

F O R T H
ANONYMOUS THINGS - LEONARD MORGENSTERN

8
The author once proposed a scheme for anonymous variables. This article extends the original idea to other classes
of Forth words. Anonymity has three advantages: memory savings, fewer pro tern word names, and less risk of
duplicating names. And you can use them to pass data and program information between consecutively defined Forth
words. m

INTERPRETATION-MACRO TECHNIQUES - CHESTER H. PAGE

t
II

All computers provide disk-file 110, but some Forth dialects substitute their own. The author implemented his own
system's disk VO via links between Forth and the procedures provided by the host DOS. Two types of interpretation
macros are presented. m

POSITIVE-DNISOR FLOORED DIVISION - ROBERT BERKEY
14

Flooreddivision is a division algorithm that some felt was forced upon them in Forth-83, while programmers of certain
applications welcomed it with open (albeit robotic) arms. This paper provides division examples using floored
division, and discusses the relative merits of symmetrical division. The examples are based on real code, and most
are from a commercial application.

m
STACK VARIABLES - GIORGIO KOURTIS

I I8
Much has been said about the errors that can arise from juggling on the stack or from mixing recursion and variables.
SVARIABLE defines a variable with an associated stack. Stack variables can accept the same operations as variables,
and offer interesting functional advantages. =

BANKING ON THE R65Fl l - D.C. EDWARDS
23

Bank systems involve more interaction between hardware and software than other architectures, and have been used
for communications, in multiprocessing, and to extend memory. Forth is famous for hardware interfacing and as a
consistent operating system, making it ideal for a bank-memory operating system that neither overloads the system
bank nor consumes undue amounts of memory.

m
EMBEDDED CONTROL: PATH TO FORTH ACCEPTANCE - PHILIP KOOPMAN, JR.

35
Gaining popular acceptance for Forth is a perennial topic for those who already appreciate it. But general complaining
is not enough; we must truly understand our personal reasons for wanting Forth's success, and the real-world deficits
it corrects. The author proposes a strategy which could earn Forth a legitimate toe-hold in the industry.

Editorial
4

Letters
5

Best of GEnie Advertisers Index
28 3 7

Reference Section FIG Chapters
31 32 ,3839

Volume XII. Number 1 3 Forth Dimemions

Phil Koopman, Jr. has presented us with
a dose of reality therapy this month in his
article, "Embedded Control as a Path to
Forth Acceptance." His thoughts center not
so much on embedded control as on Forth's
future and our own inner motivations. Is
Forth worth fighting for? Are the key play-
ers burned out? Is it someone else's respon-
sibility? We expect to hear from readers
about this one, so let us know your thoughts
on the matter.

Then there's that old story about the
cook who always cut off the ends of a roast
before putting it in the oven. "Why?" the
thrifty spouse inquired. That's how the
cook's mother had always done it. "But
why?" It turned out she had not had a pot
large enough to cook the whole roast. End
of tale.

Our moral of that story applies to FD
cover dates. Your issues for this volume
will be arriving earlier than they used to; the
same thing happened last year, too. Some-
one whose identity is lost in the mists of
time once decided that our issues should
arrive at your door around the first of the
second month printed on the cover. That
tradition was passed down volume-to-vol-
ume. Unfortunately, it made even timely
issues seem a month late. When we got a
complaint about an issue that hadn't ar-
rived, we couldn't tell if it just seemed late
or if it had really gone astray somewhere.
So last year we sneaked all our deadlines up
by two weeks and by another two weeks this
year; we will still be timely, and now it will
seem that way, too. Thank you, to all our
advertisers, and to the printers, mailers, and
others who held up under the accelerated
schedules.

Author, Author!
This is the best place I know to remind

you that this magazine thrives only via the
participation of its readers. Forth Dimen-
sions is the primary mouthpiece of the
Forth Interest Group, but we have no team
of writers providing examples of "correct"
Forth: just people like you, working things
out in the real world and willing to share
your experiences, mistakes, and discover-
ies with others.

Write to tell us about Forth at your
work, about a utility or trick you discov-
ered, or about doing business in the Forth
world. How FIG and Forth Dimensions -
even Forth itself--rise to meet the new
decade will depend on the people who
shape it today. That means being resource-
ful and playful, and exploring the Forth
philosophy in any way that interests you;
but we especially hope it will mean writing
for these pages and for other publications.

Reviewers' Notes
As I have pointed out elsewhere, the

review process for articles published in
Forth Dimensions is less formal than some
of the scientific or academic publications.
Nonetheless, articles are evaluated for
technical content and other factors, with a
view to making the best use of our finite
space. This time I want to share with you
some of the interesting comments I re-
ceived from reviewers about two items in
this issue:

"'Anonymous Things' by Leonard
Morgenstern. A mechanism for declaring
headerless variables. A method of creating
classes of objects is described, instances of
which can be likened to deferred words, but
not as restrictive. They can later be as-
signed to act like variables, executable
routines, even headerless (i.e., anonymous)

Forth Dimensions
Published by the

Forth Interest Group
Volume XII. Number 1

MayIJune 1990
Editor

Marlin Ouverson
Advertising Manager

Kent Safford
Design and Production

Berglund Graphics

Forth Dimensions welcomes editorial mate-
rial, letters to the editor, and comments fiom its
readers. No responsibility is assumed for accu-
racy of submissions.

Subscription to Forth Dimemions is in-
cluded with membership in the Forth Interest
Group at $30 per year ($42 overseas air). For
membership. change of address, and to submit
items for publication. the address is: ForthInter-
est Group. P.O. Box 8231. San Jose. California
95155. Administrative offices and advertising
sales: 408-277-0668.

Copyright O 1990 by Forth Interest Group.
Inc. The material contained in this periodical
(but not the code) is copyrighted by the individ-
ual authors of the articles and by Forth Interest
Group, Inc., respectively. Any reproduction or
use of this periodical as it is compiled or the ar-
ticles, except reproductions for non-commer-
cial purposes, without the written permission of
Forth Interest Group, Inc. is a violation of the
Copyright Laws. Any code beaxiig a copyright
notice, however, can be used only with permis-
sion of the copyright holder.

About the Forth Interest Group
The Forth Interest Group is the association

of programmers, managers, and engineers who
create practical. Forth-based solutions to real-
world needs. Many research hardware and soft-
ware designs that will advance the general state
of the art. FIG provides a climate of intellectual
exchange and benefits intended to assist each of
its members. Publications, conferences, semi-
nars, telecommunications, and area chapter
meetings are among its activities.

"Forth Dimensions (ISSN 0884-0822) is
published bimonthly for $24/36 per year by the
Forth Interest Group. 1330 S. Bascom Ave..
Suite D, San Jose. CA 95128. Second-class
postage paid at San Jose, CA. POSTMASTER:
Send address changes to Forth Dimenrions,

I (Continued on page 22.) I P.O. BOX 8231, ~ & ~ o s e , CA 95155."

Forth Dirnensiom 4 Volume XII, Number I

'Fast Thousand' Seems Slow
Dear Editor,

I was curious about the program for
computing the first lOOOprimes, submitted
by AUan Rydberg in FD issue XI15 It
appears to contain some original ideas for
calculating primes. It is closer to the meth-
ods that test individual numbers than it is to
the classical Sieve of Eratosthenes, which
operates on an array.

However, the title "A Fast Thousand
Primes" seems to be a misnomer. Mr.
Rydberg says his program computers the
first 1000 primes in a little over two min-
utes on a 32-bit machine running jForth.
That seems awfully slow to me.

The accompanying code is my straight-
forward implementation of the Sieve en-
tirely in high-level F-PC. On my 12 MHz
'286 machine, it calculates the fust 1000
primes in 0.28 second. It takes a few addi-
tional seconds to print these primes to the
screen. The SIEVE word, which calculates
and counts the primes, takes 0.38 second
and seems to be slightly faster than the
Colburn Sieve as published in Dr. Dobb's
Journal and included here for reference. It
has been said that the Colburn Sieve and the
Byte Sieve return an incorrect number for
the count of primes, but that this does not
affect their usefulness as benchmarks. I
believe that my version of the Sieve returns
the correct number of primes and does so in
less time.

In An Introduction to the History of
Mathematics by Howard Eves (5th ed.,
1983). the Sieve is covered as follows:

"In arithmetic, Eratosthenes is noted for
the following device, known as the
Sieve, for finding all of the prime num-
bers less than a given number n. One
writes down, in order and starting with
3, all the odd numbers less than n. The
composite numbers in the sequence are

: SQRT (n -- n') \ Xorely method f o r i n t e g e r square r o o t
1 10 0 DO
2DUP / + 2/
LOOP NIP ;

7919 VALUE NPRIHE \ t h e l a r g e s t prime t o f i n d ; t h e 1000th prime

NPRIME SQRT VALUE SQRTNPRIME \ t h e l a r g e s t p o s s i b l e f a c t o r of NPRIKE

CREATE PARRAY NPRIKE 2+ ALLOT \ c r e a t e t h e array of proper s i z e
\ two b y t e s f o r each l 6 b i t odd number

: FILL-ARRAY \ t h i s f i l l s t h e array with odd ONLY
NPRIXE 0 DO
I I+ \ I t o BPRIKE 2*I + 1
I PARRAY + \ 0 t o NPRIKE/2
!
2 +LOOP

0 VALUE 2B \ t o c u t down on s t a c k s h u f f l e

: N-CROSS (n - -)
DUP 2%
DUP =: 2B
+ 1-
BEG I B
DUP

. PARRAY +
0 SWAP !
2N +
DUP BPRIKE >
UNTIL DROP

\ c r o s s o f f every nth number
\ 0 i n t o 3N-1 +2N t2N +2N . .
\ B 21
\ B 2B
\ 3N-1

\ 3B-1 31-1 --
\ 3N-1 P(3N-1) --
\ 3B-1 -- 0 i n t o p(3n-1)
\ 3N-1 +2H --
\ go t i l l l i m i t

: SIFT \ z e r o t h e non-primes, from 3 t o square r o o t n , primes t o n
SQRTNPRIKE 3 DO \ 89 is squ r o o t of 7907
1 1- PARRAY + @ \ 3 is p(2) . . . 5 is p (4)
0 > IF \ was NOT IF, which was s l o w

I B-CROSS
THEN

2 +LOOP
2 PARRAY ! . \ a fudge t o put 2 i n t o t h e array of odds

0 VALUE COUNTS \ t h e number of primes found

: PRIMES-OUT \ go through t h e array and p r i n t t h e non-zero numbers
0 =: COUNTS \ along with t h e rank o f each
NPRIKE 0 DO \ 3 is p (2) , 2 is p(O) , t h e " l t h " prime

PARRAY I + B
DUP 0 > IF \ do t h i s f o r non-zero numbers

IHCR> COUNTS
COUBTS . . " TH PRII[B= "
. CR

ELSE DROP THEE
2 +LOOP

Volume XII, Number I 5 Forth Dimemions

then sifted out by crossing off, from 3,
every third number, then from the next
remaining number, 5, every fifth num-
ber, then from the next remaining num-
ber, 7, every seventh number, then from
the next remaining number, 1 1, every
eleventh number, and so on. In the proc-
ess some numbers will be crossed off
more than once. All the remaining
numbers, along with the number 2,
constitute the list of primes less than n."

It is sometimes difficult to improve
much on the work of the Ancients.

Sincerely,
Marc Hawley
P.O. Box 7 16
Mt. Vernon, Indiana 47620

No Provisions.. .
Sirs,

I have been a member of FIG for some
five years now and enclose with this letter
my membership renewal. However, I have
become increasingly irritated by the fact
that FIG makes no provision for any other
computers than IBMs and Macs. I use these
intensively at work. At home I have an
Apple (not a Mac!).

I know it would be unreasonable to
expect as much attention to Apples, Ami-
gas, Ataris, etc. as to the Big Two. No
provision at all, however, has made me
slowly lose interest in your group or your
magazine.

Hey guys, I though Forth was a lan-
guage for all computers, not part of the MS-
DOS, OSl2, and Mac operating systems
alone.

Thomas Donaldson
Sunnyvale, California

... But Not a Wasteland
Dear Editor,

I'm writing in the hope that you may
know the whereabouts of Charles E. Eaker,
who wrote eFORTH for the Color Com-
puter, distributed by Frank Hogg Labora-
tory in Syracuse. I'm very pleased with
eFORTH, except the master disk seems to
have become corrupted in the intervening
years. I was politely sent another defective
disk . . . [and] finally received the informa-
tion that they could do nothing for me.. . . In
the event that you are unable to put me in
touch with Mr. Eaker, perhaps someone
who reads your "Letters" column might

have a copy of the original.
Despite having heard for years that

Forth is the Ferrari of programming lan-
guages, I dismissed it because there is also
the perception that Forth programmers are
rather fanatical. But now I know why they
are, and I'm converted.

Your magazine's articles about shadow
stacks, string stacks, and data stacks have
been especially fascinating to me. I'm
amazed by every issue of Forth Dirnen-
siom because it's the meatiest publication
I've ever seen. It has more guts than BITE,

despite the difference in size.
I like another thing about Forth Dimen-

sions. Unlike other computer publications
which are not machine-specific, you don't
give the impression that there is nothing
but wasteland beyond MS-DOS. Even
some (like Unix World) that you would
expect to be impervious to that syndrome
have become infected to some degree.

Donald Hicks
355 St. Emanuel St.
Mobile. Alabama 36603

: PRIMES-COUNT \ go through t h e a r r a y and c o u n t t h e non-zero numbers
0 =: COUNTS \ w i t h t h e r a n k of e a c h
NPRIME 0 DO \ 3 is p (2)

PARRAY I + @
0 > IF

IBCR> COUNTS
THEN \ but d o n ' t b o t h e r p r i n t i n g them

2 +LOOP
COUNTS . . " primes" \ j u s t p r i n t t h e t o t a l number found

: PRIWS \ c a l c u l a t e and p r i n t o u t 1000 pr imes

FILL-ARRAY \ p u t odd numbers i n t o t h e a r r a y
SIFT \ z e r o o u t t h e non-primes
PRIMES-OUT \ p r i n t t h e list of p r i m e s

: DO-PRIMES \ c a l c u l a t e t h e pr imes b u t do n o t d i s p l a y them
\ f o r a test of s p e e d
\ t h e n u s e PRIWS-OUT t o d i s p l a y them, i f d e s i r e d

FILL-ARRAY
SIFT

: SIEVE \ c a l c u l a t e s pr imes and c o u n t s them , t h e benchmark
FILL-ARRAY \ u s e s 8192 f o r NPRIWS
SIFT
PRIMES-COUNT \ I b e l i e v e t h i s a l g o r i t h m r e t u r n s t h e CORRECT

\ number of p r imes , u n l i k e t h e benchmark.

: 10-SIEVE \ f o r speed c o n t e s t s
10 0 DO

SIEVE
LOOP

COMMENT :
The f o l l o w i n g is t h e Colburn S i e v e a s p u b l i s h e d i n DDJ. I t is a more
e f f i c i n t v e r s i o n of t h e SAME a l g o r i t h m used i n t h e Byte benchmark S i e v e .

The Colburn S i e v e t y p i c a l l y r u n s i n about 60% of t h e t i m e of t h e
Byte S i e v e . I t h a s been s a i d t h a t t h e f a c t t h a t t h i s a l g o r i t h m r e t u r n s
t h e WRONG NUNBER OF PRIMES . d o e s n o t a f f e c t its u s e f u l n e s s a s
a s a benchmark!

COMMEBT;

dec imal
8192 c o n s t a n t s i z e
v a r i a b l e f l a g s s i z e a l l o t

: do-prime.hi < 11 seconds f o r 3 2 - b i t d t c f o r t h)

f l a g s s i z e 1 f i l l < s e t a r r a y)

0 < 0 count) s i z e 0
do f l a g s 1 + c@

i f 3 i + i + dup i + s i z e <
i f s i z e f l a g s + o v e r i + f l a g s +

do 0 i c! dup
+ l o o p

t h e n d r o p I+ (bump prime c o u n t e r)
t h e n

l o o p
. . " p r i m e s w

: 10-t imes. h i 10 0 do do-prime. h i l o o p ; I I
Forth Dimemioris 6 Volume XII. Number 1

Volume XII, Number 1 7 Forth Dimensions

Editorial interlude:
Every year, it seems, someone asks if we

are ignoring the users of BrandX comput-
ers. A preponderance of o w articles are
developed on the machines that a prepon-
derance of our readers use, naturally, but
most of those articles are not about the
machines, theyareaboutaForthtechnique
or innovation. Even readers using thesame
hardware offen end up modifying the
printed code unless they happen to use an
identical Forth system, too.

We happilypublish articles whosepoint
of reference is Hardware horribilis, ifit is of
value to enough readers; and the occa-
sional, highly specific article doesfind its
way into print. It is a tightrope balancing
act and, by the above opposing opinions, I
guess we haven't fallen off either side yet.
Rate (or berate) us again after the ST ar-
ticles coming out soon.. .

Forth-and-Back
Dear Marlin:

When I have a problem which begs for
a differently optimized Forth, I can switch
to a different Forth system to help solve it.
But this requires that I make myself aware
of the different Forth products available for
a variety of platforms. I regret the time
required to evaluate various Forths and to
estimate how much time converting each
would take. I would be confronted with
similar trials and tribulations if I were pro-
gramming in any other language, but Forth
could rise above the other languages in this
regard through support for a variety of
dictionary data structures.

Yesterday I may have needed diction-
ary data structures that were optimized for
memory efficiency. But today I may need
them tobeoptimized for executionspeedor
for dynamic memory allocation.

If Forth vendors could provide a family
of colon routines and associated inner inter-
preters, I should be able to avoid learning
about and using a wide variety of Forth
systems. For example, I can imagine a T :
definer for declaring a token-threaded
word, R : for declaring a relocatable word,
and D : for declaring a direct-threaded
word. Each of these would establish a dif-
ferent compilation state. Multiple versions
of the compiling words (IF, THEN, etc.)
would be needed, producing multiple
compiling subsystems, one for each compi-
lation state. Within one compiling subsys-
tern, the compiling routines would help
fashion parameter fields in a consistent

way.
I like the ease with which token-

threaded code can be manipulated. I envi-
sion myself using token-threaded versions
of selected definitions until I was sure they
were debugged. Perhaps I would need to
patch them substantially in the process.
Thereafter, I could switch to a different
compiling subsystem so that another kind
of optimization could be realized. Even
current Forth systems support words with
differently interpreted parameter fields.
Code words are interpreted correctly by
Forth's address interpreter as long as the
exits from them are normalized (by ending
them with a jump to NEXT). The address
interpreter also correctly interprets colon
definitions and instances of data structures.
So, much of the flexibility needed to sup
port multiple compiling subsystems is al-
ready present.

However, if and when vendors supply
such compiling subsystems, my selection
of dictionary data structures is likely to be
jeopardized: the vendor would probably
determine the structure of the vocabularies,
dictionary linkages, and name fields.

A Forth-and-Back language would be
ideal. No dictionary would exist until it is
created by the user. Such a language would
be able to produceForth compiling systems
made to the personal specifications of each
of its users. For example, the name fields,
dictionary links, and any vocabulary provi-
sions would be chosen by the user. Until
initialdefinitions arecreatedby the user, no
dictionary would exist. (This does not make
an initial Forth text interpreter impossible,
but it requires the implementation of it to be
substantially different than is customary.)

Perhaps the first step would be to create
an address interpreter toolset. Other

toolsets would help us extend the language
into a complete Forth system. If desired,
these same toolsets could be used to estab-
lish support for several compiling systems
at once.

Sincerely,
Mike Elola
1055-102 N. Capitol Ave.
San Jose, California 95133

For the Analyzer Toolkit
Dear Mr. Ouverson,

I have been meaning for some time to
pass on to the FIG membership my most
heavily used Forth word, which I call DO-
FOREVER. Its function is to execute the
next input word repeatedly until a key is
pressed. I use fig-FORTH to write auto-
matic test programs for bus-controlled in-
strument cards. DO-FOREVER (seeFigure
One) allows me to repeat a dubious bus
transaction rapidly enough to follow what
is happening with an oscilloscope.

The word that follows DO-FOREVER
may be one of theexisting words in the test
program, but is more often a word written
at the keyboard to check the problem I am
currently facing. For example, if a control
signal were not having the desired effect, I
would write a definition to toggle a control
line every five milliseconds (see the same
figure), then follow the signal through the
board with a scope probe until I found
where it got lost. DO-FOREVER is now a
fixture in all my automatic test programs.

Best wishes,
Tom Napier
One Lower State Road
North Wales, Pennsylvania 19454

: DO-FOREVER
(re-execute next word u n t i l keypress)
-FIND I F DROP CFA (t h i s is fig-FORTH)
BEGIN

DUP EXECUTE ?TERMINAL
U N T I L DROP ;

: TEST
0 7 >REG (c l e a r r e g i s t e r 7)
5 MILLISEC (wai t)

4 7 >REG (set b i t 2 of r e g i s t e r)
5 MILLISEC ;

DO-FOREVER TEST (t o g g l e b i t 2 u n t i l keypress)

Figure One. Napier's DO-FOREVER and a typical test word.

ANONYMOUS
"THINGS"

LEONARD MORGENSTERN - MORAGA, CALIFORNIA

Several years ago, I proposed a
scheme of anonymous variables, that is.
headerless variables used as temporaries.;
In this article, the idea is extended to other
classes of Forth words, including colon and
code definitions. Anonymous "things"
have three advantages: First, they save
memory by eliminating headers. Second,
the programmer is spared the burden of
inventing unique names for words used
only once or twice. Third, anonymous
words reduce, although they do not elimi-
nate, the risk of error from duplication of
names. They are most useful when a pro-
gram is compiled in segments, or when
large execution arrays consume many co-
lon definitions.

In the system presented here, illustrated
in F83, it is possible to create anonymous
"things," assign them temporary names,
and use them to pass information back and
forth among a group of consecutively de-
fined Forth words, not only with respect to
data (variables and constants), but also
program (colon definitions). There is a
similarity to the locals used in Pascal and
certain other languages, but there is no
provision for dynamic allocation of mem-
ory at run time, essential for large tempo-
rary arrays. The resemblance to Pascal can
be made closer by adding automatic nesting
of scope, not further discussed here.2

Creating and Using
Anonymous Things

Words that create anonymous things do
so by laying down a code field and body,
omitting header information. The address
of the code field is left on the stack, ready to
insert into an execution vector.

1. "Anonymnous Variables." Forth Dimensions
W 1 .
2. See proceedings of ACM's SIGForth.
February 1989 meeting.

I An analysis of NCONSTANT illustrates the principle underlying anonymous defmi- I I

: NCONSTANT (n -- adr) Start the definition. As with an ordinary constant, the
value to be stored must be on top of the stack. I I

PSEUDONAME If in debugging mode, lay down a pseudoname; other
wise, no action. I I

HERE >R The CFA of the word will be at HERE. Put that address
on the stack, then hide it on the return stack. I I

[' I B/BUF @ Compile the contents of the CFA of an existing constant,
namely B/BUF. I I
Compile the body of the anonymous constant. The
action here duplicates the compile-time action of CON
STANT, which is to "comma" the value on top of the
stack.

Bring back the CFA from the return stack and leave it as
a hook for later action.

I I

Table One. Analysis of NCONSTANT.

IMPERSONATOR TEMP
N: ." Hello." ; IS TEMP
: FOOl TEMP ;

An anonymous colon definition is assigned to the impersonator TEMP which becomes,
in effect, an ordinary colon definition, whether compiling or interpreting. Thus,
executing TEMP will display "Hello." and Fool will do the same.

NVARIABLE IS TEMP
: F002 TEMP ? ;

TEMP is now avariable. F002 will display itscontents. ~ 0 0 1 will still disp1ay"Hello." I I
' + IS TEMP
: F003 3 3 TEMP . ;
TEMP is now an alias for +. FO03 will display the number six. I

Table TWO. Using IMPERSONATOR.
I

Forth Dimensions 8 Volume XII. Nwnber 1

Screen 2 (Required)
VARIABLE DEBUGGING DEBUGGING OFF
: PSEUDONAME DEBUGGING @ IF 129 C, 238 C, THEN ; IMMEDIATE

: NVARIABLE (. . . addr)
PSEUDONAME HERE ['I >IN @ , 0 , ;
: NCONSTANT (n . . . addr)

PSEUDONAME HERE >R [' I B/BUF e , , R> ;
: IMPERSONATOR CREATE ['1 CRASH , IMMEDIATE

DOES> @ STATE @ IF , ELSE EXECUTE THEN ;

IMPERSONATOR TEMPC
IMPERSONATOR TEMPD
NVARIABLE IS TEMPC \ TEMPC now acts as a variable
: N: PSEUDONAME HERE TEMPC ON

[' I NVARIABLE @ , !CSP CURRENT @ CONTEXT ! 1 ;

: : TEMPC OFF [COMPILE] : ; . . , . TEMPC @ IF ?CSP COMPILE UNNEST [COMPILE] [TEMPC OFF

ELSE [COMPILE] ; THEN ; IMMEDIATE

I have selected the letter N, standing for
"nameless," to be the indicator of an an-
onymous definition. The letter A, for
"anonymous," was not available, because
A: is a previously defined word in F83.
Definitions of the most frequently used
types, NVARIABLE, NCONSTANT, and
N : , are on screen two, and NCODE is on
screen three.

For example, to create an anoriymous
constant with the value three, type 3
NCONSTANT. (DO not try to give it a
name--remember, it's anonymous.) An
anonymous variable is created by simply
writing NVARIABLE, an anonymous co-
lon definition by the pair N : . . . ; , and an
anonymous code definition by NCODE . . .
END-CODE.

An anonymous thing is not useful until
its CFA is assigned to some kind of execu-
tion vector. One could, for example, insert

Screen 3 (Optional)
: NCODE PSEUDONAME HERE DUP 2+ ,

CONTEXT @ AVOC ! ASSEMBLER ;

I I

\ Ancillaries
: (NCREATE) PSEUDONAME HERE 2 ALLOT ;
: N(;CODE) R> OVER ! ;
: (NDOES>) COMPILE N(;CODE)

232 C, 333 HERE 2+ - , ; IMMEDIATE

it into a deferred word. More serviceable is
IMPERSONATOR (screen two), which &if-

\ NCREATE and NDOES>
: NCREATE COMPILE (NCREATE) COMPILE >R ; IMMEDIATE

: NDOES> COMPILE R> [COMPILE] (NDOES>) ; IMMEDIATE

Screen 4 (Example: Defining N2CONSTAN!l! by Method 1)
\ Step 1. Define a 2CONSTANT
0. 2CONSTANT ZERO

\ Step 2. Use the defined 2CONSTANT to define others.
: N2CONSTANT (-- addr) PSEUDONAME

HERE >R [' I ZERO @ , , , R> ;

fers from DEFER in that it compiles its
contents at compile time, whereas a de-
ferred word compiles itself. One assigns a
word to an impersonator the same as to a
deferred word, by means of IS or [I S I .
The assigned action does not have to be
anonymous, nor does it have to be a par-
ticular type. Table Two shows examples.
Anything compiled by an impersonator is
unaltered by a new assignment. An imper-
sonator acts like an ordinary definition in
most respects, but will not respond in the
usual way to words that forward-reference
the input stream, such as ' and ['1 . Also,
if the assigned word is immediate, it will be
compiled regardless.

The number of impersonators is deter-
mined by how many assignments have to
be in effect at the same time, not by how
many are made in the program as a whole.
As arule, three or four are plenty, but extras
may improve readability. Several cautions
are in order: The system should not be
overused; a word present on more than two
or three consecutive screens should be
named. Also, due care is needed when the
scopes of anonymous "things" overlap.

Creating a New Class
of Anonymous Things

In practice, I find that NVARIABLE,
NCONSTANT, and N : are enough anony-
mous classes, and NCODE is occasionally
useful, too. To make more, two techniques
are available. The first, or basic, method

I

Volume XII. Nwnber I 9 Forth Dimensions

was used to create the above definitions,
and is illustrated further in Table One and
Screen Four. It is the method of choice
when a named class already exists. One
makes a named example, and uses it as a
basis for creating the anonymous class. If
the corresponding named class does not
exist, one can simply create a definer for it
in the ordinary way. In that case, the new
named and anonymous definers will have
identical "create" parts, so the common
code should be factored out into an anony-
mous colon definition, as in the example on
Screen Five.

A better, direct, way to create a new
anonymous class is provided by the second
method, which employs the pair
NCREATE . . . NDOES>, defined on Screen
Three and illustrated on Screen Six. No
named definer is necessary, but the latter
can be created at the same time, if desired.

Pseudonames for Debugging
Since anonymous things do not have a

name field, the display that results from
DEBUG and SEE is likely tobe unreadable.
To circumvent this, the word PSEUDO-
NAME has been inserted in all definitions.
Its action depends on the contents of an
ordinary variable named DEBUGGING. If
the latter contains TRUE, anonymous
things will be compiled with a pseudoname
field consisting of the two bytes 129 and
238, corresponding to lower case n. It is not
a true header. as no link or view fields are
laid down. Appropriate use of the phrases
DEBUGGING OFF DEBUGGING ON
will assist program development.

Explanation of Source Screens
Only Screen Two is required. It con-

tains the essential definitions, including
DEBUGGING, P SEUDONAME.
NVARIABLE, NCONSTANT, N : ,and IM-
PERSONATOR. Redefinition of : and ; is
necessary. Two impersonators, named
TEMPC and TEMPD, are also defined. The
names suggest their intended use in the
creation of new classes, but they are not
resmcted to that function. In fact, TEMPC
is used as a temporary during the definition
of N : and the redefinition of : (Screen
Two).

Screen Three is optional. It contains
NCODE, NCREATE, NDOES>, and their
ancillaries.

Screens Four through Six contain ex-

Screen 5 (Defining 3CONSTANT and N3CONSTANT by Method 1)

\ Step 1. Define the "Create" part as an anonymous.
\ Assign it to TEMPC
N: , , , ; ISTEMPC

\ Step 2. Define a normal creator, using
\ TEMPC in its "create" part
: 3CONSTANT CREATE TEMPC

DOES> DUP 2+ 2@ ROT @ ;

\ Step 3. Create an example.
0 0 0 3CONSTANT 3ZEROES

\ Step 4. Use the example as a basis for the
\ anonymous creator.
: N3CONSTANT PSEUDONAME
HERE >R [' I 3ZEROES @ , TEMPC R> ;

\ Testing. Note that TEMPC can be reused without confli
CR . (SHOULD PRINT 0 0 0) 3ZEROES . . . CR
1 2 3 N3CONSTANT IS TEMPC
CR . (SHOULD PRINT 3 2 1) TEMPC . . . CR

Screen 6 (Defining 4CONSTANT and N4CONSTANT by Method 2)

\ If only N4CONSTANT is needed, simply write
: N4CONSTANT NCREATE 2SWAP , , ,

NDOE S > DUP 2@ ROT 4 + 2@ ;

\ If both 4CONSTANT and N4CONSTANT are needed,
\ there are 2 steps:
\ 1. Write the CREATE and DOES> parts;
\ assign them to impersonators
N: (n4 n3 n2 nl --)

2SWAPr ; IS TEMPC
N: (adr -- n4 n3 n2 nl)

DUP 2@ ROT 4 + 2@ ; IS TEMPD

\ 2. Write the definers according to the
\ following set formula:
: 4CONSTANT CREATE TEMPC DOES> TEMPD ;
: N4CONSTANT NCREATE TEMPC NDOES> TEMPD ;

\ The impersonators are now free for reassignment.

(Continued on page 37.)

I

Forth Dimensiom 10 Volume XIZ, Niunber I

INTERPRETATION-MACRO
TECHNIQUES

All computers provide inputbutput
routines for disk files; some Forth dialects
ignore this and substitute their own con-
cepts of buffers and fde management. This
always impressed me as an attempt to make
Forth appear independent and self-suffi-
cient, but the readwrite commands had to
be tailored to the host computer anyway,
and were rarely any improvement over the
host DOS.

I had not used Forth long before I de-
cided that the way to implement disk I/O
was to develop communication links be-
tween Forth and the non-Forth procedures
provided by the host DOS. Some of the
procedures suggested similar operations
for use within Forth. This paper describes
some of these techniques.

Synopsis
Two types of interpretation macros can

be very handy. The first type is an input-
stream macro: text strings are accumulated
in some buffer area and then made an input
stream for interpretation or compilation.
The second type is a synthetic keyboard
input to provide a link with the non-Forth
world; specifically, this provides access to
host computer operating system routines
for cataloging a diskette, sending output to
a printer, loading a text file from a diskette,
saving a file to a diskette, etc.

First Type Used
in Interpretation
Sample use: to avoid repetitive keyboard
entries

In developing a matrix inversion pro-
gram for m)' FLOAT . FORTH, 1 encoun-
tered the following situation. To use the
routines for inverting an n x n matrix, I
needed to define four n x n matrices called
A, B, E, and X, and then save their code-

- -- -
CHESTER H. PAGE - SILVER SPRING, MARYLAND

m

field addresses in variables 'A, 'B, 'E, and
x. This required entering:

n n FMATRIX A
n n FMATRIX B
n n FMATRIX E
n n FMATRIx x
' A ' A !
' B ' B !
' E ' E !
' X ' X !

which is rather tedious.

-

This ... can be made
specific to any operat-
ing system.

- --

I therefore developed a word such that
entering n MAKESET would carry out all
these operations.

Assuming the existence of the FMA-
TRIX defining word and the modification
of INTERPRET OF INTERPRET, theonly
special word needed is >TIB (discussed
later):

: MAKEREF
>TIB ' A 'A !

' B ' B !
' E ' E !
' X ' X !

! " 0 DUP >IN
BLK ! FINTERPRET ;

: MAKESET (n --)

DUP DUP DUP DUP
DUP DUP DUP

>TIB FMATRIX A
FMATRIX B
FMATRIX E
FMATRIX X"

0 DUP >IN !
BLK ! FINTERPRET
MAKEREF ;

(Note the " delimiter on the string to be sent
to T IB in both these words.)

It is apparent that entering n MAKESET
is intended to replace the original sequence
of eight commands.

The key to all this is in >TIB, whose
definition is similar to that of . ":

: >TIB
?COME' 3 4 COMPILE
(>TIB) WORD C@ 1+
ALLOT ; IMMEDIATE

With:

: (>TIB)
PHRASE SWAP OVER
TIB #TIB @ + SWAP
CMOVE #TIB +!
0 TIB #TIB
@ + ! ;

After moving text to TIB, this enters an
end-of-stream null.

Note the new word PHRASE. It resets
the next-word pointer to beyond in-line
text compiled by WORD as a dimensioned
string.

: PHRASE (-- addr +n)
R> R@ COUNT
DUP 1+ R>
+ >R ROT >R ;

Volwne XII, Nwnber 1 11 Forth Dimensions

EDUCATIONAL SERVICES

First Type Used
in Compilati~.

Consider the trivial word definition:

: TEST
7 1 DO
I . LOOP ;

I shall use this as an example, using >'I! IB.
Fist, the obvious incorporation of this
definition directly into a macro:

: MAKE .TEST
0 XTIB !
>TIB

: TEST 7 1 DO
I . LOOP ; '

0 DUP >IN !
BLK ! INTERPRET ;

Now let's break it up into pieces:

: (A) >TIB : TEST ' ;
: (B) >TIB 7 1 DO ' ;
: (C) >TIB I . ' ;
: (D) >TIB LOOP ; ' ;

1 1 and define:

Technical and User Manuals

: MAKE.TEST
(A) (B) (C) (Dl
0 DUP >IN !
BLK ! INTERPRET ;

This loads the terminal input buffer piece-
wise at TIB, then interprets the complete
load.

Entering MAKE. TEST either from the
keyboard or a screen will generate TEST.

Expansion to Long Strings
The above technique is limited by the

available space in TIB. Expansion to
commands of a kilobyte can be made by
storing the potential input stream in the
massbuffer as a dummy screen #-I . A word
ADD. BUF is used to append text to what is
already in the buffer, using BUF . POS as a
position pointer. (Details of the following
procedure can depend on the screen-input
system of your Forth dialect-mine uses a
single 10%-byte massbuffer.)

VARIABLE BUF.POS
: APPEND.BUF (addr tn --)
BUF.POS @ MASSBUF
+ SWAP DUP

Courseware
User Interface Design

Leo Brodie

1530 Eland Lane

Ventura, CA 93003

8051647-73 1 5

BUF.POS +! CMOVE
0 MAS SBUF BUF . POS
@ t ! ;

The last part adds two nulls at the end of the
texc these nulls will be overwritten by the
next APPEND . BUF.
: (ADD-BUF)

\ Run-time routine
PHRASE APPEND.BUF ;

: ADD .BUF
34 STATE @
IF COMPILE (ADD.BUF)
WORD C@ 1+ ALLOT

ELSE WORD COUNT
APPEND.BUF THEN

; IMMEDIATE

Use by entering:
0 BUF.POS ! ADD.BUF
<first batch of strings,
not exceeding 256 bytes>
ADD. BUF <second batch>
ADD. BUF <third batch> ...

After the buffer is loaded, - 1 LIST
will display ic - 1 LOAD will interpret it.

To illustrate, in the fragments (A) - @)
above, replace >T IB with ADD . BUF and
initialize the massbuffer instead of TIB:
: (1) ADD.BUF

: TEST ' ;
: (2) ADD.BUF

7 1 D O ' ;

: (3) ADD.BUF
I . " ;

: (4) ADD.BUF
LOOP ; " ;

: MAKE .TEST

From the keyboard, enter
MAKE. TEST -1 LOAD togenerate TEST.

Warning: do not enter MAKE. TEST
-1 LOAD from a screen, because
ADD . BUF modifies the massbuffer and
could mess up the screen being used, via a
flush.

Second Type:
Link to Host DOS

Under ProDOS, the Apple.][accepts
many direct keyboard commands, such as
CATALOG, DELETE <file>, PR#1,
BSAVE, BLOAD, etc. The keyboard input

I
Forth Dimensions 12 Volume XII, Number 1

is checked by a command parser in the BA-
SIC Interpreter ROM. With a special word,
DOS, these operations can be accessed from
the keyboard by entering:

DOS CATALOG
DOS DELETE <file>
DOS BLOAD <file>

Or, from Forth words:

: CATALOG
DOS CATALOG" ;

: FILEOUT
DOS DELETE <file>" ;

: RUN-PROGRAM
DOS -PROGRAMw ;

These "one-piece" macros are based on a
primitive DOS .CALL which, after the
desired text is moved to the keyboard
buffer, calls the built-in command parser
using:

: >KEYBUF (addr +n --)

KEYBUF ROT ROT
?DUP IF
OVER + SWAP
DO I C@
128 OR OVER C!
1+ LOOP

141 SWAP C!
ELSE
WORD COUNT
>KEYBUF DOS.CALL

THEN ; IMMEDIATE

This "synthetic keyboard input" can be
made specific to any computer operating
system by appropriately defining the
primitive DOS .CALL.

More elaborate DOS commands re-
quire piecewise build-up. For example, I
save s Forth application by entering
SELFSAVE, which requests a filename,
then automatically opens such a file and
BSAVES from the origin of the Forth pro-
gram to its end, automatically setting the
FENCE.

The routine is based on concatenating
strings in a "buffer" which is the parameter
space of a variable named COMMAND, cre-
ated by
VARIABLE COMMAND
100 ALLOT

(or whatever size is desired). The file-

name-more generally, the pathname-is
held in a "string" location:
VARIABLE STRING
6 4 ALLOT

(to allow for the maximum legal ProDOS
pathname length). The phrase:
STRING 1+
6 4 EXPECT
SPAN @ STRING C!

is used to load the pathname.
The string in COMMAND is converted to

a DOS command by:
: GODOS
COMMAND COUNT
>KEYBUF DOS.CALL ;

Strings are concatenated to the string in
COMMAND by:
: CONCAT (addr +n --)

DUP COMMAND DUP
C@ + 1+ SWAP
COMMAND +! SWAP CMOVE ;

: (ADDS)
PHRASE CONCAT ;

: ADDS
34 STATE @ IF
COMPILE (ADDS) WORD
C@ 1+ ALLOT

ELSE
WORD COUNT CONCAT

THEN ; IMMEDIATE

and a special word to concatenate the file
pathname:
: ADD.STRING
STRING COUNT CONCAT ;

Numbers are incorporated by:
: DIGITIZE (u --)

0 <# #S #> CONCAT ;

which converts the number on the stack to
its ASCII representation and concatenates
the ASCII string to COMMAND.

With these words, build SELFSAVE:
: SELFSAVE
HERE FENCE !
CR ." Enter filename"
STRING 1+ 64 EXPECT
SPAN @ STRING C!
0 COMMAND !

ADD$ CREATE"
ADD.STRING GODOS
0 COMMAND !

ADDS DELETE"
ADD-STRING GODOS
0 COMMAND !

ADDS BSAVE"
ADD. STRING

ADDS ,A"
ORIGIN DIGITIZE

ADDS ,E"
FENCE @ DIGITIZE

GODOS ;

SELFSAVE automatically supplies the A
and E parameters required by BSAVE
(ProDOS binary-file save). The CREATE-
DELETE pair takes care of the situation
where the file already exists but is longer
than needed.

First Type, Again
in Compilation

The words DOS and ADD S used above
contain the sequences:

(1) 34 STATE@
IF COMPILE

(2) WORD C@ 1+ ALLOT
ELSE WORD COUNT

The sequences (1) and (2) could be defined
by:
: (1) ADD.BUF
34 STATE @
IF COMPILE ' :

: (2) ADD.BUF
WORD C@ 1+ ALLOT
ELSE WORD. COUNT

allowing the definition-makers:
: MAKE.ADDS
0 BUF.POS !
-1 BUF.ID !
ADD.BUF : ADDS " (1)
ADD.BUF (ADDS) " (2)
ADD .BUF CONCAT THEN ; "
ADD.BUF IMMEDIATE" ;

: MADE .DOS
0 BUF.POS !
-1 BUF.ID !
ADD-BUF : DOS ' (1)
ADD.BUF (DOS) " (2)
ADD.BUF >KEYBUF
DOS-CALL THEN ; '

ADD.BUF IMMEDIATE" ;

which are to be used by keyboarding
MAKE. ADDS - 1 LOAD and MAKE. DOS

(Co~inued on page 37.)

Volume XII, Number 1
--

13 Forth Dimensions

1

Eight Examples of

POSITIVE-DIVISOR
FLOORED DIVISION

ROBERT BERKEY - FREMONT, CALJFORNIA

Continuity-f the quotient at zero-
is one of the properties of floored division
that makes it useful. The useful corollary
with remainders is that the remainder of a
floored division is a modulus. Floored
division is one of a number of division
algorithms that exhibit these characteris-
tics.

This paper is aresponse to the request of
several Forth programmers for more (and/
or "real") division examples using floored
division, and the paper also includes dis-
cussion of the relative merits of the sym-
metrical* division algorithm. In reviewing
readily available Forth divisions, I've
found a number that relate to floored divi-
sion. Each of the following examples is
based on code presently on-line and opera-
tional on an AT. Most of the examples are
from a commercial application. In some
examples, irrelevant context has been de-
leted for clarity.

Each case requires
analysis, and . . . there
is little room for error.

Figure One,
: WUTE_LIMITS (normative-value -- limitl limit2)
\ If the normative value is negative, limitl is the high limit.
\ If the normative value is positive, limit2 is the high limit.
\ Limits are outside the acceptable range.
DUP >R DUP 3 / DUP >R - R> R> SWAP + ;

: DO COMPARISON (limitl limit2 measurement -- bad-flag)
D@ ROT SWAP DUP O< NOT (set up for compare)
IF > -ROT <
ELSE < -ROT >
THEN

AND NOT ;

Figure Two.
: COMPUTE_LIMITS (normative-value -- lo-limit hi-limit)

\ Limits are outside the acceptable range.
DUP ABS 3 U/ 2DUP - -ROT + ;

: DO-COMPARISON (lo-limit hi-limit measurement -- bad-flag)
TUCK > -ROT < AND NOT ; I I

Figure Three.
: COMPUTE_LIMITS (normative-value -- lo-limit hi-limit)

\ Limits are outside the acceptable range.
DUP 3 / ABS 2DUP - -ROT + ;

I I Figure Four.
\- Extract from F-PC 3.5 PRINTING.SEO---

Note: A $ prefix on a number signifies
hex and a Jt prefix on a number means
decimal.

\ Example 1
The first example is of the essence. The

concept is that a 2 /, an arithmetic right
shift, is floored. To help give it perspective,
it's stated as a vignette.

You have a fixed-bid consulting job to
speed up an unfamiliar system. You see a
2 / in a promising location. What do you
do?

6 constant pitems \ number of printer-menu items
variable pitem \ current printer-menu item

\ Using signed code the phrase shortens:
\ pitem @ 1- pitens IT& pitem !

I I

* "Symmetrical." Various terms have been used to indicate this division algorithm. The Forth-79
Standard describes quotients as "rounded toward zero." Intel's

I

Forth Dimensions 14 Volume XII, Nutnber 1

Figure Five.
\ Block# 3
(TABLE SINES T r i g o n o m e t r y 82209) DECIMAL

i i : TABLE CREATE DOES> OVER + + @ ;

TABLE SINES
0 , 0286 , 0571 , 0856 , 1143 , 1428 , 1712 , 1997 ,
2280 , 2562 , 2844 , 3126 , 3406 , 3686 , 3963 , 4240 ,
4515 , 4790 , 5062 , 5334 , 5603 , 5872 , 6137 , 6401 ,
6663, 6923, 7182, 7438, 7692, 7942, 8192, 8437,
8681, 8922, 9161, 9397, 9630, 9859, 10087, 10310,
10531 , 10749 , 10962 , 11173 , 11381 , 11585 , 11785 , 11983 ,
12174 , 12365 , 12550 , 12732 , 12910 , 13084 , 13254 , 13421 ,
13582 , 13741 , 13893 , 14044 , 14188 , 14329 , 14465 , 14598 ,
14725 , 14848 , 14966 , 15081 , 15191 , 15296 , 15396 , 15491 ,
15582 , 15668 , 15749 , 15825 , 15897 , 15964 , 16025 , 16082 ,
16134 , 16182 , 16225 , 16261 , 16293 , 16321 , 16344 , 16361 ,
16374 , 16380 , 16384 ,

I I \ Block# 4 (s i n * c o s * T r i g o n o m e t r y 860201~) DECIMAL

I I : (SIN) (N1 -- N2)
DUP 90 > IF 180 SWAP - THEN SINES ;

: SIN (N1 -- N2)
360 MOD DUP O< IF 360 + THEN

DUP 180 > IF 180 - (SIN) NEGATE ELSE (SIN) THEN :

Figure Six.
: SIN (nl -- n2)
90 /MOD TUCK
1 AND IF (q u a d r a n t s 1 a n d 3) NEGATE 90 + THEN
SINES
SWAP 2 AND IF (q u a d r a n t s 2 a n d 3) NEGATE THEN ;

a) Forth-79
Since Forth-79 did not define 2 /, you

check-and find that the system has a
conventional 2 / .

What do you do then?

1) Analyze all inputs to the operation
and verify that none are negative and
odd. Change the 2 / to 2 /. Or,

2) Implement a code version of a
symmetrical 2 / . Select a name for it
and install that routine. Or,

3) You're willing to take the risk that
there are no negative and odd inputs.
Changethe 2 / to2/.0r,

4) Leave it alone until you've gotten
more information to verify that
changing it will have an impact.

b) Forth-83
1) Change the 2 / to 2/.
I'm not on a fixed-bid consulting job at

the moment, but this is a problem I have

right now, because in the Forth-79 applica-
tion I'm working with I can't easily gain
both speed and space optimization by just
changing the 2 / to 2 / .Each case requires
analysis, and the tradeoffs are such that
there is little room for error in modifica-
tions.

\ Example 2
You've been requested to add eight-bit

characters for an Israeli customer. Looking
at the files you see a halfdozen places with
the code:

However, you have a Forth-79 system.
What would you do?

This isn't fiction. The point here is that
with a Forth-83 division it wouldn't matter
(assuming that the EMITS ignore the high
byte-and those in this application do jusl

Anotherpoint is that I don't thinkit's all
that obvious that there is a problem. Even
knowing of the problem, I needed some
examples and some mental exercises to
visualize the bits.

The principle working here is that when
floored division is used to shift a negative
number, the bits being shifted aren't dis-
turbed.

\ Example 3
Here's how to make an easy rounding

job hard. The DUP DROP and 0 + appear
to be a histcny of problems with this rou-
tine.

: ROUND (n -- n)
\ round number using LSD
DUP DUP ABS / SWAP ABS
l o /MOD SWAP DUP 5 >

I F DROP 1+ 0
E L S E DROP 0
THEN

SWAP # l o * + * ;

There is an interesting point here, in that
this routine requires division by zero to do
something. Anything. Any answer at all is
ok. The only problem occurs if the system
quits.

Here is this same routine in Forth-83:

: ROUND (n l -- n2)
DUP O < -
\ bias - 5 cases toward zero
4 + DUP # 1 0 M O D - ;

The bias of the .5 cases toward zero is
questionable. In this application, it slightly
distorts a graph across a zero line. The
presence of floored division makes con-
venient a flat rounded-to-nearest behavior
(rounded-to-nearest with continuity). The
preferred routine here, using Forth-83, is:

: ROUND (n l -- n2)
4 + DUP # 1 0 M O D - ;

\ Example 4
Here's a very similar routine, but at a

different place in the code and written by a
different engineer:

I
Volume XII, Nwnber 1 15 Forth Dimernions

Relationships of
Floored and Symmetrical lnteger Division

If a picture is worth a thousand words,
the following helps understand the rela-
tionships between floored and symmetrical
division. In pictorial form, the rounding of
floored division is a single arrow.

p o s i t i v e i n f i n i t y

I + nega t ive i n f i n i t y

A pictorial form of the rounding of
symmetrical division uses two arrows
(shown two ways).

I I p o s i t i v e i n f i n i t y I

I negat ive i n f i n i t y

The first of these two pictures is some-
what misleading. The second picture clari-
fies a problem area in routines using sym-
metrical division. I'll get back to the over-
lapped arrowheads in the second picture.
The initial point considered here is the
number of rounding diiections.

It is agiven that tworounding directions
is more complex than one. An example of
where this complexity shows itself is in an

implementation of a rounded-to-nearest
division, as follows. Note that there exist
several other varieties of rounded-to-near-
est division algorithms-4is one rounds .5
to its ceiling.

First, consider using unsigned numbers
and unsigned division. Suppose that we
wish to divide by ten and round to the
nearest.

With floored division, this formula
needs no change for signed numbers.

With symmetrical division, the mul-
tiplerounding direc tions need reverse engi-
neering.

: O r (n l -- n2)

dup 0< i f 4 -
else 5 +

t hen 10 / ;

Examples for all of the routines:
74 10u / r . 7 ok
75 1 0 u / r . 8 ok
76 10u / r . 8 ok

Examples for either of the signed rou-
tines:
-100 74 + 1 0 / r dup

-100 75 + 1 0 / r dup
. 10 + . -2 8 ok

-100 76 + 1 0 / r dup
. 1 0 + . -2 8 ok

In addition to being more complex in
the way that it rounds, symmetrical divi-
sion has a structural defect. This defect is
that the two arrows, as shown above, over-
lap at zero-either direction of rounding
can produce a zero. What follows is diffi-
cult to appreciate, as demonstrated by pub-
lished mistakes using symmetrical divi-
sion. The quotient of a negative number
divided by a positive, tested with 0<, can
produce a false-because the result might
be zero. This is a contradiction of the basic
principles we are taught concerning signs
with division and multiplication.in which a
negative operatedon by apositiveresults in
a negative.

Relatedly, becauseof theoverlap, infor-
mation is lost in the symmetrical transfor-
mation. A quotient of zero represents two
units of information, the numbers from
greater than - 1 to less than 1, while all other
quotientsrepresent one unit of information.
This is why the quotient and remainder of a
floored division can be converted to a sym-
metrical quotient, but not vice versa. Sym-
metrical conversion requires retaining the
divisor until after the division.

Fonh-83:
DUP O < +
\ b i a s .5 c a s e s awayfromzero
5 + #10 /

Again, the bias of the .5 cases is dubi-
ous, and floored division makes conven-
ient a rounded-to-nearest implementation
with continuity:

\ Example 5
The Forth-79 example in Figure One is

quite different from the others. Here,
floored division is clearly less appropriate
than the symmetrical division chosen; yet
this is useful because the pick of division
here is unsigned. This makes the second
case I've seen in which floored division
was obviously dispreferred, while symmet-
rical division led to problems.

Figure Two is a restatement of the cod-
ing. Note that the U/ is the unsigned

equivalent of / . A principle here is that the
complexity of symmetrical division can be
transformed and passed along in altered
form.

Another Coding.
With Forth-79, the restatement of the
COMPUTE-LIMIT S routine could be
coded as in Figure Three, which is a dead
heat with the unsigned routine, in terms of
bytes.

First point: Once started on it, the engi-

L

Forth Dimemiom 16 Volume XII, Number 1

neer who wrote the above example stayed
with a path that used signs.

Second point The 3 / ABS is more
complicated, both in mental terms and the
hardware needed to execute it, than is the
ABS 3 U/.

\ Example 6
Figure Four is an example from the

F-PC world of using a signed MOD. Here,
we watch Tom Zimmer avoid signed divi-
sion. I ran F-PC for a month with a trap in
it that announced negative operators in a
division or shift. The most frequent occur-
rence was the 2 / in DEPTH during stack
underflow. From what I saw, the F-PC
compiler could strip out signed division.
That doesn't mean it couldn't benefit from
using more signed division. It seems to be
the pattern, though, that compilers need
signed division less than applications.

\ Example 7
Code extract from the 1986 FORML

Corgference Proceedings paper, "Turtles

Explore Floored Division" by Zafar Essak,
M.D. is given in Figure Five. Note the
reverse engineering used here f a symmet-
rical division-with the use of the modu-
lus. the clause:

DUP O< IF 360 + THEN

can be deleted.
Figure Six is another approach to this

implementation, which happens to use both
a modulus and a floored quotient-it is the
shortest routine I found. Because of the
reflections among the four quadrants of a
sine curve, this routine is a candidate for a
useful symmetrical division, but I looked
and couldn't find one better than this
flwred routine.

\ Example 8
This final and unusual example goes

beyond floored division into the realm of
division theory. Note that the U/MOD here
is the unsigned equivalent of /MOD.

Total control
with LMI FORTH"
For Programming Professionals:
an expanding family of compatible, high-
performance, compilers for micmomputers
For Development:
Interactive Forth-83 InterpreterlCompilers
for MS-DOS, 0512, and the 80386

16-bit and 32-bit implementations
Full screen editor and assembler
Uses standard operating system files
500 page manual written in plain English
Support for graphics,floating point, native code generation

For Applications: Forth-83 Metacompiler
Unique tabledriven multipass Forth compiler
Compiles compact ROMable or disk-based applications
Excellent error handling
Produces headerless code, compiles from intermediate states,
and performs conditional compilation
Crosscompiles to 8080,Z-80,8088,68000,6502,8051,8096,
l802,6303,8809,68HC11,34010, V25, RTX-2000
No license fee or royalty for compiled applications

I Laboratory Mbrosystems Incopomled
FaprOliiceBo*10430, M~n'necfdRg! (290295

Phone Cmdit Cerd &hrs to: (213) 3087412
mx: (273) mm1

: T/ (n -- index weight)

#loo SWAP -
O M A X #299MIN
#loo U/MOD
#lo0 ROT - SWAP ;

Part of what this is doing is returning re-
mainders in the set (1 .. 100).

Using Forth-83:
: T/ (n -- index weight)

#-I99 MAX #lo0 MIN
1- #loo /MOD
SWAP 1+ SWAP NEGATE ;

The floored division shortened and
simplified the solution, but the solution
gets still simpler were we to implement a
division algorithm that, with positive divi-
sors, returns one-based remainders rather
than zero-based remainders. With this al-
gorithm, a division by three would return
remainders in the set (1 ..3). Note that this
won't contradict the "division transforma-
tion"-as usual, the divisor times the quo-

(Continued on page 34.) I

CONSULTANTS
<IWR, a national consulting firm,

has Forth assignments in the Denver area.
If you are looking for a change,

and the Rocky Mountains appeal to you,
please give us a call

or send your resume to:
<IBR
Recruiter

4100 E. Mississippi Ave., Suite 1810
Denver, CO 80222

(303) 691 -2273

I

Volume XII, Nwnber l J 7 Forth Dimensions

STACK
VARIABLES

GIORGIO KOURTIS - GENOA, ITALY

M u c h has h d y been said regarding
use of the stack as opposed to variables, and
concerning the errors that arise when vari-
ables are included in routines called recur-
sively.

Still, those types of errors continue to
pop up unexpectedly. To illustrate, con-
sider a word that must cope with a variable
number of arguments; let's suppose a rou-
tine is needed called ADD that adds the
values of a specified number of arguments,
e.g.:

1 4 32 -17
3 ADD

1 5 7 9 42 76
4 ADD

ADD can be defined as:

: ADD
(M[n-11 M[n-21 ...)
(... ~ [l] M[O] n -- sum)

1- 0 DO
+ LOOP ;

Because it is annoying to count the terms
"by hand," suppose we define ((and))
delimiters, leading to:

VARIABLE STACKDEPTH
: ((DEPTH STACKDEPTH ! ;
:)) DEPTH STACKDEPTH @ - ;
which allows us to use:

((7 1 9 24 -56 113 42)) ADD
((7 9 2 1) ADD

Next, suppose we define a routine like
ADD for multiplication:

: MUL
1- 0 DO

* LOOP ;

so that ((7 2 5 4)) MUL leaves the
result of 7 * 25 * 4 on the stack.

Finally, suppose we wish to evaluate
nested set operations such as:

((
((67 -98 7 8)) ADD
((8 9 98 34)) ADD
((7 4 8 5 982 -987 0)) ADD

1) MUL

This does not work. What should be
calculated is:

I
(67-98+78)*(89+98+34)*(7485+
987 + 0)

Combine the advan-
tages of stacks and
variables. . .

You might like to enter these problems
into your system to challenge yourself.
Otherwise, continue reading. Refer to these
definitions for a possible solution:

: ((
DEPTH R>
SWAP >R >R ;

: 1)
DEPTH R> R>
SWAP >R - ;

With these, can you nest set operations as
before and still obtain a correct result?
Perhaps you should insert the problem into
a definition to avoid entering a "wait for-
ever" loop.

What lessons have we learned? Per-
haps that:
Stacks are complicated to use, but never-
theless effective when used with care.

Variables are easy to use, but are subject
to dangerous misuse in those circum-
stances when a stack is required.

To provide the advantages of both
stacks and variables, I defined a new data
declarator, as follows:

: SVARIABLE
VARIABLE 0 , ;

or:

: SVARIABLE
CREATE 0 , 0 , ;

SVARI ABLE is useful for defining in-
stances of what I call stack variables, i.e.,
a variable and an associated stack. A stack
variable initially consumes two bytes
more than a normal variable. With each
16-bit value pushed onto a stack variable,
four more bytes of memory will be con-
sumed by the stack variable.

Stack variables can accept the same
operations as variables, as the following
examples illustrate:

SVARIABLE A
5 A !
A ? (prints 5)

7 A !
A ? (prints 7)

Furthermore, stack variables can
accept PUSH and POP operations:

7 A !
5 A PUSH
9 A PUSH

I

Forth Dimensionr 18 Volume XII, Nwnber I

Listing One. Implementing stack variables.

: SVARIABLE CREATE 0 , 0 , : \ ~ n l t l a l l z e t o 0 t h e v a r l a b l e and t h e p o l n t e r

200 CONSTANT MAX-TOTAL-DEPTH \ naxlmum number f o r t h e sum o f t h e d e p t h s o f
VARIABLE FREELI ST \ t h e s v a r l a b l e s t a c k s l d e s t t h e number o f
NAX-TOTAL-DEPTH 2* CELLS ALLOT \ c o u p l e s a l l o t e d f o r t h e t r e e l l s t .

\ The FREELIST v a r l a b l e p o l n t s t o t h e f l r s t
\ POINTER-CELL o f t h e a l l o t e d a r e a .

HERE 0 , 0 . \ Leave t h e l l m l t a d d r e s s on t h e s t a c k , f o r
\ u s e b y CELLSLINK and n u l l t e r m m a t e t h e l i s t

: CELLSLINK I l l m l t - a d d r e s s)

FREELlST DO I 2 CELLS + I ' 2 CELLS +LOOP ;

CELLSLINK FORGET CELLSLINK \ Lxnk f r om f r e e l z s t t o h e r e , t h e n f o r g e t .

100 CONSTANT *USERS \ A t r l c k 1 s u s e d t o o f f e r t o u s e r v a r l a b l e s t h e
CREATE USER-POINTERS \ P 0 5 5 1 b z l l t y t o be s t a c k v a r l a b l e s .
#USERS CELLS ALLOT \ Rese rve 1 POINTER CELL f o r any u s e r v a r .

\ C o n s t a n t XUSERS 1 s s y s t e m dependen t FIRST-USER-VAR 1s
\ t h e a d d r e s s o f t h e u s e r v a r l a b l e w l t h t h e s m a l l e s t
\ add ress . LAST-USER-VAR IS t h e a d d r e s s o f t h e u s e r
\ v a r l a b l e w i t h t h e b r g g e s t a d d r e s s .

: INSERT I lnse r t endum-add r prev~ous-rnsertendum-addr -- 1 \ A t t e n t ~ o n
ZDUP <-C ' ; \ lNSERT 6 EXTRACT

: EXTRACT (previous-extraendum-addr -- e x r a c t e d - a d d r I \ u s e t h e a d d r e s s
DUP @ TUCK \ o f t h e p o i n t e r
DUP 0= 7ERROR ERROR I N L IST OPERATION" \ c e l l . N o t t h e
< - < ; \ d a t a add ress .

: USER7 I a d d r -- f l a g 1 \ I s t h e a d d r e s s between t h e f l r s t and t h e
FIRST-USER LAST-USER RANGE[] ; \ l a s t u s e r v a r 7 I t b e l o n g s t o a u s e r v a r 7

: D>Paddr I d a t a C e l l A d d r e s s -- P o l n t e r C e l l A d d r e s s) DUP USER?
I F FIRST-USER - USER-POINTERS + ELSE CELL + THEN ;

\ C o n v e r t t h e DATA CELL a d d r e s s t o t h e POINTER CELL a d d r e s s .

: COUPLEGET i -- polnter-addr-of-free-couple I \ Reques t an unnamed s v a r l a b i e
FREELIST EXTRACT OUP OFF \ f r o m t h e f r e e l l s t and
CELL - DUP OFF ; \ l n l t l a l r z e i t .

: COUPLEGIVE I c o u p l e - d a t a - a d d r --
CELL + FREELIST INSERT

\ G i v e an unnamed s v a r l a b l e
\ t o t h e f r e e I l s t .

: OLD I s v a r - d a t a - a d d r -) \ D rop t h e l a s t e n t r y k n a s t a c k v a r ~ a b l e .
DUP D>Paddr EXTRACT \ I s v a r - d a t a - a d d r e x t r a c t e d - p o r n t e r - a d d r)

DUP FREELIST INSERT \ The e x t r a c t e d c o u p l e 1 s l l n k e d l n t o t h e f r e e
\ 1 1 5 t . S tack a s above

CELL - i eva r -da ta -add7 e x t r a c t e d - v a l u e - a d d r 1
<-i ; \ t r a n s f e r v a l u e o f e x t r a c t e d c o u p l e i n t o v a r

: POP (s v a r - d a t a - a d d 7 -- p r e v l o u s V a l u e 1 \ Keep o l d v a l u e o n s t a c k as
DUP @ SWAP OLD ; \ t h e r e s u l t .

: NEW i s v a r - d a t a - a d d r --) \ wo rks I l k e DUP @ SWAP PUSH
FRtELiST EXTRACT \ I ~ v a r - d a t a - a d d r p o i n t e r - a d d r - o f - f r e e 1
DUP CELL - >R \ beep d a t a a d d r o f f r e e c o u p l e on r e t u r n s t a c k .

\ I s v a r - d a t a - a d d r f r e e C o u p l e P o l n t e r A d d r
OVER D>Paddr INSERT \ I s v a r - d a t a - a d d r 1

\ t h e f r e e c o u p l e g e t s l n s e r t e d r n t h e s v a r l l s t
R, i-i ; \ s v a r v a l u e a l s o l n f r e e c o u p l e

: PUSH (v a l u e s v a r - d a t a - a d d r --) \ Push ~n a s t a c k v a r l a b l e
DUP NEW ' ; \ a v a l u e .

1 / Listing Two. Stack variable utilities and applications.
SVARIABLE STACK-DEPTH

: (DEPTH STACK-DEPTH PUSH ; \ Na rk s t a c k d e p t h .
: 1 DEPTH STACK-DEPTH POP - ; \ Count pushed k tems.

: - I 1 I n - -] \ Mark s t a c k n l t e m s b e f o r e t h e a c t u a l
)R DEPTH R> - STACK-DEPTH PUSH ; \ p o s l t l o n .

... : GROUP. I nC01 N [l l m[N-2) MCN-11 N --) \ t y p e a " g r o u p " o f numbers
0 DO . SPACE LOOP ;

\ The subsequen t wo rd s e r v e s t o t y p e t h e c o n t e n t s o f t h e s v a r l a b l e l l k e a
\ s t a c k lmaqe w ~ t h t h e u s u a l 1 convention TO5 (= TOP OF STRCK I on t h e r r g h t .

: S7 1 5 V d r --)

DUP D>Paddr SWAP I p o l n t e r - a d d r d a t a - a d d r
2 -11 \ mark s t a r k e x c l u d ~ n g t h e 2 i t e m s : p o x n t e r - a d d r & d a t a - a d d r
BEG 1 N I some-va lues p o i n t e r - a d d - da ta -add7)

B SWAP (some-va lues v a l u e p o ~ n t e r - a d d r 1
P 7DUP WHILE I some-va lues v a l u e n e x t - p o i n t e r - a d d 7 1
DUP CELL - 1 some-va lues v a l v e n e x t - p o l n t e r - a d d r nex t -da ta -add7)

REPEAT) I GROUP. ; \ Coun t pushed l t e m s & t y p e them.

: POP' (s v a r -- v a l u e t r u e : f a l s e 1 \ Pop ~f t h e r e r s
DUP D>Paddr @ I F POP TRUE ELSE DROP FALSE THEN ; \ s o m e t h ~ n g t o pop.

: VOID I s v a r -- 1 \ V o l d t h e s v a r l a b l e . Obviously
BEGlN DUP POP7 WHILE DROP REPEAT DROP ; \ one v a l u e 1 s a l w a y s t h e r e .

: EASE< BASE NEW ; \ These t w o wo rds , a r e u r e a f u l l ~f you wan t t o
: EASE> BASE OLD ; \ change base, s a v r n g t h e o l d one and restoring

\ l t l a t e r . They can b e used l l k e :
\
\ BASE< HEX
\ .
\
\ BASE>

A ? (prints 9)
1 6 A !
A ? (prints 16)
A POP . (prints 16)
A ? (prints 5)
A POP . (prints5)
A ? (prints 7)
A POP (error)

There are many ways to take advantage
of the dual nature of stack variables. For
example, to solve the earlier problem of
evaluating nested set operations, try:

VARIABLE STACK-DEPTH
: ((DEPTHSTACK-DEPTH PUSH ;
:)) DEPTH STACK-DEPTHPOP - ;

With one additional stack operation, OLD,
a shorter and clearer way to recall a
previous BASE setting is possible. OLD
throws away the last entry in a stack vari-
able.

: OLD (svar --
POP DROP ;

: BINARY. (n --)
2 BASE PUSH
. BASE OLD ;

Compare this with the alternative defini- 1
tion of BINARY that does not use stack
variables:

: BINARY. (n --)

BASE @ SWAP (k e e p o l d base)
2 BASE ! (change t o b inary)
B A S E ! ;
(p r i n t , r e t u r n t o o l d base)

Suppose we want to define a word that
prints the timeon the top right of the screen
without affecting the original cursor posi-
tion (perhaps as part of an interrupt-driven
routine). Using stack variables and PUSH,
POP, and OLD, you get this:

: TIME.
60 CURSORX PUSH
0 CURSORY PUSH

TIMEGET TIME>$ TYPE
CURSORX OLD
CURSORY OLD ;

This is again clearer and shorter [and much
less prone to stack errors] than the defrni-
tion that does not use stack variables:

I I
Volume XII, Nwnber 1 19 Forth Dimemiom

: TIME.
CURSORX @ CURSORY @
60 CURSORX ! 0 CURSORY!
TIMEGET TIME>$ TYPE
CURSORY ! CURSORX ! ;

These examples show how definitions
can frequently be made more self-docu-
menting and shorter through the use of
stack variables. (Because there would be
fewer calls to NEXT, these definitions are
also faster in cases where PUSH, POP and
OLD are coded as primitives.)

It is also easier to create the new defini-
tions. For example, a drawing routine may
need to store the current color, switch to a
new color, draw, then restore the old color
(turtle position and other parameters, per-
haps, as well). Such problems arise fre-
quently and all are much more easily
solved through the use of stack variables.

Stack variables can even replace local
variables, although some additional altera-
tions are needed to provide aclean implem-
entation. Of course, recursion is supported
by virtue of PUSH and POP operations. If
you develop something promising in this
regard, please let me know about it. [These
stack variables are really global in scope,
and memory can only be released insofar
as POP operations release two cells back
into a pool of memory that is shared by all
stack variables.]

Before offering some of the implemen-
tation details, allow me to share several
more examples of the usefulness of stack
variables. Listing Three shows how assem-
bler control structures can be implemented
using stack variables. Listing Four shows
how locals could be defined. This implem-
entation of locals is notable primarily be-
cause of its brevity, not because of its
elegance.

Finally, I offer in Figure One a helpful
development aid that uses stack variables.
INCLUDE accepts a string address which
holds the filename of the file to be loaded
(obviously, my Forth supports DOS files).
INCLUDE requests can be safely nested,
because interpretation will reliably con-
tinue at the correct resumption points re-
gardless of what the system security and
compiler words do with the parameter
stack.

Implementing Stack Variables
Stack variables are based upon lists.

Lists are formed as a series of list members.

Forth Dimensions

Listing Three. Flow-of-control-definitions.

\ BRANCH-CONDITIONALY-BACKWORDS (c o n d ~ t l o n a d d r e i s - w h e r e - t o j u m p I
\ T h e w o r d complies a b a c k w o r d j u m p with t h e r l q h t o f f s e t o r - d d r e s s .
\ O b v ~ o u s l y s y s t e m d e p e n d e n t d e f i n l t l o n .
\ BRANCH-CONDITIONALY-FORWARD I c o n d l t l o n -- I
\ T h e w o r d C o m p L l e s a f o r w a r d j u m p w l t h t h e g ~ v e n c o n d z t l o n
\ a n d a l l o t s t h e s p a c e f o r t h e a c t u a l l y u n k n o w n o f f s e t o r a d d r e s s .
\ T h e s p a c e f o r t h e o f f s e t I o r a d d r e s s w l l l b e f l l l e d b y O F F S E T ' .
\ O F F S E T ' (r e f e r e n c e - a d d r e s s destrnatlon-addr-ot-jump 1
\ T h e a b o v e w o r d , g l v e n t h e d e s t l n a t l o n a d d r e s s , a n d t h e a d d r e s s
\ o f t h e a l r e a d y c o m p l l e d Jump I o r m o r e p r e c l s e l l y : t h e a d d r e s s r m m e d l a t e l l y
\ a f t e r t h e complied j u m p) fills t h e s p a c e l e f t b y
\ BRANCH-CONDITIONALY-FORWARD w ~ t h t h e c o r r e c t o f f s e t o r a d d r e s s .

S V A R I A B L E CONTROL-BEGINING S V A R I A B L E CONTROL-L IST
\ C o n t r o l s t r u c t u r e s (CS) h a v e a b e g l n l n g a n d a n e n d .
\ B e g ~ n i n g 15 m a r k e d w l t h CONTROL<, w h l l e e n d ~s m a r k e d b y CONTROL ,
\ W o r d s b e t w e e n CONTROL<, a n d CONTROL>, c a n j u m p conditionally t o t h e
\ b e g ~ n ~ n q o r t o t h e e n d o f t h e s t r u c t u r e . J u m p s t o t h e b e g l n l n g a r e
\ ~ m m e d l a t e l y r e s o l v e d w h l l e f o r w a r d j u m p s w l l l g e t r e s o l v e d b y CONTROL .
\ T h e v a r l a b l e CONTROL-L IST c o n t a r n s a n u n n a m e d s v a r ~ a b l e t h a t c o n t a l n s t h e
\ a d d r e s s e s o f t h e u n r e s o l v e d f o r w a r d j u m p s .
\ T h e v a r l a b l e CONTROL-BEGINING c o n t a l n s t h e a d d r e s s o f t h e b e g l n l n g o f t h e CS
: CONTROL<, HERE CONTROL-BEGINING P U S n COUPLEGET CONTROL-L IST PUSH ;
: FORWARDRESOLVE (svar-contalnlng-unresolved-jumps --) L o c a l s V

B E G I N V POP? WHILE (r e f e r e n c e - a d d r e s s) HERE OFFSET ' REPEAT :
\ r e s o l v e f o r w a r d ~ u m p s U n t l l n o m o r e a d d r e s s e s a r e available.
: CONTROL>, CDNTROL-L IST @ FORWARDRESOLVE \ A t CONTROL>, e n d s t h e c o n t r o l

CONTROL-L IST POP COUPLEGIVE \ s t r u c t u r e . R e s o l v e t h e D e n d r n o
CONTROL-BEGINING OLD \ f o r w a r d j u m p s a n d g o b a c k t o

\ t h e o u t e r CS.
: W H E N , (c o n d l t ~ o n -- 1

BRANCH-CONDITIONALY-FORWARD HERE CONTROLLIST @ PUSH ;
\ J u m p t o e n d o f c o n t r o l s t r u c t u r e (CS) ~f t h e c o n d r t l o n 1s t r u e
: WHILE, (c o n d r t l o n --) CONDITION-NEGATE WHEN. ;
\ J u m p t o e n d o f CS l f c o n d r t l o n 15 f a l s e
: LEAVE. TRUE, WHEN, ; \ j u m p t o e n d o f CS a l w a y s
: E L S E , \ A f o r w a r d j u m p t o t h e e n d 1s c o m p l l e d .

\ B r a n c h e s t o e n d a r e r e s o l v e d a n d redirected t o t h e p o r t l o n
\ o f c o d e a f t e r ELSE, t h a t r e p r e s e n t s t h e f a l l l u r e c o d e .

TRUE, BRANCH-CONDITIONALY-FORWARD
CONTROLLIST @ FORWARDRESOLVE
HERE CONTROLLIST @ PUSH :

\ E L S E m a y b e u s e d In a n y c o n t r o l s t r u c t u r e , n o t o n l y ~n I F , THEN,
: ?AGAIN, (c o n d l t l o n --)

CONTROL-BEGINING @ BRANCH-CONDITIONALY-BACKWORDS ;
\ J u m p t o b e q l n l n q o f CS ~f c o n d r t ~ o n 15 t r u e
: AGAIN, TRUE. 7 A G A l N . : \ j u m p a l w a y s t o t h e b e g l n r n g o f CS
: I F . (c o n d l t l o n -- 1 CONTROL<, WHILE , ;
: THEN, CONTROL), ;

: REPEAT<, CONTROL<. :
: REPEAT>. AGAIN , CONTROL). ;
: U N T I L > . (c o n d l t ~ o n -- 1 CONDITION-NEGATE 'AGAIN, CONTROL), ;

\ W l t h t h a t w o r d s a n y n u m b e r o f w h i l e s m a y exist I n o n e c o n t r o l - s t r u c t u r e
\ a n d l f ' s a r e s l m p l e : : A N D I F , (c o n d ~ t l o n --) WHILE, ;
\ " c o n d I F , ... c o n d A N D I F , . . . c o n d e N D I F , s u c c e s s - c o d e THEN, " o r
\ " c o n d I F c o n d A N D I F , c o n d A N D I F , s u r c e s s - c o d e E L S E , f a i l u r e - c o d e THEN."
\ obviously i t r s n t n e c e s s a r y t o d e f l n e A N D I F , WHILE , d o e s t h e w o r k :
\ " c o n d I F , ... c o n d WHILE, ... c o n d WHILE , s u c c e s s - c o d e THEN, " . . .
\ O t h e r e x a m p l e s a r e :
\ REPEAT<, ... c o n d WHILE, ... c o n d WHEN. . . . REPEAT>, e c c .

I I Listing Four. Local variables, old and new.

: DROPS (n -- 1 0 DO DROP LOOP ; \ B e t t e r r f I n m a c h i n e l a n g u a g e .

: CALLERS-SWAP \ T h e execution o f t h e c a l l l n g a n d t h e p r e - c a l l l n g w o r d
R > R > SWAP >R >R \ a r e ~ n v e r t e d . F ~ r s t 1s c o n c l u d e d t h e p r e c a l l l n g w o r d a n d

\ a f t e r t h e c a l l l n g . (O r r l b l e u n s t a n d a r d t r r c k 1 .
\ L o c a l variables m u s t b e d e f ~ n e d a s s v a r l a b l e s b e f o r e b e e l n g u s e d .
\ O n l y o n e d l c t l o n a r y e n t r y 1s n e e d e d f o r l o c a l s w l t h t h e s a m e n a m e ~n
\ d ~ f f e r e n t w o r d s .
\ T h e w o r d s " ((" a n d " 1 1 L o c " a r e u s e d p r e f e r a b l y a t t h e b e g l n l n g o f a
\ d e f l n l t ~ o n . EXGMPLE:

: E L I P S E (x y a b \ t h e w o r d e l ~ p s e g e t s 4 n u m b e r s o n t h e s t a c k
(1 X Y A B 1) LOC \ t h e 4 n u m b e r s a r e respectively p u s h e d l n t o t h e
X @ Y @ MOVETO \ 4 stack-variables X Y A 8 . A f t e r c o m o l e t i o n o f t h e
A @ B @ C I R C L E \ w o r d t h e 4 variables w l l l b e " O L D e d " .

\ T h e s v a r l a b l e L O C A L S - L I S T 1s u s e d t o k e e p u n n a m e d s v a r i a b l e s (c o u p l e s 1
\ t h a t k e e p t h e s v a r i a b l e e t h a t m u s t b e o l d e d a t t h e e n d o f t h e d e f l n ~ t l o n .
0 CONSTANT N 0 CONSTANT V \ u s e d a s "TO V A R I A B L E S "
S V A R I A B L E L O C A L S - L I S T
: L o c (s v a r C N - 1 1 s v a r C N - 2 1 ... s v a r (0 l N --)

L I N ' COUPLEGET ['I V !
N 0 DO DUP V PUSH N P I C K SWAP PUSH LOOP N DROPS V L O C A L S - L I S T PUSH
CALLERS-SWAP
\ a t t h e e n d o f t h e w o r d c o n t a l n l n g t h e LOC e x e c u t r o n w l l l c o n t l n u e h e r e
L O C A L S - L I S T POP C ' I V '
B E G I N V POP7 WHILE OLD REPEAT V COUPLEGIVE

\ w e c o u l d d e f ~ n e : (I I ; a n d :) 11 LOC ; I b u t attention .. . 1
\ S o w e c o u l d d o : QUADRATIC (a b c x >
\ a @ x @ l x @ * b @ x @ t + c @ + ;

20 Volume XII, Number 1

: - > (v a l u e a d d r --) ! ; \ F o r c o m p l e t n e s s , n e v e r u s e d .
: < - (a d d r v a l u e --) SWAP ! ; \ F a s t e r t h e n SWAP ! , i f p r i m i t i v e

: c - < (DestAddr SourceAddr --) @ < - ; \
: > - > (SourceAddr Des tAddr --) SWAP c - < ; \
\ The above two w o r d s s e r v e t o c o p y t h e v a l u e o f a v a r i a b l e i n t o
\ another v a r i a b l e . They a r e u s e d l i k e '' A B > - > " o r '' B A < - <

(Figure One. A nestable INCLUDE. I

LE @ F I L E > %
\ A l l o c a t e s m e m o r y & copies f i l e c o n t e n t s there.
\ T h e c h u n k p o i n t e r i s le f t on t h e s t a c k .

1

INTERPRETED% PUSH
\ P u s h e s c h u n k p o i n t e r t o t h e SVARIABLE c o n t a i n i n g
\ t h e a c t u a l c h u i n k being interepreted.

3E (f i l e n a m e $ --)
$ > F I L E I N F I L E PUSH (opens f i les, & pushes)

(f i l e p o i n t e r t o var . I N F I L E)

\ T h e symbol % m e a n s chunk: a piece of m e m o r y ,
\ s o m e t h i n a l i k e a counted s t r i n a :

0 > I N PUSH
\ S a v e s o l d > I N and begins in te repre t ing n e w c h u n k

INTERPRET
I N F I L E POP FILECLOSE
INTERPRETED% POP FREE%

\ C l o s e s f i l e & frees m e m o r y a l located f o r f i l e .

> I N OLD ;

\ R e s t o r e s t h e o l d > I N .

Figure Two. Cell couples as list elements.

((Figure Two-a ~ 0 4 8 A04A ~ 0 9 0 ~ 0 9 2 1

1 I NFA

LFA CF A I PFA
Value, Pointer (to next pointer)

/ / Figure Two-b A090 A092

I I Figure Two-c

-1
LFA CFA PFA

Each member is comprised of two adjacent
memory cells that I will call a cell couple,
or couple. By cell, I mean two consecutive
bytes in 16-bit s ystems, or four consecutive
bytes in 32-bit systems.

Of the two cells in a couple, one holds
the arbitrary data value. The other cell
holds a pointer, the address of the next
member in the list. It points at the pointer
cell of the next couple. The final member of
a list always contains zero within the
pointer cell (you may change to a new list-
terminator value, but it must be used con-
sistentl y).

To show how data values are stored in
a stack variable, suppose you enter the fol-
lowing instructions:
SVARIABLE A

5 A !
-37 A PUSH

7 A PUSH

In memory, the result will be as shown
in Figure Two-a. After entering A POP .
memory is updated as in Two-b. The cell
couple formerly at A048 was returned
(linked) to the free list.

Suppose the next thing you enter is 4 5
A PUSH. This requires the removal (de-
linking) of a cell couple from the free list
for use to store the new value. If the allo-
cated cell couple is at CCOO, then memory
would be updated as shown in Figure Two-
C.

To summarize the requirements of
stack variable implementations, we need to
be able to:

Reserve space for the free list couples.
Allocate a couple by de-linking it from
the free list and linking it to the stack
variable.
Deallocate a couple by de-linking from a
stack variable and linking it to the free
list.
Two primitives are used to manage

couple lists, I N S E R T and EXTRACT.
Their actions are shown in the "before" and
"after" illustrations in Figures Three and
Four.

The <- word is simpler to remember
than a SWAP ! phrase, particularly for
beginners who are more likely to enter an
(often fatal) sequence like:

For movement of data between two vari-
ables, a pair of primitive operations has

I

Volume XII, Number 1 21 Forth Dimemiom

Figure Three. The definition and actions of INSERT.

: INSERT (i n s e r t e n d u r n - a d r p r e v - i n s e r t e n d u r n - a d r --)
2DUP <-< ! ;

Below, only the pointer cells are illustrated. If we start with this:
7B34 7A00 7982 7832

a called procedure, or whether the called
routine must save and restore the color). If
you know how to implement stack vari-
ables in Pascal, C, or BASIC coherently
with the rest of the language, you areproba-
bly a compiler producer. I am not, but I try
to be a Forth programmer.

Hopefully, Forth gives us the freedom
not only to "feel the need." but also to
"resolve the problem."

I I while cell 7000 is available, 7 0 0 0 I I (Continued from page 4 .)
and we perform I.... I
7000 7A00 INSERT
the result will be:

variables and routines. This is beyond the
provisions of most macro facilities, but is
not as efficient and, at the moment, cannot

1 I I 1 be extended to include immediate words

I I (the compiler is extended, but not in the
usual ways).

"The implementation does not involve

Figure Four. The definition and actions of EXTRACT.

: EXTRACT (p r e v - e x t r a e n d u r n - a d r -- extracted adr)

(DUP @ TUCK <-<)

DUP @ TUCK DUP O=
I ?ERRORn E r r o r i n l i s t opera t ion" <-< ;

I
If we start with:

and then perform 7 654 EXTRACT we will have
7A00 on the stack and, in memory:

dynamic memory management. Local
variables are alluded to, but this is not con-
cerned with meeting all the requirements
locals must satisfy.

 tack variables' by Giorgio Kowtis.
His new data definer creates instances of
stacks via a technique that can replace
local variables altogether. But no way is
given here to deallocate a stack variable,
and it is really a globally accessible object.
There are many points to note in this so-
phisticated piece; one is how multiple
stack objects share statically allocated
memory with the greatest of implementa-
tion ease.

"The implications could be far ranging.

been defined similar to <- and ->, namely
<-<and >->. [Do not confuse any of these
with the prefix TO operation of some
F o r t h ~ h i s is purely posflx.]

The code for implementing stack vari-
ables is provided in Listing One. Listing
Two provides definitions for a few supple-
mentary words that are handy for dealing
with stack variables. It also exhibits a few
more tiny applications for stack variables.

Both listings reveal how simple stack
variables really are. But like any new exten-

sion of Forth, many more possibilities are
brought to light, both syntactical and con-
ceptual. I hope you will enjoy exploring
more of the possibilities.

Conclusion
The stack variable concept isn't appli-

cable only to Forth. In fact, I felt the need
1 for something like it while working in

Turbo Pascal with a graphics package
(trying to decide whether the user must

1 restore his drawing color upon return from

The author shows how many Forth rou-
tines can be reimplemented with stack
variables, which could make Forth more
robust and even more flexible. [Any imple-
mentors care to help confirm or deny
this?] This mightbe the foundation for im-
plementing functional languages in Forth
(APL, anyone?). An implementation of
locals is shown, naturally, but complex
stack gyrations accompany this approach
just as much as they accompany the tradi-
tional ones."

L
Forth Dimensions 22 Volume XII, Nwnber 1

BANKING
ON THE R65F11

A bank of memory is a subsection
of a processor's memory, in which many
different physical memory chips can be
selected separately, each being referred to
as a bank. The selection of the memories
is performed by hardware (usually an
output port), which works in conjunction
with the address decoding logic to pro-
duce the different bank memory device
select lines.

The bank selection hardware is set, of
course, by software instructions, so bank
systems involve much more interaction
between hardware and software than do
other architectures. During development,
the hardware designer must work to sim-
plify and unify the bank interface soft-
ware, and the software designer must
have a detailed understanding of the
hardware's response to the software
commands.

Bank memories have been used in
computer architectures for various rea-
sons: to extend the memory (and/or types
of memory) in the system, for communi-
cations (where they act as distinct buff-
ers), and in multiprocessing environ-
ments (where they allow simultaneous
data transfers between sets of proces-
sors). Bank memories offer the multi-
processor system designer the speed and
reliability of closely coupled architec-
tures, while retaining the processing inde- ' pendence of loosely coupled architec-
tures.

One of the major problems with bank
architectures is that bank operating sys-
tems are usuallv inefficient--one writer
has said that thky are "destined to be a
kluge." This is because such operating
systems usually either overload the sys-
tem bank (by forcing it to handle all ad-
ministration of calls to other banks), or
they copy system information into all
banks (to distribute administration),

- --- -

D.C. EDWARDS - PERTH, W.A., AUSTRALIA
m

ironically making them memory ineffi-
cient.

Forth is a language famous for hard-
ware interfacing and for its power as a
consistent operating system, and thus pre-
sented itself as the language in which to
construct an entire Bank Operating System
(the BOS!).

Such an operating system is described
in this paper, and was developed on the
Rockwell R65F11, one of the first "Forth
on board" processors released (July 1983).
It has a modest external memory space of
16,128 bytes, which is small even for Forth

Bank operating systems
are usually inefficient.

developers. This limited memory was the
main impetus to develop the BOS: in a
single-bank F11 development system, 9K
is consumed by the Forth system, leaving
7K for applications. Consequently, target
machines developed on such a system are
also limited to 7K. A bank version of the
F11 development system allows develop-
ment of target systems which could utilize
the full 16K of an F11 bank, as well as
allowing multiple-bank target systems.

After completing development systems
, which use up to seven banks (112K) and
I

target machines which use four banks
(64K). I can report that Forth does indeed
deliver a transparent and efficient operat-
ing system simply by developing a
modified INTERPRET loop.

F11 Resources
The memory space of the F11 is seg-

mented into three sections:

on-chip ROM ($FCFF-$FFFF)
Holds the Forth kernel code.

on-chip RAM ($0040-$00FF)
Used for the Forth stacks.

external memory ($0100$3FFF)
Available for multiple bank memories.

We shall see later that it is actually
necessary to have such a segmented mem-
ory space to implement a bank system.

The F11 uses an on-chip port (port B)
to output an eight-bit bank address, pro-
viding up to 256 banks. The lines of port B
are thus connected into the hardware de-
coding logic to perform the bank memory
selection. All of the banks appear to be in
the external memory locations
($0100-$3FFF). The F11 boots up with
port B at $FF, so bank FF is the boot bank
in which the system code mustreside. Port
B can be thought of as providing eight
address lines (A14-A21) in addition to the
F l 1 's AO-A13.

The Forth on the F11, RSC-FORTH,
follows the Forth-79 Standard, with extra
words to access the Fll 's environment,
and includes three bank memory interface
words. These words use arguments similar
to the standard Forth words after which
they arenamed, with an extrastackentry to

1 specify the memory bank. The words are:

BANKC@ (A b - - d)
D is byte-fetched from address A in bank
b.

BANKC! (d A b - -)
Byte d is stored into address A in bank b.

BANKEXECUTE (A b - -)
Word at address A in bank b is executed.

I

Volume XII. Nwnber 1 23 Forth Dimemiom

All of these words have the same form:
1. Save current bank (PB C@ >R)
2.Setupnewbank (PB C! 1
3. Operation (C @ C ! EXECUTE)
4. Restore old bank (R> PB C !)

Port B is savedon thereturn stack, so the
operations can be nested to any practical
depth. When one of these bank words is
run, a new bank of external memory is
selected (by the hardware connected to port
B) during step two. This means that all of
the memory contents between $0100 and
$3FFF have changed to the values in the
new bank. At step four, when port B is
restored, the external memory (between
$0100 and $3FFF) reverts to its previous
values.

This fact, that the decoding hardware
selects a different physical memory during
the bank operation, is the hardware process
of which the software writer must have the
most detailed understanding, and it has the
following important consequences for the
system.

1 . Bank primitives must be on chip.
If these primitive bank programs were

located in external memory, the
processor's program counter would be
pointing to external memory during the
bank operation. When the new bank is
selected, the program counter would be at
some address within the new bank (most
likely not pointing to well-formed op-
codes), causing disaster. When located in
ROM (or Zero Page), the program counter
is always pointing to on-chip addresses,
ensuring that the entire operation is safely
managed. This is the reason that a bank
architecture must have a segmented mem-
ory space: the decoding must ensure that
some section of the memory is common to
all banks, in which the bank primitives can
reside (hardware designers note!).

2.On-chip kernel w o r k may be bank exe-
cuted.

We can exploit the fact that a different
bank is selected during BANKEXECUTE to
provide BANK versions of all the kernel
processes. To do this, instead of simply
executing the address of a kernel process,
we push a bank value on top of the address
and BANKEXECUTE the composite
bank+address. This process runs the kernel
process while the named bank memory is
being selected. If the kernel word refer-

ences external memory, the operation will
be performed on the selected bank memory
and not on the memory of the calling bank.
For example, the phrase:

ADDRESS '
@ CFA FC
BANKEXECUTE

will fetch from the ADDRESS within bank
FC. Such bank execution allows us to de-
fine words like those below.

Fetch word n from address A bank b:
: BANK@ (A b -- n)

[' @ CFA] LIT- SWAP

BANKEXECUTE :

Store word n to address A bank b:
:BANK! (n A b - -)

[' ! CFA 1 LITERAI, SWAP
BANKEXECUTE ;

Add n to value in address A bank b:
:BANK+! (n A b - -)

[' t! CFA 1 LITERAL SWAP
BANKEXECUTE ;

This process can be extended beyond
fetch and store words to, for example, the
dictionary search word (F I N D) :

: BANKFIND
('NAME 'Dict B -- Addr Bnk Cnt flag)

[' (FIND) CFA] LITERAL SWAP

BANKEXECUTE ;

During BANKF IND, CURRENT, the
name strings, and links are all fetched from
the named bank, not from the calling bank.
Like the bank primitives, these words need
a bank number to be pushed onto the stack
before invocation.

3. User variables in each bank.
As the USER variables are located in the

external memory, each bank has its own
private copies of the system USER vari-
ables. This allows, for instance, different
banks to work with differentbases. Compil-
ing code independently in each bank is
possible, as each one has private copies of
the variables used to administer
c~mpilation: DP, CURRENT, etc.

We can, thus, define a set of bank words
similar to Forth's.

Current dictionary pointer in bank b:
: BANKHERE (b -- n)

DP SWAP BANK@ ;

Increment bank b dictionary pointer by n:
: BANKALLOT (n b --)

DP SWAP BANK+! ;

Again, these words require the bank
number on the stack before execution.

Bank Operating System
The design aims of Jarrah Computers'

Bank Operating System were:
Allow compilation of code in banks other
than the bootup bank ($FF).
Allow headers to be built in abank sepa-
rate from the code.
Remove the need for bank-number state
ments in the text (leaving the text as close
to standard Forth as possible).
Allow words to call each other as in
standard Forth (irrespective of their defi-
nition bank and the current compile
bank).

The Compile Bank
To remove the need for explicit bank

declaration, the variable , BANK was cre-
ated to hold the value of the compile bank,
which is the default bank for all bank op-
erations. The value in , BANK (together
with standard 16-bit addresses) formsa24-
bit bank+address used in most of the bank
operations. To facilitate this, we define
(usually in code):

: BANK (-- n)

,BANK @ ;
(pushes , BANK value onto stack)

Combining this with the BANK words,
we can define words of the form:

: BC@ (A -- n)
BANK BANKC@ ;

: B ! (n A - -)
BANK BANK! ;

: B t ! (n A --)

BANK BANK+! ;

These words now accept the same argu-
ments as standard Forth, so name"
words, as distinct from BANKname words,
use the same arguments as Forth.

Forth Dimemiom 24 Volume XII, Number 1

Compiling Words Defined
in Remote Banks

When we are compiling in a bank and
encounter a word defined in some other
bank, we compile the call to the remote
word using the following code structure:

Addr - BEXEC
Addr +cell Bank
AddrtZcells--+ Addr

The word BEXEC fetches the remote
bank and address from Forth's code stream
and then bank executes it:

: BEXEC (--)
\ runs bank+address next to
\ itself in code stream)

R> DUP 4 + >R 2@
BANKEXECUTE ;

The code structure is built by BANK,
(e.g., BANK COMPILE). It expects an ad-
dress and the bank-of-compilation of a
word on the stack, and it tests to see if the
word is defined in the current BANK or in
the KERNEL. If so, BANK, compiles the
address, as in standard Forth compilation;
otherwise, BANK, compiles the BEXEC
followed by the bank, and finally the ad-
dress.

: BANK, (A CompileB --)
OVER F400 U< NOT
OVER BANK = OR
IF DROP
(the bank number)
ELSE COMPILE BEXEC ,
(compile BEXEC and Bank)
THEN , ;
(compile the address)

Whilst this method consumes three
times the space of a standard compilation, it
leaves a completely transparent outer
loop-any other system would burden the
interpreter with the task of determining
how to run what word from where. A Forth
compiler was then written using these d e
fault bank operations. For example:

: HERE
DP B@ ;

: ALLOT
DP B+! ;

I

HERE B! 2 ALLOT ;

Headers
To compile the headers, a variable

HBANK was created to hold the header

bank. Compilation in the header bank uses
a word H [which swaps the values in the
, BANK and the HBANK:

: H[
,BANK @ HBANK @
,BANK ! HBANK ! ;

After reading cmFORTH, I decided to
define an alias of H [called I H so that
syntaxes of the sort H [. . .Forth statements
. . . 3 H could be written, and all statements
between H [and I H will be executdcom-
piled fromlto the HBANK. For example, the
phrasen H [, I H willcompilen into the
header bank and increment the header
bank's DP, etc. Note that H [n , I H
works identically.

With this utility, the header construc-
tion words (LATEST, CREATE, etc.) were
defined using the bank words and H [
. . .bank.words.. .] H syntaxes. For ex-
ample:

: LATEST
CURRENT B@ B@ ;

: SMUDGE
H 1

LATEST DUP
BC@ 20 XOR
SWAP BC !

IH ;

Header Structure
The structure of a header is dependent

on the current com~ile and header banks.
If they are equal, a standard RSC-FORTH
header is created. If the compile bank is not
equal to the header bank, the header struc-
ture is different.

Standard, or local, header:
~ C ~ ~ I N A M E I L ~ ~ ~ ~ P F A P T R I

Bank, or far, header:
J~ntlNAMElLinklBanklPFAPl'Rl

FIND returns the same arguments as
-FIND in RSC-FORTH, with an extra
number indicating the bank in which the
header was located.

Forth's CFA had to be extended to
fetch both the CFA and the compile bank
from the data returned by FIND. It was
named CFAR, and uses the different
header structures to determine the compile
bank:

I
Volume XII, Nwnber 1 25 Forth Dimensicnu

HARVARD S O F T W O R K S
NUMBER ONE IN FORTH INNOVATION

(513) 748-0390 P.O. Box 69, Springboro, OH 45066

IWET THAT DEADLINE ! ! ! WAKE UP ! ! ! HSIFORTH runs under MSDOS or
PCDOS, or from ROM. Each level

Use subroutine libraries written for Forth is no longer a language that of lower Ones.

other languages! More efficiently! upgrades: $25. plus price difference
tempts programmers with "great between levels. Sources code is in

Combine raw power of extensible expectations", then frustrates them ordinary ASCII text files.
languages with convenience of with the need to reinvent simple
carefully implemented functions! tools expected in any commercial All HSPORTH systems support full
Yes, it is faster than optimized C! language. megabyte or larger programs & data, and
Compile 40,000 lines per minute! run faster than any 64k limited ones even

Stay totally interactive, even while H m O R m Meets Your Needs! without automatic optimization -- which
accepts almost anything and accelerates to

compiling! near assembly language speed. Optimizer,
Program at any level of abstraction Don't judge Forth by public domain assembler, and tools can load transiently.
from machine code thru application products or ones from vendors Resize segments, redefine words, eliminate
specific language with equal ease primarily interested in consulting - headers without recompiling. Compile 79
and efficiency! they profit from not providing needed and 83 SXandard plus F83 Programs.

Alter routines without recompiling! tools! Public domain versions are
STUDENTLEVEL $145. Use source code for 2500 functions! cheap - if your time is worthless. text & scaled/clipped graphics in bit blit

Use data structures, control Useful in learning Forth's basics, win~ows,mo,,cga,ega,vga, fast ellipses,
structures, and interface protocols they fail to show its true potential. splines, bezier curves, arcs, fills, turtles;
from any other language! Not to mention being s-1-o-w. powerful parsing, formatting, file and
Implement borrowed feature, often device U0; shells; interrupt handlers;
more efficiently than in the source! We don't shortchange you with level intenupts;
Use an architecture that supports promises. We provide implemented

$ ~ ~ i l ~ $, ~ ~ ~ & ~ ~ ~ p ~ ~ u ~ ~ ~ ~ C k s ;
small programs or full megabyte functions to help you complete your file paths; formats into strings.
ones with a single version! application quickly. And we ask you PERSONAL LEVEL $245.
Forget chaotic syntaxrequirements! not to shortchange us by trying to software floating point, trig, transcen-
Outperform good programmers save a few bucks using inadequate dental, 18 digit integer & scaled integer
stuck using conventional languages! public domain or pirate versions. We math; vars: A B * IS C ampiles to 4

(But only until they also switch.) worked hard coming up with the words, 1..4 dimension var arrays;
automatic optimizer-machine code speed. ideas that you now see sprouting up I;EVEL $395. HWORTH with FOOPS - The in other Forths. We won't throw in hardware floating point - data structures

only flexible full multiple the towel, but the drain on resources for all data types from simple t h ~
inheritance object oriented delays the introduction of even better complex 4D var arrays - operations
language under MSDOS! tools. Don't kid yourself, you are not complete thru complex h~perbolics;

just another drop in the bucket, your t u d e ~ , seal; interactive dynamic linker

Seeing is believing, OOL's really are personal decision really does matter. ~ ~ ~ ~ t ~ ~ ~ t ~ v ~ ~ $ ~ ~ ~ ~ ;
incredible a t simplifying important In return, well provide you with the dynamic manager; file blocks,
parts of any significant program. So best tools money can buy. sector mapped blocks; x86&7 assemblers.
naturally the theoreticians drive the PRODUCTION LEVEL $495.
idea into the ground trying to bend The only limit with Forth is your Metacompiler: DOS/ROM/direct/indirect;
all tasks to their noble mold. Add on own imagination! threaded systems start at 200 bytes,
OOL's provide a better solution, but Forth cores at 2 kbytes; C data

structures & struct+ compiler; only Forth allows the add on to blend You can't add extensibility to TurboWindow-C MetaGraphics library,
in as an integral part of the language fossilized compilers. You are a t the 200 graphidwindow functions, ~~~~~i~~
and only HSIFORTH provides true mercy of that language's vendor. YOU style line attributes & fonts, viewports.
multiple inheritance & membership. can easily add features from other

languages to HS/FORTH. And using PROFESSIONAL and PRODUCTION
Lets define classes BODY, ARM, and our automatic optimizer or learning a LEVEL
ROBOT, with methods MOVE- and
RAISE. The ROBOT class inherits:

INHERIT> BODY
HAS> ARM RightArm
HAS> ARM LeftArm

If Simon, Alvin, and Theodore are
robots we could control them with:
Alvin 's RightArm RAISE or:
+5 -10 Simon MOVE or:
+5 +20 FOR-ALL ROBOT MOVE
Now that is a null learning curve!

very little bit i f assembly language
makes your addition zip along as well
as in the parent language.

Speaking of assembly language,
learning i t in a supportive Forth
environment turns the learning curve
into a light speed escalator. People
who failed previous attempts to use
assembly language, conquer i t in a
few hours or days using HSPORTH.

~rth Dimensions 26

FOOPS+ with multiple inheritance$ 75.
286FORTH or 386FORTH $295.

16 Megabyte physical address space or
gigabyte virtual for programs and data;
DOS & BIOS fully and freely available;
32 bit addrestdoperand range with 386.
BTRIEVE for HWORTH (Novell) $199.
ROMULUS HSIFORTH from ROM$95.
WORTRAN translator/mathpak $ 75.

Compile Fortran subroutines! Formulas,
logic, do loops, arrays; matrix math,
FFT, linear equations, random numbers.

Volume XII, Number 1

: CFAR (PFA HB --CFA BANK)
\Gets BANK & Run addr fromHdr

2DUP BANK@ DUP >R
1 0 0 u< I F >R 2+
R> BANK@ 2- R>

ELSE SWAP DROP R>
2- S W A P
THEN ;

The BOS Interpreter
We now have all the utilities we need to

construct the bank interpreter. The process
is formally the same as a standard Forth
interpreter, with extensions to handle the
bank aspects of the code structure. After
BEGIN WORD . . . we have something like:

F I N D I F >R CFAR R>
STATE @ < I F BANK,

ELSE BANKEXECUTE
THEN

ELSE NUMBER ...

After F IND we have the header bank on
top of the stack, used by CFAR to fetch the
compiled bank.

If compiling, then BANK, is run to
compile the word. If executing, BANKEX-
ECUTE runs the word. It's that simple.

In conclusion. I can happily say that all
of the design criteria were met. The bank
text is loadable by other Forth-79s, with the
exception of H [. . . 1 H, which can be
quickly edited out of the way when using
bank code in other environments. The run-
time speed of the machine is hardly im-
paired, as most of the work is done at
compile time. The BOS provides the 6502-
based F11 with:

a transparent Forth with access to four
Mbytes of RAM.
a Idbit standard Forth and/or a 24-bit
'bank' Forth.
Two levels of syntax-BANKWO~~~ and
Bwords.

UPPER DECK FORTH $49

Based on Forth-83 Standard
Fully segmented architectum
Uses ordinary ASCII text files
Direct threaded code with top of stack in
register for fast execution
Compiles 32K file in 6 seconds on 4.77 MHz
IBM PC
Built-in multi-file full screen editor
Assembler, decompiler, source-level debugger
Turnkey application support, no royalties
Complete documentation
For IBM PCIXTIAT and compatibles with 256K,
hard disk or floppy, DOS 2.0 or later

Add $3 for shipping and handling (outside USA $15).
CA residents add sales tax.

P.O. Box 263342, Escondido, CA 92026
(619) 741-1075

After completing this project, I was
struck by the similarity between bank
memories and Forth itself. Banks are like
Forth for memories--they are modular
units, can be extended at will, and-
through the BOS-are transparently ac-
cessed.

Without Forth's modularity, compiler
extensibility, and "conveniences" like
USER variables per bank, etc., this program
would have been difficult, if not impos-
sible, to write.

Dave Edwards founded Jarrah Com-
puters, a company specializing in the
design of custom microcontrollers,
from the 68705 single-chip family to
large industrial systems based on
Rockwell's 65Fll Forth chip and,
recently, Motorola's 68HCll.

A S S O C I A T E S

Forth Recruiters

I
Volume XI.. Nutnber I 27 Forth Dimensim

BEST OF
GENIE

GARY SMITH - WTTLE ROCK, ARKANSAS

N e w s from the GEnie Forth
RoundTable-Object-oriented program-
ming is a hot topic once again. This is not
only m e in the computer world as a whole,
but also in the community of Forth users.

Object-oriented programming, or
OOP, first entered computer parlance with
the creation of Smalltalk at Palo Alto Re-
search Center (PARC), though at the time
few people really understood object-based
languages. In essence, an object-based
language organizes knowledge by groups,
or objects. In more traditional languages
these would be records, or perhaps lists.
Objects can exchange data (referred to as
'sending messages') on which methods
(i.e., procedures) can be performed. Ob-
jects are permitted to share methods.

If OOP and OOF are still a mystery to
you, it is clear you have not been following
the Object-orientedForth message topic on
the GEnie Forth RoundTable. The follow-
ing excerpts should make you wish you
were participating. I can promise your
comments on this anddozens of other inter-
esting topics are more than welcome.

Topic 41
Fri Nov 03,1989 OLORIN [Dave]
Sub: Object-Oriented Forth

(For the discussion of object-oriented
Forth systems, including the extension to
F-PC that can be found in the Forth
RoundTable library.)

HSABBAGH [hadil]
Dave: Downloaded and looked over

your Object-Oriented Forth extensions

nitions found in the 1NTERNALS.SEQ file.
since I don't own F-PC. Clearly, for-
ward: and define: are used for some
kind of deferred word. Could you shed
some light on this? I am not a rank beginner,
so I'm really after data on the functionality
of these words; I am sure that I'll have to
completely reimplement them for HS/
Forth, since the vocabulary is much differ-
ent.

yesterday. I am very impressed: it is some
of the best Forth code I have read in a long
time. I am trying to implement this stuff on
HSForth. I don't quite understand the defi-

Forth controls binding
through various
mechanisms.

Extensions that I would like to work on:
Port to HSIForth.
Add variable-length objects. The class is
defined to support variable-length ob-
jects; instantiating a class requires a
count of the number of cells needed. This
is available in Smalltalk also, but is non-
trivial to build.
Add dynamic allocation. Since objects
are referred to by their address, this
shouldn't be too hard to integrate with
the rest of the code. It will also add the
ability to use local variables, arrays, and
stuff like that. I would use something like
a C++ memory model, where objects
clean up after themselves, although there
are theoretical advantages to garbage
collection.
Experiment with persistent object, i.e.,
object-oriented, databases.

One can slightly modify your code to
add an extra level of indirection, i.e., object-
pointers are not memory addresses, but
indexes in some big table. This table would

not be in memory at the same time, so I'm
talking about some kind of virtual memory
system. This idea cannot be implemented
as nicely in any other language; in Small-
talk, you need heuristics to discriminate
which objects should be handled this way,
and in C++ you can't expose object inter-
nals easily. With this idea, you write sys-
tem code in Forth and your database using
the 00 extensions; the system takes care of
the persistence issues transparently.

I hope you will be able to give me
advice, etc. Perhaps we can work on this
like Dennis' telecom project? I intend to
share all source code; 1 hope it will be as
good as yours.

--Hadil

OLORIN [Dave]
Thanks for the comments (they'vedone

my ego no end of good :-)).
Creating dynamic objects isn't that

hard.. . an object structure is a pointer to its
class, followed by a block of memory the
same size as the size of the object (for the
instance variables). With that information,
it shouldn't be hard to use it with your
memory manager (whatever kind you
choose to use).

What f orward: and def ine: dois
allow forward referencing. The word
forward : creates all of a colon defini-
tion, but doesn't have any code in it at all.
The define : Stage allows the code writ-
ten then to be plugged into the previous
define. This is what makes the forward
definition as efficient as a regular colon
definition.

The intemals module needs to be reim- 1 plemented for each Forth the package is
ported to (by the way, 2.1 is on i& way,iith
a few more words for dealing with classes).
The intemals module is essentially the
abstracted-out dictionary structure

I
Forth Dimensions 28 Volwne XII, Number I

words.. . later on tonight, I'll sit down with
the code and write a detailed description of
what each word in that module is supposed
to do (you will need to dig deeply into the
dictionary structure and threading mecha-
nism of your Forth to port the code).

Dynamically sized objects: What you
might consider doing is having an instance
variable called body A (apointer to thedy-
namically sized portion). By using the abil-
ity to define initialization methods (which
are executed when an object is created),
you can allocate this space at creation time,
set the instance variables, and have the rest
of the methods work off of the pointer.

(Oh, and any dynamic object creation
does need to initialize the object.)

-Dave

HSABBAGH [hadil]
Dave: Thanks. I just finishedporting the

MODULES.SEQ to HS~Forth; only the
wordmodu le needed to bechanged. I will
upload this weekend. The dictionary struc-
ture is much different than that of most
public-domain Forths (except a little like
BBL). I will have to take some time just to
figure out how it works. There has been
some mention of creating a separate cate-
gory. I'm game, but I won't beable to spend
more than four to five hours per week on
this project. If you all can bear with me, I'll
be happy to post my code changes, etc. I am
also concerned about HS/Forth vs. other
Forths. Let me know what you think. I will
try to post a "to-do" list next week.

-hgs

DOJUN YOSHIKAMI
Subj: Smalltalk? C++?

The big difference is Forth was origi-
nally made for fast real-time applications
where time and space are of essence. Forth
is very small, the address interpreter can fit
in lK, a reasonable extensible Forth system
can be put in 8K of ROM (ROM, mind
you). Forth also has control over binding
times. From what I have read, OOP lan-
guages tend to bind late (Smalltalk is a late
binder, apparently) whereas most lan-
guages, such as Ada, C, or Fortran, b i d
early at compile time. Forth has control
over binding through various mechanisms
(i.e., bind whenever you like) with CRE-
ATE ... DOES> or deferred words. I've
even heard of some guys who wrote across-
compiler in Forth for the IBM PC because
Forth was the only language small and fast

enough. Forth is its own operating system,
plyFORTH for the VAX comes on ten (?)
floppies. (Micro-vms, I think, is about the
same size, but that's only the base system,
not including utilities, assemblers, and the
like.) The only problem is, Forth is so unlike
anything else, it's not well known, and
since it is for real-time programming, use-
ful data structures such as heaps have to be
coded yourself. (Heap management take up
heap big time!)

Pardon the pun.
-D. Yoshikami

keith@cuny.uchicago.edu
(Keith Waclena)

In response to the following remark: "It
seems to me that by the characteristics of
Forth, it should be a suitable language for
implementing interpreters for languages
that aredifficult to compile without restrict-
ing their operativeness. The languages I'm
thinking of are Prolog, Lisp or fully opera-
tive object-oriented languages. But the lit-
erature doesn't mention such possibility, so
I wonder if I'm wrong. Could anybody tell
me if any work has been done in this field?"

There has been a lot of this sort of thing
in the Forth literature (though it doesn't
seem to make it very far into the general
C.S. literature). Here are some citations;
these citations aren't necessarily recom-
mendations unless explicitly indicated.

L. L. Odette. "Compiling Prolog to Forth,"
Journal of Forth Application and Re-
search, vol. 4, no. 4, pp. 487-533.1987.

Dick Pountain. "Object-Oriented Exten-
sions to Forth." Journal of Forth Applica-
tion and Research, vol. 3, no. 3, pp. 51-73.
1986. Includes source code. Describes a
true object-oriented extension to Forth
(including subclass inheritance). [KDW]

Dick Pountain. Object-Oriented Forth:
Implementation of Data Structures, Aca-
demic Press,London. 1987. A more tutoriil
version of Pountain 1986. Quite good.
IKDW

Christopher J. Matheus. "The Internals of
FORPS: A FORth-based Production
System," Journal of Forth Application and
Research, vol. 4, no. 1, pp. 7-27. 1986.
Describes an OPS5-like production system
for Forth. [KDW]

While I don't have the reference
handy, there has been at least one article in
the FORML proceedings in the last few
years on Lisp in Forth.

These are just a few examples. The two
major places to look for articles of this
type are the Journal of Forth Applicahon
and Research and the proceedings of the
FORML conferences. Both are refereed.
Forth Dimensions, the journal of the Forth
Interest Group, is another source, al-
though I don't think it's refereed. [AN our
articles are subject to technical review,
though perhaps in a less formal process
than that employed by many academi'c
publishers. --Ed.]

And regarding this remark, "Just one
more question. Could anybody tell me
where I can get a public-domain Forth im-
plementation for the 80x86 family?" By
mail from the Forth Interest Group (at
cost; see order form in this issue), or by
anonymous FTP from wsmr-
simtel20.army.mil (cd to
pd 1 :cmsdos.forth>, set tenex mode, and
get either F-PC (a full-featured DTC
implementation) or F83 (a simpler ITC
implementation, excellent for learning
purposes).

-Keith

GENE LEFAVE
Subj: POLYFORTH OBJECTS

I've uploaded the file POLYOBJZIP.
It contains the basic wordset from Dick
Pountain's book Object-Oriented Forth.
It will run only under polyFORW386.
However, I believe it will also work under
the 8086 version. I used CELLS and
+CELLS whenever it was appropriate.

It's not particularly efficient, but it
does work. I'm rewriting my database
words to take advantage of objects, then I
plan to work on execution speed.

--Gene

D RUFFER [Dennis]
Gene, I've been doing a little bit of

playing with your POLYOBJ file. It has a
couple of problems with working on 8086
polyFORTH. I've tried to make the
changes, but now the system isn't working
anymore. It might be easier if you make a
few changesand re-post it, since you know
what makes it tick and how tocheck it. I'm
just getting too lost in it to trust my
changes anymore.

Volume XII, Number I 29 Forth Dimenrim

NGS WRTH
A FAST FORTH,

I OPTIMIZED FOR THE IBM
PERSONAL COMHJTER AND

8TAM)ARD FEATURES
INCLUDE:

e79 ST-

@DIRECT 1/0 ACCESS

@FULL ACCESS TO MS-DOS
FILES AND FUNCTIONS

@ E X V l R O ~ SAVE
& I D A D

-TI-SEGMENTED FOR
LARGE APPLICATIONS

@EXTENDED ADDRESSING

&EMORY ALLOCATION
CONFIGURABLE ON-LINE

oAUTO LOAD SCREEN BOOT

@LINE & SCREEN EDITORS 1
@DECOMPILER AND

DEBUGGING AIDS

a 0 8 8 ASSEMBLER

GRAPHICS & SOUND

@NGS ENHAN-S

@DETAILED MANUAL I

A CtMPLGTE FOKTH
DEVlxm?mNT SYSTEM.

First, it is not recommended to change
the function of existing words. Your
change to the nucleus is okay, but I would
call it another name instead of using an
existing name. I changed your definition of
-FIND to -FINDS and left the original
-FIND alone.

Next, in quite a few places, you used 4
or 4+ where you should have used 1 CELL
and CELL+. I made the changes, but I'm

PRICES START AT $70 I
NEW*-150 & HP.110
,IONS AVAILABLE I

NEXT GENERATION BYSTEW
P.OoBOX 2987
8ANTA CLARA, CAo 95055
(408) 241-5909

not sure I hit them all. Most i f your stuff
was okay, but blocks one and two were the
worst cases. It is particularly difficult to
know what to do with user variables, but the
best bet is to use 1 CELLS instead of a
literal number.

On the user variables, a relatively stan-
dard way to start them off is with the fol-
lowing statement:

STATE STATUS - CELL+
\ l a s t u s e r o f f s e t
\ f r o m b l o c k 198

Then, at the end of the block, you can use
the following to let you know how many
have been used:

CR . (L a s t USER =) .

You appear to have added the definition
CELLS+ that is not standard. I've just re-
turned that to CELLS + as it should have
been.

The definition L@ uses a thing called
-LINKS to remove some of the bits of the
link field. That is only needed on the 386
version. I believe that L@ can be defined as
AKA @ L@ for the 8086.

The definition SEAL is just too large
and I get an "out of range" error on the
/LOOP. I tried torefactor it, but I think that
is where I messed up. Try your hand at
seeing if you can keep the DO and the
/LOOP a little closer together. I think I can
see what you are doing there, but you can do
a better job factoring it than I can, and you
know how to test it.

That's as far as I got, but now the dic-
tionary links are messed up after I load
block seven. I believe the END> is the one
that is doing it, which uses my butchered
SEAL, but finding the problem is more than
I want to deal with right now.

Thanks. D a R

From: GENE LEFAVE
Sony Dennis, I didn't realize just how

incompatible with 8086 pF it was. I just got
back from vacation so give me a few days to
look it over.

Just for starters, the 17 CELLS used
throughout is wrong. This should be
CURRENT CONTEXT - (assuming that
context precedes the threads and current
follows). The 17 is from 16 threads plus
CONTEXT.

I think a better solution would be a
whole new version of -FIND that takes an
address of a single dictionary thread and
searches, fig-FORTH style. This would
save a lot of trouble.

The problem with SEAL is probably
related to the 17 CELLS. I don't recall
offhand what is after CURRENT, but I'm
sure setting it to zero will cause a lot a
problems. SEAL scans down all the threads
and creates a little mini-dictionary for the
object.

I'll try to post a new version shortly.
--Gene

Object-oriented Forth has also been the
subject of some regular Thursday night
(9:30 p.m. Eastern time) openFIGGY BAR
conferences.

To suggest an interesting on-line guest,
leave e-mail posted to GARY-S on GEnie
(gars on Wetware and the Well), or mail me
a note. I encourage anyone with a message
to share to contact me via the above or
through the offices of the Forth Interest
Group.

Forth Dimensions 30 Volume XII. Nwnber 1

REFERENCE SECTION

Forth Interest Group
The Forth Interest Group serves both

expert and novice members with its net-
work of chapters, Forth Dimensions, and
conferences that regularly attract partici-
pants from around the world. For member-
ship information, or to reserve advertising
space, contact the administrative offices:

Forth Interest Group
P.O. Box 823 1
San Jose, California 95155
408-277-0668

Board of Directors
Robert Reiling. President (ref, director)
Dennis Ruffer, Vice-President
John D. Hall, Treasurer
Tem Suuon, Secretary
Wil Baden
Jack Brown
Mike Elola
Robert L. Smith

Founding Directors
William Ragsdale
Kim Harris
Dave Boulton
Dave Kilbridge
John James

In Recognition
Recognition is offered annually to a

person who has made an outstanding con-
tribution in support of Forth and the Forth
Interest Group. The individual is nomi-
nated and selected by previous recipients of
the "FIGGY." Each receives an engraved
award, and is named on a plaque in the ad-
ministrative offices.

1979 William Ragsdale
1980 Kim Harris
1981 Dave Kilbridge
1982 Roy Martens

1983 John D. Hall
1984 Robert Reiling
1985 Thea Martin
1986 C.H. Ting
1987 Marlin Ouverson
1988 Dennis Ruffer
1989 Jan Shepherd

ANS Forth
The following members of the ANS

X3J14Forth Standard Committeeareavail-
able to personally carry your proposals and
concerns to the committee. Please feel free
to call or write to them directly:

Gary Betts
Unisyn
301 Main, penthouse #2
Longmont, CO 80501
303-924-9 193

Mike Nemeth
CSC
10025 Locust St.
Glenndale, MD 20769
301-286-8313

Andrew Kobziar
NCR Medical Systems Group
950 Danby Rd.
Ithaca, NY 14850
607-273-5310

Elizabeth D. Rather
FORTH, Inc.
11 1 N. Sepulveda Blvd., suite 300
Manhattan Beach, CA 90266
213-372-8493

Charles Keane
Performance Packages, Inc.
5 15 Fourth Avenue
Watervleit, NY 12189-3703
518-274-4774

George Shaw
Shaw Laboratories
P.O. Box 3471
Hayward. CA 94540-3471
415-276-5953

David C. Petty
Digitel
125 Cambridge Park Dr.
Cambridge, MA 02140-23 1 1

Forth Instruction
Los Angeles-Introductory and inter-

mediate three-day intensive courses in
Forth programming are offered monthly by
Laboratory Microsystems. These hands-
on courses are designed for engineers and
programmers who need to become profi-
cient in Forth in the least amount of time.
Telephone 213-306-74 12.

On-Line Resources
To communicate with these systems, set
your modem and communication software
to 3001120012400 baud with eight bits, no
parity, and one stop bit, unless noted other-
wise. GEnie requires local echo.

GEnie
For information, call 800-638-9636

Forth RoundTable
(ForthNet link*)
Call GEnie local node, then type M710
or FORTH
SysOps: Dennis Ruffer (D.RUFFER),
Scott Squires (S.W.SQUIRES), Le-
onard Morgenstern (NMORGEN-
STERN), Gary Smith (GARY-S)
MACH2 RoundTable
Type M450 or MACH2
Palo Alto Shipping Company
Sysop: Waymen Askey (D.MILEY)

(Confinued on page 34 .)

Volume XII, Nwnber I 31 Forth Dimensions

Forth Interest Group Chapters I
TALKING IT UP

IN THE OUTFIELD

A couple of issues ago in this col-
umn, we mentioned that we would soon
start telephoning the various FIG Chapters
located around North America in an at-
tempt to re-establish contact between them
and the central organization. The telephon-
ing is under way as of this writing. I'm not
sure what the results of these conversations
have to do with the original goal of the calls,
but it is good material for a series of maga-
zine articles, of which this is the first.

Kansas City FIG Chapter
Chapter Coordinator: Linus Orth

The Kansas City, Missouri chapter no
longer has regular meetings. They do,
however, still have their mailing list to-
gether. Their most recent meeting was in
December, 1989 when six members out of
a mailing list of 90 showed up. The Decem-

JACK WOEHR - 'JAX on GEnie
w

the fourthThursday of each month. Charles
Moore has spoken there a couple of times.
Most of the meetings are open forums, with
members comparing notes on their pro-
gramming activities.

The Phoenix, Arizona chapter meets at
the University of Arizona and is trying to
attract more university students. Forth is
taught occasionally at the University in the
context of -cial Intelligence.

Mr. Wilson would be interested in any
efforts FIG makes to reach out to secondary
education.

Give them the same
exciting, leading-edge
opportunity. . .

ber meeting was the Kansas City chapter's
first meeting in six months.

has been helpful in keeping the chapter
active.

In the past, the chapter conducted a
group project in which they wire-wrapped
single-board computers based on the
1802, and had at them with the fig-
FORTH listings for that processor. Lately,
there has been a move for the chapter to
"write its own Forth" as an exercise, but
they are having trouble maintaining the
necessary level of interest and active par-
ticipation.

Mr. Harris finds that new attendees at
meetings tend to be assembly-language
programmers looking for a way to handle
new hardware.

Mr. Harris finds the Harris Semicon-
ductor RTX-2000 family of chips very
exciting, and feels they could be a marvel-
ous tool for revitalizing FIG. He notes that

Mr. Orth feels that the chapter has
achieved its original goal of putting all the
local Forth programmers in touch with one
another; they now know who they are and
where they can be found, and often meet
outside of the context of the Forth Interest
Group.Therearebetweentwentyandthirty
of these Forth programmers in the Kansas
City area.

Mr. Orth doesn't participate in Forth
telecom, but intends to do so sometime in
the future. He would like to turn over his
Chapter Coordinator responsibilities, but
no individual has stepped forward to as-
sume the post.

Mr. Orth feels that a printed handout for
beginners that included a summary of
learning materials would be a helpful tool
that FIG could provide to local chapters.

Phoenix FIG Chapter
Chapter Coordinator: Dennis L. Wilson

The Phoenix chapter meets regularly on

the "Golden Age" of FIG came at a time
when Forth was an important tool for con-
quering new hardware, and that the RTX-
2000 offers the same sort of challenge for
the more sophisticated modem computer
user.

Mr. Harris wonders aloud, even to the
extent of phoning Harris Semiconductor
himself, why Harris Semiconductor
doesn't market the RTX-2001A Evalu-
ation Board that they are using for the
HarristESP RTX Design Contest at a
break-even price, just to "seed" the pro-
gramming world with experienced and
eager RTX-2000 programmers. He thinks
the national organization could attempt to
encourage Harris Semiconductor in this
direction, and that such aproject available
via mail order from the Forth Interest
Group could revitalize local chapters by
giving them the same sort of exciting,
leading-edge opportunity that character-
ized the Forth Interest Group in bygone
days.

More next issue.

Huntsville FIG Chapter
Chapter Coordinator: Tom Konantz

The Huntsville, Alabama chapter of the
Forth Interest Group has been inactive for
about three years. Not enough people at
meetings was the main problem. Mr.
Konantz finds himself mostly program-
ming in Ada these days. Mr. Konantz does
not mind being listed in Forth Dimensions
as aFIG contact person, however.

Houston FIG Chapter
Chapter Coordinator: Russell Harris

The Houston, Texas FIG Chapter meets
on the third Monday of each month at 7:30
p.m. at the Houston Area League of Per-
sonal Computer Users (HAL-PC), 1200
Post Oak, Houston. Typical attendance
ranges from six to 15 members. There is no
organized activity currently; Forth classes
held in the past had "no great success" in
attracting attendance. Mr. Harris feels that
the synergy of association with HAL-PC

Forth Dimensions 32 Volume Xll , Number 1

I
Volume XII, Number 1 33 Forth Dimenrim

(Continued from page 31 .)

BIX (ByteNet)
For information, call 800-227-2983

Forth Conference
Access BIX via TymeNet, then type j
forth
Type FORTH at the : prompt
SysOp: Phil Wasson (PWASSON)
LMI Conference
Type LMI at the : prompt
Laboratory Micros ystems products
Host: Ray Duncan (RDUNCAN)

CompuServe
For information, call 800-848-8990

Creative Solutions Conference
Type !Go FORTH
S ysOps: Don Colbum, Zach Zachariah,
Ward McFarland, Jon Bryan, Greg
Guerin, John Baxter, John Jeppson
Computer Language Magazine Confer-
ence
Type !Go CLM
SysOps: Jim Kyle, Jeff Brenton, Chip
Rabinowitz, Regina Starr Ridley

Unix BBS's with forth.conf (ForthNet
links* and reachable via StarLink node
9533 on TymNet and PC-Pursuit node
casfa on TeleNet.)

WELL Forth conference
Access WELL via CompuserveNet
or 415-332-6106
Fairwitness: Jack Woehr Cjax)
Wetware Forth conference
415-753-5265
Fairwitness: Gary Smith (gars)

PC Board BBS's devoted to Forth
(Fortmet links*)

East Coast Forth Board
703-442-8695
StarLink node 2262 on TymNet
PC-Pursuit node dcwas on TeleNet
SysOp: Jerry Schifrin
British Columbia Forth Board
604-434-5886
SysOp: Jack Brown
Real-Time Control Forth Board
303-278-0364
StarLink node 2584 on TymNet
PC-Pursuit node coden on TeleNet
SysOp: Jack Woehr

Other Forth-specific BBS's
Laboratory Microsystems, Inc.
213-306-3530
StarLink node 9184 on TymNet

PC-Pursuit node calan on TeleNet
SysOp: Ray Duncan
Knowledge-Based Systems
Supports Fifth
409-696-7055
Druma Forth Board
5 12-323-2402
StarLink node 1306 on TymNet
SysOps: S. Suresh, James Martin, Anne
Moore
Harris Semiconductor Board
407-729-4949
StarLink node 9902 on TymNet (toll
from Post. St. Lucie)

Non-Forth-specific BBS's with extensive
Forth Libraries

Twit's End (PC Board)
501-771-0114
1200-9600 baud
StarLink node 9858 on TymNet
S ysOp: Tommy Apple
College Comer (PC Board)
206-643-0804
300-2400 baud
SysOp: Jerry Houston

*Forth.Net is a virtual Forth network that
links designated message bases in an at-
tempt to provide greater information distri-
bution to the Forth users served. It is pro-
vided courtesy of the SysOps of its various
links.

(Continued from page 17.)

tient plus the remainder equals the divi-
dend.

: T/ (n l -- i n d e x we igh t)

#-I99 MAX # l o 0 MIN
l o o ONE-BASED/MOD
NEGATE ;

Remarkably, there is an elegant divi-
sion algorithm whose behavior with a nega-
tive divisor fits even better for this ex-
ample.

Partition division is what calculates the
number of trips a truck must take when the
truck can hold, say, three boxes. Given 14
boxes, five trips are needed to carry the
boxes; i.e., 14 partitioned by threes is five
partitions. The remainder from a partition
is inherently zero or negative, so that divi-
sion by three gives remainders in the set

(-2..0). This represents the unused capac-
ity of the truck-in the case of 14 boxes,
the value is -1. Net result 14 divided by
three is five with the remainder -1.

Relating to the example, what matters
is how this division is to behave with a
negative divisor. The partition division
with a positive divisor of three yields re-
mainders in the set (-2..0). With a nega-
tive divisor of -3 yielding remainders in
the set { 1 ..3), we have an ideal division al-
gorithm for this particular example. There
is a concept here, concerning the relation-
ship of these two sets of remainders, which
for lack of a better term might be called
"remainder continuity." Again note that,
as usual, the results will conform to the
division transformation.

The calculation for the example be-
comes:

: T/ (n l -- i n d e x we igh t)
#-I99 MAX # l o 0 MIN
#- loo PARTITION/MOD ;

Is this optimal result merely some form
of artifact, or is an underlying reality ex-
pressing itself? I don't know-although if
I had to guess right now, I'd say artifact.
This particular calculation is involved in
setting gain bits in an amplifier board built
with primitive 'iT1 circuitry.

PS: Benefits of
Symmetrical Division

During this review, I've encountered
about 25 division cases in on-line code
which would benefit by using or having
floored division. I've found zero cases in
which the symmetrical division algorithm
had some benefit.

Robert Berkey has been a member of
the Forth Interest Group since 1978
and can be reached on GEnie at the e-
mail address RBERKEY. He was a
contributor to the Forth-83 Standard
and is currently involved in the ANSI
Forth standards process. He is inter-
ested in examples of usefulness of
rounded-to-zero integer division and
integer division using negative divi-
sors.

34 Volume XII, Number I

EMBEDDED CONTROL:
PATH TO FORTH ACCEPTANCE

-

PHILIP KOOPMAN, JR. - WEXFORD, PENNSYLVANIA

Discussions on the usenet Forth
bulletin board and other arenas often con-
centrate on the theme of improving the ac-
ceptance of Forth among those not cur-
rently using it. I propose a strategy to ac-
complish this, which involves striving to
make Forth the language ofchoice for em-
bedded real-time control. This essay is
meant to stir up discussion in the commu-
nity about where wearereally going,andto
focus attention on why Forth should be-
come more popular and how this may be
done. It is intended as a starting point in a
continuing discussion, not as a final word
on the subject.

Why Worry
About Forth Popularity?

Why are any of us womed about the
popularity (or unpopularity) of prograrn-
ming in Forth? I would categorize the rea-
sons for desiring that Forth become popular
as follows:

The belief that Forth is a fundamen-
tally better tool to solve problem.. Many of
us believe that Forth is a fundamentally
better way to solve problems. There are
advantages to the interactive, incremental
compilation environment used by most
Forths. Many of us would like to see Forth
in more widespread usage simply because
we believe it is better.

Using Forth at the workplace. Many
of us write programs in Forth as a hobby or
for minor projects, yet are unable to use
Forth in our regular jobs. Others can use
Forth for production programming, but
only under unusual circumstances, usually
involving tight deadlines or naive supervi-
sors. One serious obstacle to using Forth is
the lack of trained Forth programmers to
maintain code. If Forth were a more so-
cially acceptable language, such obstacles
would be reduced and we could all use our

favorite programming language for work
as well as play.

Language support and development.
If Forth were to come into wider use,
greater support would be available for it.
The Forth market is small, so commercial
Forth vendors can only afford to put rela-
tively little effort into development and
maintenance (compared to the resources
used to support something like an Ada
compiler). Even though Forth environ-
ments traditionally need much less support
and maintenance than environments for
other languages, the involvement of an
order of magnitude more active Forth pro-
grammers would surely make available
better tools, utilities, and environments.

- - -- -- - -

This would create an
installed base of ap-
plications and pro-
grammers.

Ego. Many ardent Forth advocates
want to receive praise eventually for their
wisdom and foresight in choosing Forth as
their favorite programming language.
Forth programmers tend to be the best
programmers (just ask them!).

But how compelling are these reasons?
Are they sufficient to justify spending time
and effort winning wider acceptance for the
languages? Before we begin the attack, we
should satisfy ourselves that Forth is worth
fighting for. Gut feel and emotion are not
enough for this; we must understand why
we want Forth to succeed before we com-
mit ourselves to the goal of having it suc-
ceed.

The Important of Being
a Language of Choice

Forth is not a major force in the pro-
gramming language scene. It is not taught
in most schools. It is poorly represented in,
or absent from, the computer section of
bookstores. It is seldom presented at com-
puter science and computer engineering
conferences. It is not openly used in most
companies. It is not used by a significant
number of programmers in most disci-
plines. Yet, this lack of use is certainly not
because of a lack of inexpensive software,
nor for any other simple reason.

There is a long litany of reasons why
Forth isn't used by more people. I won't
indulge in an enumeration of why Forth is
not popular now, since the list is well
known. Most of the problems boil down to
a lack of professional-quality development
tools, lack of appreciation for the strengths
and weaknesses of the language for differ-
ent application areas, and the fact that it
isn't already popular. (Most managers have
a well-founded fear of using novel technol-
ogy to solve problems that can be solved
with familiar tools.)

One of the strengths of Forth is that it
can be used in many applications. Since it is
flexible and extensible, the language itself
can be modified to incorporate many re-
quirements. One of the schools of thought
to gain greater acceptance for Forth is to
extend the language so that it comes ready-
made to solve any problem. Then, potential
users will see the power of the language
revealed, and will use it for all their pro-
gramming needs.

This approach of developing "fat" Forth
systems will not gain acceptance for Forth.
Don't get me wrong-this is not to say that
such Forth systems are bad or useless,
rather to say that they are not the means to
the end of Forth acceptance. The primary

Volume XII. Nwnber 1 35 Forth Dimemions

problem is not whether particular Forth
standards or systems are "fat" or "thin." It
is not what standard a Forth conforms to. It
is not any technical reason at all.

The problem is one of marketing.
Ask almost any programmer what lan-

guage is the best to use for numerical appli-
cations. The answer is Fortran. The best
language for Unix-based applications is C.
The best programming language for ex-
ploring language-implementation tech-
niques and artificial intelligence is LISP.
The best language for business programs
on IBM mainframes is COBOL. The best
language for a neophyte with a personal
computer is BASIC (or, perhaps, LOGO
for youngsters). Outside the Forth commu-
nity, these statements will generally re-
ceive little argument.

Why can we say something like, "For-
tran is the 'best' language for numerical
applications" and find almost universal
agreement? Because Fortran is the lan-
guage of choice for those numerical appli-
cations. It is not necessarily the provably
best language. It is the one that most people
use. This means that there are libraries,
development environments, programmers,
and massive amounts of installed code
which all presuppose the use of Fortran for
certain classes of scientific and engineering
applications.

Why not make Forth the language of
choice for embedded real-time control
applications? This would create an in-
stalled base of applications and program-
mers. It would also give an air of accepta-
bility to Forth not only for embedded sys-
tems, but for other application areas as
well.

The key is to market Forth as the best
solution available to a restricted set of
applications, not just as a good solution for

I everyone's problems. No one will believe
that one language can do it all, but the idea
ofa flexible language which is well adapted
to a single class of applications has consid- , erable appeal. This is not to say that Forth

, shouldn't continue to evolve to support
non-embedded applications, rather that
such evolution should not compromise
Forth's abilities in its major area of
strength.

have to come from within the Forth com-
munity itself. Vendors and customers, if
convinced of a trend towards Forth, will
probably jump onto the bandwagon. But
someone has to build the bandwagon, fuel
it, and pilot i t The members of the Forth
Interest Group are probably the only ones
who can do this.

What is needed is a concerted market-
ing effort to promote Forth as the language
of choice for embedded control, and in par-
ticular real-time control. This effort must
incorporate articles in major periodicals
(especially application-based articles),
educational campaigns, and participation
in mainstream events. For the purposes of
Forth acceptance, one paper in a general
computer application conference is worth
two dozen at SIGForth, Rochester, or Asi-
lomar. One article in BYTE, IEEE Com-
puter, or EDN is worth an issue or two of
Forth Dimensions. Oneapplication written
in Forth in a company previously using C is
worth a staff-full of R G members at a
Silicon Valley company (or a staff of
SIGForth members at a Texas company).
The point is to increase visibility, and make
Forth lookrespectable to theoutside world.

If we spend time and resources trying to
convince programmers in the Unix world
that they should be using Forth to write
their window programs, or programmers
on supercomputers that they should adapt
LINPACK to run in a Forth environment,
or if we are developing do-it-all Forth sys-
tems in hopes that outsiders will be im-
pressed based on technical merit alone, we
are wasting our time. And we have little
time to waste. The window of opportunity
is closing fast, driven by the optimizing C
compilers and fancy development environ-
ments of the 32-bit RISC processors. As
this window closes, not only will we lose
our best chance to make Forth the language
of choice, we may well lose the ability to
sell Forth for these tasks at all, to most cus-
tomers. So we need to act now, or resign
ourselves to using a language that will
forever be associated with APL and SNO-
BOL: neat ideas that never really caught
on, but seem to never quite &e, either.

None of this is meant to say that steps in
1 this direction have not been taken in the

past, nor to say that many facets of a suc-
cessful Forth promotion are not already in
place. However, the Forth community is
internally fractured (or perhaps it was
never unified). What is needed is a unity of

all programming of small embedded-con-
trol systems (e.g., 8051 and other eight-bit
microcontroller systems) was done in as-
sembly language. Now, with the advent of
more powerful 16- and 32-bit controller
chips, that is changing. More and more pro-
grammers are using or evaluating high-
level languages to ease the burden of soft-
ware development.

Embedded-control systems are the ideal
application area for which to make Forth
the language of choice. Their tightly con-
strained environments with demanding
response requirements are ideally suited to
the capabilities of classical Forth systems.

Forth has always had a strong foothold
in embedded systems. But it has never been
used by a majority. Because there is a vac-
uum and no concensus, a wide variety of
programming languages are being pressed
into service. The dominant language is C.
This is not because C is inherently better for
this application (or even, for that matter,
very good at all). It is because that is the
language most programmers are familiar
with, having been trained in its use by
universities and workstation-based pro-
gramming projects.

If events are left to progress by them-
selves, C will become the language of
choice for embedded control. Most of the
user community will be happy with this,
since C will be usable for many applica-
tions. Managers will be happy, since C has
a lower risk and lower perceived cost than
Forth. It always seems easier to pay the
deferred, intangible costs for suboptimal
programming environments than the im-
mediate and concrete costs of programmer
training to switch to a new language.

Large vendors of embedded control
products and systems are not likely to
change all this. They see the trend to using
C, and will fall in line with the results of the
market surveys and polls. Even makers of
so-called "Forth chips" will probably sup
port Forth just as an alternative language.
Successful companies will have to spend
most of their time and money supporting C
to please their large number of C-based
customers. C may well become the most-
used language by popular demand, even if
it makes suboptimal use of the hardware.

Embedded Control as a
Target Application Area

There is a vacuum in the embedded-
control marketplace. Until recently, almost

I

Forth Dimensions 36 Volume XII, Nwnber I

A Challenge
The reality of the situation is that the

spark for making Forth the de facto stan-
dard language for embedded control will

purpose: a common vision. What we need
is a champion to make it happen. We have
not one but two special interest groups
now: FIG and SIGForth. We also have a
more academically oriented organization
in the Institute for Forth Application and
Research. Among these three organiza-
tions, we should be able to come up with a
structure and method to seriously market
Forth for the next year or two. If we don't,
we had better brush up on our C and Fortran
to feed our families in the coming years.

Philip Koopman Jr. is a senior scientist
at Harris Semiconductor and an ad-
junct professor at Carnegie Mellon
University. The opinions in this article
are his, and do not necessarily reflect
the views of Harris Semiconductor. Mr.
Koopman presented this paper at the
recent SIGForth meeting, and we pub-
lish it here in cooperation with ACM.

(Continued from page 10.)

amples. Screen Four illustrates the basic
method for creating N2CONSTANT. the
anonymous counterpart of the standard
2CONSTANT. Screen Five illustrates the
basic method for creating the new classes
3CONSTANT and N3CONSTANT. In
Screen Six, the alternative method is used
to create 4CONSTANT and
NEONSTANT.

To maintain compatibility with the pre-
viously published version,' the words

MAKEANON, ANON, ANON+, and
STORESTACK are defined on Screen
Seven.

Leonard Morgenstern is a retired po-
thologist and computer hobbyist. His
interest in Forth goes back over ten
years. Currently, he is a sysop of the
Forth RoundTable on the GEnie net-
work. His son, David Morgenstern, is
also an author on computer-related
subjects.

Screen 7 (Compatibility with previous version)

IMPERSONATOR ANON
: MAKEANON NVARIABLE IS [COMPILE] ANON ;
: ANON+ [COMPILE]

[[COMPILE] ANON + [COMPILE] LITERAL] ; IMMEDIATE

: STORESTACK (n -) 2* BOUNDS ?DO I ! 2 +LOOP ;

(Continued from page 13.) I I
-1 LOAD.

Note that (1) and (2) contain pieces
of conditionals, and that the definition
makers add IMMEDIATE after the defini-
tion to make ADDS and DOS immediate
words.

The cumbersome definition-makers of
these examples could be made more useful
by substituting a single character for the
word ADD . BUF, for example:

: PREPARE I

: MAKE.ADDS
PREPARE
% : ADDS ' (1)
% (ADDS) " (2)
% CONCAT THEN ; "
% IMMEDIATE" ;

: MAKE.DOS
PREP ARE
% : DOS ' (1)
% (00s) " (2)
% >KEYBUF
DOS.CALL THEN ;

8 IMMEDIATE ' :

Chester H. Page earned his doctorate in mathematical physics at Yale and spent
some 36 years at the National Bureau of Standards. His first Forth was Washing-
ton Apple Pi'sfig-FORTH, which he modified to use Apple DOS, then ProDOS, and
later to meet the Forth-79 and Forth-83 Standards. Recently, he added many fea-
tures of F83, including a four-thread dictionary (but no shadow screens) and a
vocabulary name format that provides for a search-order routine.

Leo Brodie . 12
CIBER . .17
Dash, Find Associates. 27
Embedded Systems Programming . .40
Harvard Softworks. .26
Institute for Applied Forth Research. ,33
Laboratory Microsystems . ,17
Miller Microcomputer Services . 25
Next Generation Systems . .30
Silicon Composers . 2
Upper Deck Systems . .27

Volume XII, Nwnber 1 37 Forth Dimenrim

FIG
CHAPTERS

The FIG Chapters listed below
are currently registered as active
with regular meetings. If your
chapter listing is missing or incor-
rect, please contact Kent Safford at
the FIG office's Chapter Desk.
This listing will be updated in each
issue of Forth Dimensions. If you
would like to begin a FIG Chapter
in your area, write for a "Chapter
Kit and Application" Forth Inter-
est Group, P.O. BOX 8231, San
Jose, California 95155

U.S.A.
ALABAMA
Huntsville Chapter
Tom Konantz
(205) 88 1-6483

ALASKA
Kodiak Area Chapter
Ric Shepard
Box 1344
Kodiak. Alaska 99615

ARIZONA
Phoenix Chapter
4th Thurs., 7:30 p.m.
Arizona State Univ.
Memorial Union. 2nd floor
Dennis L. Wilson
(602) 381-1146

ARKANSAS
Central Arkansas Chapter
Little Rock
2nd Sat., 2 p.m. &
4th Wed.. 7 p.m.
Jungkind Photo. 12th & Main
Gary Smith (501) 227-7817

CALIFORNIA
Los Angeles Chapter
4th Sat.. 10 a.m.
Hawthorne Public Library
12700 S. Grevillea Ave.
Phillip Wasson
(213) 649-1428

North Bay Chapter
2nd Sat., 10 am. Forth, A1
12 Noon Tutorial, 1 p.m. Forth
South Berkeley Public Library
George Shaw (415) 276-5953

Orange County Chapter
4th Wed., 7 p.m.
Fullerton Savings
Huntington Beach
Noshir Jesung (714) 842-3032

Sacramento Chapter
4th Wed., 7 p.m.
1708-59th St., Room A
Bob Nash
(9 16) 487-2044

San Diego Chapter
Thursdays, 12 Noon
Guy Kelly (6 19) 454- 1307

Silicon Valley Chapter
4th Sat., 10 a.m.
H-P Cupertino
Bob Barr (408) 435-1616

Stockton Chapter
Doug Dillon (209) 93 1-2448

COLORADO
Denver Chapter
1st Mon., 7 p.m.
Clifford King (303) 693-3413

CONNECTICUT
Central Connecticut Chapter
Charles Krajewski
(203) 344-9996

FLORIDA
Orlando Chapter
Every other Wed., 8 p.m.
Herman B. Gibson
(305) 855-4790

Southeast Florida Chapter
Coconut Grove Area
John Forsberg (305) 252-0108

Tampa Bay Chapter
1st Wed., 7:30 p.m.
Terry McNay (813) 725-1245

GEORGIA
Atlanta Chapter
3rd Tues., 7 p.m.
Emprise Corp.. Marietta
Don Schrader (404) 428-081 1

ILLINOIS
Cache Forth Chapter
Oak Park
Clyde W. Phillips, Jr.
(312) 386-3147

Central Illinois Chapter
Champaign
Robert Illyes (217) 359-6039

INDIANA
Fort Wayne Chapter
2nd Tues.. 7 p.m.
VP Univ. Campus
B71 Neff Hall
Blair MacDermid
(219) 749-2042

IOWA
Central Iowa FIG Chapter
1st Tues., 7:30 p.m.
Iowa State Univ.
214 Comp. Sci.
Rodrick ~ i d r i d ~ e
(515) 294-5659

Fairfield FIG Chapter
4th Day. 8: 15 p.m.
Gurdy Leete (515) 472-7077

MARYLAND
MDFIG
Michael Nemeth
(301) 262-8 140

MASSACHUSETTS
Boston Chapter
3rd Wed., 7 p.m.
Honeywell
300 Concord, Billerica
Gary Chanson (617) 527-7200

MICHIGAN
DetroitIAnn Arbor Area
Bill Walters
(313) 731-9660
(3 13) 861-6465 (eve..)

MINNESOTA
MNFIG Chapter
Minneapolis
Fred Olson
(612) 588-9532

MISSOURI
Kansas City Chapter
4th Tues., 7 p.m.
Midwest Research Institute
MAG Conference Center
L i u s Orth (913) 236-9189

St. Louis Chapter
1st Tues.. 7 p.m.
Thornhill Branch Library
Robert Washam
91 Weis Drive
Ellisville. MO 6301 1

NEW JERSEY
New Jersey Chapter
Rutgers Univ., Piscataway
Nicholas Lordi
(201) 338-9363

Volume XII, Nwnber

NEW MEXICO
Albuquerque Chapter
1st Thurs., 7:30 p.m.
Physics & Astronomy Bldg.
Univ. of New Mexico
Jon Bryan (505) 298-3292

NEW YORK
Rochester Chapter
Odd month, 4th Sat., 1 p.m.
Monroe Comrn. College
Bldg. 7, Rm. 102
Frank Lanzafarne
(716) 482-3398

OHIO
Cleveland Chapter
4th Tues., 7 p.m.
Chagrin Falls Library
Gary Bergstrom
(216) 247-2492

Columbus FIG Chapter
4th Tues.
Kal-Kan Foods, Inc.
5 115 Fisher Road
Terry Webb
(614) 878-7241

Dayton Chapter
2nd Tues. & 4th Wed., 6:30
p.m.
CFC. 11 W. Monument Ave.
#612
Gary Ganger (513) 849-1483

OREGON
Willamette Valley Chapter
4th Tues., 7 p.m.
Linn-Benton Comm. College
Pann McCuaig (503) 752-51 13

PENNSYLVANIA
Villanova Univ. Chapter
1st Mon., 7:30 p.m.
Villanova University
Dennis Clark
(215) 860-0700

TENNESSEE
East Tennessee Chapter
Oak Ridge
3rd Wed., 7 p.m.
Sci. Appl. Int'l. Corp., 8th F1.
800 Oak Ridge Turnpike
Richard Secrist
(615) 483-7242

TEXAS
Austin Chapter
Matt Lawrence
PO Box 180409
Austin. TX 78718

Volume XII, Number 1

- HOLLAND
Holland Chapter
Vic Van de Zande
Finrnark 7
3831 JE Leusden

Dallas Chapter
4th Thurs., 7:30 p.m.
Texas Instruments
13500 N. Central Expwy.
Semiconductor Cafeteria
Conference Room A
Clif Pem (214) 995-2361

Houston Chapter
3rd Mon.. 7:30 p.m.
Houston Area League of PC
Users
1200 Post Oak Rd.
(Galleria area)
Russell Harris
(713) 461-1618

VERMONT
Vermont Chapter
Vergennes
3rd Mon., 7:30 p.m.
Vergennes Union High School
RM 210, Monkton Rd.
Hal Clark (802) 453-4442

VIRGINIA
First Forth of Hampton
Roads
William Edmonds
(804) 898-4099

Potomac FIG
D.C. & Northern Virginia
1st Tues.
Lee Recreation Center
5722 Lee Hwy., Arlington
Joseph Brown
(703) 47 1 4 0 9
E. Coast Forth Board
(703) 442-8695

Richmond Forth Group
2nd Wed., 7 p.m.
154 Business School
Univ. of Richmond
Donald A. Full
(804) 739-3623

WISCONSIN
Lake Superior Chapter
2nd Fri., 7:30 p.m.
1219 N. 21st St., Superior
Allen Anway (715) 394-4061

INTERNATIONAL
AUSTRALIA
Melbourne Chapter
1st Fri., 8 p.m.
Lance Collins
65 Martin Road
Glen Iris, Victoria 3146
03/29-2600
BBS: 61 3 299 1787

39

ITALY
FIG Italia
Marco Tausel
Via Gerolamo Forni 48
20161 Milano
021435249

Sydney Chapter
2nd Fri.. 7 p.m.
John Goodsell Bldg., RM
LC19
Univ. of New South Wales
Peter Tregeagle
10 Binda Rd.
Yowie Bay 2228
0215247490
Usenet
tedr@usage.csd.unsw.oz

BELGIUM
Belgium Chapter
4th Wed.. 8 p.m.
Luk Van h o c k
Lariksdreff 20
2120 Schoten
031658-6343

Southern Belgium Chapter
Jean-Marc Bertinchamps
Rue N. Monnom, 2
B-6290 Nalinnes
0711213858

CANADA
BC FIG
1st Thurs., 7:30 p.m.
BCIT, 3700 Willingdon Ave.
BBY, Rm. 1A-324
Jack W. Brown
(604) 596-9764
EBS (604) 434-5886

Northern Alberta Chapter
4th Sat., 10a.m.-noon
N. Alta. Inst. of Tech.
Tony Van Muyden
(403) 486-6666 (days)
(403) 962-2203 (eves.)

Southern Ontario Chapter
Quarterly, 1st Sat., Mar., Jun.,
Sep., Dec., 2 p.m.
Genl. Sci. Bldg., RM 212
McMaster University
Dr. N. Solntseff
(41 6) 525-9140 x3443

ENGLAND
Forth Interest Group-UK
London
1st Thurs., 7 p.m.
Polytechnic of South Bank
RM 408
Borough Rd.
D.J. Neale
58 Woodland Way
Morden. Suny SM4 4DS

FINLAND
FinFIG
Janne Kotiranta
Arkkitehdinkatu 38 c 39
33720 Tampere
+358-3 1-184246

JAPAN
Japan Chapter
Toshi Inoue
Dept. of Mineral Dev. Eng.
University of Tokyo
7-3-1 Hongo, Bunkyo 113
812-21 11 x7073

NORWAY
Bergen Chapter
Kjell Birger Faeraas,
47-5 18-7784

REPUBLIC OF CHINA
R.O.C. Chapter
Chin-Fu Liu
5F, #lo, Alley 5, Lane 107
Fu-Hsin S. Rd. Sec. 1
Taipei, Taiwan 10639

SWEDEN
SweFIG
Per Alm
46/8-92963 1

SWITZERLAND
Swiss Chapter
Max Hugelshofer
Industrieberatung
Ziberstrasse 6
8 152 Opfikon
01 8 10 9289

WEST GERMANY
German FIG Chapter
Heinz Schnitter
Forth-Gesellschaft C.V.
Postfach 11 10
D-8044 Unterschleissheirn
(49) (89) 317 3784
Munich Forth Box:
(49) (89) 725 9625 (telcom)

SPECIAL GROUPS
NC4000 Users Group
John Carpenter
1698 Villa St.
Mountain View, CA 94041
(415) 960-1256 (eves.)

Forth Dimensions

Forth Interest Group
P.O.Box 823 1
San Jose, CA 95155

, - ,' .-
11 . . rj: T, 0 0 ',

ATTEND THE

j; $ f l p\ rc .7 i;, 7-7, -T 1 p; ~ ~ f c > ~ ~ ~ ~ ~ ~ ~ ~
SECOND ANNUAL , /, A c,, > ;,, J - ~ :& # 8% L b ~ &JIJEI<,EN'CE

THE EMBEDDED SYSTEMS CONFERENCE IS your best source of objective, up-to-date information on embedded
systems programming. The conference is growing in 1990 -and you can grow with it.

IN STATE-OF-THE-ART LECTURES and in

Second Class 1
Postage Paid at
San Jose, CA

small intensive workshops, you'll learn real-
world solutions that will immediately increase
your productivity. You'll be learning from

"1 thought the conference was excellent! It was the best
conference/seminar I have ever affended."

RANDY KREMSKE, AMERSHAM C ORP., ARLINGTON H EIGHTS, I1
the best available source - the most widely
respected practitioners of the art and science of microprocessor and microcontroller-based development.

Facing expanding development pressures? Respond with finesse.
FOR YEARS YOU'VE BEEN SUBJECTED to SO-

called objective panel discussions that turned
outtobelong-windedoralpressreleasesfrom
vendors, The Embedded Systems Conference
is different, In-depth practical workshops

will be headed by well-known and respected well. "
TIMOTHY C ROSS, CATERPILLAR T ECH C ENTER, PEORIA, I1

practitioners, like P.J. Plauger, Ray Duncan,
Larry Constantine, MichaelSlater,and Robert
Ward, who will give you knowledge that you can take back and apply in your job today!

YOU'LL BE ABLE TO CHOOSE FROM 70 lectures and workshops. . .hands-on tutorials that get down to the
nittiest, grittiest levels of designing, coding,

and 'ystems.

The Marketplace for
Productivity Tools

"Overall, 1 was very impressed. 1 would definitely
recommend this conference to anyone involved in
embedded systems programming. "

GREG T OTH, NORTHROP E LECTRONICS, HAWTHORNE, CA
IF YOU'VE KNOWN THE FRUSTRATION of

shopping for productivity tools designed
especially for the embedded developer - look no further. At the Embedded Systems Conference Product
Exhibit you'll find the marketplace for emulators, single-board computers, debugging tools, languages, and
real-time operating systems.

As A N ATTENDEE TO THE EMBEDDED
SYSTEMS CONFERENCE you'll learn how to
increase your productivity, how to select the
right tool for the job, and how to get more out
of the tools you already use.

AND YOU'LL GET IT ALL IN THREE DAYS. It's

. -

EMBEDDED
SYSTEMS
CONFERENCE

Sept. 25-28, Hyatt Regency, Son Francisco Airport
your best investment in productivity.

Sponsored by: Embedded Systems Programming and Software Development Seminars, a division of Miller Freeman Publications, 500 Howard St., San Francisco, CA 94105.

For more information call Lynne Mariani a t (415)995-2471 fax: (415)995-2494

