$10 Volume XIV, Number 6 March 1993 April

e

Charles Moore’s Fireside Chat
One-Screen Unified Control Structure

Optimizing in BSR/JSR-Threaded Forth

SILICON COMPOSERS INC
FAST Forth Native-Language Embedded Computers

DUP

>R

Harris RTX 2000™ 16-bit Forth Chip
+8 or 10 MHz operation and 15 MIPS speed.
*1-cycle 16 x 16 = 32-bit multiply.
«1-cycle 14-prioritized interrupts.
~two 256-word stack memories.
+8-channel 1/0 bus & 3 timer/counters.

SC/FOX PCS (Parallel Coprocessor System)
+RTX 2000 industrial PGA CPU; 8 & 10 MHz.
+System speed options: 8 or 10 MHz.
+32 KB to 1 MB O-wait-state static RAM.
+Full-length PC/XT/AT plug-in (6-layer) board.

SC/FOX VME SBC (Single Board Computer)
-RTX 2000 industrial PGA CPU; 8, 10, 12 MHz.
-Bus Master, System Controller, or Bus Slave.
*Up to 640 KB O-wait-state static RAM.
+233mm x 160mm 6U size (6-layer) board.

SC/FOX CUB (Single Board Computer)
+RTX 2000 PLCC or 2001A PLCC chip.
«System speed options: 8, 10, or 12 MHz.
+32 KB to 256 KB O-wait-state SRAM.
+100mm x 100mm size (4-layer) board.

SC32'"™ 32-bit Forth Microprocessor
+8 or 10 MHz operation and 15 MIPS speed.
«1-clock cycle instruction execution.
«Contiguous 16 GB data and 2 GB code space.
-Stack depths limited only by available memory.
«Bus request/bus grant lines with on-chip tristate.

SC/FOX SBC32 (Single Board Computer32)
+32-bit SC32 industrial grade Forth PGA CPU.
+System speed options: 8 or 10 MHz.
+32 KB to 512 KB O-wait-state static RAM.
+100mm x 160mm Eurocard size (4-layer) board.

SC/FOX PCS32 (Parallel Coprocessor Sys)
=32-bit SC32 industrial grade Forth PGA CPU.
-System speed options: 8 or 10 MHz.

*64 KB to 1 MB O-wait-state static RAM.
«Full-length PC/XT /AT plug-in (6-layer) board.

SC/FOX SBC (Single Board Computer)
+RTX 2000 industrial grade PGA CPU.
«System speed options: 8, 10, or 12 MHz.
<32 KB to 512 KB O-wait-state static RAM.
+100mm x 160mm Eurocard size (4-layer) board.

For additional product information and OEM pricing, please contact us at:
SILICON COMPOSERS INC 208 California Avenue, Palo Alto, CA 94306 (415) 322-8763

. Features

Comntenis

i
ﬂ 9

14
18
21
27

@
i
@

GETB and PUTB Hank Wilkinson
This article describes simple, easy-to-use commands for exploring Windows files. While earning
his teaching certificate for high school physics, the author realized he would want to use Forth in
Windows when teaching. For such routines, the ability to read and write one byte at a time is
fundamental. And once again, Kernighan and Plauger show the way...

One-Screen Unified Control Structure Gordon Charlton
In contrast to a previously published, everyone-into-the-pool consolidation of control structure
concepts, the secretary of FIG-U.K. presents his single-screen solution. He avoids the ultimate
reductionism in favor of usefulness, packing heaps of functionality—and surprising efficiency—
into sixteen lines. dpANS Forth control structures are discussed for comparison.

Charles Moore’s Fireside Chat C.H. Ting
In keeping with tradition, Forth’s first and foremost pioneer shares recent work, current trains of |
insight, and his computer-language philosophy with the community. He discusses his implemen- r
tations of OK, new chip development, and his CAD system’s design rule checking.

Numbers CH.Ting |
The third tutorial in this series accelerates the pace for newcomers by introducing integers and how
to handle them in Forth. Scaling, stacks, logic operators, and loops are discussed in the context I
of examples that demonstrate their basic utility. [

Optimizing in BSR/JSR-Threaded Forth Charles Curley

The author helps intermediate Forth programmers learn how to optimize their applications. These
highly portable techniques require only a certain amount of bravado, an analytical approach, and
knowledge of your CPU's instruction set and your Forth. Once it is built and fine tuned, your
optimizer should help you to produce faster, more efficient code.

A thorough treatment of integer, double-precision, fixed-point, and floaling-point math. A
mathematician’s toolbox of code is presented, and tables compare the benefits bestowed and the
penalties extracted by the routines. Learn to evaluate your programs’ requirements in terms of
solutions with both the desired accuracy and the best performance.

Math—Who Needs It? Tim Henditlass ‘
|

' Departments
4 Editorial Forth consortium, numeracy, windows, & on the stack. |
; 4 Advertisers Iindex
LR &1 1 (-] { R ——— Surength mistaken; Volvos drove him to Forth, & Forth’s missing link;
Embedded systems conlerence; Kelly’s comparisons clarified.
39 Fast Forthward From on-line discussion o hard-copy correspondence, the Forth
' communily is developing a collective voice. Here'’s a digest of what
it has said lately.
41 Volume XIil Index A subject index to FD volume XIII. Back issues still available! ;
42-43 On the Back Burner ... While you are getling the parts and assembling the board described |
in the last issue, our columnist takes time to explain metacompilation
terminology and to foster on-line interaction.

Forth Dimensions @ PRINTED ON RECYCLED PAPER 3 January 1993 February

selitorial

What if Forth businesses and associations teamed up to improve general awareness of
Forth? They'd have to do something they all could agree on, benefit [rom, and contribute
funds for. Something like a public-service ad for trade journals: “Sure, Forth fosters innovation
by enabling programmers to explore highly personalized methods of problem solving. Some
of your best people probably use it already, or know something about it—that's no
coincidence. But did you also know that today’s Forth systems can accommodate the rigorous
methods and conventions of well-managed programming tcams? That multi-tasking and
metacompilation are no problem—never have been—and that Forth can stand alone on its
own considerable merits or peacefully co-cxist with an operaling system? Forth is a frequent
flyer on the space shuttle, but also excels in earthbound applications like observatorics,
industrial automation, embedded controllers, medical/scientific instrumentation, and benchtop
environments, not 1o mention consumer applications. Write or call for a frec brochure and
list of participating businesses...” Or, if funds were scarce, one might only be able to promote
one of those low-brow, stick-in-your-mind jingles: “Go Forth, and yourcomputer will say OK!”

b

Do you suffer from innumeracy in Forth, or just need a touch-up to your understanding

about how to deal with digits? Dr. Ting's “Numbers” tutorial encourages beginners with the |

power of integer arithmetic. But if you need more than a beginner’s dose, Prof. Tim Hendtlass’
“Math-—Who Needs 1t?” will further your understanding of different math packages, and will
help you to choose the right routines—kindly provided—for the right jobs. (Hint: it's another
instance in which too much power can corrupt performance.)

Speaking of performance, Windows makes an appearance in this issue. Forth for
Windows has been implemented by two developers that we know of, Laboratory Microsystems,
Inc. and Harvard Softworks. But for the determined, do-it-yourself hacker or the doggedly
curious, not a lot has been forthcoming. Well, there’s nothing like starting at the beginning,
which would have to be reading and writing characters in the Windows format; see Hank
Wilkinson’s “GETB and PUTB” to get started.

One time, a hacker thought Forth had suffered long enough as a skeletal system with little
help and no protection for the naive user. Thus was born a newer and better Forth with, among
other things, a fully fleshed-out, interactive help and error-handling subsystem that relied on
a separale stack to manage the many system-message strings. It was automatically invoked by
the lower-level word HEY! (as in, “Hey, you clutz!”) every lime a user did something
unexpected. But the system died in beta testing when a couple of Forth gurus agreed, “Serious
programmers will find it hard, being ncedled by a HEY'! stack.” [SEX: rim shol, groans/

L

Just a reminder... We greatly value the continued participation of each reader and FIG
member, so please renew by mail, ielephone, or fax at your earliest convenience. At the same
ime, consider giving a subscription (o Forth Dimensionsto a business, library, or colleague. We
will look forward to sharing with them-—and with you—the good work of the Forth community.

—Marlin Ouverson

’?n the stack... | Advertisers Index

A line editor & history function '

Forth-user profile Asian Business Contents............ccc........ 40
| Application success stories Computer Joumnal ... 34
| Forth in scarch of work Forth Institute s
| Integer date calculations | Forth Interest Group 6, centerfold
| Build an 8051 metacompiler 1 Harvard Softworkscccooeen 17
_i ANS Forth: progress, analysis, and impact l Laboratory Microsystems 24
| Forth interface for the GPIB | Miller Microcomputer Services 11
’ (general-purpose interface bus) Offete ENLErprisescocvuveevveniveenennn. 20
L:and much more! ‘ | Silicon COMPOSETSoovvvveeeeeerererennn, 2
January 1993 February 4

|
1
i
!
4_

Forth Dimensions
Volume XIV, Number 6
March 1993 April

1
i
Published by the ‘
Forth Interest Group ‘

Editor
Marlin Ouverson

Circulation/Order Dosk
Frank Hal!

Forth Dimensions welcomes
editorial material, letters 1o the edi-
Lor, and comments from its readers.
No responsibility is assumed for
accuracy of submissions.

Subscription to Forth Dimen-
sions is included with mermbership
in the Forth Interest Group at $40
per year (352 overseas air). For
membership, change of address,
and to submit items for publica-
tion, the address is: Forth Inierest
Group, P.O. Box 2154, Oakland,
California 94621. Administrative
offices: 510-89-FORTH. Fax: 510-
535-1205. Advertising sales: 805-
946-2272.

Copyright @ 1993 by Forth In-
terest Group, Inc. The material con-
tained in this periodical (but not
the code) is copyrighted by the
individual authors of the anicles
and by Forth Interest Group, Inc,,
respectively. Any reproduction or
use of this periodical as it is com-
piled or the anticles, except repro-
ductions for non-commercial pur-
poses, without the written permis-
sion of Forth Interest Group, Inc. is
a violation of the Copyright Laws.
Any code bearing a copyright no-
tice, however, can be used only
with permission of the copyright
holder.

The Forth Interest Group

The Forth Interest Group is the
association of programmers, man-
agers, and engineers who create
practical, Forth-based solutions to
real-world needs. Many research
hardwarc and software designsthat
will advance the general state of
the art. FIG provides a climate of
intellectual exchange and benefits
intended to assist each of its mem-
bers. Publications, conferences,
seminars, lelecommunications, and
arca chapter meetings are among
its aclivitics.

“Forth Dimensions (ISSN (0884-
0822) is published bimonthly for
$40/46/52 per year by the Forth
Interest Group, 1330 5. Bascom
Ave., Suite D, San Jose, CA 95128.
Second-class postage paid at San
Jose, CA. POSTMASTER: Send ad-
dress changesto Forth Dimensions,
P.O.Box 2154, Oakland, CA 94621."

Forth Dimensions

Letters

Letters to the Editor—and to your fellow readers—are always welcome.
Respond to articles, describe your latest projects, ask for input, advise

| the Forth community, or simply share a recent insight. Code is also
| welcome, butis optional. Letters may be edited for clarity and length. We

want to hear from you!

Strength Mistaken
Dear Editor,

“A Lesson in Economics” by Russell 1. Harris (On the Back
Burner, FD XIV/S) was a weclcome piece of additional
ammunition I'll be able to use the next time I'm nagged to use
a DOS machine for an embedded or instrument-control
application. Mr. Harris hits squarely on several key problems
that crouch waiting to pounce on the naive IBM PC enthusiast
who falls for the mirage.

On another note, along with Walter J. Rottenkolber,
whose letter to the editor appeared in the same issue, I too
have to disagree with Mike Elola on his article (FD XIV/4)
about styling Forth to preserve the “expressiveness” of C.

Part of Forth’s strength will always lie in its simplicity.
However, this same simplicity is wrongly viewed as a
weakness when it lets a programmer write unreadable code.
The lack of expressiveness Elola refers to (that is, the lack of
clarity as to where the stack cells come from, what they are,
and what consumes them) is due to how the words are
arranged in the source code just as much as to poor
commenting; and yet, so often I see code written such that
the breaks between lines, the space between words, and the
words’ starting columns have almost nothing to do with what
the code is supposed to do. I even see things like a BEGIN
in the middle of a line, with its corresponding UNTIL buried
somewhere in the middle of another line and starting in a
different column. Mr. Elola’s indenting may help, but I fear
this will constitute overuse of indenting, defeating much of
the purpose of indenting, which is to make structures and
program flow more obvious.

I'm tempted to wrile an article about writing readable
code. I believe Mr. Elola has correclly identified a common

problem. What I don’t agree with is that i’s a weakness of
Forth itsell. There are several things aboul Cthatl hope 1 have

| left in my past for the most part, and those include piles of
| parentheses and punctuation.

A third subject matler— What's happening with those
ultra-fast stack microprocessors 1 hear a little bit about here

and there? One blurb 1 read recendy cited 100+ MIPs (and |

Forth MIPs, at that) at a relatively low cost. This is certainly
something I would expect 1o see get a lot of attention in DN,
Computer Design, and other trade magazines; yet I haven't
scen a thing in those.

T'was glad to sce FIG would be at the Embedded Systems

Forth Dimensions

| Conference [see letter below).
i

' Sincerely,

| Garth Wilson

| 11123 Dicky Street

| Whitticr, California 90606

Thanks for your comments, Garth. Please do write that
| article abowl readable Forth code—it continues to be impor-
| tant. The most thorough treatment I recall was by Kim I arris,

whose paper abotil coding conventions was presented several
| years ago at a FORML conference; and FIG distribules a
cumudative index to FD anticles, which contains some refer-
ences lo Forth style (see the first two items on the mail-order
Jorm). Bul, as evidenced by much Forth code, those ideas
eitherwere not distributed well orwere not adopted widely for
| some reason. Your further treatment of the subject might help.
As o stack-oriented CPUS, we welcome press releases abouit
| real products, articles by developers, and the experiences of
users—as would, I presume, other publications like those you
mention. Meanwhile, check out the “More on Forth Engines”
series on the FIG mail-order form in this magazine. —Fd.

Volvos Drove Him to Forth,

' & Forth’s Missing Link

: I have just returned from the Silicon Valley FIG Chapter
{ meeting—have not missed more than four or five of them
| since June 23, 1990, when I first signed up. I enjoyed a chat
- with John and Frank Hall during the lunch break, and [want
to follow up with the note I said [wanted to write 1o Forth
Dimensions.

I am a mechanical engineer, have been designing cranes
and heavy machinery for 30 years. I do not sing and dance
like Leo Brodie, but I do drive old Volvos, and that is how
I came to know Forth. You see, my wife and I started in
computers when we bought our first Apple Ic; we started to
look into the computer section at the library more often, and
that is where, one day in April of 1990, the face of young Leo
appeared on page v of the first edition of Starting Forih. 1
believe I had heard about Forth before that, probably
through a Harris ad in one of the engineering trade maga-
zines, and, seeing that a fellow who liked driving classic
Volvos had written a book about it, I figured that Forth might
not be all too bad.

Well, there is a long story of struggle, [rustration, feelings
of futlity and defeat, but, even though I have not produced
any masterpieces of Forth programming, I go to the meetings,
1 enjoy your magazine, I preach Forth. 1 have even gone to
the torture of taking a C class at the local college, 1o see how
bad things can be on the other side.

There are two reasons for me wanlting to write this note:

First, | wish to thank you for publishing Olaf Meding’s fine
article, “Forth-Based Message Service.” I understood it, liked
it, and would like 10 sce more articles with the same TFogg
Index (or should 1 say “Fig Index?”). T have a problem with
the arcane and csoleric articles that remind me of my early
struggles with De Bello Gallico, organic chemistry, Laplace
transforms, ete.

Secondly, T have to voice my concern that there is

January 1993 February

something missing in the Forth
community that would attract
newcomers, or 1 would not
still be the novice of the group
almost three ycarsafter Ijoined.
Itseems that we can cater only
to the seasoned Forth pro-
grammers, perhaps to some
degree to other programmers,
but beginners cannot find any
“Forth kits,” as I would like to
call them, that are inexpen-
sive, readily available, work,
have good documentation,
and allow one to experiment
and create without frustration.
I think there is a need for a
Forth interpreter package that
can compete at least with the
likes of GWBasic, in terms of

W Write about libraries,
source management,
user interfaces,
platform/machine/
kernel independence,
topics suggested

for the upcoming

size, availability, documenta- FORML conference,
tion, graphics, and floating-
point math. Have I missed it or any other subjects

somewhere along the way?
, related to the theme.
Sincerely,

Henry Vinerts

36139 Chelsea Drive
Newark, CA 94560

Erratum

Olaf Meding, author of last
issue’s “Forth-based Message
Service,” is employed by
Amtelco, 4800 Curtin Drive,
McFarland, Wisconsin 53558;
telephone 608-838-4194. The
article was originally titled “To
Boldly Go Forth Where No One
Has Gone Before.”

Embedded Systems
Conference
Dear Mr. Ouverson,

I had the opportunity to

Forth

Contest for articles on the subject of

Development
Environments

Cash awa rds and publication
for the articles judged best.

$500 — 1st place
- $250—2nd place
$100— 3rd place

Entries will be refereed. Papers 1o be presented at FORML
are eligible, butaseparate, complete copymustbe received

at our editorial office by the contest (not FORML 's) deadline.

Mail a complete hard copy and a diskette

(Macintosh 800K or PC preferred) to:

The Editor, Forth Dimensions
P.O. Box 2154
Oakland, California 94621

Il Deadline for contest entries is August 1, 1993.

f o r
browse the displays at the

recent Embedded Systems Conference and see firsthand the
hardware and software available. I was surprised at the
number of sizzling, color-windowed, integrated C/C++ pro-
gramming systems. Even the purveyors of Ada, the number
two language there, tended Lo be a bit defensive. The once-
ubiquitous BASIC was represented by only a couple of
vendors. And Forth had only the Forth Interest Group waving
the banner—a loncly island in the C's. Is the real world trying
to tell us something?

These C compilers integrate an editor, syntax checker,
compiler, and debugger that can work with cither C or
assembly source. Watch Expressions let you run C functions !
or display C variables interactively. In other words, these C |
January 1993 February

6

| systems seem to have a programming environment once |

exclusive to Forth. It would be interesting if someone familiar |
with both the new C compilers and Forth would compare
them, especially regarding programming ease and produc-
Livity.

Programming controllers with the power systems would
set you back $12,000 for software and hardware, and to this
you would have 1o add a helty computer. Most of the
vendors” demonstrations used Sun workslalions. Bul al the
otherend ofthe scale, ZWorld offers a line of 2180 controllers
designed to be programmed with their $195 C compiler,
which runs on a PC.

(Continued on page 10.) ;
Forth Dimensions

HS/FortH, Winoows

GETB and
PUTB

Hank Wilkinson
Greensboro, North Carolina

Working on my teaching certificate for high school
physics at the University of North Carolina at Greensboro, it
hit me that I want to use Forth in Windows when I teach.
Since T'earncd my B. S. Physics previously at Guilford College
(also Greensboro), only a year’s study remains for my
certification. This article describes simple commands found
useful exploring Windows’ files.

What do I mean by “use Forth in Windows"? Here is what
I think I mean:

a) load Forth code contained in *.WRI files
| b) write from Forth into *\WRI files
¢) draw from Forth into *.BMP files
d) be “in” Windows when in Forth

Note that vectoring KEY and EMIT will not achieve any
of the above goals. The first three goals require knowledge
of the Windows data files. Simply put, the last goal requires
knowledge of how Windows works. Frankly, a vendor could
easily solve my dilemma.
| Meanwhile, concepts described in Software Tools
(Kernighan and Plauger; Addison-Wesley, 1976) help. Analo-
gous to K&P’s getc and pulc, I have made GETB and PUTB,
| GETB reads exactly one byte from a file and leaves it on the
stack. PUTB writes one byte from the stack into a file,

So you may follow, here is my system. My computer is a

hard drive, both a 5.25" and a 3.5" floppy, a mouse, HP
DeskJet 500, a modem, and four megs. of memory. I have
DOS 5, Windows 3.1, and HS/Forth (regular—i.e., uses
segmented memory).

review them. A VAR is a data structure with the behavior of
both VARIABLEs and CONSTANTs, while faster than either.
CONSTANT-like, a VAR's value goes to the stack upon use.
VARTABLE-like, the VAR’s new value comes from the stack
by placing IS before the use of the VAR. Later uses of the VAR
return its latest valuc.

Refer to the code at the end of this article. First we define
TRUE and FALSE. Next, the handle and end-of-file-flag

the handle for the keyboard. For the end-of-file flag, logic
| dictates an unopened file has reached its end.

Forth Dimensions

Ilearned of HS/Forth and VARs in this journal, so will only |

containers appear. Initializing the file’s handle to TRUE (as |
opposed to FALSE) will not confuse an unopened file with |

HS/Forth’s MS-DOS system interface may be set 1o ABORT
with a message upon error condition (FATAL), or pass the
error on (INFORM). The words defined here assume HS/
Forth will ABORT, giving immediate feedback

To open a file for reading, we pass the address of the file’s
path\name to the HS/Forth word OPEN-R wrapped insidc
OPEN-GETB. Any error lcaves G-H and G-EOF sel TRUE.
If successfully opened, G-H receives the file’s handle and
G-ECF rcceives FALSE.

To close the file, F1S/Forth’s CLOSEH is used. The file’s
handle goes on the stack for CLOSEH, which ABORTS upon
any error condition. In that case, the VARs do not get louched.
Otherwise, CLOSE-GETB closes the file and sets G-H and
G-EQF to TRUE.

GET-BUF serves as the buffer for MS-DOS to put the byte
read. HS/Forth’s READH needs the memory segment, offset,
number of bytes to read, and the handle. GETB encapsulates
these functions and sets G-EOF. Notice thata successful read
will return one byte. Reading past the end of file returns a
zero (FALSE), and sets G-EOF TRUE.

Using GETBon, say, “c:\path\filename.ext,” we firstopen
the file. From the command line,

$" c:\path\filename.ext" OPEN-GETB [Enter]

does that. If successful,
GETB . [Enter]

would display the byte’s value, while
GETB EMIT [Enter]

would display the byte as an ASCII character. To determine
. if a byte read is valid, consider this code.
| GETB G-EOF . [Enter]

| A zero (FALSE) displayed indicates a valid byte, while
| -1 (TRUE) shows the byte did not actually come from the file.
| Once finished playing, we issue:

| CLOSE-GETB [Enter]

VSI PC '286 name-brand “compatible,” with VGA, 40-meg [

|’| Now find the example code after the definition of GETB.
A double number DVAR COUNTER holds a count of the
number of bytes ina file. The routine COUNT-BYTES expecls
an opened file and proceeds counting bytes until G-EOF
becomes TRUE.

Notice the test for the end of file inside the loop yields zero
for an emply file or an unopened file. At any rate, COUNT-
| BYTES counts the bytes, while COUNT-FILE performs
administration.

Wriling o a file is slightly simpler than reading. We only
need a VAR Lo hold the P-H (put handle). OPEN-PUTB makes
use of HS/Forth’s MKFILE, which creates or erases an
existing file. The handle passed by MKFTLE goes into P-H.

CLOSE-PUTR is analogous 1o CLOSE-GETE.

PUTE stores the byte on the stack in the PUT-BUF and
{ passes the memory segment, offset, byte count, and handle

to WRITEH, which rcturns the number of bytes written.

7 January 1993 February

Testing the actual number of bytes wrilten serves as error |
checking, :

For an example using PUTB, we show copying a file.
Buffers for filenames make the process easier. The names
GBS and PBS allow quick typing. In COPY-FILE, the user is
shown the path\filenames from both buffers. Either a “Y” or
“y” are required for copying Lo take place.

With a proper response, the corresponding [iles are
opened and the copying—byte by byte—begins. As soon as
the end-of-file flag is found TRUE, the copying stops and the
files are closed. During copying, any key hit stops the
process.

These routines are simple to use and understand, and are
robust enough for use from the command line. Their
simplicity allows easy modification. For something to get into
use quickly, use them as is.

From time to time, the need for faster file-handling code
becomes apparent. In that case, use larger buffers and design |
buffer handling. (I have spent more time optimizing code |
than I have saved by executing optimizing code. Routines I
shown here reflect that experience.)

GETB and PUTB form crucial elements of routines I used
exploring Windows' files. One routine counts the frequency
of bytes. Another finds the occurrence of arbitrary byte
patterns. A third routine creates a file dump. The ability to
read and write one byte at a time is fundamental.

Hank Wilkinson and his wife of nineleen years have two children in high school and
one in elementary school. He has been employed in the construction trade (five
years) and in lhe wholesale supply business (thirteen years), and operated his
own programming firm (five years). Currently, he is a graduate studentworking on
public school teacher certification. He has used Forth for twelve years.

0 VAR FALSE
-1 VAR TRUE
TRUR VAR G-H \ Get-Handle storage 1
TRUE VAR G-ECF \ Get End Of File flag
\ TRUE = EOF, FALSE = not EOQOF 1
\ use: $" \path\filename" OPEN-GETR I

OPEN-GETB (address --)
OPEN-R (addr -- handle)

IS G-H

FALSE IS G-ECOF ;

\ use: CLOSE-GET

: CLOSE-GETB (-)
G-H CLOSEH
TRUE IS G-H
TRUE IS G-ECF ;

CREATE GET-BUF 1 ALLOT \ 1 byte buffer
\ use: GETB

GETB (
\ G-ECF TRUE,

-- byte)
invalid file byte
\ G-EOF FALSE, valid file byte
LISTS @ GET=-BUF 1 G-H READH
0= IF TRUE IS G-ECF FALSE EXIT THEN
GET-BUF C@ ;

\ file empty

0 5->D DVAR COUNTER

\ use: COUNT-BYTES

{ file must be open, counter cleared

January 1993 February 8

COUNT-BYTES (--) |
BEGIN
GETE NROP
G-EOF FALSE = WHILE \ ie.,
COUNTER 1 M+ IS COUNTER
?TERMINAL IF EXIT THEN
REPEAT ;

not end of file

\ use: $" \path\filename.ext" COUNT-FILE D.

COUNT-FILE (n -- d)
A\ n = offset of counted string to file's \path\name
CR ." Counting bytes in " DUP COUNT TYPE CR

." Hit any key to
0 0 IS COUNTER A\
OPEN-GETB
COUNT-BYTES
CLOSE-GETR
COUNTER ;

stop." CR
clear count to start

TRUE VAR P-H \ Get-Handle storage

\ use: $" \path\name" OPEN-PUTB

OFEN-PUTE (address --
MKFILE (addr -- handle)
IS P-H ;
\ use: CLOSE-PUTE
: CLOSE-DPUTB (--) l
P-H CLOSEH

TRUE IS P~-H ; l

CREATE PUT-BUF 1 ALLOT \ 1 byte buffer

\ use: 0 PUTB (writes 0 to file)
PUTB (byte ==)

PUT-BUF C!

LISTS @ PUT-BUF 1 P~H WRITEH

0= IF ." Write error! ™ EXIT THEN ;

\ FILE NAME HOLDERS

CREATE GBS 128 ALLOT \ GETB file name

CREATE PBS 128 ALLOT \ PUTB file name

\ initialize filenames to something
$" GETPUT.FTH" GBS $!
$" XX.FTH" PBS §$!

\ use: (filenames string variable already set)
\ COPY-FILE

COPY-FILE (--)

CR
." Copying file named "™ GRS S.
CR " into file named "™ PBS §.
CR ." 1ls this correct? (Y/y)"
KEY ASCII Y OVER = SWAP ASCII y = OR |
IF ." Okay, we're copying. "
ELSE ." Not Copying™ CR EXIT THEN
CR ." Hit any key to abort COPY-FILE."
CR

GBS OPEN-GETB
PB$ OPEN-PUTB

BEGIN

GETB

G-EQF FALSE = WHILE

PUTEB
?TERMINAL TF .* Ouiting, so delete partial file." CR
CLOSE-PUTB CLOSE-GETB EXIT THEN

REPEAT
DROP drop spurious byte read when file was empty
CLOSE-PUTB
CLOSE-GFRTB ;

Forth Dimensions

i

One-Screen Unified
Control Structure

Gordon Charlton

| Hayes, Middlesex, U.K.

This article was prompted by Kourtis Giorgio’s Curly
Control Structure Set. Giorgio stated that his intention was to
include every good idea he had come across. This turned out
to be a good many good ideas, so Giorgio has provided the

| archetypal Fat Forther’s solution. Although [am nota devout
| minimalist, I do concur with the principal that less is more.

|

| Therefore I pose the question, What is the smallest group of

| words that constitutes a workable control set?

Three Non-Solutions
The ultimate reductionist solution is 2GOTO. This is not a
solution, as it is unstructured. It is demonstrable that a zero-
tripping FOR NEXT can be coerced into sufficing, at the cost
of outrageous inefficiency and complexity. This is not a

viable solution. One can also get by with IF, THEN, and |

RECURSE. Although popular with the Al community, this
solution does have certain problems with efficiency and
readability. Therefore, this is not a solution either.

The Solution

Although three words do not cut the mustard, we will see
that four words are enough. In fact, I will introduce two extra
ones, for convenience and to remove a slight inefficiency.
The Unified Control Structure (UCS) is derived from two
previous proposals which do notappear in Giorgio’s compre-
hensive bibliography: they are the Hainsworth Exiended
Case and the Universal Delimiter.

One Screen
When commencing a project, I will often attempt Lo come
up with a solution that fits within one screen. This is a very
rigid discipline and focuses the mind excellently. A lot has to

give in compressing code into a space with an absolute limit |

of one thousand and twenty four characters. Certainly, neat
presentation goes oul the window, along with poltentially
meaningful names, stack comments, and even the title line.
Naturally, one tries to retain as many of these as possible.
More importantly, everything that s trivial or superflluous has
to be stripped out mercilessly. This leaves only the core of the
program, its essence. Divining the essence of a problem is the

| beginning of understanding.

Normally T would throw away the one-screen version

Forth Dimensions

once it was stable, and start coding a fuller solution afresh.
As the primary design criterion here is brevity, I present the
one-screen version in all its muck and glory.

Comparison
Although prompted by the Curly Control Set, 1 will
compare UCS to the ANSI control set, as I do not wish to do
Giorgio any injustices by erroneously criticizing a wordset
that I am not familiar with.

Syntax
| A control structure starts with BEGIN and ends with either
END or AGATN. Within a structure, any number of WHENs may
| appear. WHEN must be paired with END or AGAIN. WHEN
| substructures may not be nested. BEGIN structures, how-
| ever, may be nested. WHILE is functionally equivalent to 0=
| WHEN END, and should be treated as a WHEN pair for syntax
purposes. The same considerations apply to UNTIL, which
is equivalent to 0= WHEN AGAIN.

Semantics

BEGIN has no run-time action, it simply marks the
beginning of a structure. The END that pairs up with BEGIN
equally has no run-time action. AGAIN, whether paired with
{ BEGIN or WHEN, gives an unconditional branch to just after
BEGIN. END, when paired with WHEN, gives an unconditional
branch to just afier the final END or AGAIN. WHEN takes a flag.
On false, it skips to just after its closing END or AGAIN. On
rue, cxecution conlinues sequentially. As stated above,
WHILE has the same action as 0= WHEN END, but is more
| efficient. On falsc, it skips 1o just after the [inal END or AGAIN.
| Otherwise execution continues sequentially. Similarly, UNTTL
| is more efficient than 0= WHEN AGAIN. Execution continues
just after BEGIN on false, and sequentially otherwise.

Usage
Usage is compared to the proposed ANSI control sel on
screens two and three of the accompanying listing . BEGIN
1 AGATIN is the same with both ANSI and UCS. BEGIN AGAIN
| is one of two basic structures in UCS. The other is BEGIN END.
| BEGIN END has no equivalent in ANSI. Tt does not affect the
| flow of control at all and is, therefore, the structural equiva-

9 January 1993 February

1
|
I
} BEGIN i
‘ [.. WHEN .. END/AGAIN] ;
| [.. WHEN .. END/AGAIN] _
. |
|
i END/AGAIN I
i
Figure Two.—[1
BT 1 W | — |
‘ UNTIL == 0= WHEN AGAIN | 1
WHILE == (0= WHEN END |

-

lent of a no-op. Nonetheless, it does have a use. When one
has chosen not to factor out a long definition, it serves to
delimit logically distinct sections of code for readability
purposes.

As with all variations on UCS, the simple WHILE loop is
an extension of one of the basic structures, in this case BEGIN
AGAIN. Thisis simplerthan ANSI, which requires a new word
to be introduced: REPEAT.

The simple UNTIL loop loses out in UCS for complexily,
requiring a terminating END.

IF and IF ELSE are notably worse in UCS, although one
small redeeming feature exists. The BEGIN can be used to
delimit the test preceding the WHILE or WHEN, in the same

Figure Thvee. |

| way that CASE is used. (Ie., one writcs CASE KEY 65 OF etc. |
instead of the equivalent KEY CASE 65 OF ctc.)

The UCS equivalent of the CASE statement is rather more
general, and is better compared to the LISP COND or the
Occam extended IF. The extra code in the illustration (the
DUPs, etc.) shows what typically would be required to
simulate an Eaker CASE.

On the final screen is what may be deemed advanced
usage of the ANSI set. The first structure is more understand-
able in UCS, as the exit conditions (a) and (b) are positioned
next to the decision to branch, rather than at the end of the
structure in reverse order (). It is, however, less efficient, as
leaving via conditicn (a) incurs an overhead of one uncon-
ditional forward branch in UCS. Given that this only occurs |
with the first exit path, no matter how many WHENs are |
present, this is not too detrimental.

ANSI, on the other hand, starts to suffer as the number of
WHILES increases, as one hops and skips out of terminating
ELSE ... THEN ELSE ... THENS. It is perfectly possible 1o use
WHILE ... ELSE in ANSI to avoid this but, as 1 have never seen
| the construct published, must assume that this is not typical
| usage. The O=sareirrelevant, and are merely there to indicate
that the logic of WHEN is reversed with respect 10 WHILE. |
(WHILE ELSE, in ANSI, would also demand reversed logic
1o WHILE.)

The ANSI rationale (at least the first draft proposal) states,
“The use of more than one additional WHILE is possible but
not common.” This is convenient, as two exilts represents
about the limit of legibility. This is illustrated with the final
example, which is less than crystal clear in ANSIL (In case you
were wondering, if the first WHILE succeeds, the section

labeled (a) is executed and
the structure exited. If the

‘ BEGIN BEGIN BEGIN

. second WHTLE succeeds, (b)

is executed and the struc-
! wre left. If the third, then
section (¢) runs and execu-

END

!
| (i)

(ii)

I

END/AGAIN
(iv)

v |

tioncontinues atthe BEGINS,

BEGIN%—I

WHEN ———» AGATIN

AGAIN

END/A

WHEN =~ END
f

GAIN

(iii) *

BEGIN

5

WHILE

END/AGAIN

(v)

£

END/AGAIN

(vi)

January 1993 February

If none succeed, execution
continues at the BEGINS.)
This took some time to con-
struct, whereas the UCS
equivalent was trivial. UCS
suffers no increase in com-
plexity as the number of
WHENSs increascs. Perhaps the
use of more than one addi-
tional WHI LE would be more
common, if not for its com-
plexity and unreadability.
ANSI is complete, in that
it can be used to create any
conceivable system of

branches, but there comesa |
point when GOTOs would |

be more comprehensible,
UCS, on the other hand, is
not complete, but does de-
liver a useful subset without

|

Forth Dimensions

Figure Four.

Text BEGIN WHEN
Running
; vars branch
i i
! Executing Restore-dl-
history vars

systems, but the effects of maintaining compatibility at any
' cost arc amply illustrated by the development of the IBM PC,
You pays your money and you takes your choice.

| Assumptions

[Inorder to fit the code into one screen, certain assump-
tions have been made. It is assumed that the words BRANCH

| and ?BRANCH are present, and that they expect the following

cell inthe code space to contain an absolute address for them

tobranch to. Furthermore, it is assumed that the code and data

, (comma) to provide these branch addresses. Finally, it is
assumed that the compilation stack is the data stack.

Stack Comments

Although I have been able to retain stack comments in the
space available, they are rather terse and deserve socme
explanation. “a” represents an address and “e” an execution
| token. Where a word finishes with EXECUTE, the stack
| comment assumes that the EXECUTEd word has no stack
effect. The comments for IMMEDIATE words show the
compile-time stack effects only. At run time, the words
BEGIN, END, and AGAIN have no stack effect, and WHEN,

WHILE, and UNTIL absorb a flag.

increasing complexity. It is not compatible with previous |

END .. AGAIN

Save ——— g Compile —»= Resolve WHEN—— Back branch

forward branch start history

Resolve forward

branch

Overloading

In order to reduce the number of structure words, AGAIN
and END are overioaded, each having two distinct operations
depending on context. This is achieved by using vectored
execution. BEGIN sets the execution vectors 'E and "A to
the actions associated to closing a BEGIN, B-END, and
B~AGAIN. WHEN sets them to W-END and W-AGAIN. When
a WHEN is closed, 'E and ‘A are reset—by W-END or
W-AGAIN—I0 B-END and B-AGAIN, respectively. To allow
for nesting, the contents of *E and 'A are saved on the stack

. by BEGIN and are restored when the structure is complete.

space are contiguous, so that it is meaningful to use HERE and

Resolving Backward References
The address in the code being compiled when BEGIN is
encountered is held in a variable B-H (BEGIN-HERE) so that
it is accessible at all times, and backward references can be
resolved when they are encountered. To allow for nesting,
the contents of B-H are saved on the stack by BEGIN and are

| restored when the structure is complete.

Resolving Forward References

There are two types of forward references. The simpler is
that created by WHEN. The address to be filled is left on top of
the stack, and is resolved by the WHEN's closing partner. When
the partner is END, a forward reference of the second type is
made. This cannot be resolved until the final END or AGAIN
is reached. Fach of these forward references

is covered on the stack by an execution

MAKE YOUR SMALL COMPUTER

THINK BIG

{We've been doing it since 1977 for IBM PC, XT, AT, PS2,
and TRS-80 models 1,3, 4 &4P,)

FOR THE OFFICE — Simpiify and speed your work

with our outstanding word pre

and general m‘l‘h«ywewwuse powerful,

with executive-lock print-outs, ressombte site license costs

and comfortable, reliable ww Ralph K. Andrist, author/
[+ on

FOR PROGRAMMERS — Build FASTER
and SMALLER with our “Intelligent” MMSFORTH System and
applications modules, plus the famous MMSFORTH continu-
ing support. Most modules include source code. Ferren
Ma:lnmm oceenographer sa!'s Forth ie the language that

SOFTWAHE MANUFACTURERS — Efficientsoft-
ware tools save time and monay. MMSFORTH's flexibility,
oompm\nm and speed have resulted in better products in
iess time for a wide range of software developers including
hton-Tate, Excalibur Technologies, Lindbergh
Lockheed Missile and Space Division, and NASA-Goddard.

histornian, says: “FORTHWRI

manuscript, not the computer.” Smwart Johnson, Bos‘tm
Mailing Co., says: “We use DATAHANDLER-PLUS because it's
the best we've seen.”

MMSFORTH System from §179.95
Modular prleﬁ\g imegrate with System Disk only what
you need:

FORTHWRITE - Wordprocessor g%

DATAHANDLER - Database

DATAH.INDLER-P!.US Database

FORTHCOM -

Munications
GENERAL LEDGEH Accounting System m

mi| (’ronm

MILLER MICROCOMPUTER SERVICES
61 Leke Shore Road, Natick, MA 01760
(508/653-6138. 9 am - GFW\":'

Forth Dimensions

MMSFORTH V2.4 Systern Disk from $179.95
Needs only 24K RAM compared to 100K for BASIC, C,
Pascal and others. Converl your computer into a Forth vidual
machine with sophisticated Forth editor and related tools. This
can result in 4 1o 10 times greater productivity.

"oﬂlll'pfbhg

lnleqrare with System Disk only what

E!PERTE Expert System Development $69.95
FORTHCOM - ?fm?eﬂm transiee $49.95
UTILITIES - Graphics, B087 support and other facilities.

and a little more!

THIRTY-DAY FREE OFFER — Free MMSFORTH
GAMES DISK worth $38 95, with purchase of MMSFORTH
System. CRYPTOQUOTE HELPER, OTHELLO. BREAK
FORTH and others

Cali for free brochure, technical Info or pricing detalls.

11

token, to form part of the executable history.

The Executable History

As a control structure is written into the
code space, a program is built up on the
stack, which will be executed when the
control structure is completed. BEGIN lays
down the first part of this program, which
is called FINTSH and will be the last part
to be executed before control is handed
back to the compiler. It has three data items
associated with it, which are the original
values of the three variables. FINISH
reslores Lhese, allowing nesting to work.
Above FINISH may come zero or more
E-RES’s, whose [unction is 10 resolve one
unresolved forward reference cach, E-RES
forces execution of the stack program to
continue, by ending with EXECUTE. ‘The
final END or AGAIN iniliates exccution by

also ending with EXECUTE.
January 1993 February

Glossary

Variable 'E ;
Execution vector. Contains execution token for END.

| Variable 'A ;
Execution vector. Contains exccution token for AGATN.

Variable B-H ;
Contains HERE when BEGIN was executed.

Colon FINISH(ee a) ;
| Executable history word. Restores variables, terminates
history execution.

i Colon E-RES (e @) ;
Executable history word. Resolves forward branch from
W-END, continues history execution.

Colon B-END (e) ;
Vector word. Called by END when paired with BEGIN,
initiates history execution.

Colon B-AGAIN (e) ;
Vector word. Called by AGAIN when paired with BEGIN,
compiles branch to BEGIN, initiates history execution.

Colon B-E,A ();
Sels execution vectors to actions associated with BEGIN.

Colon W-END (a--a e) ;

Vector word. Called by END when paircd with WHEN.
Resolves WHEN's forward branch. Compiles branch to be
resolved during history execution, and places HERE and
E-RES on stack. Calls B-E, A,

| Colon W-AGAIN (a-—-ae);

Vector word. Called by AGAIN when paired with WHEN.
Resolves WHEN's forward branch. Compiles branch to
BEGIN. Calls B-E, A.

Colon BEGIN(-eecae);
User word (). Saves variables on stack, places FINISH on
| stack tobe executed atend of historyexecution. CallsB-E, A.

Colon WHEN (--a) ;

User word (f). Compiles conditional forward branch and
leaves address to be resolved on stack. Sets execution vectors
Lo WHEN action.

Colon END () ;
User word (). Action specified by "E.

| Colon AGAIN ();
User word (). Action specified by "A.

{ Colon UNTIL ();
| User word (f). Compiles conditional branch to BEGIN.

Colon WHILE (--a e) ;
User word (f). Compiles conditional branch to be resolved
during history execution. Places HERE and E-RES on stack.

January 1993 February

12

Compiler Security
Compiler security is not included in the code presented
here, because of space considerations. Standard techniques
can be used, and the syntax is sufficiently simple and rigid that
allillegal constructs are readily detected. Overloading END and
AGAIN reduces the number of possible illegal constructs.

Extensions

The use of the executable history technique means that
any extension may be added without altering existing code.
Certain constructs arc poorly named and would benefit from
synonyms. Unfortunately, IF (ELSE) THEN would have to be
quite smart, and probably could not be written in terms of
| existing words. I have not attempted to incorporate counted
loops, as 1 have certain opinions on this subject which would
distract from the intent of this article. Best to let sleeping dogs
lie, as the old saw goes.

Conclusion
At its most spartan, a powerful control set can be
constructed out of four words (UNTIL and WHILE do notadd
any functionality to the word set). More importanty, the
disparate control structures can be unified into a single
adaptive structure. ‘The prices to pay are non-compalibility
and overloaded operators.

References

Kourtis Giorgio's Curly Control Set (brilliant name, reminds
me of a British advertising slogan: “Waich oul, they tasic
curly!”) appears in Forth Dimensions, X111/6 and XIV/1.

The FOR NEXT demonstration referred to in the second
paragraph was made in Forthwrite issuc 47, in the article
about Loopy, a minimal subsct language. Forthwrile is the
FIG-UK chapter magazine.

The one-screen discipline was suggested by Mike Lake in
Forth Dimensions, XI11/3.

Chris Hainsworth’s Extended Case appears in Forthwrite
issue 40. This gave the basic structure of UCS.

The Universal Delimiter appears in Forthwrite issue 53
and shows an extension of the techniques used in UCS.

The comparison with ANSI is based on Wil Baden’s
marvelous pieces in the FORML Proceedings, particularly 89
and "90.

My opinion of DO LOOP is expressed in more issues of
| Forthwrite than 1 care to mention. Of particular relevance
here is issue 47, which melds it into the Hainsworth structure;
and issue 58, which proposes a radical refactoring,

Gordon Charlton is a part-time hobbyist programmer and full-time house-spouse
who migraled to Forth from LISP and Pascal aller a Turkish friend loid kim thal
Forth was a weird language and that he would consequently like it. He was right.
Gordon is also, probably, the world's only Loopy programmer. He is currenlly the
Events and Meelings Sccretary ofl FIG-UK, and conltribules regularly to Forthwrite,
His last major project was a string-pattern matcher which was presented at
euroFORMLs '91 and '92. If anyone can provide a rigorous description of the
Ralcliffe-Obershelp algorithm, he would be pleased lo hear from them.

Forth Dimensions

One-Screen Unified Control Structurém ‘;

\ One-Screen Unified Control Structure G Charlton 27Sep92
variable 'E variable 'A variable B-H
: FINISH (a aa) b-h! ‘e ! 'a'!t ;
: E-RES (e a) here swap ! execute ; : B-END (e) execute ;
: B-AGAIN (e) compile branch b-h @ , execute ;
: B~E,A ['] b-end 'e ! ['] b-again 'a !
: W-END (a-a e) compile branch here 0 , here rot !
["] e-res b-e,a ;
W-AGAIN (a) compile branch b-h @ , here swap ! b-e,a ;
BEGIN (~a e) 'a@ 'e®@ b-h @ here b-h ! ['] finish
b-e,a ; immediate
: WHEN (-a) compile ?branch here 0, ['] w-end 'e !
['] w-again "a ! ; immediate
: END ‘e @ execute ; immediate : AGAIN 'a @ execute ; immediate
: UNTIL compile ?branch b-h @ , ; immediate
: WHILE (-a e) compile ?branch here 0 , ['] e-res ; immediate
\ Screen 2
’ \ One-Screen Unified Control Structure -- Usage
BEGIN ... AGAIN -> BEGIN ... AGAIN
BEGIN ... WHILE ... REPEAT -> BEGIN ... WHILE ... AGAIN
BEGIN ... UNTIL -> BEGIN ... UNTIL END
IF ... THEN -> BEGIN WHILE ... END
IF ... ELSE ... THEN -> BEGIN WHEN ... END END
CASE ... -> BEGIN ...
.. OF ... ENDOF dup ... = WHEN drop END
... OF ... ENDOF dup ... = WHEN drop ... END
... ENDCASE ... drop END
\ Screen 3
\ One-Screen Unified Control Structure -- Usage, continued
3 BEGIN ... WHILE -> BEGIN ... 0= WHEN ... (a) END
I .. WHILE ... 0= WHEN ... (b) END
REPEAT AGATN
.. (b) ELSE ... (a) THEN
BEGIN BEGIN ... WHILE -> BEGIN ... 0= WHEN ... (a) END
... WHILE ... 0= WHEN ... (b) END
WHILE ... 0= WHEN ... (c) AGAIN
REPEAT AGAIN
-; ... (¢) [2] SO REPEAT
| ... (b) ELSE ... (a) THEN
|
i
Forth Dimensions 13

January 1993 February

Novemsea 21, 1992

Charles Moore’s

Fireside Chat ’92

As related by C.H. Ting

Chuck discussed the newly released 386 OK, its implementa- II and simulation. Boeing is very strong in modeling on

tion and iis philosophy. OK is the next incamation of Forth.

It has many of Forth’s attributes, but is simpler and more |

powerful. It exists in code only, no source. The bestwayto deal |

with a computer is through ils code—not the source, which is
only a description of the code, not the code itself. “The map is
not theterrilory; a description isnot the program.” Chuck also
discussed his CAD implementation on OK and the general
characteristics of the P21 chip, which is under development.

—Dr. CH. Ting

OK is the future of Forth, Itis what Forth should become.
For 20 years, I tried to make Forth more readable and more
compatible to other programming languages. Now, I give up.
The problem is fundamental. All programming languages,
including Forth, are text-based languages. The problem is
intrinsic, in that the language is used to describe a program.
A text-based language has problems in syntax, like infix
notation... Forth has less trouble in this respect, but it is still
a description, not the program itself.

Forth has the advantage that the source and object code
arc all accessible to the programmer. The programmer can
express himself and modify his code quite frecly. The
industry is moving in the opposite direction. Intel goes out
of its way to make it difficult for programmers to modify code
in the code segment. There is a dialectic contrast here. Forth
empowers the programmer, but the establishment wants
constraints and control.

|

{

computers. Mechanics would not agree that the models
would work. It is a typical GIGO, garbage-in, garbage-out.
OK exists in code. It allows you to do whatever you want.
Never mind how it came to being. I wrote it first using
DEBUG. .. Most of the time I trust the code is there and T don't
worry about it. OK is the incarnation of Forth in the "90s.
Forth is based on a virtual machine with two stacks. Phil
Koopman, Jr. said in a recent paper that Forth is a way of
factoring. Forth is kind of modular, and OK is very modular.
I'will give you a few examples. The names in OK are spelled

funny. The most common symbols are the arrows: ~ (the up |

arrow), v (the down arrow), > (the right arrow), and < (the
left arrow). I used them ofien and consistently. ~ always
means increase, moving up, and so forth. Here are some words:

~

1 CHANGE ;

-1 CHANGE ;
100 CHANGE ;
-100 CHANGE ;

AV <

These fragments are used very often. In fact, I have 12
versions of them in OK and CAD. Since they are used so
often, one might want to code a generic version which could
be used everywhere. In a generic version, you may want to

clip the value in the register, and do other things like range |

checking, etc. However, a universal version does not exist.

| Instead, I have a universal construct like this:

The problem in programming languages is the syntax of |
the underlying text. English description of a program is |
impossible, just as symbolic expression of mathemalics is |

impossible. Goethe said that mathematical truth cannot be
proven. Symbology cannot be the description. It is impos-
sible to describe a program by text. A program is best

expressed by the binary bits, but the binary bits have no |

intrinsic meaning. A program runs; it does what you want to
control. Text, the description of the program, cannot do it

In OK-CAD, you have all the code you need to deal with
the task you have 1o do, and that’s all there is 1o it There is
no source. The closest thing to the source code are the pages
of notes I keep in a binder. The temptation to document the
code is strong, bul the value is nil.

OK is not text based. The map is not the territory.
Description is not the real thing.

|
I

The industry is very much in virtual reality, in modeling |

January 1993 February

14

v

>

7

CHANGE AX +! »

Using the 380 machine instructions, cach invocation of
CHANGE uses only three 386 instructions. 1ere, a high-level
language is not helpful. These small picces of code fragments
are best done in machine code.

Mosl of the code is not in subroutines, it is in code
fragments to be jumped to, not called. You jump 1o a piece
of code. Eventually you jump Lo another menu, not return o
some caller.

Forth Dimensions

Look at all the computer applications. Most often you are
presented with a screen, which gives you some choices. You
scroll the screen, sometimes call other screens and use some
keys to make the choices. The meaning of keys changes with
the context. Giving each key a special name will get you into
trouble, because after the context changes the keys will have
completely different meanings. The context is the whole
screen. You do not need to have a word displayed on the
screen to tell you what the screen context is.

I use the 386 only as a historic instance. OK is really
designed for P20. When P20 is available, it will have OK and
eForth. OK is more intuitive to use. It is easy, and you can use
it to explore P20. If we make thing easy to get into, machine
language programming can be taught in grade school. T am
persuaded enough to build it and use it in the last four years.
You should carefully monitor what I am doing, and jump in,
if you will, when you are ready.

The CAD system is now complete. | have not spent much
time changing it. The last thing | added was design rule
checking. [originally thought it was not necessary; the chip
should be correct by design, not by checking. However, 1
have to do it to convince myself that the design does not have
any problem. I thought about it for a long time, about a
month, before I started coding. 1 had one page of notes
scribbled on a piece of paper, and I spent a couple of hours
coding it. Rule checking has been a hot topic in the IC
industry. There are a number of algorithms. The one I chose
was the one everybody else rejecied, of course.

I kept a table of rectangles in memory. The layer of first
metal is the most complicated, and it has 20,000 rectangles,
[simply compare the rectangles one by one to see if any two
of them get too close. The code is very short, but it takes a
long time to run through 20,000 x 20,000 comparisons. It took
half an hour to check the first metal layer. This is the longest
program I ever ran on OK. The other layers are much simpler,
and take about ten seconds to run through. The rule checker
stops when an error is detected, and the screen shows the
tiles around the erroneous rectangles, with the cursor sitling
on one of the rectangles. I can correct the mistakes and un
it over again.

The code of this design rule checker is only a few hundred
bytes long. It is so small because of Forth. I indeed have a
Forth system, well factored and casy o usc.

Questions from the Audience

Does OK bave two stacks?

OK has one stack for subroutine calls and for temporarily
storing register contents. T have a virtuai data stack in the 386
regisiers. The order is AX, BX, BP, and so forth. The registers
are generally used in that order. My convention is that, in a
subroutine, all the registers are assumed tobe free touse. The
caller is responsible for saving and restoring registers that
might get changed. This practice is, again, contrary to other
conventions. It was done just to irritate people.

How did you implement OK on a 3867

The 386 is a very complicated machine. It has more than
500 instructions. I keep a well-thumbed Intel 386 manual.
Forth Dimensions

15

P20 has only 28 instructions and I have memorized all of
them. Most people would start with a cross-compiler.
Implementing 386 OK, T started using DEBUG to enter the
code until the menu system worked. Then T could modify the
system and add new code by using OK itsclf. For major
changes, 1 still use DEBUG.

Is OK an 'O’ and a ‘K’ or is it Zero K?

Let me say a few words about the CAD system.

I did the chip layout in tiles. There are 600 x 600 tiles in
the P20 design. Fach tile has five layers, internally repre-
sented by a 32-bit word. The entities contained in a tile have
different meanings depending on where they are. The
meaning of the layout cannot be carried in words, but they
are carried fully in the tiles.

Most CAD systems try to use symbolic description of the
layout of a chip. I used it to lay out the pads around the core
of the chip. I used it in ShBoom because [didn’t have enough
memory to hold the pads. The symbolic description was
terrible. I cannot move them easily, and I cannot align them
to the coordinates 1 want, so that the pad can be connected
correctly to the signal traces. Finally, I moved the design to
386 OK, which has more memory. All the pads were laid out
in tiles and the problems disappeared. The best representa-
tion of a picture is the picture itself, not its description.

OK is distributed in code. How can other people contribute
to OK?

OK takes 64 Kbytes. People can change it and build new
applications in the 64K chunk. We can collect these images
and distribute them on a single floppy disk.

Compatibility is a taboo, here. I have no intention to make
OK system compatible. The code of OK 1.1 on Novix, OK 2.1
on ShBoom and OK 3.1 on 386 are all similar but not
identical.

You have no source listings. How do you move OK to a new
processor?

The most important structure in OK is the menus. The
menu structure can be implemented on any processor, using
different techniques. The details will change, but the menu
structure will be the same. You can get much closer to a
machine without a language. It is like music and the score.
The score is not the music. Different musicians play the same
score. Some will produce beautiful music, others will pro-
duce terrible music—cven if they all play correctly according
to the same score. There are lots of things the score does not
tell about the music.

Getling back to P20, MuP21 will be out in another week,
and OK 4.1 on P21 will be the ultimate OK. So far, the chip
doesn’t work. TTowever, [followed the sequence of evolu-
tion without the benefit of working silicon. The design has
been changed and improved greatly since it was first

| conceived. Tt got simpler. An example is the master clock. T
| started with one clock, then it was necessary to have a

second. The synchronization between the two clocks be-

' came a real problem. Now there is no clock. I am using an

analog delay line to control the timing. The circuits are much
simpler and more powerful.

January 1993 February

The reasons the chip didn't work were many. ‘The key |

suspect is the distance between rectangles. ‘The design rules
published by the manufacturers are not clear what the
distance really means. Is it the absolute diagonal distance
between corners of rectangles or the lateral distance between
the edges of the rectangles? 1 have 1o move to a fail-safe
direction, consistent with my understanding of the rules.
The chip area is 100 mil square. Itis divided into 600 x 600
tiles, which I laid out one by one. The image of the layout is
1.5 Mb in size. I converted the tiles into rectangles, and saved
the rectangles to a file. Interestingly, the rectangle file is also
1.5 Mb. The rectangle file is then ZIPped down to 300 Kb.

The code of CAD is about 3 Kb. Very small, compared to |

industry standards. The risk of software is that it becomes
bigger and more complicated. Simpler software is always
more reliable. 700,000 lines of code cannot be reliable. You
cannot check them all. Simpler software means that you can
check it completely... I read that the problem of the Patriot
missile was traced to its floating-point calculation. In a long
sequence of calculations to follow the trajectory of the target
missile, Lthe truncation errors in the floating-point calculation

made the missile unworkable. I was a great believer in |

software until I learned hardware.
In developing the P20 chip, I rely heavily on my simulator.

I'want to trust my simulator, but itis not yet proven. If I get the |

simulator proven, I will be able to move on to design other
chips. IThavelots of chipslined up inthe pipeline tobe designed.

How do you decompile the machine code?

P20 code can decompile very easily into Forth. However,
there is no room for comments. One important clue is the
names, which one can assign to any location in the memory.
The decompiler in 386 OK is not yet complete. It groups the

bytes in a 386 instruction and displays them in one line. The |

instruction and its arguments are not translated to their Intel
mnemonics.,

If a map is not the territory, is it necessary to have a map?

A map is useful, butitis different from the territory. When
the difference is subtle, you may confuse yourself.

I am working on P32 and P24. In P21, the last bit was
added 1o take care of the carry in the ALU operations and it
is also used to control memory addressing, to differentiate
DRAM from SRAM. The clocks are done in analog delay lines.
The Tand N registers are tied to the ALU. You just enable the

| inthe Sieve benchmark is that the version tested used a high-
| level DO LOOP construct, and the loop limes were not

output and the results are latched back into T. It takes 10 ns. |
from enabling of address inpul, through the ALU, to get the |

data to the output pins.
Silicon design is very challenging. A NAND gate has many

| the number of versions of Forth ested, the number of words
| and tests per Forth, and the fact that the iming differences

inputs and an output. If you want more driving current from |

a NAND gale, you may use another output driver and then
invert the driver. Or you can invert the inputs. Or you can
invert the output. There are so many different approaches,
and it becomes a holistic problem. T don't know how to come
o an optimal implementation. Short of doing the experi-
ments yoursclf and get experience the hard way, you don’t
have a note on how Lo get it done right.

(Letters, continued from page six.)

1 was glad to see the FIG presence, but without other
Forth vendors 1 question if many conventioneers got the
Forth message. Too bad there weren'l some controller-
operated, fun gizmos, like the traveling display at the
Anaheim (1988) programming contest, to show that Forth
actually works. It could give some Forth vendors a chance to
show off their hardware. If the gizmos are made transport-
able, they could be made available to FIG displays at other
conventions. And demos of Forth programming (there’s a lot
of postfix paranoia) would let the curious actually see some
of the Forth systems available. Forth definitely needs more
markeling pizzazz.

Someone at the FIG booth demonstrated a clever method
of creating and then downloading headerless Forth code
through a serial port to the controller. Perhaps he would
describe it further in an article?

Motorola won the “Chutzpah” award in marketing, hands
down. For the Oktoberfest beer bust at the convention, Intel
handed out fancy glass mugs imprinted with their logo.
Motorola then passed out blue insulating blankets that |
wrapped around the mug, covering Intel’s logo with their
own. | presume a suitable revenge is being planned. ..

Yours truly,

Walter J. Routenkolber
P.O. Box 1705

Mariposa, California 95338

Kelly’'s Comparisons Clarified
Dear Marlin,

There may be some confusion about the meaning of the
timing information contained in Tables Two and Three of my
article, “Forth Systems Comparisons” (FD XIII/6), as evi-
denced by comments one and two in the much-appreciated
letter by Don Kenney in FD XIV/3.

The comments accompanying the benchmark code were
meant to illustrate that the empty loop times were subtracted
from all the other raw times (except for the Sieve). Hence, for
instance, the empty loop time for riFORTH is shown as
greater than the threading time because it has already been
subtracted from the raw time.

The probable reason that riFORTH did not perform better

subtracted from the Sieve times.
I would have to disagree with Mr. Kenney that hand
calculating the times would have been easier, considering

were in the same ball park (approximately ten to 30 percent)
that the hand timings were in error (reported as four and
seven percent).

My thanks to all thosc who ook the time 1o comment on
the article, it made it all worthwhile!

‘j Sincerely,

| Guy M. Kelly

In the meantime, OK is now out and T hope you will have |

fun with it. Thank you.
January 1993 February

| La Jolla, California 92037
16

|
|
2507 Caminito La Paz !
|
i
1

Forth Dimensions

HARVARD SOFTWORKS

NUMBER ONE IN FORTH INNOVATION

(513) 748-0390 P.O. Box 69, Springboro, OH 45066

By now you know that HS/FORTH gives you more
speed, power, flexibility and functionality than any other
language or implementation. After all, the majority of the
past several years of articles in Forth Dimensions has
been on features found in HS/FORTH, often by known
customers. And the major applications discussed had to
be converted to HS/FORTH after their original dialects
ran out of steam. Even the public domain versions are
adopting HS/FORTH like architectures. Isn’t it time you
tapped into the source as well? Why wait for second hand
versions when the original inspiration is more complete
and available sooner.

Well, it was a dirty job, but we finally had to do it.
Now you can run lots of copies of HS/FORTH from
Microsoft Windows in text and/or graphics windows
with various icons and pif files available for each. Talk
about THE tool for hacking Windows! But, face it, what
I really like is cranking up the font size so I can still see
the characters no matter how late it is. Now that’s
useful.

Good news, we've redone our DOCUMENTATION!
The big new fonts look really nice and the reorganization
makes all that functionality so much easier to find.
Thanks to excellent documentation, all this awesome
power is now relatively easy to learn and to use.

Naturally we continue tweaking and improving the
internals, but by now the system is so well tuned that
these changes are not individually of any significance.
They just continue to improve performance a bit at a
time, and enhance error detection and recovery. Update
to Revision 5.0, including new documentation, from all
4.xx revisions is $99. and from really old systems the
update is $149.

And since Spring is coming, IT IS TIME FOR OUR
SPRING SALE. Thru the end of May you get to pick
two extra utility packages free for each Professional or
Production Level system purchased, or get a free Online
Glossary with help file utility with each Personal Level
system purchased.

HS/FORTH runs under MSDOS or
PCDOS, or from ROM. Each level includes
all features of lower ones. Level upgrades:
$25. plus price difference between levels.
Source code is in ordinary ASCIT text files.

HS/FORTH supports megabyte and larger
programs & data, and runs as fast as 64k
limited Forths, even without automatic
optimization -- which accelerates to near
assembler language speed. Optimizer,
assembler, and tools can load transiently.
Resize segments, redefine words, eliminate
headers without recompiling. Compile 79
and 83 Standard plus F83 programs.

PERSONAL LEVEL $299.

NEW! Fast direct to video memory text
& scaled/clipped/windowed graphics in bit
blit windows, mono, cga, ega, vga, all
ellipsoids, splines, bezier curves, arcs,
turtles; lightning fast pattern drawing
even with irregular boundaries; powerful
parsing, formatting, file and device /O;
DOS shells; interrupt handlers;
call high level Forth from interrupts;
single step trace, decompiler; music;
compile 40,000 lines per minute, stacks;
file search paths; format to strings.
software floating point, trig, transcen-
dental, 18 digit integer & scaled integer
math; vars: A B * IS C compiles to 4
words, 1..4 dimension var arrays;
automatic optimizer delivers machine
code speed.

PROFESSIONAL LEVEL $399.
hardware floating point - data structures
for all data types from simple thru
complex 4D var arrays - operations
complete thru complex hyperbolics;
turnkey, seal; interactive dynamic linker
for foreign subroutine libraries; round
robin & interrupt driven multitaskers;
dynamic string manager; file blocks,
sector mapped blocks; xB6&7 assemblers.

PRODUCTION LEVEL $499.
Metacompiler: DOS/ROM/direct/indirect;
threaded systems start at 200 bytes,
Forth cores from 2 kbytes;

C data structures & struct+ compiler;
MetaGraphics TurboWindow-C library,
200 graphic/window functions, PostScript
style line attributes & fonts, viewports.

ONLINE GLOSSARY $ 45,

PROFESSIONAL and PRODUCTION
LEVEL EXTENSIONS:

FOOPS+ with multiple inheritance $ 79.

TOOLS & TOYS DISK $179.

286FORTH or 386 FORTH $299,

16 Megabyte physical address space or
gigabyte virtual for programs and data;
DOS & BIOS fully and freely available; 32
bit address/operand range with 386.
ROMULUS HS/FORTH from ROM § 99.

Shipping/system: US: $9. Canada: $21.
foreign: $49. We accept MC, VISA, & AmEx

FORTH TUTORIAL, LESSON #3

Numbers

C.H. Ting
San Mateo, California

In this lesson, we shall discuss the way Forth handles
integers. Integers are numbers from -32768 1o 32767. This
range of numbers is most convenient 1o be stored and
processed in Forth. It is very surprising that many real-world
problems can be represented and solved using numbers in
this range. Forth can handle larger numbers, and even

floating-point numbers, but these are topics outside the |

scope of this lesson.

Example One. Money Exchange
The first example we will use to demonstrate how
numbers are used in Forth is 2 money exchange program,
which converts money represented in different currencies.
Let’s start with the following currency exchange table:

24.55 NT 1 Dollar
7.73 HK 1 Dollar
5.47 RMB 1 Dollar
1 Ounce Gold 356 Dollars
1 Ounce Silver 4.01 Dollars

We shall use the U.S. dollar as the standard currency, and |
convert all other currencies to dollars first. All arithmetic |

operations will be carried out in dollars. The dollars can then
be converted back to any other currency.

We define words to convert other currencies to the dollar
by using the names of the corresponding currencies. To
convert from dollars to another currency, the word is
preceded by the $ sign.

: NT { nNT -- $) 10 245 */ .s ;

: SNT { $ —— nNT) 245 10 */ .s ;

: RMB { nRMB —= $) 100 547 */ .s ;

: $9gmp ($ -= nJmp) 547 100 */ .s ;

: HK { nHK -- §) 100 773 */ .s ;

: $HK ($--8) 773 100 */ .s ;

: gold (nOunce -- $) 356 * .s ;

: 8gold ($ -- nOunce) 356 / .s ;

: silver (nOunce -- $) 401 100 */ .s
$silver ($ -- nOunce) 100 401 */ .s ;

: ounce (n --n, used to improve syntax)

: dollars (n ==) . 7

January 1993 February

d

18

With this set of money exchange words, we can do some
ests:

| 5 ounce gold .

I 10 ounce silver . |

| 100 SNT _
20 SRMB . }

If you have many different currencies in your wallet, you
can add them in dollars: ‘

1000 NT 500 HK +
320 RMB +
dollars (prints total worth in dollars)

IfTam in Hong Kong at the time, the total amount can be
readily converted to Hong Kong dollars:

1000 NT 500 HK + 320 RMB +
SHK dollars
(converts to Hong Kong dollars and prints it)

I Exercise One. A business trip.
Now we have a fairly powerful money exchange com- |
| puter with us. Suppose you depart San Francisco with 1000
dollars in your pocket. You go to Hong Kong and buy a VCR
| with 1200 HK. Go to Shanghai and sell it for 2000 RMB. Then
{ come back to Hong Kong and spend 900 HK for fun. Go to
Taipei and buy a portable PC with 30000 NT. How much
| money in U.S. dollars do you have remaining?
The answer typed backwards is:
| srallod - TN 00003 - KH 009 + BMR 0002 - KH
| 0021 0001 |

Try it. :

Example Two. Temperature conversion. |
Converting temperature readings between Celsius and |
| Fahrenheit is also an interesting problem. The difference
| between temperature conversion and money exchange is
| that the two temperature scales have an offset in addition to
[the scaling factor.

_I : F>C (nFarenheit =-- nCelcius)

32 - i
10 18 */ =
’ l
: C>F (nCelcius -- nFarenheit) ‘
18 10 */
32 +
90 F>C . shows the temperature on a hot summer day {
and |
| 0 C>F shows the temperature in the cold winter. |

| In the above cxamples, we usc the following Forth 5
| arithmelic operators: ‘
Forth Dimensions

Add n1 and n2 and
leave sum on stack.
Subtract n2 from nl and
leave difference on stack.
Multiply n1 and n2 and
leave product on stack.
Divide n1 by n2 and
leave quotient on stack.
Multiply n1 and n2,
divide the product by n3
and leave quotient on the
| stack.

8 Cuw =) Show the topmost four
numbers on stack.

(nl n2 - nl+n2)
(nl n2-nl-n2)
* (nln2—-nl*n2)
/ (nln2-n1/n2)

*/ (nl1n2n3 - n1*n2/n3)

Here we have to introduce the concept of a stack. A stack
is a memory area in the computer where numbers are stored
and retrieved implicitly. It is different from variables (dis-
cussed in Lesson One). Variables are named locations in
- memory, which are accessed by referring to the assigned

names. A stack is a first-in-last-out list. When a number is
| given to Forth, itis pushed on the stack. Any operator which
| uses numbers pops the required numbers from the stack. The
most accessible number is on the top of the stack, like the
card on top of a card deck. Various Forth operatlors may
produce one or many numbers, and the numbers are pushed
on the stack as they are generated.

+ thus pops the two topmost numbers off the stack, adds
them, and then pushes the sum back on the stack. -, *, and

| /. Exchanging the two numbers will produce different
differences or quotients, respectively.

* / is a scaling operator in Forth, which is useful in scaling
integer numbers. It multiplies n1 by the ratio of (n2/n3). As
shown in Examples One and Two, this operator is very useful
in scaling quantities from one unit to another. Scaling is a very
powerful operation which eliminates the necessity of using
floaling-point numbers.

.s is a debugging tool which shows you the contents of
the topmost four items on the stack. It is used often during
debugging to make sure the stack has the correct numbers
for your calculations. It is generally not used in the final
program, to avoid printing too many intermediate values.

Several other important, but less commonly used, math
operators are:

MOD (nln2-rem)

Divide nl1 byn2andlecave
the remainder on stack.
Divide nl byn2andleave
both remainder and quo-
ticnt on stack.

/MOD (nl n2 —- rem quot)

1+ (n-—-n+1) Increment n on stack.
1- (n-n1) Decrement n on stack.
2* (n-2n) Double n on stack.

2/ (n-n/2) ITalve n on stack.

ABS (n - Inl) Convert top number on
stack to absolute.
NEGATE (n---n) Negate n on stack.

Forth Dimensions

. As we go along, some of these operators will be used as
| occasions arise.

Stack Operators

i The stack is the most important place where the results
| of previously executed operators can be passed to the
operators yet 1o be executed. Operators take parameters
from the stack and leave results there for subsequent
operators 1o use. A program can be built easily by stringing
together subroutines. The subroutines can call other subrou-
tines, and so on. The subroutines are Forth operators, and
can be nested almost indefinitely. This is a very important
reason why Forth is simple in its architecture and also in its
syntactical structure.

However, it happens very often that the order of the
numbers on the stack is not correct for an operator which
needs them, like - and /. There is a set of stack operators to
rearrange numbers on the stack. The five most important,
classic stack operators are:

DUP

(n-nn) Duplicate the top of stack.

SWAP (nln2-n2nl) Exchange top two num-
bers on stack.
Duplicate the second
number on stack.

Rotate third number to
the top of stack.
Discard the top of stack.

OVER (nln2-nln2nl)

ROT (nln2n3--n2n3nl)

DROP (n-)

/ are other operators commonly used to do simple math. |
One must notice that the order of the two numbers used by |
+and * is immaterial, while the order is important for - and |

Example Three. Rectangles.

A rectangle is specified by the (x,y) coordinates of its
upper-left and lower-right corners. With these four integers
on the stack, we can compute the area, the center, and the
perimeter of a rectangle:

: area (x1 yl x2 y2 -- area)
ROT - (®x1 x2 y2-yl)
SWAP ROT - (y2-yl x2-x1)
* (area)

center (=l yl x2 y2 —-— x3 y3)

ROT - 2/ (x1 x2 y3)
SWAP ROT - 2/ (y3 x3)
SWAP (x3 y3)

sides (x1 yl x2 y2 -- sides)

ROT - ABS (x1 x2 y2-yl)
SWAP ROT - ABS (y2-yl x2-x1)
+ (sides)

.

Logic Operators
Computers use logic operators to determine and follow
different execution paths. Logic operators themselves are
very simple and easy to understand. However, the combina-
tion of many levels of logic operations, and the multitude of
different pathways in a large program, makes the computer

19 January 1993 February

seem very complicated, even to the point of showing some
intelligence.
Ilere we introduce some of the logic operators associated

with numbers, and the branching operators which use the |

results of logic operators to select different operations.

Forth uses numbers to represent logic levels, There are
only two logic levels, true and false. True is represented by
any number which is not zero (usually a -1), and false is
represented by zero. The number representing logic levels is
often called a flag.

Return true if n1>n2.
Otherwise, return false.

> (nln2-f)

< (nln2-f) Return true if n1<n2.

= (nln2-f) Retum true if nl=n2.
0= (n-f) Return true if n=0.

0< (n-1f) Return true if n<0.

NOT (f1--f2) Return true if f1 is false.

Otherwise, return false.

A flag can be used to select one of the two execution paths
by the following constructs inside a colon definition:
(£) IF <true clause> ELSE <false clause> THEN
(£) IF <true clause> THEN

Example Four. Weather Reporting.
The following colon definition illustrates the use of logic
and the branch:

386 OK v3.1

A New User Interface to
2386 Personal Computer
by Charles H. Moore

Simpler than Forth

Run 386 in the protected mode
4 GB flat addressing space
Access RAM memory directly
Greatly simplied DOS file interface
Complete object code
Extensive documentation by C. H. Ting

Price: $75.00

Offete Enterprises

1306 South B Street
San Mateo, CA 94402
(415) 574-8250 |

January 1993 February

Menu-based user interface through 7 keys |

weather (nFarenheit --)
DUP 85 >
IF " Too hot!™ DROP
ELSE 55 <
IF " Too cold."™
ELSE ." About right."
THEN

THEN

.

You can type the following commands and get some
responses from the computer:

90 weather Too hot!
70 weather BAbout right.
32 weather Too cold.
Loop Operators

We shall be concerned now with only the definite loop
operators used in the following format in a colon definition:
(nLimit nIndex) DO <repeat clause> LOOP

DO takes two parameters off the stack. The top number
is the starting index of the loop and the second number is the
upper limit of the loop index. Afier entering the loop, the
repeat clause is repeatedly execuled. LOOP increments the
loop index from nIndex to nLimit. When the index is
equal tonLimit, the loopis terminated. In the repeat clause,
a special operator I returns the current loop index on the
stack.

A simple example of the loop structure follows:

Example Five. Print the multiplication table.

: OneRow (nRow —--)

CR

DUP 3 .R 3 SPACES

13 1

DO I OVER *
4 .R
LOOP
DROP ;

: Table (--)
CR CR 6 SPACES
13 1
DO
13 1
DO
LOQP

’

I 4 .R LOOP (display column numbers)

I OneRow

Typing TABLE will cause the multiplication table to be |

displayed in a neat format.

With these new Forth operators, we can now wrile a fairly
substantial program, using many of the operators to demon-
stratc how they are combined to do useful work.

Dr. C.H. Ting is a noled Forth authority who has made many significant contribu-
lions o Forth and the Forlh Interest Group. His lutorial series will conlinue in
succeeding issues of Forth Dimensions.

Forth Dimensions

LiFe v THE FastFoRTH LANE

Optimizing in

BSR/JSR-Threaded Forth

Charles Curley

Gillette, Wyoming

The purpose of this paper is to describe a code optimizer
for a 68000-based JSR/BSR-threaded Forth interpreter/com-
piler. The code operates in the traditional Forth single-pass
compiler, optimizing on the fly. The result includes words
which execute in fewer instructions than the words called out
in the source code.

Historical Note

The Forth used for the code described herein is FastForth,
a full 32-bit BSR/jSR-threaded Forth for the 68000, described
inunmitigated detail in “Optimization Considerations” (Forth
Dimensicns XIV/5). 1t is a direct modification of an indirect-
threaded Forth, real-Forth. This is, in turn, a direct descen-
dent of fig-Forth. (Remember fig-Forth?) fig-Forth's vocabu-
lary, word names, and other features have been retained.

For those not familiar with 32-bit Forths, the memory
operators with the prefix W operate on word, or 16-bit,
memory locations. FastForth uses the operators F@ and F'!
for 32-bit memory operations where the address is known to
be an even address. To avoid odd-address faults, the regular

This optimizer is a

complete unit, and is
dependent only upon the nature
of the target processor

Forth operators @ and ! use byte operations.

The assembler used to illustrate is descended from the fig
68000 assembler by Dr. Kenneth Mantei. It is a typical Forth
reverse Polish notation assembler. Typical syntax is: source,
destination, opcode. The addressing modes relevant to the
paper are as follows:

[Address register indirect
[+ Address register indirect with post-increment

- Address regisier indirect with pre-decrement
& Register indirect with a word of displacement
G#L Absolute long address

Immediate data, word
#1, Immediate data, long

Forth Dimensions

There is nothing particularly new conceptually here.
Chuck Moore’s cmForth includes an optimizer for the Novix
NC-4000. The present paper describes an optimizer for a
more traditional CISC instruction set, the Motorola 68000.

The Compiler
The compiler used in FastForth looks very much like a
traditional indirect-threaded Forth. However, it lays down

i opcodes which call (via BSR or JSR instructions) lower-level

words, rather than a list of addresses for NEXT to interpret.
For example, the traditional word L is defined as follows:

L SCR F@ LIST ;

In an indirect-threaded, 32-bit Forth, the compiler would
build the header for L. This would be followed by a four-byte
address for the code to be executed tointerpret the word. The
code field address is followed by a four-byte address foreach
of the three words called out in the source. This would be
followed by the address of the exit code, laid down by the
compiler directive ;.

In a BSR/JSR-threaded Forth, the compiler lays down
BSRs (“branch to subroutine”) or JSRs (jump to subroutine),
as appropriate, to the words called out. The return code
consists of an RTS instruction. The result may or may not be
smaller than the indirect-threaded version, but it certainly will
be faster. Whether the result is smaller or not depends on the
mix of short BSRs (two bytes), long BSRs (four bytes), and
JSRs (six bytes) laid down at compile time.

One optimization discussed in “Optimization Consider-
alions” is to examine the last instruction of a word. If it is a
BSR or JSR, that instruction can be twiddled to produce a BRA
or JMP instruction.

Another optimization is to lay down in-line code instead

of calls. This is particularly beneficial when calling short

words (¢.g., F@) from a distance, which would require a JSR

| instruction. Not only does the technique save run time (by

21

eliminating a call and an R1S instruction), but it may reduce
the size of words. One circumstance where this technique
does not save space is where a four-byte word is copied in
linc 1o a location which would have required a short (two-
byte) BSR.

January 1993 February

FOptimized definition vs. the original |

. T | optimize that. Instead, let us |

| ltem JSR/BSR Indirect Threaded | generalize, andlook forphrases |

| code field 0 bytes Four bytes '. of the general type: |
SCR Six bytes laid down in line. Four bytes ' e ——

l F@ Four bytes laid down in line. Four bytes |

| LIST Two, four or six bytes of BRA or JMP. Four bytes To detail this example: a
exit code Q bytes Eour bvtes user variable is an immediate
Total 16, maximum 20 bytes word, which lays down the

- s | following phrase:

Variables, constants, and user variables in FastForth arc
immediate words which compile inine code, often a six-
byte reference.

With these optimizations, the compiler produces the
above for the sample word L given earlier.

The total is sixteen bytes at most, compared to a firm
twenty bytes for the indirect-threaded version. So the JSR/
BSR version may be smaller, but certainly will be much faster!

Two more typical Forth optimizations are common and
won't be discussed very much.

Ifa phrase showsupalotina Forth program, itis common
practice for the programmer to consolidate that phrase in a
word with a meaningful name. This is optimizing for
readability and dictionary size, rather than speed.

The second is to reduce words from high level to
assembler. This requires the active intervention of the program-
mer, and the results are well worth it in terms of speed, and
often worthwhile in terms of space. Alas, such optimizations
only improve readability for those who know the relevant
assembly language (and, sometimes, the relevant assembler),
leaving the code more opaque to those without such skills.

The Optimizer Design

An optimizer for in-line code should be a single-pass
optimizer, to be consistent with Forth’s traditional single-pass
compiler. This would make difficult, forexample, replacinglong
forward branches with short ones on the fly, but would result
in much simpler code in the compiler. It must, then, operate at
compile time, and so must consist of immediate words.

The optimizer should be an add-on, so that the user can
add to the optimizer if he wishes to. However, it should also
be carried over to the cross-compiler so as to produce a very
efficient nucleus.

The optimizer should work silently, as far as the user is
concerned. That is, it should require no changes in source
code to be useful. This requirement separates out the
optimizing compiler from the two common optimizing
methods described above.

Initially, the optimizer word could be developed as a
series of discrete words, but these would be replaced by one
or more defining words and their daughter words.

One key to single-pass optimization during compilation is
to have immediate words which examine previously compiled
opcodes, and twiddle certain ones 10 produce tighter code.

Another key is to look for certain phrases which can easily
be detected and easily twiddled. We could look for the
phrase BLK F@, which shows up all over the nucleus, and

January 1993 February

<offset> &[U AR0 MOV, AR(QO S -[MOV,

Translated into English, the first instruction moves data
from a user variable indicated by an offset from the user area

register Uto address register 0. The second pushesit outonto |

the stack. The result, examined in memory as word dala,
looks like:
2708 |

| 4lee | <offset> |

If the next word in the source code is F@ and it is |

immediate, it can look at here-less-six for the opcode 41ec. |

Finding it, it can twiddle the dictionary to produce the
following code:
<offset> &[U ARO MOV,

ARO [5 —-[MOV,

This produces the following memory dump:

| 4lee | <offset> | 2710 |

The first instruction still moves the contents of the user
variable into the address register, but the second instruction
now reads data from the localion pointed to by the register,
and pushes it onto the data stack.

The phrase <USER VARIABLE> F@ is now executed in
two instructions instead of the previous four, and occupies
six bytes instead of the previous ten. And the optimizerworks
for all user variables, even ones not defined at the time the
optimizer is compiled.

Other two-word phrases were similarly identified and
optimized, and some three-word phrases were also ident-
fied and optimized. As cach phrase was identified, a defining

word was built up, consisting of nested IF .. ELSE ... THEN |

clauses. The resultant words are monsters, and musl be

thoroughly understood by the programmer who seeks o |

modify them. [n these two respects, they arc un-Forthish, bul
the gain obtained by using them is worth the price.

These words must all be state smart. As they will run either |

alrunlime or at compile time, they must examine STATE and
act accordingly. The action at run time is, of course, to

exccule their namesakes. Hence, in the run-time portion of |

| the defining words, the phrase STATE F@ IF .. ELSE
| @EXECUTE THEN.

[
|

i

22

In order for that phrase to work correctly, we must have
the run-time address of the namesake in the dictionary. We

require the namesake to be explicitly stated: ' itand comma |

Forth Dimensions

La

Las

Las

Last

Las

Last

Las

Las

FIG
MAIL ORDER FORM

HOW TO USE THIS FORM: Please enter your order on the back page of this form and send with your payment to the Forth Interest Group.
All items have one price and a weight marked with # sign. Enter weight on order form and calculate shipping based on location and delivery method.

“Were Sure You Wanted To Know...”

Forth Dimensions, Article Reference 151 -54 0#

100 Floored division, stack variables, embedded control, Atari Forth,
optimizing compiler, dynamic memory allocation, smart RAM,
extended-precision math, interrupt handling, neural nets, Soviet
Forth, arrays, metacompilaton.

* An index of Forth arnticles, by keyword, from Forth Dimensions
Volumes 1-13 (1978-92).
FORML, Article Reference 152 -54 O#
e An index of Forth articles by keyword, author, and date from the
FORML Conference Proceedings (1980-91).
FORTH DIMENSIONS BACK VOLUMES
A volume consists of the six issues from the volume year (May—April)
Volume 1 Forth Dimensions (1979-80) 101 -315 1# |
gt 50 Introduction to FIG, threaded code, TO variables. fig-Forth.
Volume 3 Forth Dimensions (1981-82
Forth-79 Standard, S i 1“.“;\ ¥R}y 9k, memory man-
agemep: el fipts Wktribg “stack, BASIC compiler,
recurs sembler.
Volume 6 Forth Dimensions (1984-85) 106-515 2#
100 Interactive editors, anonymous variables, list handling, integer
solutions, control structures, debugging techniques, recursion,
semaphores, simple 1/O words, Quickson, high-level packet
communications, China FORML.
Volume 7 Forth Dimensions (1985-86) 107 - 520 24
100 Generic sort, Forth spreadsheet, control structures, pseudo-
interrupts, number editing, Atari Forth, pretty printing, code
modules, universal stack word, polynomial evaluation, F83
strings.
Volume 8 Forth Dimensions (1986-87) 108 - $20 2#
100 Interrupt-driven serial input, data-base functions, T1 99/A,
XMODEM, on-line documentation, dual-CFAs, random
numbers, arrays, file query, Batcher's sort, screenless Forth,
classes in Forth, Bresenham line-drawing algorithm, unsigned
division, DOS file I/O.
Volume 9 Fonth Dimensions (1987-88) 109 -820 2#
100 Fractal landscapes, stack error checking, perpetual date routines,
headless compiler, execution security, ANS-Forth meeting,
computer-aided instruction, local variables, transcendental func-
tions, education, relocatable Forth for 68000.
Volume 10 Forth Dimensions (1988-89) 110- 320 24 é
5p dBasefileaccess, string handling, local variables, data structures,
object-oriented Forth, linear automata, stand-alone applications,
8250 drivers, serial data compression.
Volume 11 Forth Dimensions (1989-90) 111-320 2#
100 Local vanables, graphic filling algorithms, 80286 cxiended
memory, expert systems, quaternion rotation calculation,
multiprocessor Forth, double-entry bookkeeping, binary table
search, phasc-angle differential analyzer, sort contest.
Volume 12 Forth Dimensions (1990-91) 112-820 24

| FORML CONFERENCE PROCEEDINGS

FORML (Forth Modification Laboratory) is an educational
forum for sharing and discussing new or unproven l(pr':: sals
intended o benefit Forth, and is an educational forum for discus-
sion of the technical aspects of applications in Forth. Proccedings
are a compilation of the papers and abstracts presented at the
annual conference. FORML is part of the Forth Interest Group.

1980 FORML PROCEEDINGS 310 - 830 2#
Address binding, dynamic memory allocation, local variables, Last 10
concurrency, binary absolute & relocatable loader, LISP, how to as
manage Forth projects, n-level file system, documenting Forth,
Forth structures, Forth strings. 231 pgs

1981 FORML PROCEEDINGS 311
CODE-less Forth machine, quadruple-precision arithmetic,
overlays, executable vocahular¥ stack, data typing in Forth,
vectored data structures, using Forth in a classroom, pyramid
files, BASIC, LOGO, automatic cucing language for mulp'

- 845 4#
Last 50

timedia,
NEXOS—aROM-based multitasking operating system. 655 pgs

1982 FORML PROCEEDINGS 312
Rockwell Forth processor, virtual execution, 32-bit Forth, ONLY
for vocabularies, non-IMMEDIATE looping words, number-
input wordset, [/O vectoring, recursive data structures, program-

| mable-logic compiler. 295 pgs

} 1983 FORML PROCEEDINGS 313
I

- 530 44
Last 100

- 830 24
Non-Von Neuman machines, Forth instruction set, Chinese | get 75
Forth, F83, compiler & interpreter co-routines, log & exponential
function, rational arithmetic, transcendental functions in
variable-precision Forth, portable file-system interface, Forth

coding conventions, expert systems. 355 pgs

1984 FORML PROCEEDINGS 314 - 330 2#

| Forth expernt systems, consequent-reasoning inference engine,

Zen floating point, portable graphics wordset, 32-bit F%n.h‘ Last 100
HP71B Forth, NEON—object-onented programming, decom-
piler design, arrays and stack variables. 378 pgs

I 1986 E‘]?RT}'L PRO;TEEDINE:SI VESE Bl 316 - 330 2#

| reading techniques, Prolog, ‘orth microprocessor,

| natural-language interface, expen system shell, infcrcnccenginc, Last 100
multiple-inhertance system, automatic programming environ-
ment. 323 pgs

| 1987 FORML PROCEEDINGS 317 - 340 3#

| Includes papers from 87 curoFORML Conference. 32-bit Forth, Last 25
neural networks, control structures, Al, optimizing compilers,

hypertext, field and record structures, CAD command language,

ug)cecl-orimlcd lists, trainable ncural nets, expert systems.

463 pgs

1988 FORML PROCEEDINGS 318 - 340 2#

| Includes 1988 Australian FORML, Human interfaces, simple Last 100

! robotics kernel, MODUL Forth, parallel processing, as
rogrammable controllers, Prolog, simulations, language topics,

f:a:dware, Wil's workings & Ting's philosophy, Forth Eardwun.:

applications, ANS Forth scssion, future of Forth in Al

applications. 310 pgs

‘ 1989 FORML PROCEEDINGS ; 319 - $40 34
Includes papers from '89 euroFORML. Pascal to Forth,
extensible optimizer for compiling, 3D measurement with object- Last 50

| oriented Forth, CRC polynomials, F-PC, Harris C cross-

compiler, modular approach to robotic control, RTX recompiler
for on-line maintenance, modules, trainable neural nets. 433 pgs

1990 FORML PROCEEDINGS 320 - 340 3#
Forth i industry, communications monitor, 6805 development. | -\ £
3-key keyboard, documentation technigues, object-oriented &%
programming, simplest Forth decompiler, crror recovery, stack
operations, process control event management, control structure
analysis, systems design course, group theory using Forth.

41 pgs

% - These are your most up-to-date indexes for back issues of Forth Dimensions and the FORML proceedings.
Fax your orders 510-535-1295

1991 FORML PROCEEDINGS 321 - 350 3#
Includes 1991 FORML, Asilomar, euroFORML 91,
Czechoslovakia and 1901 China FORMIL., Shanghai.
Differential File Comparison, LINDA on a Simulated Network,

2: RISCing it all, A threaded Microprogram Machine, Forthin
Networking, Forth in the Soviet Union, FOSM: A FOrth Strin
Matcher, VGA Graphics and 3-D Animation, Forth and TSR,
Forth CAE System, Applying Torth to Electric Discharge
Machining, MES%-FOI?}H Single Chip Computer. 500 pgs

BOOKS ABOUT FORTH

ALL ABOUT FORTH, 31d ed., June 1990, Glen B. Haydon 201 - 590 44
Annotated glossary of most Forth words in common usage,
including Forth-79, Forth-83, F-PC, MVP-Forth. Implementation
examples in high-level Forth and/or 8086/88 assembler. Uscful

commentary given for each entry. 504 pgs

THE COMPLETE FORTH, Alan Winfield 210 -514 1#
A comprehensive introduction, including problems with answers
(Forth-79). 131 pgs

¢FORTH IMPLEMENTATION GUIDE, C.H. Ting 215-825 14
eForth is the name of a Forth model designed 1o be portable to a
large number of the newer, more powerful processors available
now and becoming available in the near future. 54 pgs (w/disk)

F83 SOURCE, Ilenry Laxen & Michael Perry 217 - 520 2#

A complete listing of F83, including source and shadow screens.

Includes introduction on getting started. 208 pgs
FORTH: A TEXT AND REFERENCE 219 - 831 2#
Mahlon G. Kelly & Nicholas Spies
A textbook approach to Forth, with comprehensive references to
MMS-FORTH and the *79 and *83 Forh standards. 487 pgs

THE FIRST COURSE, C.H. Ting 223-825 1#

This tutorial’s goal is 10 expose you to the very minimum set of
Forth instructions so that you can start 1o use Forth to solve
practical problems in the shortest possible time. "... This tutorial
was developed to complement The Forth Course which skims too
fast on the elementary Forth instructions and dives too quickly in
the advanced topics in a upper level college microcomputer
laboratory. ..." A running F-PC Forth system would be very
useful. 44 pgs

THE FORTH COURSE, Richard E. Haskell 225-825 14
This set of 11 lessons, called The Forth Course, is designed to
make it easy for you to learn Forth. The material was developed
over several years of teaching Forth as pant of a senior/graduate
course in design of embedded software computer sysiems at
Oakland University in Rochester, Michigan. /56 pgs (w/disk)

FORTH ENCYCLOPEDIA, Mitch Derick & Linda Baker
A detailed look at each fig-Forth instruction. 327 pgs

FORTH NOTEBOOK, Dr. C.H. Ting 232 -325 2#
Good examples and applications. Great leaming aid. poly-
FORTH is the dialect used. Some conversion advice is included.
Code is well documented. 286 pgs

FORTH NOTEBOOK I, Dr. C.11. Ting 232a- 525 24
Collection of research papers on various topics, such as image
processing, parallel processing, and miscellaneous applications.

237 pgs

F-PC USERS MANUAL (2nd ed., V3.5) 350 - 820 14
Users manual to the public-domain Forth system optimized for
53‘1;4 PC/XT/AT computers. A fat, fast system with many tools.
s

F-PC TECHNICAL REFERENCE MANUAL 351 -330 24
A must if you need to know the inncr workings of F-IPC. 269 pgs

220 -330 24

INSIDE F-83, Dr. C.H. Ting 235-825 2#
Invaluable for those using F-83. 226 pgs

LIBRARY OF FORTH ROUTINES AND UTILITIES,
James D. Terry 237 - 823 24

Comprchensive collection of professional quality computer code
for Forth; offers routines that can be put to use in almost any Forth
application, including expert systems and natural-language
interfaces. 374 pgs

Volume 1

OBJECT ORIENTED FORTH, Dick Pountain 242 -535 1#
Implementation of data structurcs. First book to make object
ofiented programming available to users of even very small home
computers. 118 pgs

SEEING FORTH, Jack Woehr 243 - 825 14#
"...Iwould like to share a few observations on Forth and computer
science. Thatis the purpose of this monograph. Itis offered in the
hope that it will broaden slightly the streams of Forth literature ..."
95 pgs

SCIENTIFIC FORTH, Julian V. Noble 250 - $50 2#
Scientific Forth extends the Forth kemel in the direction of
scientific problem solving. It illustrates advanced Forth
programming techniques with non-trivial applications:
computer algebra, roots of equations, differential cquations,
function minimization, functional representation of data (FFT,
polynomials), linear equations and matrices, numerical
integration/Monte Carlo methods, high-speed reai and complex
floating-point arithmetic. 300 pgs (Includes disk with programs
and several utilities), IBM

STACK COMPUTERS, THE NEW WAVE
Philip J. Koopman, Jr. (hardcover only)
Presents an altemative to Complex Instruction Set Computers
(CISC) and Reduced Instruction Set Computers (RISC) by
showing the strengths and weaknesses of stack machines (hard-
cover only).

244 -S62 2#

STARTING FORTH (2nd ed.), Leo Brodie 245 - 529 24
In this edition of Starting Forth—the most popular and complete
introduction to Forth—syntax has been expanded to include the
Forth-83 Standard. 346 pgs

WRITE YOUR OWN PROGRAMMING LANGUAGE USING C++,
Nomman Smith Lo . 270-815 1#
113’.3\’“* 1s about an application language. More specifically, it
is about how to write your own custom application language. The
book contains the tools necessary 1o begin the process and a
completesample language implementation. [Guess what language!]

Includes disk with complete source. 108 pgs

ACM - SIGFORTH

The ACM SIGForth Newsletter is published quarterly by the
Association of Computing Machinery, Inc. SIGForth’s focus is
on the development and refinement of concepts, methods, and
techniques needed by Forth professionals.

Spring 1989, Summer 1989, #3, #4 911 - 524 2#
F-PC, glossary utility, euroForth, SIGForth '89 Workshop
summary (real-time software engineering), Intel 80x8x.
Metacompiler in emForth, Forth exception handler, string case
statement for UF/Forth. 1802 simulator, tutorial on multiple
threaded vocabularies. Stack frames, duals: an allemative to
variables, PocketForth.

Volume 2 #1, #2, #3, #4 912 - 524 2#
ACM SIGForth Industry Survey, abstracts 1990 Rochester conf.,
RTX-2000. BNT Parser, abstracts 1990 Rochester conf., F-PC
Teach. Tethered Forth model, abstracts 1990 SIGForth conf.
Target-meta-cross-: an engineer’s viewpoint, single-instruction
compuler.

Volume 3, #1 Summer '91 913a - 86 1#
Co-routines and recursion for tree balancing, convenient number
handling.

Volume 3, #2 Fall '91 913b - $6 14
Postscript Issue, Whatis Postscript?, Forth in Postscript, Review:
PS-Tutor.

1989 SIGForth Workshop Proceedings 931 - 520 1#
Software engineering, multitasking, interrupt-driven systems,
object-oriented Forth, error recovery and control, virtual memory
support, signal processing. 127 pgs

1990-91 SIGForth Workshop Proceedings 932 - 320 1#

‘Teaching computer algebra, stack-based hardware, reconfig-
urable processors, real-time operating systems, embedded
control, markcting Forth, development systems, in-flight
monitoring, multi-processors, nevral nets, security control, user
interface, algonithms. /34 pgs

For faster service, fax your orders 510-535-1295

=

* - Starting o - Intermediate & % - Advanced

DISKS: Contributions from the Forth Community

The “Contributions from the Forth Community” disk library contains
author-submitted donations, mcral]?r including source, for a variety
of computers & disk formats. Each file is determined by the author as
public domain, shareware, or use with some restrictions. This library
does not contain “For Sale” applications. To submit your own contri-
butions, send them to the FIG gubﬁr:arims Cormmillee.

Prices: Each item below comes on one or more disks any disks = 1 #

FLOAT4th.BLK V1.4 Robert L. Smith C001 - 38
Software floating-point for fig-, poly-, 79-S1d., 83-Sid.
Forths. IEEE shon 32-bit, four standard functions, square
root and log.
*++ [BM, 190Kh, F&3

Games in Forth . C002 - 36
Misc. games, Go, TETRA, Life... Source.
« 1BM, 760Kb
A Forth Spreadsheet, Craig Lindley C003 - $6

This model spreadshceet first appeared in Forth Dimensions
VII, 1-2. Those issues contain docs & source.
* IBM, 100Kb

Automatic Structure Charts, Kim Iarris C004 - 58
Tools for analysis of large Forth programs, first presented at
FORML conference. Full source; does incl. in 1985 FORML
Proceedings.

% [BM, 114Kb

A Simple Inference Engine, Martin Tracy C005 - 38
ased on inf. engine in Winston & Hom’s book on LISP,
takes you from pattern variables to complete unification
algorithm, with running commentary on Forth philosophy &
style. Incl. source.
+x IBM, 162 Kb

The Math Box, Nathaniel Grossman C006 - %10
Routines by foremost math author in Forth. Extended double-
precision arithmetic, complete 32-bit fixed-point math, &
auto-ranging text. Incl. graphies. Utilities for rapid
olynomial evaluation, continued fractions & Monie Carlo
actorizalion. Incl. source & docs.
*»» IBM, 118 Kb

AstroForth & AstroOKO Demos, LR. Agumirsian C7 - 56
AstroForth is the 83-Std. Russian version of Forth. Incl.
window interface, full-screen editor, dynamic assembler &

a great demo. AstroOKO, an astronavigation system in
AstroForth, calculales sk{)position of several objects from
different earth positions. Demos only.

= IBM, Kb

Forth List Handler, Manin Trac C008 - 38
List primitives extend Fong to provide a flexible, high-
B environment for Al Incl. ELISA and Winston &
Hom's micro-LISI as examples. Incl. source & docs.
*% 1BM, 170 Kb

8051 Embedded Forth, William Payne C050 - 320
8051 ROMmable Forth operating system. 8086-10-8051
target compiler. Incl. source. Docs are in the book Embedded
Controller Forth for the 8051 Family.
%% IBM, 4.3 Mb

68HCI11 Collection C060 - 516
Collection of Forths, Tools and Floaung Point routines for
the 68HC11 controller.
*x% 1BM, 2.5 Mb

F83 V2.01, Mike Perry & Henry Laxen C100 - 820
The newest version, ported to a variety of machines. Editor,
assembler, decompiler, metacompiler. Source and shadow
screens. Manual available separately (items 217 & 235).

Base {or other I'83 applications.
« TBM, 83,490 Kb

* V3.56 & TCOM, Tom Zimmer C200 - $30
A full Forth system with pull-down menus, sequential files,
cditor, forward assembler, metacompiler, floating point.
Complete source and help files. Manual for V3.5 available
separately (items 350 & 351). Base for other F-PC
applications.

*

IBM, 83, 3.5Mb

F-PC TEACH V3.5, Lessons 07 Jack Brown . C201 - 38
Forth classroom on disk. First seven lessons on leaming
Forth, from Jack Brown of B.C. Institute of Technology.
+ IBM, F-PC, 790 Kb

VP-Planner Float for F-PC, V1.01 Jack Brown C202 - 38
Software fioating-pointengine behind the VP-Plannerspreadsheet.
80-bit (tecmporary-real) routines with transcendental functions,
number UJgu pOrt, VECLOTS 1o support numeric co-processor
overlay & user NAN checking.

+* IBM, F-PC, 350 Kb

F-PC Graphics V4.6, Mark Smiley C203 -510
The latest versions of new graphics routines, including CGA,
EGA, and VGA suppport, with numerous improvements over
earlier versions created or supported by Mark Smiley.

*% 1IBM DSDD, F-PC, &?Kb

PocketForth V6.1, Chris Heilman C300 -512
Smallest complete Forth forthe Mac. Accesstoall Mac funcuons,
Events, files, graphics, floating point, macros, create standalone
applications and DAs. Based ontig & Starting Forth. Incl. source
and manual.

* MAC, 640 Kb, System 7.01 Compatable.

Kevo V0.9b4, Antero Taivalsaari C360-510
Complete Forth-like object Forth for the Mac. Object-Prototype
access toall Mac functions, files, gr]azphj cs, floating point, macros,
create standalone applications. Kernel source not included,
exiensive demo files, manual.

*x*x MAC, 650 Kb, System 7.01 Compatable.

Yerkes Forth V3.6 €350 -520
Complete object-oricnted Forth for the Mac. Object access to all
Mac functions, files, graphics, floating point, macros, create
standalone apphications. Incl. source, tutonal, assembler & manual.
**x MAC, 2.4Mb, System 7.01 Compatable.

Pygm}{ V1.4, Frank Sergeant C500 - 820
lean, fast Forth with full source code. Incl. full-screen editor,
assembler and metacompiler. Up to 15 files open at a time.

** [BM, 320 Kb

KForth GuF Kelly) . . C600 - 520
A full Forth system with windows, mouse, drawing and modem
packages. Incl. source & docs.

=+ IBM, 83,2.5Mb

Mops V2.2, Michacl Hore C710- 5320
Close cousinto Yerkes and Neon. Very fast, compiles subroutine-
threaded & native code. Object oriented. Uses F-P co-processor
if present. Full access to Mactoolbox & system. Supports System
7 Fc.g., mplcﬁvems), Incl. assembler, docs & source.

MAC, 3 Mb, System 7.01 Compatable

BBL & Abundance, Roedy Green C800 - $30
BRBL public-domain, 32-bit Forth with extensive support of DOS,
meticulously optimized for execution speed. Abundance is a
gublic—damain database language written in BBL. Incl. source &

ocs.
+%+ IBM HD, 13.8 Mb, hard disk required

* ok

New Version Replacement Policy

Return the old version with the FIG
labels and get a new version
replacement for 1/2 the current
version price.

MISCELLANEOQUS
T-SHIRT “May the Forth Be With You” 601 -812 1#
%i[ﬁccif size: Small, Medium, Large, Extra-Large on orderform)
ite design on a dark blue shin.
POSTER (Oct., 1980 BYTE cover)

FORTH-83 HANDY REFERENCE CARD

602- 354t 10

683 - free

FORTH-83 STANDARD 305-%15 1#
Authoritative description of Forth-83 Standard. For reference, not
instruction. &3 pgs

BIBLIOGRAPHY OF FORTH REFERENCES 340 -518 2#
(3rd ed., January 1987)
Over 1900 references 1o Forth articles throughout computer
literature. [04dpgs

~ For faster service, fax your orders 510-535-1295

THEY'RE BACK

JFAR BACK ISSUES

Yolume 2, #4 JFAR (1984)
Extended Addressing: Bionary Search, VAX & 79 Standard,
Token Threaded Forth, 32 Bit Machine, Implementing Local
Words in Forth

Volume 4, #1 JFAR (1986)
Expert Systems in Fonth: Natural Language Parsing, Micro-
Computer Based Medical Diagnosis Sysiem, FORTES
Polysomnographer, FORPS

705 - 315

710 - 815

MORE ON FORTH ENGINES

Volume 10 January 1989 .
RTX reprints from 1088 Rochester Forth Conference, object-
oriented emForth, lesser Forth engines. 87 pgs

Volume 11 July 1989 L
RTX supplement to Footsteps in an Emgry Valley, SC32, 32-bit
Forth engine, RTX interrupts utility. 93 pgs

Volume 12 April 1990 |
ShBoo %I’u architecture and instructions, Neural Computing
Module NCM3232, pigForth, binary radix sort on 80286, 68010,

and RTX2000. 87 pgs

810 - 815 14

8§11 -815 1#

812-515 1#

Volume 4, #3 JFAR (1987) 712-815 14
REPTL, Stand-Alone Forth System, Compiling Forth, Julian Day Volume 13 October 1990 813 -S15 1#
Numbers, Abstracts 86 FORML Conference. PALs of the RTX2000 Mini-BEE, EBForth, AZForth, R1X-
2101, 8086 cForth, 8051 eForth. 107 pgs
Volume 4, #4 JFAR (1987) T13-515 1#
; f Volume 14 814 -315 1#
Embedding of Languages in Forth, Forth-based Prolog for Real- £
- RTX Pocket-Scope, eForth for muP20, ShBoom, eForth for CP/
Tiie Expeee Symers SEAD: M & Z80, XMODEM for eForth. 116 pgs
Volume 5, #2 JFAR (1988) - T15-815 1# Volume 15 815-515 14
Mathematics, ANS Standard, Exception Handling, Logarithmic Moore: New CAD System for Chip Design, A portrait of the P20;
Number Representation, 32 bit RTX Chip Prototype Rible: QS1 Forth Processor, QS2, RISCing it all; P20 eForth
Software Simulator/Debugger. 94 pgs
Volume 5, #3 JFAR (1989) 716-$15 14
From Russia with Forth, Knowledge Engineering, Symbolic Volume 16 816 - 515 14
Stack Addressing. OK-CAD System, MuP20, eForth System Words, 386 cForth,
80386 Protected Mode Operation, FRP 1600 - 16Bit Real Time
Volume 5, #4 JFAR (1989) T17- 815 1# Processor. 104 pgs
Forth Processors, Parallel Forth, Arithmetic-Stack Processor,
Architecture of the SC32 Forth Engine, Error-F'ree Statistics in DR. DOBB’S JOURNAL
Forth Annual Forth issue, includes code for various Forth applications.
Sept. 1982 422-85 1#
Volume 6, #1 JFAR (1990) 718 -S15 1# Sept. 1983 423 -85 1#
Harris RTX2000, Scientific Programming Sept. 1984 424 -85 14#
P.O.BOX 2154 OAKLAND, CALIFORNIA 94621 510-89-FORTH 510-535-1295 (FAX)
Name - Phone — T
Company® —— . .. - ... Fax U.S. Domestic Postage Rates —3i 5, — = I:;H
Street —— eMail International Postage Rates I—i_‘gfu‘h_u . ﬁmﬁ:ﬂ'*—
Cil.y . Canada, Mexico S100 | $200 _ %130 |
Swie/Prov. ——— Zp o Y YT
Country _— Other | ional $1.00 $8.00 | 3600
Jem ¥ Title Quy. Unit Price Total #
[J CHECK ENCLOSED (Payable to: FIG) o __ SubTouwl _
[VISA [] MasterCard 10% Member Discount, Member # () | ¥s times rate
Card Number **Sales Tax on Sub-Total (CA only)
Signature Postage: Rate x s
_ *Membership m the Forth Interest Grou
Expiration Date — MEMBERSHIP =3 [JNew [JRenewal $40/46/

*MEMBERSHIP IN THE FORTH INTEREST GROUP
The Forth Interest Group (FIG) is a world-wide, non-profit, member-supported organization with over 1,500 members and 40 chapters. Your membershipincludes asubscription tothebi-monthly magazine
Forth Dimensions. FIG also offers its members an on-line data base, a large selection of Forth literature and other services. Cost is $40 per year for U.S.A. & Canada surface; $46 Canada air mail;
all other countries $52 per year. This fee includes $36/42/48 for Forth Dimensions. No sales tax, handling fee, or discount on membership.
When you join, your first issue will arrive in four to six weeks; subsequent issues will be mailed to you every other month as they are published—six issues in all. Your membership entitles you 1o a 10%

discount on publications and functins of FIG. Dues are not deductible as a charitable

ibution

for LS. federal income tax purposes, but may be deductible as a business expense.

MAIL ORDERS:

ot S PAYMENT MUST ACCOMPANY ALL ORDERS

P.O. Box 2154

Oakland, CA 94621 PRICES: All orders must be prepaid. Prices are POSTAGE:

PHONE ORDERS: subject 1o change without nolice. Credit card orders Al orders calculate postage as

will ba sant and billed at current prices. Checks must
be in U.S. dollars, drawn on a U.S. bank. A $10
charge will be added for returned checks.

510-89-FORTH Credit card
ordars, cuslomer service.
Hours: Mon-Fri, 9-5p.m.

number of #s times selected
postage rate. Special handling
available on request.

SHIPPING TIME:

Books in stock are shipped
within seven days of receipt of
the order. Please allow 4-6
weeks for out-of-stock books
(deliveries in most cases will be
much soonar).

7.5%: Sonoma;

** CALIFORNIA SALES TAX BY COUNTY:
7.75%: Fresno, Imperial,
Inyo. Madera., Orange, Riverside, Sacra-
mento, San Benito, Santa Barbara, San Ber-
nardino, San Diego, and San Joaquin;
8.25%: Alameda, Contra Costa, Los Angeles
San Mateo, Santa Clara, and Santa Cruz;
8.5%: San Francisco; 7.25%: othar counties.

For faster service, fax your orders 510-535-1295

XIV-6

the address into memory. This is accomplished by the phrase

SMUDGE -FIND
IF DROP , ELSE 0O ERROR THEN
SMUDGE

(It is possible to dispense with the necessity for naming
the namesake word by playing with the contents of the user
variable TN [>TN to neo- and mezoforthwrights]. The imple-
mentation will be left as an exercise for the student. It was
not implemented to save space in the dictionary, not because
! the author was lazy.)

Another general caveat is that the optimizer must not
optimize across branch terminations. While it might be
. acceptable to optimize the phrase FOO F@, the phrase FOO
| THEN F@ is not readily optimized. As THEN is an immediate
word and leaves nothing in the dictionary where the
optimizer can detect its passage, we must redefine it to leave
a flag. This is done on screen 585. This is why the run-time
portions of our optimizers examine the variable OPT imme-
diately after they examine STATE.

Two defining words have been produced. UNARY is used
to oplimize words which are unary operators. That is, they
take one item from the stack and operale on it, leaving one
or zero items on the stack. BINARY is for words which take
two items on the stack, and leave one. For examples of
daughter words, see screen 589,

The Implementation
With the basic concepts laid down, we can expand our
| optimizer in three ways. We can add new defining words, for
new classes of optimizers. We can add new daughter words
to the existing defining words. We can add new capabilities
and, if needed, new parameters to the existing defining
words and their daughter words.

The last method of extension is how the optimizer words
were produced in the first place. The programmer started out
with a default action (compile the namesake, as usual), and
one test and one action for a desired condition. As new
phrases were considered for optimization, the nesting of IF
.. ELSE ... THEN clauses continued apace.

This methodology allowed for incremental testing of the
words under development. Screen 590 shows a test for the
binary operator AND. The test is done by compiling two

words. One is a code definition, consisting of the desired
' output for the compiler. The other is a test high-level word
which exercises the optimizer, Screens 591 and 592, not
shown, contain the target defining word and daughter
words.

The last two lines of the screen compare the two words
and disassemble\decompile them both automatically as part
of the compilation process. These two tests almost instantly
indicate problem areas with words under development.
Automated testing of compiler output in this mannerallowed
very fast, reliable development of the optimizers, and was
essential to the success of the project.

Once the basics of the optimizing code have been worked
out, it remains only to incrementally add functions to analyze the
code and handle the phrases where optimization is desired.

Forth Dimensions

Selecting Phrases for Optimization

If you have your own target compiler and nucleus source,
the best way to optimize all possible applications is to
improve the nucleus. Anything that improves BLOCK will
improve words that call BLOCK. So as FastForth was devel-
oped, optimizers were added to the target compiler as well
as to the FastForth environment. The choice of phrases to
optimize reflects an effort to improve the nucleus first, with
improvements elsewhere secondary.

As noted, the phrase <USER VARIABLE> F@ showsupall
over the nucleus. Similarly, <USER VARIABLE> F' !, <USER
VARIABLE> OFF and <USER VARTIABLE> 1+!. The optimi-
zations of F@ and F ! were primary, with the others second-
ary. These are the phrases to be optimized by the optimizer
defining word UNARY, on screens 586 and 587.

These words also operate with variables and often with
constants. Both variables and constants compile to in-line
literals, either in the form of <value> @#L S -~ [MOV, orin
the form of <value> # DR7 MOVQ, DR7 § —[MOV, for
literals in the range of (hex) -80 to 7f. However, since most
variables and constants used as variables will be long values,
itis essential to detect long literals, with short ones a possible
addition for the student.

The long literal form compiles into:

<value> @#L S -[MOV,
After manipulation by F@ the code should look like this:

<value> @#L AR0O MOV, AR0O [S -[MOV,

After manipulation by F'! the code should look like this:

<value> @#L AR0 MOV, S [+ ARO [MOV,

This means that the code in UNARY will twiddle the
literal’s opcode to change its destination, and lay down a new
instruction. Since the instruction will vary with the word
being compiled, this must be provided as an operand to each
optimizer asitis compiled. This instance is handled on screen
587, lines three and four.

With nuclear optimization in mind, the phrase <USER
VARIABLE> F@ F@ is handled as well. This phrase shows up
in places that affect compiler speed, such as in ~=FIND or
LATEST. Any applications which use double indirection will
bencfit.

The next defining word for optimizers is the family of
binary words. These are words which, prior to optimization,
take two operands from the stack and return one. These are
+, =, ele, as indicated on screen 589. In code they take the
form:

S [+ DR7 MOV, DR7 § [<opcode>, NEXT

If we can detect literals and user variables, and sce o it
that their contents are left in DR7, we can then compile the
appropriate opcode to complete the operation, saving a push

January 1993 February

to and a pop from the data stack.
For example, adding a byte literal to the top of the stack
})CC(.JIII(‘.S:

<value> # DR7 MOVQ, DR7 S [ADD,

Similarly, adding the contents of a user variable to the top
of the stack goes from:
<user variable> U &[DR0O MOV,
S [+ DR7 MOV, DR7 S [ADD,

DRO S —-[MOV,

Lo:

<user variable> U &[S [ADD,

This optimization gets rid of three instructions and
produces an optimization of fewer instructions than original
source words. Not bad for not being an example of Moorish
architecture.

Toreturn to the original example, an updated table taking
into account the optimizer is as follows:

Comparison: Traditional Compilers
A conceptually simple but very powerful Forth code
optimizer can be had in five screens, less than two pages.
One has problems imagining a traditional compiler with

oplimization occupying so small a source code space. Also, |

one has a hard time imagining the likes of AT&T or Microsoft

| releasing source for their compilers. And you don’t have to
| call a 900 number to get support.

Furthermore, the optimizer presented here is a complete

| unit, and can be removed from the FastForth environment

without any changes except, of course, in the size and speed
of the generated code. Tt is dependent only upon the nature
of the target processor.

Additional phrases may be selected for optimization by
the user, who need only add them to the compiler in the
traditional Forth manner. Eventually, a diminishing return of
better speed and code size must be offset against develop-
ment time and costs. Unlike the traditional compiler, this

tradeoff may be made by the |

end user, the application pro-

Pfi;a}essivé_abtinlii;tion imbi’d-\i_es the Elxé'n"lple [

ltem JSR/BSR w/ Optimizer
code field 0 bytes
SCR Part of a four-byte instruction
laid down in line.
F@ The rest of the four-byte instruction.
LIST Two, four or six bytes of BRA or JMP.

exit code 0 bvies
Total 10 bytes, maximum

Total control
with LM/ FORTH

For Programming Professionals:
an expanding family of compatible, high-
performance, compilers for microcomputers

For Development:

Interactive Forth-83 Interpreter/Compilers

for MS-DOS, OS/2, and the 80386

* 16-bit and 32-bit implementations

* Full screen editor and assembler

* Uses standard operating system files

|| * 500 page manual written in plain English

* Support for graphics, floating point, native code generation

| | For Applications: Forth-83 Metacompiler

| | * Unique table-driven multi-pass Forth compiler

| | * Compiles compact ROMable or disk-based applications

| | * Excellent error handling

* Produces headerless code, compiles from intermediate states,
and performs conditional compilation

= Cross-compiles to 8080, Z-80, 8088, 68000, 6502, 8051, 8096,
1802, 6303, 6809, 68HC11,34010, V25, RTX-2000

* No license fee or royalty for compiled applications

|

)

|

i & [aboratory Microsystems Incorporated

‘ Post Office Box 10430, Marina del Rey, CA 90295
Phone Credit Card Orders to: (310) 306-7412

‘ FAX: (310) 301-076 1

January 1993 February

1 grammer, if he wishes. In fine

- : Il an application programmer

| having the ability to modify his compiler is a heresy to the
| ayatollahs of traditional computing.

Conclusions
The FastForth code optimizer produces fast, efficient

Indirect Threaded Forth tradition, the application

Four bytes programmer may modify the
compiler to suit his applica- |

Four bytes tion, rather than the usual
Four bytes methodology of modifying the
Four bytes | application to fit the compiler’s
Four bytes | procrustean bed.
20 byles Indeed, the very notion of

code. It is easy to understand, and can be modified readily |
by the end user. It is very powerful and conceptually very |

simple. Indeed, anyone reasonably familiar with the instrue- |
tion set of his target processor and the inner workings of his |

Forth can write one. Like Forth itself, it makes an abattoir of
the sacred cows of computing.

Availability
In the best Forth tradition, the code is released to the
public domain. Enjoy it in good health.
FastForth for the Atari ST, including the above code, may

be had in alpha release from the author, Charles Curley, P.O. |

Box 2071, Gillelite, Wyoming 82717-2071. Please consult the
author for the current state of documentation, etc.

| Charles Curley is a long-time Forth nuclear guru who lives in Wyoming. When not |
| working on computers he leaches firearms safety and personal self defense. His

forthcoming book Pofite Society covers lederal and stale firearms legislation in
layman's terms.

Forth Dimensions

Optimizing Forth |
Scr # 585
0 (optimizers for : defs { 22 3 92 €RE 11305)
1 BASE F@ HEX
2 0 VARIABLE OQPT (not particularly re-entrant!)
3
4 : THEN HERE OPT F'! [COMPILE] THEN ; IMMEDIATE
5
6 : BEGIN HERE OPT F! [COMPILE] BEGIN ; IMMEDIATE
)
8 : OPGET (addr ct --- | get operand ct bytes from addr)
9 + We ;
10
11
12 -=>
13
14
15
Scr # 586
0 (optimizers: unary (15 4 92 CRC 8:37)
1l : UNARY CREATE SMUDGE -FIND IF DROP , ELSE (O ERROR THEN
2 SMUDGE W, W, W, IMMEDIATE
3 DOES> STATE F@ (only if compiling...)
4 IF HERE OPT F@ - (not following a begin)
5 IF HERE 6 - W@ 273C = (following a literal?)
6 IF 4 OPGET HERE 6 - W! (yyy ** @#1 xxx,)
7 ELSE HERE 2- W@ 2708 = (ar0 s =[mov, eg user)
8 IF -2 ALLOT HERE 4- W@ 41EE = (user variable?)
9 IF 6 OPGET HERE 4- W! (yyy u ** g[xxx,)
10 ELSE 8 OPGET W, THEN [(yyy ar0 [xxx,)
11, ——=
12
13
14
15
Scr # 587
0 (optimizers: unary {21 4 92 CRC 8:15)
11 ELSE HERE 4- W@ 272E = (user f@ optimize)
2 IF 206E HERE 4- W! 8 OPGET W,
3 ELSE HERE 6 - W@ 2739 = (literal f@ optimize)
4 IF 2079 HERE 6 - W! 8 OPGET W,
5 ELSE F@ <COMP> THEN THEN THEN THEN
6 ELSE F@ <COMP> THEN (following br resolution)
7 ELSE @EXECUTE THEN ; (not compiling)
8
9
10 : BINARY CREATE SMUDGE -FIND IF DROP , ELSE (0 ERROR THEN
11 SMUDGE W, W, IMMEDIATE
12 DOES> STATE F@ [(only if compiling...)
13 ——>
14
15
fastForth on Atari ST (c) 1985-92 by Charles Curley
Tuesday 6/10/92 11:20:08

Forth Dimensions 25

(Code continues on next page.)

January 1993 February

0 (binary defining word

1] IF HERE OPT F@ -

2 IF HERE 4- C@ 70 =

3 IF HERE 4- E TOGGLE

4 -2 ALLOT 4 OPGET W,

5 ELSE HERE 6 - W@ 273C =
6 IF 6 OPGET HERE 6 -
7 ELSE HERE 4- W@ 272E
8

Scr # 588
(21 4 92 CRC 8:15)
not following a begin)
byte literal?)
xx # dr7 moveq,
dr7 s [=xxx,
large literal?
vy #1 s [=x=xx,
user f@ 27

W!

e

)
)
)
)
)
)
)
)

IF HERE 4- 9 TOGGLE 4 OPGET W, (ofuser s [add
9 ELSE HERE 6 - WR 2739 = { literal f@ 27
10 IF HERE 6 - 9 TOGGLE 4 OPGET W, (lit dr7 mov,
11 ELSE F@ <COMP> THEN THEN THEN THEN
12 ELSE F@ <COMP> THEN (following br resolution)
13 ELSE @EXECUTE THEN ; (not compiling)
14 -->
15
Scr # 589
0 (daughter words (20 4 92 CRC 13:22) !
1 (opget 8 6 4) [
2 5290 52AE 52B9 UNARY 1+! 1+!
3 4290 42AE 42BY UNARY OFF OFF
4 2098 2D5B 23DB UNARY F! F!
5 2710 272E 2739 UNARY F@ F@
6
7 l.w. lit byte lit) [
8 693 DF93 BINARY + +
9 493 9F93 BINARY - -
10 93 8F93 BINARY OR OR
11 293 CF93 BINARY AND AND __
12 A93 BF93 BINARY XOR XOR i
13 BASE F!
14
15
Scr # 590
0 \ test area for macro mods (21 4 92 CRC 7:08)
1 DEBUG FORTH DEFINITIONS FORGET TASK
2 TASK ; BASE F@ >R HEX
3 ?7LEN: [COMPILE] ' 2- W? ;
4 0 VARIABLE SNARK
5 CODE FOQO ofuser fld dr7 mov, dr7 s [and,
6 snark @#1 dr7 mov, dr7 s [and,
7 7f # dr7 movq, dr7 s [and, |
8 ffEf #1 s [and,
9 NEXT ;C '
10
11 1 2 +THRU
12 : BAR fld f@ and snark f@ and 7f and ffff and
13
14 R> BASE F! EDITCR FLUSH ?CR ?7LEN: FOO 7?LEN: BAR
15 ' FOO DUP 2- W@ ' BAR EDITOR -CITEXT . UN: BAR UN: FOO ;S8
fastForth on Atari ST (c) 1985-92 by Charles Curley 5
Tuesday 6/10/92 11:20:14 5

January 1993 February 26 Forth Dimensions

Math—

Prof. Tim Hendtlass
Hawthorn, Australia

The title of this article is a deliberate double entendre.
Whatever one’s feelings about mathematics in general,
arithmetic (at least) is going to be needed sooner or later in

| your programs. One of the most striking things about Forth,
| quickly noticed by people who are used to another language,

is that 16-bit integers are the only types of numbers appar-
ently directly supported in basic Forth. A closer inspection
shows that this is not strictly true, but certainly there are no
floating-point numbers defined in the core words of Forth.

The reason is, of course, that you can add anything you might |
| want or need to Forth, so why saddle people with things they

{ may not need?If floating point is really required, for example,

you just add it, to whatever accuracy you need. The
collection of routines in this article are my compilation of
math words with varying precision, speed, and portability. 1
did not write all of them and have gratefully acknowledged
the original authors in the text.

Before rushing in to add new math words with cxtra
capabilities, it is wise to see if these capabilities are really
needed. In some situations certainly, but not in others. Since,
provided the same algorithms are used, floating-point math
executes more slowly than fixed-point math, and fixed-point
math executes more slowly than double precision, and
double precision executes more slowly than single-precision
math, it makes sense from the point of view of speed not to
use any more capability than you need. Also, the code size
in bytes will vary depending on the precision of the math you
use, and whether it is written in high-level Forth or mainly in

‘Who Needs It?

you allocate for the fixed decimal places, the resolution and
the range vary inversely (e.g., the greater the resolution, the
smaller the range). Fixed-point math is very closely related
to integer math, except that all numbers are stored internally
after having been multiplied by an integer scaling factor.
They are divided by this scaling factor before being output.
This allows a number of decimal places to be provided while
still treating the numbers as integers. Since you still represent

| numbers in (say) 32 bits, the actual range would be that for

32-bit integers divided by the scaling factor. See Table Onc
for signed numbers, for which the range is the difference
between the largest and smallest numbers that can be

| represented. (For unsigned integers the range would be the
| same, but from zero to one more than twice the value shown
| under “largest positive number.”)

assembly language. As well as the code, there are tables |
| showing the relative speeds and memory requirements of the |

words described; this is to allow the reader to pick the one
that best meets the requirements of the task at hand.

First let us define a couple of terms concerning the
representation of numbers: the resolution and the range. ‘The
resolution is the minimum possible change that can be
represented in a number format. For integers it is one. The
range is the difference between the largest and smallest (or,
in the case of signed numbers, the most negative) numbers

| that can be expressed. Integers’ resolution is always one, and

| the range goes up as the numbcer of bits in the integer increases.

For fixed-point numbers, the number is expressed in a

single quantity. Depending on how many bits of this quantity

Forth Dimensions

27

Floating-point numbers are stored in two parts, one
expressing an integer number and the other the power of ten
(usually) to which this integer should be raised to give the
final number. If this power (the exponent) is positive, the
number represented can be very large and the resolution
small (ten to the power of the exponent). If this power is
negative, the number represented can be very small and the
resolution high. Using floating-point representation, this
tradcoff between range and resolution can alter dynamically
without any explicit attention by the programmer as the
magnitude of the numbers being used changes.

Single-precision Integer Arithmetic

This is fully provided in F-PC, as in all Forths. The largest
positive signed number that can be represented in 16 bits is
+32767 and the largest negative signed number is -32768. The
smallest number is zero. Of course, since we are dealing with
integers, no decimal points are allowed. The four basic
functions (add, subtract, multiply, and divide) are provided,
plus modulus (MOD), absolute (ABS), and special routines to
multiply or divide by two (2* and 2 /). In binary, multiplying
and dividing by two are the same as just shifting all bits in the
number left and right, respectively, by one place. In the case
of a left shilt, the bit moved into the least significant place is
zero; in the case of a right shift, the bit moved in as the most
significant bit must be the same as the previous most
significant bit, in order to preserve the sign of the number.

January 1993 February

Figure One. 32-bit integer arithmetic. I

Multiply two double-precision numbers to give a double-precision product.
Unsigned with overflow check,
: UD*C (udl ud2 -- ud3) \ Unsigned double * unsigned double = unsigned double
dup>r rot dup>r >r over >r put a ¢ ¢ b on return stack
>r swap dup>r put a d onto return stack
um* b*d
0 2r> um* d+ 2r> um* d+ offset 16 bits, add on a*dtb*c
0 2r> um* d+ offset another 16 bits, add on a*c
or 0<> abort" D* overflow" check for overflow

e

iJnsigned without overflow check.

: UD* (udl ud2 -- wud3) \ Unsigned double * unsigned double = unsigned double
rot >r over >r >r over >r \ put ¢ b a d on return stack
um* \ b*d = part of 32 bit answer
2r> * 2r> * + + \ a*dt+b*c= addition to top 16 bits

éigned with or without overflow check (replace ud* by ud*c to check for overflow)

: D* (dl d2 -- d3) \ Signed double * signed double = signed double
dup>r dabs 2swap dup>r dabs \ #s +4ve, keep info to work out final sign
ud* \ get 32-bit answer (ud*c for overflow check)
2r> xor ?dnegate \ work out and apply final sign

;

Division (Ug* 216 +Uy1)/(Vo*216+V;)=(A9* 216+ A1)
\ Use fast algorithm, remainder requires an additional
\ 32-bit multiplication and subtraction.

: T* (ud un -- ut) \ Unsigned double * unsigned single = unsigned triple
dup rot um* 2>r \ high-part of answer to return stack
um* 0 2r> d+ \ get low-part ans offset 16 bits add on high-part
: T/ (ut un -- ud) \ Unsigned triple / unsigned single = unsigned double
>r r@ um/mod swap \ divisor to r, divide top 16 bits, rem to top
rot 0 r@ um/mod swap \ combine with next 16, divide these by divisor
rot r> um/mod swap drop \ repeat for last 16 bits, lose final remainder '
0 2swap swap d+ \ combine parts of answer to for final answer

: U/ (ud unl un2 -- ud2)
>r t¥ > tf

-

ud * unl / un2, triple intermediate product.

: Un/ (Uy Ug V1Vg -- A1 Ag) \ Unsigned 32-bit by 32-bit divide. No remainder
dup 0= \ top 16 bits of divisor = 07?
if swap t/ \ simple case, make it a triple, do the division E
else \ more involved case |
dup 65536. rot 1+ um/mod >r \ work out scaling factor D,save on return stack
drop r@ t* drop 2>r \ scale denominator, move to return stack
dup 0 2r@ u*/ d- \ calculate (U-U0*W1/WO0)
2r> r> -rot nip u*/ \ multiply by (D/W0)
nip 0 \ /2”16, make answer double |
then i
: D/MOD (dnl dn2 -- drem dquot) Divide two signed double numbers. l

2 pick over xor >r
dabs 2swap dabs 2swap
4dup ud/ 2dup 2>r

ud* d-

2r> r> ?dnegate

work out sign of answer

convert numbers to positive

do the division, save copy of quotient
calculate the remainder

retrieve answer, apply final sign

T

D/ (dnl dn2 -- dquot) Divide two signed doubles, no remainder. ’
2 pick over xzor >r work out sign of answer

dabs 2swap dabs 2swap convert numbers to positive

ud/ do the division

r> 2dnegate retrieve answer, apply final sign

-

’

January 1993 February 28 Forth Dimensions

Table One.

Commmmmmmmm Range -----s-sesmsammana> Resolution
Word Decimal Scaling Largest positive Largest negative Smallest

. size places factor number number increment ;
Integer 16 0 na 32767 -32768 1 i
Integer 32 0 na 2,147,483, 647 -2,147,483, 648 1
Fixed point 32 1 10 214,748,364.7 -214,748,364.8 .1
Fixed point 32 2 100 21,474,836.47 -2,147,483,648 .01
Fixed point 32 3 1000 2,147,483.647 -2,147,483.648 .001
Fixed point 32 4 10000 214,748.3467 -214,748.3468 .0001

Numbers can be entered in line by just typing them, and are
printed with . (and its formatted cousins . R etc).

Also provided are the words UM+, UM*, and UM/MOD, the
building blocks on which all higher-precision arithmetic is
built. The first two take two unsigned 16-bit numbers and add
or multiply them to give an unsigned 32-bit result. UM/MOD
divides an unsigned 32-bit number by an unsigned 16-bit
number to give a 16-bit result and a 16-bit remainder. One
thing Forth does not have is a carry bit—if the result of a
mathematical operation is too large to fit into the available
space, the topmost bit(s) will be lost. Since this can legiti-
mately happen when performing multi-precision arithmetic,
we need to find a way to allow for these “lost” bits—in short,
to synthesize a carry bit. This is not hard, but adds a litle to

use the internal carry bit of the processor, but will no longer
be portable to other processors.

Double-precision Integer Arithmetic
A limited double-precision capability is built into all
Forths with double-number extensions, and F-PC is no

pressed in 32 bits, rather than the 16 bits of a single-precision
number. Since these are still integers, double-precision
numbers can represent much larger numbers, from
+2,147,483,647 10 -2,147,483,648, in fact. When do you nced
them? When you can’t express what you want with single
precision, naturally. For example, suppose you wanled to
store the number of cents you made per year; in all
probability, 16 bits would not be enough, as it would only
allow you (o earn up to about $320 per year. If you think
about that example, it may occur Lo you that, since cents are
the fractional parts of a dollar, you have a sort of two-decimal-
place, fixed-point arithmetic here. As long as you add or
subtract numbers, the fixed implied decimal point will stay
in place; but if you multiply or divide, the implied decimal
point gets messed up. Below we will see how to correct that,
but first let us consider what double-precision integer
facilities are provided.

Of the four basic functions, only addition (D+) and
subtraction (D-) are provided directly; in a moment we will
generate D* and D/ (among others). To print a double
number, there is D. (and its formatted cousin D.R). A
double-precision absolute value word is provided (DABS).
There are also limited double-precision comparisons: D=, D>,
D<, and DO=, To input a double number, either from the
keyboard or in line in a definition, all you need to do is put

Forth Dimensions

the time taken to do things. Routines written in assembler can |

exception. A double-precision number is one that is ex- |

a decimal point in the number somewhere. This use of a
decimal point to indicate a double number can lead to
misunderstanding. Tt is intended for when you are using an
implied fixed decimal place, but it often misleads people into
believing that the decimal part will be correctly handled. It
won't, unless you specifically use words that do so. If you
were to enter the number 31415., the number in the two
positions on the stack would be no different than if you had
entered 3.1415. However, the number of digits after the
decimal place is recorded in the system variable DPL,
especially for when you need this information. (As the same
variable is used for all number input, you had better collect
the value from DPL and use it, or put it somewhere safe
| before the next number arrives.) In the first case above, DPL
would contain zero; in the second case four.

The main words we need to add to flesh out our double-
precision integer capability are D* and D/. D* may produce
an answer that is too big to fit into 32 bits (just as * may
produce an answer too big to fit in 16 bits). It is possible Lo
provide a run-time check to detect this (just make sure that
| the top 32 bits of the answer are zero), but this takes time.
Ifyou are sure that overflow will not occur in a problem, there
is no need to calculate the top 32 bits of the answer. Code
to perform 32-bit by 32-bit multiplication, with and without
overflow check, is given below. In each case, we do
unsigned arithmetic (both numbers are assumed positive);
| for signed arithmetic, we work out the sign of the answer,
make both numbers positive, do the multiplication, and then
apply the correct answer sign.

The algorithm for 32-bit multiplication is built from the 16-
bit multiplication we already know how to do. Consider the
following,

@*216 + b) * (*216 + d) = (2*0)*232 + (he+ad)*216 + bed

(:1‘216 +b) is one 32-bit number and ((:"216 +d) is the other.
Note by expanding it we have reduced one 32-bit by 32-bit
multiply to four 16-bit by 16-bit multiplies, which we know
how to do.

If we want to perform an overflow check, we get the full
32-bit answer by doing four 16-bit multiplies, offsetting their
answers by the correct number of bits, and adding. The result
is a 64-bit (i.e., quad-precision) number. If the numbers were
both positive and the top 32 bits of the result are not zero,
the result was too big to fit into 32 bits.

If an overflow check is not needed, we proceed by noling
that a*c must equal zero (otherwise the result would not fit

29 January 1993 February

Figure Two. 32-bit fixed-point arithmetic. ! B

' Defining the fixed-point structure

VARIABLE FDPL \ holds number of implied decimal places
VARIABLE FSCL \ holds the scaling factor we are using
: FPLACES (-- n) fdpl @ ; \ return number of implied decimal places
: FSCALE (-- n) fscl @ ; \ return the scaling factor we are using
: FIXED { n —)
0 max 4 min fdpl ! \ clip to between 0 and 4 decimal places
1 fdpl @ 0 ?2do 10 * 1loop fscale !
\ store #places, calc. & store scaling factor
3 FIXED \ default to three decimal places
Outputting numbers
(F.) (fn -- adr len) \ prepare fixed-point # ready to output
tuck \ keep copy of top byte so we know sign
dabs \ convert to positive number
<# bl hold \ start conversion with a leading blank
fdpl @ 0 2do # 1loop \ convert places after decimal point
ascii hold \ put a decimal point in place
#s \ convert integer part
rot sign #> \ put sign in place, tidy stack
: F. (fn -=-) (f.) type ; \ print fixed-point number
F.R (fnp -—-) \ print right justified in a field of p places
>r (f.) r> over - 0 ?2do bl emit loop type
\ convert, pad with blanks as needed, then type
Inputting numbers
: D10* (dl -- 10*dl) \ multiply a 32-bit number by 10
d2* 2dup d2* d2* d+ \ 8*%d+2*d=10*d
: FIX (dn -- fn)
dpl @ 0< \ single or double number?
if s>d 0 dpl ! then \ if single, convert to double
dpl @ fplaces <> \ # decimal places entered not fplaces?
if dpl @ fplaces < \ too few places specified?
if fplaces dpl € ?2do dl0* loop \ yes, too few so scale the number up
else abort"™ Too many decimal places" \ no, too many - we can't handle this
then
then

Multiply two fixed-point numbers, producing a fixed-point result.

1 FIX* { £f1 £2 —-- f1*£f2)
rot 2dup xor >r
-rot dabs 2swap dabs
dup>r rot dup>r >r over >r
>r swap dup>r
um*
0 2r> um* d+ 2r> um* d+
2r> * +
fscale mu/mod

0<> abort" Fixed * QOverflow!"™ >r

fscale mu/mod rot drop
r> + r> 2dnegate

sign of answer to return stack
make both numbers positive

put a ¢ ¢ b on return stack
put a d onto return stack

b*d
offset
add on
divide
unless
divide

16 bits, add on a*d+b*c
low byte of a*c

ms32 bits, ans to R.
overflow quotient to R....
remainder and last 16 bits

B il al alal a

Divide two fixed-point numbers, producing a fixed-point result.

: FIX/ { £1 £2 —-
2 pick over xor >r
dabs Z2swap dabs Z2swap
2dup >r >r
d/mod fscale 0 d*
2swap fscale 0 d4d*
r> r> d/
d+
r> ?dnegate

’

fquot=£f1/£2)

Divide two fixed-point numbers
work out sign of answer and save
make all numbers positive

keep copy of divisor

scale integer part of answer
and then scale remainder

divide remainder by divisor

add fract part of ans

put on final sign

o

January 1993 February

30 Forth Dimensions

assemble final answer, negate if required |

into 32 bits), so there is no point in performing this multiply.
Similarly (bc+ad) must give an answer that is no bigger than
16 bits. So only b*d need be done to 32-bit precision, and
(be+ad) to 16-bit precision, and a*c need not be done at all.
Naturally, this makes this version faster than the one with
overfllow check.

The traditional method to perform a 32-bit by 32-bit
division is by a subtract-and-shift algorithm (the way we were
taught at school, except bit by bit rather than digit by digit),

can be used to provide division of any precision, not just 32
bits. The method shown here uses an algorithm designed
(only) for 31-bit unsigned numbers (that is, 32-bit signed
numbers without the sign). The advantage of this new
algorithm is speed: it is more than twice as fast. The algorithm
is described in Knuth’s book?, but I came across it first in an
article by Nathaniel Grossman in Forth Dimensions?. 1 have
recoded it completely for faster execution,

The algorithm works as follows. Let the dividend be
U0‘216+ U1 and the divisor be V0‘216+V1‘ Also let D be a
large integer not bigger than 65536/V(. For simplicity of
| calculation, let D= 65536/(V(-1) as suggested by Knuth.
Then our division sum is:

which gives both the result and the remainder. This method |

poiny; for simplicity, let us call this N. Any number that docs
not have this number of decimal digits must be multiplied by
the appropriate power of ten to get its implied decimal point

| toline up with all the others. Afier a normal double-precision

multiply, the 64-bit answer will be too large by 10N, so to get
the correct answer simply requires a division by 10N,
Dividing by 10 is not as easy as dividing by two, unfortu-
natcly, so this extra step adds a bit to the execution time.

After a division, the result will be too small by 10N. But
just doing the division and then multiplying by 10N would
lose precision. We must do the division, scale the remainder
up by 10N, do an integer division of this remainder, and add
this result to the previous result to get a final result to the
fullest precision possible.

The word to print a fixed-point number, F. (or F.R to
print the number right justified in a specified field), really

| prints two numbers: a number representing the integer part
' and a second representing the fractional part. These are

printed with a decimal point in between (and leading blanks,
as required, in the case of F.R).

In this simple package, the user has to specify with the
word FIX that the number just entered is to be a fixed
decimal point number. From the keyboard, this would be

done by entering 123 . 4 FIX,

Up*216+ U D x(Up*216+ U1) for example. To put the same
= where D * (vg*216+v1) = Wg*216+ w7 fixed-point numberin a colon

vo*216+vq Wo*216+ Wy definition, you would specify
itas [123.4FIX] DLITERAL.

and The code in Figure Two
implements these words in a

Uo*21l6+ Uy D Up * W1 straightforward way. By de-
—— = - % (Ug*216+ Uqp) - plus an error term. fault, the number of implied
| vo*216+vq Wp*65536 Wo decimal places is set to three;

wished to calculate the remainder. In practice, it is simpler to
find the remainder (if we need it) by taking away the product
of the answer and the divisor from the dividend. Also, we
musl check that V() is not zero; if it is, we must not use the
rclationship above, as we will be trying to divide by zero.

lask.
The code in Figure One implements the various versions
of D* and D/ in a straightforward way.

32-bit Fixed-point Arithmetic

The software to be described will allow you to choose the
number of decimal places you want and, therefore, the
scaling factor that will be used. The more decimal places you
want, the smaller the largest positive and negative numbers
you can handle, but the smaller the smallest number
increment you can represent.

To perform fixed-point math, only the number input,
number output, multiplication, and division words need to
| be changed. The addition, subtraction, and absolute value
| double-precision words still work. First you must decide how

many decimal places you want to the right of the decimal

Forth Dimensions

The error term is so small it may be ignored, unless we |

However, if V() is zero, our problem is reduced 1o dividing |
a 32-bit number by a 16-bit number, a very much simpler |

3

modify the line 3 FIXED to
alter the number of implied
decimal places to any integer between zero and four.

32-bit Floating-point Arithmetic

If you need a greater dynamic range of numbers than can
be readily accommodated in either 32-bit integer or 32-bit
fixed-point arithmetic, but can tolerate lesser basic resolution
than 32-bit integers provide, you might consider 32-bit
floating point. TTere, some of the 32 bits are used to hold an
exponent, and the remainder are for the basic number. The
code shown below allocates 16 bits each to the basic signed
number and the signed exponent. The dynamic range is
probably unreasonably high, and one might be tempted to
increase the number of bits allocated to the basic numberand
decrease the number allocated to the exponent. The pro-
gramming ease of staying with 16-bit quantities for each, and
the speed penalty that would be incurred by dealing with
smaller parts of the number, strongly dictate otherwise. The
accuracy is a little better than four significant digits, about the
accuracy of the traditional logarithm tables that school
children suffered before the advent of calculators. The code
shown below, which implements such a 32-bit floating-point
number package, was originally writlen by Martin Tracy and
has only been slightly modified for greater speed by this
author. Martin called it “Zen” math. There is also an add-on

January 1993 February

" Figure Three. 32-bit floating-point math. |

\

s ss mae

T

(dnn=f)

>r

tuck dabs

begin over 0< over 0<> or

while

0 10 um/mod >r 10 um/mod nip r>

repeat rot ?dnegate drop r>

32 bit floating-point addition and subtraction
F+

rot 2dup - dup 0<

1E

negate rot >r nip >r swap r>
else
swap >r nip
then
>r s>d r> dup 0
?2do >r dl0* r> 1-
over abs 6553 >
if leave then
loop
r> over + >r
if rot drop
else rot s>d d+
then r> trim

FNEGATE >r negate r> ;
F- fnegate f+ ;

32-bit floating-point multiplication
Fx (£1 £2 — £3)

rot + >r

2dup xor >r

abs swap abs um*

r> 2dnegate r> trim

32-bit floating-point division

F/

over 0= abort" d/0 error!"™
rot swap - >r

2dup xor -rot

abs dup 6553 min rot abs 0
begin 2dup d10* nip 3 pick <
while d10* r> 1- >r

repeat 2swap drop um/mod
nip 0 rot ?dnegate r> trim

32-bit floating-point input and output

| \ Trim a double-number mantissa and an exponent of ten to a floating number.
: TRIM

exponent to return stack

save copy of sign, make double positive

MSB low word set or top 16 bits no zero?

if so, too big to fit into 16 bits when signed

el

\ and increase exponent
\ apply sign and final exponent

work out difference in exponents

top number has the larger exponent
keep larger and diff, swap mantissas
top has a smaller or equal exponent
keep larger (on return stack) and diff

B il

convert larger to double, top 16 bits >r
multiply mantissa by 10, decrement exponent
would a *10 cause overflow of these 16 bits?
prematurely terminate loop if so

-

calculate final exponent

top 16 bits were *ve lose copy of bottom 16
top 16 bits -ve, convert to double and add on
get final exponent and trim

il il

\ add negative of the top value

calc exp of answer, save on return stack
save xor of mantissas too (sign of answer)
make mantissas positive and multiply
apply sign and then get exponent and trim

-

check for divide by zero

get exponent of answer, put on return stack
get sign of answer, tuck down on stack

make number +ve, ensure divisor < 6553
would divisor * 10 be less than dividend?
yes, divisor * 10, decrement answer exponent
now do the division

lose remainder, apply sign get exp and trim

T T

Numbers to be floated must include a decimal point when entered.
DPL contains the number of digits entered after the decimal point.

FLOAT (n -- f)
dpl @ negate trim

t F. (£ =)

>r dup abs 0

<# r@ 0 max 0 ?do ascii 0 hold loop

\ float the last entered number.

\ print a fleoating number in fixed format.

r@ 0<
i if r@ negate 0 max 0 ?do ¥ loop ascii . hold
. then r> drop #s rot sign
[#> type space
| i
January 1993 February 32 Forth Dimensions

Lo Zen which extends it to calculate transcendental functions
(with an accuracy of only about three figures) written by
Nathaniel Grossman. This is not reproduced here; it can be
found in Dr. Dobbs Toolbook of Forth Volume T'wo, in the file
of these words on GEnic’s Forth RoundTable, or directly from
this author. The code in Figure Three implements Zen math.

Forth or Assembly Code?

All the words above are written in Forth and are thus able
to be transported from machine to machine. There are two
reasons why words wrilten in assembly code will run faster.
(lhey will, of course, not be able to be ported to other
processors nearly as readily.) One reason is that, although
there is only a slight speed overhead involved in using the
Forth inner interpreter, this can accumulale to a small but
signiflicant sum over enough operations. ‘The second reason
is not as obvious, but accounts for more of the speed penalty
observed. Forth has no carry; if you add two 16-bit quantities
and the sum is too large to fit into 16 bits, the uppermost

i (17th) bit of the answer is lost. In arithmelic involving more
| than 16 bits, a carry is nceded in order to do the calcula- |
| tions—you have to synthesize one, which takes time. By |

| writing in machine code, you can make directuse of the carry

flag of the processor. The 48-bit floating-point package
described below is written mainly in assembly language, and
is significantly faster than any of the other packages given,
Not all of this speed increase comes from using assembler—
the algorithms used are highly optimized. If you want the
fastest speed arithmetic possible for a given processor, you
must use the most efficient algorithms and assembly lan-
guage. The result will be larger than the simple algorithms
described above, and totally non-portable. Of course, a
hardware math processor will always perform faster than any
software solution on the main processor.

48-bit Floating-point Arithmetic, SFLOAT
This is a full software assembly language floating-point
package for F-PC written (and copyrighted) by Robert L.
Smith. It is in the file SMITH.ZIP

the normal data stack, and any integers necded are obtained
from the normal data stack. Words are provided to manipu-
late the floating-point stack; the name used is almost always
the name of the same operation of the data stack, but with
a leading F. Thus, we have FDUP and FROT, for example.

SFLOAT not only provides a full sct of arithmetic and
ranscendental functions, it may also alter the outer inter-
preter of F-PC. The new outer interpreter allows you to enter
floating-point numbers in line. Any number with an embed-
ded decimal point or with an exponent will be converted to
a floating-point number. Any number without a decimal
point will be treated as a single-precision integer and placed
on the data stack. Any number with a decimal point atthe end
will be treated as a double-precision integer and put on the
data stack. You can control whether you wish to use the
normal or the new outer interpreter at any time, by using the
words FLOATING and NOFLOATING. A list of words pro-
vided by SFLOAT can be found by inspecting the help file
that comes with SFLOAT.

Relative Performance

Shown in Table Two arc the timings for addition,
subtraction, multiplication, and division for each of the 16-
and 32-bit math capabilities shown above. All limes are
relative, with a 16-bit signed add used as reference, and have
been rounded to two significant figures. The times were
calculated by timing a loop that performed the required
operation 65,536 times, and deducting the time for an emply

| loop. The actual times you get will depend on the processor

speed; on my trusty old 25 MHz '3865X, a 16-bit signed add
took about six microseconds. Also shown are timings for
SFLOAT. Just looking at the figures can be misleading, as you
may be unintentionally equating apples with oranges, so a
number of explanatory comments are given below.

The multiply and divide times in row one are small, as the
PC processor has hardware 16-bit integer multiply and
divide. The far larger times for multiplication and division in
row two show the penalty to be paid when you have to

which comes as part of the F-PC | Table Two.]|
package. The size of a floating-point
number is 48 bits (six bytes). The | Description ~Add Subtract Multiply Divide
largest difference to getused towhen | 16-bit signed integer, 1 1 1.1 1.3 ;
you load this software is the fact that | written in Forth, portable f
you now ave an.()l_hcr (.lhird) SlaCk'_ 32-bit unsigned integer, 2.4 3.8 8 13
Holding the floating-point numbers o
L written in Forth, portable

on the regular data stack would
make stack operations an absolute | 32-bit signed integer, 2.4 3.8 13.1 19
nightmare, so they are given a stack | written in Forth, portable
of their own. By default, the floating- o)
pointstack is 100 floating-pointnum- | 32-Dit fixed point, 2.4 3.8 36 93
bers deep, but you can change this | 3 décimal places,
just by altering one constant before | Written in Forth, portable
youload the software. Wordsexpect | 32 it 7en fioating point, 19 22 16 69
their floating-point parameters on |\ itten in Forth, portable

| the floating-point stack and leave
their floating-point results there. Any | 48-bit floating point, SFLOAT, 2.9 3.1 2.1 2.9
flags that result from operations on | written in assembler, non-portable
floating-point numbers are left on

Forth Dimensions

33

January 1993 February

synthesize operations on long numbers out of repeated use

of short-length operators. Doubling the word size increased | but complicates addition and subtraction. Since the actual

the execution time by a much higher factor. Row three shows

that just adding the extra code to keep track of the implied | multiplying the 16-bit numbers and adding their exponents.

decimal point for fixed-point

multiplication and division

has fddcd about another I Table Three. |

50% to the time; except for |

addition and subtraction, |

fixed-point arithmetic costs l

significant ime over integer | Math Package =

arithmetic. ! 32-bit integer, 4 functions
For curiosity, the multi- |

plication word in row three |

wasrewritten asin-line code. |
This saves the time used by
the inner interpreter (NEXT)
and allows intermediate re-
sults to be kept in registers
instead of being pushed at the end of one word and
immediately reloaded again at the start of the next. This new
version was faster, but only by aboutsix percent. ‘This modest
speed increase must be weighed against the benefits of
writing in Forth so that the word is portable to other Forth
systems, no matter what the processor. Also, Forth code is
much easier to understand and, therefore, to wrile and debug,
The 32-bit floating-point Zen package resulls may seem
strange. The clue to understanding them lies in the way that

SFLOAT, 4 functions only
SFLOAT full package

32-bit fixed point, 4 functions
| 32-bit floating point, 4 functions

FORTH and Classic
Computer Support

For that second view on FORTH appli-
cations, check out 7he Computer Journal. 1f you
run a classic computer (pre-pc-clone) and are
interested in finding support, then look no
further than 7CJ. We have hardware and soft-
ware projects, plus support for Kaypros, S100,
CP/M, 6809's, and embedded controliers.

Eight bit systems have been our mainstay
for TEN years and FORTH is spoken here. We
provide printed listings and projects that can run
on any system. We also feature Kaypro items
from Micro Cornucopia. All this for just $24 a
year! Get a FREE sample issue by calling:

(800) 424-8825

PO Box 535
Lincoln, CA 95648

January 1993 February

| exponents are equal before the required operation can be done.

34

a separate exponent simplifies multiplication and division,

number in Zen is a 16-bit quantity, multiplication is done by

Memory requirements in bytes

|

header code list I

_Space space space otal

86 42 288 416 | |

216 102 768 8961‘

106 50 1562 1713j!
671 2976 850 4488 |
2380 7253 5756 15389‘

For division, the multiplication is replaced by divisionand the |
addition by subtraction. As a result, these words are faster

than their fixed-point equivalents, which require a 32-bit ‘
multiplication and division of the result by a scaling factor. |
However, addition and subtraction of fixed-point numbers is |
trivial, while to do the same with f{loating-point numbers |
requires that the numbers be shifled (scaled) so that their

The times shown in row six seem little short of amazing,
considering that this is for 48-bit floating point, and show
what can be done if you abandon the requirement for
portability and write in highly optimized machine code. Note
again the (relative) inefficiency of addition and subtraction |
compared to multiplication and division. The routines used |
are anything but trivial tounderstand (see the file SFLOAT.TXT,
forexample, foran explanation of the divide algorithmused).
An assembly language routine using the same algorithm for
fixed point would be faster than even these floating-point
times.

Speed is only one criterion, another is the memory these
routines take up. Table Three shows the memory needed in
F-PC by each of the math packs. The smaller space quoted
for SFLOAT is with only the basic four mathematical func- |
tions loaded; the larger figure is for the full package, which
includes many more functions. If you have a math co- |
processor, there is an equivalent package (o SFLOAT called |
FFLOAT, which also comes with F-PC and which is even
faster and smaller. FFLOAT is, of course, totally non-portable.

Choose your math routines after considering your nced
for spced, precision, size, and portability. No one of them is
always the best. :
1. Domald E.Knuwth, The Art of Computer Programming,

Volume Two, Addison-Weslcy Publishing Company 1973, |
2. Nathaniel Grossman, ‘Long Division and Short Frac-
tions, " Forth Dimensions VI3, September/Oclober 1984,

Tim Hendtlass, Ph.D., is an Associate Professor responsible for the Scientific
Instrumentation major al Swinburne Institute of Technology. He discovered Forth
in about 1980 and since has used il for rescarch and for teaching lo about 80
students a year. In research, he has used it in fields from intelligent adaptive
technological supporl for the elderly, to highly distributed industrial data collec-
tion, lo devices for the measurement of capacitance under adverse condilions.

Forth Dimensions

|3

anew 32math
e o o ok ok ke ke A R Rk ke ke ke ke ke ok ek ke ke ke ke ok ke ke ke ke kR ok ok ok ok ke ke ke ke ke ko ki ke ke R ok ok kK
| \ x 32-bit Integer Arithmetic o
! \ khkkhkhkkhhkhkhArb kA hhkhhkhkhhkhkhhhhkhhhhhhhkhkhkhhkhkhkhkhkhhhkhhkkhkhkhkhhhkik
|
\ Ahhkhkhkhkhkhhkhhhkdhhhhrhrhkhhhhdhhrhrhdd
\ * 32-bit Integer Multiplication *
\ khkhkkhkkhkkhkhkhkhkkkhkhkhkhkhkhhkhhhkdhkhkhkhkkdkk

UD*
rot
um*
2r>

D‘*

| ud*
? 2r>

um#*

0 2r> um* d+ 2r> um* d+
0 2r> um* d+
| or 0<> abort™ D* overflow"

I : DY

T*

dup
| rot
I um*
| 2>r
' um*

s L me

T/

rot
rot

\ Extra words needed to implement 32-bit integer, fixed, and floating-point arithmetic.

’ \ Unsigned double * unsigned double = unsigned double (No overflow check)

l \ Signed double * signed double

\

dup>r dabs 2swap dup>r dabs \ #s +ve, keep info to work out final sign
X
\

\ Unsigned double * unsigned double = unsigned double (with overflow check)
UD*C
dup>r rot dup>r >r over >r
>r swap dup>r

: DMOD (dnl dn2 -- drem) d/mod 2drop ;

comment ;

\ Fast algorithm, remainder requires an additional multiplication and sutraction.
\ Unsigned double * unsigned single = unsigned triple

Unsigned triple / unsigned single = unsigned double

>r r@ um/mod swap \ divisor to r, divide top two words, rem to top

2swap swap d+

unsigned 32-bit answer, no overflow check
put ¢ b a d on return stack

b*d = part of 32-bit answer

a*d+b*c= addition to top 16 bits

>r over >r >r over >r

o

* 2x> * + +

signed double (No overflow check)
signed, no overflow check

get 32-bit answer

xor ?dnegate work out and apply final sign

unsigned, with overflow check
put a ¢ ¢ b on return stack

put a d onto return stack

b*d

offset 16 bits, add on a*d+b*c
off another 16 bits, add on a*c

b
\
\
\
\
\
\
\ check for overflow

’\ AAAAXAAAA A A A AR AR AR A ARk A A Rk K
\ * 32-bit Integer Division *
\ hkhkhkhhkAhhkhkhkhhkhhdrh bbbk krhhrhhk
comment :
\ Traditional algorithm, slow but gives remainder directly
: Q2% (gn=abcd-- gn2) \ Shift quad gn left one bit.
2swap dup >r \ save copy of ¢ to handle carry later
d2* 2swap d42* \ do the two shifts
r> 0< negate s>d d+ \ perform the carry if needed
(dnl dn2 -- dquot) d/mod 2swap 2drop ;

(ud un -- ut)
\ ud un un
\ udl un un udh
\ udl un high-ans
\ udl un
0 2r> d+ \ low-ans then add on high-answer after offsetting it 16 bits

(ut un -- ud)

0 r@ um/mod swap \
r> um/mod swap drop

Forth Dimensions 35 January 1993 February

January 1993 February

\ Divides two double numbers. All numbers are signed doubles.

Calculate ud * unl / un2.
U*/ (ud unl un2 -- ud2)
>r ¥ > &/ &

Unsigned 32-bit by 32-bit divide.
UD/ (udl ud2 =-- ud3)
dup 0= \
if swap t/ \
else
dup 65536. rot 1+ um/mod >r \
drop r@ t* drop 2>r \
dup 0 2r@ u*/ d- \
2r> r> -rot nip u*/ \
nip 0 \
then

2variable templ

TS

variable fdpl

~e

-

D/MOD (dnl dn2 --

2 pick over xor >r
dabs 2swap dabs 2swap
4dup ud/ 2dup 2>r

ud* d-

2r> r> ?2dnegate

drem dquot

D/ (dnl dn2 --

2 pick over xor >r
dabs Zswap dabs 2swap
ud/

r> 7?dnegate

dquot)

hhkkkk kA kA kA A A A A A A A A A A A A A A R A A A AR A A A A XA A AR A A A * A K

i 32-bit Fixed-Point Arithmetic e

hhkkhkhhhkhdkhhkAhkhdhddrrhhbhkhkdrhbhhhhhh b hkhkr bk kb h bbb hbhhhhkdhn

hkhkkhkkAhkhhkhhhkhhhhhkhrhhhkkhkhrkhhkhkrrxhhhhhk

* pefining the fixed-point structure *
A A A A AT A A A AKX A AR AR AR AR R AR R AR RRAR AR A%

variable fscl

FPLACES (-— n) fdpl @ ;
FSCALE (-— n) fscl @ ;

FIXED (n —)

0 max 4 min fdpl !

1 fplaces 0 ?do 10 * loop fscl

3 FIXED

3k ok ek ko ok gk ke ks R e e o o sk ke ok ok ke o o ok ke ok ok ke ok ok ok ok ok ok

*

ek e ke ke ok gk ok g g e o vk ok ok ok e ok ok ke ke ok ke ke ok R ok o ok g ok ok o ok ok e ok ok ok

(F.)
tuck
dabs
<# bl hold

fplaces 0 ?do # loop
ascii . hold

#s

rot sign #>

(fn —- adr len)

FIX. (fn -=) (£.) type ;

Triple intermediate product.

No remainder.

top 16 bits of divisor = 07
make it a triple, do the division

work out scaling factor,copy to return stack
scale denominator, move to return stack
calculate (U-U0*W1/W0)

multiply by (D/W0)

/2716 (use top 16 bits only), make ans double

\ to simplify stack management i
)

work out sign of answer I
convert numbers to positive

do the division, save copy ans
calculate remainder

retrieve answer, apply final sign

-

work out sign of answer

convert numbers to positive

do the division

retrieve answer, apply final sign

-

\ number of implied decimal places
\ scaling factor we are using

\ clip to between 0 and 4 decimal places
\ store scaling factor

\ default to three decimal places

Outputting numbers *

prepare fixed-point # ready to output
keep copy of top byte so we know sign
convert to positive number

start conversion with a leading blank
convert places after decimal point
put a decimal point in place

convert integer part

put sign in place, tidy stack

B il e

\ print fixed-point number

Forth Dimensions

' : FIX.R (fn p --) \ right justify in a field of p places
t >£ (£.) \ convert number
r> over - 0 2do bl emit loop type \ pad with blanks as needed
‘ i AAhhkhkkhkhkkhkkhhkhhkhhkkkhkkhhkhkhkkkhkhhkkhkkkkkhkhkkhkkikkhkkk
[\ % Inputting numbers B
| \ khkhkhkhkhkdkrhdk bbb drhhhdhbbd bbb b d o dh bbbt hbhhh
: D10* (d1 -- 10*d1) \ multiply a 32-bit number by 10
d2* 2dup d2* d2* d+ \ 8*d+2*d=10*d
\ Convert number to fixed-point number - no check made for numbers too large
\ Example 1234.5 FIX. To compile a fixed-point number in a : definition, use
\ [1234.5 FIX] DLITERAL
: FIX (dn -- £fn)

dpl @ 0<\ single or double number?

if s>d 0 dpl ! then \ if single convert to double

dpl @ fplaces <> \ # decimal places entered not fplaces?

if dpl @ fplaces < \ too few places specified?
if fplaces dpl @ 2do d10* loop \ yes, too few so scale the number up
else abort"™ Too mnay decimal places™ \ no, too many - we can't handle this
then

then

Fhkhkkhkhkkhhhhhhh b hhh bbbk bbb bbbk hhhhohhhhhhhi

* 32-bit Fixed-Point Multiply *

kAhkkhkhkkhkhkhkhkhhkhkhhkdhkhkhkhkhkhkhkhkhkhhhkhkhkhhkhhkhhkhkihk
Multiply two fixed-point numbers, producing a fixed-point result.
FIX* (£1 £2 -- £1*£f2)

T T T

rot 2dup xor >r \ sign of answer to return stack
-rot dabs 2swap dabs \ make both numbers positive
dup>r rot dup>r >r over >r \ put a ¢ ¢ b on return stack
>r swap dup>r \ put a d onto return stack
um* \ b*d
0 2r> um* d+ 2r> um* d+ \ offset 16 bits, add on a*d+b*c
2r> * + \ add on low byte of a*c
\ fscale mu/mod >r >r \ divide ms32 bits, ans to R. Remainder on stack
\ fscale mu/mod rot drop \ and that remainder and last 16 bits
N 0 > r> d+ > + \ assemble final answer
\ > 2dnegate \ yes, answer wvalid, negate if required
\ else abort" F* Overflow" report if an overflow
\ then
\ khkkkkhkkhhkhhhkkhhhhhkhkkhhkhkhhhkhkhkhhhkhhkhhkkhhkkkk
\ * 32-bit Fixed-Point Divide *
\ hhkhkhkhkhhhkhhhkhhhAhhhhhhhhhh Aok hAhkhhhxhkkhhhhkk
: FIX/ (£1 £f2 -- fquot=£f1l/£f2) \ Divide two numbers

2 pick over zor >r \ work out sign of answer and save
i dabs 2swap dabs Z2swap \ make all numbers positive

2dup >r >r \ keep copy of divisor

d/mod fscale 0 d* \ scale integer part of answer

2swap fscale 0 dx \ and then scale remainder

r> r> df \ divide remainder by divisor
[d+ \ add fract part of ans

\

r> ?dnegate put on final sign

Forth Dimensions 37 January 1993 February

= - |
\ e e g v e e Fe ok o v e g e ok ke e vk ok ok e ok ok e g ok vk ke o g ok o e ok ok ol ok g gk e o ok o sk ok o ke g o ke ok
\ * 32-bit Floating-Point Arithmetic *
\ ¥ Based on Zen Math by Martin Tracy ¥
\ AEAAA KA XA AAAAAAAALAA A A XA A A A A A A A A Ak d A dhkd kb hhhddhhrdhhhhhk
\ Trim a double-number mantissa and an exponent of ten to a fleating number. [
: TRIM {dnn=f) |
>r \ exponent to return stack i
tuck dabs \ save copy of high word for sign, make double positive
begin over 0< over 0<> or \ MSB low word set or top 16 bits no zero?
\ if so, too big to fit into 16 bits when signed
while
0 10 um/mod >r 10 um/mod nip r> \ divide 32-bit mantissa by 10
> 1+ >r \ and increase exponent
repeat rot ?dnegate drop r> \ apply sign and final exponent
i khkhkkhkhkkkhkhhkdkdkdkdkhhkkdkdkhhhdddkhhkkhkhdhhkrdhrhhrhkhkhhkhhhkhki
\ * 32-bit Floating-Point Addition and Subtraction *
\ hhhkhkhhhhkhhkhhhhhhkA o bk hhhbhh kbbb hhbhhdhhhhhhodhhhhhhhhk
: F+
rot 2dup - dup 0< \ work cut difference in exponents .
1E \ top number has the larger exponent |
negate rot >r nip >r swap r> \ keep larger (on return stack) and diff, swap mantissas| |
else \ top has a smaller or equal exponent :
swap >r nip \ keep larger (on return stack) and diff
then
>r s>d r> dup 0 \ convert mantissa to be shift to double
?2do >r dl0* r> 1- \ multiply mantissa by 10, decrement exponent
over abs 6553 > \ would a *10 cause overflow of these 16 bits?
if leave then \ prematurely terminate loop if so
loop
r> over + >r \ calculate final exponent
if rot drop \
else rot s>d d+
then r> trim \ get final exponent and trim
FNEGATE >r negate r> ;
E-= fnegate f+ \ add negative of the top value

e e e e ok e ket ke ke e ok ke ke e ok vk ok ok o sk ok o gk ok ok ok ok ok ok ok ok e ok ok ke ok ok

* 32-bit Floating~Point Multiplication *
Fkk Ak kkkhhkwkhhhkhkkhkhhdhhdhhhhkbdhhhdbhhkhhi

Fx (f1 £2 -=- £3)

8 T T TN e e

rot + >r \ calc exp of answer,save on return stack
2dup xor >r \ save xor of mantissas, too (sign of answer)
abs swap abs um* \ make mantissas positive and multiply
r> 2dnegate r> trim \ apply sign and then get exponent and trim
\ Ak AAAA A AR A A A A A Ak kR d kA dbhhrhhhhhihh
\ * 32-bit Floating-Point Division *
\ Ehhkkdkhhkhhhkdhhdhhhhhhhhhkdhkhkdhkhdhkdik
: F/

over (0= abort"™ d/0 error!"
rot swap - >r
2dup xor -rot

\ check for divide by zero
\
\
abs dup 6553 min rot abs 0 \
\
\
\
\

get exponent of answer, put on return stack f
get sign of answer, tuck down on stack

begin 2dup d10* nip 3 pick <
while d10* r> 1- >r

repeat 2swap drop um/mod
nip 0 rot ?dnegate r> trim

now do the division
lose remainder, apply sign get exp and trim

.

Code concludes in next issue with 32-bit floating-point /O and transcendental finctions.
It may be dounloaded in its entirety from the Forth software library on GEnie.

January 1993 February 38 Forth Dimensions

A Forum for Exploring Forth Issues and Promoting Forth

Fast [FOIRThwara]

Mike Elola

- San Jose, California

From the last volume of Forth Dimensions, 1 have col-
lected comments that reinforce one another and that speak
to Forth and its future. The comments brought to you here
have previously appeared in FI7's “Letters to the Editor” or
“Best of GEnie” columns.

Not so iong ago, 1 viewed the Forth community as a very
divided community that was becoming even more divided.
However, the views offered here reveal commonly held
values and beliefs. Perhaps these values can also shape our
vision about how to promote Forth.

John Wavrik is a professor at the University of California
(San Diego, California) who has spoken of the strengths of
Forth: “Conventional languages allow data structures only to
be created by a limited set of mechanisms built into the

language—and then impose further limitations on the status |
ofthese structures (how they can be passed to functions, how |

operators may act on them, etc.).”

He described the Forth advantage as “the ability to
accomplish difficult things without fighting the language.”
He credits Forth with being the only language that always lets
him do whatever he determines mustbe done, and speaks of
fighting the rigid features of other languages (Best of GEnie,

Our concerns are focusing on
management issues and on the
development environment...

FDXIII/5). Atheme that others will repeat is the relationship
between power and knowledge: “Power in Forth comes, in
greal measure, from the user’s ability to understand how the

system works—and being able (o harness that understand- |
| environments...” (Letters, FD XIII/1).

ing.”
Steve Noll gave his testimonial about Forth’s empower-
ment of the programmer. Crediling Forth for his speed of

| development, he briefly described five sophisticated ma-

chine-control applications that he completed in four years
(Leuers, /D XI11/5). Although he had come 1o Forth “kicking
and scrcaming,” he said he was won over. Given his experi-
ence, his suggestion for promoting Forth is a natural one: He
suggested that a way o altract others 1o Forth is for TIG to
distribute, market, and provide support for a low-cost Forth,

A winning submission in the programming contest held
by FIG U.K. a couple of years back was 4 tiny editor from Mike

Forth Dimensions

39

Lake. He shared the story of the success of MAASS,, a
company that converted to Forth around 1985 afier BASIC,
Pascal, and assembler had all been tried. He mentions that
the company has distributed over 12,000 Forth applications
worldwide (presumably, in a six-year period). Besides
sharing his code with us, Lake described his company’s
deepening commitment to Forth, culminating in their devel-
opment of an in-house Forth that gave them “absolute
control” (Letters, FD XIT1/3).

Dean Sanderson is a key software engineer with Forth Inc.
He had this to say about Forth’s future: “For Forth to survive
as a respected language, it must prove its adaptability and
change enough to support the concerns of management.
These include: Integration, Maintenance, Documentation,
Declining cost, Q{uality] Alssurancel], Configuration, and Sched-
uling. Though we've started late, we can survive by capitalizing
on what others have learned” (Best of GEnie, FD XIII/3).

John Edgecombe described Forth as a language that
enterprises resort to when conventional methods fail. He
sympathizes with companies reluctant to use Forth because
of the difficulty of getting good Forth help when they need
it. He described why he uses Forth: “...1 want something I can
understand, that I will maintain, and which is economical of
my limited resources” (Letters, FD XII1/1).

Tight, clever code is no longer as commercially valued as
it once was. While asserting the prominence of the develop-
ment environment, Laughing Water discounted the impor-
tance of Forth’s compactness in today’s marketplace: “|Forth’s|
virtues as a general programming language—compactness,
speed, interaclivity, flexibility (anarchy)—have become old

| fashioned indeed, and we are frequently superseded by

mainstream languages in more fully evolved development

By reporting that Macintosh Pascal has earned greater
mindshare than Forth because of the environment it offers,
Conrad Weyns added his voice to those proclaiming the
prominence of the programming environment. This viewpoint
asscrts that a language such as Borland Pascal is popular due
Lo the tools into which it is embedded rather than due to Pascal.

Weyns also joined those equating power and understand
ing: “A lot of Forth’s power lies precisely in its accessibility:
the ability 1o extend the compiler and interpreter, 10 add to
it, to use or abuse it...” (Leuers, FD X1L/3).

Mitch Bradley of Sun Microsystems said, “C is a viable,

January 1993 February

usable and ubiquitous development environment, and Forth
has to be competilive to succeed.” He urged us to pay heed |
to the issue of the environment that accompanies our
development systems and our applications, too: “The exist-
ence of the operating system cannot be ignored.” Bradley
claims that successful Forths have addressed the environ-

mentissue, “but without the guidance of a standard there has |

been great divergence” (Best of GEnie, FD XIII/1).
Divergence considered a flaw? Some would say that
flexibility is the point of using Forth, because Forth offers the
freedom 1o solve problems in novel ways. However, for
pragmaltic goals such as code reuse and code portability,
divergence can indecd be our enemy. We have to be shrewd
enough to know when a departure from standard technique
will ultimately turn out to be a hindrance to our collective
Forth future instead of a competitive advantage that will endure.
Brad Rodriguez shared his struggle to understand
metacompiling (Letters, 7D XIII/3). The understanding he
sought finally arrived after he attended an advanced poly-
FORTH class. After presenting his struggles at the local FIG

chapter meeting, he reports that others were able to unravel |
. development and easy program modification—two of the |

the secrets of the technique too.

Such an experience underscores our need for various
forms of support. Opportunities to receive structured training
are helpful, along with informal meetings. Rodriguez’ expe-

rience also says something about our values and our |

requirements as programmers: Before something truly has
value for us, we must be able to “access” exactly how it
works. We feel penalized whenever program code or
language features are inaccessible 1o us.

To make a language (or a programming technique) more
accessible, books and training materials are always valued.
Most of us read several journals each month besides Forth
Dimensions in order to have better access to state-of-art
practices and techniques

Tom Saunders of Sigma 3 Engincering in Edmonton
(Alberta), Canada requested that FIG members participate in
a survey so that every Forth dialect could be briefly outlined

| and its design goals described (Leuters, #D XIII/2). This
comment prompts me to question whether there is a way for
us Lo pursue our diverse Forths and diverse programming
techniques with any real hope of improving Forth’s commer-
cial standing—which currently seems o be flat growth for a
l relatively small number of businesses. Undoubtedly, our

diverse solutions will also lead to many breakthroughs. But
. ignorance of these breakthrough techniques (or innovative
| Forthdialects) is widespread. How many receive only limited
‘ use in a handful of products, if that? Without doubt, the Forth
| systems comparisons offered by Guy Kelly have helped
1 increase our awarcness of the differences between some
i popular Forths (FD XI11/6).

Based on the comments I scanned, our concerns are
becoming focused upon management issues and upon the
prominence of the development environment. As we focus
on issues such as support and training, we broaden our
concept of the total cost of software. Our ability to profit from
software will require us to be sensitive to all the issues of
producing, deploying, and maintaining software.

Among its credits, Forth natively facilitates fast program

chief advantages claimed by makers of various development
tools. Even without any of the extras that are part of a
contemporary development environment, Forth systems are
alleged to be perfectly suited to most programming needs. If

you can make this claim, fortune may be smiling upon you. |

Those of us who require database languages with graphical
interfaces may disagree.
We've also heard strong statements about how much we

operation of its implementation code. In light of this, consider
another of John Wavrik’s comments. Here he questions where
the proposed ANS Forth is headed—which he believesis away
from Forth’s past openness and low-level accessibility:

(There is Forth literature discussing variant methods for doing
local variables, exception handling,
adding object orientation, etc.)

Forth has been a toolkit for build- |

The contents appearing in this
publication are indexed by

CSIAN
LDUSINESS
GONTENTS

For further information, please contact:
Paul Soosay

ASIAN BUSINESS CONTENTS
P.0. BOX 12760, KUALA LUMPUR 50788, MALAYSIA

TEL [+60-3] 282-7372 |9 lines), FAX {+60-3] 282-74 17, TLX 30226 {Answerback MAHIR)

The ANSI team is heading in the
direction of including some im-
portant features (local variables,
exception handling, etc.) but re-
moving the ability to build such

I would like to thank everyone
who made their thoughts known

by submilting them to Forth Di-

RoundTable.

our community.,

January 1993 February

40

—Mike Elola

value our complete understanding of Forth, including the |

“My claim is that Forth has traditionally been a language |
which allows the user to build major language features. |

ingapplication-oriented languages. |

things” (Best of GEnie, FDXIII/S). |

mensions or Lo GEnie's Forth |
Through these fo- |
rums, we all become betler in- |
formed about the concerns facing |

I
|
|
|
|
|

Forth Dimensions

WHAT YOU'LL FIND IN LAST YEAR'S 1SSUES OF ForTH DIMENSIONS

A subject index toForth Dimensions contents published from
May *91-April *92. Prepared by Mike Elola.

arithmetic operations
Letter, vol 13, #3, pg 30
blocks within files for source code
Sixty-formatted Source Code, vol 13, #1, pg 28
chapters, Forth Interest Group
Letter, vol 13, #2, pg 31
Letter, vol 13, #3, pg 30
conditional compilation
Smart Comments & Compiler Words, vol 13, #2, pg 6
conferences
A FORML Thanksgiving, vol 13, #6, pg 38
control flow
Universal Control Structures, vol 13, #3, pg 9
The Curly Control Structure Set, vol 13, #6, pg 22
dialects of Forth
Introduction to Pygmy Forth, vol 13, #2, pg 25
Yerk Comes to the PC, vol 13, #5, pg 6
Letter, vol 13, #2, pg 5
Re: Intro. to Pygmy Forth, Letter, vol 13, #4, pg 5
Best of GEnie, vol 13, #6, pg 32
documentation, source code storage within
Sixty-formatted Source Code, vol 13, #1, pg 28
editing source code
Add and Delete Screens in PDE, vol 13, #1, pg 23
Letter, vol 13, #3, pg 30
| Letter, vol 13, #3, pg 34
{ Forth Interest Group
| President's Letter, vol 13, #1, pg 6
President's Lelter, vol 13, #2, pg 32
Letter, vol 13, #1, pg 5
President's Letter, vol 13, #3, pg 23
Forth leaders
Best of GEnie, vol 13, #2, pg 33
Best of GEnie, vol 13, #3, pg 38
New FIG Board Members, vol 13, #8, pg 31
hashing
QuikFind String Search, vol 13, #4, pg 21
Re: QuikFind String Search, Letter, vol 13, #5, pg 15
interfacing Forth o operaling systems
| Sixty-formatted Source Code, vol 13, #1, pg 28
list operalions
Symbolic Processing, vol 13, #1, pg 7
metacompiling .
eForth—a Portable Forth Model, vol 13, #1, pg 15 '
Re: How Metacompilation Stops the Growth Rate of !
Forth Programmers, Letter, vol 13, #3, pg 5 ‘
minimal Forth
Best of GEnie, vol 13, #6, pg 32 |
|
4

Forth Dimensions

Volume XIlI Index

multiprocessor systems
Ada Multiprocessor Real-Time Kernel, vol 13, #3, pg 24
object oriented programming
Yerk Comes to the PC, vol 13, #5, pg 6
Obiject-Oriented Forth, vol 13, #5, pg 23
Simple Object-Oriented Forth, vol 13, #5, pg 33
product reviews and surveys
Forth Systems Comparisons, vol 13, #6, pg 6
Letter, vol 13, #2, pg 5
Letter, vol 13, #3, pg 37
Letter, vol 13, #4, pg 10
programming environment
Forth for the 90's, vol 13, #1, pg 12
eForth—a Portable Forth Model, vol 13, #1, pg 15
Letter, vol 13, #3, pg 15
Letter, vol 13, #4, pg 10
Best of GEnie, vol 13, #6, pg 32

| promoting Forth

Forth for the 90's, vol 13, #1, pg 12

President's Letter, vol 13, #3, pg 23

Editorial, vol 13, #4, pg 4

Letter, vol 13, #4, pg 10

President's Letter, vol 13, #4, pg 26

Letter, vol 13, #5, pg 5

Letter, vol 13, #5, pg 13
real-time control

Ada Multiprocessor Real-Time Kemel, vol 13, #3, pg 24
simulations

Neural Network Words, vol 13, #2, pg 9

Universal Control Structures, vol 13, #3, pg 9
sorting algorithms

Combsort in Forth, vol 13, #4, pg 6
stack operations

New Stack Tools, vol 13, #4, pg 13

| standards, dpANS Forih

Best of GEnie, vol 13, #1, pg 31
Best of GEnie, vol 13, #5, pg 19
Best of GEnie, vol 13, #6, pg 32
strings
QuikFind String Search, vol 13, #4, pg 21

| symbolic processing

Symbolic Processing, vol 13, #1, pg 7
target compiling using a hosted target

Forth for the 90's, vol 13, #1, pg 12

eForth—a Portable Forth Model, vol 13, #1, pg 15
user interface routines

Menu Words, vol 13, #1, pg 18
vocabularies, searching through

Best of GEnie, vol 13, #1, pg 31

January 1993 February

Om {the [(Baclk [(Burmer #6

[&)

Transcendental
Compilation

Conducted by Russell L. Harris
Houston, Texas

Among the things which make Forth unique among
compuler languages is the process of metacompilation. Also
known by the terms target compilation and cross-compila-
tion, metacompilation is, in simplest terms, a process by
which an existing Forth system is used to generate a second,

tailor-made Forth system. In this respect, metacompilation |

transcends the usual process of compilation. The new
syslem may be a complete development environment, itself
capable of metacompilation; it may be a ROMable applica-
tion, having only the barest cssentials to accomplish a
specific and limited task; it may be an end-user application,
with support for terminal and disk 1/O, but without editor,
assembler, and compiler. The new sysiem may run on a
machine identical to the development system on which the
metacompilation takes place; it may run on a machine with
word size, instruction set, and resources quite different from
those of the development system; it may run from ROM on
an embedded single-board computer. Whatever the case,
metacompilation enabies the programmer to create the new
system with a minimum expenditure of time and effort, while
giving him a degree of control he otherwise would have only
in assembly language.

Daily association with Forth
devotees via a local telephone
call is an experience you
shouldn’t pass up.

The Emperor's New Clothes
Before proceeding with our discussion of metacompila-
tion, it is necessary that several concepts be explained and
that a number of terms be carefully defined. The matter of
nomenclature is complicated by two factors. First, everyone
seems o have his own name for a given item. Thus, what I
call a nucleus you may call a kemel. Secondly, there’s always

the knee to the idol of “intellectual property” may, with my
blessing, proceed without charge.)

I plan o publish a paper on the subject of “intellectual |

| propenty”; meanwhile, you might wish 1o visit the children’s

section of your local library and read again the faerie tale “The |
Emperor's New Clothes.” If you care to research the matter |

of “intellectual property,” I suggest you begin with the
treatise entitled The Law, first published in 1850, authored by
the Frenchman, Frederic Bastiat (1801-1850).

Nomenclature
Compilation is simply the process of writing to a dictio-

nary. Compilation is a routine occurrence in Forth develop- |
ment environments, and also takes place in some Forth |

applications. Traditionally, on a disk-based Forth develop-

ment system, the bootstrap loader or operating systembrings |

up a small Forth nucleus of approximately 8K bytes. This |

nucleus then compiles or “loads” the balance of the Forth
system, including an application, if any.

Forth words are typically classified into categories, much
as routines in C are grouped into libraries. Categories outside
the nucleus are termed electives. The set of electives to be

| loaded varies with the Forth implementation, the preferences

of the user, and the requirements of the application, if any.
When memory is limited, one need load only those electives
necessary to support the application. Eleclives commonly
loaded include those for printing, editing, and disk opera-
tions, in addition 1o the more basic functions such as clock,
calendar, and double-length arithmelic.

The process of loading electives and applications is
nothing other than compilation. Note, however, that loading
the nucleusis not properly termed compilation: the bootstrap
loader or operating system simply copies from disk to RAM
an exccutable image. The source blocks which comprise
electives and applications contain both high-level and code
words. The high-level words are compiled by the colon
compiler, while the code words are compiled by the
assembler. The resulting executable code is compiled into
the dictionary of the system on which the compiler and the

assembler are executing; i.e., electives and applications are |
| compiledintothe operating environment. Thus, Forth words, |

both high-level and code, may be executed immediately after
they have been compiled.

The meta in metacompilation indicates that the code
being compiled is destined for an environment other than the

operating environment. Unless the application environment |

is substantially the same as the development environment, it
will not be possible 1o test metacompiled code within the

- development environment. Even if the development system
| and the application hardware share the same word size and

someone lrying to get rich by robbing others, specifically, by |

getting the government Lo hold a gun to everyone else’s head
while he, the robber baron, loots their pockets. If you belicve
in the non-cntity commonly lermed “intellectual property,”
be sure to promptly send me a substantial fee before
proceeding further in this tutorial series; otherwise, [will be

forced to dispatch a team of thugs with instructions to |

repossess my “property.” (Those of you who have not bowed
January 1993 February

42

instruction set, the complement and physical addresses of
memory and peripherals may differ between the two systems.
Rather than attempting to metacompile into the operating
environment, one generally sels aside, somewhere on the
development system, an arca of RAM or disk to receive the
executable application code. Once metacompilation is com-
plete, the code may be transferred elsewhere for testing,
In this and future columns, the terms computer system,
bardware, and machine are synonymous, referring to a

Forth Dimensions

| physical computer system, including peripherals and the
I operating system, if any. The term environment will be used

both for hardware and for software; the context will make
clear which meaning is intended.

In metacompilation, there are, in principle, two computer
systems. The hardware on which the metacompiler runs is
termed the development system or host. The term develop-
ment system is very appropriate for the computer used to
writc or develop an application, but the term is cumbersome,
and I am open for suggestions as to a short yet descriptive
| name. The hardware on which the metacompiled applica-
i tion is to run is termed the application bardware or target.

Again, application bardware is descriptive, but is awkward.

. Any suggestions? In some cases, the development system

and the application hardware are the same machine. Tn our

| adventures, the development system will be the IBM-PC and

I the application hardware will be the 8051-family single-
{ board computer presented in the last column.

A Forth metacompiler is a Forth application which runs on

a development system. The metacompiler operates on Forth |

| source code in order Lo produce executable application code.
The source code may be a mixture of high-level and code
! words. Typically, the source code is read from disk and the
application code is compiled to disk, but the application code
may be compiled to RAM if the development sysiem has
sufficient available memory. Alternatively, the application code
may be compiled directly to read/write memory in the applica-
tion hardware, over a data link (typically, a serial line) connect-
ing the development system and the application hardware.

If the development system and the application hardware
| have different instruction sets, the term cross-compilation is
someltimes used instead of the more general term metacom-
pilation.

To Be Continued...
Let us assume we have a Forth environment which does
not include the capability of metacompilation. What must we

do we face? How do we solve and resolve them? What variations
are possible and useful? Subsequent columns will address
these matters, as we work our way through development of
| an 8051-family metacompiler which runs on the IBM-PC.

Collegiate Endeavours
I A facet of university life 1 find compelling is the daily

course of study. A university experience in which one limits
himselfto attendance at lectures, laboratory sessions, and tests
might as wcll be undentaken by correspondence or by
attiending night school. Tt is the opportunily outside the
classroom to discuss, to reason, to hone mind against mind,
that sets apart the university. In the collegiate environment,
you can always find someonc who recalls points you failed to
note, someone who sees the underlying concept through
detail you find impenetrable, someone willing to scrutinize
your logic or verify a solution, someone content simply to
listen as you think aloud, someone with an alternate perspec-
tive and approach to a problem which has you stumped.
Conversely, you provide like function for your fellows. It is a

do in order to add this capability? What problems and conflicts |

association with fellows who are pursuing the same ora similar |

which possession of the secure position is constantly passing
from one member to another as progress is made.

While few of us can afford a return, even for a brief period,
to full-time academic study, and few of us have employers
which foster an interactive academic environment in the
workplace, there yet remains a collegiate experience afford-
able and accessible to almost everyone. For a few dollars a
month and a few dollars per hour of connect time, one may
gain the potential of daily communication with a large
number of individuals pursuing a common goal. 1 am
speaking of the Forth Interest Group (FIG) bulletin board and
real-time FIG conferences, currently hosted, along with the
FIG software library, on the GEnie computer network.

The opportunity of daily association with fellow Forth
devotees across the nation, via a local telephone call (Look
Ma! No tollsD is an experience you really shouldn’t pass up.
The monthly access fee buys unlimited electronic mail,
which is great if you need to communicate directly with
specific individuals. An hourly charge applies once you
move to the Forth “round table,” but it is at the round table
that you gain access to the FIG community at large.

Once you know your way around GEnie, you can log on,
check the FIG bulletin board for new messages in a given

| category, and log off, all in roughly a minute, so there is litle

excuse not o look in on a regular basis. You can download
from GEnie a freebie utility called Aladdin with which PC
users can automate the process, thus eliminating the time
normally consumed in hurdling menus.

[urge readers of this column and every member of FIG Lo
get a GEnie account and join us in an environment of mutual
support and exploration. Our sysops have provided a bulletin
board category, No. 19, for activity related o the “On the Back
Burner” column. Under that category, several topics have been
started and others can be added as needed. Readers having

| questions need to post those questions under the appropriate

topic of category 19 and check back frequently, if not daily, for
response. Readers knowledgeable in various areas are re-
quested o frequently check topics in which they have
expertise and o provide answers wherever possible. Readers
having betier or alternate solutions o common problems are
inviled to share their insight with the rest of us.

The gist of it is this: by way of the GEnie computing
network, the FIG round table opens the door Lo interaction
on a scale which would otherwise be impossible and on a
frequency which would otherwise be prohibitive. Readers of
this column who are [ollowing the ongoing tutorial need the
type of support which only a collegiate environment or a
resource such as a nation-wide, local-access bulletin board
can provide. To readers who have mastered subjects and
techniques covered by this column, the FIG round table
offers the opportunity to share insight and to lend a helping
hand. Everyone is welcome; everyone is needed. Won't you
join us?

RS.V.P.

Russell Harris is an independent consultant providing engineering, program-
ming, and technical documenlation services lo a variely of industrial clients. His
maininterests lie in writing and teaching, and in working with embedded systems
in the fields of instrumentation and machine conlrol. He can be reached by phone
at713-461-1618, by fax at7 13-461-0081, by mail a1 8609 Cedardale Dr., Houston,

| give-and-take affair, somewhat like a climbing expedition, in | Texas 77056, or on GEnie (address RUSSELL.H).

Forth Dimensions

43

January 1993 February

Call for Papers
13th Annual
Rochester Forth Conference
June 23 —26, 1993

on
Process Control

Call for deadlines.
Conference includes introductory and advanced seminars
on Forth tecbnology and its application.

Announcing

Definitions: The Institute Newsletter

Call or write for a complimentary copy of the newsletter or
the Journal and learn about our Associates Program.

Forth Institute
70 Elmwood Avenue
Rochester, NY 14611
(716)-235-0168 (716)-328-6426 fax
72050.2111@compuserve.com

Forth Interest Group | _
P.O. Box 2154 f pSett:ond Slgdsst]
Oakland, CA 94621 | Postage Paid a

l San Jose, CA]

e e — -

