oakland University in Rochester. Michigan. I56 pgs (wldisk)

FORTH ENCYCLOPEDIA. Mitch Derick & Linda Baker 220 - $30 2#
A detailed look at each fig-Forth instruction. 327pgs

FORTH NOTEBOOK, Dr. C.H. Ting 232 - $25 2#
Good examples and applications. Great learning aid. poly-
FORTH is the dialect used. Some conversion advice is included.
Code is well documented. 286 pgs

FORTH NOTEBOOK 11, Dr. C.H. Ting 232a - $25 2#
Collection of research papers on various topics, such as image
processing, parallel processing, and miscellaneous applications.
237 pgs

FORTH: The New Model, Jack Woehr t 233 - $45 2#
This book teaches Forth and the proposed new standard from the
perspective of a Technical Committee member. You will find it
especially helpful if you are: An experienced Forth programmer
who wishes to become familiar with the draft-proposed standard
for Forth, a Forth programmer who needs to know how to convert

/ efisting programs to the new proposed standard. a programmer.
experiencedin otherlanguages. whois using Forth foranembedded

I . control project, or a beginning Forth pro&ammer who wishes to I leam the language. 313 pgs,kldisk a -

SCIENTIFIC FORTH, Julian V. Noble 250 - $50 24'
Scientific Forth extends the Forth kemel in the direction of
scientific problem solving. It illustrates advanced Forth
programming techniques with non-trivial a
computer algebra, roots of equations. d#,"g%?quatims,
function minimization, functional representation of data (FFT,
polynomials), linear equations and matrices, numerical
integrationMonte Carlo methods, high-speed real and complex
floating-point arithmetic. 300pgs (Tncludes disk with programs
and several utilities), IBM

STACK COMPUTERS, THE NEW WAVE 244 - $62 2#
Philip J. Koopman, Jr. (hardcover only)
Presents an altemative to Complex Instruction Set Computers
(CISC) and Reduced Instruction Set Computers (RISC) by
showing the strengths and weaknesses of stack machines.

STARTING FORTH (2nd ed.), Leo Brodie 245 - $29 2#
In this edition of Starting Forth-the most popular and complete
introduction to Forth--syntax has been expanded to include the
Forth-83 Standard. 346 pgs

WRITE YOUR OWN PROGRAMMING LANGUAGE USING C++,
Norman Smith 270 - $15 1#

This book is abwt an application language. More specifically, lt
is about how to write yourown custom application language. The
book contains the tools necessary to begin the process and a

ACM - SIGFORTH
The ACM SIGForth Newsletter is published uarterly by the
Association of Computing Machinery, Inc. ~16korth 's focus is
on the development and refinement of concepts, methods, and
techniques needed by Forth professionals.

Volume 1 Spring 1989, Summer 1989, #3, #4 911 -$24 2#
F-PC, glossary utility, euroForth, SIGFonh '89 Workshop
summary (real-time software engineering). Intel 8 0 x 8 ~ .
Metacompiler in cmForth, Forth exception handler, string case
statement for UFIForth. 1802 simulator, tutorial on multiple
threaded vocabularies. Stack frames, duals: an altemative to
variables. PocketForth.

Volume 2 #I. #2, #3, #4 912 - $24 2#
ACM SIGForth Industry Survey. abstracts 1990Rochesterconf..
RTX-2000. BNF Parser. abstracts 1990 Rochester conf., F-PC
Teach. Tethered Forth model, abstracts 1990 SIGForth conf.
Target-meta-cross-: an engineer's viewpoint, single-instruction
computer.

Volume 3, #1 Summer '91 913a-$6 1#
Co-routines and recursion for tree balancing, convenient number
handling.

. .
143 pgs / 1989 SlGForth Workshoo Proceedings 931 - $20 I#

F-PC USERS MANUAL (2nd ed.. V3.5) 350 - $20
Users manual to the public-domain Forth system optimized for
IBM PCIXTIAT comwters. A fat. fast svstem with manv tools.

Volume 3, #2 Fall '91 913b - $6 1#
Postscript Issue, What is Postscript?, Forth in Postscript,Review:
PS-Tutor.

F-PC TECHNICAL REFERENCE MANUAL 351 - $30 2#
A must if you need to know theinner workings of F-PC. 269pgs

Software engineering, multitaskGg, intermpt-driven systems,
object-oriented Forth, error recovery and control, virtual memory
support, signal processing. I27 pgs

INSIDE F-83, Dr. C.H. Ting
Invaluable for those using F-83. 226 pgs

235 - $25 2#
. . - . ~ -

1990-91 SIGForth Workshop Proceedings 932 - $20 1#
Teaching computer algebra, stack-based hardware, reconfig-
urable processors, real-time operating systems, embedded
control, marketing Forth, development systems, in-flight
monitoring. multi-processors, neural nets, security control, user
interface, algorithms. 134 pgs

For faster service, fax your orders: 510-535-1295

DISKS: Contributions from the Forth Community F-PC TEACH V3.5, Lessons 0-7 Jack Brown C201 - $8
Forth classroom on disk. First seven lessons on learning Forth,

The "Contributions from the Forth Community"disk library contains from Jack Brown of B.C. Institute of Technology.
author-submitted donations. generally including source. for a variety IRM P . w 700 ~h " -..A.., - - -, . * .,

I of computers & disk formats.-~ach fiie is dete&ined bv the author as
public domain, shareware, or use with some restrictiois. This library VP-Planner Float for F-PC, V1.O1 Jack Brown
does not contain "For Sale" a lications To submit your own contri-

C202 - $8
Software floating-pointenginebehind the VP-Plannerspreadsheet.

butions, send them to the ~~&ubl ica t ibm Committee. 80-bit Itemwrarv-real) routines with transcendental functions.

Count any number of d i s b QS equal IOU
FLOAT4th.BLK V1.4 Robert L. Smith COO1 - $8

Software floating-point for fig-, p l y - , 79-Std.. 83-Std.
Forths. IEEE short 32-bit, four standard functions. square
root and log.
*** IBM, 190Kb, F83

Games in Forth Coo2 - $6
Misc. games, Go, TETRA. Life ... Source.

IBM,760Kb

A Forth Spreadsheet, Craig Lindley COO3 - $6
This model spreadsheet first appeared in Forth Dimemiom
VIUl.2. Those issues contain docs & source.

IBM, 100Kb

Automatic Structure Charts. Kim Hams COO4 - $8
Tools for analysis of large Forth programs, first presented at
FORMLconference. Full source; docs incl. in 1985 FORML
Proceedings.

** IBM, 114Kb

A Simple Inference Engine, Martin Tracy 0 5 - $8
Based on inf. engine in Winston & Hom's book on LISP,
takes you from pattern variables to complete unification
algorithm, with running commentary on Forth philosophy &
style. Incl. source.

** IBM, 162 Kb

The Math Box, Nathaniel Grossman COO6 - $10
Routines by foremost math author in Forth. Extended double-
precision arithmetic, complete 32-bit fixed-point math, &
auto-ranging text. Incl. graphics. Utilities for rapid
polynomial evaluation, continued fractions & Monte Carlo
factorization. Incl. source & docs.

** IBM, 118Kb

AstroForth & AstroOKO Demos. I.R. Agumirsian COO7 - $6
AstroForth is the 83-Std. Russian version of Forth. Incl.
window interface, full-screen editor, dynamic assembler &
a great demo. AstroOKO, an astronavigation system in
AstroForth. calculates sky position of several objects from
different earth positions. Demos only.

IBM,700Kb

Forth List Handler, Martin Tracy COO8 - $8
List primitives extend Forth to provide a flexible, high-
speed environment for AI. Incl. ELISA and Winston &
Hom's micro-LISP as examples. Incl. source & docs.

** IBM, 170Kb

8051 Embedded Forth, William Payne C050 - $20
8051 ROMmable Forth operating system. 8086-to-8051
target compiler. Incl. source. Docs arein the bookEmbedded
Controller Forth for the 8051 Family.
*** IBM HD, 4.3 Mb

68HCll Collection C060 - $16
Collection of Forths, tools and floating point routines for the
68HC 1 1 controller.
*** IBM, 2.5 Mb

F83 V2.01, Mike Peny & Henry Laxen Cl00 - $20
The newest version, ported to a variety of machines. Editor,
assembler, decompiler, metacompiler. Source and shadow
screens. Manual available separately (items 217 & 235).
Base for other F83 applications.

IBM, 83,490 Kb

number I/d support, "ectors to support numeric co-processo;
overlay & user NAN checking.

** IBM, F-PC, 350 Kb

F-PC Gra hics V4.6. Mark Smiley C203 - $10
The Patest versions of new graphics routines, including CGA,
EGA, and VGA suppport, with numerous im rovements over
earlier versions created or supported by Mark ! h e y .

** IBM DSDD, F-PC, 605 Kb

PocketForth V6.1, Chris Heilman C300 - $12
Smallest complete Forth forthe Mac. Access toallMacfunctlons,
events, files, graphics, floating point, macros, create standalone
applications and DAs. Based on fig & Starting Forth. Incl. source
and manual.

* MAC, 640 Kb, System 7.01 Compatible.

Kevo V0.9b5, Antero Taivalsaari C360 - $10
Complete Forth-like object Forth for the Mac. Object-Prototype
access toallMac functions, files, graphics, floating point. macros,
create standalone applications. Kernel source not included,
extensive demo files, manual.
*** MAC, 650 Kb, System 7.01 Compatible.

Yerkes Forth V3.6 C350 - $20
Complete object-oriented Forth for the Mac. Object access to all
Mac functions, files, graphics, floating int, macros, create
standaloneapplicatims.Inc1. source,tutoriGssembler&manual.

** MAC, 2.4Mb, System 7.01 Compatible.

Pygm V1 4, Frank Sergeant C500 - $20 1 l e a , fast Forth with full source code. Incl. full-screen edltor.
assembler and metacompiler. Up to 15 files open at a time.

** IBM,320 Kb

Worth, Gu Kelly C600 - $20
A full 6orth system with windows, mouse, drawing and modem
packages. Incl. source & docs.

** IBM, 83,2.5 Mb

Mops V2.3, Michael Hore
Close cousintoYerkes andNeon. Veryfast, compiles subroutine-
threaded & native code. Object oriented. Uses F-P co-processor
ifpresent. Fullaccess toMac toolbox& system. Supports System
7 (e.g., AppleEvents). Incl. assembler, manual & source.

** MAC, 3 Mb, System 7.01 Compatible

BBL & Abundance. Roedy Green C800 - $30
BBL public-domain, 32-bit Forth with extensive support of DOS,
meticulously optimized for execution speed. Abundance is a
public-domain database language written in BBL. Incl. source &
docs.

New Version-Replacement Policy

Return the old version with the FIG
labels and get a new version

replacement for 112 the current

MISCELLANEOUS
T-SHIRT "Mav the Forth Be With You"

F-PC V3.56 & TCOM, Tom Zimmer C200 -
A full Forth system with pull-down menus, sequential files,
editor, forward assembler, metacompiler, floating point.
Complete source and help files. Manual for V3.5 available
separately (items 350 & 351). Base for other F-PC
applications.

IBM, 83,3.5Mb

(Specify s ik : Small, Medium. Large, Extra-Large on order form)
$30 White design on a dark blue shirt.

POSTER (Oct., 1980 B U E cover) 602
FORTH-83 HANDY REFERENCE CARD 683
FORTH-83 STANDARD 3 05

Authoritative description of Fad-83 Standard. For reference,
not instruction. 83 pgs

BIBLIOGRAPHY OF FORTH REFERENCES 340
(3rd ed., January 1987)
Over 1900 references to Forth articles throughout computer
literature. I04pgs

Starting ** - Intermediate +** -Advanced For faster service, fax your orders: 510-535-1295

JFAR BACK ISSUES
Volume 2,#2,#3,#4 JFAR (1984) 722 - $45 2#

#2 - Laser beveling, introductory robotics. Forth-based robotic
vehicle, Kitt Peak Forth. #3 - Forthmeets Smalltalk, Stack usage.
numbercrunching. #4 - Forth in hardware. VAX & 79 Standard.
extended address space, local words in Forth, binary search.

Volume 3, #I-4 JFAR (1985) 723 - $65 3#
#1 - Real-time control, stack frames. #2 - 1985 Rochester
Conference Proceedings, MAGICIL #3 - M i c r d e assembler,
heap data structure, object-oriented extentions to Forb, discrete
event simulation. #4 - numerical control, exception handling.
state sequence handlers.

Volume 4, #I-4 JFAR (1986-1987) 724 - $65 3#
#1 -Expert systems in Forth: natural language
Microcomputer-based medical diagnosis system, 8%&%

lysomnographer, FORPS. #2 - 1986 Rochester Conference
Roceedings. #3 - REF'TL, stand alone Forth system, compiling
Forth, Julian Day numbers, abstracts '86 FORML conference. #4
- Embedding of languages in Forth, Forth-based Prolog for real-
time expert systems.

Volume 5, #I-4 JFAR (1988-1989) 725 - $65 3#
l - 1987 Rochester Conference Proceedings. #2 -Mathematics.
ANS standard, exception handling, logarithmic number
representation, 32-bitRTX chipprototype. #3 -From Russia with
Forth, knowledge engineering, symbolic stack addressing. #4 -
Forth processors, parallel Forth, arithmetic-stack processor,
architecture of the SC32 Forth engine, error-free statistics in
Forth.

Rochester, 1981
Standards Conference

Rochester, 1990
Embedded Systems

MORE ON FORTH ENGINES
Volume 10 January 1989 810-$15 1#

RTX reprints from 1988 Rochester Forth conference, object-
oriented cmForth, lesser Forth engines. 87pgs

Volume 11 July 1989 811 - $15 1#
RTX supplement to Footsteps in an Empty Valley, SC32,32-bit
Forth engine. RTX interrupts utility. 93 pgs

Volume 12 April 1990 812-$15 I#
ShBoom Chi architecture and instructions, neural computing
module ~ C d 2 3 2 , pig~orth, binary radix sort on 80286.68010,
and RTX2000. 87 pgs

Volume 13 October 1990 813 - $15 1#
PALS of the RTX2000 Mini-BEE, EBForth, AZForth, RTX-
2101,8086 eForth. 8051 eForth. 107pgs

Volume 14 814-$15 1#
RTX Pocket-Scope, eForth for muP20, ShBoom, eForth for
CP/M & 280, XMODEM for eForth. 116 pgs

Volume 15 815 -$I5 1#
Moore: new CAD system for chip design, a portrait of the P20;
Rible: QS1 Forth processor, QS2, RISCing it all; P20 eForth
software simulator/debugger. 94 pgs

Volume 16 816 -$I5 1#
OK-CAD System, MuP20, eForth system words, 386 eForth,
80386 protected mode operation, FRP 1600 - 16-Bit real time
processor. 104 pgs

DR. DOBB'S JOURNAL
Annual Forth issue, includes code for various Forth applications.
Sept. 1982 422 - $5 1#
Sept. 1983 423 - $5 1#
Sept. 1984 424 -$5 1#

FORTH INTEREST GROUP
P.O. BOX 2154 OAKLAND, CALJFORNIA 94621 510-89-FORTH 51 0-53.5-1295 (FAX)

Name Phone
Company Fax
Street eMail
City
StateProv. Zip
Country

Item # I Title Qty. I nit . Pnce . Total 1 #
I I 1 I

I I I I I I

Signature I - *Membership the Forth Interest Grou 1
n New nRenewal $40/4hl&

CHECK ENCLOSED (Payable to: FIG)

VISANasterCard Expiration Date

Card Number

- - - -, -,--

' MEMBER~HIP ~ora l I I

Sub-Total I 1

~ ~-~

*MEMBERSHIP IN THE FORTH INTERESTGROUP
The Fonh Interest Group (FIG) is a world-wide, nonprofn, member-supported organization with over 1.500 members and 40 chapters. Your membership includes a subscription to the bi-monthly
magazine Forth Dimensbns. FIG also offers its members an on-line data base, a large selection of Forth literature and other services. Cost is $40 per year for U.S.A. 8 Canada surface; $46 Canada
air mail; all other countries $52 per year. This fee includes 536142148 for Forth Dimensions. No sales tax, handling fee, or discount on membership.
When you pin, your first issue will arrive in four to six weeks; subsequent issues will be mailed to you every other month as they are published-six issues in all. Your membership entitles you to a 10%
discount on publications and functions of FIG. Dues are not deductible as a charitable contribution for U.S. federal income tax purposes, but may be deductible as a business expense.

10% Member Discount, Member # .

**Sales Tax on Sub-Total (CA only)
Postage: Rate x #s

MAIL ORDERS: PAYMENT MUST ACCOMPANY ALL ORDERS ** CAUFORNlA SALES TAX BY COUNTY:
Forth Interest Group 7.5%: Sonoma; 7.75%: Fresno. Imperial,
P.O. Box 2154 Inyo. Madera. Orange, Riverside. Sacra-
Oakland. CA 94621 PRICES: All orders must be prepaid. Prices are POSTAGE: SHIPPING TIME: mento, San Benito. Santa Barbara. San Ber-
PHONE ORDERS: subpct to change without notice. Credn card orders All orders calculate Postage as Books in stock are shipped nardino. San Diego, and San Joaquin;
510.89.~0~~~Credhcard will be sent and billed at current prices. Check must number of #s times selected within seven days of receipt of 8.25%: Alameda, Contracosta. L a Angela
orders, customer be in U.S. dollars, drawn on a U.S. bank. A $10 postage rate. Special handling the order. San Mateo. Santa Clara, and Santa Cruz;

M ~ ~ - F ~ ~ , 9-5 charge will be added for returned checks. available on request. 8.5%: San Francism; 7.25%: other munties.

For faster service, fax your orders: 510-535-1295 x v - I

(

70 5 a t . " omemqe d"
70 6 a t ." pssaua r "
70 7 a t ." rsbvev g"
70 8 a t g e t s b
8 base @ 2 base ! - r o t .r base !

\ a f t e r r e s t o r i n g c u r s o r , wa i t f o r a s h o r t while,
\ s o w e have t ime t o r e a d t h e s t a t u s b y t e

r e s t c u r s o r 1 m s
t h e n

aga in ;

comment: .
This r o u t i n e s t a r t s t h e d a t a c o l l e c t i o n (COLLECT) and sc reen d i s p l a y

(TASK1) t a s k s running i n t h e background. E n t e r a f i l e name i n which t o save
da ta a f t e r t h e word XTAL. I f t h e f i l e name a l r e a d y e x i s t s , XTAL w i l l
ask t o overwr i t e . Type ' f i n ' when done; t h i s w i l l s t o p background
t a s k s , and c l o s e d a t a f i l e .

.
comment;

: getfname (I f i lename --)

x t a l h a n d l e ! hcb
x t a l h a n d l e hopen O= i f

." f i l e a l r e a d y e x i s t s . Overwrite (Y/n)?"
key upc ' N ' = i f a b o r t " No. A l r i g h t . " c r then

then
x t a l h a n d l e h c r e a t e 0 <> a b o r t " e r r o r on hc rea te"

1 : x t a l (I f i lename --)

g e t f name
d a t a c n t o f f gooddata o f f
get-t ime s t a r t t i m e 2 !
t a s k l wake c o l l e c t wake
c r ." Type F I N when you want t o s t o p c o l l e c t i n g . . . ' ' c r
." o r SINGLE i f you want t o pause ... then MULTI" c r

: f i n \ f i n i s h e d with c o l l e c t i n g
t a s k l s l e e p c o l l e c t s l e e p
x t a l h a n d l e h c l o s e drop l o c a l

\ .used
: checkfreq (--)

gpibohandle i b f i n d =: gpibO
pm6680handle i b f i n d =: pm6680
begin

c r . " Checking PM6680 frequency c o u n t e r . . . " pm6680 awake? n o t whi le
." Please t u r n it on, and p r e s s a key ..." key drop

repea t . " i t ' s responding ok"
c r i n i t f r e q

\ gpibohandle i b f i n d =: gpibO
\ pm6680handle i b f i n d =: pm6680
checkf r e q
\ i n i t f r e q
mul t i
\ t a sk2 wake t a s k 3 wake \ s t a r t e r r o r r epor t ing , and s t a t u s b y t e

I I

Forth Dimensions 23 May 1993 June

Forth in Search
of a Job / to be in Fargo, North Dakota. There is a real danger of paying

Donald Kenney

a premium price for services and a fortune in travel expenses.
4. Getting beat up by the suits in the front office is no h n .

Why propose using a language they've never heard of? At the
very least, a good story is needed. While most managers
could probably concoct a suitable fairy tale, why would they
want to?

May 1993 June 24 Forth Dimensions

Canton, Michigan

I've read a fair amount in Forth D i m i o n s about the lack
of Forth usage in larger engineering and programming
shops. As a reformed software manager, I'd like to explain
some of the reasons.

I'm not claiming that software or engineering manage-
ment is a rational environment. In point of fact, it is a very
wacky environment, and far too many of the participants are
none too tightly wrapped. Nonetheless, they are generally
very bright, and even the nut cases fit the punch line of an
old joke: they are crazy, not stupid. There are reasons they
don't use Forth.

1. Programming is not a one-time operation. Large
systems require integration. Almost any software, once
released, is going to require maintenance-enhancements
and bug futes. It is impossible to predict which projects will
need how many people more than a few weeks in advance.
If a shop tries to work in 22 dialects of 13 programming
languages, the chance of having a suitably trained person on
hand when a need arises isn't high. Most shops tty to work
in as few programming languages as possible.

2. The choice of programming language doesn't look
anywhere near as important to a manager as it does to a
programmer. The manager knows that most of the budget
goes to requirements analysis, design, testing, configuration
control, overhead, facility, product maintenance, manual
production, and endless meetings. Programming perse is a
relatively minor cost, and adding a little expense there
doesn't hurt a lot. I've forgotten the conventional wisdom on
this-the figure 1@/o of total costs comes to mind, but that's
low, because it excludes design and test activities of pro-
grammers. Anyone who a r e s should check Barry Bmihm's
Somare Engineen'ng Economics. Anyway, a non-optimal
language choice doesn't bother the manager much--espe-
cially if the (very real) costs of bringing a new language into
the operation can be avoided.

3. Forth is a fringe language. If one needs to find
additional experienced programmers in a hurry, who is the
manager going to call? And what will they cost? For C, Cobol,
Fortran, or BASIC, the friendly neighborhoodbody shop can
probably find some reasonable local folks. The manager may
even have the luxury of choosing between several qualified
candidates. For Forth, the nearest available resource is likely

5. MU& as I like ~ o r t h , I'm by no means convinced that
Forth is a good choice for a big system language. Yes, the
code will probably be great and the pieces will be beautiful
to behold. But the system design (if any) will probably have
been bungled. It usually is (generally because of manage-
ment impatience, not designer ineptitude). Those pretty
pieces are probably going to have to be trimmed and
reworked to build a working system. That means people
working with each other's code. Forth is often hard to read,
and I'd be concerned about ending up with people blowing
each other out of the water with ill-considered, low-level
changes to each other's code. I'm not sure how to handle
shared data in a large Forth system. Not that I can't devise a
way. But how do I know it will work?

If I'm not sure how well this good one/two person
language is going to scale to eight- or 20-person projects,
how do you think the average manager feels? Why should
they experiment when they know C or Fortran will do the
job?

6. ~f the programming shop has reasonable controls,
configuration management, library control, etc., the manag-
ers should be concerned about adapting them to Forth. In
point of fact, the controls probably won't adapt. The shop
will have to develop new procedures from scratch. That's a
lot of work.

So, it's hopeless? There's no room for Forth in big
operations?

Not so. But the only place Forth is likely to penetrate is
in niches where nothlng already in place will suffice, or
where the product occupying the niche is truly unsatisfac-
tory. Forth is marketable as a language to program
microcontrollers, or for environments with restricted address
space. It is marketable as a general replacement for assembly
language in environments that don't require really high
performance but which don't have the resources to support
a conventional, higher-level language. It won't displace tiny
Cs and BASICS where the shop also uses C or BASIC for larger
projects. Maybe Forth a n be sold as a prototyping language.
But Forth is not likely to replace mainline programming
languages. ~ o s t people don't see any need for another
mainline programming language. ~f Ada, with the full
support of the Department of Defense, can't penetrate the
D O D ~ captive contractor base, what chance does Forth
stand in penetrating a decidedly non-captive industry base?

A CLASSIC REVISITED

start in January, but in March. So day number 1 would be 1
March 1300.

With this out of the way, we can proceed with the actual
calculation of the day number. First, adjust the date as

Integer Date
described above, then calculate the number of days in years
passed as follows (remember, this will automatically include
any leap days): . = Int(365.25 y)

Calculations or in Forth:

DUP (. - - . I 365 *

Richard de Rozario
Randwick, NS M(Australia

These days, routines for calculating dates fall into the
category of "classics." When 1 needed some words for this in
the pygmy version of ~ o r t h , I first looked through back issues
of Forth D i m i o r r s . (I mean, why re-invent the wheel,
right?) Allen Anway (FD IW1) and Matt Wilson (FD IW3)
provided a good starting point. However, I was looking for
a calculation that would result in a two-byte day number,
using integer operations. Neither demand was set in con-
Crete, but they prompted me to pick to pieces the actual
formulas used in calculating dates (most articles I have seen
draw on un-elaborated formulas from other sources). In
doing so, I discovered some modfications that are useful in
strictly integer Forths, like Pygmy.

The main idea is to convert a date into a day number, and
vice versa. That allows you to calculate things like the number
of days between two dates. The way to figure a day number
for a particular date is to add all the days in years passed, add
all the days in months passed, and add the number of days
passed in t h~s month. So, if your starting point is 1 Jan. 1300
(day 1) and YOU wish to figure the day ~ ~ ~ r n b e r f o r 1June 1993,
YOU would add all the days till 1993 (333681, all the days tillJune
(150, plus 1, resulting in day number 34120.

There are hard parts to this. One is that
years have a leap day; the other problem is that the number

days in each varies. The problems are
by the fact that the leap day is in February-

right in the middle of things.
A trick used in all formulas is to attach January 2nd

February to the end of last year, and make this year start in
March. This will put the possible leap day at the end of the
year. In other words, the leap day will be added when you
calculate the days of years passed (which is a lot simpler than
keeping track of it in the middle of your month calculations).
So March becomes month number 0, and January and
February become months 10 and 11, respectively (and
subtract 1 from the year if you're dealing with Jan. or Feb.).
A few examples:

1 Jan 92 = 1 10 91
29Feb92 = 291191
1 Mar92 = 1 092
1 Apr 92 = 1 192

, Note that this means your base year (e.g., 1900) also doesn't
Forth Dimensions

SWAP 25 * 100 / +

In our time frame of 1300 to 2099, we don't have to bother
calculating exceptions to leap years (i.e., dtvisible by 100 is
not a leap year, but divisible by 400 is). All years divisible by
four are leap years in this period. On the other hand, if you
wish to extend the calculations, it be hard to do,

we are now left to calculate the days in months passed,
1, our re-ordered months, the number of days accumulate
like this:

~ ~ ~ t h D~~~ Sum -
Mar 3 1 0
A P ~ 30 31
May 3 1 61
Jun 30 92

4 Jul 3 1 122
Aug 3 1 153

6 S ~ P 30 1 84
Oct 3 1 214
Nov 30 245
Dec 31 275
Jan 31 306
Feb 28 337

SO the goal is to find a number that, multiplied with our
month number, will tell us the sum total of days that have
come before. Anway uses 30.59, which works when rounded
on the first decimal. For example, the number of days before
~~~~~t (month 5) would be: 5 * 30.59 = 152.95 -> 153. 

When using integer calculations only, I find 30.4 (or 304) 
a better number. The result of multiplication by 30.4 is off by 
a small amount, but the differences form a pattern that is 
easily compensated for, The outcomes look like this: 

# Month D~~~ ~ u m  Me30.4 diff - 
Mar 31 0 0 0 
A P ~  30 3 1 30 1 
May 3 1 6 1 60 1 
Jun 30 92 9 1 1 

4 Jul 3 1 122 121 1 
Aug 3 1 153 152 1 

6 Sep 30 184 182 2 
7 Oct 3 1 214 212 2 
8 Nov 30 245 243 2 
9 Dec 3 1 275 273 2 

10 Jan 3 1 306 304 2 
Feb 28 337 334 3 

25 May 1993 June 



By the way, when you subtract the days of years passed, 
you may get a remainder of exactly zero. That means this is 
the day number of a leap day. Make a final compensation of 
subtracting 1 from the year and altering the remaining days 
to 366. Then the rest of your calculation will automatically 
come out to February 29. 

The source code for doing these calculations in Pygmy 
Forth is given here, including some words to print a calender. 

The compensated integer 
calculation for days ofmonh 
passe. would be as follows 
(where m is the month number 
and \ means integer divide): 

if m=O, N = 0 
else N = m 304 \ 10 + m\6 + 
m \ l l  + 1 

After we have calculated 
the days of years passed and 
the days of months passed, all 
we have todois addthe day of 
the dare, The result is the date 
converted into a day number. 

Thereversealculatiomare 
similar. We now have a day 
number and want to calculate 
the date components. First, 
divide by 365.25 to get the 
year. Next, calculate the days 
of yean passed and subtract 
that fromthe day number. Next 
divide by a "compensated frac- 
tion" to get the month. This is 
a different compensated frac- 
tion than the one used to get 
the day number. The main 
reason is that we now work 
from the day number, not from 
the number of days in months 
passed. For example, the 1st of 
Juneis day number93, but the 
days of (re-or&red) months 
passed is 92. 

so we divide by 30.41 in- 
stead of 30.4. Also, before we 
divide we should take away 
those compensations that we 
addedwhenwe calculatedthe 
day number. Again, because 
we now work from the day 
number (andnotfromthe date), 
we use different divisors to 
accomplish this, ne complete 
integer n~mber-to-~onth cal- 
culation is as follows: 

m = (N - N\ 184 - N\337 - 1) 
100 \ 3041 

Note that Pygmy Forth uses UMOD instead of the 83-Standard 
UM/MOD. I have also added assembly code for UM* and UM/ 
which 83-Standard Forths won't need. Use the built-in IN* 
and UM/MOD instead. Definitions for VAR: and TO are 
included for those who don't have them. 

Copyright 63 1993 by Richard de Rozario. Program sections in this article are 
public domain, provided the comment referring to this article is included. The 
author is a PC software trainer iivina in Svdnev. Australia. 

\ d a t e  c a l c u l a t i o n .  ref : F o r t h  Dimensions XV/1 .  
( from d a t e  t o  daynum. NOTE: o n l y  good f o r  1 9 0 0 - 2 0 7 9 )  
: PREP ( y-z ) DUP 1 9 0 0  > IF 1 9 0 0  - THEN ; 
: ( m-n) DUP 3 < I F  1 2  + THEN 3 - ; 
: PREPD ( dmy-dnz) PREPY SWAP PREPM SWAP OVER 9 > I F  1- THEN ; 
: YDAYS ( y-z) DUP 3 6 5  * SWAP 2 5  * 1 0 0  / + ; 
: ( m-n) DUP I F  DUP 3 0 4  * 1 0  / SWAP DUP 11 / 

SWAP 6 / + + 1 +  THEN ; 

: DAYNUM ( dmy-g) PREPD YDAYS SWAP MDAYS + + ; 
: WEEKDAY ( g-n) 5 - 7 UMOD ; ( O=Mon, l = T u e ,  e t C . )  

'ODE ( - d, 
AX POPI BX MULr AX PUSH, DX BX MOV, NXT, END-CODE 

UM/ ( - ) 

DX POPI AX POPI BX DIV,  AX BX MOV, NXT, END-CODE 

: N2 ( g-n) 4 UM* 1 4 6 1  UM/ ( i e .  / 3 6 5 . 2 5 )  ; 
: D2M ( n-m) DUP 1 8 4  / OVER 3 3 7  / + 1 +  - 1 0 0  3 0 4 1  * /  ; 
: YADJ ( yn-ym) DUP O =  I F  DROP 1- 3 6 6  THEN ; 
: MADJ ( n-m) 3 + DUP 1 2  > I F  1 2  - THEN ; 
: MJ'MDAY ( 9-dmy) DUP N2Y DUP YDAYS ROT SWAP - YADJ 

DUP D2M DUP MADJ SWAP MDAYS ROT SWAP - 
SWAP ROT OVER 3 < I F  1+ THEN 1 9 0 0  + ; 

VAR: W X F T  VAR: MTOP VAR: #CELLS VAR: #ROWS 

5 TO MLEFT 3 TO MTOP 7 TO #CELLS 5 TO #ROWS 

: ( - )  CUR@ N I P  MTOP SWAP AT ; 
: ( ,-I CUR@ SWAP I+ SWAP AT ; 

: ( -)  CUR@ DROP MLEFT AT ; 
: .ROW ( 9-h) #CELLS FOR DUP NUMDAY 2DROP 3 . R  SPACE 1 +  NEXT ; 
: .ROWS ( gn-h) FOR -ROW DOWN HOME NEXT ; 

: .PAGE ( g-) 0 OVER WEEKDAY - + TOP HOME #ROWS .ROWS ; 
: -HEADER ( -1  MTOP 1- MLEFT AT 

." Mon Tue Wed Thu F r i  S a t  Sun" ; 
: .CAL ( dmy-h) . HEADER DAYNUM .PAGE ; 

( usage:  2 5  1 2  9 2  DAYNUM WEEKDAY . ) 

( 2 5  1 2  9 2  DAYNUM NUMDAY . . . ) 
( t o  p r i n t  a s m a l l  c a l e n d e r  t y p e  d m y . CAL) 

\ For  sys tems wi thou t  them, h e r e  a r e  
\ implementa t ions  of VAR: and  TO 
: VAR: ( -1  CREATE 1 DOES> ( a-) @ ; 
: TO ( n - )  ' >BODY ! ; 

COMPILER : TO ( n-) $ 1 5 A  , ' >BODY , [ ' ] ! , ; FORTH 

May 1993 June Forth Dimensions 



Forth: The New Model 
/ by Jack Woehr 

$45, M& T Publishing 
Available from the Forth Interest Group and other book sellers. 

Reviewed by Charles Curley 
Gillette, Wyoming 

If you didn't gag at the price of Fortb: 7he NewModel and 
skip to the next article, congratulations. The book may well 
be worth it to you. For one thing, it includes an MS-DOS 360K 
5.25" disk with source to the exercises in the book, and a copy 
of Martin Tracy's ZENForth. If you are one of the people who 
must wrestle with the dp-ANS Fonh in any way, this book will 
save you much frustration and grief. 

I have tried, on occasion, to read the various dp-ANS Forth 
versions, and have found them to be obtuse, confusing, and 
sometimes self-contradctory. This kind of language would get 
an IRS manual writer reprimanded for writing too obscurely. 

To truly get a grasp on dp-ANS Forth, it helps to be a giant 
squid. In one tentacle, you hold a copy of the draft proposed 
standard. Until it is approved and cast in solid hydrogen, the 
latest version will have to do. Alternatively, get a copy of the 
version to which your standard System was written. In 
another tentacle, you need a copy of this book. In the third 
tentacle, you need a standard Forth system's documentation. 
In tentacles four and five, a pen and a new pad of Post-It1 
notes, so you can cross-reference all the documentation! That 

Forth: 7he New Model tackles a specific standard system, 
Vesta's Vesta Forth Standard Edition.3 It tackles it systemati- 
cally, covering logical groupings of words together. It 
discusses control structures together; logical and bitwise 
operators together; etc. To get the most out of this book, read 
up  on a subject in the book, refer to the glossary, and then 
tackle the standard and your system's documentation for 
details and points the book may have missed. 

To give an example of how the three documents interact, 
let's look at DO ... LEAVE ... LOOP. We know that the 
following works, because Woehr tells us so: 

: LEMME-OUT 
100000 0 DO 
I . LEAVE LOOP ; 

This is completely useless code. Closer to the real world, 
will the following compile? 

: LEMME-OUT 1 l00000 0 DO 
I 1 0 0 0 = I F  LEAVE THEN I if you are planning to use dpANS I . LOOP ; 

Forth, get this book. If  you 
haven't decided yet, this book 
will help to make your decision. 

should leave several tentacles free for pounding on the 
keyboard, drinking cola, grabbing submarines as they go by, 
etc. Now, as Captain Nemo said to Ned Land, let's get kraken. 

The first thing to do is grab a Post-It note, label it "Data 
Types," and use it to flag table 3-1 on page 48 of this book. 
You will need that to decipher the hieroglyphics in the 
standard's stack diagrams (yes, the standard has rules for 
them, too). 

Woehr's book is a major improvement on the standard. 
Where the standard has all the crisp, pellucid precision of 
Houston Shipping Channel water, Woehr's book is up  to the 
standards of a mineral hot springs bath. At least you can dive 
in with reasonable assurance that you will be able to climb 
out with your sanity more or less i n t a ~ t . ~  And it might even 
be good for you. 

If it will compile, will the phrase I . be executed after 
the word LEAVE is executed?' Woehr's text is silent on both 
questions. If you can't find the answer in the standard (good 
luck), you may have to hope that the way the documentation 
says your system works is the way every other dp-ANS Forth 
works. Good luck.4 

Can the answer to the first question be deduced? The 
standard-and Woehr-makes much of a theoretical stack 
for control structure compilation, called the control flow 
stack. Without using (gag) control flow stack manipulators 
(CS-ROLL, CS -P ICK, etc.), crossing the nesting imposed by 
this stack is illegal. If LEAVE is part of the DO . . . LOOP 
structure, the second version of the sample code is illegal. 

But the stack diagrams for the looping words indicate that 
they don't use the control flow stack, they use the return 
stack. So we're using two different stacks and we're okay, 
right? Wrong: there is nothing that prevents the implementor 
from using the return stack for the control flow stack! 

The answer to the second question is stated in Woehr's 

Forth Dimensions 27 May 1993 June 



glossary, but not in the body of the book. 
In the case of most Forth words, the casual user may refer 

to Woehr's book and let the standard go. Usually, words are 
covered in better detail than the example I have given above. 
To be more precise, the kind of detail I would have liked to 
see with DO . . . LEAVE . . . LOOP isn't necessary with most 
words, even in dpANS Forth. 

In almost all cases, Woehr shows words being used, so 
the reader can see how they are used. This sort of teaching 
by example is far beyond the scope of the standard, but 
essential for its understanding. 

For example, some folks may find the concepts behind 
DEFER . . . IS obscure. Where the standard just lays them out, 
take 'em or leave 'em, Woehr gives working source code 
defining them and using them in a small application. And the 
source code is in a text file on the disk. 

Unfortunately, Woehr has fallen into a trap common to 
writers of books on Forth. The simpler the concept, the more 
a write-up explains it. The more complex the concept, or the 
newer to the reader, the more write-up is necessary. I found 
Woehr's write-up of simple concepts like DUP over-long and 
verbose (but, knowing that neoforthwrights will be reading 
this book, I do not consider that a negative). I found the 
discussion of (to me) medium-level concepts like CREATE . . . 
DOES> or DEFER . . . I S  to be just about right for me. 
Neoforthwrights may wish for more detail. 

Unfortunately, his discussion of THROW . . . CATCH (or is 
it CATCH . . . THROW?), complete with sample code showing 
how to use it, left me almost completely in the dark. I say 
"almost" only because, prior to reading the book, I had no 
idea that these two words existed. I now know that they do 
exist, and that they have something to dowith error handling. 
Thanks, Jack. 

This is a problem to which almost all technical writing is 
prone. If the concepts are easy to understand, they can be 
written up quickly, and the writer can move on to more 
advanced subjects. But the writer (we hope) understands the 
advanced subjects, whereas the reader may not. So there is 
a temptation for the writer to write an explanation which 
would be suitable to explain the concept-to the writer. 

Like Gandalf says in Tolkien's %e Lord of the Rings, older 
folks tend to talk to the wisest person in the room: themselves. 

In addition to explaining how words work, both in 
isolation and in the context of sample programs, Woehr also 
discusses the philosophy behind some of the code and that 
behind Parts of the standard. In support of his points, Woehr 
refers to such great twentieth century philosophers as 
Groucho Man and Douglas Adams. He also cites knowl- 
edgeable ~orthwrights, such as Charles Moore, Dudley 
Ackerman, and Charlie Johnsen. 

Even if Woehr says that something is so, is it in fact so? No. 
Where Woehr and the standard conflict, the standard, of 
course, overrules. This means that both system implementors 
and standard program authors will have to use the standard, 
in all its opacity, as the final authority. We find the same thing 
over and over again in law: too many lawyers read only the 
case notes in the statute books, and don't read the actual 

May 1993 June 28 Forth Dimensions 

Unfortunately, the same laziness that leaves some lawyers 
relying on the case notes will leave some implementors and 
programmers relying on Woehr's book, and they (and their 
customers) will be bitten by any differences that may exist. 

Some of Woehr's prejudices show through. For example, 
his near tirade against using screens is silly. His suggestion 
that one go out and buy a "good, mouse-driven text editor 
that runs in a window" instead of using a block editor is the 
kind of fatuous "We're from Microsoft and we know more 
about your application that you do" tripe of which program- 
ming in Forth should have cured him long ago. These are two 
points on which he should have taken Elizabeth Rather's oft- 
stated advice: put a cork in it, Jax.5 

In praise of Jack Woehr, let me say that he has a sense of 
humor and isn't afraid to let it out to run loose. Good technical 
writing need not-indeed, should not-be boring. A good 
sense of humor, well deployed, makes a technical book 
much more readable, as Leo Brodie showed. Readers should 
not c o n h e  humor with ignorance or lack of professional- 
ism. Indeed, often a well-placed laugh will provide the reader 
with the mnemonic necessary to remember a point. Thank 
you, Jack! 

Absolutely essential in th~s book is the excellent glossary of 
the Vesta Standard Forth. It includes details about each word, 
and gives stack diagrams as needed. All Forths should include 
such a document, and vendors should look at thls glossary as 
a point of comparison for their own documentation. 

There is an index, but it is sparse. The index has some 
quirks, like an entry for HP calculators, pages 3-4, and 
another entry for Hewlett-Packard calculator, page 74. Word 
names only index the discussion of that word. I would also 
like to see the index refer to other places where words are 
used, so the reader can look at examples.6 

The bottom line on this book is this: If you are planning 
to use, or considering using, dp-ANS Forth, get this book. If 
you haven't decided yet whether to go to dp-ANS Forth, this 
book will help you to make your decision. Ideally, get your 
boss to shell out the $45 plus state theft, shpping, and 
handling. If you are your boss, you should almost certainly 
shell out for it anyway. The book clarifies and annotates the 
standard, and will save hours of frustration, thereby paying 
for itself. 

For the rest of us, it's too expensive. I would not have 
bought it solely for my own library. 

Trademark of 3M, MR. I use the 38 x 50 mm size, 653. 
2 ~h~ fi, after all, a book on ~ ~ ~ t h ,  
3 Know, then, that ~~~k Woehr works for Vests, and is the 

author of Vests Standard Forth. Now do you under- 
stand recursion? 

4 you could also experiment with your system. ~~t one 
get, the idea that would be considered cheating, 

5 ~~~~~d in woehr, page xvii, 
6 h d ,  somebody, please tell the publisher of the next 

edition to make the end notes into footnotes, ~ ~ ~ k ' ~  
notes are worth reading, and footnotes are easier, 

, 
cases. The case aren't the law, the cases are. Woehr's 
book isn't the standard, the standard is. 

Chatles Curley is a paleoforthwr~ght \wing in Gillette. Wyoming. He is the founder 
of the Forth Non-Standards Team. 



HARVARD S O F T W O R K S  
NUMBER ONE IN FORTH INNOVATION 

(513) 748-0390 P.O. Box 69, Springboro, OH 45066 

By now you know that HSLFORTH gives you more 
speed, power, flexibility and functionality than any other 
language or implementation. After all, the majority of the 
past several years of articles in Forth Dimensions has 
been on features found in HSIFORTH, often by known 
customers. And the major applications discussed had to 
be converted to HSLFORTH after their original dialects 
ran out of steam. Even the public domain versions are 
adopting HSD'ORTH like architectures. Isn't it time you 
tapped into the source as well? Why wait for second hand 
versions when the original inspiration is more complete 
and available sooner. 

Well, it was a dirty job, but we finally had to do it. 
Now you can run lots of copies of HSD'ORTH from 
Microsoft Windows in text and/or graphics windows 
with various icons and pif files available for each. Talk 
about THE tool for hacking Windows! But, face it, what 
I really like is cranking up the font size so I can still see 
the characters no matter how late it is. Now that's 
useful. 

Good news, we've redone our DOCUMENTATION! 
The big new fonts look really nice and the reorganization 
makes all that functionality so much easier to find. 
Thanks to excellent documentation, all this awesome 
power is now relatively easy to learn and to use. 

Naturally we continue tweaking and improving the 
internals, but by now the system is so well tuned that 
these changes are not individually of any significance. 
They just continue to  improve performance a bit at a 
time, and enhance error detection and recovery. Update 
to Revision 5.0, including new documentation, from all 
4.xx revisions is $99. and from really old systems the 
update is $149. 

And since Spring is coming, IT IS TIME FOR OUR 
SPRING SALE. Thru the end of May you get to pick 
two extra utility packages free for each Professional or 
Production Level system purchased, o r  get a free Online 
Glossary with help file utility with each Personal Level 
system purchased. 

HSlFORTH runs under MSDOS or 
PCDOS, or from ROM. Each level includes 
all features of lower ones. Level upgrades: 
$26. plus price difference between levels. 
Source code is in  ordinary ASCII text files. 

HS/FORTH supports megabyte and larger 
programs & data, and runs as fast as 64k 
limited Forths, even without automatic 
optimization -- which accelerates to near 
assembler language speed. Optimizer, 
assembler, and tools can load transiently. 
Resize segments, redefine words, eliminate 
headers without recompiling. Compile 79 
and 83 Standard plus F83 programs. 

PERSONAL LEVEL $299. 
NEW1 Fast direct to video memory text 

& scaled/clipped/windowed graphics in bit 
blit windows, mono, cga, ega, vga, all 
ellipsoids, splines, bezier curves, arcs, 
turtles; lightning fast pattern drawing 
even with irregular boundaries; powerful 
parsing, formatting, file and device I/O; 
DOS shells; interrupt handlers; 
call high level Forth from interrupts; 
single step trace, decompiler; music; 
compile 40,000 lines per minute, stacks; 
file search paths; format to strings. 
software floating point, trig, transcen- 
dental, 18 digit integer & scaled integer 
math; vars: A B * IS C compiles to 4 
words, 1..4 dimension var arrays; 
automatic optimizer delivers machine 
code speed. 

PROFESSIONAL LEVEL $399. 
hardware floating point - data structures 
for all data types from simple thru 
complex 4D var arrays - operations 
complete t h m  complex hyperbolics; 
turnkey, seal; interactive dynamic linker 
for foreign subroutine libraries; round 
robin & interrupt driven multitaskers; 
dynamic string manager; file blocks, 
sector mapped blocks; x86&7 assemblers. 

PRODUCTION LlEVEL $499. 
Metacompiler: DOS/ROM/direct/indirect; 
threaded systems start at 200 bytes, 
Forth cores from 2 kbytes; 
C data structures & stmct+ compiler; 
MetaGraphics Turbowindow-C library, 
200 graphiclwindow functions, Postscript 
style line attributes & fonts, viewports. 

ONLINE GLOSSARY $ 45. 

PROFESSIONAL and PRODUCTION 
KXVEL EXTENSIONS: 

FOOPS+ with multiple inheritance $79. 
TOOLS & TOYS DISK $79. 
286FORTH or 386FORTH $299. 

16 Megabyte physical address space or 
gigabyte virtual for programs and data; 
DOS & BIOS fully and freely available; 32 
bit addresdoperand range with 386. 
ROMULUS HSIFORTH from ROM $99. 

Shippinglsystem: US: $9. Canada: $21. 
foreign: $49. We accept MC, VISA, & AmEx 



FORTH TUTORIAL. ~ S S O N  #4 

W o  Examples of Numbers: 

Calendars & 
The Game of Life 
C. H. Ting 
San Mateo, California 

In this lesson, we will use two rather involved examples 
to illustrate the process of composing Forth instructions to 
solve real problems, using the set of Forth instructions we've 
learned in the last three lessons. 

Calendars 
We want to print weekly calendars for any month in any 

year. (Actually from 1950 to, maybe, 2050.) The days are 
printed in columns (Sunday, Monday, and so forth). This 
problem is not as simple as it first looks, because many things 
have to be taken into accout: the leap year, the number of 
days in a month, and the day of the week for the first day in 
a month. 

We approach this problem by computing first the Julian 
date of January 1 of the year 0 in which we are 
interested. Then we compute the number of days from 
January 1 to the first day of the month (MM) of interest. 

Adding the Julian date of the year, the number of days until 
the first day of the month, and the day (DD) in the month, 
we get the Julian date of the day specified by @D MM 
YYYY). The day of the week is, then, the remainder of the 
Julian date divided by seven. 

Let's use January 1, 1950 as day zero of our modified 
Jualian calendar. It also happens to be a Sunday. There are 
1461 days in four years, with 366 days in a leap year. Thus, 
the Julian date of any year can be computed easily by YEAR 
and stored in the variable JULIAN. If this year is a leap year, 
the variable LEAP contains a one; otherwise, it contains a 
zero. 

It is more difficult to compute how may days there are, in 
a given year, until the first day of any month. It is done in the 
instruction FIRST.  F I R S T  pops the number of the month 
(one for January, two for February, etc.) and returns the 
number of days there are in a year from January 1 to the first 

VARIABLE JULIAN ( J u l i a n  date of 1st of a year,  f r o m  Jan 1, 1 9 5 0 )  
VARIABLE LEAP ( 1 f o r  a leap year, 0 o t h e r w i s e .  ) 

1 4 6 1  CONSTANT 4YEARS ( n u m b e r  of days i n  4 years  ) 

: YEAR ( YEAR --, c o m p u t e  J u l i a n  date and leap year ) 

1 9 4 9  - 4YEARS 4 */MOD ( days s i n c e  1 / 1 / 1 9 4 9  ) 

3 6 5  - JULIAN ! ( 0 f o r  1 / 1 / 1 9 5 0  ) 

3 = ( m o d u l u s  3 f o r  a leap year ) 

I F  1 LEAP ! ( leap year ) 

ELSE 0 LEAP ! ( normal y e a r  ) 

THEN ; 

: F I R S T  ( MONTH -- l S T ,  1st of a m o n t h  f r o m  J a n .  1 ) 

DUP 1 = 

I F  DROP 0 ( 0  f o r  J a n .  1 )  
ELSE DUP 2 = 

I F  DROP 31 ( 31 f o r  F e b .  1 ) 

ELSE DUP 3 = 

I F  5 9  LEAP @ + ( 5 9 / 6 0  f o r  M a r .  1 ) 

ELSE 4 - 3 0 6 2 4  1 0 0 0  * /  
9 0  + LEAP @ + ( A p r .  1 t o  D e c .  1 ) 

THEN 

May 1993 June 30 Forth Dimensions 



THEN 
THEN 

: DAY ( DD MM YYYY -- JULIAN-DAY ) 

YEAR ( Compute JULIAN and LEAP) 
FIRST + 1- ( add DD t o  1st of t h e  month ) 

JULIAN @ + ( add t o  Jan .  1 of t h e  yea r  ) 

: STARS 0 DO 42 EMIT LOOP ; ( form t h e  border  ) 

: header ( n -- ) ( p r i n t  t i t l e  b a r  ) 

c r  c r  26 s t a r s  space  
c a s e  1 of ." January " endof 

2 of ." February " endof 
3 of ." March " endof 
4 of ." A p r i l  " endof 
5 o f  ." May " e n d o f  
6 of ." June " endof 
7 of ." J u l y  " endof 
8 of ." August " endof 
9 of ." September" endof 

10 of ." October " endof 
11 of . I 1  November " endof 
12 of ." December " endof 
DROP 

endcase 
space  27  s t a r s  c r  c r  

.I SUN MON TUE WED THU FRI SAT" 
c r  c r  ( p r i n t  weekdays ) 

: BLANKS ( MONTH -- ) ( s k i p  days not  i n  t h i s  month ) 

FIRST JULIAN @ + ( J u l i a n  d a t e  of 1st of month ) 

7 MOD 8 * SPACES ; ( s k i p  colums i f  not  Sunday ) 

.DAYS ( MONTH -- ) 

DUP FIRST 
SWAP 1 + FIRST 
OVER - 0 
DO I OVER + 

JULIAN @ + 7 MOD 
O= IF  CR THEN 
I 1 + 8 U.R 

LOOP 
DROP ; 

( p r i n t  days i n  a month ) 

( days of 1st t h i s  month ) 

( days of 1st next month ) 

( loop t o  p r i n t  t h e  days ) 

( which day i n  t h e  week? ) 

( s t a r t  a new l i n e  i f  Sunday ) 

( p r i n t  day i n  8-column f i e l d  ) 

( d i s c a r d  1st day i n  t h i s  month 

: MONTH ( N -- ) ( p r i n t  a month ca lendar  ) 

DUP 
HEADER DUP BLANKS ( p r i n t  header ) 

.DAYS ; ( p r i n t  days ) 

: CALENDAR ( YEAR --- ) ( p r i n t  year  ca lendar  ) 

YEAR ( compute JULIAN and LEAP ) 

1 3  1 DO I MONTH LOOP ( p r i n t  12 month ca lendars  ) 

CR CR 6 4  STARS ; ( p r i n t  l a s t  border  ) 

day of the month. February 1 is 
the 31st day of the year. March 
1 is either the 59th or 60th day, 
dependng on whether it is a 
leap year; April 1 is the 9 t h  or 
91st day of the year, and so 
forth. A neat formula is used in 
FIRST to compute the 1st of 
May and all the months it. 

The instruction DAY takes a 
day DD, a monthMM, and a year 
YYYY from the stack, and re- 
turns the Julian date of that day 
to the stack. The Julian date 
can beusedto determine which 
day it is in a week by taking its 
modulus of 7. Sunday has a 
modulus of 0, and Saturday, 6. 

.DAY prints the days in a 
month as specified by the 
month number on the stack, 
with the columns aligned to 
the days in a week. This for- 
matted display is enhanced, by 
the instruction MONTH, with 
borders, name of the month, 
and names of the days. For 
example, type 

1992 YEAR 7 MONTH 

to display the July calendar of 
1992. The instruction CALEN- 
DAR displays the 12-month 
calendar of any year, specified 
by the year number on the 
stack. You will not see much 
on the computer screen, but 
you can use it if you print it on 
your line printer. 

1992 YEAR CALENDAR 

To print the calendar, type 
PRINT 
1992 YEAR CALENDAR 

PRINT is a special F-PC in- 
struction to send screen output 
to printer. 

Forth Dimensions 31 May 1993 June 



Example One 
7he True Julian Date 

The Julian date computed 
in the above example refers to 
January 1, 1950 as day zero. 
This is because we used a 
single integer to represent the 
date, and it is limited to a 
range from -32768 to 32767, 
enough to cover about 89 
years. The true Julian calendar 
starts at January 1, 4713 BC, 
which is thought to be the 
beginning of the world. To 
represent Julian dates of this 
large range, we have to use 

: JULIAN-DATE ( DD MM YYYY -- d, J u l i a n  d a t e  a s  a double  i n t e g e r )  
>R ( s a v e  YYYY on r e t u r n  s t a c k )  
DUP 9 + 12 / ( 0 f o r  Jan/Feb,  1 f o r  o t h e r s )  
R@ + 7 * 4 / NEGATE ( t a k e  1 .75  days  o u t  f o r  e a c h  y e a r )  

( 365.25=367-1.75 ) 

OVER 9 + 12 / NEGATE 

R@ + 
100 / 1 + 3 * 4 / - ( l e a p  days  g e n e r a t e d  by  c e n t u r i e s )  
SWAP 275 9 * /  ( days  i n  y e a r  b e f o r e  t h i s  month) 
+ +  ( add DD, days  i n  y e a r  and misc)  
S>D 1.721029 D+ ( add J u l i a n  d a t e  o f  J a n  1, 0 AD) 
367 R> UM* D+ ( add days  of  p r i o r  y e a r s  ) 

double integers, which have a range from -4,294,967,295 to 
2,294,%7,294-quite enough for Julian dates. 

The following program is adapted to F-PC from Ron 
Geere's Forth: i%e Next St@ (Addison-Wesley, 1986). The 
original algorithm was published in Astrophysical j. Suppl. 
v41/3, Nov. 1979. 

Several instructions dealing with double integers have not 
been discussed before this example. They are: 

S >D ( n - - d )  
Extend an integer to a double integer. 

D+ ( d l  d2 -- dSum 
Add two double integers. 

UM* ( n l  n2 -- dProduct  ) 

Multiple two integers and return a 
double integer product. 

Forth has another stack reserved for subroutine calls and 
returns. It is called the returnstack. The function of the return 
stack is normally hidden from the user, and the user does not 
have to be concerned with it. However, the return stack is a 
convenient place to store numbers that are on the data stack, 
temporarily moving them out of the way. The Forth instruc- 
tions for moving numbers between the data stack and the 
return stack are: 

>R ( n - - )  
Pop the top of data stack and push 
it on the return stack. 

R> ( - - n )  
Pop the top of return stack and 
push it on the data stack. 

Low Cost, Next Generation, 8051 Microcontrollers 
With over two decades of Embedded Systems experience, AM Research is the only 

source of single-chip development systems which manufactures hardware and writes the 
development language. AM Research provides the tools necessary to get your design to 
market fast. The fullv integrated h/w and s/w svstems have standard features such as: 

8 channel 8, 10'or 1 f b i t  N D  input. 
All CMOS construction for low power. 
Real Time Clock and EEPROM. 
2 line by 40 column alphanumeric LCD. 
16 button hermetically sealed Keypad. 
RS-2321485 serial communications. 
Dual PIS, cabling, connectors. 
240 page manual and much more. 

Complete and ready to go right out 
of the box, your application can be running in days, not months. A complete high-level 
language, FORTH, allows easy debugging because it runs interactively like Basic but operates 
10 or more times faster because it is compiled like 'C'. A full-screen editor, in-line assembler, 
communications tools, disassembler and decompiler are built in, not extra cost options. An 
extensive library of hardware drivers and programming examples are provided with all 
Developer's Systems or sold separately. Other stacking PCB's available. Low cost 80C451 
and 80C552 systems starting at only $100. 

Move up to the Engineer's Language for productivity, ease of maintenance and 
comprehensibility. Simulate most members of the extensive 805118052 family. Speeds to 

1 JOMhz, up to 176 110 lines, ND's to 12 bit with 12c interface and Pulse Width Modulators. 

AM Research 
The Embedded Controller Experts 

4600 Hidden Oaks Lane Loomis, CA 95650 
1-800-949-8051 

R@ ( - - n )  
Copy the top of return stack and 
push it on the data stack. 

I 
May 1993 June 32 Forth Dimensions 



The Game of Life 1 
35 CONSTANT w h i t e  
32 CONSTANT b l a c k  

: a d d r e s s l  ( n -- addr  ) 

2047 AND 
PAD + 

: addres s2  ( n -- a d d r  ) 

a d d r e s s l  
2048 + 
, 

( ASCII # ) 

( b lank  ) 

( first  a r e a  of  l i f e  o b j e c t s )  
( n modulo 2048 ) 

( add o f f s e t  t o  PAD ) 

( 2nd a r e a  f o r  n e x t  g e n e r a t i o n  
( add 2048 t o  t h e  a d d r e s s l )  
( let  a d d r e s s l  do  t h e  modulus) 

: ne ighbor s  ( -- ) 

2048 0 ( s c a n  t h e  e n t i r e  map ) 

DO I 1 + a d d r e s s 1  c @  ( add o b j e c t s  i n  8 n e i g h b o r s )  
I 1 - a d d r e s s l  c@ + 
I 7 9  + a d d r e s s l  c@ + 
I 79 - a d d r e s s l  c @  + 
I 80 + a d d r e s s l  c @  + 
I 80 - a d d r e s s l  c @  + 
I 81  + a d d r e s s l  c@ + 
I 81  - a d d r e s s l  c @  + 
I a d d r e s s 1  c@ ( o b j e c t  i n  t h i s  l o c a t i o n ? )  
I F  DUP 2 = ( y e s .  2 o r  3 ne ighbor s?  ) 

SWAP 3 = OR 

I F  1 ELSE 0 THEN ( over-crowded. ) 

ELSE 3 = ( empty l o c a t i o n  ) 

I F  1 ELSE 0 THEN 
( g i v e  b i r t h  i f  3 l i f e  ne ighbor s )  

THEN 
I a d d r e s s 2  c !  ( s t o r e  nex t  g e n e r a t i o n  ) 

LOOP 

: r e f r e s h  ( -- ) ( copy nex t  g e n e r a t i o n  t o  c u r r e n t  
PAD 2048 + PAD 2048 CMOVE 

: d i s p l a y  ( -- ) ( show c u r r e n t  map on s c r e e n  ) 

0 0 AT ( move c u r s o r  t o  u p p e r - l e f t  c o r n e r )  
PAD 1920 0 ( s c a n  1920 l o c a t i o n s  ) 

DO DUP C@ ( l i f e  o b j e c t  h e r e ?  ) 

IF WHITE ELSE BLACK THEN ( show it ) 

EMIT 
1 + ( n e x t  l o c a t i o n  ) 

LOOP DROP 

: in i t -map ( a d d r  -- ) ( g e n e r a t e  a map from some memory) 
2048 0 ( l ook  a t  a 2048-byte a r e a  ) 

DO DUP C@ 1 AND ( u s e  i t s  l e a s t  s i g n i f i c a n t  b i t  ) 

I F  1 ELSE 0 THEN ( t o  a s s i g n  l i f e  o b j e c t  ) 

I a d d r e s s 1  c !  ( i n  o u r  c u r r e n t  map ) 

1 + 
LOOP DROP 

Example Two 
17he Game of LiJe 

The Game of Life is an 
interesting computer program 
which simulates the growth 
and decay of colonies of ob- 
jects in the memory of a com- 
puter. It assumes a memory 
area is arranged as a two- 
dimensional map. Each 
memory location can be either 
empty or occupied by a life 
object. Whether a location has 
a life object or not depends on 
the life objects in the neighbor- 
ing locations. The rules of the 
Game of Life are: 

1. A new life object is born in 
a location ifthe eight neigh- 
bors contain three life 
objects. 

2. A life object dies if the eight 
neighbors contain fewer 
than two or more than three 
life objects. 

A life object dies because of 
loneliness (fewer than two liv- 
ing neighbors) or of overcrowd- 
ing (more than three living 
neighbors). A new life is born 
when there are three living 
neighbors (presumably a fa- 
ther, a mother, and a priest). 

Let's use the computer 
screen as the map, which con- 
tains 25x80 locations. A # r e p  
resents a life object in a loca- 
tion, and a blank space indi- 
cates that there is no life at a 
location. In memory, we allo- 
cate 2048 bytes for a map, of 
which only 1920 locations are 
displayed on the screen. The 
memory area is wrapped in a 
toroid shape, in which any 80 
consecutive bytes are adjacent 
to the next 80 consecutive 
bytes; and the first 80 bytes are 
adjacent to the last 80 bytes. 
Thus, the locations neighbor- 
ing location N are N+1, N-1, 
N+79, N-79, N+80, N-80, N+81, 
and N-81, and all the numbers 
are modulo 2048. The modu- 
lus of 2048 can be obtained 
simply by ANDing a number 

Forth Dimensions 33 May 1993 June 



: genera t ions  ( n -- ) 

0 DO neighbors  
r e f r e s h  
d i s p l a y  

LOOP 

slow 
s t a t o f  f 
500 init-map 
10 genera t ions  

( repea t  n  genera t ions  ) 

( compute next  genera t ion)  
( copy t o  c u r r e n t  map ) 

( and show it ) 

( d i s p l a y  every  c h a r a c t e r )  
( hide  t h e  headers ) 

( i n i t i a l i z e  t h e  map ) 

( do 10 genera t ions  ) 

with 2047. 
The memory area will be 

assigned as 2048 bytes from 
PAD, which points to free 
memory the user can use. Ac- 
tually, we need two 2048 byte 
areas, the first to store the map 
of life objects, and the second 
to store the next generation of 
life objects. After computing 
one generation, the map in the 
second area is copied to the 

I first area. 

New Forth instructions introduced in this example are the following: 

CONSTANT ( n -- ) 

Define a new instruction which returns n 
when executed. 

C@ ( addr  -- char )  
Fetch a byte from a memory location. 

C! ( c h a r  addr  --) 

Store a byte to a memory location. 

CMOVE ( a 1  a2 n  -- ) 

Copy n bytes from memory a1 to memory a2. 

( -- addr  ) 1 izrn the address of a free memory buffer. 

AND ( n l  n2 -- n3 ) 

Bitwise AND of two 16-bit numbers. 

( n l  n2 -- n3 ) 

Bitwise OR of two 16-bit numbers. 

Exercise 
Thlnk of your favorite board 

game, and consider the possi- 
bility of computerizing it. 
Maybe it is very difficult to 
adapt the entire game, but you 
should be able to find ways to 
partially computerize it. Con- 
sider ways that a computer can 
help you to improve your play- 
ing skill. 

Dr. C.H. Ting is a noted Forth authority 
who has made many significant contribu- 
tions to Forthand theForth InterestGroup. 
His tutorial series will continue in suc- 
ceeding issues of Forth Dimensions. 

AM Research ...................... 

Computer Journal ................ 18 

Forth Interest 
Group.. ........... 6, 44, centerfold 

.............. Hanlard Softworks .29 

Miller Microcomputer 
Services ............................. .34 

Silicon Composers ............... .2 

May 1993 June 34 Forth Dimensions 



I Reader Profile: 

My interest in Forth and SBC's (as embedded controllers) 
is ad vocational. If by chance I find an application of a 
vocational nature, it is a result of my entrepreneurial inclina- 
tions. By background training, I am a physicist (B.S.) and a 
biochemist (M.S.). Professionally, I have been involved with 
development of biomedical systems, (irnmuno-) chemical as 
well as related instrumentation-ultimately for medical diag- 
nostic applications. So I quite frequently have become 
involved with micros at various levels during the course of 
my career. However, 1 have never seriously needed to 
develop programming skills. I have, in the past, developed 
small programs in BASIC, for personal development, if 
nothing else. BASIC was never a comfortable language: easy, 
but awkward. 

My introduction to Forth came through a need to develop 
scientific data acquisition capability, PC based, for a special 
device R&D project (SBIR government funded). ASYST was 
evaluated and procured for this purpose very successfully. A 
subsequent employee of mine recognized the similarity to 
Fonh in ASYST's structure (syntax, etc.), and encouraged me 
to become familiar with Forth. I had found ASYST to be quite 
intuitive in terms of my needs and, subsequently, I found 
Forth to be likewise comfortable. It is a logically structured 
approach to programming and, while 1 have no other real 
basis of comparison, just looking at code in C suggests that 
it is not at all my style. However, my needs for programming 
are, to repeat, advocational at this time. I enjoy working with 
it to solve some interesting, fun projects. 

My interest in observational astronomy (variable stars, 
etc.) led me to develop a CCD system (charged coupled 
device) for a 10" Newtonian reflector of my own construction 

... then I will feel that Forth is 
mine, that I really understand it. 

responsibilities required full focus. I have managed to use the 
S u ~ r  8 to build a nice drive controller for my telescope 

(including mirror), which has kept me interested in Forth as 
a means to an end-an intellectually pleasant means. I 
picked up  a quality CCD chip, machined the housing, 

(stkpper-motor controller with many added features), some- 
thing that would be required once the CCD becomes 
"asuonornically" operational. 

Since that somewhat catastrophic event, my issues of FD 
generally went unread, or were quickly scanned at best. Until 
I spotted Russell L. Harris' column: I am looking into a project 
that will require an SBC controller and I would like to 
complete the CCD project. More importantly, as a kid I 
always had a screwdriver in my pocket (I am also a Ham: 
KC3YX) and as with most everything else, I have this 
unaccountable need to get hrther into Forth than my various 
projects have required so far. 

The fact that Forth is extensible, self compiling, and 
readily portable makes it interesting in its own right. 
Metacompiling, cross-compiling, and cross-assembling have 
to be more fully understood (by me). While I cannot envision 
making a living knowing this stuff, I am interested in 
understanding it at a practical level. 

I hope to learn how this is practically accomplished, e.g., 
by writing an assembler, cross-compiling to an "image" 
memory, then transporting the cross-compiled code into the 
target RAM or ROM and booting the device, seeing that it 
works! Then I will feel that Forth is mine, that I really 
understand it. 

For my CCD project, re-designing the drivers is a big job 
in itself. And costly. I intend to use eight-bit "flash" D/As so 
that I can use other CCDs (different clock sequences and 
voltage levels), fully adaptable by changing the source code 
in Forth for the Super 8. I will look to the MAX-Forth 68HCll 
to take over for my stepper-motor controller system, or some 
similar ready-made SBC. But I still would like to feel I could 
"roll my own." 

I suggest that I am not representative of the Forth 
community. For my part, I have found Forth to be compatible 
with the way I think (at least in part), easy to learn and apply 
for various real applications. I enjoy working with Forth. I 
probably will not delve into any other language without a 
very pressing purpose. 

As a result of Mr. Harris' article, I signed onto GEnie (drop 
me a note at the GE Mail address M.MALMROS) and have 
browsed the Forth Interest G~OUD'S RoundTable. It has lots 
of interesting files that may help me to learn what I desire, 
along with the continuing series "On the Back Burner" in 
Forth Dimensions. 

mounting, thermoelectric, and cooling-circulator systems, 
etc.. . For my CCD's clock requirements, I found the Inner 
Access Super 8 (Zilog) Forth SBC running at 20 MHz to be 
perfect. To obtain the clocking pulses at the speed I desired 
required writing much of the code in assembly. It worked 

Forth Projects 
Embedded applications 

CCD clock driver, universal 
telescope drive controller (stepper motor) 

perfectly and was embedded in an ASYST program (to be 
converted to a similar program in F-PC) that used DMA with 

lo the lZbit pixel data and 
manipulate and display the CCD in a quantitative, "photo- 
metric" manner. The whole project came to a screeching halt 

Standalone SBCs 
RF plasma chamber controller (proprietary)-vacuum 
pumping, gas flow, and vat cycling parameters, RF 
power, and current analyzer 

when one of the analog switch drivers for the CCD failed, 
destroying the CCD; fortunately, I was given a second for 
development and testing! Next, I discovered that the analog 
switches were no longer available-anywhere! Given suffi- 
cient discouragement, I also found that my professional 

Blue-sky 
anti-carjacking security algorithms 
pocket baseball score keeper (for Little League and 
high school coaches) that downloads to a PC for full 
stats, box scores, etc. 

Forth Dimensions 35 May 7 993 June 



A Forum for Exploring Forth Issues and Promoting Forth 

Mike Elola 
San Jose, California 

Hardware as a Creative Medium 
Forth programmers often cast their work in the medium 

of electronic devices such as microprocessors, input and 
output devices, and read-only memory. The larger software 
engineering community often takes a dim view of hardware 
and firmware. Perhaps their discomfort (and mine) arises 
because of our not feeling comfortable apart from the familiar 
world ofvariables, routines, file formats, libraries, and protocols. 

Artists who can express themselves in terms of oils, clays, 
metals, stone, and other meda feel increasing rewards with 
each medium they master. What might be an impossible 
expression in one medium often can be realized in another, 
or in a combination of two. I suspect that embedded system 
programmers feel levels of accomplishment and freedom 
some of us will never experience. 

Embedded systems reveal Forth at its best. Although it 
was unintentional, the C guru P.J. Plauger instilled t h s  idea 
in me as I read his "State of the Art" column for Embedded 
SystemsProgramming (January 1593). "You face your worst 
problems when writing warm restarts in a high level lan- 
guage such as C." After explaining how embedded systems 
need to be resilient and recover from errors, Plauger noted 
that C programmers need a much more detailed understand- 
ing of the C run time to create the best embedded systems 
programs. 

Because of his long association with the C language, 
Plauger probably has source code for various implementa- 
tions of C, and he regularly offers source code for the 
standard C libraries. For other C programmers, however, he 
realizes that C can become a considerable obstacle due to 
ignorance about the C run-time environment: 

"If you write in C (a common choice), you have to know 
what's going on under the hood. 

"...The situation can get worse if you use one or more 
third-party libraries. In this case, you might not have access 
to the source code." 

Forth does not penalize embedded system programmers 
this way, because its run-time environment is not hidden 
from the programmer. Most professional Forth programmers 
understand the internal operation of the language-as 
attested to by the fact that they frequently write their own 
Forth system for each processor they use. This is rarely the 
case for embedded systems programmers who use other 
programming languages, for which the task of regenerating 
the language would require an exhaustive effort. 

ANS Forth will make it easier to write warm restarts with 
its CATCH and THROW addtions to Forth. However, imagina- 
tive Forth programmers have added many similar routines to 
a variety of Forths. There is no need to wait for a compiler 
writer to offer you a Forth with exactly what you need. With 

Forth, your limits are established by your own imagination, 
not your lack of access to--or lack of understanding of- 
Forth's compiling and run-time systems. 

(The absence of any hardships upon those who would use 
a Forth system that they did not generate themselves is a 
rallying point for Forth programmers--as I reported in the last 
"Fast Forthward installment. In that recapitulation of subrnit- 
ted opinions, one of your greatest concerns, and greatest Forth 
likes, is the ability tounderstand the internal operation of Forth, 
as well as any Forth libraries you decide to use.) 

Claims of unpaxalleled flexibility are fair claims for Forth, 
because Forth systems include routines that invite program- 
mer manipulation of the return stack and all the other run- 
time resources. So routines such as CATCH and THROW are not 
only for the language provider to create. As a Forth program- 
mer, you can create such routines as easily as can the Forth 
compiler writer. In this way, you can extend Forth to fulfill 
your needs as seen by you (not some distant and unknown 
compiler writer). 

For example, many Forth routines are available to manipu- 
late the contents of data structures that reside in memory. In 
Forth, these operations require as input parameters real 
addresses that you are able to pick previously. In most other 
languages, operations that manipulate memory contents can 
only be passed "symbol names," because the compiler must 
be allowed to establish the actual addresses of data. In Forth, 
you write routines that deal drectly with real memory (and 
directly with real hardware). Thereby you are truly empow- 
ered to create and reshape Forth at a meaningful level. In terms 
of the freedom it provides, Forth resembles an assembly 
language-which is as close to direct manipulation of hard- 
ware as we can get. The close control of actual hardware is 
ultimately what embedded systems programmers need in 
order to minimize costs. (Applications developed in Forth are 
typically more compact than those written in assembly 
language, while it still affords the level of control needed.) 

Forth strikes out in an unusual direction as far as 
programming languages are concerned. Its goal is to offer the 
programmer the needed power over its own run-time and 
development environments. Thls becomes a significant 
advantage, particularly in application areas where an under- 
standing of what's "under the h o o d  is vital. 

The approach taken by other languages is to deny access to 
critical processor (run-time) resources such as a return stack. ' T ~ I S  is done in the hope of removing the possibility of disruptive 
actions that a programmer might instigate. In those languages, 
the reasoning is that a constrained programmer is a better 
programmer. In contrast, the Forth approach lets you create 
routines that extend or reshape the run-time system to obtain the 
support you need, such as a new form of warm restart. 

May 1993 June 36 Forth Dimensions 



If C has nuisances for the embedded systems programmer 
to overcome, C++ offers no relief either, according to 
Plauger. After explaining how C++ makes programming 
warm restarts easier, Plauger goes on to lament the penalty 

l?~@d~@o I!f%@@b 
FEBRUARY 1993 

of too much overhead processing in C++: "If the penalty is 
as high as it seems to be, I hope a better way exists. So far, 
however, the results have been daunting." 

Because of his long association with C, our chances of 
making a Forth convert of Plauger are not very good. 
However, he has opened a topic of discussion in which Forth 
programmers should participate. So open your copies of 
Ernbedcied S p t m  Programming, read the column, and 
send him your comments. At the same time, send a copy to 
the FIG office so that you can help contribute to discussions 
in Forth Dimemions too. 

I suspect that Plauger has arrived at one of those little- 
acknowledged areas that can help explain Forth's appeal to 
many programmers, particularly embedded systems pro- 
grammers. Let's hear your take on this subject. 

Recognition of ESPS 
When the ranks of FIG reached its peak at 4800 

members back in 1 ~ ,  the embedded systems market- 
place was only a glimmer of what it is today. 

Numerous microprocessors, microcontrollers, and as- 
sociated components are an important part of our world 
now. With this technology, businesses both large and small 
have created many sought-after products. Some of these 
products are experimental ones that help advance our 
scientific knowledge. Many of these products are merely 
practical ones. 

Forth has proven to be a good match for a wide variety 
of products, on the scientific side, Forth has flown as part 
of the equipment aboard space shuttle missions. As part of 
a more down-t@ea& device, Forth is being carried over 
much of the planet inside the palmtop computers used by 
Federal Express mail carriers. 

~i~~~ these developments over the past ten years, 
embedded systems programmers must represent an ever- 
increasing proporzion of the FIG membership. 
have embedded system programmers contributed to the 
influx of new FIG members? To help us chart an appropri- 
ate course for FIG, we should at least gather infomation 
about about the present composition of FIG. 

With a stamp, an envelope, and yourbusiness card, you 
can help provide the information FIG needs. From your 
business cards, we should be able to determine how many 
of you are currently involved in embedded systems work, 
as well as other fields of endeavor. If you work tends to 
vary, send us one copy each of the different business cards 
you regularly use. 

To provide even more information for FIG, consider 
writing a keyword or two on the back of your card(s), You 
may choose from the following terms if you wish: industrial 
control, avionics, aerospace, communications, instrumen- 
tation, vending machines, computer peripherals, robotics, 
medical, business, or test equipment. 

Forth Dimensions 

MicroProcessor Engineering Ltd. announced the MPE 
RTX2001 PowerBoard based on the Harris RTX family of 
processors. The PowerBoard follows the Eurocard 
(22Ox100mm) form factor. Due to a fully deterministic 
interrupt latency of 400 nanoseconds, this system supports 
data aquisition rates as high as one megaword per second 
according to MPE. Because of the RTX processor's Forth- 
oriented architecture, including dual on-chip stacks, it 
executes 10 million (Forth) instructions per second. The 
MPE optimizing cross-compiler (and XShell interpreter) 
runs on a PC and optimizes code to suit the RTX processor's 
ability to overlap the execution of up to five Forth 
instructions. The RTX PowerBoard is available with either 
an RTX-2000 or RTX-2001A (lacks a single-instruction 
multiply), and includes a DIN edge connector, 64K of zero- 
wait RAM (expandable to 512K along with 512K of 
EPROM), RS-232 and RS-485 ports, and 8255 and 8254 
components for 24 digital I/O lines plus several timers. A 
PC Adaptor is available for a standard PCASA backplane. 
Other adapters are available for use with STE and VME 
buses. 

MARCH 1993 
AM Research announced the amr451LC and amr552LC. 

They are low low power systems based 
On the and 80C552. Like members this 
product lines these systems most members of the 
8051/8052 family at speeds up  to 30MHz. FIG members are 
offered their first 'System' purchase at a 25% discount. AM 
Research 'Systems' come with an extensive manual, a Forth 
for your a Forth for the target! the target! 

assembler, communications support, disassembler, 
and a loomA power brick to 

fuel the target hardware. At prices starting at $100, the AM 
Research arm451LC and amr552LC hardware includes a 
large prototyping area within a 4x6" PCB, RS-232, lithium 

battery, +5V regulator and DC input jack, CMOS RAM and 
ROM sockets, and an optional stacking bus connector. 
Options include eight-channel 8, lo-, or 12-bit input 

(UP to 176 110 lines), 2 line by 40 character LCD, and 16- 
button keypad. 

Companies Mentioned 

AM Research 
4600 Hidden Oaks Lane 
Loomis, CA 95650 
Phone: 91 &652-7472 

MicroProcessor Engineering, Ltd. 
133 Hill Lane 
Southampton SO1 5AF 
Fax: 0303 339691 
Telex: 474695 FORMAN G 
Phone: 0703 631 441 

37 May 1993 June 



Math-Who Needs It? Code continued from last issue, by Prof. Tim Hendtlass I 

\ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
\ * 3 2 - b i t  F l o a t i n g - P o i n t  I n p u t  and O u t p u t  * 
\ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
\ N u m b e r s  t o  be f loa ted  m u s t  include a d e c i m a l  po in t  w h e n  entered. 
\ DPL contains  t h e  n u m b e r  of d igi ts  entered a f te r  t h e  d e c i m a l  p o i n t .  
: FLOAT ( n -- f )  \ f l o a t  t h e  l a s t  entered n u m b e r .  

dpl  @ n e g a t e  t r i m  

: F .  ( f - - )  \ p r i n t  a f l o a t i n g  n u m b e r  i n  fixed format. 
> r  dup abs 0 
<# r@ 0 m a x  0 ? d o  a s c i i  0 h o l d  loop 
r@ O <  
i f  r@ n e g a t e  0 m a x  0 ? d o  # loop asc i i  . h o l d  
t h e n  r >  drop # s  r o t  s i g n  
#> type space 

\ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

\ * 32-bit Floating-point Transcendental hrnctions * * Taken from  en-slide rule by Nathaniel Grossman * 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

c o m m e n t  : 
T h e s e  f u n c t i o n s  are c a l c u l a t e d  t o  a n  accuracy of about one o r  t w o  u n i t s  i n  t h e  
t h i r d  d e c i m a l  place. D o m a i n s  of t h e  f u n c t i o n s  - scale input  i f  n e e d  be t o  
k e e p  w i t h i n  range. T h e  CORDIC a l g o r i t h m  i s  u s e d ,  so these r o u t i n e s  a re  n o t  f a s t .  
SQRT 0 . 0 3  - 2 . 4 2  
LN 0 . 1 0  - 9 . 5 8  
S I N ,  COS, TAN - 1 . 7 4  - 1 . 7 4  
AT AN - i n £  i n i t y  - + i n f i n i t y  
S INH, COSH, TANH -1.13 - 1.13 
ATANH - 0 . 8 1  - 0 . 8 1  
c o m m e n t  ; 
: F 2 *  2 0  f *  ; \ a l t e r n a t e ?  2 d u p  f +  
: F / 2  s w a p  s > d  2 d u p  d 2 *  d 2 *  d +  r o t  1- t r i m  ; \ m a n t i s s a  * 5 ,  dec exp b y  1 
: F / Z A N  ( r n --- r / 2 " n )  0 ? d o  f / 2  l o o p  ; \ divide by 2 ,  n t i m e s  

\ C o n v e n i e n t  r e n a m i n g  of e x i s t i n g  w o r d s .  E i t h e r  t h e s e  o r  o r i g i n a l  n a m e s  w o r k  
2DROP a l i a s  FDROP 
2DUP a l i a s  FDUP 
20VER a l i a s  FOVER 
2SWAP a l i a s  FSWAP 
2ROT a l i a s  FROT 
2 !  a l i a s  F !  
2 @  a l i a s  F @  
2VARIABLE a l i a s  FVARIABLE 

\ E x t r a  f l o a t i n g  p o i n t  w o r d s  
: FO< DROP O< ; 
: F ,  FLOAT , , ; 
: FCONSTANT FLOAT 2CONSTANT ; 

\ C o n s t a n t s ,  V a r i a b l e s ,  D e f e r r e d  W o r d s ,  
4 CONSTANT F#BYTES 
0 . 6 0 7 3  FCONSTANT 1 / K  
1 . 2 0 7 6  FCONSTANT 1 / K 8  
0 . 0 0 0 0  FCONSTANT FO 
1 . 0 0 0 0  FCONSTANT F 1  
0 . 2 5 0 0  FCONSTANT F 1 / 4  

DEFER EPS 
DEFER !STACK 
DEFER DO-IT 
: FARRAY 

CREATE 
DOES> 
s w a p  £ # b y t e s  * + f @  ; 

a n d  A r r a y s  
VARIABLE MODE FLAG 
VARIABLE DELTA - FLAG 
VARIABLE NDX 

FVARIABLE F-BIN 
FVARIABLE XX 
FVARIABLE YY 
FVARIABLE Z Z  
\ it w i l l  be e i t h e r  +EPS OR -EPS 
\ it w i l l  be R-STORE or V-STORE 
\ it w i l l  be e i t h e r  ROT'ING o r  VECvING 
\ a r r a y - b u i l d i n g  w o r d  
\ ( -- ) c o m p i l e  t i m e  s t a c k  
\ ( n --- adr ) run t i m e  s t a c k  
\ calc address of n t h  e n t r y  

I I 

May 1993 June 38 Forth Dimensions 



: DELTA-SIGN delta flag @ if fnegate then ; 
: MODE-SIGN mode-flag @ if fnegate then ; 
: R-DELTA= ( r --- I )  fdup fO< delta flag ! ; 
: V-DELTA= ( r --- r )  fdup £o< not delta-flag ! ; 
: R-STORE ( x y z --- ) r-delta= zz f! yy f! xx f! ; 
: V-STORE ( x y z --- ) zz f! v-delta= yy f! xx f! ; 
: NEW Z zz f@ ndx @ eps delta-sign f- ; 
: NEW-x xx f@ yy f@ ndx @ f/2"n delta-sign mode-sign f+ ; 
: NEW-Y yy f@ xx f@ ndx @ f/ZAn delta-sign f+ ; 
: ROT~ING new-x new-y new-z r-store ; 
: VEC'ING new-x n e w j  new-z v-store ; 
: MODE=+l -1 mode-flag ! ['I +eps is eps ; 
: MODE=-1 0 mode-flag ! ['I -eps is eps ; 
: CORDIC ( xstart ystart zstart --- xend yend zend ) 
!stack mode-flag @ dup 0= >r 
if 0 ndx ! do-it then 
4 1 do i ndx ! do-it loop 
r@ if 4 ndx ! do-it then 
14 4 do i ndx ! do-it loop 
r> if 13 ndx ! do-it then 
14 ndx ! do-it xx f@ yy f@ zz f@ 

: FCOS&SIN ( r --- cos{r) sin{r} f ) 
l/k fswap £0 fswap [ ' I  r-store is !stack 
mode=+l [ '1 rot ling is do-it cordic 

: FCOS ( r --- cos{r)) fcos&sin fdrop fdrop ; 
: FSIN ( r --- sin{r)) fcos&sin fdrop fswap fdrop ; 
: FTAN ( r --- tan{r)) fcos&sin fdrop fswap f/ ; 
: FCOSH&SINH ( r --- coshtr) sinh[r} f ) 
l/k' fswap £0 fswap ['I r-store is !stack 
mode=-1 [ '1 rot ling is do-it cordic 

: FCOSH ( r --- cosh{r)) fcosh&sinh fdrop fdrop ; 
: FSINH ( r --- sinh{r)) fcosh&sinh fdrop fswap fdrop ; 
: FTANH ( r --- tanhtr)) fcosh&sinh fdrop fswap f /  ; 
: FALN ( r --- exp{r)) fcosh&sinh fdrop f+ ; 

: FLN ( r --- ln{r} ) 
fdup £1 f+ fswap £1 f- £0 ['I v-store is !stack 
mode=-1 ['I vec'ing is do-it cordic 
fswap fdrop fswap fdrop f2* 

I 

: FSQRT ( r --- sqrt {r} ) 
fdup f1/4 f+ fswap f1/4 f- £0 [I] v-store is !stack 
mode=-1 [I] vec'ing is do-it cordic 
fdrop fdrop l/kl f* 

, 
: R>P ( x y --- {xA2 + yA2)^1/2 arctan{y/x) ) 
l/k f* fswap l/k f* fswap £0 ['I v-store is !stack 
mode=+l [ '1 vecling is do-it cordic fswap fdrop 

: P>R ( radius angle --- x y ) 
fover fswap fcos&sin fdrop £rot f* £rot £rot f* fswap 

, 
: FATAN ( r --- arctanir)) £1 fswap r>p fswap fdrop ; 
: FATANH ( r --- argtanhir)) £1 fswap £0 mode=-1 
['I vec'ing is do-it cordic fswap fdrop fswap fdrop ; 

Forth Dimensions 39 May 1993 June 



("Back Burner, " continuedjvmpage 433 

the index of the vocabulary, but also additional vocabularies, 
if any, to be searched. (The four hexadecimal digits specify- 
ing the search order are read either right to left or left to right, 
depending upon the implementation.) Thus, FORTH is 
identified by the index 1, ASSEMBLER by the index 3, and 
EDITOR by the index 5. The value 0001 specifies that an 
unsuccessful search of the vocabulary FORTH will terminate, 
whereas the values 0013 and 0015 specify that a non- 
successful search in either ASSEMBLER or EDITOR, respec- 
tively, will be resumed in FORTH. 

User variable CONTEXT contains a 16-bit value (16 bits 
equate to four hexadecimal digits) which specifies the 
vocabulary search order. The first vocabulary in the search 
sequence is termed the prirnaty vocabulary. User variable 
CURRENT contains a 16-bit value (again, four hexadecimal 
digits) which specifies the vocabulary into which the next 
definition is to be compiled (compilation is into the primary 
vocabulary). As you may have surmised, in each case the 16- 
bit values loaded to CONTEXT and CURRENT are the values 
associated with vocabulary names. CONTEXT is set by 
execution of a vocabulary name, whereas CURRENT is set by 
the word DEFINITIONS, which simply copies CONTEXT 

into CURRENT. DEFINITIONS typically appears immedi- 
ately following a vocabulary name, as in the phrase ASSEM- 
BLER DEFINITIONS. 

Off With Their Heads! 
In general, a dictionary search occurs only in the process 

of defining a word in terms of words previously defined, and 
in the attempt to execute a word which has been interpreted 
by the outer interpreter (the text interpreter). Many applica- 
tions-particularly embedded systems-neither define nor 
interpret, and therefore never conduct a search. Conversely, 
searches are commonplace in the development environ- 
ment. 

A dictionary entry consists of a head, which is optional, 
and a body. The head is the repository for the information 
which allows the dictionary to be searched; it typically is 
composed of the following elements: 

a locatefield, which is optional; the field contains either the 
number of the source block which was loaded to compile 
the entry, or zero, if the word was defined at the keyboard 
a link feu, which contains a pointer to the link field of the 
previous word in the dictionary thread into which the entry 
is linked 
a namefield, the first byte of which contains the character 
count of the name prior to truncation, followed by either 
the full name or only the first three characters of the name 

Although the majority of words in the dictionary of the 
development system have heads, words in the nucleus 
which are never directly referenced may be headless, thus 
minimizing the size of the nucleus. The ability to have 
headless code in the nucleus is a consequence of the fact that 
the nucleus is the product of metacompilation. Whether one 
is creating an application or a new development environ- 
ment, metacompilation allows the compilation of headless 

code. This capability can be vital to the economic success of 
an embeddedsystem, since the memory requirement is often 
the predominant consideration in specification and configu- 
ration of the hardware. 

To Each His Own 
In metacompilation, we have need of several vocabular- 

ies within the lctionary of the development system. First of 
all, we need the normal vocabularies FORTH and EDITOR 
Since we typically have no need to define adltional code 
words which execute on the development system, we may 
dispense with the normal ASSEMBLERvocabulary. We place 
words belonging to the metacompiler in a vocabulary named 
COMPILER. Likewise, we place in a newvocabulary named 
ASSEMBLER words belonging to the assembler of the 
metacompiler (which we might term the meta-assembler). 
Note the consequence of reusing the name ASSEMBLER: 
once the metacompiler is loaded, words in the normal 
ASSEMBLER vocabulary become inaccessible. 

All the vocabularies enumerated in the preceding para- 
graph are normal Forth vocabularies, in the sense that they 
are accessed via CONTEXT and CURRENT, they may be 
searched by the normal version of - ' , and words may be 
compiled into each of them by the normal Forth compiler. 
The vocabulary FORTH is redefined, for the purpose of 
redefining the search order; additionally, FORTH is made 
immediate. The vocabulary definitions are as follows: 

HEX 

0071 VOCABULARY FORTH IMMEDIATE 
0017 VOCABULARY COMPILER IMMEDIATE 

0173 VOCABULARY ASSEMBLER 

Note that the search order of COMPILER includes FORTH, 
while that of ASSEMBLER includes both COMPILER and 
FORTH. 

We require yet the services of one to three additional 
vocabularies. The need arises from the fact that compilation 
and dictionary searches are inseparably united. In the 
compilation of a high-level word, one must search the 
dictionary in order to obtain the compilation addresses of the 
component words. In the compilation of a code word, the 
dictionary must be searched in order to find and execute the 
assembler opcodes and directives. 

In metacompilation, the addresses required are those of 
thefuture application system The physical address at which 
the application code is compiled within the development 
system differs from the physical address at which the code 
will reside within the application system. More importantly, 
code compiled into the application dictionary may have 
heads, may be entirely headless, or may be a mixture of 
headed and headless entries. 

If every application word has a head, one might consider 
searching the application dictionary. However, if the appli- 
cation dictionary is compiled to disk, virtual memory opera- 
tors would be required, and search time would become a 
major impediment to the compilation. Conversely, if the 
compiled application is entirely headless, no search is 

May 1993 June 40 Forth Dimensions 



possible. These and other considerations lead us to conclude 
that searches of the application dictionary in an attempt to 
obtain the required compilation addresses are, generally, 
impractical, and, typically, impossible. 

Enter Knight, white as a ghost.. . 
Charging to our rescue is the aforementioned set of 

additional vocabularies. We shall require, in the develop- 
ment environment, an application vocabulary for each 
category of application words. If the application is itself a 
development environment, the application vocabularies will 
be (APPLICATION FORTH), (APPLICATION ASSEM- 
BLER), and (APPLICATION EDITOR). Headless applica- 
tions have need of only one vocabulary, (APPLICATION 
FORTH) . I have placed the names in parentheses to empha- 
size a curious fact: the additional vocabularies are unnamed. 
The fact that names are not defined for the application 
vocabularies has led to the appellations ghost and phantom; 
equally applicable are the terms hidden and invisible. 

The invisible or phantom vocabularies eliminate the need 
to search the application dictionary. For each entry (with or 
without head) in the application dictionary, a corresponding 
confederate entry is compiled into one of the invisible 
vocabularies. Confederate entries typically are composed of 
a normal head, together with a body in which the parameter 
field consists of nothing more than the application-system 
address of the corresponding entry in the application dictio- 
nary. The typical run-time behaviour of a confederate is to 
compile an item (e.g., an address) into the application 
dictionary. The vocabulary structure of the application 
dictionary is mirrored in the invisible vocabularies. Confed- 
erate entries in the invisible vocabularies are compiled at the 
time the corresponding entries are compiled into the appli- 
cation dctionary. 

Seek and Ye Shall Find 
Although the invisible vocabularies are not named, there 

is associated with each a vocabulary index. Indices of the 
invisible vocabularies are simply the indices of the corre- 
sponding development environment vocabularies 
incremented by the value OA hexadecimal. Thus, the indices 
for (APPLICATION FORTH), (APPLICATION ASSEM- 
BLER), and (APPLICATION EDITOR) are, respectively, 
OOOB, OOBD, and OOBF. This choice of indces ensures that the 
invisible vocabularies can be searched onlyby the metacom- 
piler. However, although the invisible vocabularies are 
accessed only by the metacompiler, they are implemented 
no differently than the other vocabularies in the development 
environment. That is to say, entries in the invisible vocabu- 
laries are compiled at the end of the development system 
dictionary, thus causing the normal dictionary pointer to be 
incremented; entries in the invisible vocabularies are linked 
into one of the eight dictionary threads, the thread being 
selected by hashing with the vocabulary index; etc. 

The normal Forth word - ' is used by the metacompiler 
to search the invisible vocabularies, via a surrogate for 
CONTEXT. (Recall that - ' searches the primary vocabulary 
specified by CONTEXT.) Rather than maintaining a pair of 

Forth Dimensions 

rariables corresponding to CONTEXT and CURRENT, the 
netacompiler utilizes only a single variable, VOC. When the 
netacompiler invokes - I ,  CONTEXT is loaded with the value 
n VOC, while the old value of CONTEXT is preserved and 
ifterward restored. VOC is initially set to the value 000B. 

The Plot Thickens 
The basic operation of the metacompiler, upon parsing a 

word in the application source code, is to search the 
ipplication vocabularies for the word and then execute the 
word. As previously noted, the typical run-time behaviour of 
I word compiled into one of the application vocabularies is 
.o compile an item (e.g., an address) into the application 
dictionary. 

In addition to application words, the metacompiler must 
x able to find words such as compiler directives. Moreover, 
words such as compiler directives must be executed at 
zompilation time, rather than being compiled. A complica- 
ion arises from the fact that the metacompiler has access only 
to the application vocabularies. 

The solution lies in a word which I (taking my cue from 
the name IMMEDIATE ) hereupon dub NOW. Because the 
metacornpiler executes words it finds in the application 
vocabularies, the only thing NOW must do is move (i.e., relink) 
words from the normal vocabularies (FORTH, COMPILER, 
ASSEMBLER) to one of the (unnamed) application vocabu- 
laries. As is the case with IMMEDIATE, the word NOW 
operates on the most recent definition. 

A Parting Shot 
Over the past year, this column has generated an average 

of just over one response per month. Although I myself am 
inclined to conclude that no one is interested in the column, 
colleagues have suggested that even the most interested of 
readers seldom, if ever, bothers to write; this supposedly has 
something to do with the independent nature of Forth 
devotees. I consider reader feedback extremely important, 
whether it is a hail ofbrickbats or a shower of roses. I honestly 
would prefer an avalanche of complaints to a total absence 
of comment. I want to know the degree of your interest in 
the subject matter, and whether the level of presentation is 
appropriate to your needs. If you don't care about metacom- 
pilation, what would interest you? A 19-cent postcard every 
couple of months from every serious reader would be most 
helpful, and would be greatly appreciated. Alternatively, 
phone me, send me a fax, or leave me a message on GEnie. 
We authors are a vain and insecure lot, and desperately need 
to know that there really isan audience out there, beyond the 
glare of the footlights. 

R.S.V.P. 

Russell Harris is an independent consultant providing engineering, program- 
ming, and technical documentation sewices to a variety of industrial clients. His 
main interests lie in writing and teaching, and in working with embedded systems 
in the fields of instrumentation and machine control. Hecan be reached by phone 
at 713-461-1618, by facsimile at 713-461-0081, by mail at 8609 Cedardale Dr., 
Houston, Texas 77055, or on GEnie (address RUSSELL.H). 

May 1993 June 



On-Line Resources 1 
To communicate with these systems, set your modem and 
communication software to 300/1200/2400 baud with eight bits, 
no parity, and one stop bit, unless noted otherwise. GEnie 
requires local echo. 

GEnie 
For information, 
call 800-638-9636 

Forth RoundTable 
(Fortb Net9 
Call GEnie local node, 
then 
type M710 or F O m  
SysOps: 
Dennis Ruffer 
(D.RUFFER), 
Leonard Morgenstern 
(NMORGENSTERN), 
Elliot Chapin (ELLI0T.C) 

BIX (ByteNet) 
For information, 
call 800-227-2983 

Forth Conference 
Access BIX via TymNet, 
then type j forth 
Type FORTH at the : 

prompt 
sysop: 
Phil Wasson (PWASSON) 

LMI Conference 
Type LMI at the : prompt 
LMI products 
Host: 
Ray Duncan (RDUNCAN) 

Unix BBS's with forth.conf 
(ForthNet* and reachable via 
SprintNetnodecasfa on TeleNt.) 

WELL Forth conference 
Access WELL via 
CompuserveNet 
or 415-332-6106 
Fairwitness: 
Jack Woehr (lax) 

~ C B a a r d  BBS's devoted to Fortb 
(Fortb Net9 

British Columbia Forth 
Board 
604-434-5886 
SysOp: Jack Brown 

Grapevine 
501-753-8121 to register 
501-753-6859 
SysOp: Jim Wenzel 

Real-Time Control Forth 
Board 

303-278-0364 
SprintNet node coden on 

TeleNet 
SysOp: Jack Woehr 

Other Fortb-specific BBS's 
Laboratory Microsystems, 

Non-Forth-specific BBS's with 
extensiue Forth libraries 

DataBit 
Alexandria, VA 
703-719-9648 
PCPursuit node dcwas 
SysOp: Ken Flower 

PDS'SIG 
San Jose, CA 
408-270-0250 
SprintNet node casjo 

Programmer's Corner 
Baltimore/Columbia, MD 
301-596-1180 or 
301-995-3744 
SprintNet node dcwas 

International Fortb BBS's 
Melbourne FIG Chapter 
(03) 809-1787 in Australia 
61-3-809-1787 interna- 
tional 
SysOp: Lance Collins 

MaxBBS(ForthNet9 
United Kingdom 
0305 754157 
SysOp: Jon Brooks 

Serveur Forth 
Paris, France 
(1) 41 08 11 75 
300 baud (8N1) or 
1200/75 E71 
orcall(1) 41 08 11 11 for 
12CG-9600 baud (8N1) 
Minitel, higher-speed, & 
alternate carriers 
available. 
Sysop: Marc Petremann 

Sky Port (ForthNet9 
United Kingdom 
44-1-294-1006 
SysOp: Andy Brimson 

SweFIG 
Per Alm Sweden 
46-8-71-3575 1 

NEXUS S e ~ i c i o s  de  
Informacion, S. L. 

Travesera d e  Dalt, 104- 
106, 

Entlo. 4-5 
08024 Barcelona, Spain 
+ 34 3 2103355 (voice) 
+ 34 3 2147262 (modem) 
SysOps: Jesus Consuegra, 
Juanma Barranquero 
barranQnexus.nsi.es 

(preferred) 
barran@nsi.es 
barran (on BIX) 

cornpusaue 
For information, 
call SOG848-8930 

Creative Solutions Conf. 
Type !Go FORTH 
S y s o p :  Don Colburn, 
Zach Zachariah, Ward 
McFarland, Jon Bryan, 
Greg Guerin, John 
Baxter, John Jeppson 

Computer Language 
Magazine Conference 
Type !Go CLM 
S y s o p :  Jim Kyle, Jeff 
Brenton, Chip 
Rabinowitz, Regina Starr 
Ridley 

Inc. 
213-306-3530 
SprintNet node calan on  

TeleNet 
Sysop: Ray Duncan 

Druma Forth Board 
512-323-2402 
S y s o p :  S. Suresh, James 
Martin, Anne Moore 

ANS Forth I 
The following members of the ANS X3J14 Forth Standard 
Committee are available to personally carry yourproposals and 
concerns to the committee. Please feel free to call or write to 
them directly: 

Gary Betts c/o Unisyn Manhattan Beach, CA 90266 
301 Main, penthouse #2 213-372-8493 
Longmont, CO 80501 
303-924-9193 Charles Keane 

Performance Pkgs., Inc. 
Mike Nemeth c/o CSC 515 Fourth Avenue 
10025 Locust St. Watervleit, NY 12189-3703 
Glenndale, MD 20769 518-274-4774 
301-286-8313 

George Shaw 
Andrew Kobziar c/o NCR Shaw Laboratories 
Medical Systems Group P.O. Box 3471 
950 Danby Rd. Hayward, CA 94540-3471 

'ForthNet is a virtual Forth network that links designated message 
bases in an  attempt toprovidegreater informution distribution to 
the Forth usen sewed. It is proyided courtesy of the SysOp~ of its 
various l ink .  

May 1993 June 

Ithaca, NY 14850 415-2765953 
607-273-5310 

David C. Petty 
Elizabeth D. Rather Digitel 
FORTH, Inc. 125 Cambridge Park Dr. 
111 N. Sepulveda Blvd., #3m Cambridge, MA 02140-2311 

42 Forth Dimensions 



compiled within the dctionary of the development system; I Dm ffhs &z~k E?WPEWP #7 1 these categories must be searched while the compilation is 

1 'The King is Dead! 

in progress. The vocabulary structure allows the programmer 
to specify the category into which code is to be compiled, the 
categories to be searched, and the sequence of multiple- 
category searches. 

1 / lation is simply the process of writing to a dctionary. The 

Long Live the King!" 

Conducted by Russell L. Harris 
Houston, Texas 

Learning the Ropes  
In ~ o r t h ,  a dictionay is a region of memory into which 

words and data structures are compiled. Recall that compi- 

The last column was devoted to basic nomenclature, 
together with a recommendation as to how you can escape 
or avoid the dreaded Lone Ranger syndrome as you pursue 
an understanding of Forth. In this episode, we turn our 
attention to the environment in which the metacompiler 
operates. 

What I shall describe is a system typical of those I have 
studied, i.e., something of a generic polyFORTH. If your 
system differs somewhat, don't despair. Your time won't be 
wasted. Once you understand the manner in which one 
system works, you will find it much easier to understand 
other Forth systems. The similarities greatly outweigh the 
differences. 

One Stone, Many Birds 
A feature of Forth which plays a central role in metacom- 

pilation is the support of multiple vocabularies. Vocabularies 
are basic to Forth and to good Forth programming practice. 
Vocabularies serve to simplify source code, maintain expres- 
siveness, and segregate code by category. 

The first two functions are based on the concept that the 
meaning of a word is determined by the context in which the 
word appears. Without vocabularies, we would need a 
separate word-a s y n o n ~ f o r  each context in which a 
Forth word is used. However, not infrequently in the course 
of our programming activity, we are unable to find a sufficient 
number of synonyms for a given word. Also, there are 
instances in which a synonym won't do: at times, a particular 
word simply must appear in more than one context. A 
possible work-around lies in the use of typography and 
symbolism. However, in Forth, the primary use of typogra- 
phy and symbolism is to indicate relationships between 
words. For example, (TYPE) is the device-specific code for 
the word TYPE, while (type ) is the code routine associated 
with (TYPE). The use of typography and symbolism to 
differentiate synonyms would interfere with this scheme and 
cause confusion. 

The third function, that of code segregation, is the most 
important of the three with respect to metacompilation. In 
the process of metacompilation, application code is com- 
piled to a special application dictionary, located either in 
RAM or on disk. Additionally, several categories of words are 

process of metacompilation builds a dictionary for a future 
system, the application. Although the application dictionary 
may be too large to be accommodated within the typical 64 
Kbyte Forth environment (the operating enuimnmentl, we 
can easily build the application dictionary in memory 
external to the operating environment. With development 
systems such as the IBM-PC, we can write compiling words 
to directly access RAM outside the 64K operating environ- 
ment. Alternatively, we can use virtual memory techniques 
to write compiling words which access disk storage (includ- 
ing so-called "RAM disks"). In h s  latter case, the application 
dictionary is termed a virtual dictiona y. 

Two mechanisms are simultaneously employed in order 
to systematize dictionary entries. From the standpoint of the 
programmer, the dictionary is compartmentalized into a 
number of vocabularies. From the standpoint of the Forth 
system, the primary compartmentalization of the dictionary 
is in the form of several (typically, eight) dictionay threads. 
Each dictionary entry has membership in a single vocabulary, 
but each entry also is linked into one of the eight threads. 

The linking is done on the basis of a hashing scheme or 
hashing algorithm. When - ' searches for a given word, the 
hashing algorithm combines the corresponding vocabulary 
index with the first character of the name in order to 
determine the thread to be searched. Thus, effectively, the 
entire dictionary may be searched by searching only one- 
eighth of its entries. Note that there is only an indirect 
relationship between a vocabulary and a dictionary thread: 
potentially, each thread links words of all vocabularies, and 
words of any given vocabulary may be found on each of the 
dictionary threads. 

Building Your Vocabulary 
In a typical development environment, one finds initially 

at his disposal three vocabularies: FORTH, ASSEMBLER, and 
EDITOR Correspondng to each vocabulary is an index 
which ranges from 1 to F hexadecimal, and which may 
assume only oddvalues. Vocabularies are definedby phrases 
of the following sort: 

HEX 
0001 VOCABULARY FORTH 
0013 VOCABULARY ASSEMBLER 
0015 VOCABULARY EDITOR 

, in which the associated hexadecimal dgits specify not only 

I (Continued on  page 40.) 

Forth Dimensions 43 May 1993 June 



CALL FOR PAPERS 
for the fifteenth annual and the 1993 

FORML CONFERENCE 
The original technical conference 

for professional Forth programmers, managers, vendors, and users 

Following Thanksgiving 
November 26November 28,1993 

Asilomar Conference Center 
Monterey Peninsula overlooking the Pacific Ocean 

Pacific Grove, California U.S.A. 

Theme: Forth Development Environment 
Papers are invited that address relevant issues in the establishment and use of a Forth development 
environment. Some of the areas and issues that will be looked at consist of networked platform 
independence, machine independence, kernel independence, Development System/Application 
System Independence, Human-Machine Interface, Source Management and version control, help 
facilities, editor development interface, source and object libraries, source block and ASCII text 
independence, source browsers including editors, tree displays and source data-base, run-time 
browsers including debuggers and decompilers, networked development-target systems. 

Additionally, papers describing successful Forth project case histories are of particular interest. 
Papers about other Forth topics are also welcome. 

Mail abstracts of approximately 100 words by September 1,1993. 
Completed papers are due November 1,1993. 

We anticipate a full conference this year. 
d Priority will be given to participants who submit papers. 

dd Earlier papers will be given preference in choosing longer presentation periods 

John Hall, Conference Chairman Robert Reiling, Conference Director 

Information may be obtained by phone or fax from the 
Forth Interest Group, P.O. Box 2154, Oakland, CA 94621.510-893-6784, fax 510-535-1295 

This conference is sponsored by FORMT.,, an activity of the Forth Interest Group, Inc. (FIG). 

The Asilomar Conferencecenter combines excellent meeting and comfortable living accommodations 
with secluded forests on a Pacific Ocean beach. Registration includes use of conference facilities, 
deluxe rooms, all meals, and nightly wine and cheese parties. 


