
$10 Volume XIV, Number 2 July 1992 August
-- -

SILICON COMPOSERS INC

Announcing the SCIFOX DRAM1032 Board

SCIFOX DRAM1032 Board (actual size)

The DRAM1032 is a p lu~-on daughter board which W Wristwatch chip keeps correct time and date (battery
attaches directly to either the SBC32 stand-alone or included) with or without system power.
PCS32 PC plug-in single board computers. W 24 bytes of keep-alive CMOS RAM, powered by

W Up to 16 MB on-board DRAM. wristwatch battery.
W 5 MBIsec SCSl controller supports up to 7 SCSl W Source code driver software and test routines for

devices. SCSI, parallel and serial ports, DRAM, timers, CMOS
W 16-bit bidirectional parallel port, may be configured as RAM and wristwatch chip included.

two 8-bit ports. Interrupts available for all If0 devices.
4 Serial ports, configurable as 4 RS232 or 2 RS232 I No jumpers, totally software configurable.
and 2 RS422. W Hardware support for fast parallel to SCSl transfer.
Each serial port is separately programmable in 33 W Multiple boards may be stacked in one system.
standard baud rates up to 230K baud. 1 Two 50-pin user application connectors.

W 4 input handshaking and 6 output control lines. W Single +5 Volt low-power operation.
W 7 general purpose latched TTL level output lines. W Full power and ground planes.
H 11 general purpose TTL level input lines with Input for external +5 volt supply to keep DRAM data

interrupts available on either transition. in case of loss of main power.
W 2 programmable counter/timers, may use internal or I 6 layer, Eurocard-size: 100mm x 160mrn.

external event trigger and/or time base. W User manual and interface schematics included.

See application article in this issue.
For additional product and pricing information, please contact us at:

SILICON COMPOSERS INC 208 California Avenue, Palo Alto, CA 94306 (41 5) 322-8763

Julv 1992 Auaust Forth Dimensions

Features I

P 6 interfacing to Extended Memory
Jesus Consuegra
Forth is still known for functioning well in limited-KAM environments, but that constraint
doesn't have to apply to your MS-L)OS workhorse. When this author needed to process lots of
MIDI data from a synthesizer, he first learned how to bring Microsoft's Extended Memory
Specification into his Forth system.

I 0 Random Disk Records
Brian Sutton
Creating a random-access data base program often trips up the over-confident neophyte
programmer-in any language. A decade of Forth experience taught this chiropractor enough
to implement security features, dynamic file sizing, mixed record sizes, error handling, and
more. Like the author, y-ou could run a business based on this slick application.

2 Structured Pattern Matching
A riel Scolnicov
Finally, a sophisticated string-handling wordset for Forth that does more than just accept and
manipulate string input. That is, you can define patterns to describe classes of strings, then use
the search engine to find various permutalions of pattern combinations. lhese tools offer all
the string-handling functionality of SNOBOL in a Forth implementation.

26 China's National Forth Examination
C.H. Ting, trans.
Test your Forth knowledge, and check your own skills against those expected of Forth
programmers in the People's Republic of China. This is an English translation of the exam
administered in that country last year.

Departments I
4 Editorial

4 ANS Forth Update

5 Letters Response and Apology, Threading a Memory Waste,
Optimizer Concern Misplaced, i/O Time Dominates
Performance, CREATE ... DOES> Erratum

8 FIG Financial Statement

19 Advertisers Index

32 Fast Forthward Promoting Forth, FIG update, new products

35 Best of GEnieForth RoundTable changes, managing data types

41-42 resource Listings FIG, ANS Forth, classes, on-line RIME & Forth.

43 On the Back Burner . . . Sleeping with the Enemy

Forth Dimensions 3 >u!v i39.2 Auaks;

Forth Dimensions
Volume XIV, Number 2

July-Auy~~sl 1992

Published by the
Forth Interest Group

awareness of how F o h per-
forms in "the big leagues,"
and to enlighten those who
only know the lean and mean
side ofForth, we are offering
cash awards to the top three
papers we receive on the
subject. See the ad on page
40 of this issue for d e t a i l s
better do it now, since the
contest deadline is August 3!

Of course, articles re-
ceived after that date will still
be considered for publica-
tion, they just won't qualify
for the prize money.

Speaking of Which.. .
Forth D i m i o n s thrives

best when its readers partici-
pate most. We are constantly
looking for a broad range of
articles: applications, utilities,
tutorials, vendor/developer
interviews and success

Editor
Marlin Ouverson

C~rcula t~on/Or&r Desk
Frank Hall

poeh Dimensions welcomes
editorial material, letters to the edi-

tor, and comunenu from its readers.
No responsibility is assumed for
accuracy of submissions.

Subscription to ~ o r t h Mmen-

ANS Forth Update
From Elizabeth D. Rather, chairpersm oftbecommittee(X3'4)
developing ANS Fo?tb, we ~ceived this %port dated W 9 . 2 :

'.The four-month public review period for the Draft
Proposed ANS Forth (dpANS) closed February 25,192. X3J14,
the Technical Committee developing ANS Forth, recelved a
total of 34 official comments and three late comments. Many
of the comments were multi-part, producing a total of over 200
discrete items. Of the 37 commenL3, only three were negative.
?he others were generally supportive, pointing out unclear
issues, making specific suggestions, and noting typos.

"All the public review comments, as well as a number of
technical proposals, were considered by X3J14 in its 1%
meeting held March 17-21 at Athena Programming near
Portland, Oregon. Reported typos will be f ied, many of the
suggestions were adopted (or alternative solutions were found
for the problems raised), and the document was clarified in
many areas.

"As required by X3 procedures, all commentorswill receive
responses drafted and approved by theTC. In addition, theTC
agreed to send each commentor the complete set of comments
and responses, and a copy of the changes made to the
document.

etc. 'ro improve the general , 1 sions is included with membership

and telephone numbers on
our rnasthcad and mail-
order form. The change in
office5 will, it is believed,
substantially help consolidate
and coordinate the business
of running this membership
organization.

-M6Jrii?z Ouverson

Iast Chance Update your R o l d c x
There is still time to enter I Those of you who have

our contest for articles about followed the Forth Interest

in the Forth Interest Group at $40
per year ($52 overseas air). For
membership, change of address,
and to submit items for publica-
tion, the address is: Forth Interest
Group, P.O. Box 2154, Oakland,
California 94621. Administrative
offices: 51M9-FORTH. Fax: 51C-
535-1295. Ad sales: 805-946-2272,

Copyright 0 1992 by Forth In-
terest Group, Inc. The material con-
tained in this periodical (but not
the code) is copyrighted by the
individual authors of the articles
and by Forth Interest Group, Inc.,
respectively. Any reproduction or
use of this periodical as it is com-
piled or the articles, except repro-

"Forth on a Grand Scale."
Many people still aren't aware
of large Forth applications,
of Forth components in com-
plex systems, of significant
multi-programmer projects,

ductions for noncommercial pur-

Group for any length of time
know that, like any organi-
zation, it is always seeking to
improve its efficiency. As part
of the most recent changes,
please note the new address

poses, without the written permis-
sion of Forth Interest Group, Inc. is
a violation of the Copyright Laws.
Any codc bearing a copyright no-
tice, however, can be used only
with permission of the copyright
holder.

The Forth Interest Group
The Forth Interest Group is the

the editor come to mind.
Because we aresuch a widely
distributed and diverse
community, it is important
for you to remember that we
are indeed interested in what
you are doing. Not every
article should be very ad-
vanced (our "hot thermom-
eter" rating)-many readers
need more moderate fare at
their current stage of Forth
expertise. So don't feel,
because your magnum @us
isn't forthcoming, that you
have nothmg to contribute.
We want to hear from you!

Julv 1992 Auaust

stories, examples of pofih
technique, hardware pro-
jects, essays, and letters to

improvements are incremental in nature, with no radical
changes in policy or approach (except for the three comments
noted above, extensive revisions were not requested). Seved
words were dropped from extension wordsets, and some others
were added (particularly in the Floating Point wordset). A few
words got more-mnemonic names, descriptions and require-
ments were clarified, and more liationale material was added.

"The revised d p M will be released for a two-month public
review soon, probably early or mid-May. As before, cspics will
bc available from Global Enpeering Documents, 2805McGaw
Avcnuc, Irvine, CaMornia 92714 (8008%-7179, or714-261-1455
from outside the U.SA. and Canada). Comments received
during hsperiod will be considered in September. 7hsprocess
will repeat until t h e X determines that no addtionalsubstantive
changes need to be made, at which time the document will be
forwarded to X3 for processing as an ANS."

"'Ike ?'C was pleased at h e amount of time and effort prOgrammers~ man- I agers, and engvleers who create invested in the comments. Many interesting and valid points practical, Forth-bascd solutions to
were raised, and the document is much improved. f ie real-world needs. Many research

hardware and software designs that
will advance the general state of
the an. FIG provides a climate of
intellectual exchange and benefits
intended to assist each of its mem-
bers. Publications, conferences,
seminars, telecommunications, and
area chapter rncctings are among
its activities.

"Forth Dimensions (ISSN 0884-
0822) is published bimonthly for
$40/46/52 per ycar by the Forth
Interest Group, 1330 S. Bascom
Ave., SuiLe D, San Jose, CA 95128.
Second-class postage paid at San
Jose, CA. POSTMASTER: Scnd ad-
dress changes to Forth Dimensions,
P.O. Box 2154, Oakland, CA94621."

Forth Dimensions

Letters to the Editor-and to your fellow readers-are ahvays welconle.
Respond to articles, describe your latest projects, ask for input, advise
the Forth community, or simply share a recent insight. Code is also
welcome. but is optional. Letters may be edited for clarity and length.
We want to hear from you!

Response and Apology
I Iercln I hope to apologize for my errors, explain myself

more fully, and suggest some further articles I'd lilce to sce
published.

I would like to apologize to anyone who took comments
in my article in issue XIII/2 as a criticism ofJim Callahan'sHS/
FORTH. It was certainly not my intention to imply his Forth
was anything other than a fine product. Although I have not
used it personally, I have never heard a bad word about HSI
FORTH or its author.

My comments were, however, intended to be a criticism
of a claim in his advenisement. While merely my own
opinion, and others may read his ad differently, I felt his ad's
claim of compiling 40,000 lines per minute was almost
meaningless, in that no details were given as to how the
figure was reached. I tried to illustrate, using some specific
timings on Pygmy, that it makes a hell of a difference whether
you are running on a 4.77 MHz PC or a 33 MHz '386. In his
letter in issue MII/4, he supplied some of those details
(running on a '286, etc.). I think his ad would be stronger by
including the processor and dock speed details but, of
course, that is entirely his business. Indeed, I appreciate his
advertising in Follh Dimensions and thereby helping to
support it. My exceptions to certain parts of his ad should be
kept in perspective.

Jim also suggested Forth Dimensions has an anti-vendor
bias. If it does, I have not been aware of it. It is my belief my
article on Pygmy was published because it was one of the
best available at the time, rather than because Forth D i m -
sionsis biased against vendors. I would be most happy to see
Forth Dimensions publish an article written by Jim about his
HS/FORTH. And, if I am wrong about the anti-vendor bias,
I would like to see Jim write a letter or article putting forth
his evidence and reasoning.

I am also struck by another aspect of Jim's advertisement:
it seems to imply some of lIS/FORTH has been pirated by
others and/or that some of his development work has been
stolen or misused. My first reaction is to reject this as a vague
claim given without supporting details. If there are support-
ing details, I think a full treatment of this subject would make
a great article, and I would like to encourage Jim to write it!
Sincerely,
Frank Sexgeant
FQ9 W. San Antonio St.
San Marcos, Texas 78666

Threading a Memory Waste
Dear Sir:

1 would like to thank Guy Kelly for producing an article
reviewing a few aspects of so many Forth systems [lDXIII/
61. Such articles are long overdue in Forth D i m i m and

will prove a great sewice to anyone interested in Forth.
I would, however, like to expandupon a few of the points

covered. The main emphasis of the article was on the relative
speeds of the various systems and architectures, and is
therefore incomplete without an analysis of the costs asso-
ciated with any speed advantage. True optimization involves
economy in the use of memory, and the avoidance of built-
in limits to expansion, as well as raw execution performance.
We examined both direct and subroutine threading a decade
ago--and rejected both for reasons that obviously still hold
today. They waste memory for marginal speed improve-
ment, better obta~ned where needed by local optim~zation.
When attempts are made to limit the memory wasted, the
inevitable result is unacceptable limits on program space
available and sacrifice of the performance gained.

Direct threading, while marginally faster than indirect (for
very simplc programs) uses anywhere from six to 20 extra
bytes for every single colon definition. Paragraph-aligned list
structures such as used by F-PC waste an additional average
of eight bytes per colon definition. Memory and disk space
may be cheap these days, but they are always limited,
especially if you aren't your only client.

Speaking of waste, some Forths such as polyFORTIi
which claim multi-segment program space do so by duplicat-
ing the entire base of the application in each segment so ha t
a three-segment, 172K program has the lower 32K of each of
the three segments identical, wasting 64K of core and disk.
IIS/FORTH ismulti-segment without any duplicationor waste.

Clearly, an optimizer that totally eliminates NEXT linkage
where speed is essential will produce code that is faster and
overall more compact than direct threading. We were curious
how the LMI optimizer seemed to give a faster Sieve time than
ours. Mystery solved. They optimi7e variables and Do Loop
indices as embedded constants and hope they'll never
change. Works fine for the Sieve, good luck in real life.
Sincerely,
Jim Callahan
Harvard Softworks
P.O. Box 69
Springboro, Ohio 45066

Optimizer Concern Misplaced
Dear Marlin:

Congratulations on publishing the fine article by Guy
Kelly, and thank you for forwarding the copy of Mr.
Callahan's letter. Fortunately, Mr. Callahan's concern about
the applicabili~y of our optimizer to real-life situarions is
misplaced. The optimizer specifically looks for situations
where DO LOOP indices and other parameters are in fact
constants, as is the case with the DO LOOP indices in the Sieve
benchmark, and then compiles the values as embedded
literals. When the parameters for a D o LOOP are not
constants-for example, if they are passed into a defhtion
on the stack or loaded from variables-the optimizer gener-
ates completely different code.
Regards,
Ray Duncan
Laboratory Microsystems Inc.
12555 W. Jefferson Blvd., Suite 202
Los Angeles, California %XX%

(Continued onpage 42.)

Forth Dimensions Julv 1992 Auaust

Extended Memory
Jesus Consuegra
Sitges, Spain

This paper describes a practical approach to interface to
the XMS (Extended Memory Specification), to allow MSDOS
Forth programs to access the memory beyond the artificial
limit of 640 Kbytes that MSDOS can directly handle.

Introduction
After many years digging around and trying many different

Forth dialects, last year I found the Forth environment of my
dreams: UDFORTH, a compact yet powerful implementation
of Forth-83, with some extensions and only one incompat-
ibility. The product is manufactured by a company called
Upper Deck Systems. The product is quite robust, with an
easy interface to the user: it uses standard text files and
includes a hll-screen, pull-down-menus text editor that
drops you automatically into an offending error when it
occurs. Although the manual is a little sparse, a Forth
programmer can easily find his way through this system with
the help of the sample programs included (a rcduccd version
of the Unix utility grep among them).

This interface was born as a
requirement to hold big streams
of MIDI data from an electronic
musical instrument.

One of the big criticisms of Forth is that one has to reinvent
the wheel for hidherself any time one wishes to use a
specific tool or feature. The unavailability of compiled code
LO link to Forth, and the large number of different Forth
dialects in use has prevented wider use of Forth in commercial
environmenls.

As an example of how one has to set up their own tools,
I'm going to describe an XMS (Extended Memory Specifica-
tion) interface for MSDOS.

After some wars on expanding or extending memory,
Microsoft decided to establish an unified extended memory
specification for 80286/386/486 class machines running
MSDOS. The availability of big chunks of memory can
dramatically improve the performance of many programs.

streams of MIDI data from an electronic musical instrument
but, since then, I'veused it in other business programs to hold
large arrays of data without the need to first define virtual
disks in memory and then treat the arrays as if they were disk

1 files.
The first thing a programmer has to do to interface to XMS

is find out where the service routine sits in memory. '1'0 do
so, one has to issue an interrupt $2F, that tells if XMS is or is
not installed. After that, another call to int $2F with a different
parameter gives back the address of the service routine. Once
the address of XMS is known, calling the different services is
straightforward: just place a specificvalue at registers AX and
DX and issue a IBr call to the service routine.

This seems (and is) simple, but at the time of writing the
program, I had no idea about how to issue such a call--even
in machine code.

After some unsuccessful querying on CompuServe (I
have no access to GEnie from Spain), a friend of mine
(Juanma Barranquero, co-sysop of the Forth conference at
NEXUS) and a couple of hours in front of a cold meal, gave
me the clue (and the basics of 808X machine code I needed)
to do it. The result is a two-line sequence of Forth-assembly
instructions:

' xms-address >body # bp mov
es: 0 [bpl far call

with xms address being a 2variable.
oncethis barrier was surpassed, the rest of the interface

came in a worknight. That's the power of Forth!
The code that comes with this paper is a self-explanatory

sample of some of the functions supplied by the XMS driver.
It should be easy to port to other Forth implementations.

Currently I'm workmg on another interface, this time to
the Btrieve Record Manager. And in the queue, a CUA-
compliant, text-only, hll-featured windowing interface is
waiting.

With those tools in hand, LO write business programs in
Forth will be considerably casier. Upper Deck Systems has
promised me a Windows version of UDFORTfI. When it
becomes available, I'll stick to Forth for all my programming.

This interface was born as a requirement to hold big I
July 1992 Auoust 6

I
Forth Dimensions

Code of XMSTEST-S 1
\ MODULE Xms

\ This module has been w r i t t e n by J e s u s Consuegra, who p l a c e s it i n t h e
\ p u b l i c domain. Although t h e au thor has reasonably checked t h e code,
\ t h e r e a r e no i m p l i c i t o r e x p l i c i t w a r r a n t i e s t h a t t h i s code does n o t
\ c o n t a i n e r r o r s o r mis takes . The u s e r s t a k e a l l r e s p o n s i b i l i t y t o check
\ whether it i s s u i t a b l e f o r t h e i r a p p l i c a t i o n s . Use of t h i s code i s a t
\ your own r i s k . The a u t h o r w i l l a p p r e c i a t e comments, sugges t ions and
\ any k ind of communication t h a t can improve t h e wide spread of FORTH.
\
\ Mail a d d r e s s :
\
\
\
\
\
\ Bix:
\ Compuserve:
\ EUNET:

J e s u s Consuegra '

C/Enric Morera 36, esc 3, 2-2
E d i f i c i Les Neus
08870-SITGES
(SPAIN)

\

\ Some s t u f f t o n e a t l y p r i n t hex f i g u r e s
\

: (2hex)
9 > i f

a s c i i A + 10 -
e l s e

a s c i i 0 +
t h e n ;

: 2hex.
dup 0< i f

2 5 6 +
then
dup

1 6 / dup
(2hex)
emit

1 6 mod dup \ p r i n t low b y t e i n hex
(2hex)
emit -

\ p r i n t h igh b y t e i n hex

: 4hex.
dup 8 s h r
2 hex.
$if and
2hex. ;

\
\ Tools f o r managing regs
\

: regAH
regAX $ffOO and 8 s h r ;

: regAL
regAX S f f and ;

: regBH
regBX $ffOO and 8 s h r ;

: regBL
regBX S f f and ;

\
\, The XMS i n t e r f a c e
..

: xms? (--- f)

\ P r i n t e r r o r message and r e t u r n a f l a g
$4300 ! > regAX
$2f i n t 8 6
regAL $80 = i f

." XMS i n s t a l l e d t r u e
e l s e
." XMS not i n s t a l l e d . " f a l s e c r
then ;

: 4hex: . 2 v a r i a b l e xms-address

2hex. ." :" : get-xms-driveraddress (---)

\ regES:regBX a r e t h e address
$4310 ! > regAX

$2f i n t 8 6

Forth Dimensions 7 Julv 1992 Auaust

: Shew - Kms-Dyiv~r-Addrec:; (--- 1
get-xms-driver-address
." a t add re s s : "
regES 4hex. regBX ." :I1 4hex. c r ;

\

\ Generic XMS reques t
\ ...

code xms-req (---)

d s push
bx push
bp push

' regAX >body # bx rnov
e s : 0 [bxl ax rnov

regDX >body # bx rnov
es: 0 [bxl dx rnov

\ C a l l XMS s e r v i c e

' xms-address >body # bp rnov
e s : 0 [bp] f a r c a l l

\ Return va lue s t o s t anda rd r egs

ax es: ' regAX >body #) rnov
bx es: regBX >body #) rnov
dx e s : regDX >body #) rnov

bP POP
bx POP

ds POP
next

end-code

0 va lue Ermes

: E$! !> E r m e s ;

Forth Interest Group
Btat~?rnent of Changa in Financial Pasitian

April 30, 1990 to April 30, 1991

4/30/90 4/30/91 Change
ASSIXS: + - Increase

- - Decrease
Current Assets

FoolhiU Bank, Money Markel 15,925.38 24.865.91 8,940.53
Foothill Bank, Checking 636.43 700.14 63.71
Pending Foreign Clearing -102.00 51.67 153.67
Returned Checks Pending 0.00 72.00 72.00
FORML. Money Market 15.894.11 16.916.46 1.022.35
FORML, Checking 1,926.01 1,236.64 -689.37

Total Current Assets: 34,279.93 43.842.82 9,562.89

Inventory:
Inventory at cost 34.147.53 26.601.17 -7.546.36

Total Inventory: 34,147.53 26,601 .I7 -7,546.36

Other Assets:
Deposit, United Parcel Service 200.00 200.00 0.00
Second Class Postal Account 156.31 192.41 36.10
Accounts Receivable 3,166.20 2,099.00 -1,067.20

Total Other Assets: 3,522.51 2,491.41 1,031.10

TOTAL ASSETS: 71.949.97 72,935.40 985.43

LIABILn'lES:

Sales Tax 33.89 35.58 1.69
FD Dues doc. to future months 37,487.30 41,518.51 4,031.21

TOTAL LIABurnEs: 37,521.19 41,554.09 4,032.90

Financial Reserve: 34,428.78 31,381.31 -3,047.47

: ApiError (Ercode --- 1
ca se

$80 of $" Function not implemented."
$81 of $" VDISK device d e t e c t e d . "
$82 of $" A20 e r r o r . "
$8e of $" General Dr iver e r r o r . - #
$8f of $" Unrecoverable d r i v e r e r r o r . "
$90 of $" HMA does not e x i s t . "
$91 of $" HMA a l r e a d y i n use ."
$ 9 2 of $ " DX i s l e s s than /HMAMIN=."
$ 9 3 of $" HMA not a l l o c a t e d . "
$94 of $" A20 l i n e i s s t i l l a c t i v e . "
$a0 of $" A l l extended memory i s a l l o c a t e d . "
$a1 of $ " A l l extended memory handles a r e i n
$a2 of $" I n v a l i d handle ."
$a3 of $" I n v a l i d Source Handle."

E$!
E$!
E$!
E$!
E$!
E$!
E$!
E$!
E$!
E$!
E$!

use." E$!
E$!
E$!

July 1992 Auaust Forth Dimensions

$a4 of $" I n v a l i d Source o f f s e t . "
$a5 of $" I n v a l i d Des t i na t i on handle."
$a6 of $" I n v a l i d Des t i na t i on O f f s e t . "
$a7 of $" I n v a l i d l eng th . "
$a8 of $" I n v a l i d over lap i n move."
$a9 of $" P a r i t y e r r o r . "
$aa of $" Block no t locked.'"
Sab of $" Block i s locked."
Sac of $" Block lock count overflow."
$ad of $ " Lock f a i l e d . "
$bO of $" A sma l l e r UMB is a v a i l a b l e . "
$b l of $" No UMBs a v a i l a b l e . "
$b2 of $" I n v a l i d UMB segment number."

\
$" Unknown e r r o r code."

endcase
." X m s : " Ermes $. ;

: Show-Xms-Version
S f f f f !> regDX

0 !> regAX
xrns-req
regAX ." Version: " 4hex:. cr
regBX ." I n t e r n a l d r i v e r r ev i s i on : "

4hex: : cr
regDX 1 = i f
. I1 HMA does e x i s t .
else
." HMA doesn ' t e x i s t . "
then cr ;

: Show-HMA
$ f f f f !> r e g D X

$100 !> r e g A X
xms-req
regAX 1 = i f

." HMA ass igned t o t h e c a l l e r . "
$200 ! > regAX

xms-req \ f r e e HMA
r e g A X 1 = i f
. " HMA s u c c e s s f u l l y re leased"
else
." E r r o r on r e l e a s i n g HMA" c r
regBL ApiError
then
cr

e l s e
regBL ApiError
then
cr ;

: Show-A2O-Line-Status
$700 !> regAX
xms-req

regAX 1 = i f
." A20 l i n e is p h y s i c a l l y enabled."
else
regBL ApiError

ES! endof
ES! endof
ES! endof
E$! endof
E$! endof
E$! endof
ES! endof
E$! endof
ES! endof
ES! endof
ES! endof
E$! endof
E$! endof

then
c r ;

: Query-free-Exrnem
$0800 !> regAX
xms-re q
regBL O o i f

regBL ApiError
e l s e
." Largest f r e e ext-memory block i s
regAX u. . " Kbytes .I ' cr
." Tota l f r e e extended memory i s "
regDX u. . " Kbytes . ''
then
cr ;

: DoTest
Show Xms Driver-Address
~ h o w ~ 2 C m s ~ ~ e r s i o n
S ~ O W ~ H M A
Show-A20-Line-Status

I Q u e r y f ree-Exmem ;

: X m s T e s t
cis
xms? i f DoTest
then ;

\ i f you have t h e shareware vers ion only,
\ you have t o do a save-exe i n s t e a d .

1 turnkey X m s T e s t XMSTEST.EXE

\ End of f i l e
windowing

I

Forth Dimensions Julv 1992 Auaust

F-PC

Random Disk Records

Brian Sutton
Tampa, Florida

A number of ycars ago, I began writing programs to use
in my chiropractic practice to try to make life a little easier.
Since my computer was rather limited (it was a TI-33/4a),
Forth was naturally the only available language that offered
even a glirnrncr of hope of turning out something useful in
a reasonable length of time.

Ten years and a number of computers later, I think I'm
starting to make some progress. The random access words
described in h is article form the basis of my accounting
program that tracks patient accounts, bills insurance, keeps
the checkbook balanced, and generates profit-and-loss
statements, among other things.

For a while, I put up with many bothersome housekeep
ing tasks that programs often have to perform, such as
opening all the data files when the program starts, closing
them all upon termination of the program, making sure the
data gets saved out just before the program terminates, etc
Another major consideration was lack of RAM (32K in the TI
and 64K in CP/M) and how to deal with the large amounts
of data I needed to process.

Thankhlly, the F83 buffer system caught my attention
and seemed to be a simple and effective answer to my
problems. If the virtual memory concept worked so well for
Forth screens, why not use it for data too?

So these words are basically an adaptation of the Forth
screen buffers, with a few extra features thrown in. The major
ways these tools make programming much easier are:

The data files are automatically opencd when needed. If
the file isn't used, it isn't opened.
As data is entered and the file fills, it is automatically
increased in size to accommodate the new data. You can
specify the size of each increment of file growth-I use the
number of bytes in a cluster on my hard disk (8K). You can
also specify that the program asks your permission before
appending any file.
The buffers are ofthe F83, truly-least-recently-used scheme.
This means that if you use four buffers, you can have four
different data addresses in memory without worrying
about accessing an address that suddenly contains a
different piece of data.
AL.0, each updated record is saved to disk before the buffer
is re-used for something else. This is real handy here in

Florida, where power outages are often a daily occurrence
during the rainy season. The most we ever lose is thc last
entry in the journal, if that.
Unlike the F83 buffers, you can mix records of different
s i 7 s in the buffers. For example, one record might be 256
bytes while another is two. Even though my buffers are
1024 bytes, if a two-byte record is called only two bytes are
read or written.
Each record is referenced just like a variable or an array.
Entering its name returns an address on the stack that you
can use to fetch or store text or values. Substitute the word
ACCOUNT NAME for the Forth word BLOCK to see how this
works. while 10 BLOCK returns the starting address of a
1024-byte Forth screen, 10 ACCOUNT-NAME might return
thestartingaddress of the 24byte name of account number
ten.
'Ihe error-handling routines display which record or file
was being accessed when the error occurred.
The word FLUSH saves all the records to disk and then
closes all the record files. This is especially usehl if you use
a lot of data files--DOS won't let you have more that 15
open handles (in addition to the console, printer, etc.) per
program, even though the total number of open system
files can be much higher. FCBs can be used to get around
this limit (yuck!) or you can write your own handle table,
but I prcferto have my program execute FLUSH every time
it returns to a main menu. This offers additional data
security and s o b the simultaneous-open-handles problcm.
Since the files are re-opened automatically if they're
needed again, the only tradeoff is maybe a few millisec-
onds spent opening the file.

DeAnItions
DOSHandle

The number assigned by DOS for use in accessing disk
fdes, on my system a number from five to 19.

F-FCHandle
The address that contains Zimmer's 7Gbyte Me path and

name, attriiute, and DOS handle. I've added two bytes to
each F-PC handle when defined with the FILE : word to
store a link to the previous file.

Julv 1992 Auuust 10 Forth Dimensions

Rewrd Cbntrol Block (R B .
Figure One. 1

An array six
embedded in the code of
each record definition that
contains the X&.!SS of the
res~ective F-PC handle, the

r e c o r d
name

file: book .dat
file : price. dat
file : stock. dat
file : account . dat

number of bytes in each
record, and the offset into
the file of the fist record.

parent File I

\ i n i t i a l p a r e n t
\ o f f s e t s i z e f i l e

0 48 book .da t r e c o r d : t i t l e \ name o f t h e book

record per parent file, or you
may have a group of records
share the same file but oc-
cupying different locations
in that file.

Alternatively, you can

The file that contains your
data for a given record name
or group of records. You can
have either one defined

have the records overlap, if
you are so inclined. I do this
in at least one case: the real

0 2 book .da t record.: p r i c e \ how much $?
\ two b y t e s w i l l work f o r t h i s i f none o f your book p r i c e s
\ exceeds $655.35

0 2 s t o c k . d a t r e c o r d : s t o c k \ how many o f each book?

\ customer name 0 32 a c c o u n t - d a t r e c o r d : accoun t

f i le : s t a t . d a t

0 2 s t a t . d a t r e c o r d : p o i n t e r s \ misc . p o i n t e r s , v a l u e s
1 6 8 s t a t . d a t r e c o r d : p u r c h a s e s \ cumula t ive pu rchases

area for when I want to erase
it all quickly.

remrdsaremo byres' but I
a1sosetup1024-byrerec0rds
that occupy the same data

4 derive > # o r d e r s
6 d e r i v e > l a t e s t

\ T h e e i g h t b y t e s w i l l g i v e m e room t o t r a c k a d o l l a r amount,
\ t o t a l X o f o r d e r s , and t h e l a s t o r d e r d a t e :

Some values you may
want to change:
B/BW Set this to the largest size record you're likely

to use. If you need to enlarge it later, changing
it won't affect any of your current files.

MAXF ILES The most files you're likely to ever use in your
program. This is just used for error Lrapping.

#BUS The nilmber of disk buffcrs you want. More
buffers mean less frcquent disk 1/0, but also
less security in case of power interruptions,
DOS seizures, or coffee on the keyboard.

In order to set up your records, you will of course need
to know what you intend to call each parent data file. The
word FILE: will then create the structure for you. For
example, executing
FILE : NAMES. DAT

will create the Forth word names . d a t and codc to support
records using the NAMES. DAT file. You do not have to have
this file on your disk at this point. It will be created (or
truncated, if alrctady present) when you execute ESTARLI SH,
LC., NAMES .DAT ESTABLISH.

FILE : creates the F-PC handle, inserting any special path
you might have stored in the RPATH string. This path is only
necessary if you will be operating the program in a different
directory from the data files.

The created file is chained to any previously created ones.
Thevariable CHAIN contains the address of the most recently
defined F-PC handle, and from there you can track down all
of them by following the links until you reach zero.

In fact, the word DO-CHAIN is set up to do just that,
executing the vectored CHAIN word for each file. 1t is used
for closing files, changing paths, and displaying the chain.

The word ?OPEN checks to see if a DOS handle is
assigned. If the field is less than zero, it is assumed that the
file is not open. When the fde is closed, the DOS handle field
is set to -1. Before a file is opened, a check is done to see if
there is a drive and path name in the F-PC handle. If not, the
current directory is inserted.

FILE-ERR? displays the name of the file if there is a
problem opening or dosing it.

When an error occurs while accessing a record (not
opening or dosing a file), ?RERR will display the DOS disk
error code and any read/write error code, along with the
record name (not the file) being accessed.

I'm not going to go into a detailed explanation of the F83
buffer system here, since it is very prevalent and I only
understand it for a few minutes at a time anyway, but I have
changed the file polnter in the buffer descriptor array (the
area around FIRST; RE'IRST in h s code) so that it points to
the KCB instead of the FCB of the relevant file. That way,
when a read or write operation is called for, all the needed
data (DOS handle, record length, etc.) is right there for
processing.

Forth Dimensions Julv 1992 Auaust

When I got hold of F-PC, 1 thought that maybe Enuner's
block buffcr code might work even better with some rmnor
adapiations, but i already had this written and the assembly
coded definitions intimidated me. Perhaps someone else can
let me know how to make it fit3

~eading a Record From Disk
When it's time for a record to be read in, here is the

sequence:
MISSING saves out the oldest record (if updated) and

(RBUF) returns the buffer address. REC> reads the data in
by accessing the RCB and calling REC-READ, which moves
the file pointer (via DISKPREP) and attempts to read the
record.

If REC-READ discovers that the proper number of bytes
were not read, and no other error was encountered, (EX-
TEND?) is executed. (EXTEND?) checks to see how many
bytes need to be appended to the file to include the requested
record.

If the file needs to be enlarged, one of the following
actions is taken:

If M0~1~ORequai.s zero, the record is read in automati-
cally.
If MONITOR equals -1 (true), a dialog box appears
asking you if you want to append the file the needed
amount. If you select no, the program aborts.
~f MONITOR equals 1, the dialog box only appears if the
amount to append exceeds the value you assigned
EXTENT, which is the minimum increment used to
extend files. This would normally happen only if you
are not adding records sequentially (and/or your
parameter stack gets mixed up.)

I recommend that you leave MONITOR on, at least until
you get most of the bugs worked out of your code; it will save
you some debugging time.

After the file is extended, the read operation is re-
performed which places your record in one of the buffers.
Note that records are always extended during read opera-
tions only; you've got to read the record into a buffer before
you have an address to store data. You shouldn't get any
errors during write operations (even when the disk is full),
unless there is a disk problem.

Assessing the Records
To read in a record, simply place the record number on

the stack and invoke the record name. Supposing you had
defined a 14-byte record called PHONE#, the phrase
5 PHONE# (-- adr)

would read the fifth record into a buffer, returning the buffer
address. If you modify the data at this address (and execute
UPDATE), it will be saved out when its buffer is needed for
something else.

The word THE is helphl at times. It will return the size as
well as the buffer address of the record specified. For
example,
7 THE PHONE# (-- adr ct)

rcturns the address and length of he sevcnlh record. if d w
wcre stored in text format, you could then execule TYPE.

IT is a vec~orcd wotd. Iniliali~e il uriell elic CFA or your
record name.
' PHONE# I S IT

would set things up so that subsequent execution of I T
would rehlrn the buffer address and byte count of your
phone# record. In that case, these two phrases would
produce the identical result:
3 t h e phone# (-- adr ct)

3 it (-- adr ct)

I use I T mostly for sorting routines; the same routine can
sort a variety of records simply by patching IT.

SIZE> rerurns the size of the in-line record name without
actually reading the disk. Usage would be:
s i z e > phone# (-- ct)

The three words THE, I T , and SIZE> are all state smart.
They will, therefore, work the same interactively a s they do
inside a definition.

DEL-PATHS is provided to allow you to delete any paths
that might have been prepended to your F-PC handles. This
is in case you want to change data directories. I keep records
from previous years on floppies, and my current year on the
hard drive. When I want to change years, I call this word and
change the logged drive.

Debugging/Information Tools
The word BuFS allows you to see which records are

currently in the buffers. Information listed is the record
number, the record name, and the drive/path/file name. If
the record has beenupdated, an asterisk is displayed after the
record number. The records are listed in order of the most
recently accessed-therefore, the last one you see will be
overwritten when the next record is read from the disk.

.CHAIN is provided to show all the defined parent files.
The information displayed here is the DOS handle and the
drive/path/file name. If no drive/path is present, it means
that you have not accessed that record yet (or have executed
DEL-PATHS). Once a record is opened, the path name
remainseven after being closed.

An Example
Just to give you an idea of how this all works, suppose you

were designing program for a mail-order bookstore. You
might set up the files and records shown in Figure One.

At the risk of confusing things, I've combined three
records into one record structure (PURCHASES) to illustrate
how you can cut down on the number of data files, if you so
desire. Grouping the three data structures together under one
record name like this allows you to have an unlimited
number of each. If you had defined them a s distinct records
starting at different offsets in the same file, you would run the
risk of not allowingenough space for customer-base growth,
not to mention having to creaie a large file before you have
any data to enter.

Julv 1992 Auaust Forth Dimensions

encoded date
double- of last order
precision
$ value # of orders

The way to retrieve the number of orders fdled for
customer #I5 is to execute:
15 purchases >#orders @

The alternative way of keeping these all in the same fde
would be to decide on a maximum number of customers
(10000 for this example) and do the fol!owing:

0 2 s ta t-dat record : p o i n t e r s
\ t h i s doesn ' t change

6 4 s t a t . d a t record : purchases
\ j u s t t h e d o l l a r amount now

40006 2 s t a t . d a t r eco rd : #o rde r s
60006 2 s t a t . d a t r eco rd : l a t e s t

'The trouble is, I've now limited myself to 10,000 customers
and also am starting out with a 6OK file before my first order!
This problem doesn't arise, of course, if you don't combine
records in a Gle.

If you combine many records, the word ALLOW will help
you save some math. Using it, the above example becomes:
0 2 3 a l low s t a t - d a t record: po in t e r s

4 10000 al low s t a t . d a t record: purchases
2 10000 al low s t a t . d a t record: #orders
2 s t a t .at record: l a t e s t

For keeping rack of books and customers, let's create
three records to work with:
l a b e l i n g p o i n t e r s \ These a r e e q u i v a l e n t :
0 l a b e l : #accounts

\ : #accounts 0 p o i n t e r s ;
1 l a b e l : # t i t l e s

\ : # t i t l e s 1 p o i n t e r s ;
2 l a b e l : #books

\ : #books 2 p o i n t e r s ;

Now to enter some data.
Execute the following LO create the necessary Gles on your

disk:
book-da t e s t a b l i s h

p r i c e . d a t e s t a b l i s h
s t o c k - d a t e s t a b l i s h

' a c c o u n t - d a t e s t a b l i s h
s t a t . d a t e s t a b l i s h

\ Zero o u t your customers and inven to ry :
#accounts off update
t i t l e s o f f update

Forth Dimensions

I #books o f f update

\ You cou ld d e f i n e t h e fo l lowing word t o
\ add new books:
: titles! (--)

begin cr ." T i t l e : "
t i t l e s @ t h e t i t l e
2dup b lank
expec t
span @

whi le update
t i t l e s +dsk

r e p e a t ;

This allows you to enter book names until you press a
<cr> without any entry. You can add the prices later.

To type the name of book #I, enter:
1 t h e t i t l e t y p e <cr>

To ,see how many titles you have entered:
t i t l e s ? < c r >

It couldn't get much simpler! You can exit F-PC (by typing
BYE), restart it again, and your data will still be there.

The following situations have been carehlly tested and
found to exhibit undesirable behavior:
1. If any files have been appended, FLUSH must be executed

before terminating F-PC. 'l'hii is done automatically if you
use BYE, but if DOS seizes up or you crash your program
you'll most likely end up with lost clusters where your
new records used to be.

2. If you load your program, FORGET part of it, hen re-load,
you may wind up with a problem when you execute
FLUSH or .CHAIN, since FORGET doesn't tell CHAIN
which links were forgotten. To avoid problems here, if
you FORGET any parent files at all, forget them all and
execute CHAIN OFF before re-loading. In fact, it's prob-
ably a good idea to put CHAIN OFF just before your first
FILE : command.

3. Ilyou do #2 (above) without ~ L u S ~ i n g between reloadmgs,
you'll soon use up all your DOS handles if you access any
records in between. This is because the original handles
were forgotten before they were closed. You will sud-

1 denly be unable to open your f i l a .

Nolc:'lhis source code is available in the FIG software library
on GEnie, 2586, RNDMRECS.ZIP.

13 Julv 1992 Auoust

Record C o n t r o l Block:

e t i n t o f i l e of f i r s t r e c o r d

o f b y t e s p e r r e c o r d

Each f i l e s t r u c t u r e c o n s i s t s of an FPC h a n d l e w i t h 2 b y t e s appended t o
l i n k t o t h e p r e v i o u s f i l e . T h i s a l l o w s a 1 1 f i l e s t o b e c l o s e d a t once
u s i n g FLUSH.

Zimrner's FPC h a n d l e s t r u c t u r e :

The HANDLE memory d a t a s t r u c t u r e i s a s shown h e r e .
l b y t e 65 b y t e s 2 b y t e s 2 b y t e s

[coun t] [name. . . .0] [a t t r i b] [h a n d l e > -1]
a d d r a d d r + l a d d r t 6 6 addr+68

L Address of t h e a r r a y r e t u r n e d by a word
d e f i n e d w i t h HANDLE.

2 b y t e s
[l i n k t o

p r e v i o u s
h a n d l e i n
c h a i n]

-v
I ' v e added t h i s p a r t
f o r t h e c h a i n e d p a r e n t
f i l e s .

The a d d r e s s o f t h i s h a n d l e i s r e t u r n e d by t h e word >RHANDLE g i v e n t h e a d d r e s s
o f t h e p a r t i c u l a r Record C o n t r o l Block .
comment ;

r e a d - w r i t e def-rwmode
1024 c o n s t a n t b /buf \ s e t t h i s t o your maximum e x p e c t e d r e c o r d s i z e
c r e a t e r p a t h 6 4 a l l o t r p a t h o f f

\ c r e a t e r e c o r d f a m i l y

v a r i a b l e c h a i n

60 c o n s t a n t m a x f i l e s

91-04-25 b r s

\ t h i s can b e a n y t h i n g you l i k e ; a l a r g e r number
\ won ' t u s e up any more memory. I t ' s j u s t a
\ p r e c a u t i o n a g a i n s t t h e l i n k s b e i n g messed up .

F I L E : f i l e n a m e . e x t : f i l e : (- 1 \ usage =
> i n @
h a n d l e h e r e b /hcb -
c h a i n @ , dup c h a i n !
swap > i n !
dup b l word coun t r o t p l a c e
r p a t h p r e p e n d . a p a t h d r o p ;

: d e r i v e (n --) \ run- t ime: (a d d r -- a d d r t n)
c r e a t e ,
does> @ + ;

Julv 1992 Auaust Forth Dimensions

comment :
Define a word t o conver t t h e address t o t h e v a l u e o f f s e t by n .
This i s i n c a s e you want t o a c c e s s j u s t a p i e c e of a r ecord .

comment ;

b/hcb d e r i v e > f l i n k (a d r -- a d r l) \ conver t t o l i n k a d d r e s s

d e f e r cha ined (a d r --)

: do-chain (--)
c h a i n @ dup
i f m a x f i l e s 0

do dup cha ined
> f l i n k @ dup 0=
? l e a v e

l o o p
t h e n
a b o r t " E r r o r i n F i l e chainv1 ;

: (. c h a i n) (a d r --)
cr dup >hndle @ dup -1 >
i f 6 . r
e l s e d rop . " --11

t h e n
2 spaces
count t y p e ;

: . cha in (--)
cr cr c h a i n @
i f . " Handle Filename" ,, ----------------- -----------------n cr . -----------------

[I] (. cha in) is cha ined
do-chain

else ." No F i l e s Chained"
t h e n
cr ;

\ a c c e s s t h e F-PC hand le from t h e soon-to-be-defined Record C o n t r o l Block

@ a l i a s > rhand le (r c b -- a d r)

: @ r h a n d l e (rcb -- n 1
>rhand le >hndle @ ;

: .mame (. rcb -- 1
body> >name . i d ;

\ Open and Close f i l e s

: f i l e - e r r ? (hcb f a d r ct --) r o t
i f cr beep

t y p e . l1 i n " count t y p e
a b o r t

else 3drop
t h e n ;

\ t h i s p o i n t s t o t h e F-PC handle

\ r e t u r n t h e DOS handle

\ t y p e d a t a name

\ d i s p l a y name of t h e DOS FILE
\ i f t h e r e is a n e r r o r .

: ?open-err (hcb f --)
Open e r r o r f i l e - e r r ? ;

: ? c l o s e - e r r (hcb f --)
" Close e r r o r l1 f i l e - e r r ? ;

: ?open (rcb --) \ e n s u r e t h a t t h e f i l e i s open
dup e rhand le O < \ i s no handle t h e r e ?
i f > rhand le dup hopen ?open-err \ i f so, open t h e f i l e
else drop \ o the rwise , nevermind
t h e n ;

Forth Dimensions Julv 1992 Auaust

: r c l o s e (p a r e n t a d r)
dup h c l o s e ? c l o s e - e r r ;

\ c l o s e t h i s h a n d l e

: ? r e r r (r c b f --)
d i s k - e r r o r @ o r
i f cr . " D i s k / F i l e e r r o r " d i s k - e r r o r ? r w e r r ?

.rname a b o r t
e l s e d r o p
t h e n ;

comment :
?RERR w i l l d i s p l a y t h e name o f t h e RECORD i n t h e e v e n t o f a n e r r o r
d u r i n g d i s k a c c e s s . T h i s h e l p s you t o d e t e r m i n e t h e o f f e n d i n g c a l l i n g
p r o c e s s . Compare t o FILE-ERR?, above, which j u s t t e l l s you i f a problem
o c c u r r e d d u r i n g open ing o r c l o s i n g .

comment ;

: (r o f f s e t) (r e c # rcb -- d)
2+ 2 @ r o t urn* r o t 0 d+ ;

d e f e r r o f f s e t \ d e f e r r e d i n c a s e I want t o c o n v e r t back t o my
\ o l d CP/M format f o r some r e a s o n .

' (r o f f s e t) i s r o f f s e t

: l o c a t e (r e c # r c b --)
t u c k r o f f s e t r o t
dup ?open
> r h a n d l e movepo in te r ; \ aim a t t h e r e c o r d

: d i s k p r e p (dest r e c # r c b -- rcb c t dest c t hand le -ad r ')
- r o t p l u c k dup>r l o c a t e
r@ 2 t @ t u c k
r> > r h a n d l e ; \ p r e p a r e a l l n e c e s s a r y d a t a f o r d i s k i / o

\ r e a d / w r i t e a r e c o r d

d e f e r e x t e n d ? ' 3drop i s e x t e n d ?

: r e c - r e a d (dest r e c # r c b --)
r w e r r o f f
3dup d i s k p r e p h r e a d <> \ p o i n t and s h o o t
i f rwerr @ ? r e r r e x t e n d ?
else 3drop d r o p
t h e n ;

: rec-write (s o u r c e r e c # r c b --)
d i s k p r e p h w r i t e <> ? r e r r ;

\ a u t o m a t i c (o r semi) r e c o r d e x t e n s i o n

b /bu f 8* c o n s t a n t e x t e n t \ t h e minimum s p a c e t a k e n by any f i l e on my d i s k

: ? e x t e n d - e r r (hcb f --)
Append e r r o r " f i l e - e r r ? ;

\ d l = new e o f
: l a r g e r (r e c # r c b -- d l d2 f) \ d2 = how much b i g g e r t h e f i l e s h o u l d be

dup>r \ f = t r u e i f d2 > e x t e n t
dup 2+ @ >r \ l e n g t h
r o f f s e t r > 0 d t
2dup e x t e n t um/mod d r o p
n e g a t e e x t e n t + 0
d+
2dup r > > r h a n d l e e n d f i l e d-
2dup e x t e n t 0 d > ;

\ c a l c u l a t e s i z e i n c r e a s e needed
\ i s it b i g g e r t h a n EXTENT ?

Julv 1992 Auaust Forth Dimensions

: (ex tend) (d hcb --)
dup>r - r o t
2 . d- r@ movepointer
[' I f a l s e >body
2 r> h w r i t e 2 <> ?ex tend-e r r ;

\ e x t e n d f i l e by w r i t i n g a ze ro a t t h e
\ l a s t two b y t e s of t h e d e s i r e d f i l e end

v a r i a b l e moni tor moni tor on \ monitor on = a l l f i l e e x t e n s i o n s v e r i f i e d
\ monitor o f f = no permiss ion needed .
\ monitor = 1 -- only g e t permiss ion when
\ you need t o ex tend f i l e ? one EXTENT

permiss ion (d hcb -- 1
savecursor s a v e s c r
> a t t r i b 4
20 5 7 5 10 b o x & f i l l beep
." Is it okay t o ex tend t h e f i l e " b c r
count t y p e space d. ." b y t e s ? (Y / N) "
key upc 'Y' <> b c r
>norm
a b o r t " Program abor ted"
restscr r e s t c u r s o r ;

: (extend?) (d e s t r ec# r c b --)
dup >rhand le >r
2dup l a r g e r 2 o r
moni tor @ and
i f r@ permiss ion
e l s e 2drop t h e n
r> (ex tend) d i s k p r e p h read <> ? r e r r ;

' (extend?) i s extend?

\ Bas ic r e c o r d a c c e s s :
\ This s t u f f i s a l l p r e t t y much s t r a i g h t o u t of t h e F83 block b u f f e r system.

4 c o n s t a n t #buf s

#bufs 1t 8 * 2+ c o n s t a n t > r s i z e

create >bufs (-- a d r) > r s i z e a l l o t

: >end (-- a d r)
>bufs > r s i z e 2 - t ;

: buf# (n -- a d r)
8* >bufs + ;

: >upd (-- a d r)
1 buf f 6 + ;

>bufs > r s i z e + c o n s t a n t r f i r s t

r f i r s t #bufs b/buf * + c o n s t a n t r l i m i t

: l a t e s t ? (n r c b -- r c b n f l f a f f l)
d i s k - e r r o r o f f
swap 2dup 1 buf# 2@ d=
i f 2drop 1 buf# 4 + @ f a l s e t r u e
e l s e f a l s e
t h e n ;

i b u f s b/buf * a l l o t

: absen t? (n r c b -- a f)
l a t e s t ? ? e x i t f a l s e #bufs 1+ 2
do d rop 2dup i buf# 2@ d=

i f 2drop i l e a v e
else f a l s e
t h e n

Forth Dimensions Julv 1992 Auaust

l o o p ?dup
i f b u f # dup > b u f s 8 cmove

>r >bufs dup 8 4- over r> swap - cmove>
1 b u f # 4 + @ f a l s e

else > b u f s 2 ! t r u e
t h e n ;

: d i s c a r d (--)
1 >upd ! ;

: > p r e p (a d r -- b u f f e r r e c # r c b) \ u s e t h e b u f f e r p o i n t e r t o f i n d t h e
dup 4 + @
swap 2 @ swap ; \ n e c e s s a r y a d d r e s s e s / v a l u e s

: m i s s i n g (--)
>end 2- @ 0<
i f >end 2- o f f

>end 8 - > p r e p r e c - w r i t e
t h e n
>end 4 - @ > b u f s 4 + !
1 > b u f s 6 + !
> b u f s dup 8 + # b u f s 8* cmove> ;

: (r b u f) (n r c b -- a d r)
a b s e n t ?
i f m i s s i n g 1 buf# 4 + @ t h e n ;

: r e c > (n rcb -- a d r)
(r b u f) >upd @ O>
i f 1 b u f # dup > p r e p r e c - r e a d

6 + o f f
t h e n ;

: r e c o r d : (o f f s e t , b / r e c f i l e - -) \ <name> I run = (n -- a d r)
c r e a t e , , ,

does> r e c > ;

comment :
When t h e r e c o r d i s c r e a t e d , t h e f o l l o w i n g f i e l d s a r e l a i d down:

1. The p a r e n t a l f i l e hcb, i . e . which f i l e w i l l s t o r e t h e d a t a
2 . How many b y t e s t o a l l o t f o r e a c h r e c o r d (s i n c e i t ' s random a c c e s s)
3 . How f a r from t h e b e g i n n i n g o f t h e f i l e (i n b y t e s) w i l l t h e s e r e c o r d s

s t a r t ?

The Record C o n t r o l Blocks & b u f f e r s keep t r a c k o f w h a t ' s g o i n g on; a l l you
need d o i s c a l l t h e name, r e a d / w r i t e d a t a t o t h e a d d r e s s , and UPDATE a s
needed . J u s t l i k e t h e F83 s c r e e n b u f f e r s , each upda ted r e c o r d i s
a u t o m a t i c a l l y s a v e d t o d i s k when i t ' s b u f f e r i s needed.

comment ;

: a l l o w (o f f s e t r l e n # r e c s -- o f f s e t ' o f f s e t r l e n)
> r 2dup r> * + - r o t ;

comment :
ALLOW j u s t makes t h i n g s a l i t t l e e a s i e r when y o u ' r e d e f i n i n g r e c o r d s
I t ' s pu rpose i s t o c a l c u l a t e t h e number o f b y t e s t o "a l low" b e f o r e
s t a r t i n g t h e n e x t r e c o r d i n t h e f i l e .

I t l e a v e s t h e n e x t o f f s e t on t h e s t a c k , r eady t o u s e f o r t h e n e x t r e c o r d
comment ;

: empty -buf fe r s (-- 1
r f i r s t r l i m i t o v e r - e r a s e
> b u f s # b u f s 1+ 8* e r a s e
r f i r s t 1 b u f #
b u f s 0
do dup on

Julv 1992 Auaust Forth Dimensions

4 + 2dup !
swap b/buf +
swap 4 +

loop
2drop ;

empty-buf f e r s

: save-buf fe r s (-- 1
1 buf# #bufs 0
do dup @ 1t

i f dup 6 + @ 0<
i f dup >prep rec

dup 6 + o f f
t h e n
8 t

t h e n
l o o p d rop ;

: f l u s h (--)
save-buf f e r s
empty-buf f e r s

[I] r c l o s e is cha ined
do-chain ;

f l u s h i s byefunc

: upda te (--)
>upd on ;

: update : (--) \ runtime: (? --)
c r e a t e ,
does> perform upda te ;

update : dsk! !
update : dsk2! 2 !
update : dskc! c !
update : +dsk i n c r

Advertisers index

The Computer Journal..25
FORML Conference 34

Forth Interest Group..40, 44

Haward Softworks..27

Laboratory Microsystems20
Miller Microcomputer Services..25

Silicon Composers2

comment :
t h e D S K words a r e j u s t v e r s i o n s of !, 2 ! , c ! , e tc . which mark t h e r e c o r d
a s b e i n g updated.

comment ;

: (s i z e) (-- ct
>body 2+ @ ;

: (it) (n c f a -- a d r ct) \ a d d r e s s & count o f c f a ' s n t h r e c o r d
dup (s i z e) \ (cfa=word d e f i n e d wi th RECORD:)
> r e x e c u t e r > ;

: it (n -- a d r c t)
does> @ (it) ; it

\ r e t u r n t h e address & c t of t h e Nth r e c o r d
\ i n i t i a l i z e with: MYREC I S I T

: t h e (NAME I n -- a d r c t) \ r e t u r n a d r / c t of n t h record
s t a t e @
i f [compilel [' I

compile (it)
else (it) t h e n ; immediate

\ r e t u r n t h e r e c o r d s i z e wi thout execu t ing it : s i z e > (NAME 1 -- c t)
s t a t e @
i f [compile] [' I

compile (s i z e)
e l s e (s i z e) t h e n ; immediate

: l a b e l : (n --) \ run: (-- a d r) \ d e f i n e a named r e c o r d @ record# n
c r e a t e @> it , ,
does> 2@ e x e c u t e ;

Forth Dimensions ,lulv 1992 Auaust

: l a b e l i n g (NAME I --) \ t h e record t o LABEL: ex : LABELING MYREC
?exec

['I i t >is ! :

: e s t a b l i s h (a d r --) h c r e a t e a b o r t " F i l e c r e a t i o n problem" :

comment :
Truncate (o r c r e a t e) a f i l e . I t ' s l e n g t h i s s e t t o ze ro .
u s e t h i s t o i n i t i a l i z e (c r e a t e) a new f i l e on t h e d i s k .
EXAMPLE: mys tu f f .da t e s t a b l i s h

comment ;

: pa th - len (a d r ct -- n)
t u c k 1- over +
do i c@ ' \ I =

? leave
1-

-1 +loop ;

; -path (handle --
dup count
2dup pa th - l en
?dup
i f 2dup - >r

/ s t r i n g
2 p ick p l a c e
count + r > e r a s e

e l s e 3drop
then ;

: de l -pa ths (--)
f l u s h
[' I -pa th i s chained
do-chain ;

Total control
with 111 FORTHTM
h r Programming Professionals:
an expanding family of compatible, high-
perfomance, compilers for microcomputers
For Development:
Interactive Forth43 InterpreterlCompilers
for MS-DOS, 032, and the 80386

16-bit and 32-bit implementations
Full screen editor and assembler
Uses standard operating system files
500 page manual written in plain English
Support for graphics,floating point, native code generation

For Applications: Forth-83 Metacompiler
Unique tabledriven multi-pass Forth compiler
Compiles compact ROMable or disk-based applications
Excellent error handling
Produces headerless code, compiles from intermediate states,
and performs conditional compilation
Crosxompiles to 8080,Z-80,8088,68000,6502,8051,8096,
l802,6303,6809,68HC11,34010, V25, RTX-2000
No license fee or royalty for compiled applications

I - - I

Laboratory Microsystems Incorporated
Rst Of&e Box 70434 Marina del Fig: C4 90295

Phone Owfit Cerd Odws to. (213) 30&7412
FAX: (n3) 301-0761

\ d e l e t e a l l p a t h s from t h e chained F-PC handles

: bufs (--) \ Display which records a r e i n t h e b u f f e r s
1 buf# #bufs 1+ 1
DO CR I . 2 SPACES

DUP @ TRUE = \ FFFF=empty b u f f e r
OVER 6 + @ 1 = OR \ w a i t i n g t o be r e r e a d
IF ." ---"
ELSE DUP @ 4 . R SPACE

dup 6 t @
i f a s c i i * \ i f updated
e l s e b l t h e n
emit space
dup 2+ @ dup . rname
30 #out @ - spaces
>rhand le count t y p e

THEN 8 +
LOOP DROP CR ;

Julv 1992 Auausl
I

Forth Dimensions

1 S t r u c t y ~ d Pattern
I Matchrng
1 Mevasseret Zion, Israel

Julv 1992 Auaust

Forth is not generally regarded as a suitable language for
string processing. This is rather strange: Forth is, as we keep
telling ourselves, an extensible language. The problem of
string handling has been addressed elsewhere. However,
handling strings is not the whole issue. True string-process-
ing languages, such as AWK and SXOBOL, not only handle
strings but also provide functions fbr string matching. These
allow us to match a string against a pattern, a description of
an entire class of strings. I have developed a set of words
allowing the definition of patterns, along with the necessary
routines to match patterns to strings.

At first, I considered using regular expressions for my
patterns. Their main advantage is that they can be compiled
as a fmite-state machine, which can then be executed very
quickly. Unfortunately, regular expressions (and finite-state
machines) are extremely limited: while general enough to
describe, say, a floating-point number (as [+-1?[@91+(\.[0-
91+)?(IEe1[@91+)?), they are hardly intejligible. Worse, regular
expressions can't "count": for instance, no regular expression
exists which will match only suings with balanced braces.
AWK, whch uses regular expressions for its patterns, is
limited in ths respect.]

SNOBOL provides a far better pattern language. IJnfortu-
nately, the rest of SNOBOL is totally unstructured, with a goto
as the only control structure, and a funny way of defining
functions. What I really wanted was the string-pattern-
matching features of SNOBOL. What I ended up writing has
all the functionality of SNOBOL's pattern matcher, with a
uniquely Forth-ish syntax.

Patterns
The pattern matcher is divided bemeen two files:

LO(;IC.SEQ provides a very general "search driver," and
STRMA'rCTI.SEQ providcs words to describe pieces of the
string. Building a pattern is very Forth-like: patterns are built
into the dictionary space, and every pattern is described by
its address. Primitive patterns are created without arguments;
logical connectors connect palterns found on the stack. At
the cnd of a definition, a single address left on the skck
represents the entire pattern. This address may be stored in
a constant.
I . k t todoAWKjustice, it isjustmeof the impressivemayof text-handing tmls

in the CWNIX world Thete, string parsing is suppocted by LEX and YACC.
Forth Dimensions

Primitivepatterns
mu ..." (-- p a t 1
Builds a pattern which matches the specified string.

anyofw ..." (-- p a t)

Builds a pattern which matches if the current character is in
t.he specified string.

m 1 ... u, anyof ...
Like the previous two, but can contain the double quote
character.

POS, RPOS (n -- p a t)

Build paiterns which succeed only if the current position is
n characters from the start (end) of the string.

HEAD, T A I L
Patterns which match the beginning (end) of the string.

Oyerntors
& & (p a t 1 pa t2 -- p a t 3)

Builds a pattern which matches pat1 followed by pat2
(concatenation).

((i p a t 1 pa t2 -- p a t 3)

Builds a patternwhich tries to match patl . If the match or any
succeeding match fails, goes back (backtracks) and tries to
match pat2 (alternation).

[&

Starts a concatenation chain.

&]

Closes a concatenation chain. ALI patterns between [& and &]

are linked with & &. [& a b c 6r] is equivalent to a b c & & &&.

[I
StarLs an al~ernation chain.

1]
Closes an alternation chain. All patterns between [(and J are
linked with I 1 .

I

21

OPT (p a t -- p a t ? 1
~ui lds a pattern which optionally matches pat.

- - (p a t -- ! p a t)

~ui lds a pattern which matches anything but pat. If success-
ful, matches the shortest substring whch cannot be contin-
ucd to match pat (negation).

MANY (p a t 1 -- pa t2)

Ma~chcs several (possibly 0) copies of patl. The number of
copies matched is h e least needed to enablc the rest of the
pattern to match. Since MANY matches the Ieast number of
copics, a pattern should bc concatenated to it to prevent
MANY matching the null string.

MOST (p a t 1 -- p a t 2)

Like MANY, but matchcs the maximum number of copies
possible. This can sometimes take a lot of time, so MANY is
generally preferable.

A Few Examples
mff abc" m" de f " & &

matches "abcdef'

m" abc" m" de f " 1
matches "abc" or "deP'

CUT Prevcnts backtracking behind its use.

CUT "freezcsn thc currcnt state of matching, and docsn't
let subsequent backtracking change it. It is a powerful tool
for speeding up long matches, but should be used with
exlreme caution.

Structuring Patterns
As mentioned before, patterns can be stored as constants.

This allows us to structure our patterns. For example, to
match a series of numbers, use:

anyof 'I 01.23456789" c o n s t a n t d i g i t
d i g i t d i g i t most & & c o n s t a n t number
number [& m" " m" " many number & I most
c o n s t a n t number-l is t

Here, a number is defined as at least one dgit, and a
number list as at least one number, with successive numbers
separated by at least onespace. Thisstructuremakes patterns
more readable. Instead of the unreadable regular expression
for a floating-point number, we write:

[& number m" ." number & & op t
anyof" Ee" number && op t & I
c o n s t a n t fp-number

[& m" Th"
[I mu eirn mw a t w m" erew I] mu !" ti]

matches "Their!", "That!" or "There!"

anyof" 0123456789" many
matches "123", "0123", etc., but if unanchorcd will match ""
(the null string)

[& m" Good" m" bye" -- & I
matchcs "Goodl" from "Goodly" or "Good " from "Good
riddance", but fails to match "Goodbye"

[& m" xy" many m" xyz" & I
matches "xyz", "xyxyz", "xyxyxyz", etc.

[& m f xy l most m f xyzf &]

as above

Note the behaviour O ~ M A N Y in the last example: m" xy"
most seems to avoid matching the final "xy", so as to enable
m" xyz" to successfully match. This seemingly intelligent
behaviour is characteristic of all the pattern-matching hnc-
tions which involve a choice (I I , MANY, MOST). What
actually happens is a search between all the different
possibilities. This is explained in further detail in the ncxt
section.

Three special patterns are defined, which are sometimes
useful:

FAIL Fails to match, causes a backtrack.
NULL Matches the null string, always succeeds.
Julv 1992 Auaust 22

The pattern language dcscribed up LO here is very useful,
but it isn't really more powerful than regular expressions. In
order to be able to count, we need recursion: the ability to
call the current pauern, or to forward reference a pattern.

In Forlh, this is usually done by using DEFER^^ words or
variables containing the execution address. At compile time,
code to fetch the value is laid down; at execution time, the
actual address is fetched. The pattern matcher contains
@CALL, which works like PERFORM.

@CALL (v -- p a t)
Returns a pattern which will call the pattern stored in variable
v Always succeeds.

So we can write (using some of the previous definitions):

v a r i a b l e l ist
number list @ c a l l I I c o n s t a n t i t e m
i t e m [& m" mIf " many i t e m & I
many cons t an t items
mw (" items m") " l i s t !

This matches lists, where a list may contain numbers or
further lists, but no null list is permi~ted.

The remaining three words don't perform any pattern-
matching actions, but instead allow thc user's words to be
executed during the matching operation. Obviously, these
words cannot leave values on the stack, since h e pattern
matcher uses the stack.

Instead, an auxilia7ystackisprovided, accessed by >AUx
and AUX>. The auxiliary stack is restored when backtracking,

Forth D~mensrons

FIG
MAIL ORDER FORM

HOW TO USE THIS FORM: Please enter your order on the back page of this form and send with your payment to the Forth Interest Group.
Most items list thrce different price categories: USA, Canada, and Mexico / Othcr counlries via surface mail /Other countries via airmail

Note: Where only two prices are listcd, surfacc mail is not available.

FORTH DIMENSIONS BACK VOLUMES
A volume consists of the six issues from the volume year (May-April)

"Were Sure You Wanted TO Know ..."
151 - $415 Forfh Dimensions, Article Reference

An index of Forth articles, by keyword, from Forth Dimemtons
Volumes 1-13 (1978-92).

FORML, Article Reference 152 - $415 . An index of Forth articles by keyword, author, and date from the
FORML Conference P r o d i n g s (1980-90).

Volume 1 Forth Dimensions (1979-80) 101 - $15/16/18
Introduction LO FIG, threaded code, TO variablcs. fig-Forth.

Volume l o ~ o n h Dimensions (1988-89) 110 - $20/2U25
dBase file access. string handling, local variables, data structures,
object-oriented Forth, linear automata, standalone applications,
8250 drivers. serial data compression.

Volume 11 Forth Dimensions (198%90) 1 11 - $20/22/25
Local variables. graphic filling algorithms. 80286 extended
memory, expert systems, quaternion rotation calculation,
multiprocessor Forth, double-entry bookkeeping, binary table
search, phase-angle differential analyzer, sort contest.

Volume 2 Forth Dimensions (1980-81) 102 - $15/16118
Recursion, file naming, Towers of Hanoi. CASE contest, input
number wordset. 2nd FORML report. FORGET, VIEW.

Volume 3 Forth Dimensions (1981-82) 103 - $15/16/18
Forth-79 Standard. Stacks, HEX, database, music, memory man-
agement, high-level interrupts, string stack, BASIC compiler.
recursion, 8080 assembler.

Volume 4 Fonh Dimensions (1982-83) 104 - $15116118
Fixed-point trig., fixed-point square root, fractional arirhmdc.
CORDIC algorithm, intermpts, stepper-motor control, source-
screen documentation tools, recursion, recursive decompiler, file
systems, quick text formatter, ROMmable Fonh, indexer, Forth-
83 Standard, teaching Forth, algebraic expression evaluator.

Volume 5 Forth Dimensions (1983-84) 105 - $15/16/18
Computer graphics, 3D animation, double-precision math words,
overlays, recursive sort, a simple multi-tasker, metawmpilation,
voice output, number utility, menu-driven software, vocabulary
tutorial, vectorcrd execution, data acquisition, fixed-point
logarithms, Quicksort, fixed-point square root.

Volume 12 Forth Dimensions (1990-91) 11 2 - $20122/25
Floored division, stack variables, embedded control. Atari Forth.
optimizing compiler, dynamic memory allocation. smart RAM.
extended-precision math, intermpt handling, ncural ncts, Soviet
Forth, arrays, metacornpilation.

FORML CONFERENCE PROCEEDINGS
FORML (Forth Modification Laboratory) is an educational
forum for sharing and discussing new or unproven prorsals
intended to benefit Forth, and is an educational forum for lscus
sion of the technical aspects of applications in Forth. Prowedings
are a compilation of the papers and abstracts prescntcd at the
annual conference. FORML is part of the Fonh Interest Group.

1980 FORML PROCEEDINGS 310 - $30/31/40
Address binding, dynamic memory allocation, local variables,
concurrency, binary absolute & relocatable Ioadcr, LISP, how to
manage Forth pro'ects, n-level file system, documenting Forth,
~ o r t h structures, dorth strings.

1981 FORMI, PROCEEDINGS 3 11 ,- $45148155
CODE-less Forth machine, quadruple-precision arithmetic,
overlays, executable vocabula stack, data typing in Forth,
vectored data structures, usingTorth in a classroom, pyramid
files, BASIC,LOGO, automatic cueing languageformultimedia,
NEX0S-a ROM-based multitasking operating systcm.

1982 FORML PROCEEDINGS 312 - $30/31/40
Rodtwell Forth processor, virtual execution. 32-bit I'orth. ONLY
for vocabularies, non-IMMEDIATE looping words, numbcr-
input wordset. UO vectoring. recursive data structures, program-
mable-logic compiler.

Volume 6 Foah Dimensions (1984-85) 106 - $15/16/18
Interactive editors, anonymous variables. list handling, integer
solutions, control structures, debugging techniques, recursion,
semiphores, simple UO words, Quicksort, high-Icvel packet
communications, China FORML.

Volume 8 Fonh Dimensions (1986-87) I08 - $20/22125
hterruptdriven serial input, data-base functions. TI 991A.
XMODEM, on-line documentation, dual-CFAs, random
numbers, arrays, file query, Batcher's sort, screenless Forth,
classes in Forth. Bresenham line-drawing algorithm, unsigned
division, DOS file 110.

1983 FORML PROCEEDINGS 313 - $30/32/40
Non-Von Neuman machines, Forth instruction set, Ch~nese
Fort!, F83, compiler & interpreter co-routines, lo & exponential
function, rational arithmetic, transcendentaf functions in
variable-precision Forth. portable filesvstem interface. Forth

Volume 7 Forh Dimensions (1985-86) 107 - $20/22/25
Generic sort, Forth spreadsheet, control structures, psuedo-
interrupts. number editing, Atari Foah, preUy printing, code
modules. universal stack word, polynomial evalua~ion, F83
strings.

Vnlumc 9 Forth Dimensions (1987-88) 109 - $20/22#
Fractal landscapes, stack error checking, perpetual datc routines.
headless compiler, execution security, ANS-Forth meeting,
computer-aided instruction, local variables, transcendental funo
tions, education, relocatable Forth for hsOM).

'coding conventions, c x s r i systems. -
1984 FORML PROCEEDINGS 314 - $30/33/40

Forth expert systcms, consequent-reasoning inlcrence en inc.
Zen floating point, rtable graphics wordset, 32-bit &rth,
piler FIP71B design, Foah, arrays N ~ ~ ~ b j e c t - o n e n t e d and stack variables. programming, decom-

1985 FORML PROCEEDINGS 315 - $30/32/40
Ibreaded binary trees, natural language parsing, small learning
expert system, LISP. LOGO in Fonh. Prolog interpreter, BNF
parser In Forth, formal rules for phrasinfi, Forth coding
wnvcntions, fast high-level floating point, orth component
library. Forth & artificial intelligence, electrical nctwork
analysis, event-driven multitasking.

1986 FORML PROCEEDINGS 3 16 - $30/32/40
Threading techniques. Prolog, VLSI Forth microprocessor,
natural-language interface, expert system shell, inference engine,
multiple-inheritance system, automatic programming cnvlron-
ment.

; - These are your most up-to-date indexes for back issues of Forth Dimensions and the FORML proceedings.

1987 FORML PROCEEDINGS 3 17 - $40143150
Includes papers from '57 curoFORMI, Conference. 32-bit Forth,
neural networks, control structures, AI, optimizing compilers,
hypertext, field and record structures. CAD command languagc.
object-oriented lists, trainable neural nets, expert systems.

1988 FORML PROCEEDINGS 3 18 - $24M/34
Human interfaces, simple robotics kernel, MODUL Forth,
languagc topics, hardwafe, Wil's workings & Ting's philoso hy,
Forth hardware appllcatlons, ANS Forth session, future of &rth
in A1 applications.

1988 AUSTRALIAN PROCEEDINGS. 380 - $24/25134
Proceedings from rhc first Australran Forth Symposium, held
Ma 1988 at the University of Technology in Sydney. Sub'ects
incLde training. parallel processing, programmable controhcrs,
Prolog, simulations, and applications.

1989 FORML PROCEEDINFS l9 - $40143150
Includes papers from 89 euroFORMI,. Pascal to Forth,
extensible optimizerfor compiling, 3D measurement with object-
oriented Forth, CRC polynomials, F-PC. Harris C cross-
compiler, modular approach to robotic control, RTX recompiler
for on-line maintenance, modules, trainable neural ncts.

1990 FORML PROCEEDINGS 320 - $40143150
Forth m mdustly. communlca~ions monitor. 6805 development.
3-key keyboard, documentation techniques, object-oriented
programming, simplcst Fo& decompiler, error recovery, stack
operations, process control event management, control structure
analysis, systems design course, group theory using Forth.

BOOKS ABOUT FORTH

ALL ABOUT FORTH, 3rd ed., June 1990, Glen B. Haydon 201 - $901'921105
Annotated glossary of most Forth words in common usage,
including Forth-79, Forth-83, FPC. MVP-Forth. Implementation
examples in high-level Fwnth and/or 8086B8 assembler. Useful
commentary given for each entry.

THE COMPLETE FORTH, Alan Winfield 210 - $14115119
A comprehensive mtroducuon, including problcms with answers
(Forth-79).

eFORTH IMPLEMENTATION GUIDE. C.H. Tkg 215 - $25/26/35
eForth is the name of a Forth model designed to be portable to a
large number of the newer, more powerful processors available
now and becoming available in the near future. (wldisk)

F83 SOURCE. Henry Laxen & Michael Peny 217 - $20n1n0
A complete listing of F83, including source and shadow screens.
Includes introduction on getting started.

FORTH: A TEXT AND REFERENCE 219 - $31/32/41
Mahlon G. Kelly & Nicholas Spies
A textbook approach to Forth, with comprehensive rcfercnces to
MMS-FORTH and the '79 and '83 Forth standards.

THE FORTH COURSE, Richard E. Haskell 225 - $25/26/35
This set of 11 lessons, called the Forth Course, is designed to make
it easy for you to learn Forth. Thc material was developed over
several years of teaching Forth as part of a senior/graduate course
in design of embedded software computer systems at Oakland
University in Rochester. Michigan. (wldisk)

FORTH ENCYCLOPEDIA, Mitch Derick & Linda Baker 220 - $30/32/40
A detailed look at each fig-Forth instruction.

FORTH NOTEBOOK, Dr. C.H. T i g 232 - $25/26/35
Good examples and applications. Great learning aid. poly-
FORTH is the dialect used. Some conversion advice is included.
Code is well documented.

FORTH NOTEBOOK II. Dr. C.H. Ting 232a - $25i26/35
Collection of research papers on various topics, such as image
processing, parallel processing. and miscellaneous applications.

F-PC USERS MANUAL (2nd*ed., V3:5) 350 - $20/21M
Users manual to the public-doman Forth system optimized for
IBM PCIXTIAT computers. A fat, fast system with many tools.

F-PC TECHNICAL REFERENCE MANUAL
A must d you need to know the Inner workings of F-PC. 351 - $30/32/40

INSIDE F-83, Dr. C.H. Ting 235 - $25/26/35
Invaluable for those using F-83.

LIBRARY OF FORTH ROUTINFS AND UTILITIES,
James D. Terry 237 - $23125/35
Comprehensive collection of professional quality computer code
for Forth; offers routines that can be put to use in almost any Forth
application. including expert systems and natural-languagc
interfaces.

O B J m ORIENTED FORTH, Dick Fountain 242 - .$2~t29/34
Implementation of data structures. First book to make object-
oriented programming available to users of even very small home
computers.

SEEING FORTH, Jack Woehr 243 - $25/26/35
". ..I wouldliketo shareafew observations on1:oah and cornpuler
science. That is the purpose of this monograph. It is offered in the rn hope that it will broaden slightly the streams of Forth literature ..."

SCIENTIFIC FORTH, Julian V. Noble 250 - $50152160
Scientific Forth extends the Forth kemel in the direction of
scientific problem solving. It illustrates advanced Forth
programming techniques with non-trivial applications:

rn
computer algebra, roots of equations, differential equations.
function minimization, functional representation of data (FFT,
polynomials), linear equations and matrices, numerical
integrationMonte Carlo methods, high-speed real and complex
floating-point arithmetic. (Includes disk with programs and
several utilities)

STACK COMPUTERS, THE NEW WAVE 244 - $62/65/72
Philip J. Koopman, Jr. (hardcover only)
Presents an alternative to Complex Instruction Set Computers
(CISC) and Reduced Instruction Set Computers (RISC) by
showing the mengrhs and weaknesses of stack machines (hard-
cover only).

STARTING FORTH (2nd ed.), Leo Brodie 245 - $29/30/38
In this edition of Starling Forth-the most popular and complete
introduction to Forth-syntax has been expanded to include the
Fonh-83 Standard.

WRlTE YOUR OWN PROGRAMMING LANGUAGE USING C++,
Norman Smith 270 - $15116118
Ihis book is about an application language. More specifically, it
is about how to write your own custom application language. The
book contains the tools necessary to begin the process and a
complete sample language implementation. [Guess what language!]
Includes disk with complete source.

ACM - SlGFORTH
The ACM SIGForth Newsletter is published umerly by the
Association of Computing Machinery, Inc. ~16korth's focus is
on the development and refinanent of concepts, methods, and
techniques needed by Forth professionals.

Volume 1 S ring 1989, Summer 1989, #3, #4 910 - $24/26t34
F-PC. gPossary utility, Euroforth, SIGForth '89 Workshop
summary (real-time software engineering), Intel 8 0 x 8 ~ .
Metacompiler in cmForth. Forth exception handler, string case
statement for UFForth. 1802 simulator, tutorial on multiple
threaded vocabularies. Stack frames, duals: an alternative to
variables. PocketFonh.

Volume 2 #I, #2, #3, #4 920 - $24/26/34
ACM SIGForth Industry Survey, abstracts 1990Rochester conf.,
RTX-UKX). BNF Parser. abstracts 1990 Rochester conf.. F-PC
Teach. Tethered Forth model, abstracts 1990 SIGForth conf.
Target-meta-cross-: an engineer's viewpoint, single-instruction
wmputer.

Vdume 3, #1 Summer '91 908 - WlI9
Co-routines and recursion for tree balancing, convenient number
handh

Volume 3, #k~a11'91 909 - %/7I9
Postscript Issue. What is Postscript?. Forth inPostscript. Review:
PS-Tutor.

1989 SIGForth Workshop Proceedings 931 - $20/21/26
Software engineering, multitasking, interrupt-driven systems,
object-oriented Forth, error rewkery and control, virtual memory
support, signal processing.

1990-91 SIGF'orth Workshop Proceedings 932 - $20/21/26
Teaching computer algebra, stack-based hardware, reconfig-
urable processors, real-time operating systems, embedded
control, marketing Forth, development systems, in-flight
monitoring, multi-processors, neural nets, security control, user
interface, algorithms.

DISKS: Contributions from the Forth Community PocketE'urth V1.4, Chris Heilman c3ao - (1)
Smallcst complctc Forth for the Mac. Access to all Mac functions,

The "Contributions from the Fonh Community" disk library contains files, graphics, floating oint, macros, create standalone
author-submitted donations, general1 including source. for a variety applicaiions and DAs. Baseifon fig & Slariing Forth. Incl. source
of com ukrs & disk formats. Each d e is determined by the ?u+or as and manual. MAC
public Somain, shareware, or use with some restrictions. T h ~ s library
does not contain "For Sale" applications. To submit your own contri- Yerkes Forth V3.6 C350 - (2)
butions, send them to the FIG Publications Committee. Complete object-oriented Fo& for the Mac Object access to all

Mac functions, files, graphics. floating point, macros, create
Prices: Each item below comes on one or more disks, indicated in standalone ap lications. Incl. source, tutorial, assembler &
parenthcses after the itcm number. The price of your order is $61'9 per manual. MA< Sys~em 7.01 Co~npa~able.
disk. or $25/37 for any five disks.

JLlSP Vl.0, Nick Didkovsky C401 - (1)
FLOAT4th.BLK V1.4 Rokrt 1.. Smith Cool - (1) I.ISP interprer invoked rrom Amiga JFonh. Thc nuclcus of the

Software floating-pomt for fig-, p l y - , 79-Std., 83-Std. interpreter is the result of Martin Tracy's wok. Extended to allow
Fonhs. EOE short 32-b~t, four standard functions, square the LISP interpreter to link to and execute JFoorth words. It can
root and log. IBM. communicate with JForth's ODD (Object-Development

Environment). AMIGA, 83.
Games in Forth

Misc, games. Go, TETRA, I ife ... Source. IBM
-

Pygmy V1.3, Frank Sergeant CSW - (1)
A lean, fast Forth with full source code. Incl. full-screen editor,

A Forth Spreadsheet V2. Craig Lindley COO3 - (1) assembler and metacompiler. Up to 15 files open at a time. IBM.
This model spreadsheet first a m e d in Forth Dimensions
VII, 1-2. Those issues contain docs & source. IBM KForth, Gu Kelly C600 - (3)

A full 6onh system with windows, mouse, drawing and modem
Auton~atic Structure Charts V3, Kim IIarris COO4 - (1) packages. Incl. source & docs. IBM, 83.

Tools for analysis of lar e Forth programs, first presented at
M ~ ~ ~ c o n f e r e n c e . F U ~ I source; docs incl. in 1985 MRML ForST. John Redrnond C700 - (1)
Proceedings. IBM Foorth for the Atari ST. Incl. source & docs. Atari ST.

A Sin1 le Inference Engine V4, Marlin Tracy Coo5 - (1) Mops V2.0, Michael Hore C710 - (1)
&sed on inf. engine in Winston & Horn's book on LISP, Close cousin to Yerkes and Neon. Very fasl co iles subroutine-
takes you from pattern variables to complete unificabon threaded & native code. Object oriented. ~sesmF)-~ co-processor
algorithm, with rumin commentaly on Forth philosophy& if resent. Full access to Mac toolbox & s stem. Supports S stem
style. 1x1. source. I B ~ 7 re.g., AppleEvent~). Incl, assembler. &cs & sourcc. M ~ C

The Math Box V6. Nathaniel Grossman COO6 - (1) BBL & Abundance, Roed Grecn C800 - (4)
Routines by foremost math author inForth. Extended double- RRL publiodomain, 12-bit FO& with extensive support of DOS,
precision arithmetic. complere 32-bit fixed-pint math, & meticulously optimized for execution speed. Abundance is a
auto-ranging text. Incl. graphics. Utilities for rapid ublic-domain database Ian uage written in BBL. Req. hard disk.
polynomial evaluation, contmued fradions & Monte Carlo Rcl. source & docs. IBM f i ~ hard disk reequired
factorization. Incl. source & docs. IBM

AstroForth & AstroOKO Demos, I.R. Agumirsian COO7 - (1)
AstroForth is the 83-Std. Russian version of Forth. Incl.
window interface, full-screen editor, dynamic assembler &
a great demo. AstroOKO, an astronavigation system in
AstroForth, calculates sky position of several objects from
different earth positions. Demos only. IBM

Forth List Handler V1. Martin Tracy COO8 - (1)
List primitives extend F o A to provide a flexible, high-
s ed environment for AI. Incl. ELISA and Winston &
E r n ' s micro-LISP as examples. Incl. source & docs. IBM

CO50 - (4) 8051 Embedded Forth. William Payne
8051 ROMmable Forth operating system. 8086-to-8051
target compiler. Incl. source. Docs are tn the book Embedded
Controller Forth for the 8051 Family. IB M

F83 V2.01, Mike Perry & Henry Laxen ClOO - (1)
The newest version, ported to a variety of machines. Editor,
assembler, decompiler, metawmpiler. Source and shadow
screens. Manual available separate1 (items 217 & 235).
Base for other F83 applications. I B ~ , 83.

F-PC V3.53, Tom Zimmer C200 - (5)
A full Forth system with pull-down menus, sequential files,
editor, forward assembler, metacompiler, floating point.
Complete so- and help files. Manual for V3.5 available
separately (items 350 & 351). Base for other F-PC
applications. Req. hard disk. IBM, 83.

F-PC TEACH V3.5. Lessons 0-7 Jack Brown C201 a - (2)
Forth classroom on disk. First seven lessons on learning
Forth, fmm Jack Brown of B.C. Institute of Technology.
IBM, F-PC.

VP-Planner Float for F-PC. V1.O1 Jack Bmwn C202 - (1)
Software floating- int engine behind the VP-Planner
s madsheet. 80-bn real) routines with transcen-
i n t a l functions, number ~ X - s u p ~ o r t , vectors to su
numeric co-processor overlay & user NAN checking. f&;
F-PC.

F-PC Graphics V4.2f, Mark Smile C203a - (3)
The latestversions of new routines. including CGA.
EGA, and VGA suppport, with numerous irn rovements
over earlier versions created or supported by d r k Smiley.
IBM, F-PC.

A r o r b m ~ e f o r . d r r c m c ~

4

J~BUV.= ~~~~~~

~ Q n b P u b b h i n g

J

fig-FORTH ASSEMBLY LANGUAGE SOURCE
Listings of fig-Forth for specific CPUs and machines with compiler security and
variable-length names (see Installation Manual, below): - $15/16/18
1802 513 - March 81 9900 519 - March 81
6502 5 14 - September 80 Apple I1 521 - August 81
6800 515 - May 79 IBM-PC 523 - March 84
6809 516 - June 80 PDP-11 526 -January 80
8080 517 - September 79 VAX 527 - October 82
8086188 518 - March 81 280 528 - September 82

fig-FORTH INSTALLATION MANUAL 501 : $15/16/18
Glossary model editor-we recornmcnd you purchasc t h ~ s
manual when purchasing any of the source code l~stings above.

SYSTEMS GUIDE TO fig-FORTH 308 - $25/28/30
C. H. Tin (2nd ed., 1989)
I1ow3sanfiwhy's of the fig-Forth Model by Bill Ragsdale, internal
structure of fig-Forth system.

MISCELLANEOUS
T-SHIRT "May the Forth Be With You" 601 - $12/13/15

(S ify size: Small, Medium, Large, Extra-Large on order form)
G e design on a dark blue shirt.

POSTER (Oci.. 1980 BYfE cover)

FORTH-83 HANDY REFERENCE CARD 683 - free

FORTH-83 STANDARD 305 - $1.5/16/18
Aulhori~tive description of Forth-83 Standard. For reference,not
Instxuction.

BIBLIOGRAPHY OF FORTH REFERENCE$ 340 - $1811 9/2.5
(3rd ed.. January 1987)
Over 1900 references to Forth aricles throughout wmputer
literature.

MORE ON FORTH ENGINES
Volume 10 January 1989 81.0 - $15/16/lS

R'IX reprints from 1988 Rochestcr Forth Conference, object-
oriented cmForth, lesser Forth engines.

Vdume 11 Jul 1989 811 - $15116118
RTX suppLent to Footsleps in an Empty Valley, SC32,32-bit
1;oorth engine, RTX interrupts utility.

Vdume 12 April 1990 812 - $15116118
Shl3onm - h i p architecture and instmctions, Neural Computing
Module NCM3233, pigForth, binaq radix sonun 80286,68010,
and RTX2000.

Vdume 13 October 1990 813 - $15/16118
PALS of the RTXU)o Mini-BEE, EBForth, AZForth, RTX-
2101, 8086 eFo~th, 8051 eForth.

Vdume 14
RTX Pockct-Sw eI:orth for muP20, ShBoom, eFonh for CPl
M & 280, XMOKM for eForth.

Vdume 15 815 - $15/16/18
Moore: New CAD Systcm for Chi Design, Aporirait of theP20;
Rible: QSI Forth Processor, Q S ~ , RISCing it all; P20 eForth
Software Simulator/Debugger.

DR. DOBB'S JOURNAL
Annual Forth issue, includes code for various Forth applications.
Sept. 1982 422 - $51617
Sept. 1983 423 - $51615'
Scpt. 1984 424 - $5/6fl

FORTH INTEREST GROUP
P.O. BOX 2154 OAKLAND, CALJFORMA 94621 51089-FORTH 510-535-1295 (FAX)

Name OFFICE USE ONLY
Company
Street Shipped by
City Amt.
State/Prov. Zip BO By Date
Country Daytime phone Wt. Amt.

Item # I Title I Qty. (Unit Price I Total
I I 1 I

CHECK ENCLOSED (Payable to: Forth Interest Group)
C] VlSA Mastercard
Card Number Expiration Date -
Signature

*MEMBERSHIP L-)

I **Sales Tax (CA only) I
Mail Order Handling Fee I $3.00 1

Sub-Total (
10% Member Discount, Member #

This includes $36/4U48 for Forth DLnensionr. 1 I

()

-
* em rs i in e 'or terest { N k R$&a? In $4%4":52
* Enclosed is $40146152 for I full year's dues.

MEMBERSHIP IN THE FORTH INTEREST GROUP
The Forth Interest Group FIG) isa wrfd-wide, non-profit, rrember-supportedorganization wth w s 1,500 mmbarsand40 chapters. %ur rrernberstipincludesastbscription bthebi-monthlymagazhe
Forth Dimensions. FIG also offers its members an on-line data base. a large selection of Forlh literature and other servims. Cost is $40 per year for U.S.A. 8 Canada surface; $46 Canada air mail;
all other countries $52 per year. No sales tax, handling fee, or discount on membershb.
When you pin, yourfirst issue will arrive in four to six w8eks:subsequent issues will be mailed to you every other month as they arepublishedsix issues in all. Your membershipentitles you to a 10%
discount on publications from FIG. Dues are not dedudible as a charitable contribution for U.S. federal income tax purposes. but may be deduciible as a business expense.

- - - - -

MAIL ORDERS
Forlh Interest Group
P.O. Box 2154
Oakland. CA 94621
PHONE ORDERS
510-89-FORTH Credit card
orders, customer service.
Hours: M o d r i , 9-5 p.m.

PAYMENT MUST ACCOMPANY ALL ORDERS SHIPPING TIME
'* CALIFORNIA SALES TAX BY COUNTY
7.5%: Sonoma; 7.75%: Fresno. Imperial.

PRICES - All orders must be prepaid. Prices are
subject to change without notics. Credit card orders
will be sent and billed at current prlces. Checks must
he in U.S. dolhrs, drawn on a U.S. bank A $10
charge will be added for returned checks.

POSTAGE & HANDLING
Prices include shipping. The
S3.M) handling fee is required
with all orders.

Books in stock are shipped inyo. Madera, Monterey, Orange, Riverside.
within seven days of recaipt of Sacramento. San Benito. Santa Barbara. San
the order. Please allow 4-6 Bernardino, San Diego, and San Joaquin;
weeks for out-of-stock books 8.25%: Alarrmda. Contra Costa. Los Angeles
(deliveries in m i c a s e s Hill be San Mateo, Santa Clara, and Santa Cruz;
much smner). 8.5%: San Francisco; 7.25%: other counties.

XIV-

allowing it to contain state idormation.

EXEC (c f a -- pat)

Returns a pattern which executes the given routinc and
matches ~ l e null string. ?he E X E C C ~ routine should have no
stack action.

PUSH
A pattern which pushcs the current position in thestring onto
the auxiliary stack, and matches the null string.

SUBSTRING (pat cfa -- pat)

Returns a pattem which performs cfa if pat matched. The
stack action of the routine shouldbe (a d r l e n --) ,where
adr and len are the address and length of the substring which
matched the pattern.

AUX> (- - n)
Pops a value off the auxiliary stack.

>AUX (n - -)
Pushes a value onto the auxiliary stack.

To load the pattern matcher, type:
f l o a d l o g i c f l o a d s t rma tch

Two words are provided to actually perform the match:

As an example of the power of suing pattern matching,
EVALSEQ contains an expression evaluator. It is practically a
direct translacion of the gr;unmar defining arihmetic expres-
sions. Type f load eval, and then eval 2+3*- (6-1).

-ign
The, design stage for this project was unusually long. I

wrote at least two incorrect versions of the pattern matcher
before I really understood pattern matching. Essentially, a
pattern can be described as a tree: leaf nodes attempt to
match charmers in the string, or to perform some other
primitive operation; other nodes concatenate or alternate
patterns. Compilation of a pattern into a tree is straightfor-
ward; the problem is performing the pattern match.

Executing leaf nodes is simple: check if the characters at
the current position match the leaf nodes. Concatenation
nodes involve matching frst one sub-panem and, if it
succeeds, the next one.

The trickybit is alternation: the first sub-pattern should be
executed; if the match or any subsequent match fails, the
second sub-pattern should be tried. What is needed is a way
of storing the current state of the matching process, so that
we'll be able to return to it. Part of the answer is to push the
state onto a special backtrack stack. Whenever a match fails,
pop a state off that stack and continue execution from there.

What constitutes the "current state"? Consider matching
the pattern mw abcdw mu abc" m" def" & &

PMATCH (a d r l e n p a t -- ? l e n f l a g)

Attempts to match the string adr, len to pat If the match
succeed5, returns the length of the match and true. If it fails,
returns false.

PSEARCH
(a d r l e n pa t -- f a l s e o r a d r l e n true)

Attempts to match pat to a substring of adr, len. If a match
is found, returns the address and length of the match and true.
If no match is found, returns false.

The pattern doesn't have to match the entire string. If you
want to force the entire string to be matched, use TAIL at the
end of the pattern.

to the string "abcdef" (see Figure One for the pattern's
structure). The fust four characters are matched, but then m"
def" fails. Backtracking, we match the first three characters.
We now need to match the second half of the root & & node.
Obviously, the current position in the string is part of the
state. But the matcher also needs to know where to continue
after the substring is matched.

The stumbling block here b that the current state has a
variable size. Descending the pattern tree is a recursive
process; this means we have to store return information on
a call stack. The current state is the cursor position, along with
the entire call stack.

The matching algorit.lun follows easily:

Empry call and backtrack stacks.
Figure One. I Yush pattern's root onto call stack.

While call stack isn't empty:

Structure of PC$ node off call stack.

m" abcd" m" abc" [1 m" d e f " & & Case of node:
AND node:

push 2nd and 1st subtrees onto call stack,

and-node succeed.

r' -I
OR node:

push 2nd subtree onto call stack,
push current state onto backtrack stack,

"def" replace 2nd subtree on call stack with 1st subtree,
succeed.

"abcd" leaf node:
match to string,
succeed or fail accordingly.

gfailed:
Forth Dimensions 23 Julv 1992 Auaust

Ifbacktrack stack empty, entire match failed. MlT.
ekepop new state off backtrack stack.

Entire match succeeded. EXIT.

To make things clearer, special leaf nodes (CUT, FAIL,
NULL), and the operators --, MANY, and MOST weren't
included in the algorithm. -- can be simply expressed in
terms of backtrack- and call-stack actions: Push two special
values onto the backtrack and call stacks. Attempt to match
x. Ifx failed, the bachckstack is popped. This indicates the
negationsucceeded. If x succeeded, the call stack is popped.
This indicates negation failed, so pop all entries on the
backtrack stack, including the special value, and continue
badaracking from there.

MANY is defined in terms of NULL, I I , and & & . A circular
reference is uscd, since repetition is basically recursion. x
WY is equivalent to *match nothing, or else x followed by
x MANY." Every failure following x MANY causes backtrack-
ing, which causes another repetition ofx to be matched. Thc
structure of x MAE~Y (and of x MOST) appears in FigureTwo.

Implementation
Since a major part of the string-matching algorithm is the

case statement on the various node types, it makes sense to
use data direction to implement it. The first cell (16 bits) of
every pattern tree node points to the execution word for that
routine. The node may have private data following. The stack
action of the execution word is (private -- flag) ,
where private points to the start of private data and flag is true
if the match succeeded.

Structure of
x MANY and x MOST

Figure Two.

ing dictionary memory above
adr as shown in Figure Three.
Here, <m> is the address of

For instance, the pattern
I m ' Hello ' returns adr, fill-

I used in any pattern-match- /

x MANY x MOST

NULL

X X

the execution routine form ' .
This is followed by the
countedstring to bematched.
The pattern m" abc" m"
de f " 1 1 sets up memory a s
shown in Figure Four (the
details of the two subpatterns
are suppressed for clarity).
<I I > is the execution word
for alternation. This word

adr + 2 + 4

ing situation-for instance,

m" def"

performs the actions of an
OR node, pushing the cur-

Figure Three. rent state onto the backtrack

Figure Four.

dent operators and the main
loop, and a "string matcher"
(SW1'CH.SEQ) which an-
chors patterns to h e string
by actually matching
substrings.

The data-directed ap-

matching lists. Hence, the

Julv 1992 A uaust 24

stack and proceeding with
the first option. The addresses
of the two options are stored
in the two private data words.

Most of the operators in-
volved in pattern matching
(&&, 1 , --, NULL, FAIL,
etc.) are unrelated to the
representation used for
strings. In fact, they can be

Block returned by
m' Hello'

adr t2 t3 t4 + 5 + 6 +7 t8

I

Forth Dimensions

<m>

pattern matcher is logically
Block returned by
m" abc" m" def" 1 1

private data

5

separable into two parts: a
"logic engine" (LOGIC.SEQ)
which provides the indepen-

'HI e ' '1' ' 1 '

proach allows us to define the main loop (in LOGIC.SEQ)
before we de f i e the suing-malching n o d c s ~ " and ANYOF l1
(in STRMA'rCII.SEQ). It also leads to cleaner code: the main
loop (DRIVER in LOGIC.SEQ) is defined by just 20 words,
each operator is defied by two words (run time and compile
time), and new operators arc easily added.

Conclusions
Although1 couldn't find any literature on thcsubject, 1 was

able to implement advanced pattern matching by using
standard Forth techniques: stacks, hnctlonal decomposition,
minimal syntax, and separation of compile time from run
time. Two complex designs led to two long, cumbersome,
incorrect, and uncorrectable implementations. The final
design is elegant, uniform, and easy to implement.

Data-directcd programming is a very powerhl technique
which, in my opinion, isn't used enough. To use it, specify
a uniform stack action for a class of routines and use their
CFAs as type identifiers; then just EXECUTE your type
identifier. The advantages: a CASE or EXEC : statement (and
its overhead) is eliminated, and new data types can be
installed transparently. DRIVERinLOGIC.SEQ doesn't "know"
about any node types; it just knows the stack action. DDP isn't
a substitute for OOP, but it's still useful!

B&liography
I was unable to find a great deal of literature on string

matching (unlike the related subject of parsing, which is very
well established). What I could find, and used, was:
1. Algorithms (2nd ed.) by R. Sedgewick; Addison-Wesley,
1988, pp. 234-. Contains a chapter on matching regular
expressions using finite-state machines.
2. Vanilla SNOBOL4 - Tutorial and Kefemce Manual by
Mark B. Emmer. Distributed along with Vanilla SNOBOL4 by
Catspaw, Inc. 1987. This is a public-domain implemen~ation
of the SNOBOL language with complete documentation. The
documentation also mentions 7heMucm Implementution of
SNOBOL4by Ralph Griswold (W. H. Freeman, 1972). I have
been unable to find this book, but the
description seems to indicate that it
covers pattern matching.
3. Any UNIX system has AWK, LEX,
and YACC, together with documenta-
tion. These programs are also avail-
able for the PC in various guises. A W
is a string-processing language, LEX is
a lexical analyzer, and YACC is a parser
generator used for writing compilers.

[Code implementing the ideas in
this article will appear in our next
issue. -Ed.]

Currently doing National Service, Ariil Scolnicov
plans to start studying mathematics and computer
science at Hebrew University next autumn. He
enjoys Forth's ability to cover new concepts under
a uniform syntax. Readers can correspond with him
at P.O. Box 2747, Mevasseret Zion 90805, Israel.

Forth Dimensions

I fP@ Trial
Subscription

There are whole other worlds in micro computers
than DOS and Windows. If embedded controllers,
Forth, SlOO, CP/M or robotics mean anything to you,
then you need to know aboutThe Computer Journal.

Hardware projects with schematics, software
articles with full source code in every issue. And you
can try The Computer Journal without cost or risk!
Call toll free today to start your trial subscription and
pay only if you like it.

Rates: $18/year US; $24/year Foreign. You may
cancel your subscription without cost if you don't feel The
Computer Journalis for you. Publislled six times a year.

(800) 4248-TCJ / (908) 755-61 86

T i The Computer Journal
The Spirit of the Individual Made This Industry

Socrates Press
PO Box 12
S. Plainfield NJ 07080-0012

Julv 1992 Auaust

A

China3 National
Forth Exa ination
Ranslated by C. H. Ting
San Ma teo, California

Last year, the People's Republic of China administered itsfirst-and, m farm we h o w , the wodd'sfirst-national test of
Forth howledge and expeflise. In a huge county wherepaitions in industy and academia are earnestly sought by many
candidates, and where the results offormultxarninatiolzli can be decisive facton shaping one'sfiture, thb test mumesgreat
sgnlJlcance in the lives of Fortbpmgrammers there. We invite you to measurepur ouvn Forth qer t i se by taking the same
imamination. 75ose who would like to have theiranswen checked cansend them to Dr. Ting at 156- 14th Avenue, Sun Mateo,
California 94302.

1991 China National Forth Programmer Examination
Total Time: 180 Minutes, Total Score: 180 points.

All problems are scored according to the Forth-83 Standard. Assume the base to be decimal
unless noted otherwise.

Part One. Camputer Fundamentals (36 points)
Calculations (Write down only the results.) (6 points)
1. Convert hex 1991 to binary. (2 points)
2. Convert hex ABE to decimal. (2 points)
3. Convert hex BAD to octal. (2 points)

Multiple Choices (26 points)
1. Convert a decimal fraction 0.875 to 8 binary digits. (6 points)

Its octal expression is:
A. 0.1100000 B. 1.1110000 C. 1.0100000 D. 0.0110000
Its two1 s complement is :
A. 1.0010000 B. 0.0100000 C. 1.1100000 D. 0.1100000
Its one's complement is:
A. 0.0011111 B. 1.0100000 C. 1.0001111 D. 0.0111111
The logic expression A(l+B) is: (2 points) -
A . A B . 1 C. AB D. AB
A computer has a memory capacity of 64KB. Its address registers must have: (2 points)
A. 15 digits B . 14 digits C . 16 digits D. 17 digits
The register which sequences the execution of Forth words is: (2 points)
A. Work register W B. Program counter PC
C. Interpreter pointer I D. Code field address CFA
In a CPU, the register which sequences the execution of instructions is: (2 points)
A. Accumulator B. Program counter
C. '~nternal address register D. Instruction register
A stack is a linear list. It is characterized by: (2 points)
A. An end point B. A middle point
C. First-in First-out D. First-in Last-out
The assembler producing object code for a different computer is called: (2 points)
A. Macro assembler B. General assembler
C. Micro assembler D. Cross assembler

Julv 1 992 Auaust
I

Forth Dimensions

HARVARD S O F T W O R K S
NUMBER ONE IN FORTH INNOVATION

(513) 748-0390 P.O. Box 69, Springboro, OH 45066

MEET THAT DEADLIIW I I I

Use subroutine libraries written for
other languages! More efficiently!
Combine raw power of extensible
languages with convenience of
carefully implemented functions!
Faster than optimized C!
Compile 40,000 lines per minute!
(10 Mhz 286)
Totally interactive, even while
compiling!
Program a t any level of abstraction
from machine code thru application
specific language with equal ease
and efficiency!
Alter routines without recompiling!
Source code for 2500 functions!
Data structures, control structures
and interface protocols from any
other language!
Implement borrowedfeatures, more
efficiently than in the source!
An architecture that supports small
programs or full megabyte ones
with a single version!
No byzantine syntax requirements!
Outperform the best programmers
stuck using conventional languages!
(But only until they also switch.)

HS/FORTH with FOOPS - The only
f u l l m u l t i p l e i n h e r i t a n c e
interactive object oriented
language under MSDOS!

Seeing is believing, OOL's really are
incredible at simplifying important
parts of any significant program. So
naturally the theoreticians drive the
idea into the ground trying to bend all
tasks to their noble mold. Add on
OOL's provide a better solution, but
onlv Forth allows the add on to blend
in as an integral part of the language
and onlv HS/FORTH ~rovides true
multiple inheritance & membership.

Lets define classes BODY, ARM, and
ROBOT, with methods MOVE and
RAISE. The ROBOT class inherits:
INHERIT> BODY
HAS> ARM RightArm
HAS> ARM LeftAnn

If Simon, Alvin, and Theodore are
robots we could control them with:
Alvin 's RightAnn RAISE or:
+5 -10 Simon MOVE or:
+5 +20 FOR-ALL ROBOT MOVE
The painful OOL learning curve
dimppears when you don't have to
force the world into a hierarchy.

WAKE UP ! ! !

Forth need not be a language that
tempts programmers with "great
expectations", then frustrates them
with the need to reinvent simple tools
expected in any commercial language.

HS/FORTH Meets Your Needs!

Don't judge Forth by public domain
products or ones from vendors
primarily interested in consulting -
they profit from not providing needed
tools! Public domain versions are
cheap - if your time is worthless.
Useful in learning Forth's basics, they
fail to show its true potential. Not to
mention being s-1-o-w.

We don't shortchange you with
promises. We provide implemented
functions to help you complete your
application quickly. And we ask you
not to shortchange us by trying to
save a few bucks using inadequate
public domain or pirate versions. We
worked hard coming up with the ideas
that you now see sprouting up in other
Forths. We won't throw in the towel,
but the drain on resources delays the
introduction of even better tools that
could otherwise be making your life
easier now! Don't kid yourself, you are
not just another drop in the bucket,
your personal decision really does
matter. In return, well provide you
with the best tools money can buy.

The only limit with Forth is your
own imagination!

You can't add extensibility to fossilized
compilers. You are at the mercy of
that language's vendor. You can easily
add features from other languages to
HS/FORTH. And using our automatic
optimizer or learning a very little bit
of assembly language makes your
addition zip along as well as and often
better than in the parent language.

Speaking of assembler language,
learning i t in a supportive Forth
environment virtually eliminates the
learning curve. People who failed
previous attempts to use assembler
language, often conquer i t in a few
hours using HS/FORTH. And that
includes people with NO previous
computer experience!

HWORTH runs under MSDOS or
PCDOS. or from ROM. Each level includes
all features of lower ones. Level upgrades:
$25. plus price difference betweeaevels.
Source code is in ordinary ASCII text files.

HS/FORTH supports megabyte and larger
programs & data, and runs as fast as 64k
limited Forths, even without automatic
optimization -- which accelerates to near
assembler language speed. Optimizer,
assembler, and tools can load transiently.
Resize segments, redefine words, eliminak
headers without recompiling. Compile 79
and 83 Standard plus F83 programs.

PERSONAL LEVEL $299.
NEW! Fast direct to video memory text

& scaled/clipped/windowed graphics in bit
blit windows, mono, cga, ega, vga, all
ellipsoids, splines, bezier curves, arcs,
turtles; lightning fast pattern drawing
even with irregular boundaries; powerful
parsing, formatting, file and device 110;
DOS shells; interrupt handlers;
call high level Forth from intenupts;
single step trace, decompiler; music;
compile 40,000 lines per minute, stacks;
file search paths; format to strings.
software floating point, trig, transcen-
dental, 18 digit integer & scaled integer
math; vars: A B * IS C compiles to 4
words, 1..4 dimension var arrays;
automatic optimizer delivers machine
code speed.

PROFESSIONAL LEVEL $399.
hardware floating point - data structures
for all data types from simple thru
com~lex 4D var arravs - ooerations " a

complete thru complex hypcrbolics;
turnkey, seal; interactive dynamic linker
for foreign subroutine librahes; round
robin & interrupt driven multitaskers;
dynamic string manager; file blocks,
sector mapped blocks; x86&7 assemblers.

PRODUCTION LEVEL $499.
Metacompiler: DOSIROM/direcVindired;
threaded systems start at 200 bytes.
Forth cores from 2 kbytes;
C data structures & struct+ compiler;
MetaGraphics Turbowindow-C library,
200 graphidwindow functions, PostSmipt
style line attributes & fonts, viewports.

0- GLOSSARY

PROFESSIONAL and PRODUCTION
LEVEL EXTENSIONS:

FOOPSt with multiple inheritance $79.
TOOLS & TOYS DISK $ 79.
286FORTH or 386FORTH $299.
16 Megabyte physical address space or
gigabyte virtual for programs and data;
DOS & BIOS fully and freely available;
32 bit addresdoperand range with 386.

ROMULUS W O R T H from ROM $99.

Shippinglsystem: US: $9. Canada: $21.
foreign: $49. We accept MC, VISA, & AmEx

8. An operating system improves the of a computer. (2 points)
A. Speed B. Utility of resources
C. Flexibility D. Compatibility

9. In an operating system, which component is responsible for thecontrol of process
execution? (2 points)
A. Main memory manager B. Microprocessor manager
C. Processor manager D. Page memory manager

10. The component controlling the daKa In a system is: (2 points)
A. Data manager B. Document manager
C. Indexing system D. Data storage system

11. The most obvious difference between Forth and other computer languages is: (2 points)
A. It has the functions of an operating system.
B. It is an integrated programming environment.
C. It has a dictionary with stack structure.
D. It improves the portability of programs.

111. Mark a correct statement with "0". and an incorrect one with "X". (4 points)
A. A computer without external components is a 'Bare Computer'.
B. Converting often used software operations to hardware can improve the effi-

ciency of a computing system.

P a r t Two. Forth Fundamentals (90 points)
Fill the blanks (25 points)
1. I I are the three internationally recognized

Forth standards. (3 points)
2. The postfix expression of [(A-B) *C] / (D+E) is

A B - C E / (3 points)
3. To reorder the stack (1 2 3 4 -- 2 1 4 3) , use:

SWAP SWAP (2 points)
4. Compute the factorial of n (n -- n!) , with n>l:

: N! DUP ROT ?DO I * -1 +LOOP ; (1 point)
5 . Define Y= to compute y= ax2+bx+c, with the stack changes as

shown :
:Y= (x a b c - - y)

>R 2 PICK * >R DUP * (ax*x)
R> R> + + ; (2 points)

6. 3DUP (nl n2 n3 -- nl n2 n3 nl n2 n3) is equivalent to
. Each blank can only hold one Forth word. (3 points)

7. Convert a double integer to its absolute:
: DABS (d -- Id1)

DUP O< IF THEN ; (1 point)
8. : TEST 2. 0 - IF 1 ELSE 2 THEN

DUP . = IF 3 . ELSE 4 . THEN ;
Typing TEST <cr> will display (1 point)

9. DECIMAL 16 BASE ! BASE @ . <cr> will display:
(1 point)

10. HEX : NUM DECIMAL 10 HEX 10 + . ; DECIMAL
Type NUM <cr> will display (1 point)

11. 32767 1+ . <cr> will display (1 point)
12. -1 1234 C! 1234 C@ . <cr> will display (1 point)
13. 2VARIABLE XY 3 5 XY 2!

(1 point)
(1 point)

XY @ . < cr> will display
14. 1 NOT . <cr> will display
15. HERE . <cr> shows 3000

: TEST 500 CR ;
HERE . <cr> will show (1 point)

16. HERE . <cr> shows 3000
1 , 2 C, HERE . will show (1 point)

17. Following is the incomplete definition of DO. It compiles (DO) into the dictionary
and leaves HERE and 3 on the stack. Complete definition:
: DO COMPILE (DO) HERE 3 ; (1 point)

11. Multiple Choices (25 points)
1. The inventor of Forth is:

A . English B. American C. Swiss D. Japanese

Julv 7992 Auaust 28 Forth Dimensions

D. nothing

Forth originated in:
A. Chemical industry B. Automotive industry
C . Astronomy D. Light manufacturing
The postfix expression of 15/(7-2) is
A. 15 / (7-2) B. 1 5 7 / 2 -
C. - 7 2 / 1 5 D. 1 5 7 2 - /
: TEST (ABC ." DEF") ;
Type TEST <cr> will display:
A. ABC B. DEF C. ABCDEF
In the stack comment (n addr c -- f)
n is for an
A. Integer B. Address C. Character D. Logic flag
f is for an
A. Integer B. Address C. Character D. Logic flag
DECIMAL : TEST 16 HEX 10 * * ;
Type TEST <cr> will display
A. 16 10 B. A 16 C. A 10 D. 10 A
In Forth-83 Standard, the range of ud is :
A. 0 to 65535 B. -32768 to 32767
C. 0 to 4294967295 D. -32768 to 65535
In Forth-83 Standard, the range of addr is:
A . -32768 to 32767 B. -128 to 127
C. -32768 to 65535 D. 0 to 65535
The result of 13 -7 MOD is:
A. 5 B. -5 C. 1
0 -1 DABS D. will produce:
A. -1 B. 0 C. 65536
-18 5 / will produce:
A. 4 B. 3 C. -4
2 NOT 3 + -1 AND will produce:
A. -1 B. 0 C. 4
Reorder the stack (a b c d -- d c b a)
A. ROT ROT ROT ROT
B. SWAP 2SWAP SWAP 2SWAP
C. SWAP 2SWAP SWAP DUP DROP
D. 2SWAP SWAP 2SWAP SWAP
: TEST CR 3 1 DO 6 4 DO J O .R I 0 .R5 SPACES

LOOP CR LOOP ;
Typing TEST <cr> will display:
A. 14 15 B. 41 5 1

24 25 42 5 2
C. 14 15 16 D. 41 51 61

2 4 25 2 6 42 52 62
3 4 35 36 43 53 63

: TEST 0 1 5 DO I + -2 +LOOP . ; TEST will produce:
A. 15 B. 14 C. 8 D. 9
: TEST 1000 = IF KEY DROP EXIT

ELSE HEX THEN ;
The total length of this word in the dictionary is:
A. 33 bytes B. 29 bytes C. 31 bytes D. 35 bytes
VARIABLE XX 4 ALLOT VARIABLE YY 0 ,
' YY >NAME ' XX >NAME - . <cr> will display:
A. 0 B. 9 C. 13 D. 11
CR 3 SPACES 32 EMIT OUT @ 0 .R OUT @ 0 .R <cr> will display:
A . 43 B. 34 C. 45 D. 54
HERE . <cr> shows 5000
HEX 10 ALLOT DECIMAL HERE . <cr> will display:
A. 5016 B. 5000 C. 5010 D. 5020
To compile an immediate word into a colon definition, use:
A. COMPILE B. [COMPILE] C.] D. IMMEDIATE
To create a header for XXX and point DP to the beginning of its parameter field, use:
A. BUILDS> XXX B. CREATE XXX
C. : YYY CREATE XXX : D. : XXX ;
Define the following word:
: XXX CREATE , DOES> @ ;

Forth Dimensions Julv 1992 Auaust

Execute 176 XXX YYY
A. A new word YYY i s compi led t o d i c t i o n a r y . S t a c k h a s 176.
B. YYY i s compi led t o d i c t i o n a r y . 176 i s p u t i n i t s pa rame te r field.
C. YYY i s compi led t o d i c t i o n a r y , 176 is p u t i n i t s pa rame te r f i e l d , a n d s t a c k h a s t h e

pa rame te r f i e l d a d d r e s s .
D. No new word i s compi l ed t o t h e d i c t i o n a r y .
To c o m p i l e 64*3 as a l i t e ra l i n a c o l o n d e f i n i t i o n , u s e
A . LITERAL 64 3 * B. [LITERAL] 1 9 2
C . [64 3 *] LITERAL D . 64 3 *

111. De te rmine E r r o r s (20 p o i n t s)
1. D e f i n e two v o c a b u l a r i e s t o b e u s e d i n t h e s u b s e q u e n t d e f i n i t i o n s : (10 p o i n t s)

VOCUULARY XX - -
A B C

ARC : XX DEFINITIONS DEF :
D E F

:GHI xxAEcDEF
G H I J

T h e r e are e r r o r s , i d e n t i f i e d by
2 . D e f i n e a v a r i a b l e BASE1 a n d u s e it as t h e b a s e t o d i s p l a y a number n . (10 p o i n t s)

: TEST (n --) ELASEL& E2 llIB-
A E C

BASE1 @ l s i s E J - n, < # # # # # # >
D E F G

zlm?~ Xi BASE ! :
H I J

T h e r e are errors, i d e n t i f i e d b y

AGAIN ;

IV. S t a c k A n a l y s i s ! 20 p o i n t s)
Ana lyze t h e f o l l o w i n g program a n d trace t h e s t a c k . U s e t h e s t a n d a r d s t a c k n o t a t i o n i n t h e
comment p a r e n t h e s e s .
DECIMAL
: #IN (-- n , push t h e number e n t e r e d on keyboa rd on t h e s t a c k)
0 BEGIN KEY (n c

DUP 1 3 = (n c f
I F DROP (
EXIT
THEN
DUP 8 = (
I F EMIT 32 EMIT 8 EMIT
1 0 / (
ELSE DUP (
48 < (
OVER (
57 > (
OR (
I F DROP 7 EMIT9
ELSE DUP EMIT
4 8 -
SWAP 10
* +
THEN
THEN

Part Three. Program Design (36 points)
F i l l i n F o r t h Words (22 p o i n t s)
I n t h e f o l l o w i n g program, f i l l i n t h e a p p r o p r i a t e F o r t h words i n t h e b l ank f ie lds ,WORDSis
u sed t o i n s p e c t t h e c o n t e n t s o f t h e c u r r e n t vocabu la ry .
: WORDS HEX CR CR
(f i n d t h e name f i e l d a d d r e s s of t h e last words i n t h e c u r r e n t v o c a b u l a r y)

?DUP I F BEGIN DUP DUP 0
< # # # # # # >
TYPE I F (d i s p l a y a b l ank c h a r a c t e r)
(show t h e name o f a word)
ELSE (d i s p l a y "Null") EROP

Jutv 1992 Auaust Forth Dimensions

THEN OUT @ 30 >
I F (start a new l i n e)
ELSE 1 4 OUT @ OVER MOD -
(d i s p l a y t h a t many b l a n k c h a r a c t e r s)
THEN
(f r o m name f ie ld f i n d t h e name f i e l d a d d r e s s o f t h e n e x t word)

DUP 0 =
- - -

(i s t h e r e a n y keyboard activity?)
DUP I F (w a i t f o r t h e k e y) DROP THEN
(i s a n y o n e o f t h e two f l a g s t r u e ?) UNTIL
ELSE (d i s p l a y "Empty v o c a b u l a r y ")
THEN ;

11. Program Design (14 p o i n t s)
The e q u a t i o n s t o d raw a circle are:
X= xO + rCOSa a n d Y= y o + rSINa
where (xO, yo) are t h e c e n t e r c o o r d i n a t e s , r i s t h e r a d i u s , a n d a i s a n a n g l e . Assume t h a t w e

have a word LINE (x l y l x2 y 2 color --) which draws a l i n e f r o m (x l , y l) t o (x 2 , y 2) . C o l o r 0 i s t h e
background c o l o r a n d c o l o r 1 i s w h i t e .

Write a program t o draw circles. F i r s t compute o n e p o i n t on t h e c i r c l e (x l , y l) as t h e s t a r t i n g
p o i n t . Then compute (x2, y2) a n d draw a l i n e between t h e s e two p o i n t s . Make (x2, y2) t h e (x l , y l) o f
t h e n e x t segment . Compute t h e n e x t p o i n t a n d draw t h e n e x t segment. Increment a t o c o m p u t e t h e
n e x t p o i n t . I n c r e a s e a f rom 0 t o 360 d e g r e e s a n d draw t h e comple te circle.

I S I N (deg -- s ine*10000) a n d COS (deg -- cosine*10000) are p r e d e f i n e d words which c o n v e r t
a n g l e s t o s inesandcos inesmul t ip l i edby1OOOO sothattheyarerepresentedbyintegers. A v o i d i n t e g e r
o v e r f l o w s i n t h e program. (Note: t h e c o o r d i n a t e s o f t h e e n d p o i n t c a n b e s a v e d a s d o u b l e i n t e -
g e r s t o i n i t i a l i z e t h e s t a r t i n g c o o r d i n a t e s o f t h e n e x t segment) .

D e f i n e t h e f o l l o w i n g words:
X= (x O r a - - x)
Y= (y O r a - - y)
XY= (xO y o r a -- x y)
CIRCLE (xO y o r --)
D e f i n e e a c h word s e p a r a t e l y a n d w r i t e a comple te circle drawing program.

Part Four. English (18 points)
Select t h e most a p p r o p r i a t e words i n t h e l ist t o f i l l i n t h e b l a n k s p a c e s i n t h e n e x t t h r e e

p a r a g r a p h s . (9 p o i n t s)
1. F o r t h i s . Because you c a n a d d t o t h e l anguage , you c a n t a i l o r it

t o y o u r own n e e d s . S i n c e a l m o s t e v e r y t h i n g i n F o r t h i s w r i t t e n i n F o r t h - - t h e t e x t editor, assembler,
etc . --you c a n access and a l ter a l l o f it.

2. F o r t h i s . F o r t h r u n s much f a s t e r t h a n many o t h e r h i g h - l e v e l
l a n g u a g e s . Because t h e i n t e r p r e t a t i o n scheme i s s o e l e g a n t , i n t e r p r e t e r o v e r h e a d is minimal .
F u r t h e r m o r e , F o r t h i n c l u d e s a b u i l t - i n a s s e m b l e r f o r s p e e d - c r i t i c a l r o u t i n e s . As a r e s u l t , F o r t h
c a n r u n a l m o s t as f a s t as machine code i t s e l f .

3. F o r t h i s Only a small n u c l e u s o f code n e e d s t o be r e w r i t t e n t o
m o v e t h e e n t i r e l a n g u a g e t o a n e w c o m p u t e r . Forthhasbeenimplementedor.almosteverycomputerdeveloped
t o date.

Answers t o be s e l e c t e d :
A. f a s t B. s l o w C. compact D. p o w e r f u l
E. e x t e n s i b l e F. t r a n s p o r t a b l e G. i n t e r a c t i v e H. s t r u c t u r e d
I . restrictive

11. T r a n s l a t e t h e f o l l o w i n g p a r a g r a p h s i n t o C h i n e s e (9 p o i n t s)
1. F o r t h i s a language , a n o p e r a t i n g sys tem, a s e t o f t o o l s , and a p h i l o s o p h y . I t i s an

i d e a l m e a n s forthinkingbecauseitcorrespondstothewayourmindswork. < T h i n k i n g F o r t h > i s t h i n k i n g
s i m p l e , t h i n k i n g e l e g a n t , t h i n k i n g f l e x i b l e . I t i s n o t r e s t r i c t i v e , n o t c o m p l i c a t e d , n o r o v e r - g e n e r a l .
< T h i n k i n g F o r t h > syn thes izes theFor thapproachwi thmanypr inc ip le s t augh tbymoderncompute r sc ience .

B u s i n e s s , i n d u s t r y , a n d e d u c a t i o n are d i s c o v e r i n g t h a t F o r t h i s a n e s p e c i a l l y e f f e c t i v e
l a n g u a g e f o r p r o d u c i n g compact, e f f i c i e n t a p p l i c a t i o n s f o r r e a l - t i m e , r e a l - w o r l d t a s k s .

<Thinking F o r t h > combines t h e p h i l o s o p h y b e h i n d F o r t h w i t h t h e t r a d i t i o n a l , d i s c i p l i n e d
a p p r o a c h e s t o s o f t w a r e development-- to g i v e you a b a s i s f o r w r i t i n g more r e a d a b l e , e a s i e r - t o - w r i t e ,
a n d e a s i e r - t o - m a i n t a i n s o f t w a r e a p p l i c a t i o n s i n a n y language . (3 p o i n t s)

3 . F o r t h i s l i k e t h e Tao: it i s a way, a n d i s r e a l i z e d when f o l l o w e d . Its f r a g i l i t y i s
i t s s t r e n g t h , i t q s i m p l i c i t y i t s d i r e c t i o n .

Forth Dimensions Julv 1992 Auaust

A Forum for Exploring Forth Issues and Promoting Forth

Promoting Forth
and Other High-Tech Stuff

To prepare a press "backgrounder" for Forth, I followed
some simple procedural steps. Similar steps may help you to
promote other hgh-tech products or services. As part of this
exploration, I will b e sharing backgrounder excerpts ex-
plaining various advantages of Forth.

To help generate promotional copy for Forth, my first step
was to develop a brief list of Fo&s advantages. Next, I
investigated which advances could best summarize what
Forth is all about.

The focus then became a few Forth advantages around
which I tried to create stories with pmmotional messages.
After several stories were compiled, the stories were tied
together as much as possible.

Top on my list of advances was Forth's extensibility and
scalability. While the ability to extend a language is fre-
quently mentioned, the ability to scale a languagc is rarely
touted.

A term similar to scalable is open. Openness also charac-
terizes Forth well. To suit the length restrictions of an
advertisement, the following sbortstoty was used:

to take a fresh approach to the telling of this Forth story by
avoiding terms such as grammar Here is how it turned out:

In most languages, the declaration of data items or routines
helps enrich the variety of useful expressions that can be
programmed. The appeal of most languages arises due to this
one trait-extensibility in the domain of expressions. It allows
one or more programmers to build layered, modular applica-
tions.

Forth has improved upon the best trait of other languages-
widening expressions until they engulf the Forth language as
a whole: All the elements of the Forth language correspond to
expression constructs, with even fewer syntax rules than is
customary for expressions.

No irreversible Forth grammar or syntax is needed to ensure
that programmers specdy routines or variables only in places
where they are permissibfe. Forth's lack of type-checking
contributes to this freedom.

By eliminating the need to nest expressions within parenthe-
ses, Forth's postfix notation avoids still other (syntax) con-
straints-those involving correctly paired, and correctly placed,
parentheses within expressions. When expressions are non-
stop as they arc in Forth, the phrases "m an expression" and
Aested expressionn lose all their meaning.

TO use this message in

As an open language, Forth lets programmers build new
control-flow structures and other compiler-oriented
extensions that closed languages do not.

Other languages continue to limit extensibili~y LO thc
domain of expressions. Furthermore, the permissible -

advertising, it must be
made simpler.

Another advantage I noted was Forth's usefulness as a
meta-language suitable for creating application-spccific lan-
guages.

Rut Forth's linguistic flexibility is not characterized by
merely describing Forth as scalable instead of &erisib&-
nor by describing Forth as a meta-language. Despite how
deeply Forth programmers appreciate this message, it can't
b e deciphered by those who have never used Forth.

Perha-m the difficulty of this Forth concept is due to the
terminology required for its expression. This prompted me

components of expressions are also limited-just try
placing an IF in the expression portion of a PRINT
statement in BASIC.

Due to its abandonment of left-to-right evaluation,
algebraic notation mandates your use of correctly paired
parentheses as necessary to specify how the result of an
inner expression should be passed to an outer expression.
The order of evaluation proceeds in an insideout fashion.
For reasons unknown to most Forth programmers, this
notational sequence is considered easier and more readable.
(Nevertheless, microprocessors require the re-ordering of
equivalent machine code to reflect its real execution order.)

Terms such as grammar and semantics lead to morc
conventional ways of expressing Forth's flexibility, but they
also raise the discussion to a higher technical level:

Unlike most languages, Forth provides a measure of linguis-
tic self-determination to its users. Normally, components of

July 1992 Auaust 32 Forth Dimensions

languages are under thc strict control of compiler vendors.
Through ie support of arbitrary application grammars, Forth
lets the programmcx determine the grammar and semantics
suited to a given project. Accordingly, the language for an
application can truly be fitted to the application. This flexibility
has been designed into Forth.

The switch statement of the C programming language is
useful for programming in terms of state machines. While
users of conventional languages other than C havc LO wait
for the various compiler vendors to adopt this new language
construct, Forth programmers have remained free to add
components such as a switch to virtually every
implementation of Forth that has ever been created.

Because of its length and complexity, this particular Forlh
message remains unwieldy. To use it in an advertisement, it
must be made simpler still.

Lct's continue to refine his mcssage regarding Forth's
flexibility. Perhaps you can share some of your own recipes
for the promotion of Forth. Together, let's make Forth a
poorly kept secret one day. -Mike Ebla

Forth Interest Group Update

April 1992

At a recent planning meeting, the FIG Board of Directors
along with a few volunteersundertook the task of evaluating
where it needs to focus its efforts. Besides a mission
statement, the planners brainstormed to produce a list of
about 40 possible FIG activities that could help fulfill FIG'S
mission. Evaluating those activities took the form of rating
how much each of those activities supported each of the
objectives in the mission statement.

The planners also studied the organizational structure of
FIG, producing an 'org" chart to help formalize each of the
roles being performed by various FIG supporters. At the
same time, we identified the need to fill several vacated, or
under-emphasized roles in the organization.

Since then, FIG president John Hall has made several
important appointments: John Rible is the FIG Chapter
Coordinator; Nick Solntseff is the Education Coordinator; and
Mike Elola is the Publicity Director. John may appoint
another volunteer as merchandiser of the FIG mail-order
business.

Nick, John, and Mike are charged with helping educate
Forth programmers, supporting chapters, and promoting
Forth and FIG, respectively.

'I'he use of "task champions" is making FIG more
responsive to new ideas, such as the column you are reading
now. IT you wish to help in any of the task areas outlined,
send us a brief description of your interests, listing any
professional skills you have so we can build a talent-pool
database. The FIG office will forward any specific comments
or suggestions you make to the appropriate task champion.

Forth Dimensions

Orion Instruments announced the PC-bascd 8800
emulator/analyzer. It has h e speed needed to make it
a real-time, zero wait-state emulation of Motorola's
68000 and 68302 microprocessors running at well over
40 MHz. (Support for 80C136, 68332, and 68HC16 is
planned.) Besides allowing source-level debugging, the
8800 can use the host PC's 386 protected mode to run
other programs, such as editors and compilers. By
placing such programs in the "User" menu, all such
programs can become an integrated part of the 8800

1 operating environment.
Also announced as an option for the 8800 is Clip- ' OnTM Emulation. It ensures that timing is unaffected by

the emulator.

33

April 1992

Vesta Technology announced the Vesta SBC332, a
low-cost, high-speed, low-power, single-board com-
puter based on the Motorola MC68332 microcontroller.
A single unit may be obtained freewith the purchase of
an SDSI debugger, or with the purchase of
chipFORTH332'" from Vesta Technology. (Forrh, Inc. is
responsible for chipFOKTE-1332 and trademarks that
name.)

Several add-on products are available, such as one
to augment the SBC332 with serial I/O and A/D as well
as D/A conversion (the MFP332 Multi-Function Periph-
eral).

Also available now in a version for the SBC332 is the
Vesta Standard Edition, a 32-bit subroutine-threaded
Forth.

Companies Mentioned
Orion Instruments
180 Independence Dr.
Menlo Park, California 94025
Fax: 4 15-327-9881
Phone: 4 15-327-8800

Vesta Technologies
7100 West 44th Ave., Suite 101
Wheat Ridge, Colorado 80033
Pax: 303-422-9800
Phone: 303-422-8088

- - -

Julv 1992 Auous t

L FOR PAPERS
for the fourteenth annual

FORML CONFERENCE
The original technical conference

for professional Forth programmers, managers, vendors, and users.

Following Thanksgiving
November 27 - November 29,1992

Asilomar Conference Center
Ivfonterey Peninsula overlooking the Pacific Ocean

Pacific Grove, California U.S.A.

Theme: Image display, capture, processing, and analysis
Papers are invited that address relevant issues in the development and use of Forth in image

display, capture, processing, and analysis. Additionally, papers describing successful Forth
project case histories are of particular interest. Papers about other Forth topics are also
welcome.

Mail abstract(s) of approximately 100 words by September 1,1992 to FORML, P.O. Box
21 54, Oakland CA 94621.

Completed papers are due November 1,1992.

Registration information may be obtained by telephone request to the Forth Interest Group
(510) 893-6784 or by writing to FORML, P.O. Box 2154, Oakland, CA 94621.

The Asilomar Conference Center combines excellent meeting and comfortable living
accommodations with secluded forests on a Pacific Ocean beach. Registration includes use of
conference facilities, deluxe rooms, all meals, and nightly wine and cheese parties.

This conference is sponsored by FORML, an activity of the Forth Interest Group.
Information about membership in the Forth Interest Group may be obtained from the Forth
Interest Group, P.O. Box 21 54, Oakland, CA 94621, telephone (5 10) 893-6784.

Julv 1992 Airnust Forth Dirnensio~~s

Gary Smib",
Little Rock, Arkansas

we are doing, we will shift our efforts to somexhing else that you
might finduseful. However, this means you must tell us what you
want. If the time was not right, tell us so. If you'd like us to use
the on-line R'IC rooms in some other ways, let us know what you
 wan^ If someone out there would like to volun~ecr to help us out,
please step forward. We need ideas, and enLhusiastic use^ and
voluntm. Please contribute wherever you can. Othawk, as
has happened with h e lliursday night Piggy Bars, h e LwleGts
will just disappear.

This brings us to the guest conferences. Speakers Gary lined
up rccedy include:

2/20-Paul Thomas of Sun Miaosystcrn~ and cc~authorwith
prior guest Gary Feiehach of Fmth T& a r d A p p 1 ~ . Paulls
topic: "Using CREATE ... DOES>."

3/19-Ron Rnithwaite, independent consultant. Ron's topic:
"Pmfessional Impad of dpANS Forth "

4/16-M 7~ttel. Len's topic "Is the Forth Communiy
'There will be very little preamble in tb13 edition of 'on-line' Missing the Boat'"
notes. ;rhe contents of the messages speak for tbemelues. The
Jrst group wm pulled from Catego y I, Topic 6, 'Real-Time
Confmences, " and dFscusses our dhhearfening dechiori lo
terminate the Yh.mdc~y Figgy Bar. Yhe second is captured
from Catego y 10, Topic 24, ';4NS TCMagnet for Intetpre1er"
andfeaturn a lively exchangeon GEnie, andfrom tbmgbout
FmbNet, regarding a b@otheticaluse of Jocal/useruariables.

Topic 6: -Time Conferences
Real-Em F m h C a n f m m n g an ibis R~undEble

The Thursday rlight Figgy Bar will cease, except for the
monhly guest appearance after the Februaty 6th session
Anendance has fallen beyond acceptable levels for more than a
month. If you wish to p r m e t h ~ ~ on-line chapter meeting and
if you have any opinions this is the time to share them.

--Gary Smith

Fmm: Dennis Ruffer
Well, we had ourfmalThursday night Figgy Rarl~fiursday

However, attendance at these conference have also been
disappointing and v q embarrassing for us and the g u s
speaker. Not only has Gary spent hours on the phone lining up
these guests, but the guests themselves have taken time out of
their busy schedules to talk to us. Then, when no one shows up,
everyone goes away hppoin~ed. Obviously, under those
conditions, guests rarely want to come back again, and finding
new guests becomes harder. Again, the enthusiasm is dwindling
and itis how m ~ c h longer we will continue to have
them There is, on the other hand, still an opportunity for you to
show us how much thew are worth to pu. You only have to
show up and jointhe disoxsion to show us you care. Ifthese next
three go well, we will schedule more. Otherwise, these too will
become a thing of the past

ANS Forth Interpreter
M R M h Skandurd f o ~ l i & p € ? ~ e r . Magnek Dean &-

Fmm Sabbagh
S u b j j : Pt+ (p t l \ pt2 -- pt3)

night, and1 mustsay, itdoesn'tlooklikeanybfy~dmissthem 1 Wdtg@iccga3.dmetab.comwrites:
NO one but us sysop showed up for the final triiute. In fad, no I "Had G sabbagh writes:
one has even bothered to comment, one way or the orher, about
this loss. ?his is disappointing to those of us who have gone out
of our way to make these happen for you. We started these
Thursday night get-togethers for you LO share your thoughts abut
Forth projeas you are working on and to hear what others are
doing. The intention was to provide an on-line FIG chapter
meding for those of you who do not often get the opportunity
to talk with other ForTh programmers.

We started with a good core grwp of people who would
show up frequently. I'dlikc to take this oppomnityto thank them
for heir time and enthusiasn. 'Ihey made these conferences
enjoyable and helpedus keep them going for the past two years.

I ~dortunatdy, ev&yone's change over time, and this I

"'Let's consider the following problem: a point is represented
on the stack as integers x y z. I wish to defie A A A

"'Note that a point as defined here consists of three coordi-
nates. Agam, note how the problem has changed to points
wih two coordinates!'

"Findy, I-Iadil G. Sabbagh write.
ld6 ... wherc in l , in2, . . . arc input arguments; 11,12, . . ., are

locals; and outl , out2, . . . are output arguments. n u s , we
have

: pt+ { x l y l x2 y2 --> x3 y3 1
x l x2 + -> x3

1 core group dwindled down to nothing. Most recently, Gary has (
been frequently sitting in the RTC completely alone. 'lhis is most "Now the o r i w posler is convinced that he is solving a
disheartening for him, after he has gone to rhe (sometimes different problem!"

/ extraordinary) effort to be there, and few (if anyone) even shows
up. Now, after much dkussion, there just is no desire (on any of
our parts) to continue making the dart any more

lhis does not mean they will not come back, but you the user
must show us that you want us to do it We arc here for your
be f i t , but if you do not choose to take advantage of something

Just going with h e flow, Greg. Here is my original problem
(and solution, using locals).
: pt+ { x l yl z l x2 y2 22 --> x3 y3 23 1

x l x2 + -> x3
y l y2 + -> y3

Forth Dimensions Julv 1992 Auaust

Scc my previous patmg on the I& syntax.

Fmm: Bernd Paysan
Sabbagh writes:

''Jw going with the flow, Greg. Here is my oripal problem
(and solution, using Id).

: pt+ { xl yl zl x2 y2 22 --> x3 y3 23 1
xi x2 + -> ~3
yl y2 + -> y3
z l 22 + -> 23 ;

"See my previous pasting on the locals syntax.
ct-Bdil"

I wrote some weeks ago a library for veaor arithrnetics (not
only addition and subtraction, but dot and mss pduc t and
%>2d projection). I solved it with an array of six floats (called
temp). This is a duty solution, but it works wd:
CAPS OFF
\ case insensitive: w r i t e s faster, reads b t t e r
C r e a t e temp 6 floats a l l o t DOES>
s w a p f loats + ;
: temp! 5 F O R i t e m p f !

NEXT;
: v+ (p t l pt2 -- pt3)

temp! 3 O D O i t e m p f @
i 3 + temp f@ f+ LOOP ;

(and so on).
If I had a FP unit, 1 would use its registers as temporary and

win lots of time. ?he t e m p array isuseful for swap, dup, dot, and
a m products, for all the things you do with threexiimensional
vectors. Ilhe order of the veaor on stack (x,y,z) or (z,y,x) is only
irnpomnt for the cross produa (left hand or right hand). I like h e
(x y z --) format because you type it in this order. I suppose
you do the same, but then tell me one thing How does your Forth
get the locals in the right order? Every locals I know turn the order
round and you have C conventions to give parametm, i.e.:
: GCT (a b -- gct) \ has locals

{ b a 1 ..- ;
-Bernd Paysan

From: Jan Stout
Doug Philips writes:
"Interesting. I have an entirely opposing view. If one is wing
to use Ahsmct Data Types (AD'Is), then one docsn't want to
seethc 'exploded'stackdngrams in the docume~mtionfor the
ADTs primWw operations. If that was done then the DT is
hardly A?

Hm, my view is that the uscr of the ADT shouldn't see the
definition of the ADT at all. In &cr languages this is achievcd by
a double s+cation, one on the interface lcvel (that would uw
p t 1, p t 2 , etc.) and one on the implementation level giving away
the internal representation (i.e., pt lx pt2y) .

Applied to Forth, I Gnd the (word) name descriptive enough
for interface level, so the ptl p t 2 wouldn't show up at all.. .

"I think the mdproblern is that there is no easy way in Forth

to deal withdstrucc~res passed directly on the stack. Using
an array in this case (two or& dirnensions~xemslkeoverMl.
I%wevcr, I'm not at aU unpressed with h e al~emative above."

I've come up with the following stack jugghg that seerns to
call for a factor (j j how would we name such a -7):
: P t + (xO yQ xl yl. -- x y)
SR ROT + R> ROT + ;

Not convinced7 Well see how "easily" it's generaked to the
three-dimensional problem:
: P t + (xO yo z0 xl yl zl -- x y z)

>R >K 3 ROLL + R, 3 ROLL + R> 3 ROLL + ;

Well that mikes 0.04 doesn't it3

From: Doug Philip
Jan Stout writes:
"Doug Philips writes:
"'Interesting. I have an entirely opposingview. If one is trying
to use Abssract Data Types (ADTs), then one doesn't want to
see the 'exploded'stack diagram in the d o l m e n for the
ADrs primitive operations.'
"Hm, my view is that the user of the ADTI* shouldn't see the
deliition olADT at all. In other languages thrs is aheved by
a double s+cation, one on the interface level (hat would
useptl,pt2, ctc) andoneontheirnplementationle~elgiving
away the internal representation (i.e., p t lx ptZy)."

I'm in agreement so far,

"Applied to Fotth, I fmd the (word) name descriptive enough
for interface level, so the pt 1 p t 2 wouldn't show up at all.. ."

Okay. I was considering the "standard practice" of having the
fht h e of a defmition, which usually contains the word's overall
stack diagram, to be a word's documentation But I agree, the
d ~ e n t a t i o n s h o u l d n ' t ~ g e t h e ~ of the implementation
Which leads to an interesting question: How do you (if you do)
avoid having to:

a) know how many cells a P t uses or
b) have to invent a g d i o n words P~>R, R>Pt, ~t SWAP,

PtROLL.. .

"Wellsee how 'm5ily'it's generalized to the three-dimensional
problem:

: P t + (xO yo 20 xl yl 21 -- x y z)

+ >R >R 3 ROLL + R> 3 R O U +
R> 3 ROLL + ;

'Well that makes 0.04 doesn't it?''

Unfortunately, I don't buy it The sequence 3 R O U + doesn't
tell the whole story. The sequence R> 3 ROLL + is a beta can
didate except for the first usage. How about:
: Pt+ (xO yo z0 xl yl zl -- x y z)

>R >R >R
R, 3 ROLL + R, 3 ROLL + R> 3 ROLL + ;

And let the compiler optimize out the >R R, pair?
o r perhaps

Julv 1992 Auaust 36 Forth Dimensions

: (Pt+) COMPILE R> COMPILE 3 COMPILE
ROLL COMPILE + ; IMMEDIATE

: P t + (xO yo z0 xl yl zl -- x y z)
>R >R >R (Pt+) (P t+) (Pt+) ;

But I don't much like that either.

From: Lennart Staflin
Bernd Paysan said:
"I suppose ycu do the same, but thcn tell me one thing: How
does your F o h get the locals in the right order?"

Withthesynmc a b c l
The following defmition would do:

: m s l
\ Compiling: ("11 12 . . . I n < I>" -- 1
\ Run the : (XI x2 ... xn --)

0 (End marker)

BEGIN BL PARSE-WORD (a #)
OVER C@ [CHAR] I =

UNTIL (0 a1 81 a2 #2 . . . an #n)
BEGIN DUP WHILE (LOCAL) REPEAT (0)
0 (IKAL) ; IPlPlIEDIATE

-LennartStaAin
There's more to life than books, you know.. .

but not much more. -The Smiths

Prom: Eric S Johansson
Schmidtg@iccgccdecnet.ab.com writes:
"'Instead of locals, another passibility has appeared in the
press. That is a mechanism for speafylng befordafter stack
picturcs which cause stack transformation at ~ u n time.
Typically it looks something like:
(sn abcdef --- facdbe)

"Mere the "abcdeP is the before picture and the "facdbe" is
h e after picture. ?he two major problems with this technique
are implementation, and notation'
'When I read about this in ED, it seemed like a workable
scheme, but interpreting strings to efFed stack transformation
does not strike me as an el- (read Forth-like) dut ion to
the problem."

Interesting point Maybe what we are dimsing here is really
about the most "Forth-like" way to handle stack manipulations
when a data element may consist of more than one stack cell (i.e.,
a point in three-space or an ICGB triplet pixel).

--Eric
Source of the public's fear of the unknown since 1956.

b m : Bernd Paysan
Lennaft Staflin writes:
"l3emd Paysan said:

"'I suppose you do the same, but then tell me one thing How
does your Forth get the locals in the right order?
"W&thesyntax:LOCALSl a b c l
""Ihe following defmition would do:

: L.cCz+LSI
\ Ccsopfiing: ("11 12 ... In <I)" --)

\ Run t ime: (xl x2 ... xn --)

0 (End marker)

BEGIN BL PARSE-WORD (a #)

OVER C@ [CHAR] I =
UNTIL (Oal #1 a2 #2 ... an #n)
BEGIN DUP WHILE (LOCAZI) REPEAT (0)
0 (XCAL) ; m4EDIATE

?hanks. Looks g d . I have two problems: F h t the block or
theTIB may change its location between parsing(hmk of multi-
programming systems). Second, I can't create headers given a
string (I can, but it is difficult). I found a solution: I stack rhc
contcnts of >IN, and everything works well. I have four words
for creating locals: <LOCAL starts the ddinition, LOCAL: <name>
createsalocal,-endsthedefdonand~~~~~; endsscope
oflocals. AU thesewords are immediate, so they can work without
adding new definitions. So the solution is
: { POSTPONE <LOCAL -1
(end marker, > I N w i l l never be -1)

BEGIN >IN @ BL WORD 1+
c@ rmm] 1 = UNTIL DROP >IN @ >R
BEGIN DUP O< O= WHILE >IN ! POSTPONE
IXAL: REPEAT DROP
POSTPONE LOCAL> ; DFEDIATE

: 1 POSTPONE ILKXL,; ; IMMEDIATE
: T E S T { A B J A . B . } ;

and
1 2 TEST

gives
1 2 ok

-Hemd Paysan

From: Jan Stout
Doug Philips writes.
". . .question: How do you (if you do) avoid having to:
"a) know how many cells a Pt uses OR
"b) have to invent a gadion words Pt>R, R>Pt, P t S W ,
PtROLL.. .
"Unfortunately I don't buy it 'Ihe sequence 3 ROLL + doesn't
tdl the whde story. The sequence R> 3 ROLL + is a beuer
candidate except for the f i usage. How about:

: P t + (xO yo 20 xl yl zl -- x y z)
>R >R >R R> 3 ROLL + R> 3 ROLL + R>

3 ROLL + ;
"And let the compiler optimi~. out the >R R . pair?"

Sure.

"Or perhaps
": (P t+) C W I L E R> COMPILE 3 COMPILE ROLL
COMPILE + ;
IM'IEDIATE"

Why go immediate?
: 3dCoord+ (no nl n2 n3 -- n l n2 n4 1

3 ROLL + ;

Forth Dimensions

"Rut I don't much like that either."

Well, I suppose dumpin' the lot on an array and xeferendng
h e cvordina~es from there would be more readable/
&dent.. .which brings up my following question:

Is the following allowed in the current LOCAIs scheme?
: < (n m - - ?)

LOCAZ,m m - C K ;

Crhus mixing irnpliat and explicit parameter passing,.
If it were, that would disallow the very eiTicient implernenta-

tion of just keeping the locals on stack till the ; d e r c the upper
stack part would be shifted down #l&used times.

-Jan Stout

From: John Wavrik
The discusion about PT+ was intended to raise the issue of

theneedforloczrl&l~titalsobrin~~j~oli~thepmblem
of handling data structures that take multiple cells.

It can be a severe disadvantage to put bulky data struchms of
varying sizedirectly onthe parameterstack. Not only canitbehard
to write the programs required to manipulate the data, but
potentially it requires new sets of stack manipulation words. (If
vectors occupy three cells and integers one cell, the user would
presumably wantwordslikeVDup, V S W , andrnixed o p t i o n s
like VISWAP, etc to allow Forth flexibility in implementing
algorithms which involve the new data objects. This would
become apparent assoon as anyone wants touse aword likePT+
to actually do something).

Insome of the systems I've used for mathematics, thee are six
or more data types-each occupying a different number of cells.
It has been found best to have every data object represented by
a single cell on the stack (this representative is usually eiher an
address, displacement within a segment set aside for thc data type,
or index in an array of objects). In this way, data objects can be
subjecied to all the usual Forth stack operations with no difficulty.

The data objeas are equipped with words for accessing their
component parts. Thus, forvectots we would want a word [1 so
that v 2 [I gives either the address of the second component of
v or the second component (If you choose the lam, you
probably will also want a word [I ! to store data.) Chuck Moore
seems to have originated the word TH for the component se-
lector-+ v 2 th. There will also be, presumably, words for
arithmetic operatiom on Ihe coordinates.

A vedor package canbe constructed inlayers-so that it need
nolbc just restricted to integer coordmates. Information a h t the
coordinate domain is communicated to h e level that handles
vcctor opcrationstio the same code for vector operations can
be used for a variay of different types of mrdinates (here is
an& reason to rnake sure that different types of coordinates
do not have different stack sizes).

Ihe simplest way to do this (abetter way is described below)
is to have all operations speafy the rarget of their result 'Ihus, for
example, a vector addition V+ would have the stack diagram
I vl v2 v3 -- 1 or maybe even (vl v2 v3 -- v3)

where the vi are "vectorsn Ge, the addresses of 3-tuplcs or the
indices in an m y d3-1~1plesl and v3 is intcnded lo be the result
of adding vl to v2. The code for V+ will be written in term5 of
an addition operation for componcnts. (Ifpreferred, you canwrite
code for words like this with freeuse of ordinary Forthvariables
no reo~rsive calls are involved, so there i3 no need for local
variables. Forth variables names can be reuced-nd they have
a scope: they Iast unril they are redefined There is no harm in
using the same variable names for independent procedures.)

?'his approach actually works, but it has the disadxintage hat
the syntax for ope~atiom is un-Forth-like We would like V+ to
have the stack diagram (vl v2 -- v3) where v3 is not
named-but jut somchow appears. This can be accomplished
by creating a set of temporaty storage locations for each data type
Q've beenusing 16 locations, and it scan5 to work just fie). Each
time an operation is pcdormed, the following happens:

1. The storage p o l is searched for the next available address.
2. The operation is P"f0rmedwiththe resultstoredat this address.
3. The address is put on the stack as the result of the operation-

and it is marked as "unavailablen in the pool.

Once all addresses are marked, and no available a m is
found whenrequestd, a mini-ge wfledion takes place the
stack is examined to see which of h e 16 address are still being
referenced in the stack-all others are unmarked.

This rechation is v q fastAxcause only 16 addresses are
involved and they are "uscd" only if found on the stack-+ no
big search through chains of pointers and variables is required
It is easily coded in assembly language. Ohe only caveat about
this approachis that any data of lasting interest whichis produced
in one of these temporary locations should be moved to a
permanent home. If a temporary address itself is stored in a
variable, it will be considered available at the next gabage
~~flection.)

I've used this approach for strings, several basic coeff~cia-
type objOc.6 (like BIGNUM integers and BIGRAT rational num-
bers), compound objects (like polynomials with B I W coef-
fiaents), etc It works great as long as everything is represented
on h e stack using a single cell. It allows you to manipulate
"gizmosn and "gadgets" without constantly being aware of what
they look like, how big they are, and features of their internal
representation. swap a gizmo with a gadget, an integer
with a string, etc

(?he code for thisstoragescheme for temporaries was written
in Forth43 using traditional Forth techniques. It takes about four
screens. It was published in t h e j o u m a l o ~ i h ~ l ~ and
RtseatcLwhich seems to be &nd I'mwilling to mail people
an eledronic copy of the article ifsomcone can assure me that rhis
would not violate IlleJFKcopyrighL I've never pubbhed in a
journal that w m out of business before, so I don't know rhc
legalities involved I also have fast versions for IB3 and F-PC wih
selected words coded in assembly language.)

-John J Wavrik

From: Doug Philips
Jan Stout writes:
"Doug Philip writes:
U'Or perhaps

Julv 1992 August Forth Dimensions

: (Pt+) COMPILE R> COMPILE 3 COMPILE ROLL
COMPlLE + ;
IflMEDIATE

"Why go immediate?'"

I made it immediate so that the R> could be part of the +word.
--Doug

Fmm: Doug Philip
John W a d writes:
"In some of the systems I've used for mathematics, thcre are
six or more data types-each oaupying a different number
of cells. It has been found best to have cvery data object
represented by a single cell on the stack (this representative
isusually either anaddress, displacement within a segment set
aside for the data type, or index in an array of o b j j) . In this
way data d~jeas can be subjcctcd to all the usual Forth stack
operations with no difficulty."

1 like that approach 1 assume that you are not talking about
having a typed stack though7

"Each time an operation is performed, the following happens:
"1. The storage pool is searched for the next available address.
"2. ' h e operation is performed with the r d t stored at this

address.
"3. The address is put on the stack as the result of the

operation-and it is marked as 'unavailable' in the pool.
"Once all addresses are marked, and no available address is
foundwhen requested, a rnini-gahage mlledon takes plae
the stack is examined to see which of the 16 addresses are still
being referenced in the stack-all others are unmarked."

1 take it, then, that there is only one area of 16 items, regardless
of the "typen of those items. . . or are you sirnpltfying for the sake
of disaJssion?And what happens if all 16 are in use? (I assume that
can happen either because some other stack value "l& like" a
reference to one of those cells, or because too many temporaries
are-acadently?-being used.)

-I've used this approach for strings, several basic c4aent
type objeds (like BIGNUM integers and BIGRAT rational
numbers), c o m p o u n d o b j ~ (like polynomials with~1GNUM
d~aents) , etc. It works great as long as ev-ng is
represented on h e stack using a single cell. It allows you to
manipulate "gmnos" and "gadgcb" without constantly being
aware of what they look like, how big they are, and features
of their internal repmtation. swaps a gizmo with a
gadget, an integer with a string, etc."

Indeed. But again, the programrncrstill has to knowwhich cell
on the stack is of what type (I'm not saying that is a bad thing. . .).

Ry the way, Upper Deck Forth uses a very similar scheme for
handling Svings. But instead of having explicit slots, usage flag,
etc., their strategy is touse an area af memory as a ~g buffer. Just
keep a pointer to the next "free" address and a count of remaining
bytes. If the new string objed won't fit in the hole left at h e end
of the buffer, then wnp to the beginning. For a 1K buffer, that
strategy guarantees at least four maximally sized strings simulta-
neously, and often a l a more. But h e idea is nearly the same.

Upper Deck has the advantage that here is no GC done
whatsoever and it is totally up to the programmer to make sure
that too many live strings are not 'in use" at once.

Could you give a more complete reference to the JFARartide?
--Doug

From: John Wavrik
Concerning a data management scheme for temporaries,

Doug Philip writes
"I like that approach. I assume that you arc not talking about
having a typed stack though?"

The data stack is ~ K X typcd, although it could be if all the
addresses for a given address occupy one band of the a h 5
space. Igenerally like the Forth approach of producing differently
namedoperations for each data tyjx-ratherthanoverloadingan
o p t o r name and havingrun-time overhead basedon typing of
operands.

"'Each timeanoperationis performed, thefdowinghappens:
"'1. ?hestomge pool issearched for the next available address.
"'2. The operation is performed with the result stored at thw

addtess.
"'3. The address is put on h e stack as the result of the

operatio-and it is marked as 'Imavailable' in the pool.
"'Once all addresses are marked, and no avadable address is
foundwhen requested, a m i n i - m g e collection taka place:
the .stack is examined to see which of the 16 addres5e5 are still
being referenced in the stack-all others are unmarked.'
"I take it then that there is only one area of 16 items, regardless
ofthe type'ofthoseitems. . . or are you simpldjmgforthesake
of dicmion?And what happen. if all 16 are inuse? (I assume
that that can happen either because some orher stack value
'looks like' a reference to one of those cells, or because too
many temporaries are-acadently?-keing used)."

Fach data type hasits ownset of 16 temporaries. 'fie code that
manages these is the same for all. A child of the defining word
TEMP-STORAGE installs itself as the cllrrent data type. If STRINGS
is one such data type, then STRINGS TEMP returns the address of
the next temporary location for STRINGS. m e word STRINGS
sets the curreflt data type, and TEMP returns the next free address
for the current data type.)

In general, all this is made invsible at the top level. ?he
sequence
$11 ~ I I $81 X ~ Z I I OVER $+ $+

will put the (temporary) addrcs of the string AKXYZABC on top
of the stack. H m , $" is state smafi--but irs htapret-rime action
is
: $'I STRINGS TEMP ASCII I' WORD OVER $! ;

where
: $! OVER C@ 1+ WE ;

while $+ concatenates two strings, putting the result in a
temporary andretmhg thc address of the temporary to thcstack

Lfaii 16 temporaries arc in use, there is an ABORT. Except for
progmmmhg errors, this has not occurred in practice. It is easy
to make up examples where 16 locations could be insdXacnt (if
you want to add 20 things, you could put them all on the stack

Forth Dimensions Julv 1992 Auaust

and 11mi apply addtion 19 Ijmes-ht you can also add as you
go). It should be noted that H-P calculators have only four
locations for tempomies+w 16 is prcbably too many.

"'I've used this approach for strings, several basic c d ~ c i e n t
type objects (like BIGNUM integers and BIGRAT rational
numbers), compound o b j ~ (like polynomialswith BIGNUM
coeff~aents), etc. It works great as long as everythmg is
represented on h e ,stack using a single ceil. It allows you to
manipulate 'gizmos' and 'gadgets' without consandy bcing
aware of what they look like, how big they are, and features
of their intend representation. SWAP swaps a gizmo with a
gadget, an integer with a string, etc.'
"lndeed. But again, the progammer still has to know which
cell on the stack is of what type (I'm not saying that that is a
bad thing.. .)"

Y e i h e programmer still has to know what is on the sack
and its type--but not its size. No additional stack manipulation
words need to be created. The storage management is concealed
in the operation and input words, so becomes transparent for
pro-g using thew o p t i o n s .

Example: for veaors there is an addtion v+ and scalar
nlultiplication cv* (applied with scalar on left).
a b V W -- aV + bW

can bc produced by
ROT SWAP cV* -ROT cV* V+

It doesn't ma~ter which dimension thevector space is, because
the components arenabgstoredonthestad<.As aresult, most
of the code in a veaor space package is independent of the size
of veclors.

From: Doug Philip
John Wavrik writes:
'The data stack is not typedl although it could be if all thc
addraws for a given address [wu mean type, nght.31occupy
one band of the address space. I generally hke the Forth
approach of producing differendy named operations for each
data typcfathcr than overloading an operdlor name and
having rm-time overhead based on typing of operands."

I agree. However, having a typed stack doesn't ncccssarily
mean you have to usc it to dispatch operators (though that is a
pretty obvious thing to do with it). Evengiven the "addressrangen-
typing kindofsys~em you mentioned failsbecause it assumes that
everyhug on the stack is a pointer.

"In this ring-b&er scheme, I as,vImc that the addrcsm and
lengths of &gs sdl in use are ~ g g e d somehow, so hat if the
pointer circles the ring it will not allow h e re-ux of memory
being used by an acrive string. Never having seen thc Upper
T)eck system, I don't know how it determine if a string is still
in adve use."

There is no check. I h e premise is that the proprnmer knows
how many nlaximally ler&xxi (counted) strings can be t e m p
rary at once, and so must noluse any more than tha~ I cannot say
that I am philosophically or practically bothered by their choice,
but I probably would have donc things diflerently.

My guess is that the biggest gotcha in either method is in
keeping (or thinking that you can keep) temporary o b j m "live"
over calls to non-trivial words.

"'Garbage Colledion' is actually a bit excessive a term for what
is done."

"By the way: Upper Deck F o h uses avery similar scheme for
handling strings. But instead of having explicit slots, usage
llags, etc., their strategy is to use an area of memory as a ring
b&er. Just keep a pointer tothe next 'free' address anda count
of remaining bytes. If the new string object won't fit in the hole
left at the end of the buffer, then wrap to the begwing. For
a 1K buffer hat strategy guarantees at leas four maximally
sizedstrin&ssirnultane~u~ly, and often a lot more. But the idea
is nearly the same. The Upper Deck has the advantage that
there is no GC done whatsoever and it is totally up to the

I,, this bg-bder scheme, I -me b t the ad&csses and I Write about large-scale Forth applications, systems, or . . . I

Indeed. Your method docsn't have the ovem-xite hole thatthe
Upper Deck System'smethod does, but then neither method will
catch a copy ofthe temporary pointer instead of copying the data.

-Doug
P.S. I elided all the stuff that I agreed with (mosrly).

f eg f Annomcem en f
Forth Dimensions is sponsoring

programmer to make sure that too many live siings are not
'in use' at once."

-
a contest for articles about

"Forth on a Grand Scale"

"Garbage Collection" k actually a bit excessive a tern for what
is done. In my method it amounts to seardung the stack (and
perhaps somewhere else) to fmd whlch string are no longer
a c t i ve4 is nowhere ncar what LISP must do to reclaim storage.

lengtia of &@ in use are rcggedsomehow* so lhar
~tercirdgthe~itdnaa'owthereuseOfmemO~being

by an sving. Never having seen the Upper Deck
system, I don't know how it determincj ifa string i s d inactive
use.

Mail a hard copy and a diskette (Macintosh 800K or PC
preferred) to the:

Forth Interest Group
P.O. Box 2154 Oakland, California 94621

*This theme applies equally to projects requiring multiple
programmers, and to applications or systems consisting of
large amounts of code andlor of significant complexity."
(M~ditorial,= F D X ~ ~ ~ ~ ~) Papers will be refereed.

"Could you give a more complclc referencc to the p(LR Cash awards to authors:
article?' f s t place:

2nd place:
"Handling Multiple Data Ty~es in Forth" by John J. Wavrik. 3rd piace:

JEAR, vol. 6 no. 1 (1W).
- J O ~ J Wavrik Deadline for contest entries is August 3, 1992.

.Julv 1992 Auoust 40 Forth Dimensions

Forth resources & contact ~nformation

u
Please send updates, corrections, additional listings, and suggestions to the Editor

Forth Interest Group I
The Forth Interest Group serves and
novice members with its network of chapters, Forth

and that
participants from around thc world. For membership
information, or to reserve advertising space, contact
the administrative offices:

Forth Interest Group
P.O. Box 2154
Oakland, California 94621
5 10-89-FORTH
Fax: 510-535-1295

Board of Directors Founding Directors
John Hall, President William Ragsdale
Jack Woehr, Vice-president Kim Harris
Mike Elola, Secretary Dave Boulton
Dennis Ruffer, Treasurer Dave Kilbridge
David Petty John James
Nicholas Solntseff
C.H. Ting

In Recognition

Recognition is offered an- 1979 William Ragsdale
nually to a person who has 1980 Kim IIarris
madc an outstanding con- 1981 Dave Kilbridge
tribu tion in support of Forth 1982 Roy Martens

ANS Forth 1
The following members of the NUS X3J14 Forth Stan-
darti Committee are available to carry your
proposals and concerns to the committee. Please feel
free to call or write to them directly:

Gary Uetts Charles Keane
Unisyn Performance Pkgs., Inc.
301 Main, penthouse #2 515 Fourth Avenue
Longmonl, CO 80501 Watervleit, NY 12189-3703
303-924-91 93 5 18-274-4774

Mike Nemetli George Shaw
CSC Shaw Laboratories
10025 Locust St. P.O. Box 3471
G!enndale, M D 20769 Hayward, CA 94540-3471
30 1-286-83 13 415-276-5953

Andrew Kobziar David C. Petty
NCR Digitel
Medical Systems Group 125 Cambridge Park Dr.
950 Danby Iid. Cambridge, MA 02140-2311
Ithaca, NY 14850
607-273-5310

Elizabeth D. Rather
FORTII, Inc.
11 1 N. Sepulveda Dlvd.,

suite 300
Manhattan Reach, CA 30266
21 3-372-8@3

and the Forth Interest 1983 John D. Hall
Group. The individual is 1984 Robert Reiling
nominated and selected by 1985 Thea Martin
previous recipients of the 1986 C.11. Ting
"FIGGY." Each receives an 1987 Marlin Ouverson
engraved award, and is 1988 Dennis Ruffer
named on a plaque in the 1989 Jan Shepherd
administrative offices 1990 Gary Smith

1991 Mike Elola

Forth Instruction

Los Angeles-Introductory and intermediate three-day
intensive courses in Forth programming are offered
monthly by Iaboratory Microsystems. These hands-on
courses are designed for engineers and programmers
who need to become proficient in Forth in the least
amount of time. 'Telephone 213-306-7412.

Forth Dimensrons 4 1 Julv 1992 Auaust

(&t%rs, from p q e 5.)
VO T h e Dominates Real P e d o n m n c e

Dear Marlin:
I heartily agree with Jim Callahan's remarks con-

cerning die kadequacy of relying solely on speed
benchmarks when evaluating Forth implementations.
Not only is it important to look at the full set of tradeoffs
(such as compactness, etc.) as he points out, it is also
important LO remember that the aspcc~s of perfor-
rnance measured by this set of benchmarks don't givc
an accurate picture of the overall performance of an
application. In most real-world applications, perfor-
mance is overwhelmingly dominated by the time
required for I/O. A system that offers low-overhead
internipt handling and high-speed multitaskingsuch as
polyFOK?H can often out-perform other run-time
environments.

However, Callahan's remarks about polyFOKm
are inaccurate. The multi-segment poly%:OR?'II uses,
in its minimum configuration, one code area up to OIK
(for machine code, definition pointers, and heads) and
one data area up to 64K (for disk buffers, global
variables, and task space, including stacks and user
variables). Between these areas there is no duplica-
tion. k t r a memory (up to DOS' 64OK limit) may also
be configured. Typically, such extra memory is used
for large data structures, but it may also be configured
for additional code modules. In the Iatter case only,
routines used by those modules are replicated. The
amount of replicated code is controlled by h e pro-
grammer, but rarely exceeds about 21K. The cost of
avoiding this replication would be a substantial speed
penalty imposed on routines in the extra code mod-
ules, as wcll as extra bytes required for addresses. We
have found it to be an appropriate tradeoff.

In today's market, substantial PC applications are
generally written for a 386/486. As noted in Kelly's
article, we also offer a 32-bit, protected-mode system
which is well suited for large applications, leaving the
16-bit, segmented model as an economical solution for
low-end applications.

Sincerely,
Elizabeth D. Rather, President
Forth, Inc.
11 1 N. Sepulveda Blvd.
Manhattan Bcach, California 302-7

CREATE . . . DOES> Erratum
Dear Marlin. Ijust received the new issue of

FD[XIV/Il. I am glad you are are recruiting more
tutorials. I have found an error in my article. In
Screen 3, MAKE-8 reads,
: MAKE-8 (i -- a) SWAP 8 * + ;

It should read
: MAKE-8 (i -- a) DOES> SWAP 8 * + ;

-Leonard Morgenstern

Julv 1992 Auaust

RIME (Relay international Message Exch.) For th Conf. Echo /
Rim is a PC-Board-based network similarto FIDO. 'lhe Fotth Conference
originates on Jim Wcnzel's Grapevine nDS in 1,i~lc Rock, Arkansas. Mes~agcs
carried on RIME Forth Cmnference are essentially identical to those carried
onthe GEnie Forth RoundTable d o n UseNet comp.lang.forthnewsgroup.

BBS Name City Phone
Evergreen BBS Hopatcong, NJ 201 -398-2373
Bob's Corner Board Gainesville, FL 205-361-9094
Country I-ane Kennenbunk, ME 207-499-2756
The Running Board Bronx, NY 2 1 2-654- 1349
ArnerlSeive New York, NY 21 2-876-5885
Ground Zero Wildcat BBS Seal Beach, CA 21 3-430-0079
The Holistic BBS Lakewood, CA 21 3-531 -3890
Shy Guy's PCBoard Lew!sville, TX 21 4-31 5-3795
DFW Programmer's Exchange Dallas, TX 214-399-31 12
The Lunatic Fringe BBS Piano, TX 214-422-2936
Ronin Waxahachie, TX 2 14-938-2840
The Round Table BBS Reading, PA 215-678-081 8
Street Noise! BBS Germantown, MD 301-6Cl-8710
Baudline Il Frederick, MD 301-694-71 08
Network East Rockville, MD 301 -738-0000
The Jeilicle Cate Riverdale, MD 301 -779-5946
The Carousel Hollywood, FL 305-987-5688
Back to Basics Casper, WY 307-235-7043
Travel Online Lake St. Louis, MO 31 4-625-4045
M.O.R.E. Middletown, RI 401 -849- 1874
Castle Rock BBS Omaha, NE 402-572-8247
D.W.'s Toolbox Riverdale, GA 404-471 -6636
The Right Place tm) Atlanta, GA 404-476-2607
1-he Chair TOO! San Jose, CA 408-241 -7276
PDS-SIG BBS San Jose. CA 408-270-4085
The Caves Scotts Valley, CA 408-438- 1 194
Eds Home Columbia, MD 4 10-730-29 17
ProPC BBS Pittsburgh. PA 41 2-32 1-6645
PGHSouth PCBoard System Pittsburgh, PA 412-563-5416
Space BBS Menlo Park, CA 4 15-323-41 93
Mental Hospital Los Altos, CA 4 15-94 1-5384
Canada Remote Systems Misssissauga, CN 416-629-01 36
Rose Media Willowdale, CN 416-733-2285
The Grapevine BBS N. Little Rock, AR 501-753-81 21
The Grapevine Remote Node ill Little Rock, AR 501 -821-4827
The Pegasus BBS Owensboro, KY 502-684-9855
Alpine BBS Salem, OR 503-58 1-0923
The Crooked Blade Monrnouth, OR 503-838-4059
River Road BBS Sorrento, LA 504-675-8792
IDC BBS Alameda, CA 510-865-71 15
Modem Zone Middletown, OH 513-424-7529
Channel 1 Cambridge, MA 6 17-354-8873
Capital Connection Farfax, VA 703-280-5490
Hallucination BBS Fairfax, VA 703-425-5824
No-Frills BBS Falls Church, VA 703-538-4634
Struppi's BBS Herndon, VA 703-620-2646
The Virginia Connection Reston, VA 703-648- 1 84 1
The Beltway Bandits BBS Fairfax, VA 703-764-9297
Programmer's Palace Springfield, VA 703-866-4452
Technet At TJHSST Alexandria, VA 703-94 4-3572
Carolina Forum Charlotte, NC 704-563-5857
Nezuld's Domain Northbrook, IL 708-559-051 3
Aquila BBS Aurora, IL 708-820-8344
Cloud Nine BRS Katy, TX 713-859-8195
The Punkin Duster BBS Fullerton. CA 71 4-522-3980
Crystal Castle Staten Island , NY 71 8-370-8031
Moondog Brooklyn, NY 7 18-692-2498
The Icebox BBS Flushing, NY 71 8-793-8548
Rocky Mountain Software Salt iake City, UT 801.963-8721
Club PC BBS Smithfield, VA 804-357-0357
The Computer h u m BRS Virginia Beach, VA 804-471-3360
The Godfather Tampa, FL 81 3-289-3314
St. Pete Programmer's Exchange St Petersburg, FL 81 3-527-5666
DataBoard][BBS Crowley, TX 81 7-297-6222
The Mog-Ur's EMS Grarlada Hills, CA 8 1 8-366- 1238
Medical Information Systems Jacksonville, FL 904-221-9425
The Enchanted Forest BBS Gainesville, FL 904-377-2001
The TREE BBS Ocala, FL 904-732-0866
Ramwood Fairbanks, AK 907-456-6375
The lmperium BBS Middletown, NJ 908-706-021 3
PC Rockland BBS South Nyack, NY 914-353-2757
The Pub BBS White Plains. NY 9 14-686-809 1
Brenfwood BBS Harrison, NY 914-835-1315
Technical Information Taipei, TW 01188622151127
O.L.E.F.l London, UK 44-81-882-9808
--

42 Forth Dimensions

,

Conducted by Russell L. Harris
Houston, Texas

The inaugural Rack Burner column broached the prob-
lem of obtaining authorization of a clicnt or boss to use Forth
on a particular contract. In that column, I proposed demon-
stration apparatus a s a possible approach to securing such
authorization. In this column, risking a fusillade of brickbats
and charges of heresy, I wish to suggest another possibility,
that of utilizing a mixture of Forth and C (or whatever the
language to which your firm or dient is committed).

Thegeneralidea is toget your foot in the door by agreeing
to do the project in the language specified. Being knowl-
edgeable in Forth, you will inevitably utilize Forth to facilitate
development and testing. This code comprises your primary
sales tool. As such, it should be written and commented with
exceptional care. What you are counting on is the intelli-
gence, rationality, and objectivity of the boss or client. Once
you can show him functional Forth code side by side with
lunctional code written in C, etc, in the same project, it should
not be difficult to make your case. If the ploy doesn't work,
at least you have employment and another C project under
your belt.

The inconsistency of C is
simply taken for granted and,
at times, even praised as
versatility.

The Carrot on the Stick
Granted, learning C in order to get projccts on which you

hope to use Forth may not appear to be a sound proposition.
However, there is another incentive: C is rapidly becoming
the lingua ĵ ranca in which program algorithms are pre-
sented. This is particularly true in the realm of digital signal
processing algorithms. Revolting as the thought may be,
familiarity with the rudiments of C may soon become as vital
as familiarity with the rudiments of MS-DOS.

F-
or Malice in Blunderland

C is a con~ylex language which is Jlllicult to master.
Complexity itself is not the culprit; rather, the difficulty
springs from inconsistency.

C is a language of innumerable rules. Moreover, there are
far more exceptions than there are rules: everything seems
to be a special case. When programming in C, one cannot rely
upon logic or intuition to guide him in syntactical construc-
tion or in deducing the behavior of a code segment. One
simply must learn C by rote.

Like something from the pen of Lewis Carroll, C re-
xmblcs a child's game in whlch the participants make the
rules as they go along, whimsically changing them in order
to thwart one another's progress. The strange thing is that no
one (other than programmers knowledgeable in assembler
or Forth) seems to thlnk the situation svange, improper,
unnecessary, or inexcusable. 'lhe inconsistency of C is
simply taken for granted and, at times, cven praised as
versatility. Indeed, reading Kernighan & Richie's Z!?e C'
Pqgrarnrning r~nguagebrought to my mind the old adage
of product advertising that goes sorncthing like this: "If you
can't fur it or hide it [referring to a glaring deficiency], tout it
as a feature."

A Plan of Attack
Needing to learn the rudiments ofC, I acquired, upon thc

advice of a colleague, a copy of the second edition of Voss
& Chui's IIicrbo C++ LX~kiutor. Before you rush out and buy
a copy, let me warn you that the book contains an irrespotl
siblenumber of formatting and typographical errors, particu-
larly for a second edition, and is in dire need of the services
of a competent editor.

Nevertheless, I found Voss & Chui a useful framework in
which to approach the formidable world of C and object-
oriented programming. The authors take the reader step by
step through construction of a windowing system for the
IUM-PCYMS-DOS cnvironnlcnt, definitely a useful goal.

What's in a Name?
As astute readers by now have discerned, there is a

correlation between the name of this column and the
placement thcreof within the pages of this publication. The
inspiration I owe to Ed Zcm, author of the "b i t , Iaughing"
column which occupies the corresponding location in the
outdoors magazine AeklGStream (not to be mistaken for the
horror magazine, published in Braille and bearing the title
Feel G Scream).

Therc is, how-ever, a more scrious side to selection of the
tide, and this is in keeping with the kitchen stove analogy. In
most commercial endeavors, the back burner is where in-
house advances arc made, whereas activity on the front
burners meets the payroll and pays the bills. Without
research-and-devclopmcnt projeczs on the back burner,
advances in capability arc limited LO tools and techniques
developed by others arid nude available on h e commercial
market or described in thc literature.

It is my intention that this column serve as inspiration for
bacl-burner development. Reader interaction is essential, if
the column is to be succc~sful and continue. K.S.V.P.

Russell Harris is a consulting engineer working with embedded syslerns in the
fields of instrumentation and machine control. He can be reached by phone at
713-461-1618, or at his RUSSELL.H address on GEnie.

Forth Dimensions

Forth Interest Group
P.O. Box 2154
Oakland, CA 94621

NEW FROM THE FORTH INTEREST GROUP

Second Class
Postage Paid at
San Jose, CA

" ... FORTHisnotusually en-
countered within thc context of
scientific or engineering com-
putation, although most uscrs of
personal computers or worksta-
tions have unwittingly experi-
enced it in one form or another.
FOKTH has been called 'onc of
the best-kept secrets in com-
puting'. It lurks unscen in auto-
matic bank teller machines,
computer games, industrial
control devices and robots.. .

"Some scientists and engi-
neers have gained familiarity
with FORTH because it is fast,
compact, and easily debugged;
and because it simplifies inter-
facing microprocessors with
machines and laboratory
equipment.. .

"...FORTH has the ability
not only to reproduce all tlle

Scientific Forth
by Julian V. Noble

Scientfic Forth extends the Forth kernel in the direction of scientific
problem solving. It illustrates advanced Forth programming techniques
with non-trivial applications: computer algebra, roots of equations,
differential equations, function minimization, iunctional represenlation of
data (FFT, polynomials), linear cquations and matrices, numerical
integration/Monte Carlo methods, high-speed real and complex floating-
point arithmetic. (Includes disk with programs and several utilities.)

$50.00

A a o c & w n ~ e i o r . d m t f k % ~

. ,I I

J E ~ Z ~ N v. ww
-@-u-.I- -

Ycchrl h k a Puhu.hLU

functionality of FORTRAN-
using less memory, compiling
much faster and oftenexecuting
faster also-but to do things
that FORTRAN wuld not, ac-
complish easily or evcn at all.. .

"One reason FORTH has not
yetrealizeditspotentidinscien-
tific computing is that scientists
andprogrammers tend toreside
in orthogonal communities, so
that no one has until now
troubled to write the necessary
extensions.Onc aim of thisbook
is to provide such extensions in
a form I hope will prove appeal-
ing to current FORTRANusers.

"Since time and chance hap-
pen to everything, even FORTH,
I have dcvokd considerable ef-
fort to explaining the algorithms
andideasbehindthesecxtensions,
as well as theirnuts andbolts.. ."

