

F O R T H
m

DOUBLE-ENTRY BOOKKEEPING - JJ.MARTENS
8

Most people don't bother with a personal bookkeeping system, but it's a rare individual who doesn't have occasional
use for a financial statement. DE-BOOKS was conceived as the former, but the latter emerged as a by-product and-for
some users-may well be the tail that wags the dog.

m
DEVELOPING A STEP TRACE - CHESTER H. PAGE

14
It is convenient to have a trace routine to display the stack(s), the name of the word being executed, and the resulting
stack(s). This author's routine provides some interesting features, and his development technique demonstrates three
distinct stages of refinement.

=
MULTITASKING & CONTROLWNG REGULAR EVENTS

T. HENDTLASS
17

Forth can multitask easily enough, but it has no internal timer to schedule events at specific times. With an added timer
and the multitasker, you can arrange for events to occur at predestined times. This paper describes such a timer for PCs,
as well as discussing the F83 multitasker and how to use CREATE ... DOES> to make new defining words. -

BINARY TABLE SEARCH - DAVZDARNOLD

f 19
A binary search of a table can be remarkably quick and can be adapted readily to various types of data. Usually, a part
of each record called the key field is set aside for a datum of a type that can be easily ordered and compared, to order
and search the table conveniently.

m
SEEING FORTH - JACK J. WOEHR

28
The author discusses the heritage and characteristics of Forth, and draws a connection between the Forth hardware of
today and an archetypal Forth kernel. His eloquent English leads into some artful Forth code, a minimal assembler for
the SC32 stack machine developed at Johns Hopkins University.

Editorial
4

Letters
5

Best of GEnie
25

Reference Section
35

Advertisers Index
3 7

FIG Chapters
36,38-39

Volume XI, Number 5 3 Forth Dimensions

T e FIGGY award is presented by
the Forth Interest Group to those whose
efforts have contributed significantly to the
Forth community. Jan Shepherd was hon-
ored in 1989, joining the ten previous re-
cipients, whose names are engraved on a
plaque in the administrative offices and are
listed in the "Reference Section" in this
magazine. Jan heads the management team
that takes care of FIG'S daily business, the
Association Development Center of San
Jose, California. Anyone who knows her
can attest that Jan is at every late-night
meeting, convention booth, and crisis inter-
vention. She and her staff have alwaysbeen
willing to outdo themselves on behalf of
FIG and Forth Dimensions.

While you are browsing the "Reference
Section," you may note some changes. The
list of on-line resources has been updated
significantly, so be sure to revise your auto-
dial instructions! And when you are on-
line, be sure to leave a personal note to the
SysOps. BBS's are very interactive places,
and the people running them not only ex-
pect but need your input Even if you aren't
uploading lots of files or joining various
debates, let the SysOps know you appreci-
ate their efforts and tell them about the
things you like or dislike.

The autumn of each year brings a tradi-
tion to the Forth community: the annual
FORML conference. It is, perhaps, the
most venerable Forth institution and the
least well known; it may also be the most
intimidating, especially-when it comes to

exposing your ideas to the intimate assem-
blage of master-level Forth programmers.
The most recent FORML was a sold-out
affair, and long-time participant Peter
Midnight is preparing a report for us which
will be appearing shortly. The published
proceedings look heftier than last year's
edition; when it is available, you will find it
on the FIG mail order form in these pages.

While we were preparing this issue,
word came that readers from around the
world were preparing articles about Forth
hardware. You will remember our call for
articles on that subject earlier this year, in
which we offered payment for the top three
chosen by the referees. The promising pile
of manuscripts on my desk has been grow-
ing, with more due by the encroaching
deadline. Our editorial work is cut out for
us, and you will be able to see the results in
our next issue-see you then!

--Marlin Ouverson
Editor

Forth Dimensions
Published by the

Forth Interest Group
Volume XI. Number 5
January/February 1990

Editor
Marlin Ouverson

Advertising Manager
Kent Safford

Design and Production
Berglund Graphics

Forth Dimensions welcomes editorialmate-
rial, letters to the editor, and comments from its
readers. No responsibility is assumed for accu-
racy of submissions.

Subscription to Forth Dimensions is in-
cluded with membership in the Forth Interest
Group at $30 per year ($42 overseas air). For
membership, change of address, and to submit
items for publication, the address is: ForthInter-
est Group, P.O. Box 8231. San Jose. California
95155. Administrative offices and advertising
sales: 408-277-0668.

Copyright 63 1989 by Forth Interest Group,
Inc. The material contained in this periodical
(but not the code) is copyrighted by the individ-
ual authors of the articles and by Forth Interest
Group, Inc., respectively. Any reproduction or
use of this periodical as it is compiled or the ar-
ticles, except reproductions for non-commer-
cial purposes, without the written permission of
Forth Interest Group, Inc. is a violation of the
Copyright Laws. Any code bearing a copyright
notice, however, can be used only with permis-
sion of the copyright holder.

About the Forth Interest Group
The Forth Interest Group is the association

of programmers, managers, and engineers who
create practical. Forth-based solutions to real-
worldneeds. Many research hardware and soft-
ware designs that will advance the general state
of the art. FIG provides a climate of intellectual
exchange and benefits intended to assist each of
its members. Publications. conferences, serni-
nars, telecommunications, and area chapter
meetings are among its activities.

"Forth Dimensions (ISSN 0884-0822) is
published bimonthly for $24/36 per year by the
Forth Interest Group, 1330 S. Bascom Ave.,
Suite D, San Jose, CA 95128. Second-class
postage paid at San Jose, CA. POSTMASTER:
Send address changes to Forth Dimensions,
P.O. Box 8231, San Jose, CA 95155."

Forth Dimensions 4 Volume XI, Number 5

Bad Press and Still Unknown
Dear Marlin,

I finally decided to learn more about
sorting and tackle Quicksort. Of course, I
would useForth to rapidly play around with
the algorithm and write some neat displays.
Hah! I perused past articles in FD to learn
how to do it, and was stymied by Forth's
biggest weakness: it seems to encourage
unreadable coding.

For example, in FD V/5 page 29, I was
nipped by the phrase:
SWAP ROT 20VER 20VER - ROT ROT
- < IF 2SWAP THEN

And in FD V115 page 29,I was duped by the
phrase:
ROT DROP DUP 2 PICK 2 PICK 2
PICK = = AND

Is it any wonder why Forth is still relatively
unknown and gets bad press? Sure, other
languages have their own confusing as-
pects. For example, the phrase:
(*(void(*) 0) 0 0 ;

means something in C. But such horrors
usually will not find their way into a begin-
ners' text.

I looked at Quicksort in popular lan-
guages. Then I experimented to see how
easy it is to translate the algorithm into
Forth. The enclosed listing is an almost
word-for-word translation of Quicksort
written in the C language. Even the control
structures were translated. The big draw-
back here is the prefix L, but I submit that
it is more readable and maintainable than
what was found in Forth. To add a running
dump, for example, just add the phrase:
L i L j L nr L pivot
WORD.TO.SHOW.STATE
In contrast, with Macho Stack Pumping it
would require a rewrite to thrash the values
into plalce.

1 \
Quicksort in F-PC using Parameter Stack Frames by Jose Betancourt I

Another cause of unreadable code is the
use of screens to store source. It is not
natural. People are raised to see an 8.5" x
11" paper as the natural size to hold words.
This is started in school, and is maintained
at work and even in personal correspon-
dence. Further, modem word processors
are evolving into WYSIWYG page design-
en. The fact that most systems cannot dis-
play a whole page is temporary. The fact
that a language insists on dividing source
into half-pages is medieval. This adds to the
unreadableness of Forth, because too many
times code and comments must be
crammed to fit into half a page.

As F-PC and other Forths have shown,

: Quicksort (adr.of. array, #elements) \ recursive Quicksort.
DUP 2 < \ Is #elements less than two?
IF 2DROP \ exit sort, cannot be repartitioned.
ELSE (sort this partition.)

L(adr ne \ i j temp nr pivot done) \ create parameter frame.
A101 @istemp Ladr A[@] ! \ point to array start.
L ne 2 / A[@] IS pivot \ pick middle element.
-1 IS i FALSE IS done L ne IS j \ initialize pointers and flag.
BEGIN \ partition into two parts.

BEGIN \ find first element to move right.
++ i L i A[@] L pivot < WHILE

REPEAT

interactive loading of source is still pos-
sible with stream source. In F-PC, one can
load a stream file starting at any line. This
allows a fast editltest cycle, as in block-
oriented Forths.

[Earlier this year,] a magazine had an
article written by the owner of a Forth
language supplier. He wrote C code to cre-
ate Intel Hex Format files. I wonder, if he
had used Forth, would it have been trans-
portable, readable, and simple? Would the
magazine have even published it?

Sincerely*
Jose Betancourt
Sunn~side, New York

- -. -. . .

BEGIN \ find first element to move left. -- j L j A[@] L pivot > WHILE
REPEAT
L i L j >= \ have the boundaries met ?
IF TRUE IS done
ELSE L i L j EXCHANGECI \ i and j elements.
THEN L done \ partitions made?

UNTIL L ne L i - IS nr \ number of elements in right side.
L i L ne 2 / < \ sort smallest partition first.
IF (first left side) L adr L i RECURSE

(then right) L i A[&] L nr RECURSE
ELSE (first right side) L i A[&] L nr RECURSE

(then left) L adr L i RECURSE
THEN
L temp A[@] ! S() \ reset array pointer and kill frame.

THEN ; \ End Quicksort

/*
Pre and post incrementing and decrementing local prefixes would

be more compact and parallel the original language code. For example,
L++ can fetch a local variable then increment the value stored there,
whereas, ++L, can increment then fetch the value. Thus, the phrase
"++ i L i A[@]" can be written as "++L i A[@]".
*/
\s

-- -
(Screenr continued on next page

Volume XI, Number 5 5 Forth Dimensions

Screens Foreshadowed
(but not shadow screens)
Dear Marlin,

After seeing your response to Robert
Hoffpauer and me on the source of 'The
rest is silence," [Letters, FD X/6), you
deserve to get this ...

Shakespeare made a broad mark on the
development of the English language. It's
not widely known just how far ahead of his
time he really was. I found he had penned
this little far-seeing dedication to a myste-
rious Mr. W.H. (who has never been unam-
biguously identified) into the first edition
of his sonnets in 1609:

"To the onlie begetter of
The insung sonnets
Mr. W.H. all happinesse
And that eternitie

Promised
by

Our ever-living poet
Wisheth
The well-wishing
Adventurer in

Setting
Forth"

What could he have been doing, writing
things with a title line, skip a line, a four-
teen-line structure. Did they have blocks
back then?

Glenn Toennes
843 Maywood
Escondido, California 92027

Only writer's block. --Ed.

Null Strings, Count Too!
Dear Sir,

I once encountered in vrint a rationali-
zation of the null-delimited form of string.
The author claimed the immense benefit of
"...being able to operate on the string with-
out having to know how long it is." This is
claiming a virtue out of a feature you don't
have anyway. Charles Moore did this when
he disdained the use of floating-point arith-
metic. There are cases where the null-de-
limited form is vital. Anybody who passes
strings to MS-DOS, for example, must do
so in ASCIIZ, which uses the null-delim-
ited format. Most users seem to do their
work in standard Forth format and define a
word to perform the conversion as re-
quired.

A simple alternative is available, how-
ever. This is to specify Forth strings to have
a leading count byte and a trailing null. [See
Figure One.] Thus, no special words are
needed to pass a string parameter to MS-

(Betancourt screens, continued.)

\ one way of def in ing t h e a r r a y access words

CREATE VECTB ' NOOP , ' CB , ' @ , \ a r r a y of @ vec tors .
CREATE VECT! ' NOOP , ' C! , ' ! , \ a r r a y of ! vec tors .

VARIABLE TYPE[1 \ bytes per c e l l
: V@ TYPE[] 8 2* VECTB + 8 EXECUTE ; \ vectored f e t c h .
: V! TYPE[] @ 2* VECT! + @ EXECUTE ; \ vectored s t o r e .

VARIABLE A[@] \ p o i n t e r t o 0 t h c e l l
: A[&] (ndx -- a d r) TYPE[] 8 * A[@] 8 + ; \ a r r a y po in te r .
: A[@] (ndx -- m) A[&] V@ ; \ a r r a y f e t c h .
: A [!] (n n d x) A[&] V! ; \ a r r a y s t o r e .

: EXCHANGE[] (i j ---) \ exchange elements i and j of a r r a y .
L (i j) L i A[@] L j A[@] L i A[!] L j A[!] S () ;

\ t e s t i n g words.

CREATE s to rage 1 , 1 5 , 8 , 2 , 3 , 5 , 1 0 , 4 , 7 , 9 , 6 , (11

2 CONSTANT in teger

: showarray 1 1 0 DO I A[@] 3 . R L O O P ;

: TESTSORT
s to rage A[@] ! i n t e g e r TYPE[] ! CR showarray
0 A[&] 11 Quicksort CR showarray ;

\ End example

DOS. The necessary changes to the kernel
are quite small. The new string definition is
almost upwardly compatible from the
original.

A more radical change (not yet imple-
mented) would use a 16-bit count field and
explicitly limit the maximum length of
strings.
Yours faithfully,
J.D. Huttley
19 Duncan Avenue
Te Atatu Sth.
Auckland 8
New Zealand

A Fast Thousand Primes
Dear Sirs,

I have enclosed a Forth program for
possible inclusion into your magazine.
The title is "Primes," and it will compute
the first 1000 prime numbers. It takes a
little over two minutes to do this.

It was written on an Amiga 500 using
jForth. This is a good choice, as the single-
length numbers are 32 bits. jForth also
allows double-length (64 bits) numbers.

The mode of operation is to maintain
two lists of numbers: p r i m e s keeps track
of the prime numbers as they are

Primes Listing
I I

Two sets of numbers are recorded. One is the primes, the other is the squares of the
primes. The primes are used as the source of divisors. Note that the form:
: word (10 3 . . . 10 6)

(1 0 12 ... 10 6)
... ,

is used to show various types of stack data and the results of each type of stack input.
1 1 0 0 a r r a y p r i m e s \ c r e a t e 1 1 0 0 s l o t s
1 1 0 0 a r r a y p r imes-2 \

I v a r i a b l e p o i n t e r * I I 8 1 0 0 c o n s t a n t . ax - in teger I I v a r i a b l e i n t e g e r I
I : c l e a r a r r a y 1 1 0 0 0 do 0 i p r i m e s ! 0 i p r imes-2 ! l o o p ; I

: f l a g - l o o p 0 ;
: f l a g - r e p e a t 0 ;
: f l a g - d o n e 1 ;
: f l a g - t r u e - 1 ;
: f l a g - f a l s e 0 ;

(Continued on next page.)

Forth Dimensions 6 Volume XI, Number 5

discovered; primes -2 keeps track of
their squares. To check any number, a frac-
tion is made by putting that number over
each of a series of prime numbers. The
primes checked begin with two and may
continue to the square root of the next prime
over the number being tested. Rather than
performing a square root operation, the
table of squares of primes is used. If the
process of looking for a divisor of a given
number cycles through all the lesser primes
and arrives at one whose square is larger
than the number, the process is stopped and
the number is deemed to be prime.

The process of division is replaced by a
subtraction process. This (hopefully) is
faster than division. It is done by doubling
the denominator and checking to determine
if the new denominator is larger than the
numerator. If not, it is again doubled, re-
peatedly, until it is larger than the numera-
tor. It is then divided in half to reduce it to
less than the numerator, and this new de-
nominator is now subtracted from the nu;
merator. This process determines a new
numerator.

The process is continued until either a
zero is arrived at, showing that the number
is not prime; or a proper fraction is arrived
at, showing that the next prime must be
picked from the list and med. The lists
primes and primes -2 are double pur-
pose, in that new numbers are added to the
list and old numbers are chosen off the list
and used in the search for new primes.

It would be interesting to find a fast way
to square the prime numbers, as the other
operations (doubling and subtracting) are
well-suited to assembly language program-
ming. Perhaps someone would be inter-
ested in speeding this up more by using
assembly.

Yours truly,
Allan Rydberg
RFD # 1, Box 46C
Sterling, Connecticut

: c o p y 2 o v e r o v e r ;
: d o u b l e 1 a s h i f t ;
: s u b t r a c t - ;
: h a l f -1 a s h i f t ;
: s q u a r e d u p ;

Count 0 or more bytes

: s e t u p 1 p o i n t e r * ! 2 1 p r i m e s ! 4 1 p r i m e s A 2 ! ;

$00

: doub le-denom
(10 3 ... 10 6 O - f l a g) \ 1 0 / 3 = O f l a g o r
(10 6 ... 10 1 2 1 f l a g) \ 1 0 / 6 : l f l a g

copy2 > i f d o u b l e f l a g - l o o p
e l s e c o p y 2 < i f h a l f f l a g - d o n e

e l s e copy2 : i f f l a g - d o n e
e l s e ." e r r o r i n doub le -denom "

t h e n
t h e n

t h e n ;
\ double-denom copy t o p p a i r o f s t a c k
\ i f 10 > 3 t h e n d o u b l e + f l a g f o r l o o p
\ e l s e i f l o < 3 t h e n d i v i d e by 2 and f l a g d o n e
\ e l s e i f 1 0 = 3 t h e n f l a g - d o n e
\ e l s e p r i n t e r r o r m e s s a g e

: max-denom (10 3 . . . 10 6) \ l o o p t o f i n d max d e n o m i n a t o r
b e g i n double-denom u n t i l ;

\ max-denom = l o o p t o double-denom a n d c o n t i n u e u n t i l f l a g - d o n e is r e t u r n e d

: t e s t - d o n e (1 3 ... 1 3 f l a g - t r u e)
(10 3 ... 10 3 f l a g - f a l s e)

c o p y 2 < i f f l a g - t r u e e l s e f l a g - f a l s e
t h e n ;

\ t e s t - d o n e c o p y 2 a n d s e e i f num < denom i f t r u e t h e n f l a g t r u e

: t e s t - e q u a l (10 3 ... 10 3 f l a g - f a l s e) (3 3 ... 0 3 f l a g - t r u e)
c o p y 2 = i f C O D Y ~

s u b t r a c t r o t d r o p swap f l a g - t r u e
e l s e f l a g - f a l s e
t h e n ;

\ t e s t - e q u a l i f e q u a l l e a v e remainder,denomerator,flag

: s u b t r a c t - d - f r o m - n (10 3 10 6 ... 4 3 0)
s u b t r a c t o v e r r o t d r o p r o t d r o p 0 ;

\ s u b t r a c t - d - f r o m - n s u b t r a c t 6 f rom 10 l e a v e 4 , 3 , 0

: c y c l e (10 3 ... 4 3) (10 5 10 1 0)
t e s t - d o n e i f f l a g - d o n e

e l s e t e s t - e q u a l i f f l a g - d o n e
e l s e copy2 max-denom

s u b t r a c t - d - f r o m - n
t h e n

t h e n ;

: t e s t - f r a c t i o n (10 3 ... 1) (10 2 ... 0)
b e g i n c y c l e u n t i l d r o p ;

\ t e s t - f r a c t i o n w i l l l e a v e t h e r e m a i n d e r o f a n y d i v i s i o n on t h e s t a c k

: i n c r e m e n t p o i n t e r * @ 1 + p o i n t e r * ! ;

: new-pr ime
i n t e g e r @ d u p i n c r e m e n t p o i n t e r * @ r o t o v e r . .
p r i m e s !
i n t e g e r @ s q u a r e p o i n t e r * @ p r i m e s A 2 ! ;

: t e s t - a n s w e r 0 = ;

: t e s t - f o r - z e r o (i ... F)
0 : i f f l a g - t r u e e l s e f l a g - f a l s e t h e n ;

: c r e a t e - d e n o m i n a t o r s
i n t e g e r @ 1 do

i n t e g e r @ i p r i m e s @ d u p
t e s t - f o r - z e r o

i f d r o p d r o p new-pr ime l e a v e
e l s e i n t e g e r @ i p r i m e s A 2 @ <

i f d r o p d r o p new-pr ime l e a v e
e l s e
t e s t - f r a c t i o n t e s t - a n s w e r i f
l e a v e t h e n
t h e n

t h e n
i i n t e g e r @ 1 - : i f new-pr ime t h e n
l o o p ;

Figure One. Pass N+l to MS-DOS as the
string's start address.

\ c y c l e f rom 3 t h r u m a x - i n t e g e r a n d s e t e a c h # e q u a l t o i n t e g e r
\ t h e n jump t o c r e a t e - i n t e g e r 1 1

c l e a r a r r a y s e t u p
m a x - i n t e g e r 3 do
i i n t e g e r ! c r e a t e - d e n o m i n a t o r s
l o o p ;

Volume XI, Number 5 7 Forth Dimensions

DOUBLE-ENTRY
BOOKKEEPING

I n its Dresent form. DE-BOOKS is a
capsulated iersion of my personal book-
keeping system. If the reader is totally
unfamiliar with doubleentry bookkeep-
ing, I suggest some research in this area. It's
a little tricky but, like Forth, can be very
rewarding once you get the hang of it.

Although most people may not want to
bother with a personal bookkeeping sys-
tem, it's arare individual who doesn't have
occasional use for a financial statement.
DE-BOOKS was conceived as the former,
but in the development I discovered the
latter emerges as a by-product and-for
some folks--may well be the tail that wags
the dog. Assuming that you have looked
over the code and explanatory material in
the shadow screens, let's touch on a few of
the details.

Screen 15 is the only shadow necessary
to the operation of the program. Ordinarily,
this screen contains the user's personal ac-
count categories, but until you're familiar
with the operation it may be wise to use the
working accounts in the order provided.
Important information regarding account
names and numbers is in screen 17.

Screen 18 is my favorite. If the arrays
are the body of the system, this must be the
heart. It doesn't look like much, but it may
be where I learned the meaning of iteration.
Early versions used up to three screens.

The next four screens represent the
goals we are trying to reach. If one can draw
a line between bookkeeping and account-
ing, it may be here, between the trial bal-
ance (screen 9) and the beginning of the
financial statement (screen 10). The pro-
gram produces one as easily as the other. I
like to think of it as Cinderella the book-
keeper being transformed into Ms. Finan-

J . JMARTENS - KAUKAUNA, WISCONSIN
m

cia1 Statement the accountant, via the
magical power of Forth.

The transitory (P & L) in screen 11 is
unique in that we never add to it, subtract
from it, or clear it. We just store (screen 11,
line 12) and fetch (screen 12, line 11). Any
profit or loss determined by the program is
a reflection of the journal or ledger at the
instant the financial statement is taken.

Trial balances and
financial statements
are taken as desired.

We could use the stack instead of the
variable to accomplish this, if desired. In
retrospect, that may be abetter way of doing
it. If we used the stack, the balance sheet
could precede profit-and-loss on the finan-
cial statement, and the actual profit or loss
would be on the stack for RECAP. We live
and learn. Better late than never. The old
clichQ can be comforting. On with the
show!

In my personal version, the MS-DOS
COMMAND.COM, F83.COM, and DE-
BOOKS.BLK are permanently on the disk.
NEWBOOKS is used to set up the original
XCOUnt balances, and TRANSFER puts
them in the ledger. The F83 word SAVE-
SYSTEM is used to save the opening bal-
ances as a command file. This setup is done
once.

At the end of the month, the command
file is run on DE-BOOKS.BLK, and the
deposits and checks for the month are
posted to the JOURNAL, makiig sure that
the debits and credits balance. TRANSFER

adds the current month's data to the ledger,
and SAVE-SY STEM creates a new com-
mand file. This routine is repeated
monthly.

Trial balances and financial statements
are taken as desired and the older command
files are erased as the disk fills. Hard copy
is a must but, of course, that's another
story. The version I use includes printing
utilities for an Epson LX-86 printer.

My references include the source code
for F83; Inside F83 by C.H. Ting, Ph.D.;
Starting Forth and Thinking Forth by Leo
Brodie, FORTH, Inc.; Mastering Forth by
Anita Anderson and Martin Tracy, Micro-
Motion; and Forth Dimensions.

J. J. Martens ran the family business
for nearly three decades, then spent
several self-employed years until his
'practical retirement.' His interest in
Forth and subsequent purchase of a
Jupiter Ace computer (and more
equipment later), was aroured in
1983 by Popular Computing, whic h he
calls "...a good magazine, now ex-
tinct." To those whofind double-entry
bookkeeping more difficult than
Forth, he offers Edmund Burke's
advice, "Don't despair--but if you
do, work on in despair!"

Forth Dimensions 8 Volume XI, Number 5

B 15
B Double-entry bookkeeping. 15 shadows--8115, etc. 19-28-88jr CHECKING
1 DE-BOOKS i s a bare-bones double-entry bookkeeping syster FURN & APPLIANCES
2 t h a t u s e s t h e L a r e n - P e r r y F 8 3 i ~ l m n t a t i o n o f t h e F o r t h - 8 3 HOHEANDLOT
3 Standard.
4
5 It consists of a general journal, a general ledger, a HORT616E PAYABLE
6 rechanisr f o r postinq w i g i n a l en t r i es t o e i ther , and a word t o
7 t ransfer j w r n a l data d i r e c t l y t o the ledger. A t r i a l balance
B and or a s inp le f inanc ia l statement can be taken f r o r e i t he r WGE INCOHE
9 journal or ledger a t any t i r e . GAIN ON SALES

18
11 The working chart of accounts i n screen 15 can accorrodate CAR EXPENSE
12 48 account categories and can eas i l y be edi ted t o s u i t the user. REAL ESTATE TAX
13 CONTR I BUT1 ONS
14 The app l ica t ion was wr i t t en w i th a Radio Shack Tandy 1880
15 cowputer over an I-BOS 2.11.22 operating syster.

SAVINGS STOCKS & BONDS
TOOLS & EQUIPHENT AUTOHOBILE

NOTE PAYABLE

E0UITY
INTEREST INC DIVIDEND INC
SOC SEC INC

UTILITIES & PHONE INSURANCE
REPAIRS HEDICALIDENTAL EXP
LOSS ON SALES INTEREST EXPENSE

DRAW IN6 ACCOUNT

1
B \ Nuts and b o l t s Load screen
1 : M (S - -) 0 0 ;
2 : 4 t (S a --a) 4 t ;
3 : DB((S d - - f) SWAP DROP B(;
4 : DB> (S d --f I BWEGATE D l (;
5 : DBO (S d --1) 9(= NOT ;
6 : 2+! (S d a --) QWP ?R 2e D+ R > 2! ;
7
8 : (DC) .' DEBIT CREDIT ' ;
9 : (PL) . 'PROFITMLOSS ' ;

19 : (0s) .' BMAMCE SHEET ' i
11 : (RC) .' RECAP 0 .

12 : (P6) .' P t tST I l 1 .

13 : (TB) .' TRIAL BALANCE ' i
14 : (FS) .' FINUNCIAL STATEHENT ' ;
15 2 14 THRU

16
18-19-80jm \ 1-16 Shadow -- Nuts and Bo l t s

Lines 1 t h r u 6 add useful words not i n the F83
dict ionary.

2+! adds the double-length nurber on the stack t o the amount
stored a t the given address.

Lines 0 t h ru 14 are headings used i n various places fo r
c l a r i t y .

2 14 THRU OK w i l l now load the app l ica t ion source code.

2
0 \ U t i l i t i e s

17
19-19-80jn \ 2-17 Shadow - U t i l i t i e s

1
2 : ,LC# (S n--1 2 .R 2 SPACES ; \ p r i n t account number
3
4 : .ACNAHE (S n--) \ p r i n t account nane
5 15 BLOCK SUP 1- DUP iR (S addr act-1 --1
6 2 B * + ! ad jus t addr f o r 28-space names
7 R > 3 1 4 t t \ adjust addr f o r 64-space l i n e s
8 28TYPE; p r i n t the account naee.
9

10 : WHAT (S a --a d d l what i s a t t h i s address?
11 DUP ze ZDUP ;
12
13
14
15

Val id account nurbers are 1 t h ru 40.
When post ing (see screen 0) an i n v a l i d account nurber

w i l l e x i t the posting loop and grand t o t a l debi ts and credi ts.

lccount nares are l i s t e d 3 t o a l i n e i n screen 15. Please
note tha t AC#l i s CHECKING, 12 IS SAVINGS, 13 i s STOCKS &
BONDS, 14 FURN & APPLIANCES and so on i n tha t order across and
down.

Nurbers 1 t h ru 21 are reserved fo r ASSETS and LIABlLlTIES
22 THRU 24 do PROPRIETARY INTEREST
25 THRU 48 do INCONE and EXPENSES

I

Volume XI. Number 5 9 Forth Dimensions

3 18
0 \ Deferred words 1B-29-88jn \ 3-18 Shadow -- Deferred words 16-29-88 jn
1
2 DEFER ARRAY The two i den t i ca l arrays are the body of the system. The
3 48 4 t CONSTANT ARRAYSIZE journal i s used fo r current per iod data accunulation - da i ly ,
4 CREATE (JRL) ARRAYSIZE ALLOT i general journal aonthly or whatever, while the ledger i s the year-to-date
5 CREATE (LED) ARRAYSIZE ALLOT \ general ledger reposi tory fo r tha t infornat ion.
b (LED) (JRL) - CONSTANT DIFFERENCE \ fo r t ransfer pu rp~ses
7 : ACTADR (S n--a) \ o f f se t t o account address ACTADR converts the account number t o the address of the
8 1- 4 * ARRAY + ; account balance.
9 : JRL-)LED (S --) \ Updates ledger wi th contents of journal

10 (JRLI 48 0 DO DUP DUP 21 ROT DIFFERENCE + 2+! 4+ JRL->LED i s the lower l eve l word that updates the ledger
11 LOOP DROP ; a t the end of the current period.
12
13 DEFER BOOKS The deferred word BOOKS i s included i n the headings for
14 : JL .' JOURNAL 0 . Posting, T r i a l Balance and Financial Statenent t o renind the
15 : Lh .' LEDGER U . user which of the two books i s i n current use.

4
B \ Double-length number input loutput
I

19
10-19-BBjm \ 4 -19 Shadow - Double-length nunber inputJoutput 10-19-88jm I I

2 : INPUT QUERY BL WORD NUNBER ; (S --d) \ stack a double- INPUT i s the user i n te r face f o r account number and amount.
3 \ length number
4
5 : 1D.I) (S d--a 1) \ convert double-length number t o a The proqraa responds t o input w i th or without the decimal
6 TUCK DABS \ money s t r i n g but f o r p rac t i ca l purposes account nunbers should be entered
7 <# # # ASCII . HOLD #S ROT SIGN #> ; without the decimal and a l l money amounts should be entered wi th
8 the decimal i n i t s proper place and including a l l zeroes.
9 : D.RS (S d n--1 \ output a money s t r i n g n spaces

18 >R (D.)S R? OVER - SPACES TYPE ; \ r i g h t j u s t i f i e d Example: 25 do l l a r s i s entered as 25.00 (not 25.)
11
12 : 12D.R) 12 D.RS ; !S d--1 \ ~ u t p u t 12 spaces r i g h t j u s t i f i e d
13 : 18D.R) 18 D.R$; (S d--1 \ ' 18 "
14 : 30D.RS 38 D.RI ; (S d--1 \ ' 30 '
15

B \ DebitJCredit u t i l i t y I I f

20
10-19-88jm \ 5-20 Shadow - DebitJCredit u t i l i t y

i ZVARIABLE DEBITS LVARIABLE CREDITS
3
4 : Dl0 00 2DUP DEBITS 2! CREDITS 2! ; \ clear deb i ts and
5 \ c red i t s t o 08
b
7 : DEBIT? [S d--d f 2DUP D9) ; \ i s i t a debi t?
8
9 : .AMOUNT (S d--1 \ p r i n t debi t or c red i t amount

10 DEBIT? I F 18D.RS ELSE DABS 39D,RS THEN ;
11
12
13
14
15

This u t i l i t y aanages the deb i t l c red i t input and output
while the actual var iables serve as accumulators.

I f you're a l i t t l e rus t y i n the double-entry area i t helps
t o renenber tha t f o r every debi t there rus t be one or nore
c red i t s and vice versa. Rlso, be i t journal or ledger, f o r
e i ther book t o be i n balance the t o t a l of al! deb i ts r u s t equal
the t o t a l of a l l c red i ts .

I n t h i s app l ica t ion deb i ts are entered as pos i t i ve values
and c r e d i t s as negative. The t o t a l i n g process conpares the
absolute values.

L

Forth Dimensions 10 Volume XI, Number 5

6 21
0 \ Debi t ICredi t u t i l i t y 10-11-88jm \ 6-21 Shadow - Debi t /Credi t u t i l i t y 10-20-88jm
1
2 : TOTALDCS (S 1 i --) \ t o t a l and s tore debi ts, c red i t s TOTALDCS Scan a range of accounts. Fetch and accumulate
3 DO I ACTADR 2e DEBIT? contents i n the DEBIT and CREDIT accounts.
4 I F DEBITS 2+! ELSE CREDITS 2+! THEN
5 LOOP ;
b
7 : .GTOTALS (S --) \ p r i n t grand t o t a l s debi ts, c red i t s ,GTOTALS Scan a l l deb i ts and c r e d i t s i n the current book.
8 CR 49 1 TOTALDCS Fetch and accurulate contents i n the DEBlT and CREDIT
9 ,' TOTALS' 15 SPACES accounts. Retr ieve and p r i n t t h e i r t o t a l absolute

10 DEBITS 24 18D.RS CREDITS 2e DABS 12D.Rt DCB ; values and c lear the DEBIT and CREDIT accounts.
11
12
13
14

7 1 1 \ Posting u t i l i t y
22

10-20-88jm \ 7-22 Shadow Posting u t i l i t y

8 1 \ Posting u t i l i t y

i

2 : PROCEED (S f - - f) \ proceed w i th en t r i es
3 IF ENTERAHT ADDAHT .AHOUNT TRUE
4 ELSE DROP FALSE
5 THEN ;
6
7 : CONTINUE (S --) CR PGHEAD \ continue post ing
8 BEGIN CR ENTERACI TESTAC#
9 PROCEED

10 WHILE
11 REPEAT .GTOTALS ;
12
13
1 4

2 : P6HEAD (S --) (P6) BOOKS (DC) ; \ post ing heading
3 : ENTERACl (S --dl .' ENTER ACT # ' INPUT ;
4 : TESTAE4 (S d--n f) DROP DUP 1 48 BETWEEN ;
5 : WASH (S --1 -LIME 13 EHIT ; \ c lears c l u t t e r
6 : ENTERAHT (S n--n d) DUP .ACNAHE . ' ENTER AHOUNT "
7 INPUT WASH ;
8
9 : ADDAHT (S n d --dl \ add t o account

10 ROT DUP >R \ d n save a copy of ACI on re tu rn stack
11 .LC# \ d p r i n t account number
12 Rf!.RCNAHE \ d p r i n t account na le
13 2DUP R) \ d d n prepare t o add t o account
14 ACTADR ?+! ; \ d make the add i t ion

I n t h i s app l ica t ion a l l income i s deposited i n one
checking account and a l l outgo i s disbursed by check from t h i s
account.

At regular i n te r va l s deposi ts and checks are posted v i a the
post ing u t i l i t y t o the JOURNAL. Ent r ies tha t do not invo lve
the check book should a lso be rade a t t h i s t i r e ,

This process categorizes and summarizes t he data. At
the end of the post ing session, when the deb i ts and c r e d i t s
are i n balance, they are t ransferred (added) t o t he ledger.

23
10-20-88jm \ 8-23 Shadow Posting u t i l i t y

CONTINUE i s the lower l eve l word tha t sets up the pos t ing
process between user and computer.

I t requests data i n the f ~ r m of account number and
amount u n t i l the user enters an account number other
than 1 t o 48 a t which t ime i t e r i t s the loop,
t o t a l s the deb i ts and c red i t s and displays the t o t a l s for
comparison. To re-enter the loop use POST.

I

Volume XI, Number S 11 Forth Dimemiom

9 24
fl \ T r i a l balance 10-13-88jr \ 9-24 shadow T r i a l Balance 19-22-88 jr
I : TBHEAD IS --) (TB) BOOKS IDC) ; \ t r i a l balance heading
2 TRIAL-BALANCE i s the lower leve l word that examines the en t i r e
3 : LISTACTS (S addr l i m i t index --1 \ l i s t cer ta in ac t ive acts contents of e i ther book a t any t i r e .
4 DO WHAT DB!>
5 I F I DUP . AC# . ACNAR . AHOUNT CR I t i s p a r t i c u l a r l y useful dur ing the post ing session
6 ELSE 2DROP because one can see the e f f e c t of any and a l l en t r i es
7 THEN 4+ s i r p l y by a l te rnat ing betneen the post ing loop and the
8 LOOP DROP ; t r i a l balance.
9

18 : TRIAL-BALANCE (S --1 CR TBHEAD \ t r i a l balance
11 CR 1 ACTADR 49 1 LISTICTS ,GTOTRLS ;
12
13
14

1 fl 25
fl \ Financial staterent 19-14-88jr \ 19-25 shadow Financial Statement 19-23-88 jr
1 : FSHEAD (S --1 (FS) BOOKS IPL) ; 1, r a i n statement heading The f inanc ia l statement includes:
2 : FSHEADl (S --1 21 SPACES BOOKS (BS) ; \ 1st subhead 1. A p r o f i t and loss sect ion
3 : FSHEAD2 IS --! 21 SPACES BOOKS IRE) ; \ 2nd subhead Income r inus Expenses = Net P r o f i t or Loss
4
5 : PRINTENTRY (S a d n n --a) \ p r i n t act, acnane and amount 2. A balance sheet
6 . AC# . ACNAHE DABS 1BD.R) ; I ' , Assets r i nus L i a b i l i t i e s = Net Worth or D e f i c i t I I
8 3. A recap i tu la t ion of Net Worth and Owner's Equi ty
9 : LISTDEBITS (S address l irit index --1 \ l i s t deb i ts only Owner's Equity a t s t a r t of period

18 DO WHAT D0) I F CR I DUP PRINTENTRY ELSE 2DROP THEN 4 t p lus or r i nus p r o f i t or loss =
11 LOOP DROP ; Owner's Equity a t end of per iod = Net Worth or D e f i c i t
12
13 : LISTCREDITS S a 1 i - 1 \ l i s t c red i t s only Financial staterent format i s d i f f e r e n t f r o r the t r i a l bal-
14 DO WHRT DB! IF CR I DUP PRINTENTRY ELSE 2DROP THEN 4 t ante i n tha t debi ts and c red i t s no longer have separate colurns
15 LOOP DROP ; and negative values are introduced f o r a net loss &/or d e f i c i t .

11 26
8 i Financial statement 10-15-B8jr \ 11-26 shadow Financial Staterent 14-23-88 j a
1 : ASSETS .' ASSETS ' 1 ACTADR 22 1 LISTDEBITS ; P r o f i t and Loss
2 : LIABILITIES .' LIABILITIES' 1 ACTIDR 22 1 LISTCREDITS ; l i n e 8 P r i n t the statement heading.
3 : INCOHE .' INCOHE ' 25 ACTADR 49 25 LISTCREDITS ; l i n e 9 Total and store deb i ts and c red i t s included i n the
4 : EXPENSE .' EXPENSE' 25 ACTADR 49 25 LISTDEBITS ; incoaelexpense sect ion Act 's 25 t o 48.
5
6 CREATE (PtL) 9 , B , ! trans i t o r y prof i t and loss account l i n e 19 L i s t the credi ts; fetch, dupl icate and p r i n t the t o t a l .
7 l i n e 11 L i s t the debits; fetch, dupl icate and p r i n t the t o ta l .
8 : P&L (S --1 FSHEAD CR i p r o f i t and loss
9 49 25 TOTALDCS l i n e 12 Add the c red i t s t o the debi ts on the stack.

10 INCOHE CREDITS 24 2DUP DABS 12D.RS CR Duplicate the resu l t .
11 EXPENSE DEBITS 2e ZDUP 12D.R) CR Store one copy i n the t rans i t o r y (P&L).
12 D+ ?DUP (P&L) 2! DNEGRTE Change sign of the copy on the stack.
13 .' NET 6A1N (LOSS - 1 ' 17 SPACES 1BD.R) DCB;
14 l i n e 13 P r i n t the r e s u l t as net gain or loss.
15

I

Forth Dimensions I 2 Volwne XI, Number 5

12 27
B \ Financial Staterent 18-25-88jr \ 12-27 shadow Financial Statement 10-25-08jr
1 : BAL (S --t FSHEADl CR \ balance sheet P r i n t the balance sheet subhead.
2 22 1 TOTALDCS Total & s to re a s s e t i l i a b i l i t y DC's -- Act 's 1 t h r u 21.
3 ASSETS DEBITS 2@ 2DUP 12D.R) CR L i s t the debits; fetch, dup l ica te and p r i n t the t o t a l .
4 LIABILITIES CREDITS 2@ 2DUP DABS 12D.R) CR " credi ts ; " I . I . I

5 D+ Add the deb i ts t o t he c red i t s on the stack.
6 . " N E T WORTH (DEFICIT -1' 13 SPACES 18D.Rt DCB : P r i n t the resu l t i ng ne t worth ar d e f i c i t .
7

13
B \ High l eve l words
4

I

28
18-28-80jm \ 13-20 shadow High l eve l words

8 : RECAP (S - -1 FSHEAD2 \ recap net worth and equi ty P r i n t the recap subhead.
9 24 ACTADR 2e ZDUP DHEGATE Fetch opening equi ty from Act 24, dup l ica te & change sign.

10 CR .' OPENING EQUITY' 10 SPACES 12D.R) P r i n t i t .
11 (PLL) 2@ 2DUP DNEGATE Fetch p r o f i t or loss, dup l ica te and change sign.
12 CR . ' NET GAIN (LOSS -1" 5 SPACES 12D.R) P r i n t i t .
13 Dt DNEGATE Add the arounts an the stack and change sign.
14 CR .' CLOSING EQUITY (DEFICIT -1' 10 SPACES 18D.RS DCB ; P r i n t the r e s u l t and c lear deb i ts and c red i ts .
15

I

2 : JOURNAL [' I (JRL) IS ARRAY [' I JL IS BOOKS ; \ ac t iva te j r n a l
3 : LEDGER [' I (LED) IS ARRAY [' I LR IS BOOKS ; \ ac t iva te ledgr
4
5 : CLEAR-JOURNAL (S --) (JRL) ARRAYSIZE ERASE ;
6 : CLEAR-LEDGER (S --1 (LED) ARRAYSIZE ERASE ;
7
8 : TB (S --1 TRIAL-BALANCE ; \ t r i a l balance
9

18 : FS (S --t CR PIC CR BAL CR RECAP ; \ f i nanc ia l statement
11
12
13
14
15

Hake JOURNAL current f o r posting, t r i a l ba l and f i n s ta t .
" L E D G E R ' Y I I I . Y Y

Clear a l l JOURNAL accounts t o zero.
I ' LEDGER u I

P r i n t the contents of the current book i n t r i a l balance
form.

P r i n t the contents of t he current book i n f i nanc ia l
stateaent f o r r .

14 ; \ High l eve l words
29

18-25-08jm \ 14-29 shadow High l eve l words

2 : NEWBOOKS (S --1 \ begin journal l ledger from a l l acts zero NEWBOOKS Just post your assets and l i a b i l i t i e s t o the
3 CLEAR-JOURNAL CLEAR-LEDGER JOURNAL CONTINUE ; appropriate accounts, check the t o t a l s and enter
4 the d i f fe rence as your equ i ty i n account 124 and
5 : POST (S --1 CONTINUE ; \ continue post ing current book you're i n business!
b
7 POST post is the rorkhorse conrand t ha t receives o r i g i n a l
8 : TRANSFER (S --1 JRL-)LED CLEAR-JOURNAL ; \ t rans fer data entry data and enters i t i n the current book.
9 \ t o ledger --

10 \ c lear journal TRANSFER adds the contents of the journal t o the ledger and
11 c lears the journal f o r t he next pe r i od ' s entr ies.
12
13
14

I

Volume XI, Number 5 13 Forth Dimensions

DEVELOPING A
STEP TRACE

CHESTER H . PAGE - SILVER SPRING, MARYLAND =

I t is convenient to have a STEP-
TRACE routine which displays theparame-
ter stack (and the floating-point stack, if ap-
propriate), the name of the word being
executed, and the resulting stack(s). I have
developed such a routine with some inter-
esting features, and a development tech-
nique involving three stages.

The first stage makes brute-force use of
high-level variables and constants, and a
Forth assembler. The second stage is a little
more elegant: most of the intermediate
parameters are replaced by dummy num-
bers and addresses. These are overwritten
at the end of the assembly, using location
dataabout the words just defined. The basic
reason for these maneuvers is that there is a
circular dependence of definitions upon
each other, so no order of defining the
words allows for a simple succession of
definitions. For example, DETOUR uses
(UNDETOUR) , which uses (DETOUR) ,
which uses DETOUR.

I The final version
I provides a more ele- I gant stack display.

In both these stages, an assembler must
be loaded and used. It is more convenient to
have definitions that can be added to a dic-
tionary by a simple screen loading; the third
stage provides this. It is achieved by devel-
oping the primitive words in stage two, and
providing for defining these by compiling
bytes, using CREATE. The final version
provides a more elegant stack display
(aligned four-digit hex numbers) and al-

TRACE SCR # l
0 \ P r e l i m i n a r i r s 30 JCIL83CHP
1
2 '\ B o o t FORTH
3 \ D e f i n e : DUMMY ;
4 ',. E n t e r HEX 2000 ALLOT
5 \ L o a d ASSEMBLER
6 '. L o a d TRUCE
7
8 \ T h i s mar louver c o m b i n e d w i t h S c r e e n 2 , 1 i n e 5 a n d S c r 5 , L 7
9 .\ e l i m i n a t e s ASSEMBLER a n d t h e t e m p o r a r y c o n s t a n t s o f S c r 2 ,

10 \. L 2 /3 , f r o m t h e f i n a l d ~ c t i o n a r y
1 1
1 2 - - ?
13
1 4
15

TRACE SCR # 2
0 \ P a r a m e t e r s a n d stack; p r i n t
1 HEX
2 EE CONSTANT I P
3 F l CONSTANT W
4
5 ' DUMMY 4 + DP !
6
7 [JARIABLE FLOOR
9 VARIABLE FROM
9 VARIABLE TEMP

1 0
11 : .S DEPTH "DUP I F 0 DO DEPTH I - 1 - PICK
1 2 ELSE ." E m p t r s t a c k " THEN :
1 3
1 4 - - >
1 5

LOOP

TRACE SCR # 3
0 ,%. (UNDETOUR) ? PETOUR 30JUL88CHP
1 ASSEMBLE IUNDETOIJR) PLA, I P STA, PLA, I P l + STA,
2 P L A , W 1+ STA, PLA, W S T A ,
3 \ R e s e t d e t o u r
4 TEMP 1 + LDA, ' NEXT 1A + STA,
5 TEMP LDA, ' NEXT 1 Y t STA,

1 6 \. P r o c e e d W I t h o v i g i n a l w o r d
7 O # L D Y , W l - J M P ,
8
9 : DETOUR >R .S FEY DROP R> CR >NAME I D . 4 SPACES IUNDETOUR) ;

1 0

I L

1 3 TEMP i s a s u b z t ~ t u t e f o r t h e P a r a m e t e r F i e l d A d d r e s s
o f !DETOUR'> t o b r e a k a c I r c u l a r d e p e n d e n c e .

Forth Dimensions 14 Volume XI, Number 5

lows reverting to normal operation even
during a trace.

Operating Principles
Entering TRACE enables a detour

signpost (DETOUR), a jump to which is
substituted for the JMP W- 1 at the end of
NEXT. If the word request (i.e., the parame-
ter field entry containing the code field
address of the requested word) is below a
specified FLOOR, the detour is ignored.
This avoids having components of compo-
nents of components analyzed ad nauseum.
FLOOR defaults to the original dictionary
top, but can be moved down to allow trac-
ing words defined before TRACE was
added.

When the detour is taken, the code field
address of the word to be executed is put on
the parameter stack for use in printing its
name, and on the return stack for storage.
The "detour sign" is then removed (for the
sake of later arrivals) and the detour is
taken. While in the detour, the parameter
stack is printed (and the floating-point
stack, if desired). DETOUR is acolon word,
so variations are easily added. The last
component of DETOUR is the primitive
(UNDETOUR) , which recovers I P and w
(the interpretive pointer pointing at re-
quests, and the word pointer), resets the
detour sign, and proceeds with the original
command via JMP W- 1, as was intended at
the end of NEXT.

Since DETOUR is a colon word, the I P
that called it was put on the return stack, to
be recovered by EXIT (called by the semi-
colon); but the last component of DETOUR
is a primitive that ends in a JMP command,
so that the semicolon is never reached! To
replace its action, (UNDETOUR) must
start by pulling the stored I P off the return
stack, and storing it in the IP pointer.

Ihving (DETOUR) remove the detour
signpost before taking the detour protects
DETOUR itself from being traced, avoiding
an infinite loopof self-tracing. By restoring
the signpost after the detour is finished, the
next word external to the detour operation
will be traced.

Interrupting the detour with KEY pro-
vides for tracing one step at a time for each
press of the spacebar; holding the spacebar
down provides continuous tracing.
Pressing <DELETE> aborts the operation;
any other key continues the operation in
normal mode (no trace). When the trace of
a word is finished, the routine awaits the
(Text and screens continued on page 27.)

TRACE SCR # 4
0 '\ (DETOUR) 30JUL88CHP
1 ASSEMBLE (DETOUR)
2 SEC, I P L D A , 2 # S B C , FROMSTA, I P 1 + LDA, O # S B C ,
3 FLOOR 1 + CMP, 1 0 1 BCC, 1 0 2 BNE, FROM LDA, FLOOR CMP,
4 1 0 1 BCC,
5 1 0 2 DEX, DEX, W LDA, PHA, 0 ,X STA,
6 W I + LDA, PHA, 1 ,X STA,
7 \ D i r e c t i o n s f o r d e t o u r
8 1 0 3 ' DETOUR 1 0 0 /MOD # LDA, W 1 + STA,
9 # LDA, W STA,

1 0 \ Remove d e t o u r s i g n p o s t
1 1 FO # LDA, ' NEXT 1 9 + STA, 0 # LDA, ' NEXT 1A + STA,
1 2 1 0 1 0 # LDY, W 1- JMP, END -->
1 3 END s e t s t h e b r a n c h e s t o t h e l a b e l s 1 0 1 , 1 0 2 , e t c .
14 1 0 3 i s a dummy l a b e l ; /MOD p u t s t w o n u m b e r s o n t h e s t a c k ,
1 5 t h e f ~ r s t w o u l d b e m i s i n t e r p r e t e d a s a l a b e l i f n o l a b e l

TRACE SCR # 5
O '\ TRACE, NOTRACE, Re 1 i n k d I c t i o n a r r 30 JULS8CHP
1
2 : TRACE [' I (DETOUR) 2+ [' I NEXT 1 7 + ! ;
3 : NOTRACE FO [' I NEXT 1 9 + ! ;
4
5 ' (DETOUR) 2+ TEMP !
6
7 , DUMMY >NAME ' FLOOR > L I N K !

8 \ E s t a b l i s h e s a l t n k b y p a s s i n g t h e a s s e m b l e r
?

10 HERE FLOOR !
1 1
1 2 Q U I T
1 3
1 4
15

TRACE SCR # 6
O \ S e c o n d s t a g e o f d e v e l o p m e n t 30JCIL28CHP
1 HEX
2 EE CONSTANT I P
3 F 1 CONSTANT W
3 F 4 CONSTANT FROM
5
6 ' DUMMY 4 + DP !
7
3 VARIABLE FLOOR
P

10 : . S DEPTH ?DUP I F 0 DO DEPTH I - 1 - P I C K . LOOP
1 1 ELSE . " E m p t y s t a c k " THEN ;
1 2
1 3 --:
14
1 5

TRACE SCR # 7
0 '\ S e c o n d s t a g e , c o n t i n u e d 30JCIL88CHF
1 ASSEMBLE 'UNVETOUR) PLA, I P STA, PLA, I P 1 + STA,
2 PLA, W 1 + STA, PLA, W STA,
3 \ R e s e t d e t o u r
4 F F # LDA, ' NEXT 1R + STA,
5 F F # LDA, ' NEXT 1 9 + STA,
6 \. P r o c e e d W I t h o r i g~ r i a l w o r d
7 O # L D Y , W l - J M P ,
3
7 : DETOUR > R . S KEY DROP R) CR >NAME I D . 4 SPACES (UI.~IDETOUR) ;

10
1 1 - - >

I

Volume XI, Number 5 I5 Forth Dimensions

HARVARD S O F T W O R K S
NUMBER ONE IN FORTH INNOVATION

(513) 748-0390 P.O. Box 69, Springboro, OH 45066

MEET THAT DEADLINE ! ! !

Use subroutine libraries written for
other languages! More efficiently!
Combine raw power of extensible
languages with convenience of
carefully implemented functions!
Yes, it is faster than optimized C!
Compile 40,000 lines per minute!
Stay totally interactive, even while
compiling!
Program a t any level of abstraction
from machine code thru application
specific language with equal ease
and efficiency!
Alter routin& without recompiling!
Use source code for 2500 functions!
Use data structures, control
structures, and interface protocols
from any other language!
Implement borrowed feature, often
more efficiently than in the source!
Use an architecture that supports
small programs or full megabyte
ones with a single version!
Forget chaotic syntax requirements!
Outperform good programmers
stuck using conventional languages!
(But only until they also switch.)

HS/FORTH with FOOPS - The
only flexible full multiple
inheritance object oriented
language under MSDOS!

Seeing is believing, OOL's really are
incredible a t simplifying important
parts of any significant program. So
naturally the theoreticians drive the
idea into the ground trying to bend
all tasks to their noble mold. Add on
OOL's provide a better solution, but
only Forth allows the add on to blend
in as an integral part of the language
and only HSIFORTH provides true
multiple inheritance & membership.

Lets define classes BODY, ARM, and
ROBOT, with methods MOVE and
RAISE. The ROBOT class inherits:

INHERIT> RODY
HAS> ARM RightArm
HAS> ARM LeftArm

If Simon, Alvin, and Theodore are
robots we could control them with:
Alvin 's RightArm RAISE or:
+5 -10 Simon MOVE or:
+5 +20 FOR-ALL ROBOT MOVE
Now that is a null learning curve!

WAKE UP ! ! !

Forth is no longer a language that
tempts programmers with "great
expectations", then frustrates them
with the need to reinvent simple
tools expected in any commercial
language.

HS/FORTH Meets Your Needs!

Don't judge Forth by public domain
products or ones from vendors
primarily interested in consulting -
they profit from not providing needed
toolsf Public domain versions are
cheap - if your time is worthless.
Useful in learning Forth's basics,
they fail to show its true potential.
Not to mention being s-1-o-w.

We don't shortchange you with
promises. We provide implemented
functions to help you complete your
application quickly. And we ask you
not to shortchange us by trying to
save a few bucks using inadequate
public domain or pirate versions. We
worked hard coming up with the
ideas that you now see sprouting up
in other Forths. We won't throw in
the towel, but the drain on resources
delays the introduction of even better
tools. Don't kid yourself, you are not
just another drop in the bucket, your
personal decision really does matter.
In return, well provide you with the
best tools money can buy.

The only limit with Forth is your
own imagination!

You can't add extensibility to
fossilized compilers. You are a t the
mercy of that language's vendor. You
can easily add features from other
languages to HSJFORTH. And using
our automatic optimizer or learning a
very little bit of assembly language
makes your addition zip along as well
as in the parent language.

Speaking of assembly language,
learning i t in a supportive Forth
environment turns the learning curve
into a light speed escalator. People
who failed previous attempts to use
assembly language, conquer i t in a
few hours or days using HS/FORTH.

HSlFORTH runs under MSDOS or
PCDOS, or from ROM. Each level
includes all features of lower ones. Level
upgrades: $25. plus price difference
between levels. Sources code is in
ordinary ASCII text files.

All HSBORTH systems support full
megabyte or larger programs & data, and
run faster than any 64k limited ones even
without automatic optimization -- which
accepts almost anything and accelerates to
near assembly language speed. Optimizer,
assembler, and tools can load transiently.
Resize segments, redefine words, eliminate
headers without recompiling. Compile 79
and 83 Standard plus F83 programs.

STUDENT LEVEL $146.
text & scaled/clipped graphics in bit blit
windows,mono,cga,ega,vga, fast ellipses,
splines, bezier curves, arcs, fills, turtles;
powerful parsing, formatting, file and
device I/O; shells; interrupt handlers;
call high level Forth from interrupts;
single step trace, decompiler; music;
compile 40,000 lines per minute, stacks;
file search paths; formats into strings.

PERSONAL LEVEL $248.
software floating point, trig, transcen-
dental, 18 digit integer & scaled integer
math; vars: A B * IS C compiles to 4
words, 1..4 dimension var arrays;
automatic optimizer-machine code speed.

PROFESSIONAL LEVEL $395.
hardware floating point - data structures
for all data types from simple thru
complex 4D var arrays - operations
complete thru complex hyperbolics;
turnkey, seal; interactive dynamic linker
for foreign subroutine libraries; round
robin & interrupt driven multitaskers;
dynamic string manager; fde blocks,
sector mapped blocks; x86&7 assemblers.

PRODUCTION LEVEL $495.
Metacompiler: DOS/ROMldirect/indired;
threaded systems start at 200 bytes,
Forth cores at 2 kbytes; C data
structures & struct+ compiler;
Turbowindow-C MetaGraphics library,
200 graphic/window functions, Postscript
style line attributes & fonts, viewports.

PROFESSIONAL and PRODUCTION
LEVEL EXTENSIONS:

FOOPS+ with multiple inheritance$ 76.
286FORTH or 386FORTH $295.

16 Megabyte physical address space or
gigabyte virtual for programs and data;
DOS & BIOS fully and freely available;
32 bit addresdoperand range with 386.

BTRIEVE for HS/FORTH (Novell) $199.
ROMULUS HS/FORTH from ROM$ 95.
FFORTRAN translatorlmathpak $ 76.

Compile Fortran subroutines! Formulas,
logic, do loops, arrays; matrix math,
F R , linear equations, random numbers.

I

Forth Dimensions 16 Volume XI, Number 5

MULTITASKING &
CONTROLLING

REGULAR EVENTS

ne of the requirements of real life 0
is to perform multiple tasks at regular inter-
vals. Forth does not provide this real-time
capability directly; it can perform multiple
tasks apparently simultaneously by using
multitasking, but it has no internal timer to
schedule events at specified times. With
such a timer per task, and with the multi-
tasker, we can arrange for events to occur at
predestined times, or at least very close to
them. This paper describes a timer for use
with the IBM PC family, and discusses the
multitasker built into the F83 public-do-
main Forth system.

T. HENDTLASS - HAWTHORN, AUSTRALJA
rn

The virtues of simplicity
are nowhere stronger
than in multitasking.

Of Tasks and Timers
First, each timer is set to an initial value.

Every task checks its timer whenever the
multitasker runs it. If time is up, it does
whatever needs to be done and resets the
timer to its initial value; if not, it just passes
control onto the next task. The accuracy of
the timing depends on the frequency of the
task interchange in the multitasker and on
the resolution of the timers. The rate of task
interchange is under the control of the pro-
grammer: a task exchange takes place
whenever the word PAUSE is executed.
Although it can be placed liberally through-
out the code and every input or output word
has PAUSE embedded in it, this is the major
cause of latency and the timer need not have
a very high resolution. For tasks that have to

Figure One. The definition of the defining word TIMER.
: TIMER

CREATE (--) \ no s t a c k e f f e c t when c r e a t i n g
4 ALLOT \ space f o r two v a r i a b l e s

DOES> (-- a d r) \ run-time s t a c k e f f e c t of c r e a t i o n
(READ-CLOCK) \ g e t new-value from c lock

OVER 2+ @ \ and l a s t va lue
OVER - \ c a l c u l a t e change
2 P I C K +! \ update u s e r va lue
OVER 2+ ! \ save l a t e s t va lue r ead

I

Figure Two. A version of (READ-CLOCK) for F83 on a PC.
code (READ-CLOCK) (-- n)
0 # mov \ Ah=O t o r ead c lock
2 6 i n t \ 1Ah=26 i s t h e r ea l - t ime c lock
dx ax mov \ low 16 b i t s of answer t o ax
lpush \ answer t o s t a c k and e x i t t o next
end-code

Figure Three. F83 provides these multitasker-interface words.
SINGLE (--)
Disable multitasking by vectoring PAUSE to a null word. Leave the current task run-
ning as the only task, but don't alter the circular linked list of tasks.

MULTI (--)
Enable multitasking by vectoring PAUSE to the active word (PAUSE) , which
handles the task interchange.

BACKGROUND: (--)
Contains a defining word that defines a task in the round-robin multitasker. It
allocates a stack area of 400 bytes (100 for the return stack and 300 for the data stack)
and links the task, leaving it in the sleeping condition. Typing the task name will
return its address, rather than activating it; it can only be run by the multitasker. See
comment on this name, in text.

WAKE (a d r --)
Wake up the task whose address is on the stack, so that it will execute in its next turn. 1 I

(Continued.)

I

Volume XI, Number 5 17 Forth Dimemiom

SLEEP (adr --)

Make the addressed task pause indefinitely until it is woken again (if ever).

run at, say, intervals of minutes, it is not
hard to arrange things so that the maximum
time latency is only on the order of a second
or so.

All we need to add to standard Forth are
the timers. One method of achieving this is
with a new defining word which I have

STOP (--)
Put the current task to sleep. If a task ends (i.e., doesn't run continuously in an endless
loop), then it must end with this word. Otherwise, a task will try to execute its stacks
with unpredictable-but certainly very undesirable-results.

called TIMER. This creates a timer which
can be preset to a value and which will be
decremented at a known rate. Periodic
checking of the value in this timer will
provide the cue to run the task associated
with this timer. Although only one new
word, TIMER, is added for direct use, the

PAUSE (--)
The task in which this word appears stops, and control is passed to the next task in the
list. PAUSE exists in all input and output words except those directly involving input
and output ports. If none of these words are used (implicitly or explicitly), the task will
never release control to the next task.

(Continued.)

ACTIVATE (--)
Force the assigned task to execute new code rather than its old code.

Figure Four. Example use of F83's multitasking words.
BACKGROUND: PRINT*S

20 0 DO \ set up outer loop
ASCII * EMIT \ send one *
100 0 DO PAUSE LOOP \ wait a bit

LOOP \ loop to send next
STOP ;

Figure Five. A 'multitasker-safe' version of the previous example.
: NEW-PRINT*S
PRINT*S ACTIVATE
BEGIN \ set up outer loop

20 0 DO \ set up inner loop
ASCII * EMIT \ send one asterisk
100 0 DO PAUSE LOOP \ wait a bit

LOOP \ loop to send next
STOP FALSE \ stop when 20 sent

I ;
\ loop forever I

Figure Six. The formal definition of BACKGROUND : .
: BACKGROUND :
400 TASK: \ define a task entry with 400 bytes

\ for the stack, and the name following
HERE \ pointer to where code will be compiled
@LINK 2- \ address of task just defined
SET-TASK \ initialize the new task
! CSP \ initialize compiler error checking
1 \ compile the code the follows, so

\ it will be executed by this new task
,

system-dependent part of the definition is
factored into another word called
(READ-CLOCK) . When called,
(RE-LOCK) leaves a number on the
top of the stack; this number must be main-
tained by the host computer hardware in
some way, increasing at a regular and
known rate. In the IBM PC family, a suit-
able timer is available and may be obtained
by reading the DOS real-time clock.

An example use of TIMER is:
TIMER name

which creates a timer called name.

Name, when run, returns the address
where the count for this timer is held, so that
it can be initialized with a normal store or
can be read with a normal fetch. However,
name does more than that. When it is
called, it updates the value in its counter
(based on the amount of time since it was
last updated) before it returns the counter
address. This updating is done on a when-
needed basis to save processing time, as the
value in the counter need not be updated
until it is to be read (obviously) or initial-
ized (less obviously).

Internally, each timer keeps two values:
the user initializes and reads the user value,
which steadily counts down from the initial
value to zero (and beyond!); the internal
value is the value obtained from the system
clock the last time it was read. When a timer
is activated, it reads the system clock and
subtracts the previous system clock value
(obtained from the internal value). Then it
decreases the user value by this amount and
updates the internal value. When a timer is
being initialized, both the user and internal
values need to be set, otherwise the fnst
read of the timer will produce unpredict-
able results.

Defining a Defining Word
The new defining word TIMER is itself

defined with the words CREATE and
DOES>. For those not familiar with the
operation of CREATE and DOES>, a brief
explanation follows.

A defining word has two quite distinct
parts: one describes what the defining word
is to build, and the other consists of the
behavioral characteristics of the new entity
it builds. For example, consider the proc-
essing of:

(Continued on page 30.)

I

Forth Dimensions 18 Volume XI, Number 5

BINARY
TABLE SEARCH
DAVID ARNOLD - KIRKSVILLE, MISSOURI

m

A binary search of a table can be re- ,
markably quick and can be adapted readily 1
to various types of data. The table records
must be arranged in order, and none may be
duplicated. The search starts by declaring
the whole table as a search region. Then a
test datum is compared with a record near
the middle of the region. If they match, the
search ends. Otherwise, another midpoint
test is made. If the test item was larger than
the inspected table item, the upper part of
the current search region becomes the next
search region. If the test data was smaller,
the lower part of the current region is
searched next. If a table record exists that
can match the test data, the search homes in
on it. Otherwise, the table is soon ex-
hausted, and the search ends unsuccess-
fully.

Usually, a part of each record called the
key field is set aside for a datum of a type
that can be easily ordered and compared,
and which can be used as alabel for one and
only one record in the table. The key fields
may contain useful information, or they
may be used just to make it convenient to
order and search the table. Other fields in
the record may hold information that isn't
easy to put in order or to compare, or that
may be duplicated or blank in some rec-
ords. For example, a voter registration list
might list one voter in each record. A three-
field record could hold a voter's name,
home address, and social security number.

1 The name and the address could be stored in
two text fields, and the social security
number in a numeric field. The social secu-
rity number field would make a good key
field: Numbers are easier to order and
compare than text and, barring errors, no
two people are assigned the same number.
Though the name be misspelled and the

address wrong or absent, the number could
still be used to locate the record.

BIN-SRCH does a binary table search.
It receives three items on the stack, 1) the
address of a table, with its records arranged
so their key fields are ordered small to large
and no key fields are duplicated, 2) the
number of records in the table; and 3) a test
datum which is tested for a possible match
with some key field in the table. If a match
is found, the address of the matching record
is returned on the stack. If none was found,
a false flag is returned. [ll

An average success-
ful search requires
log2(N)-I compari-
sons.

There are two possible exit points. If a
match is found, it immediately retums;
otherwise, it eventually exhausts the table,
exits the search loop, and retums. If it starts
with a table of zero length, execution falls
through to the code that returns a false flag,
as if an unsuccessful search had been done.

To start the search, the whole table is
defined as the current search region. Two
variables on the stack hold the lower and
upper table indices of the current region.
During each pass through the search loop,
the key field in a record at the middle of the
region is compared with the test data. If the
two match, the address of the just-inspected
record is left on the stack and the word
returns. Otherwise, a new search region is
defined. If the test data was greater than the
contents of the key field, the index of the
record following the one just tested be-

comes the new lower bound. If the test
data was the smaller, then the index of the
record preceding the one just tested be-
comes the new upper bound. Then a new
pass through the search loop tests another
middle record. [2] If no match exists, the
lower and upper bounds eventually cross
each other, and the putative upper index is
less than the lower. The loop termination
test finds this and exits the loop. At that
point, a false flag is left on the stack, and
the word returns.

BIN-SRCH uses some Forth-83
double-number operators to manipulate
pairs of stack variables, not double-preci-
sion numbers. If you're using a 32-bit sys-
tem, you might want to check these words
to be sure they work with a pair of stack
items, not just with one natural, double-
precision-sized machine word. [3]

1 LOAD will load everything. ONLY
FORTH DEFINITIONS ALSO sets up
the search order. [4] Laxen and Perry's
F83 sets the search order thus. On systems
such as fig-FORTH that set up the search
by linking vocabularies when they're
compiled, FORTH DEFINITIONS
would do.

Screen three contains words that
handle the table records. Redefinition of
these words would allow access and
comparison of various types of records
and the data therein.

Screens five through seven contain
words to demonstrate table searching.
KEY>FUNC receives the address of a
table of records, and a test keycode. The
first item in the table is the number of
records. After that, the records are listed.
Each record holds a keycode in the first
field and a function address in the second.
If a keycode match is found, a corre-

Volume XI, Number 5 19 Forth Dimensions

NGS FORTH
A FAST MIRTH,
OPTIMIZED MIR THE IBM
PERSONAL CQMFUTER AND
MS-DOS COMPATIBLES.

STANDARD FEATURES
INCLUDE:

@79 STANDARD

@DIRECT 1/0 ACCESS

ACCESS TO MS-DOS
FILES AND FUNCTIONS

@ENVIRONMENT SAVE
& LDAD

@MULTI-SEGMENTED FOR 1 LARGE APPLICATIONS 1
I @EXTENDED ADDRESSING I
@MEMORY AILLOCATION 1 CONFIGURABLE ON-LINE

I @AUTO ILlAD SCREEN BOOT I

sponding function address is returned;
otherwise, it returns a false flag.
KEY-DEMO USeS KEY>FUNC to search
some sample keycode/function tables. The
sample functions just print a few things on
the console display. If no table record
matches the test keycode sent to
KEY>FUNC, you get beeped at.

How fast is this binary search? If N is the
number of table records, and 2°K is the
smallest power of two that is larger than N,
then the greatest number of comparisons
needed to exclude a match is K. A success-
ful search could take as many as K compari-
sons. The average number of comparisons
for a successful search would be about
l o g 2 0 1. [S] (Log2(x) is the logarithm to
the base two, and is equal to ln(x)/ln(2).)
For example, searching a table of 25 key-
codeffunction records, suitable for
KEY>FUNC, would take no more than five
comparisons-since 32 (2"5) is the small-
est power of two greater than the table
size-and the average number of compari-
sons during successful table searches
would be about log2(25)- 1 = 3.6.

Screens eight through nine contain
some words to set up a test table and run
some speed tests. On my 7 MHz IBM PC-

tual array in disk storage could be huge.
With modified table-access words, indices
in the range -16383 to 16383 mightbe used,
doubling the workable table sue. With a
modest loss of speed, D+ and UM/MOD
might be used to average the search
region's limits, and D< couldbe used for the
test at the end of the search loop.

Other search methods that also progres-
sively approach a matching table record are
described in the book by Knuth and seem
well suited to Forth. A binary search that
specifies a search region and center record
not with three variables (the upper, lower,
and center indices) but with two (the center
index and its distance from the center of the
region last checked) might be a bit faster,
and could use indices in the range zero to
32767. A search that uses Fibonacci num-
bers needs only the speedy addition and
subtraction operations to locate the next
record to test, and would not have oversized
intermediate results. A table whose records
contain pointers [7] that explicitly trace out
branching relationships among the data in
the records can have records deleted and
inserted without requiring that the rest of
the table be shifted around.

@LINE & SCREW EDITORS I 1 compatible computer, with the non-Forth-
83 Standard words defined in high-level 1 Tll A valid address must be non-zero, and a

@DECOMPIL,ER AND
DEBUGGING AIDS

a8088 ASSEMBLER

.GRAPHICS & SOUND

Forth, the time to set up aid call
KEY>FUNC averages between seven and
nine milliseconds per search of a 256-ele-
ment table. Generally, the greater the like-
lihood of finding a match, the less time a

eDETAIUD MANUAL

@INEXPENSIVE UPGRADES

aNGS USER NEWSLETTER

A CY>MPLGTE F v R ! r H
D E V E U) m SYSTEM.

PRICE8 START AT $70 I
NEw+BF.150 & BP-110
VERBIONS AVAILABLE I

NEXT GENERATION 8Y8TEMS
P.O.BOX 2987
RANTA CLARA, CA. 95055
(408) 241-5909

Constraints and Possibilities
BIN-SRCH must use table indices in-

stead of absolute addresses to specify its
search region-even with tables of simple
data like characters or integers-because
the operation that finds the middle element
does so by averaging the regions' limits,
and the intermediate sum of the two ad-
dresses might exceed Forth-83's range of
16-bit unsigned integers (i.e., 65535). And
to swiftly divide that sum, 2/ is used, it
does signed division, and the sum of the two
addresses might exceed the range of posi-
tive signed integers (i.e., 32767). [6]

The tables delivered to BIN-SRCH
must have no more than 16383 records.
That keeps the intermediate sum of the
index limits within the range of positive
signed integers. A big integer array for a
small program could be larger than that-
even in a lcbit address space--and a vir-

fake flag is the quantity zero.

[2] The search paths trace out the branches
of a tree-like pattern. Each middle record
corresuonds to a fork (called a node) in the
tree. The leftward branch (if one exists) and
all its subseauent nodes would hold data
that is less &an the aforementioned fork;
and a rightward branch and all its nodes
would be greater. In a plain ordered table,
the algorithm implicitly describes a binary
tree.

[3] Forth-83, the latest codification of con-
ventional Forth practice, specifies that
single-precision numbers be 16 bits long,
the word size used by most Forth words.
DUP , SWAP , and ROT are some prominent.
examples. 32-bit double-precision num-
bers are handled as pairs of single-precision
numbers, and a set of double-number op-
erators such as 2DUP. 2SWAP, etc. are
generally used on those longer numbers.
The double-number operators are also use-
ful for working with pairs of numbers on the
stack, when the word size is less of an issue
than the fact that the numbers are distinct,
not components of a double-precision

Forth Dimemions 20 Volume XI, Number 5

number. For example. 2SWAP is tidier
than ROT >R ROT >R, and if it's available
in machine code, it is faster. It happens that
16-bit words are the size most conven-
iently handled by the most common small
computers, and Forth systems running on
them often have double-number opera-
tors. Some of the newer (and more expen-
sive) small machines can handily work on
32-bit numbers, and it would be possible
for a Forth system running on them to omit
double-number operators and make do
with the machine's natural ability to use
double-precision numbers. I have never
used such a computer, though, and can't
say how likely that would be.

[41 This is an experimental proposal by
William F. Ragsdale (Forth-83 Standard,
pp. 61-65). CONTEXT is an array of vo-
cabulary addresses. When a word must be
found in the dictionary, the listed vocabu-
laries are searched in order, starting with
the first array item. CURRENT is a variable
that holds the address of the compilation
vocabulary, into which words are to be
compiled. A vocabulary, when executed,

puts its address into the first location in the
CONTEXT array, replacing whatever was
there before. DEFINITIONS copies the
first item of the CONTEXT array into
CURRENT. ONLY is a vocabulary with
special actions. It clears the CONTEXT ar-
ray and puts its address in the first and last
array locations. The ONLY vocabulary con-
tains a few words that provide access to the
other regular vocabularies. ALSO shifts all
the CONTEXT items (except the ONLY item
at the end of the array) one position toward
the end of the list and leaves the leading
item duplicated. The second ONLY item at
the end of the array is not disturbed. Thus,
ONLY 1 S T ALSO 2ND DEFINITIONS
ALSO

would make the search order:
2ND 2ND 1 S T ONLY

and 2ND would be the compilation vocabu-
lary. Additionally, ALSO is often used to
leave the first item duplicated, because
compilation of a colon definition starts by
putting the contents of CURRENT into the
first location of CONTEXT.

Total control
with LMI FORTHTM
b r Programming Professionals:
an expanding family of compatible, high-
performance, compilers for microcomputers
For Development:
Interactive Forth-83 InterpreterlCompilers
for MS-DOS, OSl2, and the 80386

16-bit and 32-bit implementations
Full screen editor and assembler
Uses standard operating system files
500 page manual written in plain English
Support for araphics,floatina Doint, native code aeneration

L - . - . - I

I For Applications: Forth-83 Metacompiler
uniqui tabledriven multi-pass Forth compiler
Compiles compact ROMable or disk-based applications
Excellent error handling
Produces headerless code, compiles from intermediate states,
and performs conditional compilation
Crosscompiles to 8080,Z-80,8088,68000,6502,8051,8096,
l802,6303,6809,68HC11,34010, V25, RTX-2000
No license fee or royalty for compiled applications . .

Laboratoty Microsystems Incorporated
h s t Office Box 10430, Marina del Rey, C4 90295

Phone C d i t Cerd Oldem to: (213) 3W7412
FAX: (213) 301-0761

[5] The Art of Computer Programming
(Vol. 3, 2nd ed.) by D.E. Knuth, has a
technical description of this and other bi-
nary search methods. That fairly readable,
unpatronizing seven-volume tome is
chock-full of practical data processing
methods. It might be available from a
nearby college library, or a small public
library might obtain it though an interli-
brary loan.

[6] On Forth-83 systems, 2 / produces a
floored quotient, corresponding with the
floored results of Forth-83 division. The
remainder has the sign of the divisor. Op-
erations such as 2 /. /,or MOD, which don't
produce both quotient and remainder, pro-
duce results as if /MOD SWAP DROP or /
MOD DROP had been performed. If you
have a Forth-83 Standard system, try these
division operators on some negative num-
bers. If floored division still seems myste-
rious, try multiplying the divisor and the
floored quotient, then add that product to
the floored remainder, the result should be
the dividend. I've seen one Forth system
that incorrectly implemented 2 / as a

TDS 9090 FORTH COMPUTER
ideal for starter, teaching or target system

build into your product igL'-------
for rapid completion! 1- uBmx 7 1 /z r i , j

program with IBM-PC

complete Fig-Forth system . connect to keyboard, Icd display. RS 232
30K RAM; 16K EPROM . 35 VO I lnn; 10 bit AID option
over 3000 in use in Europe low power - down to 3 nu @ 6-16v

Connect the 4" x 3" TDS 9090 mingle-board computer to an IBM-PC or
compatible and start writing Forth code Immediately! Lots of ready made
apptloatlon prognnm come with the kit to do interruptdriven VO, graphics Icd
driver, frequency measurement, solid-state speech and data-logging. The board
includes a ROM-resident Forth language kernel and an assembler. By storing
generated code in either nowvolatile RAM or EPROM, the board can be used in a
target system or stand-alone product Based on the CMOS Hitachi HD 63A03Y
microprocessor, it has two t l rnm, two serial ports and interrupts which are
available via Forth Instructionm. Also included on board are 30K RAM for
storing source code or data, 16K EPROMmovrarn for firmware, 256 bytes EEPROM.
35 VO lines, two RS 232 serial interfaces, a watchdog timer to insure recovery horn
crashes, and an expansion bus. Interface the TDS 9090 to an 8 x 8 keyboard or an
Icd display, or use two of the VO lines as an I2C interface. The ROM-resident Forth is
an extended version of Fig-Forth with Forth words to support all the onboard
peripherals, as well as the keyboard and Icd interfaces. Put product application
software inb PROM and it starts b run as won as power is applied. Made in England
by Trlmngle Digital Sonricr, and well-known in Europe, the TDS 9090 is now
supported in the USA and is available with less than twc-week delivery at ody

The Saellg Company 1193 Moseley Rd Victor NY 14564 USA
101: (716) 425-4367 or fax (716) 425-7381

Volume XI, Number 5 21 Forth Dimemions

Scr # 1 Forth-83
0 (binary table search 11Apr89dna I
1 ONLY FORTH DEFINITIONS ALSO DECIMAL
2 CREATE BINSRCH_-MARK C FORGET'able marker 1
3 : ?ENOUGH (n -- I
Lf 1+ DEPTH SWAP U< ABORT" ? Not enough parameters." ;
5 : NTHRU C start end -- I
6 2 ?ENOUGH OUER OUER 1+
7 U< IF 1+ SWAP DO I U. I LOAD LOOP THEN ;
8
9 2 9 NTHRU
0 ONLY FORTH DEFINITIONS ALSO DECIMAL
1
2

Scr # 2 Forth-83
0 (stack ops system specifics miscellany 16Nar89dna 1
1 : 2DUP C nl n2 -- nl n2 nl n2 > OUER OUER ;
2 : 2DROP (n n -- I DROP DROP ;
3 : 2SWAP (nl n2 n3 n!t -- n3 nY nl n2 1 ROT >R ROT R> ;

: 20UER (nl n2 n3 nY -- nl n2 n3 nq nl n2 1 3 PICK 3 PICK ;
5 : NIP (nl n2 -- n2 1 SWAP DROP
6 : -ROT C nl n2 n3 -- n3 nl n2 1 R ~ T ROT ;
7 : 2* (n -- 2*n > DUP + ;
8 : U* C ul u2 -- u3 1 UN* DROP ;
9 : NSGN C n -- -1 : 0 I 1 I DUP IF 0> 2 AND 1- THEN ;
0 0 CONSTANT FALSE
1 -1 CONSTANT TRUE (111..111B 1
2 2 CONSTANT /N C size of natural machine word I
3 (2 bytes for 16-bit system Y bytes for 32-bit system 1
Y : BEEP (-- 1 7 EMIT ;
5 : HEX C -- 3 16 BASE ! ;

Scr # 3
0 (table
1 2 / N *
2 : /T*
3 : TA+
Lf : T>K
5 : T>F
6 : TCOMP
7
8
9

Forth-83
access & comparison 17Mar89dna 1
CONSTANT /T C size of table record I
C #tabl-rcrd -- size 1 /T U* ;
C tabl ,,..,, base idx -- tabl rcrd-.-adr I /I+ + ;
C tabl rcrd adr -- rcrd key adr 1 ; IMMEDIATE
(tabl rcrd adr -- rcrd .,,,, cfa adr > /N + ;
(n l n 2 - - - 1 I O I 1 < = > I - N S G N ;

simple bit shift, thus performing unsigned
division, so you might want to check for
that too.

[7] A pointer is a variable that contains an
address. In this example, each table record
would contain one or more pointers that
each hold the address of the next record up
or down in the branching pattern.

David Arnold was attracted to Forth because it compiles fast code and because a
programmer can extend and refine it from the system roots up. He started with a
Commodore 64, then got F83, and wound up writing a systemfrom scratch to run on
a PC clone. A disabled person, he is working toward earning a living in a restricted
environment.

I

Forth Dimensions 22 Volume XI, Number 5

Scr # Forth-63
0 (binary search for a matching record 17Mar03dna 1
1 : B I N ,,,,, S R C H (tabl adr tabl siz srch key -- rcrd adr : f= >
2 OUER I F (table not empty? 1
3 > R 1- 0 (. . -- tab11 high, id>: low idx -r- n 1
Y B E G I N
5 2 D U P + 2/ 3 P I C K O U E R T A + (. . -- tb h 1 m rc -r- n 1
6 D U P T > K @ R@ T C O M P C . . -- tb h 1 m rc ? -r- n 1
7 ? D U P 0- I F
6 R > D R O P > R 2 D R O P 2 D R O P R> E X I T C -- rcrd.-adr >
9 T H E N C . . -- tb h 1 m rc ? -r- n 1
0 N I P O< I F 1+ E L S E 1- -ROT T H E N N I P
1 Z D U P < U N T I L (. . -- tab1 hghi lowi -r- n 1
2 R> D R O P
3 T H E N C . . - - x x x)
Lf 2 D R O P D R O P F A L S E ; C . . -- fa 1
5

Scr # 5 Forth-03
0 (search keycode/function tables sample functions 18Mar89dna 1
1 : K E Y > F U N C (ktabl key -- cfa I f- 1
2 OUER / N + R O T @ R O T BIN,--.SRCH D U P I F T > F @ T H E N ;
3
Y : SHOW,,,,LOW (c -- 1
5 C R . " ' * " D U P 96 + E M I T . " "' 2 S P A C E S U. ;
6 : SHOW,,,,CHR C c -- 1
7 C R . " "' D U P 32 MAX E M I T . " ' " 3 S P A C E S U . ;
8 : SHOW,,-SPC C x -- 1 C R D R O P . " 'spc ' " S P A C E 32 U . ;
9 : KEY Q U I T (x -- 1 C R D R O P . " ' quit demo ' " C R Q U I T ;
0
1
2
3
'4
5

Scr # 6 Forth-83
0 HEX C keycode/function tables
1 C R E A T E LOWKEYS 0 , (# keycode/function
2 1 , ' SHOW,-,-LOW , 2 , SHOW--LOW ,
3 3 , ' SHOW ,,.,, LOW , 1B , ' KEY,. , -QUIT ,
Y H E R E LOWKEYS / N + - / T / LOWKEYS !
5
6 C R E A T E H I G H K E Y S 0 ,
7 20 , SHOW--SPC , Lfl , ' SHOW-CHR ,
8 Lf2 , ' SHOW,,.-CHR , 93 , ' SHOW,,-CHR ,
9 61 , SHOW-CHR , 62 , SHOW-,,.CHR ,
0 63 , ' SHOW.,.-CHR ,
1 H E R E H I G H K E Y S /N + - / T / H I G H K E Y S !
2 D E C I M A L
3
Lf
5

26Feb89dna 1
entries 1

(- A -B 1
C -C esc)

(spc A 1
C B C)
C a b)
(C 1

Volume XI, Number 5 23 Forth Dimenriom

Scr # 7 F o r t h - 8 3
0 C select k y b d f u n c t i o n s 2 6 F e b R S d n a I
1 : ?DO--KEY C c c fa I x f= -- 1
2 ?DUP I F EXECUTE ELSE DROP BEEP THEN ;
3
Y : KEY-DEMO C -- I
5 CR . " Key-demo P r e s s ESC t o q u i t . "
6 BEGIN
7 KEY
8 DUP 32 U< I F LOWKEYS ELSE HIGHKEYS THEN (. . -- key tab I
9 OVER KEY>FUNC C . . -- k e y cfa I x f - >
0 ?DO-KEY
1 0 UNTIL ;
2
3
Y
5

Scr # 8 F o r t h - 8 3
0 (m a k e & f i l l test t a b l e 1 1 A p r 8 9 d n a I
1 CREATE TEST--,MARK C F O R G E T 1 a b l e m a r k e r I
2 CREATE TEST-TABLE 256 /T* /N + ALLOT
3 : FILL--TABLE (n - s t e p -- I
Y 1 ?ENOUGH 0 TEST.-TABLE !
5 256 0 DO
6 TEST,-TABLE / N + I TA+ OVER I U* (. . -- n s t e p rcrd n 1
7 2DUP SWAP T>K ! 1+ SWAP T > F ! 1 TEST,,--TABLE + !
8 LOOP
9 DROP ;
0 1 FILL--TABLE
1
2 \ I f I S a , , . - r e c o r d - . , i n d e x & N = I * n - - s t e p , each record c o n t a i n s
3 \ N i n t h e k e y f i e l d & N + l i n t h e data f i e l d .
Y \ T h e k e y f i e l d s are o r d e r e d small t o l a r g e , a n d a l l data
5 \ f i e l d s h o l d a n o n - z e r o q u a n t i t y .

Scr # 9 F o r t h - 8 3
0 (s p e e d test
1 : TEST--SPEED C # t i m e s -- 1
2 1 ?ENOUGH BEEP . " w o r k i n g . . "
3 0 DO
Y 256 0 DO
5 TEST,,..,TABLE I KEY>FUNC DROP
6 LOOP
7 LOOP BEEP ;
8
9
0

I

Forth Dimensions 24 Volume XI, Number 5

BEST OF
GENIE

-- - -

GARY SMITH - LITTLE ROCK, ARKANSAS

N e w s from the CEnie Forth
RoundTablAnce again it is time to enjoy
some comments from recent GEnie Forth
RoundTable guest conferences. Since I am
charged with both the privilege of produc-
ing this column and arranging the guest
conferences, I must admit I truly enjoy
these recaps. They give me an opportunity
to recall some of the pearls of wisdom I
have been audience to, but perhaps failed to

, properly savor. There are, most definitely,

In the past I have presented the guests'
opening remarks, which set the tone of their
respective conferences. This format has
been well accepted by the readers, so the
expression, "If it ain't broke, don't fix it"
seems appropriate.

Worsley. Jim, Kent, Doug, and Chris
have joined the conference this evening to
share ideas and answer questions about
either VP-Planner or the Forth develop-
ment system. The Forth system has the
following characteristics:
1. direct threaded with NEXT coded in-

line;
2. top-of-stack in BX register;
3. compiler words and headers in sepa-

rate area of memorv;

FORML and now the Australian Forth
Symposium and SIGForth, I cannot imag-
ine where else one could hope to be ex-
posed to the views of such avariety of Forth
luminaries. If you have not participated in
one of these conferences, I encourage you
to do so. The words remain for your inspec-
tion in the GEnie Forth Library, but the
intimacy of the moment is missed forever.

For the present moment, sit back and
enjoy with me these moments of insight.
The guests will be.

The creators of VP-Planner Plus: Jim
Stephens, Kent Brothers, Doug Lank-
shear, and Chris Worsley.
Steve Roberts, vagabond computerist
and columnist, with John Bumgarner of
Information Appliance Inc. and Teny
Holmes, the creator of tForth.
Tom Zirnmer, creator of F-PC, the pub-
lic-domainForth for PCs with greatly ex-
tended features.
Roedy Green, who created the 32-bit
public-domain BBL Forth and Abun-
dance business manager.
Chuck Moore, Forth's creator and owner
of Computer Cowboys.
Phil Koopman, senior scientist for Harris
Semiconductor and author.
Robert Smith, ofLockheedPalo Alto and
Forth math guru.

pearls to be gathered. Withhold source code With the possible exception of confer-
ences such as FORML, Rochester, O Y ~ ~ V when vou 're 1 - -

Jim Stephenson (with Kent Brothers, Doug
Lankrhear, and Chris Worsley)
May 1989
Stephenson ~~~~~~~e

First, a short blurb about VP-Planner for
those who may not know it. VP-Planner is
a spreadsheetldatabase program for the
IBM PC, best known for its Lotus 1-2-3
compatible spreadsheet linked with power-
ful dBASE and multidimensional data-file
handling capabilities. It was initially devel-
oped in Forth by Jim Stephenson. Dave
Mitchell, and Kent Brothers of Vancouver,
Canada, and was first released in Septem-
ber 1985 by Paperback Software of
Berkeley, California

VP-Planner Plus, released in October
1987, added more database features, 1-2-3
release 2 compatibility, background/prior-
ity recalculation, and multi-step undo. The
product has been translated into more than
ten languages and is sold world-wide. Fur-
ther development continues on as-yet-un-
announced features. The development
team now also includes Doug Lankshear,
Rick Falck, Bob Tellefson, and Chris

4. text in separate aria- for foreign lan-
guage translation;

5. colon bodies separated from machine
code;

6. hybrid colon/assembly words;
7. local variables and subwords;
8. overlays;
9. extensive Forth-level breakpoint/trace

facility;
10. IEEE 6480-bit software floating

point and 80x87 support.

Steve Roberts (with John Bumgarner and
Terry Holmes)
June 1989
Freelance writer on tour somewhere on
Winnebiko

You probably already know about the
Winnebiko, so I won't go into much detail
on the general stuff, lifestyle, solar, etc.
The emphasis here is on the control sys-
tem, and I'm delighted to have with me
(electronically) John and Terry, who can
answer the substantial questionsabout the
new Forth laptop and the details of its irn-
plementation. Essentially, I am using this
machine as the hub of a real-time control
environment in the new bike, in charge of
a large "resource bus" that carries all
audio, serial, and digital information in
the bike. [The projected release forIr$or-
mation Appliance's Swyft Forth Laptop
wasfirst quarter 1990. gls]

I

Volume XI, Number 5 25 Forth Dimensions

Tom Zimmer
June 1989
Senior Programmer at Maxtor and creator
of F-PC Forth

I'm not sure what to say after such a nice
intro, but I will say that I am glad to be
invited to this round table and for the opor-
tunity to learn more about GEnie. My latest
efforts have been in the area of cleaning up
F-PC for a new release. The first, and per-
haps the most significant, is the adjustment
of F-PC to use multiple directories for its
sources, rather than keeping five billion
files all in one directory. F-7'2, as it is called
for the moment, uses a Forth PATH, as
suggested from the East Coast Forth Board.

Roedy Green
July 1989
Owner of Canadian Mind Products and
creator ofBBL Forth

There are two sorts of things you proba-
bly would be interested in hearing about.

Internals of the 32 bit BBL Forth com-
piler.
Externals of the Abundance database
language.
Abundance is more interesting, because

I was able to experiment with some novel
concepts in languages. BBL is interesting
from the point of view of fanatical attention
to detail Jaunting is the most interesting
[feature of Abundance]. It is the ability to
run backward in time. Arrays and files use
identical syntax. There are no subscripts.
Like a spreadsheet, values automatically

redisplay on the screen when recomputed.

Chuck Moore
August 1989
Originator of Forth and owner of Com-
puter Cowboys

Preconference prelude, the "Future of
..." is a catchall for everything having to do
with Forth. Its current place in the world is
impossible to determine, and largely irrele-
vant. Forth is a valuable tool-and will
remain sc+-regardless of the number using
it. Recently I was obliged to use conven-
tional CAD software. I am dismayed that it
hasn't evolved from the 60's. Forth is the
only hope for improved software, ignoring
the ever-hopeful A1 and neural nets. Com-
puters are getting ever-more complicated,
in violation of the first principle of human
activity: "Keep It Simple."

In respect for this unique forum-25
words or less-I offer the following state-
ments to challange/guide question/com-
ment:
1. I like classic Forth.
2. This includes BLOCKS-simpler,

faster, better than files.
3. VOCABULARY has been misused by

fig-FORTH. It is a poor substitute for
fast compile.

4. Forth must evolve. Standards are very
dangerous.

5. ANSI commitlee desemes thanks for
"above andbeyondcall of duty." Theirs
is the impossible dream.

6. Marvelous opportunity for non-ANSI

Forths.
7. Forth architecture is superb for micro

(macro) computers. Many variants
should be explored.

8. Three keys are necessary and suffi-
cient. QWERTY is a joke.

9. Marvelous opportunity for non-IBM
PCs.

10. Work smart, not hard-forethought.
11. A program that can do everything (ie,

SPICE) can do nothing well, fast, eas-
ily.

12. PUSH and POP arebetternames for >R
and R>.

13. Multiply is a much-over-used arithme-
tic operation (i.e., FFT can be replaced
by Walsh-Hadamard).

14. Floating point is a bad joke.
15. Withhold source code only when

you're ashamed of it.
Forth is the best computer language. I'll

be using it another 20 years, with a few
changes.

Phil Koopman
September 1989
Senior Scientist, Harris Semiconductor
and author of Stack Machines: The New
Wave

Some of the things I have found out
about stack machines go against widely
held (at least, outside the Forth commu-
nity) ideas. For example, stack machines:

don't need stacks bigger than 16 to 32
elements
need not have a significant context-
switching time
can cycle their clocks every bit as fast as
(or perhaps faster than) RISC processors
One thing I run across continually is

that folks confuse the requirements for
real-time embedded control with those of
workstation environments. One of my pro-
fessional goals is to understand more about
Forth-derived stack computers in order to
help them gain acceptance in applications
for which they are well suited. Stack ma-
chines seem to be superb at real-time em-
bedded control (although I still want to do
more research to quantify this notion). But,
what about other application areas? If stack
machines are the answer, what are the
questions?

Robert L. Smith
October 1989 Research
Specialist with Lockheed, Palo Alto

Thank you. For floored division, it

I ' I / helps to f&s on the modulus or remainder

I
Forth Dimensions 26 Volume XI, Number 5

rather than the quotient. Most users use
only positive arguments, so floored or non-
floored give the same results. For almost all
cases that I know of, if you have at least a
negative numerator, you probably should
use floored division.

As for floating point
1. Should Forth have it at all?
2. If so, should it be in the Standard?
3. [Should it be] IEEE floating point?

It is never too late to begin participation
in the guest conferences. They are usually
scheduled for the third Thursday of the
month except for the last three months of
the calendar year, when they are scheduled
for the second Thursday to avoid conflict
with the holidays. Obviously there are ex-
ceptions, so it is always wise to note the
current schedule that appears each day you
log onto the GEnie Forth RoundTable. I
might add that without attendees (with
questions) it is pointless to schedule these
wonderful guests.

To suggest an interesting on-line guest
or to share a message, leave e-mail
posted to GARY-S on GEnie (gars on
W e w e and the Well), or mail him a
note via the ojjices of the Forth Interest
Group.

(Continuedfiom page 15.)
next command.

Screens 1-5 represent the first steps of
this development, 6-9 are the second stage,
and 10-1 1 comprise the final stage.

Chester H. Page earned his doctorate
in mathematical physics at Yale and
spent some 36 years at the National
Bureau of Standards. His first Forth
was Washington Apple Pi's fig-
FORTH, which he modijled to use
AppleDOS, then ProDOS, and later to
meet the Forth-79 and Forth-83 Stan-

(Page screens, continued.)
1

dards. Recently, he added many fea-
tures of F83.

TRACE SCR # 8
0 '\ Second s t a g e , c o n t i n u e d 30JUL88CHP
1 ASSEMELE (DETOUR)
2 SEC, I P LDA, 2 # SBC, FROM STA, I P 1+ LDA, 0 # SBC,
3 FFFF CMP, 101 BCC, 1 0 2 BNE, FROM LDA, FFFF CMP,
4 101 BCC,
5 1 0 2 DEX, DEX, W LDA, PHA, 0 ,X STA,
b W 1 + LDA, PHA, 1 ,X STA,
7 1~ D i r e c t i o n s f o r d e t o u r
8 FF # L D A , W 1+ STA,
? F F # LDA, W STA,

10 \ Remove d e t o u r s i g n p o s t
11 FO # LDA, ' NEXT 1 7 + STA, 0 # LDA, ' NEXT 1A + STA,
1 2 101 0 # LDY, W 1- JMP, END -->
1 3 END s e t s t h e b r a n c h e s t o t h e l a b e l s 1 0 1 , 1 0 2 , e t c .
1 4 1 0 3 1s a dummy 1 a b e l ; /MOD p u t s t w o n u m b e r s o n t h e s t a c k ,
1 5 t h e f i r s t w o u l d b e r n i s ~ n t e r p r e t e d i s a l a b e l i f n o l a b e l

TRACE SCR # 9

0 Second s t a g e , c o n c l ~ ~ d e d
1
'1. . - . TRACE C ' I (DETOUR) 2+ 1 ' I NEXT 1 3 + ! ;
3 : NOTRACE FO C' 1 N E T 1 3 + ! ;
4
5 ' IDETOUR) 2+ 100 /MOD ' (UNDETOUR! F + C!

' !UE-IDETOUR) 1 4 + C!
..
S FLOITP 1+ - (DETOUR) E +
9 FL.ClOP ' ! UETOUR) 1 7 +

10 .' C'ETOIJR 100 ;'MOD ' !DETOCIR> 2 8 + C! .. i% DETOI-IF::) 2C + C!
11
19 ' DLIIII.l'i' '-I.IAME ' FLOl3R , L I N K 1

1 3 '\.. E . t ? h l I sher a I i nC b y p a s s i n g t h e assemb l e r
1 4 HERE FLOOF '
1 5 Q U I T

TRACE SC:R # 10
0 ', T h ~ r d s t a g e 30JUL8SCHP
1 HEX
2 VARIABLE FLOOR
3 : INDENT 2 4 C ! ; \ APPLE s p e c i f i c
4 : DISPLAY 0 HEX < # # # # #S # ? TYPE 2 SPACES DECIMAL ;
5 : .S C INDENT DEPTH ?DUP I F 0 DO DEPTH I - 1- P ICK DISPLAY
6 LOOP ELSE ." E m p t y s t a c k " THEN ;
7 : PRIM -2 ALLOT HERE 2+ , ;
8 \. PRIM c o n v e r t s t h e e x e c u t i o n p r o c e d u r e (i n s t a l l e d b y CREATE)
? '? f r o m t h a t o f a v a r i a b l e t o t h a t o f a p r i m i t i v e

10 CREATE CUNDETOUR) PRIM 8 5 6 8 , 68EE , EF85 , 8 5 6 8 ,
1 1 68F2 , F 1 8 5 , FFA? , 248D , A 9 0 9 , SDFF , 0 9 2 3 ,
1 2 00AO , F04C , 00 C,
1 3 : NOTRACE F0 1 ' 1 NEXT 1 9 + ! ;
14 - ->
1 5 NOTRACE m o v e d u p t o a l l o w t h e new DETOUR on n e x t s c r e e n

TRACE SCR # 11
0 \ T h i r d s t a g e , c o n c l u d e d 3ClJUL:38CHP
1 CREkTE (DETOUR) PRIM A 5 3 8 , E?EE , 8 5 0 2 , A5F4 ,
2 EPEF , CDOO , FFFF , 2770 , 0?00 , F4A5 ,
3 FFCD , ?OFF , CA lE , ASCA , 48F1 , 0 0 9 5 ,
4 F2A5 , 9 5 4 8 , A901 , 85FF , APF2 , 55FF ,
5 A ? F l , 8DFO , 0 9 2 3 , 00A9 , 2 4 8 0 , AOCi? ,
6 4C00 , 0OF0 ,
7 : DETOUR >R .S KEY DUP 7F = I F ABORT THEN 20 = 0=
8 I F R> DROP R> P> DROP 2- >P NOTRACE CR W I T THEN
9 P' CP :NAME I D . 4 SPACES IUNDETOUR) ;

10 : TRACE 1 ' 1 !DETOUR) 2+ 1 '1 NEXT 1 9 + ;
11 ' <DETOUR) 2+ 100 ,'MOD ' (UNDETUUR) F + C1
1 2 ' (UNDETOUR) 1 4 + C1
1 3 FLOOR 1+ ' {DETOUP) OE + FLOOR ' (DETOUR' 1 7 + I

1 4 ' DETOUR 100 /MOD (DETOUR) 2 8 + C 4 ' (DETOUR) 2C + C'
1 5 HERE FLOOP Q U I T

I
Volume XI, Number 5 27 Forth Dimemionr

SEEING
FORTH

' 'Remontons vers les faits mains vis-
ibles, mais plus importantes. Nous y ver-
rons le retour A l'iige des Adeptes."

-Louis Pauwels and Jacques Bergier
Le Matin des Magiciens

Editions Gaillimard, 1%0

The Grand Adept of Forth was and
remains Charles Moore himself, whom
some describe as the author of Forth and
others as the discoverer of same.

Charles Moore is a tall, smiling, pleas-
ant man in his forties with neat, dark hair
and a balding dome which he covers with a
tasteful cowboy hat. He also wears cowboy
boots and is associated with a firm called
Computer Cowboys.

Forth idealizes an
imaginary processing
unit.

Mr. Moore characterizes himself as
"the one you can blame for all this." In a
sense he is correct; a wind of freedom
blows from the direction of Forth that is
most disconcerting to those trapped in jobs
which mandate the use of a traditional
compiler.

Moore is cryptic when asked to describe
his invention. He is a habitual iconoclast, as
delighted at bursting the bubbles of his dis-
ciples as of his opponents.

"Forth, to me, is more of an approach
than a specification for a programming
language," he says when asked his opinion
of attempts to standardize Forth.

Let us examine that approach.
Forth idealizes an imaginary processing

JACK J. WOEHR - 'JAX' ON GEnie
m

\ scasm32.f ...
\ assembler f o r SC32 i n JForth
\ 01989 jack j. woehr
\ permission t o d i s t r i bu t e and use f r ee ly granted
\ t o Forth In te res t Group MEMBERS ONLY ! ! !
\ pay yer dues, cheapskate!
\ and a t tend your loca l FIG Chapter regular ly!
\ jax@well.UUCP JAX on GEnie
\ Minim1 instruct ion assembler written i n JForth f o r t h e Johns Hopkins
\ JPL 32-bit stack machine known a s t h e SC32.
\ references:
\ Sil icon Composers, Inc., 32-Bit
\ Stack-Chip Microprocessor Preliminary,
\ 4/12/89.
\ 01989, Si l icon Composers, Palo Alto, CA
\ Examples:
\
\ CALL 1234567 ADDRESS ,
\
\ A.LU/SHIFTNEXT U 3 SOURCE SO DEST PUSHS-POPR STACK 0 CINDST- BUSSRC
\ V ALUCOND FL<ALUCOND FL7iG SO&SRC ALU ,
\

hex

only fo r th def in i t ions a l s o

vocabulary SCASM32 I I
a l so SCASM32 def in i t ions a l s o 1 I
\ *** Instruct ion Logic I I
\ Instruct ion Types I I
00000000 constant c a l l
20000000 constant branch
40000000 constant branch?
60000000 constant lUU/shift
80000000 constant load
AOOOOOOO constant s to re
COO00000 constant load-addr-low
EOOOOOOO constant load-addr-high

I - I

Forth Dimensions 28 Volume XI, Number 5

\ convenient op name a l i a se s

load-addr-low constant l a 1
load-addr-high constant l a h

\ Next Bit

10000000 constant #next

\ Src & D s t B i t Pat terns

1 4 constant ds t - f ie ld
18 constant src-f i e l d

00 constant SO
01 constant sl
02 constant s2
03 constant 93
04 constant r O
05 constant rl
06 constant r2
07 constant r 3
08 constant uO
09 constant u l
OA constant u2
OB constant u3
OC constant pc
OD constant psw
OE constant zero

(OF reserved)

\ Stack Bi t Pa t te rns

10 constant s tack-f ield

00 constantnop \ This a l soapp l i e s fo r theF lagF ie ldo f theALU/
Logic ops.
01 constant popr
02 constant pushr

(03 reserved)

04 constant pops
05 constant pops-popr
06 constant pops-pushr

(07 reserved)

08 constant pushs
09 constant pushs-popr
OA constant pushs-pushr

(OB - OF reserved)

\ Fields

OF constant subtype-f i e l d
OE constant bussrc-field
OA constant alucond-f i e l d
08 constant cin-f ield
07 constant f lag- f ie ld
00 constant alu-operation-field

(Continued on next page.)

unit with an infinitely extensible instruc-
tion set. Such a processor not yet existing,
Forth is asymptotic to the progress of Forth
implementations. So we see that where
Moore appears frustratingly vague to his
eager hearers, he is actually being explicit.

If Moore is an adept, he must have a
lineage. Dr. C.H. Ting, himself a Forth
adept, compares the CISC (Complicated
Instruction Set) style of Forth with the
available academic models and proclaims
Moore heir to Von Neumann. Von Neu-
mann and his associates gave contours to
serial computation conducted by elec-
tronic digital devices which held near-uni-
versa1 sway until recent years. Now the
Harvard architecture rears up in belated
challenge as we sit on the threshold of the
parallel-computation age; but it is signifi-
cant that theretooling of Von Neumannism
inherent in Forth is of an age equal to the
Harvard model, and it has progressed to a
greater variety of implementations ahead
of the evolution of the Harvard model, the
latter requiring a much greater silicon in-
vestment before its benefits could be made
manifest.

Forth, from its inception, has been
remarkably easy to implement on a certain
level. This was one of its most attractive
points to early enthusiasts who found
themselves in a race with rapidly changing
hardware in the computer explosion of the
seventies and early eighties. Forth seems
alive; once "life" has been established-
once a nucleus of indispensable instruc-
tions has been coded-the system awakens
and begins to grow beneath the sculpting
hand of the programmer.

The real-world emulations of the ideal
Forth have culminated in our time with
microprocessors specifically designed to
execute the fundamental Forth instruction
set. Yet Forth itself remains elusive, almost
reticent, much like Moore himself. Perhaps
we have come as close to the Muse as she
will allow us to approach in this Digital
Dispensation, and we shall now be forced
to take refuge in standards, and in tech-
nique.

Copyrighte 1989 by Jack J. Woehr. This
article and the accompanying code
comprise the third chapter of a book-in-
progress titled Seeing Forth. The author
is a frequent contributor to these pages
in his role as the international coordi-
nator of Forth Interest Group chapters.

Volume XI, Number 5 29 Forth Dimensions

(~ u l t i t a d i n ~ , continued from page 18.)

20 CONSTANT SCORE

The 20 (like all numbers) is placed on
the stack, then CONSTANT is activated.
CONSTANT isadefining word,andadefm-
ing word is always followed by a name to
give to the 'thing' it is to define (in this case
SCORE). CONSTANT places this name in
the dictionary, reserves space for one
number, and installs the number on the
stack in this space. This completes the
building; it then adds instructions about the
run-time behavior of SCORE.^ All con-
stants have the same run-time behavior,
which is to place on top of the stack the
number stored as part of their structure.

CONSTANT could have been defined
using the words CREATE (which starts the
instructions on what to build) and DOES>
(which starts the list of run-time behavior
instructions) as follow^:^
: CONSTANT
CREATE , DOES> @ ;

CREATE starts the building process by
adding a name to the dictionary, using the
next word in the input string (the word after
CONSTANT) for the name. The , (comma)
reserves two bytes and initializes them by
storing the number from the top of the stack
at the end of the dictionary and advancing
the dictionary pointer (the pointer to the
next available free space at the end of the
dictionary). DOES> starts the series of run-
time behavior instructions with the mini-
mum action, which is to return the address
of the first thing CREATE built after the
name. In the case of a constant, this is the
address of the stored value, so the only
other action needed is to read the value
stored there with a normal fetch.

Returning to our new defining word,
CREATE and DOES> are used to defme the
two functional parts of T IMER, as shown in
Figure One. TIMER builds a name and the
space for two 16-bit variables, the user
value w and the internal value Iv. The
run-time behavior given to the word de-
fmed by TIMER is to put the address of the
user variable on the stack and read the real-
time clock. Then the last value read is sub-
tracted and the user variable is corrected.

'To be picky. F83 does n u place the insvuctions
there, it places a pointer to instructions. However.
h i s is a point of implementation detail hat can be
ignored here.
?t isn't in most systems-it is defined as a primitive
in the interests of speed-but it could have been.

(Continued.)

\ SubT F i e l d B i t P a t t e r n s

0 constant a l u / l o g i c
1 constant s h i f t / s t e p

\ BusSrc F i e l d B i t P a t t e r n s

0 constant d s t < f l
1 constant ds t<alu

\ ALU Condition F i e l d B i t P a t t e r n s

(00 constant 0) \ These conveniently a r e unambiguously themselves!
(01 constant 1) \ Likewise with t h e Cin i n s t r u c t i o n s .

02 constant V
03 constant -V
04 constant -((NxV) 1 Z)
05 constant (NxV) I Z
06 constant N
07 constant -N
08 constant Z
09 constant -Z
OA constant - (-C I Z)
OB constant -CIZ
OC constant NxV
OD constant -(NxV)
OE constant C \ watch out wi ththehex numbers, always precede w/ 0 ! !
OF constant -C

I
I \ Cin F i e l d B i t P a t t e r n s

(00 constant 0) \ Conveniently, unambiguously themselves ...
(01 constant 1) \ . . . a s w/ ALU Conditions above I I
02 constant FL'
03 constant -FL'

I \ Flag F i e l d B i t P a t t e r n s I I

(0 constant nop) \ Same a s above i n t h e Stack F i e l d B i t Pa t te rns I 1
1 constant fl<alucond I I
15 constant -(sO&src)
17 constant sol-src
1 D constant -sOlsrc
1F constant sO(src
20 constant 0
21 constant -SO
22 constant negl
23 constant SO
24 constant -src
2C constant src
2F constant sOxsrc
41 constant -sO+cin
43 constant sO+cin
44 constant -src+cin
45 constant -SO+-src+cin
46 constant - s r c - c i n
47 constant SO-src-cin
49 constant -SO-cin

I

Forth Dimemiom 30 Volume XI, Nwnber 5

4B constant s o - c i n
4C constant src+cin
4D constant src-90-cin
4E constant s r c - c i n
4F constant sO+src+cin
55 constant sO&src
57 constant -sO&src
5D constant SO&-src
5F constant -(so 1 s rc)
6F constant -(sOxsrc)

\ Shif t Instruct ions
\ Shif t Fields

5 constant sh i f t - f i e ld
4 constant sh i f t i n - f i e ld
2 constant s tep-f ield
1 constant f lag in- f ie ld

\ Sh i f t Field Bi t Pa t te rns

\ Shif t

(0 constant nop)\ Once again, t h i s i s conveniently already &fined

1 constant r igh t
2 constant l e f t

\ Shif t in

0 constant <alucond
1 constant <FL'

\ Step

0 constant step:src+cin
1 constant step:src-SO-cin
2 constant step: sO+src+cin (FL')
3 constant step:sO+src+cin(-n')

(0 constant <alucond) \ already defined above in Sh i f t i n

1 constant <shiftoutput

\ *** Forming Instruct ions

\ Control Flow

: address \ control-instruction address -- instruct ion '
lFFFFFFF and o r ;

\ Shif t ing Bi t Pat tern t o Instruct ion Fie ld

: shif t - into-f ield \ ins t ruc t ion b i t s f i e l d -- instruct ion '
<< o r :

1 \ Set Next B i t

: next \ ins t ruc t ion -- instruct ion '
#next o r ;

1 \ Src & D s t

The last value read is then updated, and we
exit with the address of the user variable
still on the stack.

A definition for (READ-CLOCK) to
suit the IBM PC and F83 is given in Figure
Two; it returns a number which is incre-
mented 1 193 180165536 times per second
(a strange number, granted, but that is how
IBM designed it). After this (or a substitute
that suits your hardware) and TIMER are
entered, the following can be used as a test:
TIMER CLOCK
: TEST

BEGIN CLOCK
@ DUP U . O<= UNTIL
." T i m e d o u t ! " ;

I I Then, if you enter the line:
180 CLOCK ! TEST

(Continued on next page.)

a series of decreasing numbers (the user
variable) will be printed-which lasts just
under ten seconds on my system--before
the "Timed out!" message appears.

To complete the task, the multitasker
must be used. Multitasking has been part of
almost all versions of Forth except fig-
FORTH, the first of the public-domain
versions. It is not, however, part of the
standard. Unlike time-sliced multitasking,
in which each task has to surrender the
processor to the next task after a pre-deter-
mined time interval whether it "likes" it or
not, F83 (like most versions of Forth) uses
a cooperative scheme. In this, a task passes
control only when it is ready, thus simpli-
fying the job of keeping track of who is
doing what, and making the task inter-
change very fast. The cost is that one can-
not predict reliably exactly when task inter-
change will take place, and if one task gets
into an endless loop that does not cantain
the voluntary transfer word PAUSE,every-
thing else stops for good. This latter case is
the fault of the not the lan-
guage. With care, the task latency time can
be made very small, especially since all
F83 words having to do with human inter-
action--and whose execution times are,
therefore, unpredictable-already contain
the task interchange word PAUSE.

Different tasks share all resources other
than the stacks, although a group of vari-
ables has to be assigned to each task to keep
a record of internal processor information
during the time when other tasks have
control. The tasks involved in the multi-
tasking are linked into a circular list, each
receiving control from the preceding one

Volume XI, Number 5 31 Forth Dimernions

/ and passing it to the succeeding one. Each 1 (Continued.) I
word PAUSE is encountered, either explic-
itly or as part of an input or output word. A
task can be activated by use of the word
AWAKE. Multitasking can be turned off or
on by the words MULTI and SINGLE. If
absolutely essential, these could be used
within a task if, for some reason, the task
had to retain control for a certain period
even though some input or output words
(which would normally cause a task inter-
change) are to be executed.

The user-interface words involved in
multitasking in F83 are given in Figure
Three. The use of these words is demon-
strated in Figure Four. First, we use the
special defining word TASK : to build a
task that prints 20 asterisks on the screen
and link it into the round robin (which at the
moment only consists of the outer inter-
preter, which is handling our keyboard
input).

Note that the STOP is essential. Other-
wise, when 20 asterisks have been printed
and the task is over, disaster will strike as
the computer Dies to execute the stack for
PRINT* S! Also note that we have an inner
loop just to slow things down a bit, other-
wise all the asterisks will appear before we
have a chance to do anything. This inner
loop is a good neighbor and gives everyone
else a go by, including the word PAUSE in
the loop.

Nothing unusual happens on the screen,
as we have not turned on multitasking. We
can change that easily by entering MULTI.
Still no asterisk appears; this is because
when a task is built and linked, it is placed
in the sleeping condition. Hence, we must
enter PRINT * s WAKE to wake it up. We
can carry on typing at the keyboard, but on
the screen our input will appear mixed with
asterisks. Well, it will until 20 asterisks are
printed, then things will return to normal.

Entering PRINT * S WAKE again will
not cause another batch of asterisks to ap-
pear. The task will resume with the (nonex-
istent) word after STOP, and disaster will
strike. As it stands, P R I N T *S is aone-shot
model only!

If, during this batch of asterisks, we had
managed to type
PRINT*S SLEEP <cr>

task on the list can be active or asleep. In the
latter state, it passes control on as soon as it
receives it. Otherwise, it executes until the

: dest \ instruction register -- instruction'
dst-field shift-into-field ;

: source \ instruction register -- instrustion'
src-field shift-into-field ;

\ Stack Action

: stack\ instruction stackop -- instruction'
stack-field shift-into-field ;

\ Load and Store

: zero-extended-offset \ instruction addr-offset -- instruction*
Offff and or ;

: zeo \ i a-o -- if \ convenient alias
zero-extended-offset ;

\ ALU/Shift Instructions

\ ALU Operations

: subtype \ instruction subtype -- instrarction*
subtype-field shift-into-field ;

: bussrc \ instruction bussrc -- instructien'
bussrc-field shift-into-field ;

: alucond \ instruction type -- instruction'
alucond-field shift-into-field ;

: cin \ instruction type -- instruction'
cin-field shift-into-field ;

: flag \ instruction type -- instruction'
flag-field shift-into-field ;

: alu \ instruction operation --
alu-operation-field shift-into-field ;

\ Shift Operations

: shift\ instruction shift-op -- instruction'
shift-field shift-into-field ;

: shiftin \ instruction shifter-input -- instruction'
shiftin-field shift-into-field ;

: step \ instruction step-op -- instruction'
step-field shift-into-field ;

: flagin \ instructions flagin --
flagin-field shift-into-field ;

\ *** Assembly Buffer Management

4 constant buff-hdr-size \ link to next allocated buffer I 0
1000 constant buff-size \ each buffer s m e size

4 constant opsize \ each op is a 1-sd on SC32

variable 1st-buffer \ as it says
variable last-buffer \ latest allocateel kffer

the output of asterisks would have stopped
at once. The same would happen if we were I

I
Forth Dimemions 32

variable asm-ptr \ the "dictionary pointer" for our assembler

: asm-ptr.init\ -- \ start off set to zero
asm-ptr off ;

: here \ -- next-available-assembly-relative-address
asm-ptr @ ;

: (there) \ addr -- offset-in-any-buffer
buff-size m d ;

: there \ here -- real-address
(there) last-buffer @ buff-hdr-size + + ;

\ allocate $1004 bytes for assembly and a buffer-linking header.

: buff-err? \ --
abort" No Buffer Memory" ;

: get-buffer \ -- absmemaddr\O
[buff-hdr-size buff-size +] literal MEW-CLEAR
[forth] exec? call exec-lib allocmem [scasm32] :

: free-buffer \ reladdr --
>abs
[buff-hdr-size buff-size +] literal
[forth 1 call exec-lib freemm drop [scasm32] ;

: free-all-buffers \ --
1st-buffer @
begin
dup @ swap free-buffer
dup O=
until drop ;

: get-1st-buffer \ --
get-buffer dup
if >re1 dup ist-buffer ! last-buffer !
else true buff-err?
then ;

: get-subsequent-buffer \ --
get-buffer dup
if >re1 dup last-buffer @ ! last-buffer !
else true buff-err?
then :

: manage-buffers \ --
here (there) O= here 0> and
if get-subsequent-buffer then ;

\ *** Output File Handling

create out-filename 100 allot
variable out-f ileptr
variable outfile-buf f

: outfile-err? \ t 1 f --
abort" Couldn't Open Output File'' ;

: writefile-err? \ tlf --
abort" Error While Writing Output File" ;

: out-filename.default \ --
0" ram:scasm32,0ut" Ocount 1+ out-filename swap cmove ;

(Continued.)

to type SINGLE, although this would
"lock" the processor on the one task in
which it occurred. The other tasks would
not be asleep, but would start as soon as
MULTI was issued, without having to be
awakened. If the task in which the s INGLE
command occurred didn't have MULTI
later, or had no way of inputting the MULT I
command (i.e., didn't involve the outer in-
terpreter), there would be no way short of a
system reset to regain control.

BACKGROUND : adds a new task into
the round robin. How can one remove one
that is no longer needed? The simple answer
is, you cannot. You can assign new instruc-
tions to the old task name, but you must not
FORGET the old task, as the circular list
would be broken and disaster would strike
when the processor med to move around it.
To assign a new set of instructions, the word
ACTIVATE is used to associate the new
instructions with the old name and wake it
up immediately. We will use ACT IVATE to
assign a new version to PRINT * S, one
which will be reusable. It is essential to
realize that ACTIVATE can only be used in
a colon definition, because of the way it
handles the return stack; attempts to use it
interactively will cause a system crash.

The version of our example shown in
Figure Five is much better; when awakened
after running to completion, it just loops and
runs again. The original version is replaced
by this improvement just by executing
NEW-PRINT*S.

For speed, you should have only enough
tasks in the circular list to service the maxi-
mum number that must run concurrently,
and use task redefinition to move tasks into
and out of the list. Task interchange is fast,
but it doesn't take zero time.

Vast possibilities arise from the ability
to run tasks, freeze them, and later restart
them; for tasks to start and stop other tasks;
and for tasks to be able to grab all the
processing power for time-critical routines
by issuing SINGLE and, afterwards,
MULTI. However, the virtues of simplicity
are nowhere stronger than in multitasking.
All tasks must cooperate, and the problem
of keeping in mind the possible effects of all
combinations of events rapidly becomes
daunting.

I do not like the name used for the word
BACKGROUND : , as it suggests to me a
master-slave relationship rather than a co-
operative arrangement. Also, the allocation
of 400 bytes is not always ideal, although
100 bytes of whatever quantity you allocate

Volume XI, Number 5 33 Forth Dimemions

will go for the return stack and the rest for
the data stack (unless you change TASK :).
Of course, in the spirit of Forth, if you don't
like it, change it.

The formal definition of BACK-
GROUND: is given in Figure Six. It is a
short definition, and it is easy to modify the
number of bytes required for the two stacks.
After modification, it could be saved as
MULTITASK Or COOP-MEMBER Or any
other name which takes your fancy. Simi-
larly, I would prefer IS -NOW for ACT I -
VATE, but that is a personal matter. If you
wish to change the name, it can easily be
done with.
: IS-NOW ACTIVATE ;

which make the two names mean the same.
If you wish to allocate more or less than 100
bytes to the return stack, you will need to
redefine TASK : and then use your new
definition in a new version of BACK-
GROUND:. To find where to change
TASK : , decompile (e.g., SEE TASK :) and
then re-enter it, changing the 100 just past
halfway through the definition to whatever
number you prefer. The data stack will get
the difference between what you put in
your version of TASK : and the total alloca-
tion for stacks you define in your version of
BACKGROUND : .

Interrupts will be needed for very rap-
idly occurring events but, for most other
situations, the timer and multitasker de-
scribed above will give you real-time con-
trol. For further detail on the multitasker in
F83, see the shadow screens of the source
code or chapter 23 of Inside F83 by C.H.
Ting.

Tim Hendtlass is principal lecturer in
scientific instrumentation in the physics
department of the Swinburne Institute of
Technology. He discovered Forth in
1980, used it in more and more instru-
mentation, and introduced it as the labo-
ratory language for all undergraduate
students majoring in scientific instru-
mentation.

(Continued.)

: open-outfile\ -- \ what the heck is going on here?
out-filename new Ofopen
dup out-fileptr !
0- outfile-err?
out-fileptx @ fclose
out-filename Ofopen dup
0= outfile-err?
out-fileptr ! ;

: close-outfile \ --
out-fileptr @ fclose ;

: (get-outfile-buff) \ -- Olabs-addr
here MEMF-CUTNI
[forth] exec? call exec-lib allocmem [scasm32] ;

: get-outfile-buff \ --
(get-out£ ile-buf f) dup 0s abort" Couldn' t Get Outf ile Buff"
>re1 outfile-buff ! ;

: free-outfile-buff \ --
outfile-buff @ >abs here
[forth] call exec-lib freemem drop [scasm32] ;

: fill-outfile-buff \ --
here buff -size /mod \ how m y 4k buffs to consoli-

date?
outf ile-buff @ \ get the file buffer
1st-buf fer @ rot \ get the first asm buffer
0 do \ north DO is a ?DO

dup buff-hdr-size + \ move to data area
2 pick \ get file buffer address
buff-size cmove> \ move data
@ swap buff-size + swap \ get next data buff,

inc file buff adr
loop

rot dup \ is there a modulus remaining?
if \ yes, copy rest of data

swap buff-hdr-size + -rot move>
else

2drop drop \ drop data-adr filebuf-adr Oct
then ;

: write-outf ile \ --
out-fileptr @ outfile-buff @ here fwrite
0= abort" Error Writing Assembly to File" ;

: save-assembly \ --
open-outf ile
get-outfile-buff fill-outfile-buff
write-outfile close-outfile free-outfile-buff ;

I I \ *** Assemble to Memory I I I 1 \ all SC32 operands are longwords I I
. I \ longword --

manage-buffers here there ! 4 asm-ptr +! ;

\ *** Initialization

: wrapup \ --
save-assembly free-all-buffers ;

decimal

I
Forth Dimensions 34 Volume XI, Number 5

REFERENCE SECTION

Forth Interest Group
The Forth Interest Group serves both

expert and novice members with its net-
work of chapters, Forth Dimensions, and
conferences that regularly attract partici-
pants from around the world. For member-
ship information, or to reserve advertising
space, contact the administrative offices:

Forth Interest Group
P.O. Box 823 1
San Jose, California 95155
408-277-0668

Board of Directors
Robert Reiling, President (ret. director)
Dennis Ruffer, Vice-President
John D. Hall, Treasurer
Tem Sutton, Secretary
Wil Baden
Jack Brown
Mike Elola
Robert L. Smith

Founding Directors
William Ragsdale
Kim Harris
Dave Boulton
Dave Kilbridge
John James

In Recognition
Recognition is offered annually to a

person who has made an outstanding con-
mbution in support of Forth and the Forth
Interest Group. The individual is nomi-
nated and selected by previous recipients of
the "FIGGY." Each receives an engraved
award, and is named on a plaque in the ad-
ministrative offices.

1979 William Ragsdale
1980 Kim Harris
1981 Dave Kilbridge
1982 Roy Martens
1983 John D. Hall
1984 Robert Reiling
1985 Thea Martin
1986 C.H. Ting
1987 Marlin Ouverson
1988 Dennis Ruffer
1989 Jan Shepherd

ANS Forth
The following members of the ANS

X3J14 Forth Standard Committee are avail-
able to personally carry your proposals and
concerns to the committee. Please feel free
to call or write to them directly:

Gary Betts
Unisyn
301 Main, penthouse #2
Longmont, CO 80501
303-924-9193

Mike Nemeth
CSC
10025 Locust St.
Glenndale, MD 20769
301-286-8313

Andrew Kobziar
NCR Medical Systems Group
950 Danby Rd.
Ithaca, NY 14850
607-273-5310

Elizabeth D. Rather
FORTH, Inc.
11 1 N. Sepulveda Blvd., suite 300
Manhattan Beach, CA 90266

Charles Keane
Performance Packages, Inc.
5 15 Fourth Avenue
Watervleit, NY 12189-3703
5 18-274-4774

George Shaw
Shaw Laboratories
P.O. Box 3471
Hayward, CA 94540-3471
4 15-276-5953

David C. Petty
Digitel
125 Cambridge Park Dr.
Cambridge, MA 02 140-23 1 1

Forth Instruction
Los Angeles-Introductory and inter-

mediate three-day intensive courses in
Forth programming are offered monthly by
Laboratory Microsystems. These hancls-
on courses are designed for engineers and
programmers who need to become profi-
cient in Forth in the least amount of time.
Telephone 2 13-306-74 12.

On-Line Resources
To communicate with these systems, set
your modem and communication software
to 300/1200/2400 baud with eight bits, no
parity, and one stop bit, unless noted other-
wise. GEnie requires local echo.

GEnie
For information, call 800-638-9636

Forth RoundTable
(Forrh.Net link*)
Call GEnie local node, then type M710
or FORTH

(Continued on page 37.)

Volume XI, Number 5 35 Forth Dimemions

FIG CHAPTERS
REPORT

JACK WOEHR - 'JAX' ON GEnie

l h e British Columbia Forth Interest
Group Chapter has been having a very
lively year. Their high-power sessions
have included an address by Soviet Forther
Serge Baranoff. Here are the minutes of a
recent BC-FIG meeting.

Minutes of the BC-FIG Chapter
October 5, 1989,7:30 p.m.
Place: BCIT, Burnaby, B.C., Canada
Attended by: John Somerville, Gordon

Ganderton, Nick Janow,
Doug Lankshear, Zafar
Essak, Kenneth O'Heskin,
Paul Unruh, Jack Brown,
and Dave Brown

Robot
The first item on the agenda was an

update by Jack Brown on the progress of
the robot-building course which four
members of the chapter are taking. Jack
displayed the hardware, and reported that
the course is well designed and organised,
with good support from their instructor. For
example, when the students assembled
their boards they were able to test them on
the instructor's working robot, and any
problems could be diagnosed and fixed on
the spot. Jack also mentioned when he has
his machine up and running (or down and
whirring and clicking-the device will end
up looking like a mobile teakettle, probably
rather menacing to a cat), he'll retrofit it
withaForth engine. It's obvious thepartici-
pants in the course are having a good time.

Pocket Forth Computer
John Some~l l e demonstrated a vin-

Forth Dimemions 36 Volume XI, Number 5

tage Hewlett-Packard machine which con-
tains many interesting features, not the
least of which is Forth. Although no longer
supported (one is reminded that obsolete
technology, or what never did make it in the
marketplace, is often inherently interest-
ing; cf. recent exchanges on the Forth nets
about the Jupiter Ace), the machine has
room for add-on 64K memory modules, I/
0 ports, 20-bit addressing on a proprietary
H-P CPU-in other words, an early laptop
in a hand-calculator box. The kicker of
John's demonstration was that, although it
boots up in BASIC, Forth can be called as
a "subroutine" and, when in Forth mode,
BASIC can be called as a subroutine of
Forth!

Fifth 2.7
Jack Brown put Fifth (shareware ver-

sion) through its paces, which revealed
itself as not too unfamiliar to Forth users,
although different enough to require the
manuals and tutorials. Jack pointed out that
some impressive application software has
been written in Fifth, and some attendees
expressed interest in checking it out fur-
ther.

The meeting adjourned for coffee and
conversation.

* * *

About two years back, the Silicon Val-
ley FIG Chapter, which was meeting st
Hewleu-Packard, decided that bay area
interest in FIG activities was great enough
to split up into North Bay and South Bay
FIG Chapters. A move from the traditional
H-P site and declining attendance in the
North Bay are forcing the leaders to take a

second look at their historic decision. As of
this reading, the die may already be cast for
the re-merger of two of the most exciting
FIG groups in the world. If you are inter-
ested in the preservation of both chapters,
"vote with your feet" and help increase
attendance in the Bay area.

A new nationwide FIG Chapter is in the
works for Spain. The interested parties
recently contacted the Forth Interest Group
and informed us that they could justify the
existence of a FIG Chapter if it could be
considered a national group, rather than re-
gional, to which we gave our happy assent.
Interested parties should contact:

Bo rja Marcos
Alangoeta, 1 1, lro izq.
48990 - Algorta (Vizcaya)
Spain

We are informed that a persistent prob-
lem withFIGChapterscontinuesunabated:
that is, the moving and/or disappearance of
Chapters without forwarding addresses or
notifications of the Forth Interest Group.
This problem, and the perception on our
part that the central organization is losing
(has lost?) contact with the needs of the
membership, prompts us to undertake a
simple experiment.

After this issue of Forth Dimensions is
published, the Chapter Coordinator @re-
sumably still the author by that time) will
telephone around to all the North American
chapters and try to verify their existence
and get an introduction to their coordina-
tors and insight into their operation.

Please notify me, if possible, if there is
a time when you (i.e., the contact party
listed in the directory at the back of this

*Fortmet is a virtual Forth network
that links designated message bases in
an attempt to provide greater informa-
tion distribution to the Forth users
served. It is provided courtesy of the
SysOps of its various links.

i
I

I

magazine) would prefer to be contacted. I
can be reached during working hours at
303-422-8088. My computer bulletin
board is 303-278-0364 (300/1200/2400,24
hours). My email addresses are
jax@well (.UUCP, .sf.ca.us)
and FIGCHAF"TERS or JAX on GEnie. My
mailing address is:

Jack Woehr
Vesta Technology, Inc.
Suite 101
7100 W. 44th Ave.
Wheat Ridge, Colorado 80033

I look forward to chatting with as many
of you as I can reach, as we work together
to set the agenda for the Forth Interest
Group for the new decade.

{Reference Section continued)

SysOps: Dennis Ruffer (D.RUFFER),
Scott Squires (S .W.SQUIRES), Le-
onard Morgenstern (NMORGEN-
STERN), Gary Smith (GARY-S)
MACH2 RoundTable
Type M450 or MACH2
Palo Alto Shipping Company
SysOp: Waymen Askey (D.MILEY)

BIX (ByteNet)
For information, call 800-227-2983

Forth Conference
Access BIX via TymeNet, then type j
forth
Type FORTH at the : prompt
SysOp: Phil Wasson (PWASSON)
LMI Conference
Type LMI at the : prompt
Laboratory Microsystems products
Host: Ray Duncan (RDUNCAN)

CompuServe
For information, call 800-848-8990

Creative Solutions Conference
Type !Go FORTH
S ysOps: Don Colburn, Zach Zachariah,
Ward McFarland, Jon Bryan, Greg
Guerin, John Baxter, John Jeppson
Computer Language Magazine Confer-
ence
Type !Go CLM
SysOps: Jim Kyle, Jeff Brenton, Chip
Rabinowitz, Regina Starr Ridley

Volume XI, Number 5

Unix BBS's with forth.conf (Fortmet
links* and reachable via StarLink node
9533 on TymNet and PC-Pursuit node
casfa on TeleNet.)

WELL Forth conference
Access WELL via CompuserveNet
or 415-332-6106
Fairwitness: Jack Woehr (jax)
Wetware Forth conference
415-753-5265
Fairwitness: Gary Smith (gars)

PC Board BBS's devoted to Forth
(Fortmet links*)

East Coast Forth Board
703-442-8695
StarLink node 2262 on TymNet
PC-Pursuit node dcwas on TeleNet
Sysop: Jerry Schifrin
British Columbia Forth Board
604-434-5886
SysOp: Jack Brown
Real-Time Control Forth Board
303-278-0364
StarLink node 2584 on TymNet
PC-Pursuit node coden on TeleNet
SysOp: Jack Woehr

Other Forth-specific BBS's
Laboratory Microsystems, Inc.
213-306-3530
StarLink node 9184 on TymNet
PC-Pursuit node calan on TeleNet
SysOp: Ray Duncan
Knowledge-Based Systems
Supports Fifth
409-696-7055
Druma Forth Board
5 12-323-2402
StarLink node 1306 on TymNet
S ysOps: S. Suresh, James Martin, Anne
Moore
Harris Semiconductor Board
407-729-4949
StarLink node 9902 on TymNet (toll
from Post. St. Lucie)

Non-Forth-specific BBS's with extensive
Forth Libraries

Twit's End (PC Board)
501-771-01 14
1200-9600 baud
StarLink node 9858 on TymNet
S ysOp: Tommy Apple
College Comer (PC Board)
206-643-0804
300-2400 baud
SysOp: Jerry Houston

37

International Forth BBS's
Melbourne FIG Chapter
(03) 299-1787 in Australia
61-3-299- 1787 international
SysOp: Lance Collins
Forth BBS JEDI
Paris, France
33 36 43 15 15
7 data bits, 1 stop, even parity
Max BBS (ForthNet link*)
United Kingdom
0905 754157
SysOp: Jon Brooks
Sky Port (Fortmet link*)
United Kingdom
44-1-294-1006
SysOp: Andy Brimson
SweFIG
Per Alm Sweden
46-8-7 1-3575 1

This list was accurate as of October 1989.
If you know another on-line Forth re-
source, please let me know so it can be
included in this list. I can be reached in the
following ways:

Gary Smith
P. 0. Drawer 7680
Little Rock, Arkansas 72217
Telephone: 501-227-7817

GEnie (co-SysOp, Forth RT and Unix
RT): GARY-S
Usenet domain:
uunet! wugate!
wuarchive! texbell!
ark! lrark! gars

, , , , , , , . . . , , , , .

Laboratory Microsystems2 1
Miller Microcomputer Services . . .26
Next Generation Systems. 20
Saelig Company. , , , . . . 21

Forth Dimemions

FIG
CHAPTERS

The FIG Chapters listed below
are currently registered as active
with regular meetings. If your
chapter listing is missing or incor-
rect, please contact Kent Safford at
the FIG office's Chapter Desk.
This listing will be updated in each
issue of Forth Dimensions. If you
would like to begin a FIG Chapter
in your area, write for a "Chapter
Kit and Application." Forth Inter-
est Group, P.O. Box 8231, San
Jose, California 95155

U.S.A.
ALABAMA
Huntsville Chapter
Tom Konantz
(205) 88 1-6483

ALASKA
Kodiak Area Chapter
Ric Shepard
Box 1344
Kodiak. Alaska 99615

ARIZONA
Phoenix Chapter
4th Thurs., 7:30 p.m.
Arizona State Univ.
Memorial Union, 2nd floor
Dennis L. Wilson
(602) 38 1-1 146

ARKANSAS
Central Arkansas Chapter
Little Rock
2nd Sat.. 2 pm. &
4th Wed., 7 p.m.
Jungkind Photo. 12th & Main
Gary Smith (501) 227-7817

CALIFORNIA
Los Angeles Chapter
4th Sat., 10 am.
Hawthorne Public Library
12700 S. Grevillea Ave.
F'hillip Wasson
(213) 649-1428

North Bay Chapter
2nd Sat., 10 am. Forth, A1
12 Noon Tutorial, 1 p.m. Forth
South Berkeley Public Library
George Shaw (415) 276-5953

Orange County Chapter
4th Wed., 7 p.m.
Fullerton Savings
Huntington Beach
Noshir Jesung (714) 842-3032

Sacramento Chapter
4th Wed., 7 p.m.
170839th St., Room A
Tom Ghormley
(916) 444-7775

San Diego Chapter
Thursdays, 12 Noon
Guy Kelly (619) 454-1307

Silicon Valley Chapter
4th Sat., 10 a.m.
H-P Cupertino
Bob Barr (408) 435-1616

Stockton Chapter
Doug Dillon (209) 93 1-2448

COLORADO
Denver Chapter
1st Mon.. 7 p.m.
Clifford King (303) 693-3413

CONNECTICUT
Central Connecticut Chapter
Charles Krajewski
(203) 344-9996

FLORIDA
Orlando Chapter
Every other Wed.. 8 p.m.
Herman B. Gibson
(305) 855-4790

Southeast Florida Chapter
Coconut Grove Area
John Forsberg (305) 252-0108

Tampa Bay Chapter
1st Wed., 7:30 p.m.
Teny McNay (813) 725-1245

GEORGIA
Atlanta Chapter
3rd Tues., 7 p.m.
Emprise Corp.. Marietta
Don Schrader (404) 428-081 1

ILLINOIS
Cache Forth Chapter
Oak Park
Clyde W. Phillips, Jr.

1 (312) 386-3147

Central Illinois Chapter
Champaign
Robert Illyes (217) 359-6039

INDIANA
Fort Wayne Chapter
2nd Tues., 7 p.m.
I/P Univ. Campus, B71 Neff
Hall
Blair MacDerrnid
(219) 749-2042

IOWA
Central Iowa FIG Chapter
1st Tues., 7:30 p.m.
Iowa State Univ., 214 Comp.
Sci.
Rodrick Eldridge
(5 15) 294-5659

Fairfield FIG Chapter
4th Day, 8:15 p.m.
Gurdy Leete (5 15) 472-7077

MARYLAND
MDFIG
Michael Nemeth
(301) 262-8140

MASSACHUSETTS
Boston Chapter
3rd Wed., 7 p.m.
Honeywell
300 Concord, Billerica
Gary Chanson (617) 527-7206

MICHIGAN
DetroitlAnn Arbor Area
4th Thurs.
Tom Chrapkiewicz
(313) 322-7862

MINNESOTA
MNFIG Chapter
Minneapolis
Fred Olson

MISSOURI
Kansas City Chapter
4th Tues., 7 p.m.
Midwest Research Institute
MAG Conference Center
L i u s Orth (913) 236-9189

St. Louis Chapter
1st Tues., 7 p.m.
Thornhill Branch Library
Robert Washam
91 Weis Drive
Ellisville, MO 6301 1

NEW JERSEY
New ~ e r s e ~ Chapter
Rutgers Univ., Piscataway
Nicholas Lordi
(201) 338-9363

Forth Dimensions 38 Volume XI, Number 5

NEW MEXICO
Albuquerque Chapter
1st Thurs., 7:30 p.m.
Physics & Astronomy Bldg.
Univ. of New Mexico
Jon Bryan (505) 298-3292

NEW YORK
Rochester Chapter
Odd month, 4th Sat.. 1 p.m.
Monroe Comm. College
Bldg. 7, Rrn. 102
Frank Lanzafame
(716) 482-3398

OHIO
Cleveland Chapter
4th Tues., 7 p.m.
Chagrin Falls Library
Gary Bergstrom
(216) 247-2492

* Columbus FIG Chapter
4th Tues.
Kal-Kan Foods, Inc.
51 15 Fisher Road
Terry Webb
(614) 878-7241

Dayton Chapter
2nd Tues. & 4th Wed., 6:30
p.m.
CFC. 11 W. Monument Ave.
#612
Gary Ganger (513) 849-1483

OREGON
Willamette Valley Chapter
4th Tues., 7 p.m.
Linn-Benton Comm. College
Pann McCuaig (503) 752-51 13

PENNSYLVANIA
Villanova Univ. Chapter
1st Mon., 7:30 p.m.
Villanova University
Dennis Clark
(215) 860-0700

TENNESSEE
East Tennessee Chapter
Oak Ridge
3rd Wed., 7 p.m.
Sci. Appl. Int'l. Corp., 8th F1.
800 Oak Ridge Turnpike
Richard Secrist
(615) 483-7242

TEXAS
Austin Chapter
Matt Lawrence
PO Box 180409
Austin, TX 78718

Volume XI, Number 5

HOLLAND
Holland Chapter
Vic Van de Zande
F i a r k 7
3831 JE Leusden

Dallas Chapter
4th Thurs.. 7:30 p.m.
Texas Instruments
13500 N. Central Expwy.
Semiconductor Cafeteria
Conference Room A
Clif Penn (214) 995-2361

Houston Chapter
3rd Mon.. 7:30 p.m.
Houston Area League of PC
users
1200 Post Oak Rd.
(Galleria area)
Russell Harris
(713) 461-1618

VERMONT
Vermont Chapter
Vergennes
3rd Mon., 7:30 p.m.
Vergennes Union High School
RM 210, Monkton Rd.
Hal Clark (802) 453-4442

VIRGINIA
First Forth of Hampton
Roads
William Edmonds
(804) 8984099

Potomac FIG
D.C. & Northern Virginia
1st Tues.
Lee Recreation Center
5722 Lee Hwy., Arlington
Joseph Brown
(703) 47 1-4409
E. Coast Forth Board
(703) 442-8695

Richmond Forth Group
2nd Wed., 7 p.m.
154 Business School
Univ. of Richmond
Donald A. Full
(804) 739-3623

WISCONSIN
Lake Superior Chapter
2nd Fri., 7:30 p.m.
1219 N. 21st St., Superior
Allen Anway (715) 394-4061

INTERNATIONAL
AUSTRALIA
Melbourne Chapter
1st Fri., 8 p.m.
Lance Collins
65 Martin Road
Glen Iris, Victoria 3 146
03/29-2600
BBS: 61 3 299 1787

39

ITALY
FIG Italia
Marco Tausel
Via Gerolamo Forni 48
20161 Milano
021435249

Sydney Chapter
2nd Fri.. 7 p.m.
John Goodsell Bldg., RM
LC19
Univ. of New South Wales
Peter Tregeagle
10 Binda Rd.
Yowie Bay 2228
0215247490
Usenet
ted@usage.csd.unsw.oz

BELGIUM
Belgium Chapter
4th Wed., 8 p.m.
Luk Van Loock
Lariksdreff 20
2120 Schoten
031658-6343

Southern Belgium Chapter
Jean-Marc Batinchamps
Rue N. Monnom, 2
B-6290 Naliies
0711213858

CANADA
BC FIG
1st Thurs., 7:30 p.m.
BCIT, 3700 Willingdon Ave.
BBY, Rm. 1A-324
Jack W. Brown (604) 596-
9764
BBS (604) 434-5886

Northern Alberta Chapter
4th Sat., 10a.m.-noon
N. Alta Inst. of Tech.
Tony Van Muyden
(403) 486-6666 (days)
(403) 962-2203 (eves.)

Southern Ontario Chapter
Quarterly, 1st Sat., Mar., Jun.,
Sep., Dec., 2 p.m.
Genl. Sci. Bldg., RM 212
McMaster University
Dr. N. Solntseff
(416) 525-9140 x3443

ENGLAND
Forth Interest Group-UK
London
1st Thurs., 7 p.m.
Polytechnic of South Bank
RM 408
Borough Rd.
D.J. Neale
58 Woodland Way
Morden, Surry SM4 4DS

FINLAND
FinFIG
Janne Kotiranta
Arkkitehdiiatu 38 c 39
33720 Tampere
+358-31-184246

JAPAN
Japan Chapter
Toshi Inoue
Dept. of Mineral Dev. Eng.
University of Tokyo
7-3-1 Hongo, Bunkyo 113
812-21 11 ~ 7 0 7 3

NORWAY
Bergen Chapter
Kjell Birger Faeraas,
47-5 18-7784

REPUBLIC OF CHINA
R.O.C. Chapter
Chi-Fu Liu
5F, #lo, Alley 5, Lane 107
Fu-Hsin S. Rd. Sec. 1
Taipei, Taiwan 10639

SWEDEN
SweFIG
Per Alm
46B-92963 1

SWITZERLAND
Swiss Chapter
Max Hugelshofer
Industrieberatung
Ziberstrasse 6
8152 Opfikon
01 810 9289

WEST GERMANY
German FIG Chapter
Heinz Schnitter
Forth-Gesellschaft C.V.
Postfach 11 10
D-8044 Unterschleissheirn
(49) (89) 317 3784
Munich Forth Box:
(49) (89) 725 9625 (telcom)

SPECIAL GROUPS
NC4000 Users Group
John Carpenter
1698 Villa St.
Mountain View. CA 94041
(415) 960-1256 (eves.)

Forth Dimemiom

1990 ROCHESTER FORTH CONFERENCE
ON

EMBEDDED SYSTEMS
June, 1990

University of Rochester
Rochester, New York

Call for Papers
There is a call for papers on the use of Forth For more information, contact:
technology in Embedded Systems. Papers are Lawrence P. Forsley
limited to 5 pages, and abstracts to 100 words. Conference Chairman
Longer papers will be considered for review in Institute for Applied Forth Research, Inc.
the refereed Journal of Forth Application and 70 Elmwood Avenue
Research. Rochester, NY 14611

Please send abstracts by March 15,1990 and final (716)-235-0168 (716)-328-6426 (FAX)
papers by May 15,1990.

Forth Interest Group
P.O. Box 8231
San Jose, CA 95155

Second Class
Postage Paid at
San Jose, CA

