

F O R T H
D I M E N S I O N S

=
DESIGN TRADEOFFS IN STACK COMPUTERS

PHZLZP KOOPMAN, JR.
5

When the author started, all he knew was that Forth programs did a lot of subroutine calls. Here he describes the dis-
coveries, blunders, and serendipity that led to the WISC and 32-bit RTX processors, including the requirements of
a high-speed Forth engine and the motivations underlying Harris' 32-bit architecture.

m
SC32: A 32-BIT FORTH ENGINE - JOHN HAYES

10
A group at Johns Hopkins University has designed a series of microprocessors that directly execute Forth, to which
the SC32 is the latest entry. Three key aspects are described: elimination of run-time interpretation, an instruction set
optimized for Forth, and an internal data path that supports stack-based programming. -

PHASE ANGLE DIFFERENCE ANALYZER - C.H. TING

I 15
The Phase Angle Difference Analyzer determines the delay and phase difference between two simultaneous analog
signals. The signals are digitized, then the results are analyzed by an NC4000 microprocessor. The system samples
at a rate of 400 KHz, a speed unattainable by most commercial CPUs.

n
ANS FORTH: HARDWARE INDEPENDENCE -JOHN R. HAYES

23
One of Forth's strengths is its usefulness in "strange" environments, but the Forth-83 Standard mandates byte-
addressed memory, 16-bit operations, and two's-complement number representation. Yet, when programming for
profit, a portable program has a larger potential market than a non-portable program.

m
FORML CONFERENCE 1989 - PETER MIDNIGHT

27
Foremost Forth programmers from around the world ostensibly gathered to discuss object-oriented programming but,
as the author points out, the real purpose of FORML is to bring together serious Forth users and to propagate their
enthusiasm, ideas, and information.

m
SORT CONTEST RESULTS - DENNIS RUFFER

29
Several months ago, these pages announced a sort contest sponsored by this GEnie Sysop. Now the results are in, and
we have a winner ... Also included is code and commenmy from Forth-wizardly Wil Baden.

Editorial
4

Adverrisers Index
9

Best of GEnie
35

FIG Chapters
4 0 , 4 2 4 3

I

Volume XI, Number 6 3 Forth Dimensions

Forth Hardware
This issue contains the top three articles

selected firom those we received in re-
sponse to our call for articles about Forth
hardware. It was a successful experiment,
in my jaded editorial eyes, because it
brought us a number of very good manu-
scripts (only three of which are presented in
this issue-we will publish others, with
their authors' permission, in upcoming
issues). There was an interesting split deci-
sion in the judging, calling for editorial
arbitration, but Phil Koopman's "Design
Tradeoffs in Stack Computers" received a
unanimous vote for first place. Second
place went to John Hayes for "The SC-32:
a 32-Bit Forth Engine," while third place
went to Dr. C.H. Ting's "Phase Angle
Difference Analyzer." Cash awards will be
sent to those three authors in recognition of
their contributions. We are honored and
pleased to bring you their work.

Times have changed since Glen Hay-
don and Chuck Moore closeted themselves
in Glen's computer-riddled crow's nest,
densely wire-wrapped boards lying like
disemboweled mazes atop the gurneys they
used for workbenches. Chuck left to de-
velop what would become the NC2000 for
Novix (a device that will probably be re-
membered only as the first real Forth chip).
Well, the hardware bug bit some of the best
minds in the Forth world, and it bit them
hard. Perhaps they sensed, as Jack Woehr
suggested in the last issue, that Forth as we
have known it all these years is--at its most
metaphysical roots--an evolving descrip-
tion of an ultra-efficient microprocessor
architecture. Or perhaps it was just that
Forth's way of seducing us into hardware
intimacy led us to believe we could do
anything.

In any case, soon we had a selection of
interesting devices to tinker with. Indusm-

ous efforts (some realized and some not)
sprang out of small shops and universities,
and there were Zilon's Suuer8 and

Forth Dimensions
Published by the

Forth Interest Group
Volume XI, Number 6

MarchJApril1990
Editor

Marlin Ouverson
Advertising Mrmager

Kent Safford
Design and Production

Berglund Graphics

Forth Dimemiom welcomes editorial mate-
rial, letters to the editor. and comments from its
readers. No responsibility is assumed for accu-

Rockwell's R65Fll. These acactually be-
came bread-and-butter hardware for some
Forth programmers.

who had
teamed Kmpman.lr' Soon the

loft was streaming Out

ics, and the two of them were selling wire-
wrap kits and PC boards as the promising
WISC (i.e., writeable instruction set com-
puter) CPU/16 and CPUD2. These were
stack-based devices whose native ~ ~ S ~ T U C -

tion sets could be changed about as easily as
a Forth definition, and they blazed right
along at fine speed. Phil also dove into a
doctoral program; his r6sumC must have
left the entrance examiners a bit breathless,
unless they are accustomed to candidates
who have already implemented working
examples of a promising, untried micro-
processor architecture. Much of his inter-
esting research has been published as Stack
Computers, The New Wave.

The kicker is that the CPUl16 and 132
drew the attention of Harris Semiconduc-
tor. Harris negotiated for the rights to de-
v e l o ~ lhis teehnolog~, and since then have
invested considerably in its success. They
incorporated the WISC concepts in their
standard library and produced the RTX
4000 the RTX 2000 is
their Novix successor.

This string of developments, which
continues to unfold, offers hope for the
future employment of Forth programmers:

I

Forth Dimemiom 4 Volume XI, Number 6

racy of
Subscription to Forth Dimmswm is in-

cluded with membership in the Forth Interest
Group at $30 per year ($42 overseas air). For
membership, change of address, and to submit
items forpublic&ion, the is: ForthInterer
est Group, P.0. Box 8231, Sm Jose, California
95155. Administrafve offices and advertising
sales: 408-277-0668.

Copyright d 1990 by Forth Interest Group.
hC. ~h~ ,aerial contained in this periodical
(but not the code) is copyrighted by the individ-
ual authors of the articles and by Forth Interest
Group, hc. , respectively. ~ n y reproduction or
use of this periodical as it is compiled or the ar-
ticles, except reproductions for non-commer-
cial purposes, without the written permission of
Forth Interest Group, Inc. is a violation of the
Copyright Laws. Any code bearing a copyright
notice, however, can be used only with permis-
 iono of theco~~righthol*r.

About the Forth Interest Group
The Forth Interest Group is the association

p ~ ~ g ~ a m m ~ ~ ~ * and engineers who
create practical. Forth-based solutions to real-
world needs. Many research hardware and soft-
w_ desigLs bt will advance the general State
of the art. FIG provides a climate of intellectual
exchange and benefits intended to assist each of
its members. Publications, conferences, semi-
nars, telecommunications, and area chapter
meetings are among its activities.

if any large chip maker manages topinpoint
the conjunction of Forth's s e n g h and the
market's needs' there be a
decided upswing for hardware experts*
systems vendors, developers. consultants,
and plain-old programmers. Already,

(Continued on page 34.)

"Forth Dimemiom (ISSN 0884-0822) is
bimonthly for $24/36 per year by fie

Forth Inreot Group, 1330 S. Bascom Ave.,
Suite D, San Jose, CA 95128. Second-class
postage paid at sari Jose, CA. POSTMASTER:
Send address changes to Forth Dirnenrwns,
P.0. Box 8231, San Jose. CA 95155."

DESIGN TRADEOFFS IN
STACK COMPUTERS

A PERSONAL EXPERIENCE
PHILIP KOOPMAN, JR. - WEXFORD, PENNSYLVANIA

m

w e n I started designing stack roc-
essors for WISC ~echnGlogies in i985,
little had been published about the architec-
tural requirements of Forth engines. A sub-
stantial amount of architectural measure-
ment had been performed on previous
stack-based processors (in particular the
Xerox Mesa architecture), but the behavior
of single-stack processors for executing
conventional languages is not representa-
tive of the types of things Forth processors
do. When I started, all I knew was that Forth
programs did a lot of subroutine calls, but
beyond that I was groping in the dark. Here
I hope to describe some of the history
behind the development of the WISC and
32-bit RTX processors in terms of discov-
eries, blunders, and serendipity. Along the
way, I will talk about the various require-
ments for implementing a high-speed Forth
engine, and will describe the motivations
underlying the design of Harris' 32-bit
RTX architecture.

THE HARDWARE-FRENZY PHASE
The first phase of my continuing jour-

ney to stack-computer enlightenment was
characterized by a frenzy of designing,
building, debugging, and programming
Forth hardware.

The WISC CPU/16
The WISC CPUl16 was my first stack

computer design (and, for that matter, my
first computer design of any type). The
"WISC" stands for Writable Insmction
Stack Computer. It was implemented en-
tirely in 74LSxxx series 'lTL components,
wire-wrapped on a single IBM-PC plug-in
board. We produced a printed circuit board
version once the design was shaken out.
The design decisions for the CPUl16 were
made in favor of simple and inexpensive

prototyping first and foremost. This led to
the decision to use a microcoded design,
with RAM chips for a writable control store
instead of a hardwired design.' A block
diagram of the CPU/16 is shown in Figure
One.

The design had 256 elements for each
stack, and 256 opcodes with eight possible
micro-instructions per opcode. Most in-
structions took three micro-cycles to exe-
cute, with subroutine calls and returns tying
up the data bus to the exclusion of other
operations. Figure Two shows the two in-
struction types supported: subroutine call
and opcode. Thus, the importance of
Forth's subroutine call was incorporated,
but the rest of the design was dictated pri-
marily by the constraints of fitting every-
thing onto a single board while still using
standard 'ITL components.

The RISC vs. CISC
battle was about to
take a new turn...

The Novix NC4000 chip had been i n m
duced shortly before the WISC CPUl16
was built. A principle difference between
the two designs (other than the fact that the
Novix was a single chip compared to the
CPUJ16 discrete implementation) was that
the Novix was a hardwired processor, while
the CPUl16 was microcoded. The simplis-
tic microcode implementation techniques
used on the CPUl16 caused it to take an

1. This decision was perhaps influenced by the faa
that I did not possess an EPROM programmer, and
that available programmable logic for use in spthe-
sizing random logic was very modest in capabili-
ties-and I didn't have a programmer f a that either.

RENRN STACK

RS
MEMORY

INTERFACE rrl-
MICRO

PROGRAM
COUNTER

m0REss

MICRO-

MICRO-
INSTRUCTION

REGISTER

CONTAOC SIGNALS

I 1

Figure One. WISC CPUJl6 block
diagram.

average of three micro-instructions for
each opcode (at a cost of three clock
cycles). At similar clock speeds (which
translated into similar program memory
speeds), one would have expected the
NC4000 to outperform the CPUl16 by a
factor of three to one.

But that didn't happen. Instead, the4.77
MHz CPUl16 was much slower than a 5
MHz NC4000 on programs that used
simple operations, but competitive (al-
though, probably, not quite as fast) on pro-
grams that used more complex operations.
This was because complex operations,

Volume XI. Number 6 5 Forth Dimensions

1 1 1 1 1 1
5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0

I address 1
0.b Function
0-1 5 Subroutine address

(bits 8-1 5 of the address must not all be 1)

m F u n c t i o n
8-1 5 All 1 , specifying an operation instruction

0-7 Opcode

Figure Two. CPUI16 instruction formats.

BifS Function
23-31 Opcode
2-22 Address for jump or call (word aligned)

0-1 Program flow control
00 Jump 10 Call
01 Return 11 unused

I I

Figure Three. CPUl32 instruction format.

ctl opcode

such as double-precision mirth and multi-
element stack manipulations, were imple-
mented in microcode in fewer clock cycles
than the equivalent sequences in NC4000
assembly language. The execution speed
for a mix of Forth primitives was just under
one million typical Forth operations per
second (including complicated operations
such as multiply and double-precision
math in a typical insuuction mix).

As a result of my CPUl16 experience, I
think microcoded techniques are inappro-
priate for a 16-bit Forth processor in most
cases. Primarily, this isbecausetherequire-
ments for 32-bit wide microcode cause a
single~hip implementation to be too large
to be competitive with a hardwired ap
proach. Also, the use of a microcoded ap-
proach does not provide many additional
benefits when the processor is resaicted to

3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1
1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0

address

a 16-bit instruction format. However, the
experience showed that something inter-
esting was possible--microcoded ma-
chines could, perhaps, be competitive with
hardwired machines with similar func-
tions. This was because flexibility of opera-
tion and a high semantic content in each in-
struction could make up for a lack of raw
speed. In other words, the RISC vs. CISC
battle was about to take a new turn in the
arena of stack computers.

The Monster132
WISC Technologies produced a single

prototype of a 32-bit computer that was
seen by a very few people at the 1986
Rochester Forth Conference. In his book
The Mythical Man-Month (Addison-
Wesley. 1982), Fred Brooks describes
what he calls the "second system syn-

drome." In this syndrome, the designer of a
system saves up scores of neat ideas that
can't be implemented in the first system
because of time and money constraints.
When the designer gets another crack at a
similar problem (the second system), all
these ideas are thrown in, usually with
disastrous results.

The Monster132 was my second system.
The only truly good idea that was included
was the decision to make it a 32-bit ma-
chine. Some of the ideas were reasonably
good, but poorly executed. One idea was
the inclusion of extra registers around the
ALU. This eliminated congestion caused
by having to save and restore the topof-
stack register when using the ALU for other
calculations. Another idea was the addition
of separate hardware to increment subrou-
tine return addresses independent of the
ALU.

The worst ideas had to do with the
micro-instruction format and the use of
multiple counters for addressing program
memory. The 64-bit micro-instructions had
a large number of interesting features, in-
cluding the capability to specify a variable
length for each micro-cycle. None of these
features turned out to be very useful. The
complexity of the micro-instruction format
did result in almost impenetrable micro-
code that was very difficult to write and
debug.

The Monster132 was constructed using
eight wire-wrappedboards in an S-100card
cage (but without using the S-100bus in the
usual manner). The wire-wrapping exer-
cise itself taught me an immrtant lesson
about the value of simplicity, and wore out
my first electric wire-wrap gun.2 The sys-
tem was eventually operational for a period
of two weeks, and successfully ran a Forth
system. The folks who saw it operate at the
Rochester Forth conference never did ask
why the attachment cable to the IBM PC
host was only a foot long. There was an in-
credible noise problem in the host inter-
face, and any longer cable wouldn't work
reliably.

It became clear that, for a number of
reasons, my fmt 32-bit design was a flop.
Fred Brooks, again in The Mythical Man-
Month, asserts that you should always be
prepared to "throw one away." So we did.

2. Based an this experience, I rate battery-powered
wire-wrap guns at about two miles of wire per gun.

Forth Dimensions 6 Volume XI, Number 6

Figure Four. WISC CPUP2 block
diagram.

The CPUl32
I began to distill the MonsW2 experi-

ence, and to decide what formed the true
essence of an efficient WISC system. The
CPUl16 had been arbitrarily constrained to
simplicity, whereas the Monstern2 had
been allowed to grow almost limitlessly.
While there were a few good ideas to be
salvaged, overall my immensely complex
32-bit design was a waste of good silicon. I
began to see what I had missed in the realm
of hardware design, despite my extensive
experience with FoRh: within limits,
simpler is better.

At the same time, I began to combine
several ideas that had been collecting in the
back of my mind. One of them was that
CPU cycle times can be made much faster
than affordable memory speeds. Another
was that taking advantage of concurrency
in operations is a traditional way of speed-
ing up computers that I had not exploited
very well in previous designs. The last
major idea was that, since microcoded
stack machines only need eight or nine bits
to specify an opcode, much of my 32-bit
instruction memory was being wasted as
unused bits in opcode-type instructions.

3. I don't ranemberjust how the idea came to me. M y
best ideas u d y come during my morning showa.
Howmr I was not clcctmcuted, so this are probably
did n d

0 4 8 12 16 20 24 28 32 36

STACK BUFFER SIZE

Figure Five. Return stack spilling overhead vs. stack buffer size.

The answer to all my collected concerns
hit like a bolt of lightning one day? There
were enough bits left over in an opcode in-
suuction to also hold a large address, so
why not make every instruction have both
an opcode and a subroutine call? This had
the effect of reducing program size, as well
as providing for simultaneous operation of
subroutine calls and opcodes. Thus, the
resulting machine allowed control flow
(subroutine calls and returns) to proceed in
parallel with data manipulations (data stack
operations), allowing two separate opera-
tions to be accomplished on each instruc-
tion. In other words, it offered the ideal
situation for a Forth programmer: subrou-
tine calls for free. Of course, in order to have
a complete set of machine operations, a
subroutine return format was required,
which also combined an opcode with the
return operation.

Not every instruction was a subroutine
call or return, so there was a need for an
instruction that incremented the program
counter as well. In my quest to simplify the
hardware, I made another discovery: the
program counter was unnecessary. By us-
ing a jump instruction format instead of an
increment-PC instruction format, I could
have every instruction point to the next
instruction to be executed (even if it was
just the next sequential instruction). This

reused the logic that performs subroutine
calls, with a modification to suppress the
push of the return address onto the return
stack. The instruction format of the CPU/
32 is shown in Figure Three.

Other enhancements to the CPU132,
based on experiences with the Monstern2
and the limitations of theCPU116, included
using a latch between the bus and the ALU
to facilitate single-cycle exchange of data
between the DHI register and the Data
Stack. The microcode format was trimmed
back to 32 bits, which makes microcode
simple enough to be easily comprehen-
sible, and saves a large amount of memory
space. A block diagram of the CPUP2 is
shown in Figure Four.

Another important insight in the design
of the CPU132 was the balance achieved
between program memory speed and proc-
essor speed. RISC processors strive to
execute one instruction per clock cycle.
That implies that memory must be cycled
as quickly as the clock in order to provide
a steady stream of instructions. In a simple
and streamlined processor, that means that

I
programs must reside in fast memory. ~ Usually, the required memory chips are so
expensive that even high-end RISC sys-

1 tems must use them sparingly as cache
memories. Many Forth applications have
traditionally been in the areas of real-time

L
Volume XI, Number 6 7 Forth Dimemiom

I

Forth Dimenriorrr 8 Volume XI. Nwnber 6

control. Many real-time control applica-
tions cannot afford the unpredictabiiity of
cache memory. Many others can't afford
the cost of even a single bank of fast mem-
ory chips for any pmpose. So, taking ad-
vantage of the fact that a microcoded ma-
chine can have a higher instruction seman-
tic content (i.c., it can accomplish more
work per instruction), I designed the CPUI
32 to execute an instruction every two
microcycles, with each memory bus cycle
taking two clock cycles. Assuming that
both microcycles of every instruction are
well employed, this allows twice the proc-
essing power for a given memory speed
than an approach of one instruction per
clock cycle.

The CPUB2 was originally built on
reused S-100 boards from the Monster/32,
with 74ALSxxx logic and some 74Fxxx
logic for speedcritical sections. The use of
"F" logic caused enough noise problems
that the wire-wrapped version never mn at
speed, so we produced a printed circuit
board version before debugging was com-
pleted. This five-board version eventually
ran at a 6 MHz microcycle rate, and exe-
cuted approximately three million Forth
operations per second.

The RTX 32P
ThefinishedCPUL32 wasdemonstrated

atthe 1987RochesterForthConference. At
that conference, Harris Semiconductor was
promoting its RTX 2000 processor, a rede-
sign of the NC4000. They were intrigued
by the possibilities for the CPU/32 as a 32-
bit member of the RTX family. So, in July
of 1987, I visited Melbourne Florida and
transferred the schematics of the CPUn2
into their standard cell design system. In 3 1
days, the design was entered and verified
with the help of one Harris engineer? The
product of this effort was, in January of
1988, an implementation that was func-
tionally identical to the three printed circuit
boards of the CPU132 core ~~r, re-
d u d to two chips operating at an 8.3 MHz
microcycle rate. The two chips were the
data chip (with the ALU, data stack, and
half the microcode memory) and the con-
trol chip (with the memory addressing
logic, the return stack, and the other half of
the microcode memory).

The reason for a twochip set instead of

4. nat includes the w e & d I took off to visit Walt
Dirney World.

a single-chip processor implementation
was to allow maximum flexibility with the
finished system. 2K words of microcode
memory were included on-chip, since 256
opcodes seemed to be more than I could
possibly use? When asked how big the
stacks should be, Ireplied,"Gee, how much
will you give me?" So, the chips ended up
with 512 elements by 32 bits each for data
and return stacks. This resulted in three
things: it allowed Harris to make the big-
gest chip they have ever attempted, it made
for a poor yield, and it produced chips
which have logic on one quarter and mem-
ory in the other thw. But, all these results
were in keeping with the experimental
nature of the project.

THE ANALYSIS PHASE
After the successful production of the

CPU/32, I began to define and build a
commercial version of the architecture for
inclusion in the RTX product family. This
exercise involved optimizing the architec-
ture to fit the design constraints of CMOS
chip technology as well as evolving the
architecture to improve performance and
better address theneedsof themarketplace.

In the summer of 1987. I foolishly
agreed to simultaneously refine the archi-
tecture for Harris and write a book about
stack computer architecture. I did survive
the summer, and found that the synergy
between the two tasks was amazing. The
book required me to think about measuring
and describing the essence of stack ma-
chines. The design task required me to
think about efficiency and architectural
refinement. By theendof the summer, I had
reached a number of conclusions about
mdeoffs in stack machine design.

Stack Size
One of the big unknowns in producing

the RTX 32P was how big to make the
stacks. Before, I had been limited either by
the need to keep chip count low or by
standard high-speed memory chip sizes.
On the RTX 32P, I guessed at 512 stackele-
men&.

I guessed wrong. Simulationsof several
Forth programs show that many programs
never used more than four or five stack
elements. Of those that used mare stack
elements, all showed a small variability in

5. Of anme thi~ munr that ICY werc completely
filled with mostly worthlux jmk .Imat i n d -
ately.

stack size amss reasonably large periods
of time. In order to reduce hardware costs,
it is advantageous to exploit this behavior
and reduce on-chip stack sizes to the mini-
mum possible.

An interesting line of thought to pursue
is to assume that on-chip stacks are so
expensive that they will be smaller than
required. Also assume that there is some
mechanism (say,a finite state machine that
monitors stack overflows and underflows)
that will copy elements to and from mem-
ory as required. The question to ask, then, is
how much does this copying cost in terms
of program performance degradation? Fig-
ure Five shows the results of a simulation
for the return stack on a number of pro-
grams. The vertical axis indicates the amor-
tized costs of stack spills in terms of wasted
memory cycles per instruction executed in
the course of the program. Notice that this
axis has a logarithmic scale. The horizontal
axis specifies the size of the on-chip stack
buffer. The amazing thing is that, for a stack
size of 16 elements, the cost is less than one
percent. For a stack size of 16 to 32 ele-
ments, the cost reduces to essentially zero.
Data stack behavia is similar.

The right answer, then, to how big
stacks should be is 16 or 32 elements, no
more. In the case of a multitasking environ-
ment, it is advantageous to have a parti-
tioned stack that allocates 16 or 32 stack
elements for each task in order to eliminate
context-switching overhead.

Hardwired vs. Microcoded
Performance

With the design of the RTX 32P, the
hardwired control vs. microcoded control
issue became ripe for detailed study. The
RTX 2000 and the RTX 32P represent two
processors designed to accomplish similar
tasks using similar technology. One is
hardwired, the other microcoded. The
question is, which is faster?

I collected statistics on instruction exe
cution tkquency for Forth programs. But, I
didn't simply gather numbers for the obvi-
ous primitives such as DUP, +, and SWAP.
Instead, I took an IBM PC Forth compiler
that was optimized to the point that any-
thing worth speeding up was written in
assembly language. This became my set of
Forth "primitives"; that is, the basic build-
ing blocks used by real Forth code in real
programs. Not surprisingly, these primi-
tives included many double-prec.sion op
erations (including '2-type" stack opera-

Philip Koopman Jr. is a senior scientist
at Hams Semiconductor .

tions), and slow instructions such as multi-
ply and divide. After I had measured the
instruction execution frequencies for sev-
era1 programs, I multiplied the frequency
times the number of clock cycles required
for each of the RTX 2000 and RTX 32P
processors. I assumed that RTX 2000 pro-
grams were operating on 16-bit data, and
that RTX 32P programs were operating on
32-bit data. The result was surprising.

Despite the fact that most instructions
on the RTX 2000 execute in a single clock
cycle and that all instructions on the RTX
32P execute in two or more clock cycles,
the RTX 32P required only ten pcXCent
more clock cycles than the RTX 2000 to do
the same amount of work. In other words,
clock-for-clock, the two processors did
about the same amount of work. Part of the
reason for the RTX 32P's good perform-
ance was the fact that its microcoded Op-
codes mapped well onto the high-level
Forth operations used in real programs.
Another part of the reason was that many of
the subroutine calls counted as instruc-
tions, but were executed "for free" by the
RTX 32P when combined with opcodes in
the same machine instruction. Note that,
although the program execution speed is
similar, the RTX 32P accomplishes the
same amount of work in half the memory
accesses as the RTX 2000, since it accesses
memory every two clock cycles. This dif-
ference allows it to use much slower
memory for comparable processing
speeds.

The result of this comparison is that it is
not clear that the RISC approach of hard-
wired instructions and single-clock-cycle
execution offers a compelling benefit over
microcoded designs in terms of program
execution speed for stack machines. This
means that designing a 32-bit processor
with hardwired control mav result in

""VY'Y ..V. "1 -..-I,,.".".. .." ...-.. Y.0 ".....
16-bit Forth chips should be designed with Forth Interest Group . 44
microcoded control--the area costs are just I I Harvard Softworks . , , 16 I 1

architectural features required to support C
go a long way towards supporting Ada for
the military market. So, the RTX family is
migrating to a position in which C is the
primary language for many u w - ~ . Forth
then becomes the "assembly language" for
the system, used for optimizing critical
routines.

Aside from minor quirks of C (such as
signed and unsigned characters, requiring
optional signed byte extension on byte
fetches), the only important C structure that
is incompatible with Forth-based stack
machines is the stack frame. C Wllal'lti~~
arsume that anything in the stack frame is
addressable as a normal memory element.
Furthermore, C stack frames grow too big
to fit into any reasonably sized on-chip
stack buffer. SO, a stack processor must
have some efficient method of s~ppoIt.ing a
stack fWtle. At a minimum, this means
having a dedicated frame pointer on-chip,
as well as the capability for using frarne-
pointer-plus-offset addressing. The RTX
2000 design incorporated a movable User
Area pointer that can fulfill this require-
ment (an improvement over the NC4000,
which had a fixed User Area location). The
RTX 32P did not have this capability, but
you can be assured that the commercial 32-
bit RTX chip will.

For Forth users, the frame pointer can
provide unexpected benefits. Many Forth
programmers have advocated the use of
local variables of some sort as a way of
improving code organization and readabil-
ity. A frame pointer mechanism makes an
ideal implementation vehicle for a local
variable stack, as well as providing a clean
interface between C procedures and Forth
subroutines.

Conclusions
I've described some of the history be-

hind the sequence of processors leading up
to the 32-bit RTX chip now in develop-
ment. Along the way, I've aied to give
some insight into why the pmessm have
been designed the way they have, and into
stack machine design issues in general.
While the information has ban presented
as a personal history, it should provide
,me idea of the essential elements of &-
signing stack computers.

In the real world, design of a good
architecture is seldom done entirely
through the sole use of wisdom and knowl-
edge, and is never done right on the first try.
Happenstance, and the background and
education of the designer have much to do
with the process. ore important than the
ability to get it right the first time is the
ability to recognize mistakes, try new
ideas, andretain thebest of the old while in-
corporating the best of the new.

I would like to take this opportunity to
the involvement of two

peoplewithout whom thishistory couldnot
have taken place. Glen Haydon provided
insight, encouragement, and financial sup-
port for the WISC Technologies proces-
son. Dave Williams has been penonally
responsible for the acceptance and survival
of the RTX 32-bit technology at Harris
Semiconductor.

too high, and the lack of bits in the instruc-
tion format to support simultaneous opcode
and subroutine call execution makes the
potential payoff too low.

/ &, including real-time conh-61. Also, I I 1

Inner Access. .18
. Institute for Applied Forth Research 38

. Journal of Forth Application & Research .36,37

C-The Realities of the Marketplace
Forth is Good. But, Forth doesn't al-

ways sell. me fact is, c is beMming the
language of choice in many application

1

Volume XI, Number 6 9 Forth Dimemions

Laboratory Microsystems . .I8
Miller Microcomputer Services . $24
Next Generation Systems. .I4

. Silicon Composers .2,26

FORTH ENGINE
JOHN HAYES - LAUREL, MARYLAND

m

O v e r a period of several years, a
group of us at the Johns Hopkins Univer-
sity Applied Physics Laboratory have de-
signed a series of microprocessors that
directly execute the Forth programming
language. The SC32 is the third in the
series.

Interpreted languages have a big ad-
vantage over compiled languages, in their
shorter software development cycles and
their ability to interactively test and debug
programs. This is especially true with
Forth, whose simple syntax allows it to be
extended in application-unique ways.
Unfortunately, the performance of Forth
on conventional computers suffers when
compared to compiled languages because
of the need for run-time interpretation.
Forth-oriented processor chips, by treating
Forth as object code, eliminate run-time
interpretation. Consequently, interactive
Forth programs running on the SC32 exe-
cute just as fast as equivalent compiled
programs on conventional microproces-
sors.

All of the SC32's internal and external
data paths are 32 bits wide. The chip has an
external 32-bit address bus and 32-bit data
bus. 16-bit processors will be useful in
many applications for years to come.
However, once the size of a program or its
data exceeds the memory addressable by a
16-bit processor, the bank switching and
segmentation schemes that must be re-
sorted to hurt system performance. The
flat, linear address space of a 32-bitproces-
sor provides the most convenient program-
ming model for large applications.

Forth Direct Execution
The SC32 directly executes the Forth

programming language. From this descrip-
tion, you might think that the chip reads in

Forth source code and executes it. However,
the reality is less exotic and more subtle.
Three aspects of the SC32 make it a Forth
diit-execution engine: elimination of run-
time interpretation, an instruction set opti-
mized for Forth, and an internal processor
data path designed to support Forth stack-
based programming. Each of these points is
discussed in the sections that follow.

Most Forth primitives
are implemented with
one instruction.

Eliminating the Inner Interpreter
Forth is implemented on traditional

processors using the virtual machine ap-
proach shown in Figure One. Because of the
mismatch between Forth's stack model and
the native processor, a layer of run-time
interpretation is necessary. A tiny assembly
language program called the inner (or ad-
dress) interpreter is written for the bare
processor. Forth's primitive stack opera-
tors, also written in assembly language, are
implemented in the kernel layer. The top
layer of aForth system, the interactive outer
interpreter is written in Forth. The SC32
processor implements the inner interpreter
and kernel layers in hardware, eliminating
run-time interpretation. This means that
Forth programs running on the SC32 exe-
cute as fast as equivalent compiled pro-
grams while retaining Forth's interactive
environment.

The inner interpreter in traditional Forth
systems uses a technique called threaded
code [Rit80]. Figure Two shows how the
Forth program:

: mod /mod drop ;

is compiled on an indirect-threaded code
system. /MOD has been previously defined
using : (colon). In the body of MOD'S
definition, /MOD and DROP are repre-
sented as pointers (threads) to their respec-
tive definitions. DROP is a primitive and its
definition is in assembly language. The
definition of /MOD, another colon defmi-
tion, consists of threads to its constituents.

When MOD is executed, the inner inter-
preter traces through the list of threads,
nesting down when necessary, until a
primitive word defmed in assembly lan-
guage is found. Control is then transferred
to the primitive. In Forth systems imple-
mented on traditional processors, 35-50%
of the system's time is consumed by the
inner interpreter.

The SC32 eliminates this run-time
overhead by eliminating the inner inter-
preter. Figure Three shows the MOD ex-
ample compiled for the SC32. Instead of a
pointer to DROP, the actual object code for
DROP appears within MOD'S definition.
The pointer to /MOD is replaced with a
subroutine call to /MOD. At run time, a list
of SC32 instructions is traced, instead of a
list of pointers. The inner interpreter has
become the fetch-execute cycle of the
processor.

Readers familiar with advanced Forth
implementation techniques will realize
that the scheme described above is subrou-
tine threaded with in-line code expansion.
Theoretically, nothing precludes using this
technique on conventional processors.
However, the mismatch between Forth and
typical instruction sets would cause com-
piled Forth programs to become much
larger. For example, if several instructions
are needed to implement DUP on a given

I

Forth Dimensions 10 Volume XI, Number 6

Volume XI, Nutnber 6 11 Forth Dimemions

outer interpreter

kernel - stack machine

inner interpreter

processor

conventional hardware

SC32 hardware

Figure One. The Forth virtual machine.

4

docol exit

4
I r I r

4

1 /mod I I (I

docol

Figure Two. Indirect-threaded code.

_

4

mod I I j s r I <drop> I <exit> 1

4
I r

4 1
I /mod I A I drop 1 1 <drop>

Figure Three. Direct execution.

processor, the resulting object code could
be significantly bigger than the size of a
thread. The instruction set of the SC32 has
been designed so that almost all Forth
primitives are implemented with one in-
struction. This is the subject of the next
section.

Instruction Set
The SC32 instruction set was designed

specifically to support the Forth program-
ming language. There is a one-to-one
mapping between most Forth primitives
(DUP, +, DROP, etc.) and SC32 instruc-
tions. All of the instructions execute in one
machine clock cycle, with the exception of
load-from-memory and store-to-memory,
which take two cycles. Consequently, a
complete Forth primitive is executed al-
most every clock cycle.

All SC32 instructions are 32 bits wide.
Having 32 bits to represent instructions
allows a chip designer to create a more
regular instruction set with less instruction
decoding circuitry needed on chip. Less
decoding logic allows the chip's clock rate
to be increased, reducing the time needed
to execute an instruction. The instructions
come in three categories: control flow,
loads/stores, and arithmetic operations.
Table One shows each instruction type
available within a given category. There
are a total of eight instruction types, with
the three most significant bits of the in-
struction determining its type.

The notation used to describe the in-
structions in Table One is unusual. Tradi-
tional assembly languages, consisting of
an operation followed by operands, are in-
adequate for describing the SC32's in-
struction set Instead, a register transfer
notation is used in Table One and through-
out this article.

There are three control flow instruc-
tions: subroutine call, branch, and condi-
tional branch. These instructions all con-
tain an embedded destination address.
Measurements show that a single-cycle
subroutine call is the most important ingre-
dient of a Forth engine. Calling a colon-
defined word from within another colon
word is the most frequently executed op-
eration in Forth programs. The bit-level in-
struction encoding of the call instruction
was chosen so that the processor interprets
any 32-bit pointer (thread) into the low
words of memory as a subroutine call.

Fast branch instructions are important
too. A single-bit condition code flag deter-

I
Forth Dimensions 12 Volume XI, Number 6

mines whether or not the conditional
branch is taken. The flag must be set by an
earlier instruction.

The load/store category of instructions
consists of load-from-memory, store-to-
memory, load-address-low, and load-ad-
dress-high. In these instructions (and in the
micro-instruction described below), Rl
and R2 are operand selectors. Possible
operands include the top four locations on
Forth's parameter stack, the top four return
stack locations, and miscellaneous regis-
ters. The load-from-memory instruction
takes the operand specified by R l , adds a
16-bit Offset value to form a memory ad-
dress, fetches a value from memory, and
places it where indicated by R2. Store-to-
memory is similar, but the R2 operand is
stored at the computed memory address.
These two instructions take two clock
cycles to execute. In the load-address-low
instruction, the address computation is
performed as described above. However,
instead of fetching from memory, the ad-
dress is put in R2. The load-address-high is
similar, but the Offset value is shifted left
sixteen bits before being added to R l . The
load address instructions execute in one
clock.

The micro-instruction (so called be-
cause of its similarity to conventional mi-
crocode) performs arithmetic, logic, and
shift functions. One ALU operand is se-
lected by Rl and the other operand is al-
ways on the top of the parameter stack. The
ALU result is stored in R2. Much detail
about the micro-instruction has been sup-
pressed in Table One. The ALUop control
field actually has two formats, one for
controlling shift operations and the other
for controlling arithmetic operations. The
arithmetic format has six subfields for se-
lecting the arithmetic operation, the source
of the carry input, and the result to be
loaded in the condition code flag. The shift
format is similar, except that the arithmetic
operation subfield is replaced by four shift
control subfields.

Micro and load/store Category instruc-
tions also have the ability to control Forth's
stacks and select the source of the next
instruction using the Stack and Next fields.
Stack can specify that any combination of
pushing and/or popping the parameter and
return stacks should occur in parallel with
the execution of the instruction. Next se-
lects either the program counter (PC) or the
top of the return stack (TOR) as the source
address of the next instruction. Usually, the

PC provides the address. However, if TOR
is specified in Next and the return stack is
popped, a return-from-subroutine is done
concurrently with the execution of the cur-
rent instruction. In other words, a subrou-
tine return occurs in zero time. (Note that
the similar Novix return bit always popped
the return stack [Go185].)

There are a number of programming
tricks that are useful on the SC32 and that
help in the implementation of Forth. The
single addressing mode, register indirect
plus offset, is more powerful than it ap-
pears. This simple addressing mode sub-
sumesthefunctionsofsevedothermodes.
For example, a register indirect mode re-
sults from setting the offset to zero. The
SC32 has an internal register that always
returns the value zero when read This al-
lows the construction of an absolute ad-
dressing mode by adding the offset to the
zero register. The offset becomes an abso-
lute address. More complex addressing
modes can be constructed using more than
one instruction.

The load address instructions also pro-
vide some tricks. Programmers familiar
with conventional instruction sets might
have been surprised by the absence of a
move instruction in Table One. Adding a
zero offset to the Rl operand in a load
address instruction is equivalent to moving
Rl into R2. A move immediate instruction
that loads a literal value into R2 can be
produced by setting Rl to the zero register.
The result is that the offset is loaded into
R2. Any 16-bit literal can be produced in
one clock cycle using this trick. Any 32-bit
literal can be constructed in two clocks
using a load-address-high followed by a
load-address-low.

Data Path
The data path of a processor is the or-

ganization and connectivity of internal
resources such as registers and ALUs. The
data path, along with some control logic,
implements the processor's instruction set.
Several elements of the SC32 data path
(such as the zero register and condition
code flag) have already been mentioned.
However, the most important features of
the data path are two stack caches, one for
the parameter stack and one for the return
stack. The stack caches are key to executing
one Forth primitive every cycle. The SC32
stack caching algorithm guarantees that the
top four values of both stacks are always
present in the chip. Consequently, Forth

primitives always find their operands on
chipandneverneedextramemorycycles to
fetch them.

A stack cache is implemented as a six-
teen-word circular buffer. As Forth primi-
tives push or pop words from the stack, the
words are added to or removed from the
buffer. When the buffer fills, hardware
intervenes and inserts two cycles to write a
word from the buffer into external memory.
When the buffer is almost empty, hardware
again intervenes to read a word f?om exter-
nal memory back into the buffer. To use the
stackcaches, the programmer loads aregis-
ter with the address of the external over-
flow region. Subsequently, theoperationof
the stack cache is completely transparent
and gives the programmer the illusion of
arbitrarily large on-chip stacks.

The concept of a stack cache will proba-
bly be new to most readers. Once the idea
sinks in, you might wonder how well it
performs. Nothing is free, and the extra
cycles added on buffer overflow and under-
flow will slow down a running program.
However, measurements show that this
"slow down" is less than one percent for
typicalForthprograrns [Hay88]. Thedepth
of the stack oscillates around an average
value for long periods of time. The cache
attempts to adjust itself so that the buffer is
centered on the average depth and captures
as large a range of depth variations as
possible.

Forth on the SC32
Now that we've examined the three

elements of the SC32 direct execution
engine, it's time to see how Forth is imple-
mentedontheprocessor. TableTwoshows
some representative Forth primitives im-
plemented with the SC32 instruction set.
The stack operations that push or pop the
parameter stack are denoted by &P and TP.

DUP is implemented with a load-ad-
dress-low instruction. The value on the top
of the parameter stack (TOS) is read into
the ALU and zero is added to it. In the
meantime, the parameter stack is pushed,
allocating a new top-of-stack slot. Then the
ALU result is written into the slot. The
entire operation takes one clock cycle.
NoticethatinTableTwo,operandselectors
to the right of the arrow refer to the state of
the stack after the push or pop has occurred.
Thus, the two uses of TOS in DUP refer to
two different storage locations.

A slew of Forth data movement primi-
tives can be built with the load-address-low

control flow 1 Tv~e:3 I Address29

call
branch
conditional branch

loadlstore

Table One. SC32 instruction set.

Type13 I Next:l I R1:4 / R2:4 / Stack:4 I Offset:16

micro

Primitive
DUP
>R
R>
OVER
1+
1234
12345678

load: '(R, + Offset) -+ R,
store: '(R, + Offset) t R,
load address low (lal): R, + Offset -+ R,
load address high (lah): R, + Offset . 216 -+ R,

Type13 I Next1 I R1:4 I R2:4 1 Stack:4 I ALUop:16

SC32 Instruction
TOS -+ TOS; &P
TOS -+ TOR; ?P; LR
TOR -+ TOS; ?R; LP
SOS -+ TOS; LP
TOS + 1 -+ TOS
ZERO + 1234 -+ TOS; JP
ZERO + 1234 216 -+ TOS; JP
TOS + 5678 -+ TOS
'(TOS + 0) -+ TOS
'(TOS + 0) t TOS; ?P
?P
SOS + TOS + TOS; ?P
SOS - TOS; Nx,V -+ FL -+ TOS; ?P
TOS; Z -+ FL -+ TOS

micro: R, ALUop TOS -+ R,

Table Two. SC32 implementation of some typical Forth primitives.

Sequence
OVER 1+
R> +
+ o=
AVARIABLE @
OVER @
OVER ANARRAY + @
DUP 9 + @
BEGIN
DUP SIZE < WHILE

0 OVER FLAGS + !
OVER +

REPEAT

SC32 Instruction
SOS + 1 -+ TOS; JP
TOR + TOS -+ TOS; ?R
SOS + TOS; Z -+ FL -+ TOS; ?P
'(ZERO + AVARIABLE) -+ TOS; JP
'(SOS + 0) -+ TOS; LP
'(SOS + ANARRAY) + TOS; &P
'(TOS + 9) -+ TOS; JP

ZERO + 8190 -+ TOS; JP
SOS - TOS; Nx,V + FL; ?P
conditional branch <forward>
'(TOS + FLAGS) t ZERO
SOS + TOS -+ TOS
branch <back>

Table Three. SC32 object-code compaction.

instruction. DUP, >R, R>, and OVER in
Table Two are examples. Primitives that
add small (16-bit) constants to TOS (e.g.
1+, 2+, etc.) are implemented with load-
address-low. Small literals are created with
load-address-low by adding the literal
value to the zero register and pushing the
result on the parameter stack. Table Two
also shows how a large literal is constructed
by pushing the most significant part of the
number on the stack. then adding in the
least significant part. Forth's @ and ! op-
erators are implemented with the load-
from-memory and store-to-memory in-
structions, in the obvious way.

Forth has several arithmetic primitives
that operate on the top two parameter stack
elements, pop the stack, and write the result
to the top of the stack. Examples of such
binary operators are +, AND, XOR, etc.
These operators are implemented with the
micro-instruction. RI selects the second
item on the parameter stack (SOS) as one
ALU operand (remember that the other
operand is always TOS in micro-instruc-
tions). The ALU performs the selected
arithmetic or logic operation, the stack is
popped, and the result written to TOS.
Binary comparison primitives such as <, =,

u<, etc. are also implemented with the
micro-instruction. Micro has the ability to
produce a 32-bit 0 or -1 truth value as the
result of a comparison. Unary arithmetic
primitives (e.g., NEGATE, I-, NOT, etc.)
and unary comparisons (0 <, 0=, 0 >, etc.)
can all be realized with one micro-instruc-
tion.

By now, the reader should have a good
feel for how Forth's primitives are imple-

L
Volume XI. Number 6 13 Forth Dimensions

mented on the SC32. However, this is not
the whole story. The SC32 instruction set
and data path are more general than the pure
stack model needed for Forth. As a result, it
is possible to map multiple Forth primitives
into a single SC32 instruction. Consider the
sequence of primitives OVER l+. OVER
works by sending SOS through the ALU
unmmed and pushing the value onto the
stack. 1+ now reads this value through the
ALU again, this time adding one. The first
movement through the ALU is superfluous
and can be eliminated by combining OVER
1+ into one instruction.

Table Three has several more compac-
tion examples. Each entry in the table sug-
gests an entire class of compactions. There
is an astronomical number of possible
combinations. An optimizer written for the
SC32' captures most of the more useful
cases. All of the examples in the table,
including the last one, were compacted by
the optimizer without human intervention.
The last example, the inner loop of the
Sieve of Eratosthenes [Gi183], was in-
cluded to test your understanding of the
SC32.

Wrapup
The SC32 microprocessor is fabricated

in a two pm CMOS process and packaged
in an 84-pin PGA. We are using the SC32
on a number of projects within JHUIAPL,
the most interesting being the flight com-
puter of a magnetometer processor that is
part of a Swedish satellite named Freja. The
chip is also available commercially from
Silicon Composers in Palo Alto, Califor-
nia.

Our Forth chipdesign team consists of
Martin E. Fraeman, myself, Susan C. Lee,
Robert L. Williams, and Thomas Zaremba.
A description of the SC32's predecessors
can be found in [Hay87a] or [Hay87b]. A
more comvlete descrivtion of the SC32 will
appear in iHay891.

References
Gilbreath, J., Gilbreath, G. "Eratosthenes
Revisited: Once More through the Sieve,"
J a n v , 193, pp. 283-326.

Golden, J., Moore, C.H., Brodie, L. "Fast
processor chip takes its instructions di-

rectly from Forth," Electronic Design,
March 21,1985, pp. 127-138.

Hayes, J.R. "An Interpreter and Object
Code Optimizer for a 32-Bit Forth Chip."
1986 FORML Conference Proceedings,
pp. 21 1-221.

Hayes, J.R., Fraeman, M.E., Williams,
R.L., Zaremba, T. "An Architecture for the
Direct Execution of the Forth Programming
Language," Proceedingsof the Secondlntl.
Conf. on Architectural Support for Pro-
gramming Languages and Operating Sys-
tems, pp. 4249.

Hayes, J.R., Fraeman, ME., Williams,
R.L., Zaremba, T. "A 32-Bit Forth
Microprocessor," Proceedings of the 1987
Rochester Forth Conference, pp. 39-48.

Hayes, J.R.,Lee,S.C."Stack Caching in the
SC32 Forth Processor," 1988 FORML
Conference Proceedings, pp. 100-104.

Hayes, J.R., Lee, S.C. 'The Architecture of
the SC32 Forth Engine," Journal of Forth
Application and Research 5,4 (to appear).

Ritter, T., Walker, G. "Varieties of
Threaded Code for Language
Implementation," BYTE 5,9, September,
1980, pp. 206-227.

John R. Hayes received an M.S. in com-
puter science from Johns Hopkins Uni-
versity in 1986. He has written flight
sofnvare in Forth for satellite-based
magnetometer experiments and for the
shuttle-based Hopkins Ultraviolet
Telescope. He is currently applying the
SC32 in a variety of projects.

'[Hay861 describes an optimizer wriaen for our first
Forth chip. While its instruction set differs from that
of the SC32, the opimization techniques are similar.

NGS FORTH - - - -

A FAST FORTH,
OPTIMIZED FOk THE IBM
PERSONAL COMPUTER AND
MS-DOS COMPATIBLES.

STANDARD FEATURES
INCLUDE:

a79 STANDARD

.DIRECT 1/0 ACCESS

aF'ULL ACCESS TO MS-DOS
FILES AND FUNCTIONS

.ENVIRONMENT SAVE
& WAD

.MULTI-SEGMENTED FOR
LARGE APPLICATIONS

@EXTENDED ADDRESSING

.MEMORY W C A T I O N
CONFIGURABLF: ON-LINE

.AUTO XDAD SCREEN BOOT

.LINE & SCREEN EDITORS

.DECOMPILER AND
DEBUGGING A I D S

*8 08 8 ASSEMBLER

GRAPHICS t SOUND

mNGS ENHANCEMENTS

.DETAILED MANUAL

.INEXPENSIVE UPGRADES

0NGS USER NEWSLETTER

A COMPLETE R3mH
SYSTEM.

PFUCEB BTART AT $70 I
NEWeHP-150 C -110
VERSION8 AVAILABLE

NEXT GENERATION BY-
P-0-BOX 2987
BANTA CLARA, CA- 95055
(408) 241-5909

I

Forth Dimensions 14 Volwne XI. Number 6

PHASE ANGLE
DIFFERENCE ANALYZER

T e Phase Angle Difference Ana-
lyzer is an instrument which can determine
accurately the time delay and phase differ-
ence between two analog signals sampled
simultaneously by two sensors. The signals
are digitized by two fast A/D converters
and the results are analyzed by an NC4000
microprocessor. The frequency range of
the input signals is from 20 Hz to 20 KHz,
and the accuracy is about 0.05 degrees. It is
especially useful for direction-finding
based on acoustic waves.

Introduction
The Phase Angle Difference Analyzer

(PANDA) measures the phase difference
between two channels of analog inputs, as-
suming that the inputs are generated by the
same source with different time delays
between the two channels. This method is
very similar to correlation analysis, but
much simpler and faster.

Figure One shows a block diagram of
the PANDA system. The signals received
by two identical sensors are amplified and
digitized by two analog-to-digital (AD)
converters. The digital outputs of the AP
converters are then fed into a micropmes-
sor. The microprocessor analyzes the two
channelsof signal anddetermines thephase
angle difference between the two channels.

A large number of samples are taken by
the A/D converters and are stored in two
arrays in the computer's memory. The time
difference between the two input channels
is computed by shifting and comparing
values in the two arrays. The point of mini-
mal difference is then interpolatedand used
to compute the phase difference. This
analysis pmedure is similar to a correla-
tion analysis. However, the comparing step
involves only subtraction, absolution, and
addition. By avoiding multiplication, as

C.H. TING - SAN MATEO, CALIFORNIA

required in conventional correlation analy-
sis, the computation can be greatly acceler-
ated to allow the PANDA system to per-
form phase measurements in real time.

The most crucial components in the
PANDA system are the A/D converters,
since their sampling rate determines the
upper frequency of PANDA operation. It is
assumed that the microprocessor can read
the output from the A/D converters and
store the sample data in memory. The upper
frequency limit of PANDA was 20 KHz.
To analyze an input signal of 20 KHz,
PANDA must sample at a rate of 400 KHz
so that it can determine the phase difference
to the order of 0.1 degree.

channels. A maximum conversion rate of
an ADC 0820 is 1 MHz, which matches
rather well with the NC4000.

The required sampling rate depends
upon the frequency of the input signal.
Generally, it is necessary to sample at least
20 times within one wave period. The total
number of samples collected into memory
is limited to 120 pairs due to memory and
real-time processing requirements and
limitations. Too few samples within one
period would cause aliasing, and thus limit
the range of angles in which the correct
phase difference can be computed. Too
many samples within one period would
increase the error of measurement because
the sampled array might not cover enough
periods to compensate for the truncation of

Most commercial microprocessors,
including rather sophisticated 16-bit ma-
chines like the Intel 8086 and Motorola
68000, cannot read data at this required
sampling rate. Most data acquisition sys-
tems built for commercial microcomputers
have an upper sampling rate of about 20
KHz and are not suitable for PANDA. A
special CMOS 16-bit microprocessor, the
NC40001 invented by Mr. Charles H.
Moore, was thus chosen as the CPU for this
PANDA. An NC4000 running at a clock of
4 MHz can perform 16bit input/output at 4
MHz. To store data obtained from the VO
port takes two clockcycles. It is thus poten-
tially capable of acquiring data at a speed
exceeding 1 MHz. Two high-speed flash A/
D converters,National ADC 0820, are used
to digitize simultaneously the two input

PANDA rn uSt
at a rate of 400 K H z

Phase Difference Analysis
As mentioned above, the method

adopted in PANDA to analyze the phase
difference between the two input waves is
closely related to the conventional correla-
tion analysis. Figure Two shows schemati-
cally how the PANDA analysis is carried
out. Two channels of input waves are
sampled by the A/D converters and the
sampled data are stored in two memory
arrays, A and B. The data are represented
as:

% A1 % ...
BO B2 B3 ." B119

From these two sets of data, 20 phase-
difference sums (bucket values) are com-
puted. The bucket values are equivalent to
the results of a correlation analysis:
So S l S 2 ... S19

S i = SUM I A, - Bj+l-,o l
j=o t o 1 0 s

waves at the end of the sampling array.
About ten periods are needed to give good
accuracy.

Volume XI, Number 6 I5 Forth Dimensions

HARVARD S O F T W O R K S
NUMBER ONE IN FORTH INNOVATION

(513) 748-0390 P.O. Box 69, Springboro, OH 45066

MEET THAT DEADLINE ! ! !

Use subroutine libraries written for
other languages! More efficiently!
Combine raw power of extensible
languages with convenience of
carefully implemented functions!
Yes, it is faster than optimized C!
Compile 40,000 lines per minute!
Stay totally interactive, even while
compiling!
Program a t any level of abstraction
from machine code thru application
specific language with equal ease
and efficiency!
Alter routines without recompiling!
Use source code for 2500 functions!

*Use data structures, control
structures, and interface protocols
from any other language!
Implement borrowed feature, often
more efficiently than in the source!
Use an architecture that supports
small programs or full megabyte
ones with a single version!
Forget chaotic syntax requirements!
Outperform good programmers
stuck using conventional languages!
(But only until they also switch.)

HSIFORTH with FOOPS - The
only flexible full multiple
inheritance object oriented
language under MSDOS!

Seeing is believing, OOL's really are
incredible a t simplifying important
parts of any significant program. So
naturally the theoreticians drive the
idea into the ground trying to bend
all tasks to their noble mold. Add on
OOL's provide a better solution, but
only Forth allows the add on to blend
in as an integral part of the language
and only HS/FORTH provides true
multiple inheritance & membership.

Lets define classes BODY, ARM, and
ROBOT, with methods MOVE and
RAISE. The ROBOT class inherits:

INHERIT> BODY
HAS> ARM RightAnn
HAS> ARM LeftArm

If Simon, Alvin, and Theodore are
robots we could control them with:
Alvin Is RightArm RAISE or:
+5 -10 Simon MOVE or:
+5 +20 FOR-ALL ROBOT MOVE
Now that is a null learning curve!

WAKE UP ! ! !

Forth is no longer a language that
tempts programmers with "great
expectations", then frustrates them
with the need to reinvent simple
tools expected in any commercial
language.

HS/FORTH Meets Your Needs!

Don't judge Forth by public domain
products or ones from vendors
primarily interested in consulting -
they profit from not providing needed
tools! Public domain versions are
cheap - if your time is worthless.
Useful in learning Forth's basics,
they fail to show its true potential.
Not to mention being s-1-o-w.

We don't shortchange you with
promises. We provide implemented
functions to help you complete your
application quickly. And we ask you
not to shortchange us by trying to
save a few bucks using inadequate
public domain or pirate versions. We
worked hard coming up with the
ideas that you now see sprouting up
in other Forths. We won't throw in
the towel, but the drain on resources
delays the introduction of even better
tools. Don't kid yourself, you are not
just another drop in the bucket, your
personal decision really does matter.
In return, well provide you with the
best tools money can buy.

The only limit with Forth is your
own imagination!

You can't add extensibility to
fossilized compilers. You are a t the
mercy of that language's vendor. You
can easily add features from other
languages to HS/FORTH. And using
our automatic optimizer or learning a
very little bit of assembly language
makes your addition zip along as well
a s in the parent language.

Speaking of assembly language,
learning i t in a supportive Forth
environment turns the learning curve
into a light speed escalator. People
who failed previous attempts to use
assembly language, conquer i t in a
few hours or days using HS/FORTH.

HSB'ORTH runs under MSDOS or
PCDOS, or from ROM. Each level
includes all features of lower ones. Level
upgrades: $25. plus price difference
between levels. Sources code is in
ordinary ASCII text files.

All HS/FORTH systems support full
megabyte or larger pmgrams & data, and
run faster than any 64k limited ones even
without automatic optimization -- which
accepts almost anything and accelerates to
near assembly language speed. Optimizer,
assembler, and tools can load transiently.
Resize segments, redefine words, eliminate
headers without recompiling. Compile 79
and 83 Standard plus F83 programs.

STUDENTLEVEL $145.
text & scaled/clipped graphics in bit blit
windows,mono,cga,ega,vga, fast ellipsee,
splines, bezier curves, arcs, fills, turtles;
powerful parsing, formatting, file and
device U0; shells; interrupt handlers;
call high level Forth from interrupts;
single step trace, decompiler; music;
compile 40,000 lines per minute, stacks;
file search paths; formats into strings.

PERSONAL LEVEL $26.
software floating point, trig, tranacen-
dental, 18 digit integer & scaled integer
math; vars: A B * IS C compiles to 4
words, 1..4 dimension var arrays;
automatic optimizer-machine code speed.

PROFESSIONAL LEVEL $395.
hardware floating point - data structures
for all data types from simple thru
complex 4D var arrays - operations
complete thru complex hyperbolics;
turnkey, seal; interactive dynamic linker
for foreign subroutine libraries; round
robin & interrupt driven multitaskers;
dynamic string managqr; file blocks,
sector mapped blocks; x86&7 assemblers.

PRODUCTION LEVEL $495.
Metacompiler: DOS/ROMldidindirect;
threaded systems start a t 200 bytes,
Forth cores at 2 kbytes; C data
structures & struct+ compiler;
Turbowindow-C MetaGraphics library,
200 graphidwindow functions, Postscript
style line attributes & fonts, viewports.

PROFESSIONAL and PRODUCTION
LEVEL EXTENSIONS:

POOPS+ with multiple inheritance$ 76.
286FORTH or 386FORTH $295.

16 Megabyte physical address space or
gigabyte virtual for programa and data;
DOS & BIOS fully and freely available;
32 bit addresaloperand range with 386.

BTRIEVE for HSDORTH (Novell) $199.
ROMULUS HSlFORTK from ROMS95.
FFORTRAN translatorfmath~ak 1 75.

Compile Fortran subroutines! ~o&ulas,
logic, do loops, arrays; matrix math,
FFT, linear equations, random numbers.

I

Forth Dimensions 16 Volwne XI. Number 6

I PROCESS

W'

SENSOR 2 u u
TERMINAL El

Figure One. Block diagram of PANDA system.

Bucket Number I
Figure Two. Analysis of phase difference.

Figure Three. Analog and AJD circuitry in PANDA system.

If the two channels are identical, it is
obvious that S,, should be zero and that it is
the smallest of the 20 bucket values, be-
cause all the difference terms in this sum
are zero. Values neighboring S,, should in-
crease gradually, forming a notch at s,,
when the bucket values are plotted against
the bucket number. The phase difference
between the two input channels can be
determined accurately by how much the
notch shifts away from the S,,, as shown in
Figure Two.

A simple interpolation algorithm is
applied to determine the true notch-bucket
number, which is related to the time differ-
ence of signal arrival at the two sensors. If
the ith bucket has the lowest bucket value
S , the true notch is calculated from the
following equation:

NOTCH = i + (S,, - S,,) /
2 (S,, + S,, - 25,)

An equation for BASELINE is f01-
lows:

BASELINE = D / (delta * V)

where D is the distance between the two
sensors, delta is the sampling time, and V is
the speed of signal. The angle-of-arrival
(AOA) is then:

AOA = sin-' [(NOTCH - 10) /
BASELINE]

In the present PANDA system, the
sampling time of the AID converter is pro-
grammable through the system variable
DELAY. The relationship between DELAY
and delta is:

delta = 0.25 (DELAY+ll) psec.

The NC4000 processor cycle is 0.25
microseconds using a4 MHz clock. It takes
11 cycles to start the A D converters, wait
until the data is digitized, input the data,
and store the data to memory.

Hardware
The PANDA main unit consisted of

two circuit boards, one analog and one
digital. The analog processing board con-
tained a pair of OpAmp circuits to amplify
and condition the input signals, and a pair
of fast A D converters to digitize the sensor
input signal. The digital processing board
contained the main CPU chip (NC4000),

I
Volume XI, Nwnber 6 17 Forth Dimel~~l~ons

Total control
with LMI FORTHTM

EPROM, and SRAM memory chips, and
digital 110 circuitry. The CPU analyzes the
input signals and sends the results to a
terminal (Qume QVT-102) or to a host
computer for archiving and displaying
tasks.

Figure Three shows the schematics of
the analog board. The amplifier/signal-
conditioners are constructed with a single
quad OpAmp IC (National LM324). Each
single channel uses two OpAmps, one for
input conditioning with a gain of ten, and
another for amplification and offset adjust-
ment to present the signah optimized for
the A/D converter. The amplifier stage has
an adjustable gain of 0.1 to 100, and an
offset range of 0-5 volts.

Two A D converters are used in parallel
to convert simultaneously the two channels
of sensor signals in order to increase the
conversion throughput and to avoid skew-
ing in the sampling proces~.~ The A/D
converters are eight-bit half-flash convert-
ers. The start-conversion clock is provided
by an I/O writeenable (WEB) signal from
the MC4000, and the output data are read
by the NC4000 through the B port. Each A/
D provides eight bits of data to the 16-bit B

For Programming Professionals:
an expanding family of compatible, high-
performance, compilers for microcomputers
For Development:
Interactive Forth433 InterpreterlCompilers
for MS-DOS, OSl2, and the 80386

lbbit and 32-bit implementations
Full screen editor and assembler
Uses standard operating system files
500 page manual written in plain English
Support for graphics,floating point, native code generation

For Applications: Forth433 Metacompiler

port. Although the AID converters and the
SPU are capable of running up to a 1 MHz
sampling rate, due to the start-conversion
and memory-storing overhead in the data
acquisition process, the maximum practical
sampling rate is400 KHz on both channels.

The digital processor board is a CMOS
single-board microprocessor (Silicon
Composers SC1000-CPU). It contains a
very fast CMOS 16-bit microprocessor
(Novix NC4000). This CPU executes one
CPU instruction in every clock cycle de-
rived from a 4 MHz single-phase clock. All
branch and subroutine-call instructions are
also completed in one clockcycle. Memory
access requires two cycles. This speed al-
lowed the PANDA to obtain and analyze
data from the A/D converters at the rate
required by the PANDA experiments.

Surrounding the NC4000 chip are two
eight Kbyte EPROM memory chips hosting
the PANDA software, two 32 Kbyte RAM
chips for data storage, and four eight Kbyte
RAM chips serving as one data stack and
one return stack. A few MSI glue chips
complete the processor board: a 74HC138
for memory decoding, a 0 5 0 for reset
and serial I f 0 buffering, and a 4 MHz

I ~niqu~tabledriven multi-pass Forth compiler
Compiles compact ROMable or disk-based applications I

CMOS clock.
Two bits in the X I/O port on the

NC4000 are used to emulate an RS-232
serial interface port, which allows the
NC4000 to communicate with a terminalor
host computer. Only the transmit and re-
ceive lines are used in this RS-232 inter-
face. The data format is 9600 baud, eight
data bits, and one stop bit. Parity is dis-
abled. The transmit and receive lines are
buffered through the CD4050.

The digital and analog boards are con-
nected through a bussed backplane. Al-
though all the memory and 110 signals are
brought out to the backplane, the analog
processor uses only the B port VO signals.

Software
The software installed in the PANDA

system controls the operations of the sys-
tem and its user-host interface. It allows the
user to specify the conditions under which
the PANDA system is to be operated, such
as the sampling rate, the time delay be-
tween data reports, and the format of the
data reports. It also allows a host computer
to receive the results and to pmess the raw
data with more sophisticated data analysis

Excellent error handling
Produces headerless code, compiles from intermediate states,
and performs conditional compilation
Crosscompiles to 8080,Z-80,8088,68000,6502,8051,8096,
1802,6303,6809,68HC11,34010, V25, RTX-2000
No license fee or royalty for compiled applications

Labomtory Micmsystems incorporated
Fbst Office Box 10430, Marina del Rg, CA 90295
M C d i t Card Olders to: (213) 3067412

HU(: (213) 3 o i m i

Thinking of using the
Zilog Forth Super8 Chip?

Inner Access has FORTH
Super8 development tools
for you!

H Development Lab

Metacompiler

H Development ROMS I
with F83 based terminal emulation
and file server software for the IBM

A Inner Access Corporation
Box 888 Belmont CA 94002

L r A (415) 591-8295 ,
I

Forth Dimensions 18 Volume XI, Number 6

(PANDA SETUP, 10AUG86CHT)

HEX
3 C 0 CONSTANT RESULTS (B u c k e t v a l u e s)
4 0 0 CONSTANT l T E S T (P r i m a r y data a r r a y)
A 0 0 CONSTANT 2TEST (S e c o n d data a r r a y)

C CONSTANT COUNTER (R e p o r t c o u n t e r)
1 CONSTANT DELAY (D e l a y b e t w e e n s a m p l e s)

2 CONSTANT WAITING (D e l a y b e t w e e n reports)
3 CONSTANT RADIUS (B a s e l i n e b e t w e e n s e n s o r s)
4 CONSTANT SAMPLES (N u m b e r of A/D s a m p l e s)
5 CONSTANT FREQUENCY (F r e q u e n c e y m u l t i p l i e r)
6 CONSTANT PHASE (P h a s e o f f s e t)

7 CONSTANT T I C K S
DECIMAL

: ONE-PASS (PHASE -- SUM)
0 (I n i t i a l s u m)
SAMPLES @ 2 0 - (A n a l y z e o n l y 1 0 0 s a m p l e s)
FOR OVER l T E S T + I + @ (C h a n n e l 1 da ta w i t h o f f s e t)

2 T E S T I + 1 0 + @ (C h a n n e l 2 da ta)
- ABS + (S u b t r a c t , a b s o l u t e , a c c u m u l a t e)

NEXT
SWAPDROP ;

: 20-PASSES (--)
1 COUNTER + ! (I n c r e m e n t report c o u n t)
RESULTS 2 0 ERASE (C l e a r s u m a r r a y)
1 9 FOR

I ONE-PASS (D o a n a l y s i s)
I RESULTS + ! (S t o r e a w a y r e s u l t i n g s u m s)

NEXT ;

(F o r R a d i x 6 4 o u t p u t)

: SHOW-RESULTS (--)
COUNTER @ 3 .R (C o u n t f i e l d)
1 9 FOR

RESULTS I + @ 3 . R (2 0 s u m s)

NEXT
CR 1 0 EMIT ; (CR a n d t w o L F ' s)

(P M D A ANALYSIS, 07MAY86CHT)

: RATIO (N 1 N 2 N 3 --- RATIO, ~ 1 > ~ 2 > N 3)
SWAP OVER - >R (N2-N3)
- R> 5 0 0 (N1-N3)
ROT */ ([~ 2 - N 3] * 5 0 0 / [N l - N 3 1)

5 0 0 SWAP - ; ([~ 2 - ~ 3 + ~ 1 - ~ 3] * 5 0 0 / [~ l - N 3])

software.
Because NC4000 is a microprocessor

supporting the high-level language Forth,
it is natural that PANDA is programmed in
Forth. The SC 1000-CPU board developed
by Silicon Composers includes the operat-
ing system cmForth3 written by Charles H.
Moore, the creator of Forth and also the
chief designer of the NC4000. The
PANDA program is generated by the target
compiler in cmForth and installed in the
PANDA system via a pair of eight Kbyte
EPROMs.

The complete source code of PANDA
is shown in Listing One. Very extensive
comments are included and most of the
code is self-explanatory. Only a few words
are highlighted here to illustrate how the
PANDA system is used to collect data and
compute the phase difference between sig-
nals received from the input channels.

A set of user-changeable parameters is
defined as user variables so that the
PANDA system can be adapted to analyze
input signals within a very wide frequency
range:

SAMPLES Number of samples col-
ected in one acquisition
process. (120)

DELAY Number of empty loops
inserted between sam-
plings. (4)

WAITING Number of 0.3-second
delays between data re-
ports. (10)

RADIUS Bucket-number* 1000,
corresponding to a half
period. (8000)

FREQUENCY Number of periods in
synthetic test input sig-
nals. (20)

PHASE Phase delay between two
channels in the TEST rou-
tine. (Variable)

COUNTER A running counter for
data reports. (Variable)

The numbers in parentheses are default
values to analyze signals in a 20 KHz
range.

~ T E ~ T is the primary data array to
receive raw data from the A/D converters.
A/D clocks the A/D converters and stores
data into 1 TEST. Data from channel one is
stored in the lower eight bits and data from
channel two is stored in the upper eight bits
of a 16-bit word in 1TEST. DIGEST ex-
tracts channel two data and stores it in the

Volume XI, Number 6 19 Forth Dimensions

2 TEST array while it clears the upper bytes
in 1TEST.

ONE-PASS takes a sample from
ITEST, subtracts it from a corresponding
sample in ZTEST, and then accumulates
the absolute difference into one term in the
RESULTS array. The sample in 2TEST is
offset from the sample in 1 TEST by aphase
factor taken from the variable PHASE.
When the phase factor is ten, the two arrays
are exactly aligned. There are 20 sums in
RESULTS, the phase difference between
the two input signals is between -10 and +9
sampling intervals.

ONE-PASS is executed 20 times in
2 0 -PASSES, with the phase factor varied
from zero to 19. The RESULTS array then
contains the sums of the phase difference
analysis. These sums are referred to as
buckets and bucket values. Plotting these
bucket values against the phase factors, a
curve with a notch near the center can be
obtained (Figure Three). The minimum of
the notch is the phase difference between
the two input signals, relative to the center
bucket with a phase factor of ten. The time
delay between the two input signals is then
the bucket value of the notch subtracted
from ten and multiplied by the time interval
between two consecutive samples.

M1NIMUMSCansthr0~ghtheREsuLTS
array and returns the bucket number of the
bucket with the lowest bucket value. RA-
T I O computes the ratio (N3-N2)/(N3-
Nl+N2-Nl), where N3>N2>Nl. This is
the computation needed to interpolate
among the three lowest buckets to deter-
mine the true position of the notch among
the20 buckets. NOTCH caUs~1~IMU~and
RATIO to determine the notch position,
which is represented by an integer bucket
number and a fraction of the bucket number
multiplied by 1000.

If the two sensors are measuring the
signals from a single source, the angle-of-
arrival (AOA) of the source relative to the
sensors can be calculated with the knowl-
edge of the phase difference of the signals
arriving at the sensors, the distance be-
tween the sensors, and the velocity of the
travelling signal. ARCSIN converts the
phase difference to the angle-of-arrival by
interpolation with the help of the arc-sine
table in (ARCS IN). The value in RADIUS
is used as the baseline for arc-sine calcula-
tion.

There are several data-reporting rou-
tines to sample the signals and display the

: MINIMUM (-- N)
1 9 RESULTS 1 9 + @ (B u b b l e so r t)
18 FOR

I RESULTS + @
2DUP >
I F SWAP DROP

SWAP DROP
I SWAP

ELSE DROP
THEN

NEXT
DROP ;

: NOTCH (-- REMAINDER BUCKET)
MINIMUM DUP
RESULTS + >R (S m a l l e s t b u c k e t)
I 1 + @ (Two n e i g h b o r i n g b u c k e t s)
1 1 - @
2DUP > (R e o r d e r b u c k e t v a l u e s)
I F R> @ RATIO (a n d i n t r a p o l a t e b e t w e e n)

1 0 0 0 SWAP - (b u c k e t s)
SWAP 1 -

ELSE SWAP R> @ RATIO
SWAP

THEN ;

(DATA ACQUISITION, 10AUG86CHT)

HEX

: A / D (GET SAMPLES INTO l T E S T ARRAY)
0 l T E S T 1 - (DATA ADDR)
SAMPLES @
FOR 0 8 I ! (S t a r t A/D c o n v e r s i o n)

1 (DELAY)
@ FOR NEXT (W a i t till data r e a d y)
1 ! + (S t o r e a w a y p r e v i o u s data)
8 I@ SWAP (R e a d both c h a n n e l s)

NEXT
2DROP ;

: DIGEST
SAMPLES @ 1 -
FOR

(S e p a r a t e CH2 data)

l T E S T I + DUP @ (G e t s t o r e d data)
DUP >R
F F AND SWAP ! (Low b y t e t o l T E S T)
R> 6 TIMES (S h i f t h i g h b y t e)

[8 0 0 1 , (2 /) I
F F AND 2 T E S T I + ! (S t o r e CH2 data t o 2 T E S T)

NEXT ;

DECIMAL

: A C Q U I S I T I O N (--)
A/D D I G E S T 20-PASSES ;

I

Forth Dimensions 20 Volume XI, Number 6

(SIMULATED DATA, 18AUG86CHT)

7168 CONSTANT SINE (A t a b l e o f s i n e f u n c t i o n)

: PATTERN (FREQUENCY PHASE --
SAMPLES @
FOR I FREQUENCY @

* DUP 1 0 2 3 AND
SINE + @
lTEST I + !
PHASE @ + 1 0 2 3 AND
SINE + @
2TEST I + !

NEXT ;

(G e t f r e q u e n c y m u l t i p l i e r)
(O f f s e t i n t o s i n e table)
(G e t d a t a f r o m t a b l e)
(P u t i n t o lTEST a r r a y)
(Add p h a s e o f f s e t)
(O f f s e t d a t a)
(P u t t o 2TEST a r r a y)

: ?KEY (-- F) (T e s t RS232 i n p u t l i n e)
0 WAITING @
FOR

20000 FOR
RX 1 6 XOR OR

NEXT
NEXT ;

: TEST (--) (T e s t PANDA w i t h s i n e waves)
64 BASE !
0 COUNTER !
PHASE @ DUP >R
0 PHASE !
BEGIN

PATTERN (S y n t h e s i z e d a t a)
PO-PASSES (A n a l y z e)
SHOW-RESULTS (R e p o r t r e s u l t s)
DUP PHASE +!

?KEY UNTIL
DROP R> PHASE !
,

(i n t r a p o l a t i o n 1 6 a u g 8 6 c h t)

CREATE (ARCSIN) (a t a b l e o f f u n c t i o n v a l u e s)
0 , 500 , 1002 , 1 5 0 6 , 2014 ,
2526 , 3 0 4 6 , 3 5 7 6 , 4116 ,
4668 , 5240 , 5824 , 6434 ,
7076 , 7754 , 8480 , 9272 ,
1 0 1 6 0 , 11198 , 12532 , 15708 ,

: ARCSIN (10000*SIN -- 100*ARCSIN)
DUP >R ABS

1 0 0 0 0 M I N 500 /MOD (2 *)
(ARCSIN) + 2@ (I n t r a p o l a t e)
DUP >R -
500 */ R> +
9000 1 5 7 0 8 */ (S c a l e t o 90 d e g r e e s)
R> O<
I F NEGATE THEN ;

: ANGLE (FRACTION BUCKET -- ANGLE*100)
1 0 - 1 0 0 0 +
1 0 0 0 0 RADIUS @ * / (S c a l e t o t h e b a s e l i n e)
ARCSIN ;

Volume XI, Number 6 21

-

Results and Discussion
The PANDA system works very accu-

rately and the response is very fast. Exten-
sive experiments in calibration and also in
analyzing real signals have shown that it
performs well between 20 Hz and 20 KHz.
The accuracy and reproducibility most
often depend upon the noise contents in the
input signals. When the input signals are
strong and well balanced, the phase angle
difference can be determined down to 0.05

results. D IRECT ION sends a continuous
stream of AOA values to be displayed on a
terminal. The AOA values have a range
from -9000 to 9000, corresponding to -90
and 90 degrees. It can be interrupted by
pressing a key on the terminal. METER is a
visual display routine, showing a vertical
bar among 80 columns on a CRT terminal.
80 columns allow the display of AOA re-
sults with aresolution of about 2.5 degrees
in a -90 to 90 degree field.

RUN is used to send the raw bucket
values to a host computer. To minimize the
transmission time, bucket values are en-
coded in Radix 64. Each record contains 66
characters. The first three characters en-
code a record number, the next 60 charac-
ters encode 20 bucket values, and the last
three characters CR-LF-LF terminate a
record. The Radix 64 scheme allows a 16-
bit value to be represented by three ASCII
characters without any ambiguity.

When the PANDA system is turned on,
it enters the RUN procedure immediately
and sends the Radix 64 reports continu-
ously. Any keystroke will terminate RUN,
and the user can operate it interactively.
The RESET procedure boots PANDA
from EPROMs.

degrees. PANDA was used to analyze
audio and underwater acoustic signals in
direction-finding applications.

A very interesting property of PANDA
is that its performance does not depend on
the wave shape on the input signals. Sine
waves, square waves, and randomly
shaped waves can be analyzed with the
same degree of ease and accuracy. The per-
formance of PANDA degrades gracefully
with increased noise in the input signals
and imbalance between the two channels.
In very noisy environments, the accuracy
of the phase difference measurements can
be increased by temporal integration.

It is difficult to theorize the PANDA
methodology, because of the difficulty in

Forth Dimensions

modelling the absolution of difference be-
tween two signal channels. Correlation
analysis is related to the power spectrum of
the signals, while the PANDA analysis is
more closely related to the amplitude spec-
trum. The PANDA analysis is likely to
yield more accurate results in phase differ-
ence, in which all the signal points contrib-
ute equally. On the other hand, the results in
correlation analysis are weighed more
heavily towards signal points of higher
amplitude.

Since the PANDA method uses only
addition, subtraction, and absolution, the
computation load to the controlling micro-
processor is much less than that of correla-
tion analysis. The required dynamic range
of the sums is also much smaller because it
eliminates the multiplication operations.
Consequently, a 16-bit microprocessor
works comfortably. Even double integers
are not necessary in the computation.

The maximum frequency range of
PANDA can be pushed to about 500 KHz
using a 10 MHz RTX 2000 and a 10 MHz
A/D converter. Both are readily available
now. Most of the recent crop of fast-flash
A/D converters can be driven directly by
reading the strobes from the microproces-
sor. Most of the instructions in the A/D
procedure to strobe the converter can then
be eliminated and the analysis can run
much faster.

References
1. NC4000 is a microprocessor manufac-

tured by Novix, Inc. in San Jose, Cali-
fornia However, Novix, Inc. is no
longer actively supporting this product.
A limited quantity of this chip is still
available through Silicon Composers in
Palo Alto, California.

2. C.H. Ting, "A/D Converters with the
NC4000," More on NC4000, Vol. 3, p.
83,1987.

3. C.H. Ting, Footsteps in an Empty Val-
ley, 3rd ed., pp. 83-147. Offete Enter-
prises, Inc., 1988. This book contains
the most detailed information about the
NC4000 itself and its operating system,
cmForth.

(CONTROL LOOPS, 31DEC86CHT)

: RUN (--) (Default output)
64 BASE !
BEGIN

ACQUISITION
SHOW-RESULTS

?KEY UNTIL

: DIRECTION (--)
DECIMAL
BEGIN

ACQUISITION
NOTCH ANGLE (Show AOA) .

?KEY UNTIL ;

: SCALE (--)
CR 18 FOR

I 9 - ABS
48 + EMIT (Show bar graph scale)
2 FOR 46 EMIT NEXT

NEXT CR ;

: METER (--)
BEGIN

ACQUISITION
NOTCH ANGLE (Computer angle
COUNTER @ 15 AND (Show scale occasionally)
IF CR ELSE SCALE THEN
9000 + 250 / (Scaling to 80 columns)
71 FOR

DUP I -
IF 32 ELSE 124 THEN
EMIT (Display needle point)

NEXT
DROP

?KEY UNTIL ;

: RESET (INITIALIZE FOR 10 KHZ OPERATION)

BOOT (Initialize NC4000
0 COUNTER ! (Initialize PANDA variables)
9 DELAY ! (for 20 KHz measurements)
10 WAITING !
8000 RADIUS !
20 FREQUENCY !
120 SAMPLES !
20 TICKS !
0 9 I! 0 10 I! 0 11 I! (Initialize B port)
RUN QUIT ; (Run host reporting routine)

Forth Dimemiom 22 Volume XI, Number 6

ANS FORTH
HARDWARE INDEPENDENCE

JOHN R. HAYES - LAUREL, MARYLAND

m

1 k$th has always worked closely with
the underlying hardware. The most popular
architectures used to implement Forth have
had byte-addressed memory, 16-bit opera-
tions, and two's-complement number rep-
resentation.TheForth-83 Standarddictates
that these particular features must be pres-
ent in a Forth-83 Standard system and that
Forth-83 programs may exploit these fea-
tures freely. However, there are many
beasts in the architectural jungle that are bit
addressed or cell addressed, or prefer 32-bit
operations, or represent numbers in one's
complement or BCD. Since one of Forth's
strengths is its usefulness in "strange"
environments on "unusual" hardware with
"peculiar" features, it is important that a
standard Forth run on these machines too.

A primary goal of the ANS Forth stan-
dard is to increase the types of machines
that can support a standard Forth. This is ac-
complished by allowing some key Forth
terms to be implementation defined (i.e.,
how big is a cell?) and by providing Forth
operators (words) that conceal the implem-
entation. This frees the implementor to
produce the Forth system that most effec-
tively utilizes the native hardware. The
machine-independent operators, together
with some programmer discipline, enable a
programmer to write Forth programs that
work on a wide variety of machines.

The ANS Forth standard cannot and
should not force anyone to write a portable
program. In situations where performance
is paramount, the programmer is encour-
aged to use every trick in the book. Writing
a portable program is an opportunity. If a
Forth programmer invents a new program-
ming technique, then implements it so that
it relies on every quirk of his Forth system,
that program is only useful to people with
an identical system. A portable program

tween dissimilar machines. Consequently,
examples of specific architectures with
their respective problems are given.

benefits a greater number of people and is
consequently more valuable. When pro-
gramming for profit, a portable program
automatically has a larger potential market
than a non-portable program.

The computers that can host ANS Forth
form a superset of the machines that run
Forth-83. Forth-83 programs will work,
with very little modification, on ANS Forth
systems that use 16-bit cells and address
memory as eight-bit bytes. However,
Forth-83 programs will probably need
substantial modification to run on other
ANS Forth systems (e.g., systems with 32-
bit cells). In other words, non-portable
programs remain non-portable. Increasing

Systems with different
cell sizes will be
encountered. ..
the range of machines that can support ANS
Forth does not diminish the range of ma-
chines that run Forth-83 programs. This is
important to remember while studying the
ANS Forth definitions of such "familiar"
concepts as byte, cell, and memory address-
ing. The definitions were carefully chosen
to be a generalization of Forth-83's defini-
tions. Forth-83 programs (in ANS Forth
jargon) have an environmental dependency
that cells be 16-bits wide and that memory
is addressed as eight-bit bytes.

The rest of this article describes some
ANS Forth features for making a program
independent of hardware peculiarities. It is
difficult for someone familiar with only one

Hardware Independence
Data and memory are the stones and

mortar of program construction. Unfortu-
nately, each computer treats data and
memory differently. The ANS Forth Pro-
gramming Systems standard gives defini-
tions of data and memory that apply to a
wide variety of computers. These defini-
tions give us a way to talk about the com-
mon elements of data and memory while
ignoring the details of specific hardware.
Similarly, ANS Forth programs that use
data and memory in ways that conform to
these definitions can also ignore hardware
details. The following sections discuss the
definitions and describe how to write pro-
grams that are independent of the data and
memory peculiarities of different comput-
ers.

I

Definitions
Three terms defined by ANS Forth are

address unit, cell, and byte. The address
space of an ANS Forth system is divided
into an array of address units; an address
unit is the smallest collection of bits that
can be addressed. In other words, an ad-
dress unit is the number of bits spanned by
the addresses addr and addr+I. The most
prevalent machines use eight-bit address
units. Such "byte-addressed" machines in-
clude the Intel 8086 and Motorola 68000
families. However, other address unit sizes
exist. There are machines that are bit ad-
dressed and machines that are 4-bit-nibble
addressed. There are also machines with

I
address units larger than eight bits. For
example, several Forth-in-hardware com-
puters are cell addressed (Novix NC4016

machine architecture to imagine the prob-
lems caused by transporting programs be-

Volume XI, Number 6 23 Forth Dimensions

A related problem is that of addressing
an array of cells in an arbitrary order. A
defining word to create an array of cells
using Forth-83 would be:

with 16-bit address units and the Silicon
Composers' SC32 with 32-bit address
units).

The cell is the fundamental data type of
a Forth system. A cell can be a single-
precision integer or a memory address.
Forth's parameter and return stacks are
stacksofcells.Forth-83 specifiesthatacell
is 16 bits; in ANS Forth the size of a cell is
an implementation-defined number of
address units. Thus, an ANS Forth imple-
mented on a 16-bit microprocessor could
use a 16-bit cell, and an implementation on
a 32-bit machine could use a 32-bit cell. 18-
bit machines (PDP-IS), 36-bit machines
(PDP-10). etc. could also support ANS
Forth systems with 18- or 36-bit cells, re-
spectively. In all of these systems, DUP
does the same thing: it duplicates the top of
thepatameterstack. ! (store) behavescon-
sistently too: given two cells on the pa-
rameter stack, it stores the secondcell in the
memory location designated by the top cell.

Historically, the definition of a byte has
been the most convenient amount of stor-
age that could hold a character. The major-
ity of machines built in recent years use
eight-bit address units and store one char-
acter per address unit. This has resulted in
the widespread assumption that a byte is
alwayseightbits. ANS Forth uses the more
general definition: a byte is an implementa-
tion-defined number of address units (but at
least eight bits) used to hold a character.

: ARRAY CREATE
2* ALLOT DOES>
SWAP 2* + ;

This removes the need for a Forth imple-
mentor to provide eight-bit bytes on proc-
essors where it is inappropriate. For ex-
ample, on an 18-bit machine with anine-bit
address unit, a nine-bit byte would be most
convenient. Since, by definition, you can't
address anything smaller than an address
unit, a byte must be at least as big as an
address unit. This will result in big byteson
machines with large address units. An
example is a 16-bit-cell addressed ma-
chine, where a 16-bit byte makes the most
sense.

Addressing Memory
ANS Forth eliminates many portability

problems by using the above definitions.
One of the most common portability prob-
lems is addressing successive cells in
memory. Given the memory address of a
cell, how do you find the address of the next
cell? In Forth-83 this iseasy: 2 +.This code
assumes that memory is addressed in eight-
bit units (octets) and that a cell is 16-bits
wide. On an octet-addressed machine with
32-bit cells, the code to find the next cell
would be 4 +. The code would be 1+ on a
cell-addressed processor and 1 6 +on abit-
addressed processor with 16-bit cells. ANS
Forth provides a next-cell operator named
CELL+ that can be used in all of these
cases. Given an address, CELL+ adjusts the
address by the size of a cell (measured in
address units).

Use of 2 * to scale the array index assumes
octet addressing and 16-bit cells again. As
in the example above, different versions of
the code would be needed for different
machines. ANS Forth provides a portable
scaling operator named CELLS . Given a
number n, CELLS returns the number of
address units needed to hold n cells. A
portable definition of ARRAY is:

: ARRAY CREATE
CELLS ALLOT DOES>
SWAP CELLS + ;

There are also portability problems
with addressing arrays of bytes. In Forth-
83 (and in the most common ANS Forth
implementations), the size of a byte will
equal the size of an address unit. Conse-
quently, addresses of successive bytes in
memory can be found using 1 + and scaling
indices into a byte army is a no-op (i.e., 1
*). However, there are cases where a byte
is larger than an address unit. Examples
include systems with small address units
(e.g., bit- and nibble-addressed systems)
and systems with large character sets (e.g.,
16-bit characters on an octet-addressed
machine). BYTE+ and BYTES operatom,
analogous to CELL+ and CELLS, are
available to allow maximum portability.

ANS Forth generalizes the definitions
of some Forth words that operate on
chunks of memory to use address units.
One example is ALLOT . By prefixing
ALLOT with the appropriate scaling opera-
tor (CELLS , BYTES, etc.), space for any I
desired data structure can be allocated (&
definition of ARRAY above). For example:

CREATE ABUFFER
5 BYTES ALLOT
(Allots a 5-byte buffer.)

The memory-block move word also
uses address units:

source dest 8 CELLS MOVE
(Moves eight cells.)

I

Forth Dimemions 24 Volwne XI, Number 6

Alignment Problems
Not all addresses are created equal.

Many processors have resmctions on the
addresses that can be used by memory
access instructions. For example, on a
Motorola 68000, 16-bit or 32-bit data can
be accessed only at even addresses. An-
other example is Sun's SPARC architec-

Listing One

\ Structure access words usage:
\ structure £00 \ Declare a structure
\ 3 bytes: .part1 \ consisting of a 3-byte part,
\ cell: .part2 \ a one-cell part,
\ byte: .part3 \ and a one-byte part.
\ endstructure
\

handle these alignment restrictions in one
of two ways. Forth's memory access words
(@, ! , + ! , etc.) could be implemented in
terms of smaller-width access instructions
which have no alignment restrictions. For
example, on a 68000 Forth with 16-bit
cells, @ could be implemented with two
68000 byte-fetch instructions and a reas-
sembly of the bytes into a 16-bit cell. Al-
though this conceals hardware ugliness
from the programmer, it Is inefficient. An
alternate implementation of ANS Forth
could define each memory access word
using the native instructions that most
closely match the word's function. On a
68000 Forth with 16-bit cells. @ would use
the 68000's 16-bit move instruction. In this
case, responsibility for giving @ a correctly
aligned address devolves onto the pro-
grammer. A portable ANS Forth program
must assume the worst and use the align-
ment operators described below.

One of the most common problems
caused by alignment restrictions is in creat-
ing tables containing both bytes and cells.
When initializing the table using , and c ,
data is stored at the end of the dictionary.
Consequently, the dictionary pointer must
be suitably aligned. For example, a non-
portable table definition would be:

ture, where 16-bit data can be loaded or
stored only at even addresses and 32-bit
data only at addresses that are multiples of
four.

An implementor of A N S Forth can

CREATE ATABLE
l C , X , 2 C , Y ,

\

\ structure foobar \ Declare another structure
\ 2 cells: . this \ consisting of two cells,
\ foo struct: .that \ and substructure
\ endstructure
\

On thesecond 68000Forth implementation
described above, CREATE would leave the
dictionary pointer at an even address, the 1
C, would make the dictionary pointer odd,
and , would crash the system by storing x
at an odd address. A portable way to create
the table is:

CREATE ATABLE
1 C, ALIGN X ,
2 C, ALIGN Y ,

(Continued on page 33 .)

\ create teststruct
\ f oobar al lot
\ 123 teststruct

\ .that .part2 !

\ Allocate a structure instance

\ & store something in it.

Implementation notes:

1. Stxucture instances must be put a& an aligned address (i.e.. via CREATE).
2. ENDSTRUCTURE pads out the end of the structure--this is unnecessary.

: structure (- pfa template)

\ Start structure declaration.
create here 0 , 0
does> @ ; (addrlsize] - size)

: aus: (offset size - offset')

\ Structure member compiler.
create over , +
does> @ + ; (base addr[offset] - base')

\ Add member's offset t o base.

: bytes: (template n - template')

\ Create n byte member.
bytes aus: ;

: byte: (template - template')

\ Create 1 byte member.
1 bytes: ;

: cells: (template n - template')

\ Create n cel l member.
cells >r realign r> aus: ;

: c e l l : (template - template')
\ Create 1 cel l member.

1 cells: ;

: struct: (template size - template')

\ Create member of given size.
>r realign r> aus: ;

: endstructure (pfa template -)
realign swap ! ;

I

Volume XI, Number 6 25 Forth Dimemiom

SILICON COMPOSERS
Performance, Quality, Service

SC/FOX P a 3 2 Parallel Coprocessor System32
Uses the 32bit ~ ~ 3 2 ' ~ Forth CPU.
System speed options: 8 or 10 MHz.
Full-length 8- or 16-bit PC/XT/AT plug-in board.
64K to 1M byte, 0-wait-state static RAM.
Hardware expansion, two 50-pin strip headers.
Includes SC/Forth32, based on the Forth-83 Standard.

SC/FOX PCS Parallel Coprocessor System
Uses Hams RTX 2 0 0 0 ~ real-time Forth CPU.
System speed options: 8, 10 or 12 M H z
Full-length 8- or 16-bit PC/XT/AT plug-in board.
32K to 1M bytes, 0-wait-state static RAM.
Hardware expansion, two SO-pin strip headers.
Includes FCompiler; SC/Forth optional.

SC/r;OX SBC Single Board Computer
Uses RTX 2000 real-time Forth CPU.
System speed options: 8, 10, 12 or 14 MHz.
32K to 512K bytes 0-wait-state static RAM.
RS232 56K-baud serial and printer ports.
Hardware expansion, two 50-pin strip headers.
64K bytes of shadow-EPROM space.
Eurocard size: lOOmm by 160mm.
Includes FCompiler; optional SC/Forth EPROM.

SC/FOX SCSI 110 Daughter Board
Plug-on daughter board for SC/FOX PCS and SBC.
Source s/w drivers for FCompiler and SCIForth.
SCSI adaptor with 5 Mbytes/sec synchronous or
3 Mbytes/sec asynchronous transfer rates.
Floppy disk adaptor; up to 4 drives, any type.
Full RS-232C Serial Port, 50 to 56K Baud.
16-bit bidirectional, latching parallel port.

sc/Forthtm Language
Based on the Forth-83 Standard.
15-priority timesliced multitasking.
Supports user-defined PAUSE.
Automatic optimization and ~ c o d e support.
Turnkey application support.
Extended structures and case statement.
Double number extensions.
In f i equation notation option.
Block or text file interpretation.
Optional source-code developer system.
Supports program spawning to any 64K page.
Optional SC/DOS Fie disk operating system.

SC32 Forth Microprocessor
32-bit CMOS microprocessor, 34,000 transistors.
Oneclock cycle instruction execution.
Non-multiplexed 32-bit address bus and data bus.
16 gigabyte non-segmented data space.
2 gigabyte non-segmented code space.
8 or 10 megahertz full-static operation.
Stack depths limited only by available memory.
Interrupt and interrupt acknowledge lines.
Bus request and bus grant lines with on-chip tristate.
Wait state line for slow memory and 110 devices.
85-pin PGA package.

RTX 2000 Forth Microprocessor
16-bit CMOS microprocessor in 84-pin PGA package.
1-cycle 16x16 parallel multiplier.
14-prioritized interrupts, one NMI.
l'bo 256-word stacks. Three ldbit timer/counters.
%channel multiplexed 16-bit I/O bus.

NC4016 Forth Microprocessor
16-bit, 4MHz CMOS microprocessor in 121-pin PGA.

Ideal for embedded real-time control, high-speed data acquisition and reduction, image or signal

I processing, or computation-intense applications. For additional information, please contact us at:

I SILICON COMPOSERS INC 208 California Avenue, Palo Alto, CA 94306 (415) 322-8763

Forth Dimemiom 26 Volume XI. Number 6

FORML '89
In Which We Meet in the Woods and Roo Gets Held Up ...

BY PETER MIDNIGHT - SAN LEANDRO, CALIFORNIA
(...the article, that is, not the holdup.)

Volume XI, Number 6 27 Forth Dimemiom

time. Each author gets to address the con-
ference for up to 15 minutes. They usually
start by talking about whatever their paper
is about. Then they might take a few ques-
tions, which may include comments. This
interplay dissolves into a discussion that
nobody wants to end until the session chair
says we have to move on.

From the very beginning, this year, we
find ourselves representing opposing
points of view on a variety of issues. Some
of us believe that long, descriptive word
names make code more readable, while
others of us believe that long names are as
tedious to read as they are to write and leave
less room on the printed page for reflecting
logical structure or flow in the layout of the
text. Someof us fear that the need fortheef-
ficiency ofForth willdiminish with thecost
of hardware, while others of us are hopeful
that the demand for that efficiency will
increase with the proliferation of uses for
ever smaller and more numerous machines.
And some of us appreciate the power of
automated applications that don't bother us
with the details of what all they have to do
to achieve their results, while others of us
are more concerned about the stifling effect
this style of program has on the users'
ability to understand and effectively man-
age the operation of their own computers.
Conveniently, this latter conflict foreshad-
ows the subject of Object-Oriented Pro-
gramming, which is sure to comeup sooner
or later.

Continuity
The conference proceeds at a steady

pace, even between sessions. The break
between the afternoon sessions is half an
hour long, but you spend that time waiting
in line for your room key because this is
your only opportunity to check in. Then

O n c e again this past Thanksgiving at
Asilomar, some of the foremost Forthers
from around the world gathered for the
Eleventh FORML Conference. This was
the tenth annual FORML Conference to be
held at California's beautiful Asilomar
Conference Center on the Monterey Penin-
sula, just a short walk from the world fa-
mous Pacific Ocean. However, this confer-
ence was officially the eleventh because
there was once another one someplace else
and there never was a zeroth.

As always, this year's FORML confer-
ence had a theme. But the theme is really
just a formality to help get the ball rolling.
The theme this year was Object-Oriented
Programming. And this topic did come up,
from time to time. But the real purpose of
the FORML Conference is to bring to-
gether a diverse group of serious Forth
users and to promote the propagation
among them of enthusiasm, ideas, and
useful information.

The Woods
The first thing you see when you arrive

at the conference center is that you are not
in Kansas anymore. You are in the woods.
Asilomar is like a groupevent-oriented
resort. The flagpole in the middle is sur-
rounded by the Dining Hall, the lodge-like
Administration Building, the Chapel, and
the Barbecue Pit. From this area, paved
footpaths, going slightly uphill in both di-
rections, spread off through the trees to
interconnect avariety of housing and meet-
ing facilities of various sizes. The buildings
have names like Spindrift, Manzanita, and
Forest Lodge. Inside are wood-burning
fireplaces, viewgraph projectors, and vats
of less-than-ideal coffee. Outside, you're
sure to see a few deer.

Participation in this event begins as

smn as you arrive at Asilomar. The fist
stop is the Administration Building for
registration. But before you even get there
from your car, you begin to encounter other
conferenceattendees. You meeta few more
as you stop to pick up your notebook and
meal ticket. By the time you sit down for
lunch, you are among the people you have
come here to see. Without leaving sea level,
you have reached the mountain top, many
thousands of feats above C level. For the
next 48 hours, you can put the rest of your
life on hold.

Formal FORME
After lunch, the conference begins in

earnest, with our first session held in the
Chapel. Here we learn that Tem Sutton,
this year's chairperson, is unable to attend
due to illness and that John Hall will cover
for her during the conference itself. We also
get the first of many handouts to be added
to our already full notebooks. This is the
first time we all get to open and close our
three-ring binders together while someone
is trying to speak.

After a few more opening remarks, we
get down to business. Here's how that
works. The papers that were submitted by
the latest deadline were then organized into
about half a dozen subject areas. The
groupings this year are looking into Forth;
comparing Forth; measurements and
mathematics; objects and graphics; match-
ing, control flow, and F-PC; ANSI report
and assembler innovations; and the future.
These groups of papers become most of the
sessions to be held at the conference and
later become the chapters in the published
proceedings. The conference chair, John as
Tem, talks someone into chairing each
session. The session chair introduces the
author of each paper and keeps track of

you make your way up to the Firelight
Forum, where the remainder of the confer-
ence will be heldthis year. Thedinner break
is longer, but by the time you have been
served your dessert-if you care to wait for
it-it's about time to get started back up the
hill for the evening session.

Somewhere, your stomach is vying to
make sense of what you've just eaten. At
the same time, your brain is digesting a
tasty selection of more abstract subjects. In
this session, we are treated to a discussion
of the application of mathematics to data
types other than numbers. We also receive
a rare explanation of what a CRC really is
and how it can be practical to compute one.

As the evening session draws to aclose,
more or less on schedule, the wine and
cheese are already being served at the back
of the room. With more than six hours of
presentations ahearly under our belts, we
have plenty of food for thought and discus-
sion, as well. In addition, this wine and
cheese party is where we are joined by the
guests that have accompanied some of us to
the conference. They have been off some-
place, enjoying noncomputing activities
hosted by Min Moore.

Officially, the party ends at midnight.
All meeting facilities are supposed to close
at this time. Those of us who don't give up
that easily usually end up packed into
someone's bedroom with the last of the
wine. This is not an optimum situation for
the neighbors and can be even worse for the
people whose room has been ovemn. This
year, we find a beautiful lounge in one of
the buildings allocated to attendees of our
conference. This lounge is not locked and
shares no walls with any bedrooms.
Whether by luckor chicanery, this is a great
improvement over past years. There is no
telling how late into the night the last few
diehards among us are still in conference in
that room.

Breakfast comes at an hour some pro-
grammers have never seen. Fortunately,
coffee and doughnuts will be available
during the morning break. It's only the
second &y, and some of us are already
suffering from sleep deprivation. But at
nineo'clock,readyornot, thepresentations
begin anew.

Communication
The theme of the conference this year

could well have been communication.
Whether in screens or in sequential files,

Forth Dimensions

the source code we write is designed to
communicate both with a machine and with
whatever person or persons will need to
deal with it in the future. All of OUT discus-
sions of coding and commenting style ad-
dress this problem. Even the occasional
mention of Object-Oriented Programming
refers to a method of selecting the informa-
tion about each element of a program that
will be communicated to a programmer or a
user. Other problems discussed at the con-
ference include communication of our
understanding of the use of Forth to new
and potential users and communication of
the practical advantages of Forth to the en-
gineers and managers who are the potential
market for our skills and services. And, of
course, the object t~wards which the
FO~ML Conference is most directly on-
ented is an opportunity for each of us to
communicate in person with some of Our
peers.

For some of us, standing at a micro-
phone and speaking to about 85 of the most
knowledgeable Forth programmers in the
world is like chatting with friends over a
few drinks. For others of us, it is more like
having to improvise a song a cappella on
live network television in the nude! I-low-
ever, we are usually too interested in the
content of what other Forth Programmers
have to say to be concerned about the style
of their presentations, as long as they don't
pass out.

The style of our graphics, on the other
hand, is interesting to observe. In the ab-
sence of large video monitors, most pre-
senters make at least some use of the
viewgraph projector. Some just use it like a
blackboard, while others have prepared
slides to illustrate their work with varying
degrees of polish. One presenter this year
has used a pen plotter to render his
viewgraph slides in color. And once, at a
previous FORML Conference, we even
saw movies.

The proceedings, when they are pub-
lished, will surely imply that this reporter is
the only remaining Forth programmer with-
out alaserprinter. But even if that were true,
the hardware we use should not be as sig-
nificant to us, as programmers, as is the
software we use. What portion of this
printed material do you suppose was devel-
oped and formatted through the righteous
invocation of Forth, as opposed to that
unclean portion which was deep-fat fried
by some autocratic word processor written

- - --- - -

28

in one of the more fascistic languages, ap-
proved by the Ministry of User Friendli-
ness and sold, along with ozone-eating
chemicals and used cars, by megalomani-
acs with thinly veiled Mafii connections?
We shall not dignify this sorry state of
affairs with any further speculation.

Informal FORML
Over the years, several different types

of sessions have been mixed in with the in-
dividual, oral presentation sessions at the
FORML Conference. On Saturday after-
noon this year, we have working groups. At
the beginning of such a session, several
areas in the room are assigned to specific
areas of interest. Discussions then take
place simultaneously in all of these areas,
each involving whomever of us find them
the most interesting. Those of us not
blessed with a one-track mind tend to
wander around a bit during the working
group session.

The evening session provides another
alternative form, impromptu talks. By this
time, a great many thoughts have been
churned up by the presentations, the work-
ing groups, and the many informal conver-
sations. There are also people among us
with ideas to present who might have sub-
mitted a paper, but didn't. The impromptu
talks session is an opportunity for those
thoughts and ideas to be presented. And it
blends smoothly into another wine and
cheese party on Saturday night.

The second night of the conference
passes much the same as the first. The same
lounge is found unsecured, although it may
be empty a little earlier this morning. And
again, breakfast is strongly rumored to
have taken place as scheduled. If you make
it to breakfast and your roommate doesn't,
or vice versa, you might go through the
entire conference without ever finding out
who your roommate is. It might even be the
person you are sitting right next to when the
final day of the conference begins.

Computers
Computers, themselves, have played an

interesting role in the FORML Conference
over the years. A decade ago, as you may
recall, setting up a computer system at a
conference was something of a project in
itself. The first computer this reporter saw
demonstrated at a FORML Conference
was as offbeat as the undertaking of bring-
ing it there. Instead of a cooling fan, it had

(Continued on page 31 .)

Volume XI. Number 6

I The Results of Our I
CONTEST OF

SORTS
- - -- --

DENNIS RUFFER - SYSOP, GEnie FORTH ROUNDTABLE
rn

Volume XI. Number 6 29 Forth Dimemions

T e results are in, and we have a
winner. Although we only had three en-
tries, they came from three distinct comers
of the world. From Australia, David Doupe
made his submission through the Usenet
extension of our Virtual Forth Network.
From Denmark, Henning Hansen sent his
entry direct to the FIG offices. From our
own back yard in Santa Cruz, California,
Dwight K. Elvey made a remarkable win-
ning entry. In fact, Dwight made two en-
tries, one written for speed, the other writ-
ten to minimize memory usage. I have
included both, since they both are more
than two times faster (on average) than
their nearest competitor. I have also in-
cluded code from Wil Baden, who has
taken the time to further discuss [see be-
low] the history of Dwight's method.

The requirements for a sorting algo-
rithm are varied, and should be determined
more by the application than simply by the
result of an abstract benchmark like we
have used here. However, I might mention
a few notes about our results. Although
Dwight's DVD&KNKR is by far the fast-
est, both it and David's MERGE produce
consistent results no matter how the input
data is ordered. It should also be noted that
they both take significantly more memory
than Henning's FIGSORT. In fact,
Dwight'sentry is so unique that my tests do
not adequately allow for his method. So the
saying goes about lies and benchmarks!
However, rules are rules, and Dwight de-
serves the credit for winning under the rules
of this contest.

Therefore, with no further adieu, here
are the entries.

First Place
DVD&KNKR.ARC
Author: Dwight K. Elvey
Santa Cruz, California

"This sorting algorithm can be used as a
general-purpose sort. The precedence or
significance of the sort can be changed on
the fly. This allows things like ignoring
upper and lowercase,putting numbers after
letters, or whatever, with almost no penalty
in execution time. The time it takes to
complete the sort is proportional to the
number of items, and doesn't grow at some
exponential rate like most of the more
common sorts. This sort is similar to a
Hollerith card sorter.

"This sort is also similar to one I wrote
forafriend who was doing mail sorting with
Quick sort and was disappointed with the
speed. When he saw the speed comparison,
he said1 couldn'tbe sorting so fast and there
must be a mistake! The one problem is that
this sort doesn't usea compare function, but
the rules require that I use one; so I will use
it once to waste time. Since the purpose of
this contest is to find thebest sort, I feel this
is within the spirit of things.

"The main disadvantage of this sort is
that it does require more memory. This isn't
normally a problem, since the data to be
sorted is normally on disk and memory is
cheap. For sorting strings, one could sort
the links first then reorder the data, but that
requires more memory."

The Original Sort-
A Commentary by Wil Baden

Congratulations to Dwight K. Elvey for
his implementation of Radix sort, a.k.a.
Digit sort, Pocket sort, Basket sort. (See
Knuth's, The Art of Computer Program-
ming, volume three.)

Given a thousand perfectly random val-
ues, Insertion sort will make about 250,000
comparisons, and Quick sort about 13,000
comparisons. On a two-byte field, the Bas-
ket sort will make exactly 2000 examina-

tions. A comparison involves fields from
two records, but an examination involves
just one byte of one record. Thus, examina-
tions should be more than twice as fast as
comparisons. So a Basket sort really flies
here.

The Basket sort was used in the 1920s
by IBM before it was called IBM. Intema-
tional Tabulating Company (or Corpora-
tion) was its name then.

I believe the Basket sort is the origin of
the word "sort" in its computing sense. The
original meaning of sort is "classify." Sort-
ing laundry, you put white stuff into one
pile, or basket, dark colors into another,
other colors into another, delicate hand-
washable stuff into another, etc. A similar
procedure was done with punched cards.

First, the penny column was taken to
sort (i.e., classify) cards into a batch for
each digit, then the dimecolumn, thedollar
column, the sawbuck column, the yard
column, the grand column.

Since the Basket sort is the original sort,
and is so fast, why isn't it better known?

The major disadvantage is not memory,
but the number of passes needed. In com-
mercial applications, it is common to sort
on 30 or more columns. This would take 30
or more passes in a simple-minded Basket
sort, no matter how many records there
were. Using Quicksort or Heapsort would
take l o g 2 0 passes, where N is the number
of records.

With large memories, basket sorting
may make a comeback. A file to be ordered
by nine-digit social security numbers can
be sorted in three passes by taking the
number in "base 1000."

[Wil Baden's code follows the contestants'
entries.]

DVD&KNKR.ARC
Speed-optimized version's test results

Test Dict RAM Fetches Stores Compares Time Score Max. Avg.
RAMP 7052 37 1024 1024 1 0.71 6.91 6.98 6.84
SLOPE 7052 35 1024 1024 1 0.71 6.91 6.98 6.84
WILD 7052 32 1024 1024 1 0.66 6.56 6.98 6.84
SHUFFLE 7052 31 1024 1024 1 0.72 6.98 6.98 6.84
BYTE 7052 31 1024 1024 1 0.71 6.91 6.98 6.84
FLAT 7052 36 1024 1024 1 0.71 6.91 6.98 6.84
CHECKER 7052 31 1024 1024 1 0.72 6.98 6.98 6.84
HUMP 7052 37 1024 1024 1 0.66 6.56 6.98 6.84

DVD&KNKR.ARC
Memory-optimized version's test results

Test Diet RAM Fetches Stores Compares Time Score Max. Avg.
RAMP 4952 32 2048 2048 1 0.88 8.28 8.28 8.13
SLOPE 4952 36 2048 2048 1 0.88 8.28 8.28 8.13
WILD 4952 31 2048 2048 1 0.88 8.28 8.28 8.13
SHUFFLE 4952 36 2048 2048 1 0.88 8.28 8.28 8.13
BYTE 4952 36 2048 2048 1 0.82 7.99 8.28 8.13
FLAT 4952 36 2048 2048 1 0.82 7.99 8.28 8.13

Test
RAMP
SLOPE
W I L D
SHUFFLE
BYTE
FLAT
CHECKER
HUMP

Dict RAM
676 84
676 84
676 68
676 76
676 76
676 33
676 72
676 80

Fetches
7255
7280
12933
12879
11451
1028
3817
10440

Stores
0
1024
4717
4662
4554
0
1450
4308

Compares
7062
7084
12000
11930
10659
1026
3784
9796

Time
1.92
2.14
3.95
3.95
3.57
0.28
1.21
3.30

Score
15.40
16.60
31.81
31.68
28.65
2.19
9.71
26.39

Max.
32.03
32.03
32.12
32.12
32.12
32.12
32.12
32.12

Avg.
19.91
19.87
20.03
20.19
20.28
20.05
19.92
20.00

Test results I MERGE'ARC

Test
RAMP
SLOPE
W I L D
SHUFFLE
BYTE
FLAT
CHECKER
HUMP

Dict
2558
2558
2558
2558
2558
2558
2558
2558

RAM
58
64
63
6 6
65
54
63
62

Fetches
14848
20480
27275
27277
27220
14848
21760
27187

Stores
4608
10240
9337
934 9
9292
4608
6912
9305

Compares
5120
5120
8969
8964
8964
5120
7424
8941

Time
3.08
4.34
5.49
5.50
5.49
3.07
4.39
5.49

Score
31.86
46.11
58.56
58.61
58.47
31.83
46.48
58.40

Max.
59.70
59.70
59.70
59.70
59.70
59.70
59.70
59.70

Avg.
48.69
48.67
48.80
48.93
49.04
48.82
48.80
48.92

/ 1 256 CONSTANT SIZEROT (don't change f o r m r e data) I I
I

Forth Dimensions 30 Volwne XI, Number 6

: ARRY (16 b i t array maker)
(Size-in-items) CREATE 2* ALLOT
(Index - Addr) DOES> SWAP 2* + ;

(Continued frompage 28.)

a chimney. There was a little sign on the
chimney that said, "Thank you for not
smoking!" And the software it ran was an
equally creative expression of Forth, with
no terminal input buffer and all the names
stored backwards in the dictionary.

Some years later, a few Model 100s
started showing up. That is when we dis-
covered how distracting the sound of typing
can be during an oral presentation. A few
people still take notes on computers at the
conference. But they usually sit in the back,
type very gently and quietly, and for the
most part avoid typing when someone is

~.

speaking.
In recent years, when Forth engines

began to hit the scene, we started getting
product announcements and flyers. Several
machines appeared at the conference to
show off their speed. A typical demonstra-
tion would consist of a b& or two of elec-
tronics and a 286 workstation acting as a
dumb terminal. When told to go, the entire
system would sit quietly for a few moments
and then print out, "Look how fast I did
that!" Each such system was backed up by

(Sort code continued.)

SIZEROOT ARRY LINKROOT (This i s t h e d i v i d e p a r t)
ITEMS ARRY DATALINK (Links t o d a t a)
ITEMS ARRY DATATMPl (More space)
ITEMS ARRY DATATMP2 (More space)
VARIABLE DATDIV (used f o r f a s t 256 / t o s e p a r a t e bytes)
DATDIV 1+ CONSTANT DAT/256 (Remove 1+ f o r machines l i k e 68K)

: INITLINK (i n i t l i n k s)
(Links need a marker f o r end o f cha in .)
(Since 0 i s a v a l i d p o i n t e r I ' l l u s e -1)
[0 LINKROOT I LI&
[SIZEROOT 2*] LITERAL -1 FILL ;

: REORDER1 (I n s e r t P o i n t e r RLinkTo RLinkFrom - I n s e r t P o i n t e r ')
DO I (By m d i f y i n g t h e r o o t l i n k p o i n t e r a t)

(t h i s p o i n t one could change t h e s o r t o r d e r)
(l i k e letters, numbers and t h e n punc t s ,)
(Through a t r a n s l a t i o n t a b l e u s i n g ARRY)

LINKROOT @ (F i r s t Link i n Chain)
BEGIN SWAP OVER 1+ (end of l i n k marked by -1)
WHILE OVER DATATMPl @ (Fe tch d a t a t o r e s t o r e)

OVER DATATMP2 ! (Reorder Data)
1+ (I n c r INSERT P o i n t e r) SWAP
DATALINK @ (Follow l i n k) REPEAT

SWAP DROP (Save I n s e r t P o i n t e r)
LOOP ;

: LSB (Item - , S o r t t h e LSB's f i r s t)
INITLINK (Clea r r o o t l i n k s)
0 DO (This b u i l d s an o rde red l i n k list o f i t e m s)

I S@ (Order i s n ' t impor tant on f i r s t p a s s l i k e i n MSB)
DUP I DATATMPl ! (Fe tch and save d a t a)
255 AND (256 MOD s e p a r a t e LSB b y t e)
LINKROOT DUP @ (Fe tch o l d l i n k and p u t new)

an enthusiastic entrepreneur to tell you

- - i l I DATALINK ! (Bui ld l i n k s) I SWAP- ! (New i n LINKROOT)

what it had just done. By listening carefully, LOOP (Lsb l i n k s now made s o p u t d a t a back)
0 256 0 REORDER1 (r e o r d e r e n t i r e a r r a y) DROP ;

you could tell that this was pretty hot stuff
you were not quite seeing.

This year, we see very few computers.
Even the assortment of laptop machines
that is here is mostly not in evidence except
during the breaks. One handmade R T ~
2000 computer, somewhat smaller than a
software package, is held up with pride
before the conference. Have we come full
circle yet? Perhaps not. That machine is for
sale for $14,000 in moderate quantities.
And it doesn't even have a chimney!

Conclusion
At the close of the FORML Conference,

a bottle of wine is awarded to each of
several participants whose presentations

1 have been judged outstanding in one way or
1 another. And two or three attendees are

asked to say a few words about their expe-
rience of the conference. Some of the obser-
vations offered this year are that there is an
awful lot of taking at the conference and
probably even some listening, that typical
Forth programmers here are older than
typical Forth programmers in Finland, and
that the presentations at the conference are

(Continued on next page.)

Volume XI, Nwnber 6

: REORDER2 (I n s e r t P o i n t e r RZlinkTo RLinkFrom - I n s e r t P o i n t e r ')
DO I (By m d i f y i n g t h e r o o t l i n k p o i n t e r a t)

(t h i s p o i n t one cou ld change t h e s o r t o r d e r)
(l i k e letters, numbers and t h e n punc t s ,)
(Through a t r a n s l a t i o n t a b l e u s i n g ARRY)

LINKROOT @ (F i r s t Link i n Chain)
BEGIN SWAP OVER 1+ (end of l i n k marked by -1)
WHILE OVER DATATMP2 @ (Fe tch d a t a t o r e s t o r e)

OVER S ! (Reorder Data)
1+ (I n c r INSERT P o i n t e r) SWAP
DATALINK @ (Follow l i n k) REPEAT

SWAP DROP (Save I n s e r t P o i n t e r)
LOOP ;

: MSB (Item - , S o r t t h e MSB's nex t)
INITLINK (C l e a r s r o o t l i n k s) 1- (L a s t i t e m) 0 SWAP
DO (This b u i l d s an o rde red l i n k list o f i t e m s)

I DATATMP2 @ (Reverse o r d e r n o t t o undo LSB's work)
DATDN ! DAT/256 C@ (does 256 / unsigned)
LINKROOT DUP @ (Fe tch o l d l i n k and p u t new)
I DATALINK ! (Bui ld l i n k s) I SWAP ! (New i n LINKROOT)

-1 +LOOP (MSB l i n k s now made so p u t d a t a back)
0 256 128 REORDER2 (Do n e g a t i v e v a l u e s f i r s t)

128 0 REORDER2 (now p o s i t i v e numbers) DROP :

: DVDLKNKR (#Items -) (Divide and Conquer)
DUP LSB MSB 0.0 COMPARE DROP ;

"This sort should score about 7.70 average on the test and have avery consistent time. I also have
one thatuses aboul'lm less dictionaty b<tdoes twice the fetches and stores. It wouldhave ascore
of about 8.10 averageon this test. but dictionary is less imuortant than fetches andstores. It seems
that most of the van%tions I came up with had s'milar times, not varying by more than ten percent.
"I have included the more memory efficient version on blocks eight through eleven, since it is
better code and more useful but doesn't score as well on this test."

(Sort code continues.)

31 Forth Dimensions

(Sort code continued.)

: ARRY (1 6 b i t a r r a y maker)
(S i z e - i n - i t e m s) ClUWl"l' 2* ALLOT
(I n d e x - Addr) DOES> SWAP 2* + ;

256 CONSTANT SIZEROOT (d o n ' t change f o r more data)
SIZEROOT ARRY LINKROOT (This i s the d i v i d e part)
ITEMS ARRY DATALINK (L i n k s t o data)
ITEMS ARRY DATATMP (More space)
VARIABLE DATDIV (used f o r fast 256 / t o separate bytes)
DATDIV 1+ CONSTANT DAT/256 (Remove I + for mach ines l i k e 68K)

: INITLINK (i n i t l i n k s)
(L i n k s n e e d a m a r k e r for e n d o f c h a i n .)
(S i n c e 0 i s a valid p o i n t e r I ' l l u s e -1)
[0 LINKROOT] LITERAL
[SIZEROCYJ! 2*] LITERAL -1 FILL ;

: REORDER (I n s e r t P o i n t e r RLinkTo RLinkE'rom - I n s e r t P o i n t e r ')
DO I (By m o d i f y i n g the r o o t l i n k p o i n t e r a t)

(th i s point o n e could c h a n g e the sort order)
(l i k e letters, numbers and t h e n p u n c t s ,)
(Through a t r a n s l a t i o n table u s i n g ARRY)

LINKROOT @ (F i r s t L i n k i n C h a i n)
BEGIN SWAP OVER 1+ (e n d of l i n k marked by -1)
WHILE OVER DATATMP @ (F e t c h data t o r e s t o r e)

OVER S! (R e o r d e r D a t a)
1+ (I n c r INSERT P o i n t e r) SWAP
DATALINK @ (F o l l o w l i n k) REPEAT

SWAP DROP (S a v e I n s e r t P o i n t e r)
LOOP .-

(FORML, continued.)

just an excuse for us to be here during the
breaks, when the real interaction takes
place. It is also noted that there has been
almost no mention of Pooh Forth this year.
although that $14,000 computer we saw
earlier did bear the designation ROO.

After lunch, with most of your good-
byes said, you need a segue back to the real
world. It has been 48 hours since the confer-
encebegan, just about the length of time we
humans seem to need in order to achieve
saturation. This is the opportunity some of
us take to head off across the dunes to the
beach. This used to be a tedious trek and
somewhat harmful to the dunes, as well.
But now a boardwalk leads directly from
the Barbecue Pit to the Coast Road and the
beach.

The beach affects us each in different
ways. Some of us use this time to stroll on
the sand while we mentally emerge. Others
tend to stare out to sea, seeking to gain some
perspective and letting the ocean put us in
our place. Still others just go right on talk-

: LSB (Items - , S o r t the LSB's first)
INITLINK (C l e a r root l i n k s)
0 DO (This bui lds a n ordered l i n k l ist of i t e m s)

I S@ (O r d e r i s n ' t i m p o r t a n t on first pass l i k e i n MSB)
DUP I DATATMP ! (F e t c h a n d s a v e data)
2 5 5 AND (256 MOD separate LSB byte)
LINKROOT DUP @ (F e t c h old l i n k a n d p u t new)
I DATALINK ! (B u i l d l i n k s) I SWAP ! (New i n LINKROOT)

LOOP (L s b l i n k s now made so put data b a c k)
0 256 0 REORDER (reorder e n t i r e a r r a y) DROP ;

: MSB (I t e m s - , S o r t the MSB's n e x t)
INITLINK (C l e a r s root links) DUP 1- (L a s t i t e m) SWAP
0 DO (T h i s builds an ordered l i n k l ist of i t e m s)

DUP I - S@ (R e v e r s e order so as n o t t o undo LSB's work)
DUP I DATATMP ! (fetch and s a v e data)
DATDIV ! DAT/256 C@ (does 256 / u n s i g n e d)
LINKROOT DUP @ (F e t c h old l i n k a n d p u t new)

I inn Forth or reioin the wives or other nuests I

I DATALINK ! (B u i l d l i n k s) I SWAP ! (New i n LINKROOT)
LOOP DROP (MSB l i n k s now made so put data b a c k)
0 256 1 2 8 REORDER (Do n e g a t i v e v a l u e s first)

1 2 8 0 REORDER (now p o s i t i v e numbers) DROP ;

I I

I I : DVDhKNKR (# I t e m s -) (D i v i d e a n d Conquer)
DUP LSB MSB 0 .0 COMPARE DROP ;

Second Place
FIGSORTARC
Author: Henning Hansen
Lyngby. Denmark

I

I I VARIABU LO VARIABLE HU) VARIABLE HI VARIABLE ?EQ VARIABLE ?FIN

-- --

I I \ place high i t e m after selecting a l l smaller i t e m s
: SELECT-SMALLER (h i g h low -- h i g h l o w)

HI @ >R oVER 1- SWAP

w; may have lbrought along to the Gnfer-
ence. Here is where you look back upon the
conference, look forward to the coming
year, and know where you will be next
Thanksgiving.

Peter Midnight war an audio and video
technician until he got involved with
computers in 1977. He has attended all
ten FORML conferences at Asilomar
and, since 1984, has been an engineer-
ing consultant specializing in embed-
ded systems.

I

(Continued from page 25.) 1
ALIGN adjusts the dictionary pointer to I

the first aligned address greater than or
equal to its current address. An aligned
address is suitable for storing or fetching
bytes, cells, cell pairs, or double-precision
numbers.

After initializing the table, we would
also like to read values from it. For ex-
ample, assume we want to fetch the first
celi, X, from the table. ATABLE BYTE+
gives the address of the first thing after the
byte. However, this may not be the address

I (Sort code continues.) I I

BEGIN 2DUP < NOT
WHIIE R@ 2 PICK S@ DUP HI !
COMPARE O< I F SWAP 1- SWAP ELSE RECURSE THEN

I
Forth Dimensions 32 Volume XI, Number 6

of x since we aligned thk dictionary pointer
between the C , and the , . The portable way
to get the address of x is:

ATABLE BYTE+ REALIGN

REALIGN adjusts the address on top of the
stack to the first aligned address greater
than or equal to its current value.

Example
Let's pull several of the techniques just

described into a single example. Let's de-
sign a machine-independent facility for
building PascalIC-style record structures.
Listing One shows the syntax for declaring
a structure, creating an instance of a struc-
ture, and accessing its members. FOO is a
structure consisting of three parts: a three-
byte member, a singlecell member, and a
single-byte member. The FOOBAR struc-
ture consists of two cells and a FOO sub-
structure. The '.' in the name of a member
is convention to make C and Pascal pro-
grammers feel at home.

The implementation also appears in
Listing One. The order in which the mem-
bers appear in a structure declaration is
roughly reflected in the memory layout of a
structure instance-roughly, because the
structure compiler may place padding be-
tween members to avoid alignment prob-
lems. Each member defining word adjusts
a template address by an appropriate size.
The guts of the compiler, AUS : , adjusts the
template address by a given number of
address units. SO, BYTES : uses BYTES to
compute the number of address units
needed by its member and calls AUS : to
allocate it. CELLS : works similarly but it
aligns the template address first.

The record-structure implementation
has a number of nice features. The ANS
Forth operators BYTES, CELLS, and
REALIGN handily hide hardware details.
The correct alignment of structure mem-
bers is handled automatically by the struc-
ture compiler. Observe that scaling and
alignment are done at compile time. The
structure is itself a word that returns the size
of the structure in address units. A way of
finding the size of a structure is essential,
since it will vary from system to system.
The size can be used with ALLOT to allo-
cate a structure instance or with MOVE to
copy a structure.

Summary
This article has described how to use

data and memory portably in ANS Forth.
Of course, there are other aspects of porta-
bility. For example, different computers

(Sort code continued.)

REPEAT SWLP DROP 2DUP >
I F DUP S@ DUP HI ! 2 PICK S! R> OVER S! ELSE R7 DROP THEN
1+ ;

\ so r t few items using select ions
: SORT-A-FEW (high low --)

OVER S@ HI ! BEGIN 2DUP > WHILE SELECT-SMAZILER REPEAT
2DROP ;

\ order three items
: ORDER-THREE (high med low --)

ROT DUP >R S@ ROT DUP >R S@ ROT DUP >R S@
2DUP COMPARE W 2OVER COMPARE O<
2DUP OR NOT
I F 2DROP ED R7 R7 2DROP 2DROP 2DROP
ELSE OVER AND

I F DROP ROT R7 S! R7 DROP R> S! DROP
ELSE

I F SWAP R> S! 2DUP COMPARE O< I F SWAP THEN R> S! R> S!
ELSE ROT 2DUP COMPARE O< I F SWAP THEN R7 S! R> S! R> S!
THEN

THEN
THEN ;

: ON (addr --) -1 SWAP ! ;
: OFF (addr --) 0 SWAP ! ;

\ par t i t i on low and high ends of in terva l
: PARTITION (high low med - h.high h-low l .high 1.10~)

S@ MED ! ?FIN ON 2DUP SWAP
BEGIN ?EQ ON SWAP

BEGIN 1 + DUP S@ DUP LO ! MED @ CCMPARE

DUE' 0 0 I F ?EQ OFF THEN W NOT
UNTIL SWAP
BEGIN 1- MED @ OVER S@ DUP HI ! COMPARE

DUP 0 0 I F ?EQ OFF THEN O< NOT
UNTIL ?EQ @ NOT I F ?FIN OFF THEN 2DUP <

WHILE ?EQ @ NOT I F LO @ OVER S! HI @ 2 PICK S! THEN
REPEAT 2DUP = I F 1 + SWAP 1- THEN
?FIN @ I F 2DROP 2DUP THEN ROT ;

15 CONSTANT MANY

\ so r t from low t o high using medium-of-three pa r t i t i on
: SORT-THEM-ALL (high low --)

ZDUP - MANY <
I F SORT-A-FEW
ELSE

2DUP 2DUP + 2 / SWAP ORDER-THREE
2DUP + 2 / PARTITION

\ 2 0 V E R 2 O V E R - + < I F 2 S W A P T H E N \ s m a l l e s t p a r t f i r s t
2DUP > I F RECURSE ELSE 2DROP THEN
ZDUP > I F RECURSE ELSE 2DROP THEN

THEN ;

\ use FIGSORT t o so r t t he i t e m s numbered 0 t o n-1
: FIGSORT (n --) 1- 0 SORT-THEM-ALL ;

Third Place
MERGE.ARC
Author: David Doupe
Woollahra, NSW. Australia
Though Merge sort is not spectacularly fast, it does have the advantage that it is a stable sort; i.e.,
sorting on one key (field) does not disturb previous sorting operations done on other keys. Also, it
is O(n log n). The contest requirements result in reduced efficiency for this implementation.

CREATE DATA2 (- a P:Array f o r emerging lists)
ITEMS mus ALLOT

I VARIABLE N-DATA2 (- a P:Count f o r newly emerging list) I
(Sort code continues.)

I

Volume XI, Number 6 33 Forth Dimemiom

: S2! (n -) N-DATA2 @ CELLS DATA2 + ! 1 N-DATA2 +!
STORES !USE ;

VARIABLE A1 VARIABLE A2
VARIABLE N 1 VARIABLE N2

(p o i n t e r s & c o u n t e r s t o t h e two c u r r e n t s u b l i s t s)

VARIABLE PL1 VARIABLE PL2
(p o i n t e r s t o latest item# s e l e c t e d i n each s u b l i s t)

: INCAl (- f) 1 A1 +! 1 PL1 +! PL1 @ N 1 @ > ;
(Having chosen from s u b l i s t l , increment A1 and PL1, t h e n

test i f s u b l i s t l i s exhausted)
: INCA2 (- f) 1 A2 +! 1 PL2 +! PL2 @ N2 @ > ;

(Having chosen from s u b l i s t 2 , increment A2 and PL2, t h e n
test i f s u b l i s t 2 is exhausted)

:aRD (- 1
BEGIN A2@ Al@ COMPARE -1 =

IF A2@ S2! INCA2
I F N 1 @ PL1 @ - 1+ 0

DO A l @ S 2 ! l A l + !
LOOP EXIT

THEN
ELSE Al@ S2! INCAl I F EXIT THEN
THEN

AGAIN ;

: SET-UP-MRG (sl n l s 2 n2 - sl)
N2 ! A2 ! N 1 ! DUP A1 !
1 PL1 ! 1 PL2 ! 0 N-DATA2 ! ;

: TO>FROM-MOVE (sl - sl) DATA2 OVER CELLS DATA + (s l s d)
N-DATA2 @ CELLS (sl s d n) MOVE ;

(T h i s does n o t increment t h e counted f e t c h e s and s t o r e s)

: MRG (sl n l s 2 n2 - sl nl+n2)
SET-UP-MRG aRG> TO>FROM-MOVE
(s l) N l @ N 2 @ + ;

: RA-SPLIT (s l n - sl n l s2 n2) (nl<= n2)
2 /MOD SWAe OVER + >R 2DUP + FD ;

: 2CHKSWAP (n -) (compare an a d j a c e n t p a i r & swap i f nec)
DUP S@ OVER 1+ S@ SWAP
COMPARE -1 -
IF DUP l+EXCHANGEEXIT
ELSE DROP
THEN ;

(This cou ld be done qu icke r w i th 2@ and 2! s i n c e i t e m s a r e
always a d j a c e n t)

: MSOCLIP (sl n l - s l n l P:Deal w i th r ecu r s ion exit cond i t ions)
DUP 2 = I F OVER 2CHKSWAP FD DROP EXIT THEN
DUP 2 < I F FD DROP EXIT THEN

(THIS I S THE MAIN AIGORITHM)
: +SORT> (sl n l - sl n l)

MSOCLIP
RA-SPLIT
RECURSE 2SWAP RECURSE 2SWAP
MRG ;

(Sort code continues on page 39.)

represent numbers in different ways and
dependence on a particular representation
should be avoided. Assumptions about the
underlying Forth implementation should
also be avoided. During Forth's history, an
amazing variety of implementation tech-
niques have been developed. The ANS
Forth standard encourages this diversity
and consequently restricts the assumptions
that a user can make.

There is no such thing as a completely
portable program. A programmer should
intelligently weigh the tradeoffs of provid-
ing portability to specific machines. For
example, machines that use sign-magni-
tude numbers are rare and vrobably don't
deserve much thought. B U ~ systems with
different cell sizes will certainly be encoun-
tered and should be provided for. In gen-
eral, making a program portable clarifies
both the programmer's thinking process
and the final program.

This issue alsp contains "SC32: a 32-
Bit Forth Engine" by the same author. 1

1 (Editoria1,fran page 4.)

embedded-systems programming is draw-
ing from the Forth labor pool, reportedly in
increasing numbers. (Only heaven knows
whether even a sweeping endorsement by
industry would crack open the ivory gates
of academia at large to Forth coursework,
but it would be a great vindication to all the
engineering departments happily using
Forth in their laboratory classes.)

One last thing ...
We have published more pages this year

than ever before, and we hope to continue
doing so. It is only your membership in the
Forth Interest Group that enables us to stay
in print. Like public television, we hope
you will vote with your checkbook to keep
bringing quality Forth techniques and de-
velopments to you. Watch for your mem-
bership renewal notice, and return it soon.
We anticipate an exciting year ahead-for
the Forth language, the industry, and FIG-
and we will bring the best and most impor-
tant developments to you in this members'
magazine.

--Marlin Ouverson
Editor

I
Forth Dimensions 34 Volume XI, Number 6

GARY SMITH - LITTLE ROCK, ARKANSAS
=

N n v s from the GEnie Forth
RoundTable-The X31J14 ANS Forth
Technical Committee, charged with the
task of writing an ANS Forth Standard, has
for some time discontinued official sanc-
tion of GEnie (or any other public informa-
tion service) as repository of comment and
feedback to their efforts. This does not
mean there is no standards activity on the
GEnie Forth RoundTable-few things
could be further from the truth. Comments
are still being made and they are being
monitored. By the time this makes print, we
will also have had X3/J14 chair Elizabeth
Rather as our guest in conference, her topic
being the X3/J14 ANS standards effort.
The future of Forth is being debated. Are
you denying yourself a voice in this most
important event ? Read the following re-
cently posted exchanges and if something
strikes a chord of harmony--or dishar-
mony-join in.

* * *
From: Roedy Green
Subj: IEEEfloating point

If you specify IEEE binary format,
mainframers will simply have to ignore
you. The overhead of converting to IEEE in
F! would be enormous and silly. If you
don't specify IEEE format, the micro
people will all use it anyway because that is
how the 80387, etc.. work. So my vote goes
for leaving it out. We might have a docu-
ment on a data interchange format where
IEEE has a big role. This is really outside
the realm of the Forth language, though.

To: Roedy Green
From: Jack Brown
Subj: IEEE FP

Since I have been the major proponent
for the inclusion of IEEE, you and others
may be interested in knowing that my ear
has been bent after listening carefully to

several Forth people with mainframe and
minicomputer backgrounds. I intend to
withdraw my proposal to specify IEEE
binary format in favour of one which will
specify a word to convert a system's "inter-
nal floating-point format" to the IEEE bi-
nary format in order to promote exchange
of floating-point data.

The future of Forth is
being debated.

To: Roedy Green
From: Ian Green
Subj: Language of Forth Standard

On standards I can offer some assis-
tance. First I suggest that, regardless of
what the bums at any standards committee
have to say, one thing I have never seen for
Forth is an extended (or standard) Bachus-
Naur form of syntax definition for each
word, etc. For example, in his book Pro-
gramming in Modula-2, Wirth make sev-
eral omissions regarding the way the lan-
guage is supposed to work. He did, however
(interspersed throughout the text and again
in an Appendix), provide the Bachus-Naur
formal definition in absolute precise terms.
Because I can understand EBNF, I was able
to simply refer to the syntax chart when I
had a problem making a piece of code
compile (now, of course, I do not need the
tables, as I am quite proficient in that lan-
guage).

My biggest stumbling block about
Forth, and many other languages for that
matter, is the lack of a formal definition.
With a formal definition using EBNF, it is
possible to design an unambiguous lan-
guage standard. Now, Modula-2 is only one
of many very serviceable languages and I
can also program in a variety of others, but
I need the EBNF syntax charts if I am to

make any headway. That combined with
examples based on the syntax.

To: Ian Green
From: Roedy Green
Subj: Language of Forth Standard

Given the simplicity of the grammar of
Forth-no precedence, only space and a
separator, strict nesting, I don't see the lack
of BNF as an important omission, except to
welcome people with Wirthian language
backgrounds.

To: Ian Green
From: Jerry Shifrin
Subj: Language of Forth Standard

Actually, for reasons which are beyond
me, C.H. Ting did do a BNF for Forth. You
can find it in his Fonh Notebook from
Offete Enterprises or in the 2/82 issue of
Dr. Dobb's Journal. As near as I can tell,
the BNF description of Forth should be
something like that shown in Figure One
[page 411.

To: Jerry Shifrin
From: Ian Green
Subj: Language of Forth Standard

Yes, that is the idea I was looking for.
That and examples of code relative to the
syntax charts. If you or someone has the
complete BNF syntax for Forth (I am cur-
rently playing with F83). This, I feel,
would go a long way towards clarifying the
way the language works.

To be more in keeping with EBNF, I
suspect that Forth would be defined some-
thing like Figure Two. The problem is,
though I can write the syntax for a familiar
language fairly easily, Forth is not so easily
figured out.

To: Ian Green
From: Jerry Shijiin
Subj: Language of ANS Forth

I

Volume XI, Number 6 35 Forth Dimensions

Actually, Ian, the point I was trying to
make is that Forth isn't usually willing to sit
still long enough for someone to develop a
detailed syntax. <grin>

By that, I mean that every Forth token is
eligible for redefinition and may alter the
syntax of itself and subsequent string. For
example, Forth programs may redefine or
add IF or DO control structures; may rede-
fine constants, e.g.:

99 CONSTANT 5
\ 5 now means 99!

can even redefine existing functions in
terms of themselves, e.g.:

: DUP
DUP . " DUPing ' .
CR DUP ;
\ Trace uses of DUP

and, in fact, can even redefine defining
words, e.g.:

: CONSTANT
CREATE !
DOES> @ DUP .S ;

which redefines colon in terms of itself and
adds a little counter.

So, while you could get a BNF descrip-
tion of typical usage, it doesn't really define
the language.

From: Roedy Green
Subj: -LEADING -TRAIWNG

I am concerned about the string-chop-
ping verbs -TRAILING and SKIP. There
are really six different, but related, words.
The complete set need not be made part of
the standard, but I think they should be
consistently named so that it would be easy
to add the missing ones. I think SKIP is a
misleading name because it implies hop-
ping over a unread record.

Here are my proposed names:
-LEADING -LEADING<> -LEADING=
-TRAILING -TRAILING<>
-TRAILING=

-LEADING
(addrl +n 1 -- addr2 +n2)
Pronounced "dash-leading" or "minus-
leading"

Trims any leading blanks from a string.
The length may also be zero or one, but not
negative. The address and character count

TENTH ANNUAL
ROCHESTER FORTH

CONFERENCE
ON

EMBEDDED SYSTEMS
June 12th - 16th, 1990
University of Rochester
Rochester, New York

Call for Papers
There is a call for papers on the use of Forth
technology in Embedded Systems. Papers are
limited to5 pages, and abstracts to 100 words.
Longer papers will be considered for review
in the refereed Journal of Forth Application
and Research.
Please send abstracts by April 15,1990 and
final papers by May 15,1990.

For more information, contact:
Lawrence P. Forsley
Conference Chairman
Institute for Applied Forth Research, Inc.
70 Elmwood Avenue
Rochester, NY 14611
(716)-235-0168 (716)-328-6426 (FAX)
EMail: GEnie.. LForsley

BIX.. LForsley
Delphi LFORSLEY

Forth Dimemions 36 Volume XI, Number 6

L-

WE'RE BOOTING UP!
l'mcadhs of the 1989
Roc-EbrSh Cod-
6 m v i & d ~ a n d 5 4 ~ d p a p s s o n a U
aspects of Forth procmom, applications and
object otimed technology, ~ ~ g :

SwksForth, A Development and June 20 - 24th, 1989
Simulation Environment for Industrid
and Embedded Controkm

For(h-bascd Control of an Ion Implanter

: 021 l.ate/TOOLBOX
H.*rc/Softbmrc
Y D r k s t a t i m / ~ e DOLY
A u t a ~ t i ve/Aemspace
Porertrain/Vehi cle
Developent/Tuting ;

Events and ObjeeL9: Industrial Control by
Hkr~rebkal Decomposition

Bmaklhmngb in Kwwkdge Management

JFAR Volume 6
Pllblishev
Lawrence P. Forsley
Editom:
Dr. S.N. Baranoff, US.S.R Editor
Lmingrad Instiwe for Infomratika
Dr. J . Basile, Editor-in-Chief
Long ZsLmd Univendy
Dr. R. Crawford, U.K. Editor
Micr0proces~)r En-g Ltd
Dr. M. Kelly, US. Editor
u- of v i
Dr. H. Nieuwenhujrzen, European Editor
Uniwn$v of Umht, Thc Nethalmrds
Dr. N. Solntseff, Cmradimr Editor
McMaster Univssiry, Ontario, Can

Upcoming Papers:
32 Bit Forth Processors
Forth in the U.S.S.R.
Object Oriented Extensions

Now's THE TIME!
Volume M Subscriptions Send name, full address and phone number.

mnal Corporate Check or money order in US funds, or,

USA $60.00 $145.00 VISAMC # and exp. date.

Canada/MMm f65.00 of Forth Application and Research
EmpelAsia $75.00 $160.00 70 Elmwood Avenue

Rochester, NY 14611 USA zhszTtnee- ' A (716) 235-0168 (716) 328-6426 fax $25, plus $5 SRI EMail: GEnle LForsley
BIX LFomley
Delphi LFORSLEY

+nl of a text string beginning at addrl is
adjusted to exclude leading spaces. If +n 1
is zero, then +n2 is also zero. If the entire
string consists of spaces, then +n2 is zero.
The length nl must be under 64K and the
last character of the string must be covered
by Seg of addr. Addr need not be canoni-
cal. The original string is unmolested. c.f.,
-LEADING= -LEADING<>
-TRAILING -TRAILING=
-TRAILING<> SCAN SCAN<>

-LEADING<>
(addrl +nl char -- addr2 +n2)
Pronounced "minus-leading-not-equal"

Trims any leading characters that do
not match char from a string. The length
may also be zero or one, but not negative.
If +nl is zero, then +n2 is also zero. The
length nl must be under 64K and the last
character of the string must be covered by
Seg of addr. Addr need not be canonical.
The original string is unmolested. c.f.,
-LEADING -LEADING= -TRAILING
-TRAILING= -TRAILING<> SCAN
SCAN<>

-LEADING=
(addrl +nl char -- addr2 +n2)
Pronounced "minus-leading-equal"

Trims any leading characters that
match char from a string. -LEADING is
equivalent to BL - LEADING=. The
length may also be zero or one, but not
negative. If +nl is zero, then +n2 is also
zero. The length n 1 must be under 64K and
the last character of the string must be
covered by Seg of addr. Addr not be
canonical. The original string is unmo-
lested. c.f., -LEADING -LEADING<>
-TRAILING -TRAILING=
-TRAILING<> SCAN SCAN<>

-TRAILING
(addr +nl -- addr +n2)
Pronounced "dash-trailing" or "minus-
trailing"

Trims any trailing blanks from a string.
The length may alsobe zero or one, but not
negative. The character count +nl of a text
string beginning at addr is adjusted to ex-
clude trailing spaces. If +nl is zero, then
+n2 is also zero. If the entire string con-
sists of spaces, then +n2 is zero. The length
nl must be under 64K and the last charac-
ter of the string must be covered by Seg of
a&. Addr need not be canonical. The
original string is unmolested.

Volume XI. Number 6 37 Forth DimellslllSlons

(ad& +n 1 char -- addr +n2)
Trims any trailing characters that do not

match char from a string.

-TRAILING=
(ad& +nl char -- addr +n2)

Trims any trailing characters from a
stting that match char.

To: Roedy Green
From: Jack Brown
Subj: Leaving out words

There used to bea ControlledReference
Wordse~ but that has been eliminated and
is not likely to be put back in, as it was more
like a compromise trash bucket. Words
without enough support to get in the stan-
dard were thrown into the controlled word-
set, supposedly either on their way into or
out of the standard next time round. There
are still two other wordsets for words that
cannot make it into the standard. They are
the Resewed wordset for inherently non-
portable common usage words like . S,
DUMP, etc.; and the Future Directions
wordset, for candidates for inclusion in a
future standard. TUCK does not fit into
either of these wordsets. To reserve the
word TUCK, it would have to be included in
either the Core wordset or Extended Core

wordset.

To: Roedy Green
From: Jack Brown
Subj: What w a lejl out

Thank you for uploading your com-
ments on Basis 10. I will make sure that the
editors of it are notified of some of the
errors that you have detected. You have
made some excellent points; however, if
you feel very strongly that certain things
should be changed, you should consider
making a formal proposal. F m s for doing
this are available for downloading. Look
for the file ANSlTPFZP

Your comments are very likely to cause
other members of the ANSI Technical
Committee to generate proposals to fix and
clarify problems that you have detected.
But otherideas,like your - T R A I L I N G ~ ~ ~
related words, will probably require a pro-
posal generated by yourself to make it to the
table for discussion.

I will be looking carefully at your com- ' ments when I am preparing my proposals
for the January meeting.

From: Zafar Essak
Subj: Basis 10 feedback

Well here goes, more feedback from

another BC Forth enthusiast Having spent
an evening sitting around with a few others
and discussing some of the concerns raised
by a reading of Basis, the fmt realization is
that others can come up with some pretty
good justifications for their positions, at
least enough to justify having to place defi-
nitions in my 'Prelude" to accommodate
them.
F i I too share Robert Berkey's wish

that the FOR ... NEXT looping a-t
used a word other than NEXT, which seems
to be at the heart of the Forth inner inter-
preter, at least conceptually.

And then...

7.0020 "

(-- adr,u)
"quote"

I don't know the comglede history of
this word, but feel strongly that if it returned
the addms of the count it would be more
useful. I realize this will break existing
code, but since this word has not been
included in a pmvious standard it is appro-
priate to consider the stack effects and
resulting usefulness. I am also aware of a
number of other Forth implementations
that return the address of the count for this
definition. Before making a formal pro-

" P R O G R A M M I N G - mmmcumENVIRONMENTS

Pmedings of the 1988
Rochester Forth Conference . $25.
7 invited papers and 51 presented papers on all aspects of Forth technology,
implementation and its application including these invited papers:

Forth on Unix Wxktations Mitch Bradley, Sun M- ihc 1
Cellular Automata Machines:
A New Environment for Modeling Norman Margolus,

MITL.abo~moryfor Computs Science

...................................... X-Script Paul Snow and CIS Click, ZcBSI

ASYST: A Structured Interactive
Environment for Scientists and Engineers Sue Semancik and David Smith,

Ayst Software TmhnoXogV, k

RPL: A Mathematical Control Language W.C. W~ckes, Hew& Packard

Infrared Image Acquisition
and Analysis in Forth W. Forrest, Univ. of lkhesfw

TICOL: A Development Tool for
S E C O N D P R I N T I N G FifthGenerationProgr a g Environments J. Dowe, ~ r c a ~ w TQC-, and

T Arai, N W Infomation @stems

Add $5 for S/H. Vi and Mastercard accepted.
Institute for Applied Fbrth Research 70 Elmwood Avenue, Rochester, NY 14611 (716)235-0168 / (716)328-6426 fm

Forth DimemRFIm 38 Volume XI. Number 6

posal I would like to hear what others think
about this.

7.0790 BLK
7.0800 BLOCK
7.1790 LOAD

Even though I find sequential file and
stream UO more useful for editing source
andmy applications, I read with interest the
continued reference that "If BLK is z m ,
the input stream is being taken from T IB."
And for LOAD, "...an exception exists if u is
zero, or is not a valid block number."

Personally, this has never bothered me
and seemed to offer consistency when
thinking of virtual memory, even as a be-
ginner, namely, that zero implied console
input and any number greater than zero
referred specifically to a block of virtual
memory. And then along cameF83 with its
definitions of virtual memory, including
the numbering of the first block as zero,
which could be edited but not loaded.
Whenever I asked people why this incon-
sistency, all I got were rationalizations
about how it provided a great place for
comments. Now really, a simple -->or ; S
at the beginning of any block allows the
placement of comments, so why should I
want to be restricted to one block of com-
ments right at the beginning of the file: just
to say "And the rest is silencey'?

But I am still not clear from Basis 10 if
BLOCKS will be numbered from zero up or
from one.

To: Zafar Essak
From:R Berkey [Robert]

ZE> "...feel strongly that if ' returned
the address of the count it would be more
usefill."

Yes, but address and length operands
decouple the data structure from words that
manage it, and allow one common, port-
able, general-purpose string descriptor.
SKIP and SCAN, for example, must have
address and length. My preference is to
have one common string descriptor in the
standard, and another name for the single
operand ". Just last week I ED IT ALL^^
through a megabyte of application code and
renamed each of the " to $" in preparation
for adding the address-and-length ' .
ZE> "... I got .. .rationalizations how

(block 0) provided a great place for com-
ments."

The only Forth I've known that had
blocks starting with one was my mistaken

(Continued on page41 .)

(Sort code continued from page 34 .)

Baden's Basket Sort

: loc (a -- a') cell+ ; (When the next cell starts the data.)

(: loc cell+ @ ; (When the next cell points to the data.)

256 constant M (# of "digits".)

: array (k --) Create cells allot
(i -- a) does> swap cells + ;

M array botm
M array top

(The bottoms of the sublists.)
(The tops of the sublists.)

(Knuth's Algorithm H reworked.)
: hook-up-queues (link lim init -- tail)

(Hook the sublists back up.)
W (link)

I botm @ (link link1) ?dup
IF I top @ rot ! (link1) THEN

LOOP ;

(The meat of Knuthls algorithm R.)
: sort-on-byte (K h --)

(h is head of a list. K is byte in record to sort on.)
0 botm M cells erase

BEGIN (K link)
2dup loc + c@ (K link i)
dup botm @
IF

2dup botm @ !
ELSE

2dup top !
THEN
THEN
over swap (K link link i) botm ! (K link)
@
dup O=

UNTIL 2drop ;

(The two foregoing definitions can be used as a foundation for
(basket sorting. Here they are combined to provide a general
(routine to sort on a field.)

(Algorithm R.)
: field-sort (Head Field-start Field-end -)

(Given the head of a linked list and a field specification,
(for each byte in the field from least significant to most
(significant, separate the list into M sublists and then
(hook back up the sublists. At the conclusion the list
(will be logically ordered by the field.)
DO (Head)

I over @ (Head k P)
sort-on-byte (Head)
dup M 0 hook-up-queues (Head tail)
0 swap ! (Head)

-1 +LOOP drop ;

(This uses "sort-on-byte" and "hook-up-queues" for the data
(in the sort contest. 'w@" and "w!" are for 2-byte data.)

Create Links ITEMS CELL 2+ * allot Variable Head I
: Crown Links Head ! ; I
: Build-list

Crown Head @ (P)
ITEMS 0

(Sort cede continues on page 41 .)
I

Volume XI, Number 6 39 Forth Dimensions

FIG CHAPTERS REPORT 1
VISIT TO A

PARALLEL UNIVERSE

E r t h is booming. The popular press
has lost interest in Forth even to the extent
of ritualistically announcing the Death of
Forth. But in the ever-expanding field of
embedded control programming, Forth has
come into its own, joining the C language in
what we, who know better from our own
experience, might be otherwise tempted to
call "the death of BASIC."

Yet where will the Forth programmers
come from to maintain tomorrow the soft-
ware being written today? Colleges don't
exactly churn out trained Forthers in large
numbers. The role of producing new Forth
programmers is one that has traditionally
been assumed by the Forth Interest Group
and its members and affiliated chapters.
The tremendous increase in accessibility of
expert assistance in Forth via telecom now
offers another path to progress for the
would-be Forther. And every once in a
while, a ray of bright light breaks through
the perpetual gloom surrounding Forth's
hind-teat position on the sow of Academia.

Joseph Gradecki is a senior at Metro
Community College in Denver, Colorado.
He has built a 16-node hypercube parallel
processor out of Intel 8031 microproces-
sors. Each node has Forth in 8K EPROM
and sports 32K static RAM. The system
controller runs on an MS-DOS portable,
which communicates serially with the
nodes in a round-robin poll. The nodes
communicate internally with each other in
parallel along the edges of the hypercube
via 8255 peripheral interface adapters, two
per board.

Each node runs an identical Forth,
which Mr. Gradecki wrote himself.

Mr. Gradecki and his Computer Sci-
ence instructor, Dr. Charles P. Howerton,
spoke at the January meeting of the Denver'
FIG Chapter, held at the National Institute
of Standards and Technology before what
(for Denver FIG) constitutes an overflow

JACK WOEHR - 'JAX' on GEnie
rn

crowd, 26 souls all told. Joe's PPC (Per-
sonal Parallel Computer) is 16 wire-
wrapped boards inside a tinted Plexiglass
case. The cooling fan hums quietly and
there are red LEDs flashing as each node
wakes up. It's a veritable "black box." The
PPC engages in distributed processing.
Program and data are uploaded serially to
the nodes from the system controller. Mr.
Gradecki's chosen demo to the group fea-
tures a keyed text search. Afterwards there
are questions.

FD: How did you learn Forth?
Mr. Gradecki: "My two guidelines

were fig-FORTH for the 8080 and a book
called Threaded Interpretive Languages
(Loeliger, Byte Books, 1981). I converted
the floating point from 8086 code.

"Dr. Howerton got me interested in
Forth. He gave me Brodie's book and got
me started on the PC. To be truthful, this
[demo] is the second Forth [application]
program that I have ever written. I've spent
so much time in the development that I
haven't had time to play!

"My first Forth program was a Mandel-
brot program. It pushed the limits of Forth.
This code probably does too, but it was
hacked together in the last few days. Time
has been crucial."

FD: What has been your impression of
Forth since you started to use it?

Mr. Gradecki: "I like it."
FD: What is the advantage? What is

attractive about it?
Mr. Gradecki: "To me, it's simple. I

can think in Forth very easily. Other
people, I know, like things likeC. I'm in the
process of translating a ray-tracing pro-
gram for the PPC from C. It's going to be
real interesting. It's going to be real Forth;
a case of 'let's see if this language can
handle this.'

"With the cube here, when I was testing
I didn't have to compile, link, handle the

warnings.. . I just entered a definition and
boom! It was just outstanding for that."

Dr. Howerton: "One of the reasons I
suggested Forth to Joe was that he needed
a bigger virtual environment in which to
execute. He needed a richer instruction set
without having to fall back to assembly
language. So this way, by building a funda-
mental TIL, and then with the ability to
outload definitions to it and expand it on the
fly, he could build anything he wanted and
it was simple."

FD: With the effort of implementing
Forth on that chip, do you think that, in the
end, you made a net memory savings in the
program by using Forth rather than a
straight assembly language program?

Dr. Howerton: "In terms of a new
single program, probably."

Mr. Gradecki: "Definitely. I have the
code on there pretty well optimized. In any
event, it's a heck of a lot easier to program.
Granted, I could write applications like this
in assembler. I happen to enjoy assembler.
It would have taken a lot longer, though.
When I started, everything was in assem-
bler. I didn't have the capability to upload
to the processors. If I wanted something
new in there, I burned it into EPROM."

Dr. Howerton: "From the time I gave
him the books until he demonstrated Forth
running on this thing, he took nine days. I
thought he was faking it, but he brought up
the interpreter."

FD: Is Forth something that you often
bring up in your classes?

Dr. Howerton: "I do when I teach as-
sembly language. I usually save the last
three or four weeks of assembly language
courses to teach Forth. The result is an
immediate improvement in the students'
assembly language skills. It's a relatively
easy transition for the students, once they
are at that point. Some terms, I teach VAX

, assembler; the term Joe took my course, I

Forth Dimensim 40 Volume XI, Number 6

taught PC assembler. There are Forths for
all of them, so it doesn't really matter. I
can't think of a machine going that doesn't
have a Forth for it. There's Forth for the
1802, Forth for the Cray . . ."

Mr. Gradecki's next project is ray h-ac-
ing with his hypercube, an experiment in

producing something "non-trivial" for his
PPC to run. And he envisions building
future machines, "...based on what I've
learned implementing this, based on what
I've seen elsewhere. I like hypercubes. The
obvious thing is, more speed, more mem-
ory! Faster, better!"

To which the Forth programmer con-
cerned with the maintainability of his or her
code into the next century can only add this
plea to the Dr. Howertons of America and
their students, "More Forth programmers,
please! Faster, better!"

(Continued from page 39.) 1
fust attempt at a fig-FORTH. The problem
only appears with operating-system
Forths, as boot or object code gets put in
block zero on standalone systems. At
Dysan, we kludged around the problem by
storing -1 in BLK when block zero was
being interpreted. F'ygmy's approach in
mapping file blocks onto one master set of
block numbers has a certain elegance.

because standardizing a word designed for
obsolete loops that speed-optimize on DO is
standardizing garbage.

Figure One.

Anyway, thanks for your comments
about the 2 >R rationale.

Figure Two.

Good point. X3/J14 has deleted the
Forth-83 specifications that there are
known block numbers 0-31, with other
available block numbers documented. I'm
hesitant to guess why.

ZE> "But I am still not clear from Basis
10 $BLOCKS will be numbered from 0 up
or from 1 ."

To: Roedy Green
From: R.Berkey [Robert]

RG> "7.0340 2 >R Remove theeditor's
note on why DO parms are backwar ds..."

I agree, even if for a different reason.
What the 2>R rationale doesn't quite

say is that DO has been implemented on
pre-1983 systems as:

--
Program := { Word)

word - = . ,, . Identifier (Word 1 Number } ';"

: DO
COMPILE 2>R ;
IMMEDIATE

with the parameters for Do having been set
long before this 1981 implementation was
noticed.

Upon learning of 2>R, I at first thought
that the parameters were backwards, a
kludge to save a few bytes by not having a
(DO). Later, I realized that they aren't
backwards. Looking at how the numbers
appear in memory, this version maintains
the double number. Another way to de-
scribe this is that 2 >R can be implemented
using 2@ and 2 ! .

If the rationale given in Basis was the
reason for this order of parameters now
being standardized, I'd be opposed to i t

(Sort code continued from page 39.)

DO
dup cell+ (P addr-for-copy-of-data)
I s@overw! 2+ (Pnext-P)
dup rot ! (P)

LOOP
2- CELL - 0 swap ! ;

: Reorder
Head (link) ITEMS 0

DO @ dup cell+ w@ I s! LOOP drop ;

(A trick to determine MSB of 2-byte cells.)
1 Pad w! Pad c@ constant MSBX

1 %B# - constant LSBX

: Basket-sort
Build-list
Head 0 1 field-sort

Reorder ;

: Elvey-sort
Build-list
LSB# Head @ (k P) sort-on-byte ()
Head 256 0 hook-up-queues (tail)
0 swap ! ()
MSBX Head @ (k P) sort-on-byte ()
Head (link)
256 128 hook-up-queues (link)
128 0 hook-up-queues (tail)
0 swap ! ()
Reorder ;

I
Volume XI, Number 6 41 Forth Dimensions

FIG
CHAPTERS

The FIG Chapters listed below
are currently registered as active
with regular meetings. If your
chapter listing is missing or incor-
rect, please contact Kent Safford at
the FIG office's Chapter Desk.
This listing will be updated in each
issue of Forth Dimensions. If you
would like to begin a FIG Chapter
in your area. write for a "Chapter
Kit and Application." Forth Inter-
est Group, P.O. Box 8231, San
Jose, California 95155

U.S.A.
ALABAMA
Huntsville Chapter
Tom Konantz
(205) 88 1-6483

- ALASKA
Kodiak Area Chapter
Ric Shepard
Box 1344
Kodiak, Alaska 9961 5

ARIZONA
Phoenix Chapter
4th Thurs., 7:30 p.m.
Arizona State Univ.
Memorial Union, 2nd floor
Dennis L. Wilson
(602) 381-1 146

ARKANSAS
Central Arkansas Chapter
Little Rock

CALIFORNIA
Los Angeles Chapter
4th Sat., 10 a.m.
Hawthorne Public Library
12700 S. Grevillea Ave.
Phillip Wasson
(213) 649-1428

North Bay Chapter
2nd Sat., 10 am. Forth. A1
12 Noon Tutorial, 1 p.m. Forth
South Berkeley Public Library
George Shaw (415) 276-5953

Orange County Chapter
4th Wed., 7 p.m.
Fullerton Savings
Huntington Beach
Noshir Jesung (714) 842-3032

Sacramento Chapter
4th Wed., 7 p.m.
1708-59th St., Room A
Bob Nash
(9 16) 487 -2044

San Diego Chapter
Thursdays, 12 Noon
Guy Kelly (619) 454-1307

Silicon Valley Chapter
4th Sat.. 10 a.m.
H-P Cupertino
Bob BW (408) 435-1616

Stockton Chapter
Doug Dillon (209) 93 1-2448

FLORIDA
Orlando Chapter
Every other Wed.. 8 p.m.
Herman B. Gibson
(305) 8554790

Southeast Florida Chapter
Coconut Grove Area
John Forsberg (305) 252-0108

Tampa Bay Chapter
1st Wed., 7:30 p.m.
Terry McNay (8 13) 725-1245

GEORGIA
Atlanta Chapter
3rd Tues.. 7 p.m.
Emprise Corp., Marietta
Don Schrader (404) 428-081 1

ILLINOIS
Cache Forth Chapter
Oak Park
Clyde W. Phillips, Jr.
(312) 386-3147

Central Illinois Chapter
Champaign
Robert Illyes (217) 359-6039

INDIANA
Fort Wayne Chapter
2nd Tues.. 7 p.m.
I/P Univ. Campus
B71 Neff Hall
Blair MacDermid
(219) 749-2042

CONNECTICUT
Central Connecticut Chapter
Charles Krajewski
(203) 344-9996

2nd Sat., 2 p.m. &
4th Wed., 7 p.m.
Jungkind Photo. 12th & Main
Gary Smith (501) 227-7817

Rodrick ~ l d r i d ~ e
(515) 294-5659

Fairfield FIG Chapter
4th Day, 8: 15 p.m.
Gurdy Leete (5 15) 472-7077

COLORADO
Denver Chapter
1st Mon., 7 p.m.
Clifford King (303) 693-3413

MARYLAND
MDFIG
Michael Nemeth
(301) 262-8140

IOWA
Central Iowa FIG Chapter
1st Tues.. 7:30 p.m.
Iowa State Univ.
214 Com~. Sci.

MASSACHUSETTS
Boston Chapter
3rd Wed., 7 p.m.
Honeywell
300 Concord, Billerica
Gary Chanson (617) 527-7206

MICHIGAN
DetroidAnn Arbor Area
Bill Walters
(313) 731-9660
(3 13) 861 -6465 (eves.)

MINNESOTA
MNFIG Chapter
Minneapolis
Fred Olson
(612) 588-9532

MISSOURI
Kansas City Chapter
4th Tues., 7 p.m.
Midwest Research Institute
MAG Conference Center
Linus Orth (913) 236-9189

St. Louis Chapter
1st Tues.. 7 p.m.
Thornhill Branch Library
Robert Washam
91 Weis Drive
Ellisville. MO 6301 1

NEW JERSEY
New Jersey Chapter
Rutgers Univ., Picataway
Nicholas Lordi
(201) 338-9363

I

Forth Dimensions 42 Volume XI, Number 6

NEW MEXICO
Albuquerque Chapter
1st Thurs., 7:30 p.m.
Physics & Astronomy Bldg.
Univ. of New Mexico
Jon Bryan (505) 298-3292

NEW YORK
Rochester Chapter
Odd month, 4th Sat., 1 p.m.
Monroe Comrn. College
Bldg. 7, Rm. 102
Frank Lanzafame
(716) 482-3398

OHIO
Cleveland Chapter
4th Tues., 7 p.m.
Chagrin Falls Library
Gary Bergstrom
(21 6) 247-2492

Columbus FIG Chapter
4th Tues.
Kal-Kan Foods, Inc.
51 15 Fisher Road
Teny Webb
(614) 878-7241

Dayton Chapter
2nd Tues. & 4th Wed., 6:30
p.m.
CFC. 11 W. Monument Ave.
#612
Gary Ganger (513) 849-1483

OREGON
Willamette Valley Chapter
4th Tues., 7 p.m.
Linn-Benton Comrn. College
Pann McCuaig (503) 752-51 13

PENNSYLVANIA
Villanova Univ. Chapter
1st Mon., 7:30 p.m.
Villanova University
Dennis Clark
(215) 860-0700

* TENNESSEE
East Tennessee Chapter
Oak Ridge
3rd Wed., 7 p.m.
Sci. Appl. Int'l. Corp., 8th Fl.
800 Oak Ridge Turnpike
Richard Secrist
(615) 483-7242

TEXAS
Austin Chapter
Matt Lawrence
PO Box 180409
Austin. TX 78718

Dallas Chapter
4th Thurs.. 7:30 p.m.
Texas Instruments
13500 N. Central Expwy.
Semiconductor Cafeteria
Conference Room A
Clif Penn (214) 995-2361

Houston Chapter
3rd Mon., 7:30 p.m.
Houston Area League of PC
Users
1200 Post Oak Rd.
(Galleria area)
Russell Harris
(713) 461-1618

VERMONT
Vermont Chapter
Vergennes
3rd Mon., 7:30 p.m.
Vergennes Union High School
RM 210, Monkton Rd.
Hal Clark (802) 453-4442

VIRGINIA
First Forth of Hampton
Roads
William Edmonds
(804) 898-4099

Potomac FIG
D.C. & Northern Virginia
1st Tues.
Lee Recreation Center
5722 Lee Hwy.. Arlington
Joseph Brown
(703) 47 1-4409
E. Coast Forth Board
(703) 442-8695

Richmond Forth Group
2nd Wed., 7 p.m.
154 Business School
Univ. of Richmond
Donald A. Full
(804) 739-3623

WISCONSIN
Lake Superior Chapter
2nd Fri., 7:30 p.m.
1219 N. 21st St., Superior
Allen Anway (715) 394-4061

INTERNATIONAL
AUSTRALIA
Melbourne Chapter
1st Fri., 8 p.m.
Lance Collins
65 Martin Road
Glen Iris, Victoria 3146
03/29-2600
BBS: 61 3 299 1787

Sydney Chapter
2nd Fri., 7 p.m.
John Goodsell Bldg., RM
LC19
Univ. of New South Wales
Peter Tregeagle
10 Binda Rd.
Yowie Bay 2228
021524-7490
Usenet
tedr@usage.csd.unsw.oz

BELGIUM
Belgium Chapter
4th Wed., 8 p.m.
Luk Van Loock
Lariksdreff 20
2120 Schoten
031658-6343

Southern Belgium Chapter
Jean-Marc Bertinchamps
Rue N. Monnom, 2
B-6290 Nalinnes
0711213858

CANADA
BC FIG
1st Thurs., 7:30 p.m.
BCIT, 3700 Willingdon Ave.
BBY, Rm. 1A-324
Jack W. Brown
(604) 596-9764
BBS (604) 434-5886

Northern Alberta Chapter
4th Sat.. loam.-noon
N. Alta. Inst. of Tech.
Tony Van Muyden
(403) 486-6666 (days)
(403) 962-2203 (eves.)

Southern Ontario Chapter
Quarterly, 1st Sat., Mar., Jun.,
Sep., Dec., 2 p.m.
Genl. Sci. Bldg., RM 212
McMaster University
Dr. N. Solntseff
(416) 525-9140 ~ 3 4 4 3

ENGLAND
Forth Interest Group-UK
London
1st Thurs.. 7 p.m.
Polytechnic of South Bank
RM 408
Borough Rd.
D.J. Neale
58 Woodland Way
Morden, Surry SM4 4DS

FINLAND
FinFIG
Janne Kotiranta
Arkkitehdinkatu 38 c 39
33720 Tampere
+358-3 1-184246

HOLLAND
Holland Chapter
Vic Van de Zande
F i a r k 7
3831 JE Leusden

ITALY
FIG Italia
Marco Tausel
Via Gerolamo Forni 48
20161 Milano
021435249

JAPAN
Japan Chapter
Toshi Inoue
Dept. of Mineral Dev. Eng.
University of Tokyo
7-3-1 Hongo, Bunkyo 113
812-2111 x7073

NORWAY
Bergen Chapter
Kjell Birger Faeraas,
47-5 18-7784

REPUBLIC OF CHINA
R.O.C. Chapter
Chin-Fu Liu
5F, #lo, Alley 5, Lane 107
Fu-Hsin S. Rd. Sec. 1
Taipei, Taiwan 10639

SWEDEN
SweFIG
Per Alm
46/8-929631

SWITZERLAND
Swiss Chapter
Max Hugelshofer
Industrieberatung
Ziberstrasse 6
8 152 Opfikon
01 810 9289

WEST GERMANY
German FIG Chapter
Heinz Schnitter
Forth-Gesellschaft C.V.
Postfach 11 10
D-8044 Unterschleissheirn
(49) (89) 317 3784
Munich Forth Box:
(49) (89) 725 9625 (telcom)

SPECIAL GROUPS
NC4000 Users Group
John Carpenter
1698 Villa St.
Mountain View, CA 94041
(415) 960-1256 (eves.)

Volume XI, Nwnber 6 43 Forth Dimensions

Forth Interest Group
P.O. Box 823 1
San Jose, CA 95 155

Forth Modification Laboratory

FORML and euroFORML
Conference Proceedings

Eleventh Asilomar Conference papers from the eleventh annual
FORML Conference

Pacific Grove, California
FORML conference held November 24-26/1989 at
the Asilomar Conference Center, Pacific Grove,

e u r o ~ ~ ~ ~ ~ 89 Conference California, U.S.A. and conference papers from the
Neunkirchen am Brand euroFORML 89 conference held October 13-15,

West Germany 1989 at Neunkirchen am Brand, Federal Republic
of Germany. 446 pages. $40.00

Postage Paid at
San Jose, CA

TABLE OF CONTENTS
F O R M
Forth Poetry or Forth Program?
A Trail of Bread Crumbs
Seeing Forth
From Pascal to Forth
Binary Radix Sort on 80286,68010, and
RTX2000
An Extensible Optimizer for Compiling
Forth
Four Different Programmers, Forths, and
Computers
Multitasking or Multiple State Machines
Graphics Based Smart Windows
A State Machine Based Drawing Package
Communications and State Machines
A 3 D Measurement System Using Object-
Oriented Forth
User-Defined Systems for Pure Mathematics
CRC Polynomials Made Plain
Hierarchical Objects from Flat Vocabularies
PA1 Virtuoso
Programmable Controlled Processing And
Graphic System
Pattern Matching in Forth

FIG members entitled to membership discount-see order form inside.

Control Flow Words From Basis9
(FPC) Forth for the PC
Logic Stack
A Cross-Assembler for a Small Interactive
Target
A Stack Machine Assembler
An Object-Oriented Forth Implementation
For think Forthink Forth Ink
Smart Ram
Thermal Meter-An Application of FORTH
FSY63
The Harris C Cross Compiler
Adding Compiler Security to METHODS>
Proposal for Syntax Notation
Cool-Unifying Class and Prototype Inheri-
tance
euroFORML '89
A Modular Approach to Robotic Control
Systems
Two Levels of Parallelism or a New Ap-
proach for Control Systems Design
Software Development System USW
Zug Power Station, An Application of Train-
able Neural Neb

Memory Cards and Forth: An Update
A Comparison of the Cooperative and Pre-
emptive Concurrent Scheduling Algorithms
XShell: A Cross-development User Interface
dbgx - The Hams RTX 2000 C Language De-
bugger
Module Forth
An RTX Recompiler for On-Line Mainte-
nance
A "ision of Transparency
A Databased Forth
Interactive Remote Compilation for Devel-
opment and Machine Integration
Forth and Ocean Bottom Seismograph
Have Dot-If Dot-Else Dot-Then
Programming and Our View of Man
Some Experiences on Implementing Float-
ing-point in Forth
RTX 4000
Object Oriented Menu Creating System for
Interactive Forth Applications
From Block Files to the Twentieth Century
Not Screens Nor Files But Words
The search for the Law

