

F O R T H
D I M E N S I O N S

ANS FORTH: REQUIRED WORDS -JOHN R. HAYES
7

What, exactly, is ANS Forth and how will thechanges it introduces affect your programming practices and existing code?
A member of the standardization committee reports that there are hard decisions to make and provides plenty of details
to mull over until his next report reaches us. This installment describes some differences between Forth-83 and ANS
Forth. -

FIBONACCI RANDOM NUMBER GENERATOR
NATHANIEL GROSSMAN

10
No method is known for producing truly random numbers on a digital computer, but 'pseudo-random' number generators
are acceptable if they pass enough randomness tests. This paper presents a particularly simple random number generator,
and describes how a suitably extended standard Forth package and a text formatter can be used to write readable, well-
commented code.

rn
FORTH IN OPTIMAL CONTROL

J.B. HO, P.Y. KOKATE, M. HUDA, R. HASKELL, N.K. LOH
16

"Optimal control" has been used in the process industry, the space program, and the defense industry. The linear quadratic
regulator is the most commonly used form of optimal controller where the control law is obtained by minimizing a
quadratic cost functional. An LQR is implemented here on a fourth-order ball-balancing system in the laboratory. =

INCREASE MEMORY FOR THE TI 9914A - HOWARD H. ROGERS
2 1

The amount of available RAM in the TI 99/4A after loading TI-Forth can be as little as 6K. This paper discusses a method
of increasing that memory by over 8K, primarily for arrays. 16K of RAM is associated with the video display processor;
8K of this is unused in most modes and can be used by Forth with no conflicts.

I

VOLUME X INDEX - MIKE ELOLA
25

The comprehensive index to all material that appeared in our most recent volume. Use it to find an elusive article or to
get references and inspiration for your work.

m
IN SEARCH OF A BETTER NUMBER INPUT ROUTINE

MIKE E W L A
3 6

The author shares his process of developing a number input routine that is simple yet flexible, a search that began in
response to a troublesome problem: Forth simply terminates execution if a number-conversion error is detected. The most
dramatic end-user benefit imparted by his solution is its improved error handling; and it is easily modified via "picture
strings" to display formatted numbers like dates and currency amounts even while they are being entered.

Editorial
4

Letters
5

Software Submittal Form
24

Best of GEnie
28

Reference Section
32

Advertisers Indcx
33

FIG Chapters
34,42-43

Volume XI, Number 4 3 Forth Dimensions

Forth Dimensions
Published by the

Forth Interest Group
Volume XI, Number 4

NovemberDecember 1989
Editor

Marlin Ouverson
Advertising Manager

Kent Safford
Design and Production

Berglund Graphics

Software Submissions,
Hardware Issue Update

Nathaniel Grossman's original manu-
script, "Fibonacci Random Number Gen-
erator" came better presented than many
published pages and it presented a produc-
tion challenge. Mathematical typesetting
has always been a demanding field, cer-
tainly no less in these days of desktop pub-
lishing. There are standalone programs for
typesetting formulas, but in the interests of
time we ended up using some of his origi-
nal equations for photostatic reproduction
here. It reminded us how far some type-
handling utilities have come and, at the
same time, how far most of them have to go
in terms of ease of use. In addition to his
random number generator, Grossman's
ideas about commenting Forth source code
are timely (and relevant to Glen Haydon's
proposal for commenting source code,
published in FD X/6). When preparing his
article, we respected the author's style
conventions-which exemplify his
points-rather than following our usual
style sheet. Let us know what you think.

* * *

There have been some questions about
the upcoming issue on Forth hardware,
which led me to reply with the following
material. The call for articles about this
topic (see the editorial in FD XI/2 and the
advertisement elsewhere in this issue) was
stated in the most general possible tams;
the intention is not to get you to write to our
specifications, but to convince you to write
about what you consider important, inter-
esting, challenging, and useful. I encourage
a broad spectrum of hardware-related sub-
missions, a spectrum that might range from

Forth Dimensions welcomes editorial mate- (the design of general-purpose micro-
processors whose native language is Forth,
to Forth-controlled embedded systems and
custom hardware implementations, to ob-
jective details of your experience with any
of the commercially available Forth hard-
ware systems.

However, don't let the above examples
restrict you-choose a topic according to
your interests and expertise. Then just
consider what you would want in a thor-
ough, well-written article on that topic.
Would illustrations or source code help to
express your ideas? Are there objective
standards or benchmarks which could be
applied? What bearing, if any, does the
subject of your article have on the Forth
community and on the business of micro-
computers?

I hope this helps a little to stimulate your
thinking. Rather than make it too complex
and constrictive, I suggest just opening the
floodgates.

We have extended the deadline for
theme-related submissions to December 1 ,
1989. Articles received after that date will
still be considered for publication but will
not be among the three selected for pay-
ment.

* * *

Recently, I was looking at R.D. Lurie's
tutorial series about Forth in 68 Micro
Journal. In the April 1989 installment, he
cites Dan Johnson's conditional construct
MAYBE ... THEN AGAIN ... MAYBE NOT
and says he loves those names. Maybe he
does, but then again ...

--Marlin Ouverson
Editor

rial, lettzrs to the editor, and comments from its I
readers. No responsibility is assumed for accu-
racy of submissions.

Subscription to Forth Dimensions is in- I
cluded with membership in the Forth Interest
Group at $30 per year ($42 overseas air). For
membership, change of address, and to submit
items for publication, the address is: ForthInter-
est Group, P.O. Box 8231, San Jose, California
95155. Administrative offices and advertising
sales: 408-277-0668.

Copyright O 1989 by Forth Interest Group,
Inc. The material contained in this periodical
(but not the code) is copyrightedby the individ-
ual authors of the articles &d by Forth Interest I
Group, Inc., respectively. Any reproduction or]
use of this periodical as it is compiled or the ar-
ticles, except reproductions for non-cornmer-
cia1 purposes, without the written permission of
Forth Interest Group, Inc. is a violation of the
Copyright Laws. Any code bearing a copyright
notice, however, can be used only with permis-
sion of the copyright holder.

About the Forth Interest Group
The Forth Interest Group is the association

of programmers, managers, and engineers who
create-practical. Forth-based solutions to real- I
world needs. Many research hardware and soft-
ware designs that will advance the general state
of the art. FIG provides a climate of intellectual
exchange and benefits intended to assist each of 1
its members. Publications, conferences, semi- I
nars, telecommunications, and area chapter
meetings are among its activities.

"Forth Dimensions (ISSN 0884-0822) is
published bimonthly for $24/36 per year by the
Forth Lnterest Group, 1330 S. Bascom Ave.,
Suite D, San Jose, CA 95128. Second-class
postage paid at San Jose, CA. POSTMASTER:
Send address changes to Forth Dimemiom,
P.O. Box 8231, San Jose, CA 95155."

L

Forth Dimensions 4 Volume XI, Number 4

I

Volume XI, Number 4 5 Forth Dimensions

Keep Art Alive!
Dear Mr. Ouverson,

I would like to take this time to thank
you for keeping Forth alive through the
publication of Forth Dimensions. I have
enjoyed it for the last two years and look
forward to enjoying more of it. I think that
publications like this one help to keep the
"art" of programming open and alive. Keep
up the good work.

Although I have never participated in
the "Dimensions" in the past, I may find the
time to do so in the future. Please send me
a copy of the Writer's Guide. Also, I would
be interested in any information you may
have concerning Forth Interest Group
chapters in my area.

Thank you for your time,
Jay E. Topping

Stack Caveat Cured
Dear Mr. Ouverson:

Mr. Paul Condon in FD XI/3 made a
good observation in his comment on my
article, "Forth Needs Three More Stacks."
Indeed, I F is not supposed to alter the stack
if it is being skipped. I checked my CSU
Forth source code and found that IF only
removes the flag if it is executed, and
merely pushes a don't-care if it is skipped.
Therefore, item four of my article (FD XI/
1, page 27) should read,

"4. The word IF will move the flag from
the parameter stack to thecondition stack
iftheflag on top of the condition stack is

1 true; otherwise, it will push don't-care
onto the condition stack."

This only makes sense, because if
words are being skipped, no flags will be

pushed, therefore no flags should be
popped! The high-level definition of IF
should also be corrected as follows:

: I F
3 S@
IF 3 >S
ELSE 0 3 >S
THEN ; MUST-EXEC

Mr. Condon objected to the need to
mark special words so that the interpreter
will honor them regardless of the status of
the condition stack. What I call Must-Exec
words. This marking is necessary if we
implement his alternative algorithm for a
branchless IF; otherwise the "special ac-
tions" that should be taken by the inter-
preter when skipping over IF, ELSE, and
THEN will be impossible because the inter-
preter won't see these words. I'd be inter-
ested to know if Mr. Condon has applied a
similar algorithm to implement the CASE
statement.

He also thought that, for this marking to
work with compiled words, the interpreter
will have to execute >LINK for every word
executed. Perhaps he meant >NFA. CSU
Forth compiles theNFAof words, therefore
the overhead of checking the Must-Exec
mark is minimal. 1 have not noticed any
degradation of performance after I imple-
mented the additional stacks as opposed to
the standard way.

I'd like to assure Mr. Condon that all
branch words are absent from CSU Forth.
The LOOP and BEGIN constructs do not
use the branch words. I have not talked
about that in the article. I agree with him
that some degree of branching will always
be there and cannot be totally eliminated.

Last, about the definition of CASE

containing IF and which IF the interpreter
should execute. There is only one IF in
CSU Forth and it's defined in assembly.
The high-level definition I have in the ar-
ticle was for illustration purposes.

Sincerely,
Ayman Abu-Mostafa
7932 Lampson Ave. #25
Garden Grove, California 92641 4147

Running from Repetition
Dear Mr. Ouverson:

Your readers might be interested in a
word that I find quite useful for avoiding
repetitive typing at the keyboard. I call this
word RUN" (see Figure One), and use it to
compileasequenceofcharactersthatactas
though they are input from the keyboard at
run time. For example, suppose you fre-
quently type FORGET TASK followed
immediately by
: TASK ;

You can use RUN" to capture this typ-
ing sequence in a definition:

: RENEW
RUN" FORGET TASK
: TASK ;" ;

Then you can just type RENEW when-
ever you want to execute the whole se-
quence.

I mostly find RUN" useful while edit-
ing. First a word F I ("Forth's I") is defined
to avoid conflict with the editor's word I
(see Figure One). Then you can easily, for
example, comment out lines five through
ten of the screen being edited by typing:

: : 11 5 DO

FI T
RUN" I \ "

LOOP ;

Or you can delete the same commenting by
typing:

:: 11 5 DO
F I T
RUN" D \ "

LOOP ;

Indentation can also be easily added or
removed using RUN". A global replace (up
to screen 100, say) can be performed by
typing:

100 :: BEGIN
RUN" S old"
RUN" R new"
AGAIN ;

(All of these examples work in Laxen
and Perry's F83. The word : : will HIDE
the last definition, so if you're experirnent-
ing with these definitions, you may have to
define some junk word just before using
: :.)

RUN" is defined in a simple way that
doesn't allow words using RUNf' to be
nested, but this definition is nevertheless
adequate for most uses.

Sincerely yours,
Adin Tevet
P.O. Box 217
44-101 Kfar Sava
Israel

Correction
The preceding issue of Forth Dimensions
contained the article "Multiprocessor
Forth Kernel" by Bradford J. Rodriguez.
Our reproduction of his Figure Three is
somewhat unclear--the zeroes represent
null pointers and should have been posi-
tioned to indicate the inactive queues (i.e.,
those without any pointer to a task). Our
apologies to the author and to any who
were perplexed because of this error.

: (RUN") (adr cnt)
DUP #TIB !
TIB SWAP (adr t i b c n t) CMOVE
0 BLK ! 0 >IN ! INTERPRET ;

: RUN"
[COMPILE] "
COMPILE (RUN") ; IMMEDIATE

: FI
[ALSO FORTH]
COMPILE I [PREVIOUS] ; IMMEDIATE

/ : JUNK-WORD ; \ So FI i s n ' t t h e l a s t word before using ::

Figure One. Words to compile oft-repeated keyboard sequences.

HORIBONTAL STYLE LIGHT BAR HENUS

POPUP WINDOWS

LIGHT BAR

Bend check or money order

P.0. BOX 204

I

Forth Dimensions 6 Volume XI, Number 4

ANS FORTH
REOUIRED WORDS

JOHN R, HAYES - LAUREL, MARYLAND

Volume XI, Number 4 7 Forth Dimensions

Forth by the addition of -LOOP
allows a word to be EXIT^^ from within a
DO ... LOOP:
DO

... IF

... uNLOOP
EXIT THEN

LOOP

This solves many sticky control flow
problems.

ANS Forth allows programs to explic-
itly access the Forth interpreter. Many
Forth systems have a word called INTER-
P ~ E T . ANS FO* includes a similar word
called EVALUATE that, when passed a
string, interprets the string as Forth text.
F,, example,
: 2+

" 2 +" EVALUATE ;
IMMEDIATE

2 +, which has been deleted from ANS
Forth, could be defined as shown for back-
wards compatibility. Everywhere a 2+
,curs in subsequently loaded code, the
phrase 2 + would be evaluated. This is
equivalent to using a text editor to search
for all occurrences of 2 + in the source code
and replace them with 2 +. EVALUATE is
a powerful feature.

A major goal of the ANS Forth effort is
to permit both 16-bit and 32-bitForths to be
standard. This has been accomplished by
allowing the size of a data "~11" to be
implementation-defined (e.g., 16 bits in
~~rth-83). However, once this generaliza-
tion is made, something remarkable hap-
pens. In to 16-bit and 32-bit proc-
essors, a host of other machine mhitec-
tures, such as 18-, 20-, 24-, or 36-bit prm-
essors, are also able support this mare
general concept of acell.Thus, the rangeof

Crea t ing a new Forth standard is a
juggling act. The standards committee
must balance the desire to bring Forth up to
date with current computer technology and
the need to protect the investment made in
Forth-83. This investment includes the
time spent learning Forth-83 and applica-
tions developed in Forth-83. There are hard
decisions to make and you can't please
everyone. This article describes some of
the differences between Forth-83 and ANS
Forth (as of July 1989).

The Forth-83 virtual machine Was pre-
cisely specified as operating on 16-bit data
using two's complement arithmetic andad-
dressing memory as successive eight-bit
bytes. This model closely matchedthemost
common computers available in 1983.
However, computer technology has ad-
vanced since then. 32-bit microproce~~~r~
are common, and several Forth-in-hard-
ware systems are available. Unfortunately,
these types of machines have difficulty
living within the Forth-83 constraints. A
major goal of the standard is to allow effi-
cient implementations of ANS Forth On a
wide variety of processor architectures.

In parallel with the evolution of com-
puters, Forth has evolved, too. New im-
plementation techniques are constantly
emerging. For example, subroutine
threadednative code implementations are
now common. ANS Forth will encourage a
wide range of implementation options.
New Forth language ~0llstructs and pro-
gramming techniques have also been de-
veloped. Those that are mature and have
become indispensable will be standard-
ized.

Table One [page 351 ~~rnmarizes ad&-
tions to the Required Word Set and Table
Two shows deletions from the Required

Word Set. The remainder ofthis article dis-
cusses some of these changes in detail.
Other changes from Forth-83, such as the
addition of floating-point and file-exten-
sion word sets, are subjects for future ar-
ticles.

Additions
Many additions to the Required Word

Set are minor. For example, the set of two-
cell operators has been rounded out by the
addition of 2 > ~ , 2DROP, 2DUP. 20VER,
2R>, and 2SWAP. 2 ! , 2 @, and 2 * are
already in most Forth systems and are now
required. C, completes the set of character
operators (c@ , c ! , and c ,).

Some of the additions are new capabili-
ties over Forth-83. ANS Forth will allow
the construction of string literals and char-
acter literals. (quote) constructs a string
literal within a colon definition:
: HELLO

" hello world" TYPE ;

CHAR pushes the first ~haracter of the
next word in the input stream onto the stack:
CHAR A CONSTANT 'A'

[CHAR] is like CHAR but it compiles
the character as a literal:
: ~ o o

... [CHAR] A EMIT ... ;

ANS Forth will have more control flow
functionality. RECURSE ~ecu~ively calls
the word that contains the RECURSE (this is
called MYSELF On Some systems). Forth-
83 forbade the use of E X I T within a DO ...
LOOP. This was done because there was no
portable way to clean the loop control para-
meters off of the return stack before doing
the EXIT. This has been remedied in ANS

Proceedings of the 1989 1
~0chesterEb;th Conference
6 invitedpapers and 54presentedpapers on all
aspects of Fonh processors, applications and
object oriented technology, including:

SwissFortb, A Development and
Simulation Environment for Industrial
and Embedded Controllers

Forth-bnsed Control of an Ion Implanter

: Cel lnute/TOOLBOX
HardwareISof tware
WorkstationILanguage WE-
AutamtivelAerospace
Powertrainlvehicle
Development/Testing ;

Events and Objecfs: Industrial Control by
Hierarchical Decomposition

Breakthrough in Knowledge Management

An Application Specific

June 20 - 24th, 1989
AL

~ a c h i n e Vision System I I

JFXR Volume 6
Publisher:
Lawrence P. Forsley
Editors:
Dr. S.N. Baranoff, US.S.R Editor
Leningrad Institute for Informatika
Dr. J. Basile, Editor-in-Chief
Long Island University
Dr. R. Crawford, U.K Editor
Microprocessor Engineering L td
Dr. M . Kelly, US. Editor
University of Vwginia
Dr. H . Nieuwenhujien, European Editor
University of Utrecht, The Netherfan&

Upcoming Papers:
32 Bit Forth Processors
Forth in the U.S.S.R.
Object Oriented Extensions

Now's THE TIME!
Volume VI Subscriptions Send name, full address and phone number.

IndividualCorporn~ Check or money order in US funds, or,

USA $50.00 S125.00 VISANC # and exp. date.

Canada/Mexico $60.00 $125.00 To:
EuropeIAsia S70.00 $140.00 Journal of Forth Application and Research

70 Elmwood Avenue
1989 Rochesier Conference Proceeding Rochester. ~y 14611 USA
Indusrrial Automarion $25, plus $5 SM (716) 235-bl68 (716) 328-6426 fax

Special ONer! 1989 Proceedings available to Voi. VI subscribers for $20
($10 savings, for overseas orders add $5 SM.)

computers that can support standard
Forth has been vastly extended at practi-
cally no cost. ANS Forth provides opera-
tors for portably addressing cells in
memory. CELL+ is used to step through
arrays of cells in memory and CELLS is
used to compute the amount of memory
occupied by a given number of cells.

S >D and D > s are used to convert be-
tween single- and double-precision num-
bers. On systems that use two's comple-
ment arithmetic, these words are trivially
defined as DUP 0< and DROP respec-
tively. However, use of S>D and D>S
clarifies the intent of the code and permits
the code to run on systems where the
above two's complement tricks don't
work1.

Deletions
Deletions from the Required Word Set

must be made cautiously. Adding new
features to the language is fine, but delet-
ing features can prevent working Forth-
83 programs from running on ANS Forth
systems. Many apparent deletions in
Table Two are merely reorganizations of
the word sets. For example, the block
words have been moved into a Block
Extension Word Set and VOCABULARY
has been moved into a Vocabulary Exten-
sion Word Set.

Some obsolete Forth-83 words have
been deleted because they were ineffi-
cient or difficult to implement. In most
cases, the deleted word has been replaced
by one of equal or greater capability. For
example, COMP I LE and [COMP I LE]
have been replaced by the single word
POSTPONE. COMPILE was the biggest
barrier to implementing ANS Forth using
subroutine-threaded code, the preferred
implementation technique for Forth on

i Forth chips. Since a standard Forth that
wouldn't run on Forth chips would have
been disappointing, POSTPONE was in-
troduced2. In all but a few rare cases.
POSTPONE maybe used insteadof COM-
P I L E or [COMPILE I . For backward
compatibility, COMP I LE may be defined
as:

1. A future article will describe the poltability fea-
tures of ANS Forth in more detail.
2. There is not adequate space to list all the merits of
POSTPONEhere. I presented a paper at the 1989
Rochester Forth Conference that discusses POST-
P ONEin detail. A capy of that paper may be obtained
by sending a self-addressed, stamped envelope to me
at Mail Stop 13-S576, Johns Hopkins University,
Applied Physics Laboratory, Johns Hopkins Road.
Laurel. Maryland 20707.

Forth Dimensions 8 Volume XI. Number 4

: COMPILE
POSTPONE POSTPONE ;
IMMEDIATE

[COMPILE] may be defined (identically)
as:
: [COMPILE]
POSTPONE POSTPONE ;
IMMEDIATE

CMOVE and CMOVE> have been re-
placed by a single operator, MOVE. Forth-
83 specifies that CMOVE causes patterns to
propagate through memory when the
source and destination blocks overlap. For
example:
CREATE X 10 ALLOT
O X ! X X l +
9 CMOVE

fills the array x with zeroes. This means
that CMOVE must move one byte at a time.
This is inefficient on many machines where
multiple bytes can be transferred simulta-
neously. This diminishes the utility of
CMOVE as a block move operator, its pri-
mary function. Consequently, MOVE is
permitted to move a block of memory as
expeditiously as possible. Pattern propaga-
tion is easily achieved with C@, C ! , and DO
... LOOP.

PICK and ROLL are problematic. They
are very inefficient on some architectures
and are generally regarded as ugly pro-
gramming constructs. Therefore, they have
been moved from the Required Word Set to
the Extension Word Set. Unfortunately, no
equivalent functionality, such as local vari-
ables, has been added. it is recommended
that implementations of ANS Forth
provide PICK and ROLL to support old
programs and that new programs be written
sothatthey don'trely on PICKorROLL. At
worst, PICK and ROLL could be defined:
: PICK
?DUP IF SWAP >R
1- RECURSE R>
SWAP ELSE DUP THEN ;

: ROLL
?DUP IF SWAP >R
1- RECURSE R>
SWAP THEN ;

Summary
ANS Forth is a descendant of Forth-83.

Consequently, knowledge gained about

(Continued on page 35.)

Volume XI, Number 4

JFAR Volume 5 Number 3
Forth in the U.S.S.R
Forth for IBM Mainframe Computers
Symbolic Compulations on a Personal
Computer
S.N. Baranoff, Leningrad Inrt. for Inform.

Alternative Knowledge Acquisition:
Developing A Pulse-Coded Neural Network
W. B. Dress
Oak Ridge National Laboratory
List Processing and Object-Oriented
Programming Using Forth
The Prolog Interpreter Algorithm
Dennis L. Feucht
Innovatia Laboratories

Symbollc Stack Addressing
Adin Tevet

An Efficient Algorithm for Locating the
Global Maximum of an Arbitrary
Univariab Function
Richard E. Haskell

JFAR Volume 5 Number 4
Language Coprocessor Boosting the
Execution Speed of Thrended Code
Programs
Eddy H. Debaere,
Elecrronics Laboratory, State Univ. of Ghent

Parallel Forth
John E. Dorband,
NASAIGoddurd Space Flight Center

An Arithmetic-Slack Processor
for High Level Language Execution
Rodney M. Goodman,
California Institute of Technology
Anthony J. McAuley,
Bell Communications Research

The Architecture of the SC32 Forth Engine
John Hayes and Susan Lee,
Johns H o p h University IAPL

Error-Free Slatistics in Forth
Leonard F. Zettel,
Research Staff; Ford Motor Co.

Volume V Subscriptions Send name, full address and phone number.
Check or money order in US funds, or,

Individual COr~Ornte VISA/MC # and exp. date.
USA $50.00 $125.00 To,
CanadaMexico $60.00 $125.00 Journal of Forth Application and Research
EuropeIAsia 70.00 $140.00 70 Elmwood Avenue
Single Issues available, write or call. Rochester, NY 14611 USA

(716) 235-0168 (716) 328-6426 fax

9 Forth Dimensions

FIBONACCI
RANDOM NUMBER
GENERATOR

NATHANIEL GROSSMAN - W S ANGELES, CALIFORNIA
rn

A random number generator spils out a
sequence of numbers, integers or reals, that
are randomly distributed according to sun-
dry criteria. No method is known for pro-
ducing truly random numbers on a digital
computer.' Instead, sequences of 'pseudo-
random' numbers are produced, and these
generators are acceptable if they pass suffi-
ciently many of the tests for randomness
that any truly random number generator
would pass. No truly random number gen-
erator is known, so, for convenience,
pseudo-random number generators are
called simply random number generators.

This paper has two goals. First, it pres-
ents an implementation of a particularly
simple and easy-to-implement random
number generator in the real numbers
modulo 1. Second, it describes how a suita-
bly extended standard Forth package and
an agreeable text formatter can be used
synergistically to produce readable, well-
commented code as a 'real-time' endeavor.
We have used Knuth's X X formatter, a
huge program that has a long, steep learn-
ing There probably are no l&X
beginners, but XX intermediates like this
writer can have the pleasure of producing
good-looking text with mathematical for-
mulas, program code, tables, and arrays
composed and formatted almost automati-
cally. True XXperts can work miracles.
The actual formatting used to produce the
manuscript came from the k T@ macro
package.

The Forth code is no longer organized in
screens. Typefaces distinguish the state of
the characters. Code to be typed in and
compiled is presented in typewriter
font. Forth words, lines, and examples en-

tered interactively from the keyboard are
shown bold.

Kinds of Generators
Congruential generators

The linear congruential generator is the
one likely to be found in most Forth pack-
ages. Such a generator produces a sequence
of integers xk from a 'seed' xo, developing
the sequence according to the formula

xk+l = ar, + c (mod M).

The seeds are supposed
to be 'random'

The integers a and c are positive and
given, and reduction modulo M returns the
remainder between 0 and M-1 inclusive
when ax, + c is divided by M. No more than
M different integers can be generated be-
fore the sequence begins torepeat. One goal
in the design of random number generators
is to obtain a long run before repetition
begins. The mutual relation of a, c, and M is
crucial: a few choices produce long se-
quences of well-distributed integers, while
others are miserably bad. Some good
choices are as follows:

'0 a C M

256 75 0 M31

? 31421 6927 216
0 3141592653 2718281829 235

(The number M3, = 231 - 1 .) The sources for

'Turing was able to generate 'truly' random numbers by reading the quantum noise in electron tubes.
'I will be specific to T S , but the same ideas will apply to other formatter or formatting-capable word processor.

these are respectively [Che85], [Bro87],
and [Knu69].

Linear congruential generators in
which the modulus M is a power of two are
especially suitable for binary computers,
particularly if the exponent can be chosen
so that the mod-operation is just the lop-
ping off of a few bytes at the head of the
current number. However, these genera-
tors are not so suitable for computing real
(floating point) random numbers directly.
While the integers could be floated, di-
vided by a modulus, and then truncated
from the head, there is still the matter of the
overhead of the multiplications and divi-
sions, whether the goal is integers or reals.

Fibonacci generators
The overhead problem of the opera-

tions can be overcome by using a Fibonacci
random number generator, which belongs
to the class that obtains the current number
as the sum, difference, or product of previ-
ously computed members of the sequence.

The Fibonacci sequence (published in
1202 by Leonardo of Pisa, called Fibon-
acci) starts from x, = 1 andx, = 1 and unrolls
according to the recurrence xk+, = x, + xi,,
giving 1, 1, 2, 3, 5, 8, 13, 21, ... Thls
sequence fails simple tests for randomness.
A simple floating-point Fibonacci genera-
tor that passes almost all the known tests
for randomness is available, namely

If this generator is implemented in
floating point and its output is combined
with the output of a suitably designed float-
ing-point congruential generator, the re-

Forth Dimensions 10 Volume XI, Number 4

and -p, together with 14 non-real roots. Of these last, four are arranged with p and -p as vertices of a regular hexagon in the complex plane, while the remaining 12
lie six and six on two complextonjugate regular hexagons with all 12 vertices on the circle of radius pln centered at the origin. I

sulting generator passes all known tests for large as p = (218 - l)2p-1.4 If p = 55, say, time we push in a one, we compare the
randomness [Kah89]. (We are accepting corresponding to a seven-byte mantissa previous contents with the new contents.
this assertion by Kahaner, et al. on the with one sign bit, then p - 272, almost 5 x When there is agreement, the register has
strength of their reputations. References to lo2'. been filled with a string of ones whose
the literature are mostly to inaccessible number is the length of the register.
technical reports. Jansson's book [Jans66] Generator Startup First we will need a bin for counters:
contains only the barest mention of Fibon- In order to implement the generator (1),
acci generators, and nothing of the present we will have to determine the mantissa variable F .MU
one. A recent, hard-to-secure Berkeley width pandthen seed the circular array that
master's thesis by Akers also treats Fibon- holds previously generated xs. Now the counting word itself is
acci sequences briefly. Both of these straightforward. The comparisons are
sources contain useful general information Mantissa width made while keeping both the old and new
on the history and properties of a wide We have definedp, the mantissa width, contents on the (floating-point) stack.

'Wh the exponent p- l? If the last bit inserted is a one, then the corresponding real number will lie between one and two, so it will be reduced modulo 1 by subtracting
one from it.

selection of random number generators.)
We will implement the generator (1) in

its simplest form, not amalgamating it with
a congruential generator. For this purpose,
we will have to keep 18 consecutive ele-
ments of the sequence on tap. The easiest
way to do this is to store them in an 18-
element circular array with pointers to the
currently called elements. Elements no
longer needed will be overwritten. The
currently generated number will be written
one forward-equivalently, 17 back.

The circular array will have tobe seeded
with the first 18 elementsx,, ..., x,,. These
might in fact be poorly chosen. Thoseread-
ers who have studied the solution of linear
differential equations with constant coeffi-
cients should be able to see why the general
solution of (1) has the form

17 ., = C cir; ,
i=O (2)

where the numbers r, ..., r,, are the roots,
real and complex, of the secular equation

r18 + r12 - 1 = 0

and the coefficients c,, ..., c,, may be cho-
sen arbitrarily provided that the sum (2) is
real-~alued.~ With optimal choices for the
initial values x,,, ..., x,,, the theoretical
number of elements generated by (2) before
the sequence recycles can be very large: if
p is the number of bits (not counting the
sign bit) in the mantissa of the floating-
point representation, the period can be as

'The equation r" + rk2 - 1 = 0 has eighteen roots, just

I

Volume XI, Number 4 I 1 Forth Dimemiom

to be the number of bits-not counting the
sign bit-in the mantissa of the floating-
point representation. A user may have fore-
knowledge of p for the particular floating-
point enhancement that she is using. We
will present a Forth word f.mu that auto-
matically determines p when the random
number generator is loaded. For maximum
portability, f.mu is written in only highest-
level floating-point words that assume
absolutely no special knowledge of the
structure of the floating-point number. Of
course, we assume that the mantissa is
stored somewhere as a string of bits, al-
though that string need not even be con-
nected in the memory. The sign bit will not
be counted. Certain floating-point systems
use a special normalization that counts on
the mantissa always starting with the (bi-
nary) digit 1, so that the left-most digit is
carried as a virtual digit in order to gain an
extra binary digit's worth of precision. We
will not worry about such special systems
or, what is operationally equivalent, we
will treat such systems as if they were non-
virtual. If the width p were counted one too
large, the only loss would be a tiny waste of
processing time in seeding the circular ar-
ray. If the count were one too small, the
maximum cycle length would be cut to half
the theoretical maximum, not likely to be a
great tragedy.

The technique is simple. We imagine
the mantissa as carried in a linear register of
p bits initialized to the string 1000 Then
we insert digits one from the left end, push-
ing the previous contents to the right. Each

two of which are real, namely

: F .MU=? (--
Oe \ empty register
le \ first push
1 £.mu ! \ count that push
begin

fswap fover (old new)
f= not \ different?

while
f dup
2e f / le f + (newold newnew)
1 £.mu +! \ 1 wider

repeat \ 'ti1 the same
£drop ; \ clean stack

The word f.mu=? should run at loading for
initializing.

I tested this word on F-PC, the super-
enhanced child of F83 developed by Tom
Zimmer and his co-conspirators. Using the
hardware floating-point enhancement con-
tained in the file HFLOAT.SEQ, I entered

f.mu=? f.mu ?

and found the mantissa width to be 55.
From this I conclude that the mantissa
occupies seven bytes, of which one bit is the
sign.

The circular array
We want to create a 'circular' array of

18 floating-point numbers. Of course, we
really create a linear array, but imagine that
fetches are to wrap around: positive offsets
that go past the last element continue
onward from the initial entry, with a similar
treatment of negative offsets. The actual

wrapping around is carried out by the off-
setting words themselves. There is no call
here for a generic array with generic words,
because we will work solely with an array
of 18 elements and only three out of 17
possible offsets. Because our calculations
are nongeneric, we can make several sim-
plifying and optimizing definitions.

First we introduce some convenient
arithmetic words.

Now come the actual offsetting words.
The first one offsets the index by -5. If k is
the current index, then the offset index is, of
course, just k - 5. The circular army will be
indexed from zero to 17. Therefore, k - 5 is
just k - 5, provided that k - 5 2 0. If k - 5 <
0, then it is to be replaced by its (floored)
residue modulo 18. Ordinarily we would do
this directly by the mod operation, the job
forwhich it was designed. But now we have
special information: if k - 5 c 0, then k - 5 2
-17. Thus, we will obtain the correct
(floored) residue simply by adding 18, an
operation much faster than a full-blown
division. The first step in the offsetting will
be to check the nominal offset index for its
location. We have the option of adding 13:
13-(-5) = 18. But n 2 5 modulo 18 about 75
percent of the time. We observe that O< is
an intrinsically fast operation in most Forth
systems, while 17 > is not.

: O F F S E T . B Y . 5
(n -- n-5 m o d 1 8)

5 -
d u p 0 <
i f (n-5 < 0)

1 8 t \ sl ide t o pos've
t hen ;

To offset back by 17, we can as well
offset forward by one. For 17 of 18 cases, k
+ 1 < 18ifk< 18.

: O F F S E T . B Y . 1 7
(n -- n-17 m o d 18)
1t
d u p 1 7 >

i f (n = 1 7)
d r o p 0 \ n - 1 7 = O m o d 1 8

then ;

Notethat 1+ is intrinsic and faster than 17 -.
Now for the array. Is it a circular array,

a clock, or a pie chart with 18 wedges? In
honor of Leonardo, we use the last image.

create P I S A - P I E (1 8 s l ices)

1 8 £ # b y t e s * a l l o t

Then we can locate the element offset n
units into the pie:

: P I S A (n -- address)
f#bytes * pisa .p ie + ;

Seeding the Array
Now that we have the array, the

pisagie, we must initialize it-seed it-so
that the random number generator can pro-
duce the sequence of random reds modulo
1. The seeds are again supposed to be
'random' reals, but here the randomness
has a specific interpretation. A choice of the
coefficients c,, ..., c,, in the formula (2) will
determine the initial values x,, ..., x,,. Con-
versely, a little algebra (involving
Vandermonde's determinant) shows that
the first 18 xs also uniquely determine the
18 cs. The randomness sought here is really
genericity, resulting in full dimensionality.
The cs should be such that the set of all x
modulo 1 generated by (2) is '18-dimen-
sional.' This will give the maximum cycle
period. In lieu of carrying out extensive
numerical experiments, we adopt the short-
cut used by [Kah89]. We push a 'random'
sequence of zeroes and ones into the man-
tissas of x,, ..., x,,, making sure at the same
time that all the exponents are 0.5

We explained above that the first 18
elements of the x sequence will be pushed
onto the circular array as random mantissa
sequences of zeros and ones with zero
exponents. For this we need the rudiments
of an integer linear congruential random
number generator. Actually, we need only a
generator with two randomly occupied
states. These could be + and -, but we think
of them as <O and 20. The signed integers in
every standardForth fall into the two sets of

all integers between -32768 and -1 inclu-
sive and 0 and 32767 inclusive. These sets
have 32768 elements-the same num-
ber-so that we can generate a two-state
random sequence by generating a random
sequence of Forth signed integers and as-
signing each to one or the other state, ac-
cording to its sign.

The simple generator must beseeded. It
is desirable for debugging purposes to be
able to rerun the same random sequence.
Hence, the reseeding of the generator must
be voluntary, and the last seed will be kept
in a storage bin.

var iable S E E D

We adapt the generator presented in Start-
ing Forth [Bro87].

: SF .RAND (-- n)

seed @
3 1 4 2 1 * 6 9 2 7 +
d u p seed ! ;

The word sf-rand leaves a Forth signed
integer on the stack, and it updates seed. To
get a fresh seed in an unbiased way, we
obtain a double integer from the system
clock6 and store its least significant digits
into seed.

: NEW. S E E D (--)

g e t t i m e (d) \ f r o m s y s t
c l o c k

s w a p drop
seed ! ;

The seed is planted at loading: I
n e w . seed 1

Now we encounter real numbers. The
floating-point implementations in F-PC
use a floating-point stack separate from the
parameter stack. We use an ad hoc stack
notation, with a vertical bar separating the
two stacks: p a r a m e t e r I f l oa t i ng .
The next word pushes a 'random' integer
onto the parameter stack, classifies it ac-
cording to sign, then pushes the real repre-
senting the proper state onto the floating-
point stack.

'Sometimes this scheme will fail by producing 'unrandom' seeds. No seeding scheme will always succeed-if one did, we would use that successful scheme as our random
number generator and be done. Every calculation em loying random numbers should always be run several times and the results examined for a bias caused by a breakdown
of the random number generator. See the critique of generators in commercial offerings by [Mod87].
:In the 'ancient' days, calculators by hand would glance up at the second hand on the wall clock or decide in which pan of the room a pesky fly was at the moment, using
fate' as the random number generator.

I

Forth Dimensions 12 Volume XI, Number 4

'See remarks by Glen B. Haydon. Forth Dimensions Vol. X, No. 3 , p. 13.

: O . O R . ~ (-- 1 r)
sf.rand \ n on stack
O<
if

Oe
else

1 e
then ;

To get a real l 7 we first push Pe
real zero onto the floating-point stack m
order to force the exponent to zero. Then we
iteratively push zeros and ones into the
mantissa from the left. If the last bit pushed
is a one, the resulting number lies in the real
interval [1,2), so subtracting one correctly
reduces it modulo 1.

: ONE.RANDOM.REAL.MOD.1
(- - 1 r)
Oe \ expOnenr
-mu @ O every mant b't
2e ' \ 'lide right
O Or . \ ran bit left
ft \ push onto left

loop
fdup le f< not

\ 1 or bigger?
if \ >=1 and <2

le f- \ reduce mod 1
then ;

The word one.random.real.mod.1
pushes a random real Onto the
point stack. The next word generates 18

and storesthem into
the array pisa.pie as they are generated.

: 18.RANDOM.REALS.MOD.l (- -)

18 0 do
one.random.real.mod.1
i pisa f!

loop ;

The Generator
The index of the current (last generated)

Fibonacci random real number modulo 1
will be kept in the

variable SUBSCRIPT

We make words
available. There is no harm in imagining
the seedingxs to have negative indices: x-,,,
x -,,, ..., x,,. Then the calculation begins with
the latest subscript set to zero.

I

Volume XI. Number 4 13 Forth Dimensions

: INITIALIZE.PISA.PIE - -
18.random.reals.mod.l
0 subscript ! ;

Initialization will be automatic upon load-
ing:

initialize .pisa .pie

To start the clock anew, substitute the fol-
lowing word:

: INITIALIZE~NEW~PISA~PIE
(--I
,,, . seed

. pisa .pie

We need a word to wry out subtraction
of two modulo 1 reds and express the
answer as a real modulo 1. When both r,
and r, lie in [O,l), then the difference r, - r,
must lie in (-1,l). If it liesin (-1,0), then the
reduction modulo 1 is carried out not by
division but simply by adding one.

: F- MOD.^
(rl r2 -- rl-r2 mod 1)

f-
fdup f O<
if \ -1 < diff < 0

le f+ \ add 1
then ;

Now we have arrived at the generator itself.

: F IBRAND . MOD .I (- - I r
subscript @
duP \ (k k)
offset.by.l7\ same as +1
dup >r
pisa f@ \ x(k-17)
offset.by.5
pisafe \x(k-5)
f - . mod. 1 \ x (k- 17) -x (k- 5)
f dup

@ ! \ store (+)
r>
subscript ! ; \update

This generator will not be an end in itself.
Therefore, the random real modulo 1 is left
atop the floating-point stack for use in the
main computation.

Documenting in Style
Dr. C.H. Ting recommended at the 1988

FORMLConferencethatthebesttimeto
write documentation is before writing the
code. Was he talking with tongue-in-
cheek? I do not know, but in fact it has
always been my practice to write the docu-
mentation/commentary/article before I
start in on the Forth code. Of course, I write
it out in my mind rather than on paper,
postponing until the last possible moment
the inevitable time when I must cope with
bugs and crashes.

Neither before nor after is the best time
to document. The best time is during? The
two ways available up to a short time ago
were less than satisfactory: parentheses and
backslashes fitted in awkwardly at best
with the blocklscreen source code struc-
ture. Shadow screens only mirrored the
blocks, being sometimes too small and
often too large for the relevant commen-
tary. In one of his written conmbutions to
the 1988 FORML Conference, Dr. Ting
laidout the flaws convincingly, arguing for
source code in text-file form. But it is not
just documentation that is bettered in text-
file arrangement; all forms of output are
madeeasierand better. This is why: format-
ting the file for the compiler and the printer
can be done simultaneously.

Here is how I do this dual job at once,
knowing that I want to pass my file through
the Forth compiler and, afterwards, send
the same file through the formatter and
then to the printer. The first requirement is
a Forth implementation that can compile
source code from text files. I am personally
acquainted with two such. Laboratory
Microsystems, Inc. sells URForth, a pow-
erful and fast implementation of Forth-83
for MS-DOS computers. Tom Zimmer and
his collaborators have produced F-PC, a
large and richly endowed public-domain
implementation of Forth-83. Both of these
implementations would have served my
purposes, but I used F-PC for anessentially
trivial reason: it came ready-supplied with
two marvelous words that are powerful
extensions of the commenting words (...)
and \, which are restricted in scope to one
line of source code. F-PC contains com-
ment: and comment; to allow comments
extending over arbitrarily many lines and
CRLF delimiters. The F-PC compiler
treats any and all text between successive
occurrences of comment: and comment;
as acomment and passes over this text. This

allows easy production of comments with a
word processor, whereas the usual com-
mentary requires hand insertions of \ at the
beginning of every line of commentary.
That is especially irritating when the word
processor has run a line out to the right
margin before wrapping to the next line,
and it is tedious to insert or delete partial
lines of commentary upon afterthought.

On the other hand, the B X formatter
operates with embedded commands, those
commands (almost always) consisting of
space-free strings of ASCII characters
beginning with the backslash \. Therefore,
comment: and comment; cannot be inter-
preted by BX as its own commands. I saw
two ways to handle this problem. The first,
most attractive possibility was that com-
ment: and comment; could serve dual
roles. Of course, they would have to be
prefixed by \ in order to work in m. Forth
itself would have a new word added to its
dictionary: \comment: could be cribbed
from the listing in Ting's F-PC Technical
Reference Manual, with the only change
being replacement of the delimiter com-
ment; by \comment;. The backslashed
words would work the expected way with
Forth compilation. For T& purposes, they
should work in the opposite way, with
\comment: turning on the special typeface
for showing Forth code and \comment:
turning it off. That could be done automati-
cally by defining \comment: and \com-
ment; as macro commands in the pre-
amble to the document. I tried this method,
but didn't like it because it did not really fit
into the way I usually work at the word
processor.

Like Forth writing, T@ composition is
best done in small morsels, with the latest
batch put through t h e w compiler to catch
the bugs. 7W< does not crash as Forth does,
but even a T'Xpert will sometimes write
formatting that sinks under an overload of
error messages. Writing and testing Forth
code and preparing a manuscript for TEX
formatting are not all that different. F-PC
comes with Tom Zimmer's SED editor,
written to mimic Wordstar's command
structure, but with oodles of added conven-
iences to ease the work of composing and
compiling Forth code. It is powerful, but it
is Wordstar, which I last used four years
and several other editors ago. I have been

Nathaniel Grossman is professor of
mathematics at the University of Cali-
fornia, l o s Angeles.

using BRIEF for '&X and now use it for
Forth code writing. Any word processor
will work to write source code for F-PC
provided that it can be configured to repre-
sent tabs as spaces rather than Ctrl-I (ASCII
9, which F-PC represents as the little
'circle' in the IBM graphics set) and to
terminate files without Ctrl-2. BRIEF al-
lows me to have many files on the 'desktop'
at once? and I usually have two or three
open in windows. I set up one 'text' file to
contain the debugged code and the inter-
woven commentary. A second window
contains another 'text' file that will hold
only Forth code and will be used for debug-
ging. As I verify the code in the second file,
I copy it over to the first file by using the cut-
and-paste facilities of the word processor,
squeezing it between W font-formatting
commands? The result is a file always
ready for X X formatting and subsequent
printing. Of course, I am also producing the
second file of Forth code only, but I can
compile the extended file after first using
the global search-and-destroy commands
to replace embedded commands of the XX
ilk by comment: and comment; and mak-
ing a small, technically required alteration
to the first line of the TEX preamble.

I've also chosen to increase readability
of the text by producing the manuscript in a
two-column format, which restricts each
line to approximately 40 characters. This
would seem at first encounter to place a
restriction on the in-code commenting.
However, I concur with Dr. Ting's point of
view, which is that the current accepted
Forth commenting style is a by-product of
the 16-line x 64-column matrix of theForth
screen. Without the threat of line 16, there
is no reason to put more than three or four
words on a line, so that the rhythm that was
before expressed by subtle insertions of
spaces is now rendered clear by line
breaks.1° Neither is there any longer a rea-
son for long parenthetical comments or
backslashed lines. Long comments can be
moved out into the surrounding text. In-
deed, the code can be interrupted for as
many lines as is desired of comments.

Different word processors and text for-
matters may have individual idiosyncrasies
that require a little care. For example, T@
uses the underscore (e.g., under-score) as a
control character, so it is best not to use it in

'And it can restore all of those files to the 'deskt at the start of a new session.
I h e cycle of loading and unloading is shortened% mnning BRIEF as a daughter in the DOS shell that F-PC creates with its sys command.
''Dr. Ting already has exploited this 'vertical' format in his F-PC Technical Reference Manual.

Forth words. I like the underscore for
readability, but decided to use the period as
a separator. In the same way, # has a special
meaning to T S , but I found that with care
I could avoid using it where could see
it.

In closing, I must declare that the
scheme explained in this section is not
claimed to be all-embracing or universally
feasible. I would not bother to use it if I
were programming for an application that
was to be contained in a very small portion
of memory--embedded systems, for ex-
ample. It is of no use in Forth systems that
are only block oriented. It produces source
files cluttered with formatting commands
(no problem to an adept but offputting to a
casual browser) that must be printed out or
viewed in formatted form for full benefit.
But, given a Forth implementation that can
compile text files, I think it is a program-
ming synthesis that might help to dispel
Forth's reputation as a 'write once, read
never' language.

References
[Bro87] L. Brodie, Starting Forth, 2nd

edition, Prentice-Hall, 1987.
[Che85] W. Cheney and D. Kincaid, Nu-

merical Mathematics and Com-
puting, Brooks/Cole, 1985.

[Jans66] B. Jansson, Random Number
Generators, Stockholm: Victor
Petersons Bokindustri Aktiebo-
lag, 1%6.

[Kah89] D. Kahaner. C. Moler, and S.
Nash, Numerical Methods and
Software, Prentice-Hall, 1989.

[Knu69] D.E. Knuth, The Art of Computer
Programming, Vol. 2, Addison-
Wesley, 1969.

[Mod871 D.T. Modianos, R.C. Scott, and
L.W. Cornwell, 'Testing Ran-
dom Number Generators,"
BYTE, January 1987, p. 175.

Forth Dimensions 14 Volume XI, Number 4

HARVARD S O F T W O R K S
NUMBER ONE IN FORTH INNOVATION

(513) 748-0390 P.O. Box 69, Springboro, OH 45066

MEET THAT DEADLINE I I I

Use subroutine libraries written for
other languages! More efficiently!
Combine raw power of extensible
languages with convenience of
carefully implemented functions!
Yes, it is faster than optimized C !
Compile 40,000 lines per minute!
Stay totally interactive, even while
compiling!
Program at any level of abstraction
from machine code thru application
specific language with equal ease
and efficiency!
Alter routines without recompiling!
Use source code for 2500 functions!
Use data structures, control
structures, and interface protocols
from any other language!

* Implement borrowed feature, often
more efficiently than in the source!
Use an architecture that supports
small programs or full megabyte
ones with a single version!
Forget chaotic syntax requirements!
Outperform good programmers
stuck using conventional languages!
(But only until they also switch.)

HS/FORTH with FOOPS - The
only flexible full multiple
inheritance object oriented
language under MSDOS!

Seeing is believing, OOL's really are
incredible a t simplifying important
parts of any significant program. So
naturally the theoreticians drive the
idea into the ground trying to bend
all tasks to their noble mold. Add on
OOL's provide a better solution, but
onlv Forth allows the add on to blend
in as an integral part of the language
and onlv HSJFORTH ~rovides true
multiple inheritance & membership.

Lets define classes BODY, ARM, and
ROBOT, with methods MOVE and
RAISE. The ROBOT class inherits:

INHERIT> BODY
HAS> ARM RightArm
HAS> ARM LeftArm

If Simon, Alvin, and Theodore are
robots we could control them with:
Alvin 's RightArm RAISE or:
+5 -10 Simon MOVE or:
+5 +20 FOR-ALL ROBOT MOVE
Now that is a null learning curve!

WAKE UP I I !

Forth is no longer a language that
tempts programmers with "great
expectations", then frustrates them
with the need to reinvent simple
tools expected in any commercial
language.

HSIFORTH Meets Your Needs!

Don't judge Forth by public domain
products or ones from vendors
primarily interested in consulting -
they profit from not providing needed
tools! Public domain versions are
cheap - if your time is worthless.
Useful in learning Forth's basics,
they fail to show its true potential.
Not to mention being s-1-o-w.

We don't shortchange you with
promises. We provide implemented
functions to help you complete your
application quickly. And we ask you
not to shortchange us by trying to
save a few bucks using inadequate
public domain or pirate versions. We
worked hard coming up with the
ideas that you now see sprouting up
in other Forths. We won't throw in
the towel, but the drain on resources
delays the introduction of even better
tools. Don't kid yourself, you are not
just another drop in the bucket, your
personal decision really does matter.
In return, we'll provide you with the
best tools money can buy.

The only limit with Forth is your
own imagination!

You can't add extensibility to
fossilized compilers. You are a t the
mercy of that language's vendor. You
can easily add features from other
languages to HSJFORTH. And using
our automatic optimizer or learning a
very little bit of assembly language
makes your addition zip along as well
a s in the parent language.

Speaking of assembly language,
learning i t in a supportive Forth
environment turns the learning curve
into a light speed escalator. People
who failed previous attempts to use
assembly language, conquer i t in a
few hours or days using HSPORTH.

HSIFORTH runs under MSDOS or
PCDOS, or from ROM. Each level
includes all features of lower ones. Level
upgrades: $26. plus price difference
between levels. Sources code is in
ordinary ASCII text files.

All HWORTH systems support full
megabyte or larger programs & data, and
run faster than any 64k limited ones even
without automatic optimization -- which
accepts almost anything and accelerates to
near assembly language speed. Optimizer,
assembler, and tools can load transiently.
Resize segments, redefine words, eliminate
headers without recompiling. Compile 79
and 83 Standard plus F83 programs.

STUDENT LEVEL $145.
text & scaledlclipped graphics i n bit blit
windows,mono,cga,ega,vga, fast ellipses,
splines, bezier curves, arcs, fills, turtles;
powerful parsing, formatting, file and
device I/O; shells; interrupt handlers;
call high level Forth from interrupts;
single step trace, decompiler; music;
compile 40,000 lines per minute, stacks;
file search paths; formats into strings.

PERSONAL LEVEL $245.
software floating point, trig, transcen-
dental, 18 digit integer & scaled integer
math; vars: A B * IS C compiles to 4
words, 1..4 dimension var arrays;
automatic optimizer-machine code speed.

PROFESSIONAL LEVEL $396.
hardware floating point - data structures
for all data types from simple thru
complex 4D var arrays - operations
complete thru complex hyperbolics;
turnkey, seal; interactive dynamic linker
for foreign subroutine libraries; round
robin & interrupt driven multitaskers;
dynamic string manager; file blocks,
sector mapped blocks; x86&7 assemblers.

PRODUCTION LEVEL $496.
Metacompiler: DOS/ROM/direct/indirect;
threaded systems start at 200 bytes,
Forth cores at 2 kbytes; C data
structures & struct+ compiler;
Turbowindow-C MetaGraphics library,
200 graphicfwindow functions, Postscript
style line attributes & fonts, viewports.

PROFESSIONAL and PRODUCTION
LEVEL EXTENSIONS:

FOOPS+ with multiple inheritance$ 76.
286FORTH or 386FORTH $296.

16 Megabyte physical address space or
gigabyte virtual for programs and data;
DOS & BIOS fully and freely available;
32 bit addressloperand range with 386.

BTRIEVE for HWORTH (Novell) $199.
ROMULUS HS/FORTH from ROM$95.
FFORTRAN translatorlmathpak $ 76.

Compile Fortran subroutines! Formulas,
logic, do loops, arrays; matrix math,
FFT, linear equations, random numbers.

Volume XI, Number 4 15 Forth Dimemiom

FORTH IN
OPTIMAL CONTROL

-

J.B. HO, P.Y. KOKATE, M. HUDA, R. HASKELL, N.K. LOH
ROCHESTER, MICHIGAN

rn

A linear quadratic regulator BQR) is
implemented using Forth on a fourth-order
ball-balancing system in the laboratory.
The control law is implemented on an IBM
PC, as well as on a Motorola MC68HC11
board, to test the feasibility of having a
standalone system.

Introduction
Optimal control is a branch of modem

control theory. Since 1960, it has been used
extensively by control engineers in various
areas such as the process industry, the space
program, and the defense industry. The
LQR is the most commonly used form of
optimal controller where the control law is
obtained by minimizing a quadratic cost
functional. The resulting control law is of
the form u = -IJrixi, where the 4's are the
gains and the xi's are the system state vari-
ables.

Assembly language is invariably pre-
ferred for real-time digital implementation,
due to memory and speed constraints.
However, with speedclose to that of assem-
bly language, Forth-being a higher-level
language-is an attractive alternative.

The ball-balancing system shown in
Figure One, an inherently unstable fourth-
order system, is used to demonstrate the
feasibility of using Forth in optimal con-
trol. A Forth program (600 bytes of code)
was used to implement an LQR for this
system with an IBM PC and a 12-bit
Tecmar data acquisition board. A sampling
time of eight msec. could be achieved.
Another version was successfully tested
using the Motorola MC68HCll with
MaxForth embedded in the ROM. This

rank[B, AB, AZ,B A3B ... A°-lB] = n. (2)

experiment was conducted as a part of a
class project in the course "Design of
Embedded Software Computer Systems,"
taught by Professor Richard Haskell.

Optimal Control
Consider a linear system, given in state-

space form as:

i(t) = h (t) + Bu(t), -

YO) = c&(t), (1)

where, ~ (t) E Rn is the state vector, u(t) E Rm
is the input vector, y(t) E RP is the output
vector, and A,B, and C are real matrices of
compatib1edimensions.This system canbe
controlled if the pair [A,B] is controllable,
i.e.,

where rank[.] denotes the rank of [.I.
To design an LQR a cost function J, of

the form,

h (t) = -R-'BTKx(t), (4)

where K is the positive definite solution of
the algebraic Riccati equation [I],

KA + A X - KBR-'BX - Q = 0. (5)

It can be seen from (4) that we need all
the states for the implementation of this
control law. If C is a nonsingular matrix,
then ~ (t) can be obtained directly from (1)
as &(t)=[Cl-'y(t). If all the states cannot be
measured directly, then the nonmeasurable
states can be estimated using a Luenberger
observer [2] or Kalman filter [3], provided
the pair [C,A] is observable, i.e.,

rank[CT CTAT CT(AT)2 . . . C?(A7)n-l] = n.(6)

is minimized, where Q E Rmn is a positive
semi-definite matrix, R E Rm- is a positive
definite matrix. The state feedback law
which minimizes J is given by [I],

We have implemented an LQR for a
ball-balancing system [4] using an IBMPC
as well as a Motorola MC68HC 11 micro-
processor. The system, as shown in Figure
One, consists of two parallel tracks 1.1 m
long. A carriage having a pair of arcs with
an arc radius of 0.25 m and subtending an
angle of 0.28 rad at the center, slides on top
of the tracks. A metal ball rolls on top of the
arc. Thesystem in state-space form is given
by the formula below

Forth Dimensions 16 Volume XI. Number 4

where aT = [x, x, x, x,] = [z z 6 6 I ,

z(t) carriage position,
Z(t) carriage linear velocity,
?(t) ball position,
8(t) ball angular velocity.

The ball angular velocity 6(t) cannot be
measured, hence it is estimated using the
ball position data. The system is unstable
and the eigenvalues of A are given by 0,
4.85, -4.97, -3.76. Consider the quadratic
performance measure

Statement of Ownership,
Munugement and Circulution

1) Title of Publication: Forth Dimensions
Publication Number: U.S.P.S .002- 191

2) Date of Filing: 9/19/89
3) Frequency of Issue: Bi-monthly

No. of issues published annually: 6
Annual subscription price: $24136 1 J = $ [lox: + o-lx: + u2(t)1dt-

4) Location of known office of publication: 1330 S. Bascom Ave.. Suite D, San

The optimal control which minimizes J
is given by

With the sensor calibration constants,
this equation for the IBM implementation
becomes,

Jose, Santa Clara County, California 95128-4502
5) Location of headquarters or general business offices of the publisher: Same as

above
6) Publisher: Forth Interest Group, P.O. Box 823 1, San Jose, California 95 155

Editor: Marlin Ouverson, Same as above
Business Manager: Gmrgiana F. Shepherd, Same as above

7) Owner: Forth Interest Group, Same as above
8) Known bondholders, mortgages, and other security holders owning or holding

1 % or more total amount of bonds, mortgages, and other securities: None
9) The purpose, function, and non-profit status of this organization and the exempt I status for Federal Income Tax purposes have not changed during the preceding 1 12 months.

where, x4(t) is numerically calculated as 10) Extent and nature of circulation
Average No. copies/ Actual No. copies 1 I

where xbId= xi(t-A), A being the sampling
interval.

For the MC68HCll implementation,
additional scaling needs to be done to ac-
count for the limitations of the analog-to- 1 digital device and equation (9) becomes,

uopt(t) = 0.4237x1(t) - 1.7276x2(t) +
0.6941%(t) + x,(t), (12)

where x,(t) is calculated as,

x,(t) = 0.5384~,~~d+ 8.008(%(t) - x,,).(13)

Implementation of this control law is
explained in the next section.

issue during pre- of single issue
ceding 12 months nearest to filing date

A. Total no. copies printed: 2750 2500
B. PaidJrequested circulation:

1. Sales: 0 0
2. Mail subscription 2187 1918

C. Total paidJrequested circulation: 2187 1918
D. Free distribution by mail, carrier

1 or other means: samples, comp-
limentary and other free copies: 47 45

E. Total distribution: 2234 1963
F. Copies not distributed:
1. Office use, left over, unac-

counted, spoiled after printing: 5 16 537
2. Return from news agents: 0 0

G. TOTAL: 2750 2500

11. I certify that the statements made by me above are correct and complete.
IS/ Gmrgiana F. Shepherd

Volume XI, Number 4 I7 Forth Dimensions

Potentiometers XI

A / \ +v
-v

A \\&p +v & -v

-- r - ,
1

r=o I I %

+ I -++ 2
I

Figure One. Schematic diagram of the ball-balancing System.

I

Forth Implementation
The control law given by (10) was im-

plemented in F83 on an IBM PC. The
Tecmar board used for data acquisition is
configured to have its memory map in a
different segment from that used by the F83
Forth system. Since the version of F83 used
does not have instructions to store and fetch
addresses outside its 64K byte segment,
codewords ! BUFF,@BUFF,C!BUFF,and
C@BUFF are written to work in a similar
fashion to ! , @, c ! , and C@, respectively, to
access these addresses. We need to set only
the base address, which is $A000 in the
IBM implementation. These words are
given in Screens 1-2 in Figure Two. For
example, 7 2 5 C ! @BUFF means fetch byte

I at address $A0725 = A000:0725.
In the word ADC in screen 4 of Figure

Two, the channel number is sent to address
$A0725 and address $A0726 is set to zero
to start the analog-to-digital conversion.
The word DAC is used for digital-to-analog
conversion where addresses $A072 1 +

Optimal

2*ch and $A0720 + 2*ch are stored with the
high byte and the low byte of the output
data. The word u . CAL in Screen 5 of Fig-
ure Two is the scaled calculation of (10).
The initial control input in optimal control-
lers is usually of high magnitude. The word
OPT is used to avoid saturation of the d.c.
servo motor amplifier, where the output is
scaled to 0.3 of its value whenever U . CAL
exceeds +2V. The sampling time is meas-
ured to be eight msec.

The control law (12) was implemented
on a Motorola MC68HC 1 1 in order to have
a standalone system. The listing for this
MaxForth program is given in Figure
Three. The word TSTH . CCF in Screen 62
checks the completion of the analog-to-
digital conversion. The words Xl . CAL,
X2. CAL, X 3 . CAL, and X 4 . CAL in
Screen 64 are the scaled calculations of the
states x,, x,, x,, and x,, respectively. In
order to ensure faster calculation, the calcu-
lation is approximated by arithmetic shifts
rather than multiplications. For example, in

the calculation of X2 . CAL in Screen
64,

controller

DUP 2 / DUP 2/ DUP 21
2 / 2/ - -I- +

-

is equivalent to

which is an approximation for
1.7276X2 in (12).

x4

Conclusion
The response of the system is ex-

cellent in both implementations. Set-
tling time for the ball on top of the arc
is longer with the MC68HC11 due to
the lower precision of the eight-bit A/
D compared with the 12-bit AD on a

I (Text continued on page 33

dldt

Forth Dimensions 18 Volume XI, Number 4

4
x3

0 3

0 Forth i n Optimal Control reh DlJan80 \

1 VARIABLE X1

2 J.B. Ho, P.Y. Kokate, M. Huda, R. Haskell, N.K. Loh VARIABLE X2

3 VARIABLE X3

4 Center f o r Robotics and Advanced Autometion VARIABLE X4

5 School o f Engineering and Canprter Science VARIABLE X3-OLD

6 Oakland Un ive rs i t y VARIABLE X4-OLD

7 Rochester, Michigan 48309

8 0 X3-OLD !

9 D X4-OLD !

10

11

12

13

14

1

0 \ reh

1 2VARlABLE SVBX

2 ZVARIABLE SVAX

3 2VARl ABLE BASE-ADD

4 HEX

5 A000 BASE-ADD !

6 DECIMAL

7 CODE !BUFF (da ta \o f f se t - -)

8 AX SVAX #) MOV BX SVBX #) MOV BASE-ADD #) AX M V

9 AX ES MOV BX POP AX WP ES: AX 0 [BXI MOV SVAX #) AX

10 MOV SVBX #) BX FMV NEXT END-CODE

11 CODEaBUFF (a d d - - d a t a)

12 AX SVAX #) MOV BX SVBX #) M V BASE-ADD

13 17) AX MOV AX ES WV BX POP ES: D CBXI AX MOV

14 IPUSH SVAX #) AX nov svsx #) BX nov NEXT

15 END-COO€

HJB OlJan8O

4

15Feb89 \ reh 15Feb89

HEX

:ADC (C h a n - - D a t a)

725 C!BUFF 0 726 C!BUFF \ Select channel. S t a r t conversion.

BEGIN 724 CaBUFF 7F > UNTIL \ Check f o r end o f conversion.

725 aBUFF ;

: DAC (Data\Chan - -)

2' SWAP

-800 MAX 7FF MlN \ Check f o r 12 b i t saturat ion.

DUP -ROT 2/ 2/ 2/ \ Separate i n t o H and L bytes.

2/ 2/ 2/ 2/ 2/ OVER

721 + C!BUFF \ Output H byte.

720 + C!BUFF ; \ Outpr t L by te and s t a r t conversion

2 5

0 \ reh 15Feb89 \ Hreh 15Feb89

1 CODE C!BUFF (data\of fset - -) DECIMAL

2 AX SVAX #) nov BX svex nov BASE-ADO r) AX nov : U.CAL (- - U-DATA)

3 AX ES HOV BX POP AX POP ES: AL 0 10x1 MOV SVAX #) AX 2 ADC XI ! 3 ADC X2 ! 5 ADC X3 !

4 nov svex a) BX nov NExr X ~ P L D a 431 *D x3 a XII-OLD a - 6333 *D D+ 1000 MIMOD

5 END-CODE SUAP DROP DUP ~4 ! XI a 216 'D ~2 a -440 'D D+

6 x3 a 583 *D D+ 1000 n/nw SWAP DROP +

7 CODE C@BUFF (add - - data) X3 a X3-OLD ! X4 3 X4-OLD ! ;

8 AX SVAX #) MOV BX SVBX #) MOV BASE-ADD

9 #) AX MOV AX ES MOV BX POP ES: o [BXI AX nov : O P T (- -)

10 AH AH SUB IPUSH SVAX #) AX nov svex #) BX nov NEXT o 1 DAC 128 1828 C!BUFF

11 END-CODE BEGIN U.CAL DUP 408 > OVER -408 < OR

12 IF 3 ' 10 I 1 DAC

13 ELSE 1 DAC THEN

14 AGAIN ;
15

Figure Two. Forth words used to balance the ball using F83 with an IBM PC and Tecmar data acquisition board.

I

Volume XI, Number 4 19 Forth Dimensions

6 0

0 (

1 HEX

2 1 0 0 4 1C !

3 5 0 1E !

4 1 0 6 0 2 2 !

5 FORGET TASK

6 1 0 8 0 D P !

7 DECIMAL

8

9 : \ (- -)

1 0 B L K ~

11 I F

1 2 > I N @ 64 / 1+ 64

1 3 ELSE # T I E @

16 THEN > I N ! ; IMMEDIATE

1 HEX

2 BOO0 CONSTANT REG

3 REG 4 + CONSTANT PORTB

4 REG 30 + CONSTANT ADCTL

5 REG 3 1 + CONSTANT A D R l

6 REG 3 2 + CONSTANT ADRZ

7 REG 3 3 + CONSTANT ADR3

8 REG 39 + CONSTANT OPTION

9

1 0 VARIABLE X 3

1 1 VARIABLE X3-OLD

1 2 VARIABLE X4-OLD

1 3 0 X3-OLD !

1 4 0 X4-OLD !

63
r e h 1 5 F e b 8 9 \

CODE 3.1USEC (- -)

3 C C,

CE C, 0 4 C, 06 C,

09 C,

2 6 C, FD C,

38 C,

7E C, FE C, 4 A C,

END-COOE

64

r e h 1 5 F e b 8 9 \

r e h 1 5 F e b 8 9

(3.1 USEC DELAY)

(PSHX

(LDX #SO406)

(L 1 : D E X)

(BNE L 1)

(PULX)

(JMP NEXT)

r e h 1 5 F e b 8 9

: XI .CAL (- - n)
ADRl C@ 8 0 - NEGATE 2 / DUP 2 / 2 / 2/ DUP 2 / 2 / + - ;

\ O u t p u t P o r t 6

\ A/D C o n t r o l R e g i s t e r : X2.CAL (- - n)

\ A/D R e s u l t R e g i s t e r 1 ADRZ C a 80 - NEGATE DUP 2 / DUP 2 / DUP 2 / 2 / 2/ - + + ;

\ A/D R e s u l t R e g i s t e r 2

\ A/D R e s u l t R e g i s t e r 3 : X3.CAL (- - n)

\ S y s t e m C o n f i g u r a t i o n Options ADR3 C a 86 - NEGATE DUP X 3 ! 2 / DUP 2 / 2 / DUP 2 / + + ;

: X4.CAL (- - n)
X4-OLD a 2 / DUP 2 1 2 / 2 / 2 / +

x3 a x3-OLD a - 8 +

DUP X4-OLD ! X 3 @ X3-OLD ! ;

6 2 65
0 \ reh 1 5 F e b 8 9 \ H r e h 1 5 F e b 8 9

1 C W E TSTH.CCF \ T e s t ADC C o n v e r s i o n s C o m p l e t e F l a g H i g h (- -) 80 FQRTB C!

2 3C C, (PSHX)

3 C E C , B O C , O O C , (LDX #$BOO0) : BALANCE

4 I F C, 3 0 C, 8 0 C, FC C, (:I: BRCLR t 3 0 . X $80 L 1) ADC.UULT1

5 3 8 C . (PULX) BEGIN

6 7E C, FE C, 4A C, (JMP NEXT) TSTH.CCF X1.CAL X2.CAL - X3.CAL + X4.CAL +

7 END-CWE 80 + DUP E 4 > OVER 1C < OR

8 I F 2 / PORTB C!

9 : ADC.ON (- - 1 ELSE PORT0 C!

1 0 8 0 OPTION C! 5 0 DO LOOP ; THEN

1 1 10 ADCTL C! 3.1MSEC

1 2 : ADC.MULT1 (- -) AGAIN ;
1 3 ADC.ON 1 0 ADCTL C! ;
14 DECIMAL

i

Figure Three. Forth words used to balance the ball using MaxForth on a 68HC11.

L

Forth Dimensions 20 Volume XI, Number 4

INCREASE MEMORY
FOR THE TI 99/4A

HOWARD H . ROGERS - TORRANCE, CALIFORNIA
rn

1. O'Hagen, L, Tietz. L., and Yantis, J.T. TI-Forth Irrthuction Manual, Texas Instruments, Inc.. 1983. I

x e amount of random-access mem-
ory left in the TI 9914A after loading TI-
Forth-an extension of fig-FORTH-is
16K without the editor, but 13K with it.
However, most users load additional TI-
Forth code, leaving as little as 6K for use.
This paper discusses a practical method of
increasing that memory by over 8K of
RAM, primarily for use with arrays.

Source of Additional RAM
There is 16K of RAM associated with

the video display processor (VDP), an
unused 8K of which is available in all
modes (text, graphics, and multi-color)
except Graphics2, a bit-mapped mode.
Since Forth normally runs in text mode, no
interferences result from using this mem-
ory.

It should be pointed out that VDP
memory is accessed byte-by-byte through a
memory-mapped port, and is not in the
processor's address space. Accessing this
memory is done in serial fashion, which is
significantly slower than accessing proces-
sor (CPU) RAM. Forth runs in the CPU
RAM obtained from a 32K memory expan-
sion card (required to use Forth on the 991
4A).

System Synonyms
TI-Forth1 provides four words, summa-

rized below, to access VDP RAM:

VSBW Writes one byte from the stack to
a VDP address.

VMBW Writes multiple bytes from a CPU
address to a VDP address.

VSBR Reads one byte from a VDP ad-
dress to the stack.

VMBR Reads multiple bytes from a VDP
address to a CPU address.

Volume XI, Number 4 21 Forth Dimensions

These words provide the basis for the
definitions presented in this paper. Arrays
can be initialized by VF ILL, the equivalent
of FILL in fig-FORTH.

Screens
The intent of the code shown in the

screens is to provide words analogous to
standard Forth words, but which use VDP
RAM instead of CPU RAM. The names are
basically the same as those for standard
Forth definitions, but with the letter V be-
fore the name.

Screen 110-This screen provides the

equivalents of ! , C ! , ALLOT, and VARI-
ABLE. Since little memory is used by con-
stants, a VDP equivalent of CONSTANT
was considered unnecessary.

Screen 11 1-The equivalents of @, C@ , ,
(comma), c , , and +! are shown. The
words equivalent to , (comma) increment
the VDP pointer VPTR, which serves a
function similar to HERE. RESETV was
defined to allow recovery of VDP RAM
prior to using FORGET with a W A R I -
ABLE, since FORGET alonedoes notaffect

(Continued on page 30.)

Addr 0 1 2 3 4 5 6 7 ASCX I
1400 0002 0004 0006 0008 ,.,...,,
1488 000A 000C 000E 0018 ..,...,.
1410 0012 0014 0016 0018 ,...,...
1418 001A 001C 001E 8020,.,
1420 0022 0024 0026 0028 . ". S. &. (

1428 002A 002C 002E 0030 . t. , . . - 0
1430 0032 0034 0036 0038 -2.4.6.8
1438 0036 0 0 3 ~ 0 0 3 ~ 0040 ,:.<.>.@
1440 2021 2223 2425 2627 !"#%%&'
1448 2829 2CS2B 2C2D 2E2F () *+, -. /
1450 3031 3233 3435 3637 01234567
1458 3839 3A3B 3C3D 3E3F 89: ; <=>?
1460 4041 4243 4445 4647 @ABCDEFG
1468 4849 4A4B 4C4D 4E4F HXJKLMND
1470 5051 5253 5455 5657 PQRSTUVW
1478 5859 5A5B 5C5D 5E5F X Y Z t \ I A -
1480 6061 6263 6465 6667 'abcdefg
1486 6869 6A6B 6C6D 6E6F hijklmno
1490 7071 7273 7475 7677 pqrstuvw
1498 7879 7A7B 7C7D 7E7F x y z C :) ' .

Figure One. Representative screen dump of VDP RAM.

3CR #110
0 (FIG-Forth: VDP arrays and var iables SCRIl HHR 1/13/87 1
1
2 BASE->R HEX (8664 bytes of VDP RAM avai lab le 1
3 1400 VRRIABLE VPTR (Usuable VDP RAM s t a r t s a t hex 1408 1
4
5 : VALLOT (n --- 1 VPTR +! ; (fidvances VDP RAM po in ter)
6
7 : VC! (b vaddr --- 1 VSBW ; (More appropriate name 1
8
9 : V! (n vaddr --- 1 (2 VMBW t rans fers a word from the top 1

1 0 SP@ 2+ SWAP 2 VMBW DROP ; (of t he stack t o VDP RAM 1
11
1 2 (Address of named var iab le i s stored as a constant 1
1 3 : VVARIRBLE (n --- 1 VPTR e (=CELLS forces po in te r even 1
1 4 =CELLS DUP DUP 2+ VFTR ! (Pointer VPTR i s incremented 1
1 5 CONSTANT V! ; --> (Store value i n var iab le)

1 SCR lllll
0 (FIG-Forth VDP arrays and var iables SCR82 HHR 1/13/87 1 1
1
2 r VC@ (vaddr --- n 1 VSBR ; (More appropriate name 1
3
4 : V@ (vaddr --- n 1 (Analogous t o t2 1
5 0 SWAP SPC 2+ 2 VMBR ;
h (VMBR t ransfers a word from VDP RAM t o the top of the stack 1
7
8 : VC, (c --- 1 VPTR @ VSBW 1 VPTR +! .

9

9 : V, (n --- VPTR @ V ! 2 VPTR +! i
1 0 : V+! (n addr --- 1 DUP V@ ROT + SWAP V ! i
11
1 2 : RESETV (--- <name> 1 (Recovers VDP RAM- resets po in te r 1
1 3 CCOMPILE3 ' CFA EXECUTE VPTR ! ;
1 4
1 5 R->BASE

SCR 8 1 1 2
0 (A1 te rna t ive V! d e f i n i t i o n s HHR 1/13/87 1
1
2 HEX (A 1 1 use VSBW, a s ing le byte t rans fer from the stack 1
3
4 : V ! (n vaddr --- 1 DUP ROT
5 DUP SWFB FF AND ROT VSBW (SWPB swaps bytes conveniently 1
6 SWAP 1+ VSBW ;
7
8 r V! (n vaddr --- 1
9 DUP ROT SPB C@ ROT VSBW Uses C@ instead of SWFB t o 1
1 0 SWAP 1+ VSBW 8 (se lect cor rec t by te 1
11
1 2 : V! (n vaddr --- 1 SWAP PAD ! (S imi lar t o above but 1
1 3 DUP PAD CC SWAP VSBW (uses PAD f o r storage 1
1 4 FAD 1+ CC SWAP l+ VSBW ;
15

Forth Dimensions 22 Volume XI, Number 4

SCR # I 1 3
0 (A1 t e rna t i ve V@ def in i t ions HHR 1 / 1 3 / 8 7 1
1
2 HEX (A 1 1 use VSBR, a s ing le byte transfer t o the stack 1
3 (A 1 1 use + or OR t o create a Word f r o m t w o bytes 1
4
5 : V@ (vaddr --- n 1 DUP VSBR
6 8 SLA SWAP 1+ VSBR + i (8 SLA sh i f t s l e f t 1 byte 1
7
8 : V@ t vaddr --- n 1 DUP VSBR (OR i s used as an 1
9 8 S L A SWAP 1+ VSBR OR ; (a1 te rna t ive t o + 1

1 0
11 : V e (vaddr --- n 1 DUP
12 VSBR 1 0 0 $ SWAP (t i n place of l e f t sh i f t of 1 byte 1
1 3 l + VSBR OR 3
1 4
1 s

SCR 4 1 1 4
0 (VDUMP S C R t 1
1 0 VARIABLE CNTR 0 VARIABLE TEMP

HHR 1 / 1 5 / 6 7 1

P R T 0 < # # # # # # > T Y P E ; (V D P R A M a d d r s tored a t PAD 1
(Lines of data stored a t PAD + 2 t o PAD + 9 t e m p o r a r i l y 1

GETDATA PAD @ PAD 2+ 8 VMBR ;
(T r a n s f e r s data f r o m VDP addr t o PAD + 2 1

STOP ?KEY DUP 2 = (A n y key stops & r e s u m e s p r i n t i n g 1
I F TEMP @ BRSE ! 0 CNTR ! Q U I T THEN

I F KEY DROP THEN ; (FCTN 4 t e r m i n a t e s VDUMP)

F I L T E R 8 8 DO PAD 2+ 1 + C@ (C h a n g e s byte values < 32)

DUP 32 < SWAP 1 2 6 > OR (& > 1 2 6 t o A S C I I 46, pr in t s , 1
I F 46 PAD 2+ I + C! THEN LOOP ; -->

SCR # I 1 5
0 (VDUMP SCR# 2 HHR 1 / 1 5 / 8 7
1 : P R T L I N E 8 0 DO PAD 2+ I + @ PRT SPACE 2 +LOW ;
2
3 : PRT-ASCI I SPACE PAD 2+ 8 TYPE CR ;
4 (PRT-ASCI I p r i n t s f i l t e r e d A S C I I characters 1
5 : HEADER CR ." A d d r 0 1 2 3 4 5 6 7 A S C I I n CR 3
6
7 : VDUMP (vaddr cnt ---) (TEMP holds previous base value 1
8 CR CR HEADER BASE @ TEMP ! HEX
9 8 + 8 / Swap (P r i n t on ly f u l l 8 byte l i n e 1

1 0 8 / 8 t P A D ! (s t a r t only a t an addr d i v i s i b l e by 8 1
11 0 DO GETDATA PAD @ FRT 2 SPACES (PRT pr in ts address)

1 2 P R T L I N E F I L T E R PRT-ASCI I (P r i n t s header each
1 3 CNTR @ 1 9 > I F HEADER 0 CNTR ! THEN (20 l ines 1
14 1 CNTR +! 8 PAD +! STOP (I n c r e m e n t s addr by 8
13 LOOP TEMP @ BASE ! 0 CNTR ! ; (R e s t o r e s base

Volume XI, Number 4 23 Forth Dimensions

"Contributions from the Forth Community"
A Forth Interest Group Library

SUBMISSION FORM
Name:
Address:

Phone Number: ()

SOFTWARE SUBMISSION

New Public Domain Program(s)
New User-supported Program, Suggested Donation $
Corrected Version of Program Already in Library
[Disk#]/Filename(s)

Source Forth Standard: 83 79 fig other

Machine: IBMjClone
Amiga

Macintosh
CP/M

Atari
other

Special Requirements: Color Monochrome
0 other

Material Descriptions:
(1) Please describe each file enclosed in a plain ASCII text file called "FILES.DOC".
(2) Describe the loading procedure and special notes in a plain ASCII text file called "READ.ME"
(3) Describe submission, here, in less than 160 characters for inclusion in the FIG Order Form.

(4) A more complete description for special feature in Forth Dimensions:

These programs and all accompanying mhcerials may be published and distributed under the direction of FIG,
without compensation to me and without further permission from me. I have the right or have obtained the right
to submit this material. I have the right to also submit this material for publication to other publishers.

Signed
Date

I

Forth Dimensions 24 Volume XI, Number 4

VOLUME XI
INDEX

- - - - -- - -

MIKE ELOLA - SAN JOSE, CAWFORNIA
m

Algorithms I Data Structures

L

Volume XI, Number 4 25 Forth Dimensions

'2

Check Digit
Self-checking Numbers, Vol 10, Issue 5, pg 9

Linear Automata
Linear Automata, Vol 10, Issue 2, pg 23

Applications of Forth
Time Accounting

Time-Keeping Routine, Vol 10, Issue 6, pg 30
Architectures

32-bit
Shadow Stacks & Double-Precision Numbers, Vol 10,
Issue 3, pg 7

Letter, Vol 10, Issue 4, pg 6
Assemblers

A 6502 Assembler, Vol9, Issue 5, pg 19
Letter, Vol 10, Issue 2, pg 9

Assembler-only Equates
Letter, Vol 10, Issue 2, pg 9

Disposing of
Have Your Assembler ..., Vol 10, Issue 1, pg 22

Bulletin Boards
BBS Gateways

The Best of GEnie, Vol 10, Issue 4, pg 29
Commenting Code - see Source Code Styling Conventions
Compilation

of Executable DOS Files (F83)
Standalone Applications, Vol 10, Issue 4, pg 15

of Routines with Separated Heads
Headerless Local Variables and Constants, Vol 10,
Issue 1, pg 19

Compiled Code Decompilers
The Visible Forth, Vol9, Issue 3, pg 18

Letter, Vol 10, Issue 2, pg 7
Conventions and Exhibitions

1988 Forth National Convention, Vol 10, Issue 5, pg 26
Data Objects and Associated Methods

Designing Data Structures, Vol 10, Issue 2. pg 12
Designing Data Structures, Vol 10, Issue 5, pg 19
Object-Oriented Forth, Vol 10, Issue 2, pg 15

Data Structure Design
for Portability

Designing Data Structures, Vol 10, Issue 3, pg 31
Designing Data Structures, Vol 10, Issue 4, pg 26

for Reuse
Designing Data Structures, Vol 10, Issue 2, pg 12

Arrays
Designing Data Structures, Vol 10, Issue 4, pg 26

Stacks
Convenient Extra Stack, Vol 10, Issue 3, pg 5
Shadow Stacks & Double-Precision Numbers, Vol 10,
Issue 3, pg 7

Letter, Vol 10, Issue 4, pg 6
String Stacks

Apple 11 $FORTH (ProDos), Vol 10, Issue 5, pg 14
Using a Suing Stack, Vol 10, Issue 3, pg 15

Letter, Vol 10, Issue 5, pg 5
SuperStacks (Arrays of stacks)

Letter, Vol 10, Issue 4, pg 5
Data Structures In-line wilh Code

Local Variables, Vol9, Issue 4, pg 9
Letter, Vol 10, Issue 1, pg 6

Data Type Checking
Designing Data Structures, Vol 10, Issue 2, pg 12

Data Types and Associated Operations
Dates

Conversion Operations
Formatting Source Code, Vol 10, Issue 6, pg 10

Integers, double
Arithmetic operations

Formatting Source Code, Vol 10, Issue 6, pg 10
Strings

Assorted Operations
Using a String Stack, Vol 10, Issue 3, pg 15; Issue 4,
Pg 30

Compiling Strings
Improved String Handling, Vol 10, Issue 1, pg 15

Parsing
Improved String Handling, Vol 10, Issue 1, pg 15

Database Records and Associated Operations
dBASE File Access Method

Access to dBASE Files, Vol 10, Issue 1, pg 10
Decompiling - see Compiled Code Decompilers
Dictionaries and Associated Operations

Managing Large Dictionaries
Some Words About F83's Words, Vol 10, Issue 3,
Pg 26

Disk OS Structures and Associated Operations
Directories for Screens

Simple Screen Directory, Vol 10, Issue 4, pg 8

Manaaement
Facility

Now you have a full screen and keyboard manager that
makes your application interface truly simple to design
and implement. You get full control of all display fea-
tures-either from within your application or from PMF.
All you do is access a file-PMF does the rest.

Easy to use: no source code to include, no subroutines
to call. Creates a standard interface for all your applica-
tions.

Portable: works with any language compiler or inter-
preter that runs on an IBM PC or compatible.

Flexible: dynamically reconfigurable; removable resi-
dent driver uses only 48K. Built-in editor lets you paint
panels rapidly.

Send check or money order to:

Advanced Functions Technology
1761 Cardinal Drive

-.wrm - OF FLORIDA, INC.
Clearwater, FL 34619

AdvancedFunclions Technology (8 3, 786-8087
of Florida, Inc.

Text-based applications only. Requires DOS 3.0 or higher.

Total control
with LMI FORTHTM
For Programming Professionals:
an expanding family of compatible, high-
performance, compilers for microcomputers
For Development:
Interactive Forth433 InterpreterlCompilers
for MS-DOS, OSl2, and the 80386

lbbit and 32-bit implementations
Full screen editor and assembler
Uses standard operating system files
500 page manual written in plain English
Su~mrt for araehics.fioatina ~oint, native code ene era ti on

I . . - . - . - I

1 For Applications: Forth433 Metacompiler 1
uniq;etable-driven multi-pass Forth compiler
Compiles compact ROMable or disk-based applications
Excellent error handling
Produces headerless code, compiles from intermediate states,
and performs conditional compilation
Cross-compiles to 8080,Z-80,8088,68000,6502,8051,8096,
l802,6303,6809,68HC11,34010, V25, RTX-2000
No license fee or royalty for compiled applications

Laboratoty Microsystems Incorporated
k t Office Box 10430, Marina del Rg! C4 90295

Phone Credit Card Orders to: (213) 306-7412
HIX: (213) 301-0761

Generic File Operations
The Best of GEnie, Vol 10, Issue 2, pg 29

Documenting Source Code - see Source Code Styling
Conventions

Education
Computer Science and Forth

The Best of GEnie, Vol 10, Issue 3, pg 35
Forth Textbooks

Letter, Vol 10, Issue 4, pg 6
Forth Interest Group (FIG)

Chapters
The Value of Chapters, Vol 10, Issue 5, pg 36

Forth's Marketing and Promotion
The Greening of Forth, Vol 10, Issue 6, pg 40
WISC and the Forth Dilemma, Vol 10, Issue 3, pg 12

Fractals
Fractal Landscapes, Vol9, Issue 1, pg 12

Letter, Vol 10, Issue 1, pg 5
Games and Recreation

Capture!, Vol 10, Issue 6, pg 20
Implementing Forth

CPU-Specific Optimization
Using Registers in Data Stacks, Vol 10, Issue 4, pg 19

on the Macintosh
I

I Best of GEnie, Vol 10, Issue 4, pg 29
Interpreters

Inner interpreters
A Faster Next Loop, Vol9, Issue 6, pg 16

Letter, Vol 10, Issue 1, pg 6
I

Libraries
Creating Public-Domain Libraries

Letter, Vol 10, Issue 4, pg 6
Object-Oriented Libraries

Designing Data Structures, Vol 10, Issue 5, pg 19
Linear Automata - see Algorithms
Local Variables

Letter, Vol9, Issue 5, pg 5
Letter, Vol 10, Issue 5, pg 5

Maintainability of Code - see Source Code Styling
Conventions

Memory
Extended Addressing

Relocatable F83 for the 68000, Vol9, Issue 6, pg 20
Letter, Vol 10, Issue 2, pg 7

Microprocessors
Super 8, FRISC

The Best of GEnie, Vol 10, Issue 3, pg 35
Multitasking

68000 Microprocessor
Letter, Vol 10, Issue 2, pg 7

Object-Oriented Forth for Portability - see Data Structure
Design
Object-Oriented Programming - see Data Objects & Associ-
ated Methods
Portability Issues

The Best of GEnie, Vol 10, Issue 1, pg 27
Portability of Data - see Data Structure Design
Programming Environments

L

Forth Dimensions 26 Volume XI. Number

1990 ROCHESTER FORTH CONFERENCE
ON

EMBEDDED SYSTEMS
June, 1990

University of Rochester
Rochester, New York

Call for Papers
There is a call for papers on the use of Forth For more information, contact:
technology in Embedded Systems. Papers are Lawrence P. Forsley
limited to 5 pages, and abstracts to 100 words. Conference Chairman
Longer papers will be considered for review in Institute for Applied Forth Research, Inc.
the refereed Journal of Forth Application and 70 Elmwood Avenue
Research. Rochester, NY 14611

Please send abstracts by March 15,1990 and final (716)-235-0168 (716)-328-6426 (FAX)
papers by May 15,1990.

. - / Letter VOI 10,lssue 5 , pg 5 I

I

1
Volume XI, Number 4 27 Forth Dimemions

I

Market-driven Requirements
WISC and the Forth Dilemma, Vol 10, Issue 3, pg 12

Readability - see Source Code Styling Conventions
Robotics

Possible Navigation Systems
The Best of GEnie, Vol 10, Issue 6, pg 33

Scope - see Local Variables
Security

Run time
.CAME-FROM, Vol10, Issue 6, pg 29

Serial Communications
8250 Utilization under DOS

Menu-Driving the 8250 Async Chip, Vol 10, Issue 4,
Pg 22

Source Code
Searching through

Letter, Vol9, issue 4, pg 5
Letter, Vol 10, Issue 1, pg 5

Locating Forth Words, Vol 10, Issue 1, pg 8
Source Code Styling Conventions

Commenting Code for Quick Reference
Letter, Vol 10, Issue 5, pg 7

Diversity of Commenting Methods
Letter, Vol 10, Issue 6, pg 6

Embedding Code within Comments
Formatting Source Code, Vol 10, Issue 6, pg 10

to Promote Recognition of Data Types

Standard File Operations - see Disk OS Structures & Assoc.
Operations
Standards

ANSI Forth
ANS Forth Meeting Notes, Vol 10, Issue 1, pg 24

BASIS5
Best of GEnie, Vol 10, Issue 5, pg 3 1

ANSI Forth Proposal Forms
Inserts, Vol 10, Issue 1, pg 34

Common Usage
The Best of GEnie, Vol 10, Issue 3, pg 35

Surrounding issues
Letter, Vol10, Issue 1, pg 5

Letter, Vol 10, Issue 2, pg 5
String Operations - see Data Types and Associated Operations
String Search - see Source Code
String Stacks - see Data Structures
Style - see Source Code Styling Conventions
Troubleshooting

using Call-Tracing
Step-Tracing in fig-FORTH, Vol 10, Issue 2, pg 20

using Step-Tracing
A High-Level Single-Stepper, Vol 10, Issue 6, pg 15

Video Functions
for F83

The Best of GEnie, Vol 10, Issue 1, pg 27

BEST OF
GENIE

N e w s from the GEnie Forth
RoundTable-As promised at the close of
last issue's column, this time we will re-
examine ForthNet. ForthNet is a virtual
Forth network that links designated mes-
sage bases of several computer bulletin
boards and information services, in an at-
tempt to provide greater distribution of
Forth-related information. It is provided
courtesy of the sysops of its various links.
Readers of this column may recall that
ForthNet was talked of as a dream yet
unfulfilled in Forth Dimensions 0(/4). At
that time, there was cause to wonder if it
would even survive. Some questions still
remain-serious questions-but as the
evolution continues, it is increasingly evi-
dent that a purpose is being served; and
where there is purpose, there is often the
will to succeed.

For historical perspective, the term
ForthNet was coined in early 1986 when
the Forth Interest Group was still searching
for a home for its electronic message base
that would provide easier and greater ac-
cess than the existing FIGTree BBS. Dis-
cussions at that time were being conducted
on Delphi, and consisted primarily of es-
tablishing guidelines and expectations.
After the GEnie Forth RoundTable was
established and I was included as one of the
sysops, I again began to explore the possi-
bility of linking with other Forth message
bases. With the encouragement of lead
GEnie sysop Dennis Ruffer and consider-
able help from Jack Woehr, we established
the first link between the GEnie Forth
RoundTable and the forth.conf topic of the
Well, of which Jack is the Fairwitness.
Later, I brought forth.conf from the Wet-
ware Unix BBS into this link.

GARY SMITH - WTTLE ROCK, ARKANSAS
rn

Concurrently, Jerry Shifrin had estab-
lished the East Coast Forth Board as a
premier source of Forth information ex-
change, and had linked it via PCBoard to
the West Coast, and later the North Coast,
Forth Boards. West Coast and North Coast
have both since been dissolved by their
operators, but in their places have risen the
British Columbia Forth Board and the
Real-Time Control Forth Board, both
linked to Jerry's East Coast Forth Board.
Also linked to this group is Metrolink
Bulletin Boards, which themselves main-
tain a loose network similar to Opus and
Fido.

Forth programmers
can tap a very large
pool of talent. ..

The joining of these two virtual nets into
one ForthNet has resulted in a great, single
message base for all Forth users. For this,
much credit must go to Jerry Shifrin. I was
initially porting messages of interest from
Don Madsen's North Coast Forth Board to
GEnie. This helped extend the information
input, but the circle was only half complete
until Jerry developed methods to make the
message bases flow to the East Coast Forth
Board (and the other xCFB nodes) from
GEnie, thereby completing the circuit: eve-
rything became a homogeneous message
base, whereby users of all the services are
able to communicate with one another, an
exciting development.

Now Forth programmers are able to tap

a very large pool of talent to help resolve
problems. A new user of Forth encounter-
ing an editor problem received seven re-
sponses from four sources in two days. That
is networking at its best! As a GEnie Forth
RoundTable sysop, I remind you that all
this is available simply by logging onto the
GEnie Forth RoundTable; you need not
worry about the mechanics of ForthNet. All
that is asked in return is your participation.
Nothing could be easier.

All is not sunshine and roses, however.
Much porting is still done by one or two
individuals. The absence of either shows
immediately. This is the bane of most vir-
tual networks, though. Usenet functions
only by the grace of the volunteer postmas-
ters at its various Unix sites, which is partly
why links in that system come and go. We
hope to emulate their success and have
more links join ForthNet than leave.

Exciting trends and possibilities are
afoot. We are currently establishing a link
in Australia on Lance Collins' BBS for the
PCBoards. We are also trying to establish a
Usenet link with other Forth sources. We
are porting messages into GEnie for distri-
bution from Usenet comp.lang.forth, and
are creating an edited ForthNet packet for
distribution on Usenet. We have been in
touch with several Forth users with whom
we previously would have had no real hope
of establishing contact. We encourage all
who have contacted us to continue to do so,
and those who have not to please do so.
Each new contact is like a new discovery.

Jack Woehr
jax on GEnie

jax@ well.UUCP
jax@chariot.UUCP

L

Forth Dimensions 28 Volume XI, Nwnber 4

I I -
Volume XI, Number 4 29 Forth Dimemions

Gary Smith
well!gars@lll-winken.arpa (also for jax)
gar@ wet.UUCP
gar@ chinet.UUCP

* * *

The following are excerpts from recent
letters and e-mail :

From: Pauio A. D. Ferreira
lnesc Norte (CG & CAD)
Largo de Mornpilher 22
4000 Porto
Portugal
Paulo Ferreira pferreira@inescn.rccn.pt
To: Gary Smith
well!gars@lll-winken.arpa
Subject: Forth BBS's

As a new FIG member, I saw your
article in Forth Dimensions, regarding
Forth on-line resources. But.. . I only have
access to an X25 system and I have no
modem, so could you please tell me the
addresses of some BBSs accessible this
way? I would be very grateful.
-Paul0 Ferreira

P.S. What I do with Forth:
I develop software for a graphics board

prototype (PC based) with a Texas 34010
processor, and I have the interface from the
PC side written in Forth. The interface is
only for development purposes, and it in-
cludes a mini-debugger for 34010 machine
code. The graphics board will be part of a
system for nuclear medicine.

To: Paulo A. D. Ferreira
From: Gary Smith
Subject: Forth BBS's

By all means-Please start with the
Forth conference hereon the WELL, where
you reached me. The WELL is accessible
via X.25-leave e-mail to Eric Fair
(fair@well) for details, if you need access
help. Eric is the WELL'S resident usenett
UUCPIinet guru. Thanks for the info, it is
super to hear from a distant Forther. 1 will
forward your message to jax, also, and see
if he can put you on his FIG Chapter e-mail
list.-gars

From: Ted Rofe
munnari!usage.csd.unsw.oz.au!tedr
To: Gary Smith
well!gars

Gary, I just received theMay1June 1989

issue of Forth Dimensions and, as usual,
enjoyed reading your "Best of GEnie" sec-
tion. I note you have a quote from Larry
Forsley in which he says, "JFAR [The
Journal of Forth Application and
Research] V,2 will be going to the printer
just before Christmas.. . JFAR V,3 and V.4
papers are now being processed. I expect
that volume to be finished by June '89."

The quote was dated December 1988.
Did all this really come to pass? We

have not received any copies of JFAR since
Volume IV.

I thought C.H. Ting's comparison of
Forth andZen (as well as his quote from Lin
Yu-Tang) very apt.
Regards,
Ted Rofe

To: TedRofe
From: Gary Smith
Subject: JFAR

Ted, thanks for the kudos. It is great to
know I'm not writing to a vacuum. Yes,
JFAR finally came to pass. I have had mine
about three weeks, so you should receive
yours shortly.

Re: Dr. Ting. He is also one of the nicest
people it has been my great pleasure to talk
to since becoming involved in Forth. That
says a lot because, in my opinion, Forth
users are a pretty class act, despite our
collective reputation as maverick rowdies

Please stay in touch, Ted. We want very
much to get Australia involved electroni-
cally. --Gars

From: Lance Collins
To: Gary Smith

Thanks for the messages which have
been filtering back to me on paper from Ted
Rofe. Turnsout oneofour chapter members
can get to Usenet mail, but his research
assistant status is on a month-to-month
basis at present, so he is not the mailbox to
tell you about

Have had snail mail from Jack Brown
re: PCBoard, and have ordered and re-
ceived a copy. (Please mail the registration
card for me.) Have only had a quick play so
far, but am not as impressed as I hoped I
would be. Seems that, like OPUS, third-
party shareware is needed to make it work
well. Especially netmail, which is where we
started on this. Have written to Jack Brown
saying I have ordered PCBoard and asking
for the shareware, etc., extras he promised.

On phone costs, a five-minute call could

transfer a 30-50K .ARC file at 2400 bps for
less than ten dollars. For once a week the
cost is painful but bearable, at least for a
few months as an experiment. We will also
have to pay Jerry and Jack for disks and
mailing of files.

Then there are 9600 modems, if satel-
lite links actually provide better through-
put (moot).

You said to Ted Rofe that you only
found out about our BBS recently. I wrote
to Kent Safford about it last November. I
also asked Marlin Ouverson if he would
like an article about how we got our BBS
set up. (Tell JAX about this, in FD XI12 he
says he dreams of every chapter having a
BBS on ForthNet).

Following that last thought, if there was
a Forth file library and many remote BBSs
like ours, maybe FIG could provide an
update service for the chapters to subscribe
to. Then we could spend our scarce dollars
on netmail and let snail mail carry the bulky
stuff.
Regards,
Lance

From: Gary Smith
To: Lance Collins
> Thanks for the messages ...

No. Thank you. Your continued contact
has helped sustain momentum. This Forth-
Net concept is not totally endorsed by all...
yet.

> can get to Usenet mail but.. he is not the
mailbox ...

Why not? Even a month would help
determine the value of Usenet mail. There
is an added reason to test Usenet It appears
(1) GEnie will support Usenet mail via a
gateway. (2) I am now attempting to solicit
some help in the way of someone who will
edit a packet of ForthNet messages for me
to post to comp.lang.forth. We can pre-
sume your having access to this Usenet/
ForthNet port would cut down on your
need to carry so much traffic via PCBoard.

> Please mail the registration card for me.
Done.

> You said ... you only found out about our
BBS recently.

I must confess that, having seen the
BBS note in the chapter listings, I gave it
little credence until its activity was con-
f m e d by you.

> Have written to Jack Brown saying I have
order ed... Tell JAX about this ...

I am posting this exchange to GEnid
ForthNet. Dennis Ruffer, Jack Brown, Jack
Woehr Cjax), Jerry Shifrin, et al. will read
and know we are indeed creating a neces-
sary service. I will leave it to the FIG
directors and the Chapters Coordinator to
reply to your points.

> Maybe FIG could provide an update
service ...

That's
Regards,
Gary

the plan, Lance. That's the plan.

ASSOCIATION JEDI
17, Rue de la Lancette
F - 75012 PARIS (FRANCE)
Dear Gary,

After your letter published in Forth Di-
mensions (XIIl), we inform you about the
French Forth BBS JEDI. To contact us,
connect with the Teletel network:

33 3643 15 15
Access-code: S AM*JEDI
Sysop: Marc PETREMANN
(SECRETAIRE)

Set your modem and communication
software to 1200P5 baud with 7 data bits,
even parity, and one stop bit. The capacity
access of SAM*JEDI is 32 simultaneous
ways.

If you call from Houston, you can ac-
cess SAM*JEDI via the USVIDEOTEL
network. For more information, call:

Videodial Inc.
1700 Broadway
New York, New York 10019
Telephone 212-307-5005

With our respect,
Marc

To: ASSOCIATION JEDI
From: Gary Smith
Dear Marc and Association JEDI,

Thank you for your letter of 24 July,
which I received today, advising me of the
Forth BBS JEDI.

I will post your letter to the GEnie Forth
RoundTable and on ForthNet today. I will
also include you in our resource listing
update in Forth Dimensions.You should
realize it will be at least two issues before
the information will appear in Forth Di-
mensions, so please be patient.

If any of your association members
have access to Usenet, it would make elec-
tronic contact with you much easier. Both
the FIG Chapters Coordinator Jack Woehr
Cjax) and myself (gars) are easy to contact
via Usenet. If possible, please do so.
Regards, Gary

L

To suggest an interesting on-line guest,
leave e-mail posted to GARY-S on
GEnie (gars on Wetware and the Well),
or mail me a note. I encourage anyone
with a message to share to contact me
via the above or through the ofices of
the Forth Interest Group.

(Continued from page 21 .)

VDP RAM. Both RESETV and FORGET
must be used to forget a VDP variable.

Screens 11 2,113-Several versions of the
VDP definitions were written, in an effort
to optimize for speed. Those shown on
screens 110-1 11 were the fastest. Slower
versions are shown on screens 112-113. It
would probably improve the usefulness of
the VDP words in manipulating large ar-
rays if even faster versions could be writ-
ten.

A convenient timer, used to determine
the speed of the various definitions, is
based on the VDP interrupt. START was
placed at the beginning of a definition, and
TIMER at the end. The elapsed time in
seconds * 60 was then printed.

: START
0 33750 ! ;

: TIMER

I 1 / 33750 C

Screens 114, ~ ~ ~ - v D u M P was written to
provide a convenient dump of VDP RAM
to the screen or printer, and is the equivalent
of the TI-Forth word DUMP. It provides the
VDP addresses and their contents, both in
hexadecimal numbers and ASCII equiva-
lents. Unprintable characters are printed as
a period. A typical dump is shown in Figure
One.

Howard H. Rogers, developer of the
nickel-hydrogen battery, is a senior
scientist working with satellite batter-
ies for Hughes Aircraft. He earned his
Ph.D. atM.1.T. in 1953,anduresForth
"to keep his technical background up-

, to-date."

Forth Dimensions 30 Volume XI, Number 4

FOR PAPERS

for the second annual

FORTH APPLICATIONS WORKSHOP
REAL TIME DEVELOPMENT

COLONY PARKE HOTEL Dallas, TX Feb. 16-18, 1990
The objectives of this workshop are to share, discuss and disseminate recent research on and

techniques (hardware and software) in real time development tools, methods and environments.
Attendees will hear presentations from industry experts on many topics, including:

Development Tools Embedded System Considerations
Programming Environments Forth Engines and Software
Fault Tolerant Systems Mdtitaskhg/Mulduser Systems
Development methods Engineering considerations
Execution Monitoring Development System Architectures
Debugging Environments Programming Methods

Papers for oral and poster presentations are requested from computer professionals
and other interested parties. Facilities will be available for scientific and technical dem-
onstrations. Proceedings will be made available to the participants of the workshop.
Vendors of software and/or hardware may request exhibit space. Authors should submit an
abstract of 250 words or less, typed, double spaced, by the deadline below. Contributed papers
should be previously unpublished work. You are not required to present a paper to attend the

Please send abstracts and requests for workshop information to:
Conference Chairman
Howard Harhess TIMETABLE:
33 16 Vine Ridge Receipt of abstract: Nov. 1,1989
Bedford, Texas 76021 Receipt of paper: Dec. 1,1989
(214) 580-1515 -45

Sponsored by the ACM Special Interest Group on Forth

For ACM SIGForth membership information, contact:
ACM, 11 West 42nd St., New York, NY 10036 (21 2) 869-7440

1

Volume XI, Number 4 31 Forth Dimemiom

REFERENCE SECTION

Forth Interest Group
The Forth Interest Group serves both

expert and novice members with its net-
work of chapters, Forth Dimensions, and
conferences that regularly attract partici-
pants from around the world. For member-
ship information, or to reserve advertising
space, contact the administrative offices:

Forth Interest Group
P.O. Box 823 1
San Jose, California 95 155
408-277-0668

Board of Directors
Robert Reiling, President (ret. director)
Dennis Ruffer, Vice-President
John D. Hall, Treasurer
Tem Sutton, Secretary
Wil Baden
Jack Brown
Mike Elola
Robert L. Smith

Founding Directors
William Ragsdale
Kim Harris
Dave Boulton
Dave Kilbridge
John James

In Recognition
Recognition is offered annually to a

person who has made an outstanding con-
tribution in support of Forth and the Forth
Interest Group. The individual is nomi-
nated and selected by previous recipients of
the "FIGGY." Each receives an engraved

I award, and is named on a plaque in the ad-
ministrative offices.

1979 William Ragsdale
1980 Kim Harris
1981 Dave Kilbridge
1982 Roy Martens
1983 John D. Hall
1984 Robert Reiling
1985 Thea Martin
1986 C.H. Ting
1987 Marlin Ouverson
1988 Dennis Ruffer

ANS Forth
The following members of the ANS

X3J14 Forth Standard Committee are
available to personally carry your propos-
als and concerns to the committee. Please
feel free to call or write to them directly:

Gary Betts
Unisyn
301 Main, penthouse #2
Longmont, CO 80501
303-924-9 193

Mike Nemeth
CSC
10025 Locust St.
Glenndale, MD 20769
301-286-83 13

A~drew Kobziar
NCR Medical Systems Group
950 Danby Rd.
Ithaca, NY 14850
607-273-5310

Elizabeth D. Rather
FORTH, Inc.
1 l l N. Sepulveda Blvd., suite 300
Manhattan Beach, CA 90266
213-372-8493

Charles Keane
Performance Packages, Inc.
5 15 Fourth Avenue
Wate~leit, NY 12189-3703
5 18-274-4774

George Shaw
Shaw Laboratories
P.O. Box 3471
Hayward, CA 94540-3471
4 15-276-5953

David C. Petty
Digitel
125 Cambridge Park Dr.
Cambridge, MA 02140-23 1 I
617-576-4600

Forth Instruction
Los Angeles-Introductory and inter-

mediate three-day intensive courses in
Forth programming are offered monthly by
Laboratory Microsystems. These hands-on
courses are designed for engineers and
programmers who need to become profi-
cient in Forth in the least amount of time.
Telephone 2 13-306-74 12.

On-Line Resources
To communicate with these systems, set
your modem and communication software
to 300/1200/2400 baud with eight bits, no
parity, and one stop bit, unless noted other-
wise. GEnie requires local echo.

GEnie
For information, call 800-638-9636

Forth RoundTable (Fortmet link*)
Call GEnie local node, then type M710

(Continued on next page)

1
Forth Dimensions 32 Volume XI, Number 4

(Reference Section continued)

or FORTH
SysOps: Dennis Ruffer (D.RUFFER),
Scott Squires (S .W .SQUIRES),
Leonard Morgenstern (NMORGEN-
STERN), Gary Smith (GARY-S)
MACH2 RoundTable
Type M450 or MACH2
Palo Alto Shipping Company
SysOp: Waymen Askey (D.MILEY)

BlX (ByteNet)
For information, call 800-227-2983

Forth Conference
Access BIX via TymeNet, then type
j forth
Type FORTH at the : prompt
SysOp: Phil Wasson (PWASSON)
LMI Conference
Type LMI at the : prompt
Laboratory Microsystems products
Host: Ray Duncan (RDUNCAN)

CompuServe
For information, call 800-848-8990

Creative Solutions Conference
Type !Go FORTH
SysOps: Don Colburn, Zach Zachar-
iah, Ward McFarland, Jon Bryan,
Greg Guerin, John Baxter, John
Jeppson
Computer Language Magazine Con-
ference
Type !Go CLM
SysOps: Jim Kyle, Jeff Brenton, Chip
Rabinowitz, Regina Starr Ridley

Unix BBS's with Forth conferences
(Forthh'et links*)

WELL Forth conference
Access WELL via CompuserveNct or
415-332-6106
Fairwimess: Jack Woehr Cjax)
Wetware Forth conference
4 15-753-5265
Fahimess: Gary Smith (gars)

PC Board BBS's devoted to Forth
(ForthNet links*)

East Coast Forth Board
703-442-8695
SysOp: Jerry Schifrin
British Columbia Forth Board
604-434-5886
SysOp: Jack Brown
Real-Time Control Forth Board
303-278-0364
SysOp: Jack Woehr
Melbourne FIG Chapter
Lance Collins
(03) 299-1787 in Australia
6 1-3-299- 1787 international

(Continued from page 18)

References
1. D. E. Kirk, Optimal Control Theory,

Prentice Hall, 1970.
2. K.C.Cheok, N.K.Loh and R.R.Beck,

"Microprocessor-Based State Estima-
tors and Optimal Controllers", Proc.
23rd Midwest Symp. Circuits and Sys-
tems, Univ. of Toledo, Toledo, OH, pp.
318-324, Aug 1980.

3. B.D.O. Anderson and John B. Moore,
Optimal Filtering, Prentice Hall, 1979.

4. K.C.Cheok and N.K.Loh, "A Ball Bal-
ancing Demonstration of Optimal and
Dis tu rbance-Accommodat ing
Control", IEEE Control Systems Maga-
zine, pp. 54-57,1987.

This paper was presented by R. Haskell
at the 1988 Real-Time Programming
Convention in Anaheim, California,

. Advanced Functions Technology 26
. Concept4.. 6

Dash, Find Associates. 37
. Forth Interest Group. 44

. Harvard Softworks. 15
. Institute for Applied Forth Research 8,9,27

. Laboratory Microsystems 26
. Miller Microcomputer Services. 30

. Mountain View Press .40
. Next Generation Systems. 35

. Saelig Company 37
. Silicon Composers 2

. SIG Forth, 3 1

I
Volume XI, Number 4 33 Forth Dimemiom

Chapter Coordinator's Kitchen

Harry S. Truman may have been
America's finest President in the second
half of the twentieth century. His critics
saw him as a feisty poltroon, but there is no
denying that throughout the course of his
public life he got results, from the court-
house and paved roads of his home county
in Missouri, to the investigation of corrupt
defense contractors, to the defeat of Japan
and the restructuring of the American econ-
omy for peacetime in the aftermath of
World War 11. Truman's best-known dic-
tum regarding public office was, "If you
can't stand the heat, get out of the kitchen."

When John D. Hall turned over the
Chapter Coordinator's office, there was no
question that I could stand the heat. Heck,
I'm notorious at generating it myself; ask
around the xCFB boards! The problem I'm
having is that I'm not sure I have found the
kitchen.

One drawback to having freedom was
explored in the popular novel The Unbear-
able Lightness of Being: you have to make
your own decisions. Forth Interest Group
chapters operate in near-total freedom from
the dictates of the central organization.
Read the Chapters Guide, available from
the FIG office, if you have any doubts on
this matter. About the only thing you can't
do in a FIG chapter is print your own dollar
bills with Chuck Moore's picture on them
or fall under a five-FIGger membership
level.

The FIG office handles chapterregistra-
tion in a methodical and more-or-less auto-
matic fashion. Applications are received,
and if they meet the criteria outlined in the
Chapters Guide, they are approved. The
Chapter Coordinator is notified. Chapter
Coordinator scratches head, writes another

JACK WOEHR - 'JAX ON GEnie -

bi-monthly column, writes another
monthly email newsletter, tempus fugit.

What are the services that the Chapters
would like to see provided by the central
organization? If we had our way, we'd
travel around the world and see you all
personally but, that being impractical, we
havechosen what we feel to be the next best
thing, networked telecommunications. It is
gratifying to hear from overseas chapters;
Ted Rolfe emailed us this month from
Australia to say that our description of the
ups and downs of Denver FIG sounded like
his own chapter. We sense, however, that if
FIG is to make a contribution to the viabil-
ity of the local chapter, more is called for
than chit-chat.

One of the most oft-mentioned sugges-
tions for FIG is that its membership rates
need restructuring. The Board is in the
process of considering that request and I
believe we'll see action on it before long.
But aside from making membership fees
more suited to the type of individual
member, what other efforts can we make to
augment the success of your chapter?

I believe that chapters exist primarily
for the mutual edification of Forth pro-
grammers. After winning the World Chess
Championship in 1975, Anatoly Karpov in
an interview commented that, "We are all,
after all, merely engaged in learning to play
better." I think that applies to Forth pro-
grammers also. I know from personal expe-
rience that I have seen some of the great
minds of Forth in the instant that their face
brightened as a new idea struck them in the
course of an exchange at a monthly FIG
meeting. Harry Truman was fond of saying
that an "expert" was a person who was
afraid of learning anything new for fear that

he would no longer be an expert. There are
few experts at FIG meetings.

To the end of mutual edification, FIG
offers chapters discount rates on the litera-
ture advertised in the center of every issue
of Forth Dimensions. Are there other ef-
forts we should be making on your behalf to
ensure that the bewildered may receive en-
lightenment at your monthly meetings?

Many chapters have corresponded elec-
tronically with us, and I have requested to
be placed on the mailing list for chapter
publications. To date, I have received per-
sonal correspondence from certain chap-
ters, but only BC FIG has seen fit to reach
me with a newsletter, which was easy since
their newsletter-a model for such-is
distributed on-line. If your chapter has a
publication, a meeting notice, or a newslet-
ter, would you please include me on the
distribution list?

The subject of a speakers bureau has
been bandied about for years. I mentioned
it in my last column, pointing out that a new
face can be the key to better meeting atten-
dance. Since I write this article only a day
after Forth Dimensions arrived, I have not
received any feedback on this point yet;
however, I expect to receive some. Are we
ready for a speakers bureau? Is your local
chapter ready to encourage its members
who will be visiting other cities to register
to speak at another FIG chapter?

Youth being e'er the key to the future,
we are considering attempts to organize
introductory Forth presentations for secon-
dary schools. Presentations could be made
by members of the local chapters with
teaching aids provided through the central
organization. This would have the dual
effect of encouraging young men and

I
Forth Dimensions 34 Volume XI. Number 4

women to explore computer science using
Forth methodology, while providing them
with the public-domain tools with which to
do so. It would also, not insignificantly,
provide an interesting, novel and reward-
ing group activity for chapter members.
Furthermore, it is hard to imagine that a
Forth presentation at a school would not net
at least two or three new FIG members. Is
this something your chapter would actively
support and participate in, were the teach-

ing aids and introductory letters to secon-
dary institutions forthcoming?

It seems to me that there are several
opportunities to maintain the free character
of the Forth Interest Group while providing
more services from the central organization
at !iule or no cost; all that is required is the
dedicated participation of the chapters. Let
me know what you think. I'll be down the
hall in kitchen.. .

(Continued from page 9.)

Forth-83 will be applicable to ANS Forth.
In my opinion, the most important improve-
ments over Forth-83 are the increased
implementation options available for ANS
Forth and the greater variety of computers
that can efficiently host the language. At the
same time, Forth-83 programs will need
only slight modifications to run on 16-bit

John Hayes is the author of several
Forth articles and a key figure in the
VLSI Forth microprocessor project at

implementations of ANS Forth. I

Table One. Additions to Required Word Set.

Word
2>R 2DROP 2DUP 20VER 2 R > 2SWAP
2 ! 2 @ 2 *

c,
' CHAR [CHAR]
RECURSE UNLOOP
EVALUATE
CELL+ CELLS
BYTE+ BYTES
ALIGN REALIGN
S>D D>S
POSTPONE
MOVE

Purpose of Change
Completes set of cell-pair words
Essential
Completes set of character words
String and character literals
Improves control flow
The Forth interpreter
Portable addressing
Portable addressing
Portable address alignment
Portable conversion
Replaces COMP I LE [COMP I LE]
Replaces CMOVE CMOVE>

Table Two. Deletions from Required Word Set.

Word Purpose of Change
BLOCK BLK BUFFER Moved to Block Extension Word Set
FLUSH LOAD SAVE-BUFFERS UPDATE Moved to Block Extension Word Set
VOCABULARY Moved to Vocabulary Extension Set
2 t 2 - Obsolete
FORTH-8 3
COMP I LE [COMP I LE]
CMOVE CMOVE>
PICK ROLL
PAD
FORGET

A FAST FORTH,
OPTIMIZED FOR THE IBM
PERSONAL COMH7TER AND
MS-DOS COMPATIBLES.

1 STANDARD FEATURES 1 I
INCLUDE :

e79 STANDARD

I @DIRECT 1/0 ACCESS I I
@FULL ACCESS TO MS-DOS / FILW AND F'UNCIIONS I 1

I @ENVIRONMENT SAVE
& LOAD

@MULTI-SEGMENTED FOR 1 LARGE APPLICATIONS 1 1
I @EXTENDED ADDRESSING I 1

.MEMORY ALU)CATION
CONFIGURABLE ON-LINE

@AUTO WAD SCREEN BOOT

I @LINE & SCREEN EDITORS I I
@DECOMPILER AND 1 DEBUGGING A I D S

e8088 ASSEMBLER

.GRAPHICS & SOUND

@NGS ENHANCEMENTS

I @DETAILED MANUAL I 1

I ONGS USER NEWSLJETTER
I I1

A COMPLETE FORTH
DEVELDPMElUT SYSTEM.

NEW-BP-150 & HP-110
VERBION8 AVAILABLE I I

Obsolete
Incompatible with native code
Inefficient
Clumsy and inefficient
Unsafe
Moved to Reserved Word Set

NJ3XT GENERATION SYSTEMS
P.O.BOX 2987
SANTA CLARA, C A W 95055
(408) 241-5909

Volume XI, Nwnber 4 35 Forth Dimensions

IN SEARCH OF A BETTER
NUMBER INPUT ROUTINE

MIKE ELOLA - SAN JOSE, CALIFORNIA

I I

Forth Dimensions 36 Volume XI, Number 4

data, I noted how much these functions
were like inverses of one another. Table
One [page 401 helped illustrate.

Observe that the output routines out-
number the input routines. The output rou-
tines are also well factored, and flexible
enough to support a variety of number
formats, such as currency, dates, and so
forth. The same is not true for the input
routines. (I suspect that the same type of
disparity is shared by many other com-
puter languages.)

Could the source of the disparity be the
different levels of factoring which had
kn applid to the input and output func-
tions? Judge for yourself. The processing
steps for the conversion of string inputs to
numbers ,:

G~~ string, display it as entered.
2. convert the input string to a numeric

value.

The processing steps for converting
numbers to character strings is by
many difference routines, and includes the

steps:
1. Set a pointer to the start of a string and

zero the string-length count
2. Divide the double number on the stack

by the current base, converting the re-
mainder into the next digit to be added
to the head of the string.

3. Increment the string-length count.
4. Repeat steps 2 and 3 for every call to #.
5. Remove the double number from the

stack, replacing it with the address of
the string and its length count in prepa-
ration for the use of TYPE.

Optional steps for the conversion of
numbers to output strings include placing
additional, non-numeric characters into

Ihave long sought a number input rou-
tine that is simple yet flexible. Over the
years, I have created and abandoned a vari-
ety of number input routines. The process
has helped me understand some of the dif-
ficulties of using Forth for a programming
project.

The off-then-on-again search started
out as a response to a troublesome Forth
problem. Forth simply terminates prograin
execution if an error is detected during
number conversion. Not only did I want to
be rid of such stoppages, I also planned to
add support for various number input for-
mats, such as dates and currency amounts.

My earliest number input routines re-
lied heavily upon standard Forth routines.
Typically, these routines processed strings
in three distinct stages: EXPECT obtained
an input string from a user; a new routine
ensured that the contents of the input string
wouldnottriggerearlyprogramtermina-
tions; and NUMBER converted the string to
a double. (The term double indicates a 32-
bit integer.)

This approach traps errors before they
become fatal, and allows a modicum of
non-fatal error processing to be added.
However, this belated error processing had
its own problems too. It would have been
much better to check each keystroke as it
was entered, thereby detecting and correct-
ing errors more naturally. At this juncture,
the program could accept many keystrokes
from theuser; then, ifNUM~~Rdislikedany
one of them, all of them would be tossed.

Errors become more difficult to correct
when discovered late. Still, I was glad to
haveremovedthe worst offence totheusers
of my program-having to rerun aprogram
which crashes.

Eventually I was able to develop input
routines that checked for invalid key-
strokes as each keystroke was entered, but
it required substituting Forth's EXPECT
routine with another of my own making.

Even with these improvements, EX-
PECT never could be transformed into a
straightforward, easy-to-maintain, and
easy-to-enhance routine. For example, the
effort to enhance EXPECT to display a
number sign or a fixed decimal point was
far more challenging that it should have
been. I ended up with many different ver-
sions of EXPECT because any new feature
prohibitively increased the difficulty of
adding the next feature.

With the need for
different becoming clear, I started the
search for completely new inputroutines to
graft onto Forth. The early results are
shown in Figure One. The routines
GETIDIGIT# ~ ~ ~ G E T ~ D I G I T # con-
vert input strings directly to numbers,
bypassingtheuseofNu~~~Rand~XPECT
(but not completely).

This solution came closest to creating a
toolset of routines. The most basic of these
routines, GET DIGIT#, obtains just one
digit of a number. But the intended progres-
sion from the GET~DIGIT# routine to the
anticipated GETnDIGIT# routine never
materialized. The routines did not dovetail
as well as I had hoped. I had planned at least
to use GET l D I G I T # to derive
GET2DIGIT#. However,I simply gave up
on this path of development due to the
difficulty of implementation.

But I still dreamed of developing a col-
lection of routines, each addressing part of
the problem. While examining the avail-
able functions for entering and displaying

WE'RE LOOKING
FOR A FEW GOOD

the string with HOLD. Another common
option is to call the routine #S, which
repeatedly calls # until the double on the
stack is equal to zero, indicating that no
more significant digits remain to be con-
verted into ASCII digits.

To correct the imbalance, better-de-
composed functions would be needed for
number input. Some of the functions that
might become more discrete are: check
keystroke for errors; update the string that
is being displayed; and if the latest key-
stroke was a digit key, convert it according
to the current number base and use it to
update the current numeric value entered.

Next, I realized that the input routine did
not have to build a string. Since its aim was
to obtain a numeric value, it needn't work
with an intermediate string at all. I was
beginning to realize that a certain degree of
imbalance-and slightly less-parallel
structures-might be preferable for the
input and output routine toolsets. But I was
still trying to correct the lack of parallel
structure when I created Table Two.

Each instance of B# would correspond
to the entry of a particular digit. The
anticipated B# routine requires its own

DASH, F/~:D
A S S O C I A T E S

Forth Recruiters

error handling (see Figure Two).
In the same way, slightly different ver-

sions of B# could handle the entry of a
minus sign as an error or as a legal entry, de-
pending on the position; at the beginning
digit position, a minus sign might be per-
missible. Different processing can take
place at each digit position, which closely
parallels Forth's number-to-output-string
toolset.

But the remaining obstacles were not
going to permit me to realize such parallel
structures. One obstacle is the inability to
undo B# functions in order to support back-
space deletions.

By placing even more functionality
inside of a keystroke-handling routine, I
could ease the difficulties of the implemen-
tation. Each time around the key-input
loop, the numeric value accumulated and
the corresponding string are recomputed
and redisplayed. Here is the flow of steps
for the envisioned routine:

1. Get a single, undisplayed character.
2. Reject invalid key codes, returning to

step 1 as necessary.
3. Convert the ASCII character to a number

1 70 Elmwood Ave.1 Rochester. N Y 1461 1 l(716) 235-0168

and accumulate it into the double on the
stack.

4. Duplicate the double on the stack.
5. Convert the duplicated value to an

ASCII string and display at a fixed
location on the display screen.

6. Loop back to beginning.

Each character is lost after its accumu-
lation into the double on the stack. So, each
time through the key-input loop, the new
routine would recompute the ASCII string
that represented the entry underway. This
is no small addition to a routine that is pri-
marily concerned with providing an input
function. However, the existing Forth out-
put routines are able to build this string
easily, and in just about any formatdesired.
This approach imparted the flexibility that
no other approach had offered, so that
dates, currency amounts, and the likecould
be handled by the same input routine (as
exemplified in the accompanying sidebar).

Figure Three shows the necessary
source code for two versions of a number
input routine (with shared primitives). The
fist version of DINPUT allows backspace
editing of the default value, while the sec-

TDS 9090 FORTH COMPUTER
Ideal for starter, teaching or target system

build into your product i~
for rapid completion! /

i rn
: : / * program with IBM-PC / -

complete Flg-Forth system . connect to keyboard. Icd display, RS 232
30K RAY; 16K EPROM . 35 VO I l n r ; 10 bk AID option
over 3000 in urn in Europe low power - down to 3 ma @ 616v

C o n m t the 4" x 3" TDS 8090 olnglo-board computor to an IBM-PC or
compatible and slatl writing Forth code lmnwdlatoly! Lots of mady made
app lh t ion pmgmma come with the kit to do inter~ptdriven VO, graphics Id
driier, frequency measurement, solid-state spuech and data-logging. The board
tncludes a ROM-resident Forth language kernel and an assembler. By storing
generated code in either non-volatile RAM or EPROM, the board can be used in a
target system or stand-alone product Besed on the CMOS Hitachl HD 63A03Y
microprocessor, it has two t lmro, two serial ports and intonupto which are
avallablo via Forth Instructlono. Also included on board are 30K RAM for
storing source code or data. 16K EPROMmovram for firmware, 256 bytes EEPROM,
35 VO lines. two RS 232 serial interfaces. a wdchdog tlmor to insure recovery from
crashes. and an expansion bus. Interface the TDS 9090 to an 8 x 8 keyboard or an
Icd display, or use two of the VO lines as an I2C interface. The ROM-resident Forth is
an extended version of Fig-Forth with Forth words to support all the onboard
peripherals. as well as the keyboard and lcd interfaces. Put product application
s o w inb PROM end it sbrts to run as soon as power is applied. Made in England
by Triangk DIgkaI k w l c n , and well-known in Europe, the TDS 9090 is now
supported in the USA and is available with less than two-week delivery at only

Tho SIolig Company 1193 Mosoloy Rd Victor NY 14564 USA
tol: (716) 425-4367 or fax (716) 425-7381

I

Volwne XI, Nwnber 4 37 Forth Dimensions

Structural Considerations
I was most surprised the find that the

structure of my first acceptable number
input routines was so unified. I had come to
expect that the real solution would be a
diverse collection of mix-and-match rou-
tines. Even though I favored a solution that

ond discards the default and uses a zero
starting value if any key other than Return
is pressed as the first keystroke.

The keystroke-handling code spans
both the DINPUT and CHAR>D+ routines.
The keystroke interpreter is bound by BE-
G I N ... REPEAT or BEGIN ... U N T I L
constructs in the two versions of input rou-
tine offered.

Because of the complexity that would
have been introduced to support backspace
deletion, the very graphically informative
B# notation was abandoned. However, a
similarly graphic notation was recovered
through the use of a new number display
routine, the details of which are described
in the sidebar that accompanies this article.
This routine lets the usual Forth number
output toolset routines (such as # and
HOLD) do the work of building the output
string, but the order of operations is all
under the control of yet another string,
which I call a picture string.

SCR # 1 3
0 : DIGIT-KEY
1 BEGIN <KEY>
2 CLR-EOL
3 1 3 8 ANYOFZ O= >R
4 DUP 4 8 < >R
5 DUP 57 > R> OR
6 R >
7 AND (I S OUTSIDE OF BOTH RANGES)
8 WHILE DROP REPEAT i

-

SCR 0 1 4
0 : <GET-DIGIT> (N -- N? CRFLAG 1
1 DIGIT-KEY 1 3 OVER =
2 I F O> EXIT THEN
3 SWAP DROP 4 8 - 0 I
4
5 : GETIDIGITW (DEFAULT -- N 1
6 <GET-DIGIT> DROP i
7
8 EXIT
9 : GETIDIGITH (DEFAULT -- N)

1 0 DIGIT-KEY 13 OVER = I F DROP EXIT THEN
11 SWAP DROP 4 8 - ;

SCR 0 1 5
0 : GETZDIGITI (DEFAULT -- N 1
1 [' DIGIT-KEY CFA I LITERAL 'KEY !
2 P A D Z O F I L L
3 PAD 2 EXPECT
4 1 ' <KEY> CFA I LITERAL 'KEY !
5 P A D C ~ O = IFEXITTHEN
6 DROP PAD Ce 4 8 - (9 MIN 0 MAX)
7 PAD I+ ce IF t l o s s --)

8 10 +
9 PAD I+ ce 4 8 -

1 0 (9 MIN 0 MAX)

1 1 + THEN - 1 ;

Rather than create input routines to
parallel the Forth output counterparts, the
input routines have subsumed the output
routine functions. So, in at least one sense,
DINPUT is composed of mix-and-match
routines. These reusable routines were not
developed anew, but borrowed from the
already existing output routines.

paralleled ~orth's number output routines,
I became satisfied with the structure of the
new routine once I understood it better.

Accordingly, D INPUT incorporates a
great deal of functional scope. Normally, I
would take this as evidence of incomplete
factoring. However, input actions are an
unusual combination. Routines for accept-
ing user-supplied data must incorporate an
output functios to let user see their own
progress as they press keys.

By coming to this understanding, I
began to see how my original efforts to use
EXPECT were not theoretically sound. In
terms of programming philosophy, the
decomposition of input functions through
EXPECT and NUMBER were the source of
my difficulties all along.

EXPECT clearly belongs to a string
class of actions. My need was to obtain

I

I
Figure One. Fist efforts yielded these routines.

: B# (w o r k i n g - v a l u e -- n e w - w o r k i n g - v a l u e)

BEGIN KEY
E r r o r ? NOT UNTIL

D i s p l a y - K e y
C h a r > N u r n b e r ;

Figure Two. Error handling for B#.

numbers. Although it is common practice
to accept numbers through a general input
routine for strings, such an approach was
inadequate for my needs.

The input routines I finally developed
are better factored because they eliminate
string processing in favor of simpler char-
acter processing (no string address and
count is involved). In support of this, char-
acter processing is the only real require-
ment for number input. Obtaining a string
can be viewed as the more circumspect
route to number input, since it must be
converted to a number later. Character
input is necessary for either string or num-
ber input So by using character input yet

avoiding a string representation of those
characters, the types of actions performed
by DINPUT are better focused upon nu-
meric input.

Proper functional decomposition of a
program typically streamlines and simpli-
fies code, making it more reusable. One of
the goals of structuring code properly is
that unnecessary conditionals can be dis-
covered and removed. Often, conditionals
help support modes that must be accounted
for in diverse areas in the code. Proper
structuring of code should help reduce this
complexity.

There are typically many tests and
modes within input routines. Among them

Forth Dimensions 38 Volume XI, Number 4

are tests such as whether the key just
pressed was the Deletekey, aminus sign, or
a digit. Typically, the routine must also
track the previous keystrokes, since the
outcome of pressing the Delete key is dif-
ferent if nothing has been entered. Support-
ing these modes often requires multiple
tests of the same condition, indicating that
the structure of the code is less than opti-
mal.

Most modal problems have been ironed
out successfully within DINPUT. Al-
though modes still exist, they are not exarn-
ined over and over in diverse areas. For
example, when the double value is zero, the
Delete key is not honored. Rather than
maintaining a suing counter that decre-
ments to zero as Delete is depressed and
testing the value of that variable, D I N P U T
tests the numeric value that is under con-
struction on the stack!

Likewise, better functional decomposi-
tion supports better error handling. Con-
sider the routine CHAR>D+. This routine
converts a character code to the appropriate
digit value and then updates the double on
the stack accordingly. This is a more incre-
mental way to perform string-to-number
conversion, because it takes place one char-
acterata time. TheForth CONVERT routine
(called by NUMBER) works on a substring-
by-substring basis. CONVERT obstructs
error processing at the keystroke level.

Conclusions
The most dramatic end-user benefit

imparted by D INPUT is its more forgiving
user interface, made possible by improve-
ments in error handling. The routine also
has the merit of easy modification in order
to display properly formatted numbers
even while they are being entered.

Error handling is poor in many Forth
programs as a direct result of the use of
CONVERT. Had there existed a routine like
CHAR>D as part of Forth, I am sure that a
number input routine like my DINPUT
would have arrived on the scene much
sooner.

Nevertheless, I will be the first w assert
that CONVERT is completely adequate for
supporting the interpreter and compiler
functions inside Forth. And I can see why
this pleases most Forth programmers: they
typically favor the simplest solution for the
problem at hand.

Still, to allow increased flexibility and
better support for user-interactive applica-
tions, we should choose to extend Forth

31: ----
0) VARIABLE SIGNED. 0 SIGNED. !
1) VARIABLE MAX-DIGITS 5 MAX-DIUITS !
2) VARIABLE #DIGITS
3) VARIABLE PICTURE-STRING
4) 24 ALLOT
5) " (99) 00.0"
6) DUP C@ 1+ PICTURE-STRING SWAP CMOVE
7) 32 CONSTANT C@"PLUSm
8) : ANYOF2 (datum test1 test2 -- daturn flag
9) > R O V E R = (datum flaq - -)

10) OVER R > = (datum flaq flag --)

11) OR ;
12) : BACKSPACES
13) ?DUP Q= IF EXIT THEN
14) 0 DO 8 EMIT LOOP ;

3 2 : ----
0) : CHAR>D+ d keycode -- d+)

1) ce* - " O V E R = I F D R O P D N E G A T E E X I T T H E N
2) 4 8 - DUP O < IF (invalid key)

3) 7 EMIT DROP EXIT THEN
4) DUP 16 > IF (letter=digit
5) 7 - THEN
6) DUP BASE @ (d ones ones base --
7) < O= #DIGITS @ MAX-DIGITS @ = OR IF
8) 7 EMIT DROP EXIT THEN
9) 1 #DIGITS + !

10) >R BASE @ 1 M+/ R? Q D+ ;

33 : ----
0) : ?D.R (d width --)

1) DUP BACKSPACES
2) > R D D U P D O = d flag --)

3) IF DDROP R > SPACES EXIT THEN
4) R > D.R ;
5) EXIT
6) PICTURE-STRING R > OVER CF - SPACES DM." ;
7) < # #S # > DUP >R TYPE R > R) SWAP - SFACES ;

(Continued on next page.)

Figure Three. Two versions of a number input routine.

with routines like I have described. While
CONVERT is the shortest path to an im-
plementation of Forth, it does not lead to a
suitable user interface for an application
requiring formatted number input.

To encourage the development of new
algorithms and their discussion in articles
such as this one, Forth is wonderful.
Through its lack of sophistication in many
areas, Forth becomes the preferred lan-
guage for shaping new algorithms. By pur-
suing the same kind of bare-bones simplic-
ity typical of the supplied Forth routines,
more efficient and effective solutions are
likely to be found.

Forth is an accommodating language
for development along two types of paths:
paths directed upwards towards higher
levels of functionality within single rou-
tines, and paths directed downward to-
wards more minute levels of functionality

within single routines. What I have learned
with regard to the development of number
input routines is that progress towards
higher levels of functionality was made
possible through seemingly backwards
progress towards more precisely formu-
lated, infinitesimal levels of functionality.
I had to feel comfortable going backwards
before I could move forwards.

In my seven or eight years of working
with Forth, I always felt too uncomfortable
redefining the supplied routines. Perhaps I
instinctively felt that the proper use of a
high-level language was not to turn it
against itself. Or perhaps I admired too
much the sage Forth programmers who
could implement Forth on new machines,
so I felt uncomfortable tweaking their vi-
sion of what the language should be on a
particular machine.

However, if this is one of Forth's most

Volume XI, Number 4 39 Forfh Dimensions

(Figure Three, continued.)
---- I

Forth

: DINPUT (d width -- d)

0 # D I G I T S !
DUP >R SPACES BEGIN (d --)

DDUP R@ ?D.R KEY
1 3 OVER - WHILE

1 2 7 8 ANYOF2 I F (d char --)

DROP DDUP DO= I F 7 EMIT ELSE
1 BASE @ M+/

- 1 # D I G I T S + ! THEN
ELSE (not del or bkspc)

CHAR>D+ THEN
REPEAT R > 2DROP i

FORTH SOURCETM

WISC CPU/16
The stack-orlented "Wrlteable lnstructlon Set
Computer" (WISC) IS a new way of harmonizing
the hardware and the application program wlth the
opcode's semantlc content. Vastly improved
throughput IS the result.

Assembled and tested WlSC for
IBM PCIATIXT $1500
Wirewrap Kit WlSC for IBM PCIATIXT $ 500
WlSC CPUII6 manual $ 50

MVP-FORTH
Stable - Transportable - Public Domain - Tools
You need two primary features in a software devel-
opment package ... a stable operating system and
the ability to move programs easily and quickly to a
var~ety of computers. MVP-FORTH gives you both
these features and many extras.

MVP Books - A Series
Vol. 1, All about FORTH. Glossary $28
Vol. 2, MVP-FORTH Source Code. $25
Val. 3, Floating Point and Math $35
Vol. 4, Expert System $22
Vol. 5, File Management System $30
Vol. 6, Expert Tutorial $22
Vol.'7, FORTH GUIDE $25
Vol. 8, MVP-FORTH PADS $55
Vol. 9, WorkiKalc Manual $25

MVP-FORTH Software - A trans-
portable FORTH

MVP-FORTH Programmer's Kit including
disk, documentation Volumes 1, 2 & 7 of MVP
Serles, FORTH Applications, and Starting
FORTH. IBM, Apple, Amiga. CP/M, MS-DOS,
PDP-11 and others. Specify. $225
MVP-FORTH Enhancement Package for
IBM Programmer's Kit. Includes full screen edi-
tor & MS-DOS file interface. $110
MVP-FORTH Floating Point and Math

IBM, Apple, or CPIM, 8" $100
MVP-LIBFORTH for IBM. Four disks of
enhancements. $25
MVP-FORTH Screen editor for IBM. $15
MVP-FORTH Graphics Extension for

IBM or Apple $100
MVP-FORTH PADS (Professional
Application Development System)
An integrated system for customizing your
FORTH programs and applications. PADS is a
true professional development system. Specify
Computer: IBM Apple $500
MVP-FORTH Floating Point Math $100
MVP-FORTH Graphics Extension $100
MVP-FORTH EXPERT-2 System
for learning and developing knowledge based
programs. Specify Apple, IBM, or

CP/M 8" $175

Order Numbers:
800-321 -41 03

(In California) 415-961-4103

FREE
CATALOG

MOUNTAIN VIEW
PRESS

PO DRAWER X
Mountain View, CA 94040

Dimensions

DINPUT (d width -- d)

0 # D I G I T S !
DUP >R SPACES (d -- 1
DDUP R@ ?D.R
KEY (d keycode --)

13 OVER = I F R > 2DROP E X I T THEN
>R DDROP 0 . 0 R > (d keycode --)

BEGIN (0 . 0 keycode --)

1 2 7 8 ANYOF2 I F (d bkspc/del --)

DROP DDUP DO= I F 7 EMIT ELSE
1 BASE @ M+/ -1 # D I G I T S + ! THEN

ELSE (not del or bkspc)

CHAR>D+ THEN
DDUP R e ?D.R
KEY 13 OVER = (d keycode flag --)

U N T I L R> 2DROP i

36 : ----
0) : D M . " (double cadr --)

1) 0 MAX-DIGITS !
?R SWAP OVER DABS < #
R >
DUP C@ (d adr count --)

OVER + DO (d --)

I ce cen on ceu 9. ANYOFP IF
I MAX-DIGITS + ! THEN >R

R@ c@- - ' I = SIGNED. @ AND I F (INCLUDE POS/NEG SIGN)
2 P ICK O< O= I F R > DROP C@"PLUSn >R THEN THEN

DDUP + R@ C @ " 9" = AND I F R > DROP C@" 0" :R THEN
DDUP DO= I F R@ C@' 9'' = R@ C@' ,' = OR I F

R > DROP 32 >R THEN THEN
R@ C@' 0 " = I F # R ? DROP ELSE R ? HOLD THEN

-1 +LOOP
ROT DROP # > TYPE ;

Table One.
RaQ InnutResources
numbers EXPECT/NUMBER
dates EXPECT
strings EXPECT

I

-
D . R <# # HOLD #S #> TYPE
<# # HOLD #> TYPE
COUNT TYPE

Table Two.
SUALdk

ASCII smng corresponding to number The number atop the stack is updated to
value is built one character at a time for reflect each character obtained with B#.
each call to #, proceeding from the tail to or
the head of the string. The number top the stack is updated to

reflect each digit left atop the stack by
B#.

40 Volume XI. Number 4

unique strengths, an ability to accommo-
date development directed at higher and
lower levels of functionality equally well,
then it should be recognized as a strength.
One of the more disturbing implications of
this flexibility is that more advanced Forth
programmers will be tempted to displace
many kernel routines. I think we have
ample evidence of this because the top
Forth programmers typically use custom
versions of the language. However, the rest
of the programming community considers

this flexibility and consequent non-stan-
dardization as confirmation of Forth's re-
puted unreadability and unmaintainability.

To help make Forth more than a lan-
guage laboratory, we'll need to decompose
the functions of the language better, and
then standardize those minisculeand
seemingly unimportant-functions. In
fact, this should beoneof the highest priori-
ties of organizations developing Forth stan-
dards.

Bibliography
1. Ham, Michael. "Structured Program-

ming" column, Software Tools, July
1986.

2. Ham, Michael. "Structured Program-
ming" column, Software Tools, April
1987.

3. Ham, Michael. "Making Numbers
Pretty," Forth Dimensions VIVS, 1986.

4 . Takara, Ken. "Number Editing Utility,"
Forth Dimensions VIV3,1986.

Volume XI, Number 4 Forth Dimensions

FIG
CHAPTERS

The FIG Chapters listed below
are currently registered as active
with regular meetings. If your
chapter listing is missing or incor-
rect, please contact Kent Safford at
the FIG office's Chapter Desk.
This listing will be updated in each
issue of Forth Dimensions. If you
would like to begin a FIG Chapter
in your area, write for a "Chapter
Kit and Application." Forth Inter-
est Group, P.O. Box 8231, San
Jose, California 95155

U.S.A. - ALABAMA
Huntsville Chapter
Tom Konantz
(205) 88 1-6483

ALASKA
Kodiak Area Chapter
Ric Shepard
Box 1344
Kodiak, Alaska 99615

ARIZONA
Phoenix Chapter
4th Thurs., 7:30 p.m.
Arizona State Univ.
Memorial Union, 2nd floor
Dennis L. Wilson
(602) 381-1 146

ARKANSAS
Central Arkansas Chapter
Little Rock
2nd Sat., 2 p.m. &
4th Wed., 7 p.m.
Jungkind Photo, 12th & Main
Gary Smith (501) 227-7817

CALIFORNIA
Los Angeles Chapter
4th Sat, 10 a.m.
Hawthorne Public Library
12700 S. Grevillea Ave.
Phillip Wasson
(213) 649-1428

North Bay Chapter
2nd Sat., 10 a.m. Forth, AT
12 Noon Tutorial, 1 p.m. Forth
South Berkeley Public Library
George Shaw (415) 276-5953

Orange County Chapter
4th Wed., 7 p.m.
Fullerton Savings
Huntington Beach
Noshir Jesung (714) 842-3032

Sacramento Chapter
4th Wed., 7 p.m.
1708-59th St., Room A
Tom Ghormley
(9 16) 444-7775

San Diego Chapter
Thursdays, 12 Noon
Guy Kelly (619) 454-1307

Silicon Valley Chapter
4th Sat., 10 a.m.
H-P Cupertino
Bob Ban (408) 435-1616

Stockton Chapter
Doug Dillon (209) 93 1-2448

= COLORADO
Denver Chapter
1st Mon., 7 p.m.
Clifford King (303) 693-3413

CONNECTICUT
Central Connecticut Chapter
Charles Krajewski
(203) 344-9996

FLORIDA
Orlando Chapter
Every other Wed., 8 p.m.
Herman B. Gibson
(305) 8554790

Southeast Florida Chapter
Cownut Grove Area
John Forsberg (305) 252-0108

Tampa Bay Chapter
1st Wed., 7:30 p.m.
Terry McNay (8 13) 725- 1245

GEORGIA
Atlanta Chapter
3rd Tues., 6:30 p.m.
Western Sizzlen, Doraville
Nick Hennenfent
(404) 393-3010

ILLINOIS
Cache Forth Chapter
Oak Park
Clyde W. Phillips, Jr.
(312) 386-3147

Central Illinois Chapter
Champaign
Robert Illyes (217) 359-6039

INDIANA
Fort Wayne Chapter
2nd Tues., 7 p.m.
I/P Univ. Campus, B71 Neff
Hall
Blair MacDermid
(219) 749-2042

IOWA
Central Iowa FIG Chapter
1st Tues., 7:30 p.m.
Iowa State Univ., 214 Comp.
Sci.
Rodrick Eldridge
(515) 294-5659

Fairfield FIG Chapter
4th Day, 8: 15 p.m.
Gurdy Leete (5 15) 472-7077

MARYLAND
MDFIG
Michael Nemeth
(301) 262-8140

MASSACHUSETTS
Boston Chapter
3rd Wed., 7 p.m.
Honeyweli
300 Concord, Billerica
Gary Chanson (617) 527-7206

MICHIGAN
DetroitIAnn Arbor Area
4th Thurs.
Tom Chrapkiewicz
(313) 322-7862

MINNESOTA
MNFIG Chapter
Minneapolis
Fred Olson
(612) 588-9532

MISSOURI
Kansas City Chapter
4th Tues.. 7 p.m.
Midwest Research Institute
MAG Conference Center
L ius Orth (913) 236-9189

St. Louis Chapter
1st Tues., 7 p.m.
Thornhill Branch Library
Robert Washam
91 Weis Drive
Ellisville, MO 6301 1

NEW JERSEY
New Jersey Chapter
Rutgers Univ., Piscataway
Nicholas Lordi
(201) 338-9363

I

Forth Dimensions 42 Volume XI, Number 4

Volume XI, Number 4 43 Forth Dimensiom

NEW MEXICO
Albuquerque Chapter
1st Thurs., 7:30 p.m.
Physics & Astronomy Bldg.
Univ. of New Mexico
Jon Bryan (505) 298-3292

OHIO
Cleveland Chapter
4th Tues., 7 p.m.
Chagrin Falls Library
Gary Bergstrom
(216) 247-2492

Columbus FIG Chapter
4th Tues.
Kal-Kan Foods, Inc.
51 15 Fisher Road
Terry Webb
(614) 878-7241

Dayton Chapter
2nd Tues. & 4th Wed., 6:30
p.m.
CFC. 11 W. Monument Ave.
#612
Gary Ganger (513) 849-1483

OREGON
Willamette Valley Chapter
4th Tues., 7 p.m.
Lm-Benton Cornm. College
Pann McCuaig (503) 752-51 13

PENNSYLVANIA
Villanova Univ. Chapter
1st Mon.. 7:30 p.m.
Villanova University
Dennis Clark
(215) 860-0700

TENNESSEE
East Tennessee Chapter
Oak Ridge
3rd Wed., 7 p.m.
Sci. Appl. Int'l. Corp., 8th F1.
800 Oak Ridge Turnpike
Richard Secrist
(615) 483-7242

TEXAS
Austin Chapter
Matt Lawrence
PO Box 180409
Austin, TX 78718

Dallas Chapter
4th Thurs.. 7:30 p.m.
Texas Instruments
13500 N. Central Expwy.
Semiconductor Cafeteria
Conference Room A
Clif Penn (214) 995-2361

Sydney Chapter
2nd Fri., 7 p.m.
John Goodsell Bldg., RM
LC19
Univ. of New South Wales
Peter Tregeagle
10 Binda Rd.
Yowie Bay 2228
021524-7490
Usenet
tedr@usage.csd.unsw.oz

BELGIUM
Belgium Chapter
4th Wed., 8 p.m.
Luk Van Loock
Lariksdreff 20
2120 Schoten
031658-6343

Southern Belgium Chapter
Jean-Marc Bertinchamps
Rue N. Monnom. 2
B-6290 Nalinnes
0711213858

CANADA
BC FIG
1st Thurs., 7:30 p.m.
BCIT, 3700 Willingdon Ave.
BBY, Rm. 1A-324
Jack W. Brown (604) 596-
9764
BBS (604) 434-5886

Northern Alberta Chapter
4th Sat., 10a.m.-noon
N. Alta. Inst. of Tech.
Tony Van Muyden
(403) 486-6666 (days)
(403) 962-2203 (eves.)

Southern Ontario Chapter
Quarterly, 1st Sat., Mar., Jun.,
Sep., Dec., 2 p.m.
Genl. Sci. Bldg., RM 212
McMaster University
Dr. N. Solntseff
(41 6) 525-9140 x3443

ENGLAND
Forth Interest Group-UK
London
1st Thurs., 7 p.m.
Polytechnic of South Bank
RM 408
Borough Rd.
D.J. Neale
58 Woodland Way
Morden, Surry SM4 4DS

FINLAND
FinFIG
Janne Kotiranta
Arkkitehdinkatu 38 c 39
33720 Tampere
+358-31-184246

Houston Chapter
3rd Mon., 7:30 p.m.
Houston Area League of PC
Users
1200 Post Oak Rd.
(Galleria area)
Russell Harris
(713) 461-1618

VERMONT
Vermont Chapter
Vergennes
3rd Mon., 7:30 p.m.
Vergennes Union High School
RM 210. Monkton Rd.
Hal Clark (802) 453-4442

VIRGINIA
First Forth of Hampton
Roads
William Edmonds
(804) 898-4099

Potomac FIG
D.C. & Northern Virginia
1 st Tues.
Lee Recreation Center
5722 Lee Hwy., Arlington
Joseph Brown
(703) 47 1-4409
E. Coast Forth Board
(703) 442-8695

Richmond Forth Group
2nd Wed., 7 p.m.
154 Business School
Univ. of Richmond
Donald A. Full
(804) 739-3623

WISCONSTN
Lake Superior Chapter
2nd Fri., 7:30 p.m.
1219 N. 21st St., Superior
Allen Anway (7 15) 394-406 1

INTERNATIONAL
AUSTRALIA
Melbourne Chapter
1st Fri., 8 p.m.
Lance Collins
65 Martin Road
Glen Iris, Victoria 3146
03/29-2600
BBS: 61 3 299 1787

HOLLAND
Holland Chapter
Vic Van de Zande
Finrnark 7
3831 JE Leusden

ITALY
FIG Italia
Marco Tausel
Via Gerolamo Forni 48
20161 Milano
021435249

JAPAN
Japan Chapter
Toshi Inoue
Dept. of Mineral Dev. Eng.
University of Tokyo
7-3-1 Hongo, Bunkyo 113
812-21 11 x7073

NORWAY
Bergen Chapter
Kjell Birger Faeraas,
47-5 18-7784

REPUBLIC OF CHINA
R.O.C. Chapter
Chin-Fu Liu
5F, #lo, Alley 5, Lane 107
Fu-Hsin S. Rd. Sec. 1
Taipei, Taiwan 10639

SWEDEN
SweFIG
Per Alm
46/8-92963 1

SWITZERLAND
Swiss Chapter
Max Hugelshofer
Industrieberatung
Ziberstrasse 6
8152 Opf ion
01 810 9289

SPECIAL GROUPS
NC4000 Users Group
John Carpenter
1698 Villa St.
Mountain View, CA 94041
(415) 960-1256 (eves.)

FLOAT4th.BLK V1.02, Robert L. Smith
Software Floating-Point for fig, Poly, 79-STD,
83-STD Forths. IEEE Short 32-bit, Four stan-
dard functions, Square Root and Log. IBM (1
disk).

F83: V2.01, Mike Perry & Henry Laxen
The newest version that has been ported to a
variety of machines. Editor, assembler, decom-
piler, meta-compiler. Source and shadow
screens. Base for other F83 applications. IBM, 83
(1 disk).

Second Class
Postage Paid at
San Jose, CA

NEW FIG DISK LIBRARY
"Contributions From the Forth Community"

Smallest complete Forth for the Mac. Access to all
Mac functions, files, graphics, floating point, mac-
ros, create stand-alone applications and DA's,
based on fig & Starting Forth

Forth Interest Group
P.O. Box 8231
San Jose, CA 95 155

F-PC: V2.25, Tom Zimmer
A full Forth system with pull-down menus, se-
quential files, editor forward assembler, meta-
compiler, floating point. Complete source and
Help files. Base for other F-PC applications.
Hard disk recommended. IBM, 83 (4 disks).

VP-Planner Floating Point for F-PC, V1.O1, Jack
Brown (1 disk) - Floating point engine behind the
VP-Planner spreadsheet. 80-bit (temporary-real)
routines with Transcendental Functions, NUM-
BER 1 / 0 support, vectors to support numeric
coprosessor overlay and user NAN checking. IBM.

F-PC: TEACH, Lessons 0-5, J. Brown
Forth classroom on disk. First five lessons from
Jack Brown of BC Institute of Technology on
learning Forth. IBM, F-PC (2 disks).

JLISP V1.O, Nick Didkovsky (1 disk)
LISP interpreter invoked from Amiga JForth. The necleus of the interpreter is the result of Martin Tracy's
work. It has been extended to allow the LISP interpreter to link to and execute JForth words. It can
communicate with JForth's ODE (Object Development Environment). AMIGA, 83.

$6.00 per disk or 5 disks for $25.00
NOW AVAILABLE

FROM THE FORTH INTEREST GROUP

