

F O R T H
D I M E N S O N S

TIME-STATEMENT LEXICON - DAVE EDWARDS
7

This set of words allows time-based statements in Forth. It constructs code to perform several useful functions, and
includes user-definable time units, waiting or flag-testing for a specified period, and more. You may find creative ways
to extend this set of commands to define application- or environment-specific functions.

=
QUATERNION ROTATION CALCULATION

ANTONIO LARA-FERIA and JOAN VERDAGUER-CODINA
11

A Forth algorithm to directly find the unique axis and the angle of arotation is presented, a technique that provides some
advantage over matrix methods. It is part of the authors' work to apply quaternions in robotics and computer graphics,
but quaternions can be used in astronautics, mechanics, robotics, and computer graphics to equal benefit.

m
MULTIPROCESSOR FORTH KERNEL - BRADFORD J . RODRIGUEZ

I4
This multitasker for a multiple-CPU system handles task allocation transparently, without even requiring the
programmer to know how many CPUs are being used. It avoids resource contention, permits intervention via interrupts,
and allows triggering of idle tasks without polling or other CPU overhead.

a
SEARCH ORDER STRUCTURE - CHESTER H. PAGE

23
The author presents his vocabulary search-order routine, in which FORTH is searched only after all the user-specified
vocabularies. It is easy torestore the default condition with a single command. The routine is based on a vocabulary name
structure using the dummy link as a pointer to the last word in the vocabulary, and a dummy parameter as a pointer to
the dummy link of the next vocabulary to be searched.

=
THE CHALLENGE OF SORTS

24
There are all sorts of sorts, and all sorts of programmers. Now the Forth Interest Group-courtesy of major-league efforts
by Dennis Ruffer and his on-line cohorts-issues a formal challenge to all Forth programmers. Beat our sort program
and have a chance to win a prize. But before breaking out your bubbly, beware! Only the best will rise to the top ...

Editorial
4

Letters
5

Advertisers Index
20

Best of GEnie
31

Reference Section
36

FIG Chapters
38

Volume XI, Number 3 3 Forth Dimension

The Forth Interest Group's di i tors
recently decided to distribute public-do-
main Forth systems on diskette. This is the
outgrowth of a years-long debate that has
ranged from issues like the support of such
software, to the organization's goals, to-
not least-the vendor community. In ear-
lier times, some feared that FIG'S distribu-
tion of public-domain Forth at equally
public-domain prices would undercut the
market of some Forth vendors. Others saw
public-domain consumers as (a) entry-
level Forth users who will likely graduate
to commercial systems in time, and (b)
Forth experts who will use and study sys-
tems from any source, but who use com-
mercially supported packages when devel-
oping programs for sale or under contract.

Today, most Forth vendors provide
complete documentation, technical sup-
port, consulting, and custom programming
with which FIG-dismbuted systems will
not and cannot compete. FIG does not offer
technical support; users who need a sup-
ported, comprehensive system must still
contact a vendor who can provide one. This
issue's "Best of GEnie" discussion will
help some prospective users of public-
domain systems. It recaps some of the on-
line dialog between new and long-time
users.

FIG'S Mail Order Form is to include
F83 v.2.01 and F-PC v.2.25 for IBM PCs
and compatibles, and the less-known
Pocket Forth for Macintoshes. F83 is famil-
iar to many as the extensive (by comparison
with earlier Forths) Forth-83 Model con-
tributed by Henry Laxen and Michael
Perry. F-PC is the creation of Tom Zimmer,
who has given us a largeenvironment
Forth (files, hypertext, etc., etc.) that de-
serves lengthy commentary in issues to
come. Pocket Forth for the Mac, by Chris
Heilman, bills itself as an austere Forth
system that follows standard usage and

Forth Dimensions
Published by the

Forth Interest Group
Volume XI. Number 3

September/October 1989
Editor

Marlin Ouverson
Advertising Manager

Kent Safford
Design and Production

Berglund Graphics

I I

Forth Dimemiom 4 Volume XI, Number 3

Starting Forth, but not rigorously. It can be
used to create standalone and desk acces-
sory applications (coming in both forms
itself), supports toolbox calls and machine
code, and accepts text files. * * *

I want to repeat our call for articles
about Forth hardware. Last month's edito-
rial gives details about the closing dates,
cash awards, etc. Articles can be about a
particular Forth chip or board you have
used or built, general design philosophy, a
survey of entries in the field, you name it.
No one with a vested interest in a product is
excluded from writing about it, so long as
they honestly admit the affiliation, but our
reviewers will look keenly for signs of per-
sonal bias in the technical content.

Despite the generally wide fascination
with Forth hardware, some of our readers
just haven't acquired the taste for it, at least
not enough to write about. An event of
interest to every programmer is the "Chal-
lenge of Sorts" announced in this issue.

Ruffer, head sysop of the GEnie
Forth RoundTable, is spearheading this
effort to really test your programming
skills. The well-designed contest comes
complete with prizes and publication for
the winners, described later in this issue.
The gauntlet has been tossed ... * * *

The ''Reference Section" continues to
grow, with an addition to the on-line re-
sources and two new categories: ANS
Forth lists X3J14 representatives who are
willing to take your proposals and concerns
about the developing ANS Forth directly to
that committee; and Forth Instruction pro-
vides a place to find ongoing educational
resources of interest. Send any additions
and elaborations to us.

(Editorialcontinued onpage 37)
I

Forth Dimemiom welcomes editorialmate-
rial, letters to the editor, and comments from its
readers. No responsibility is assumed for accu-
racy of submissions.

Subscription to Forth Dimensions is in-
cluded with membership in the Forth Interest
Group at $30 per year ($42 overseas air). For
membership, change of address, and to submit
items for publication, the address is: Forth Inter-
est Group. P.O. Box 8231. San Jose, California
95155. Administrative offices and advertising
sales: 408-277-0668.

Copyright O 1989 by Forth Interest Group,
Inc. The material contained in this periodical
(but not the code) is copyrighted by the individ-
ual authors of the articles and by Forth Interest
Group, Inc., respectively. Any reproduction or
use of thii periodical as it is compiled or the ar-
ticles. except reproductions for non-commer-
cialpurposes, without the written permission of
Forth Interest Group, Inc. is a violation of the
Copyright Laws. Any code bearing acopyright
notice, however, can be used only with permis-
sion of the copyright holder.

About the Forth Interest Group
The Forth Interest Group is the association

of programmers, managers, and engineers who
create practical, Forth-based solutions to real-
worldneeds. Many research hardware and soft-
ware designs that will advance the general state
of the art. FIG provides a climate of intellectual
exchange and benefits intended to assist each of
its members. Publications, conferences, semi-
nars, telecommunications, and area chapta
meetings are among its activities.

"Forth Dimensions (ISSN 0884-0822) is
published bimonthly for $24/36 per year by the
Forth Interest Group, 1330 S. Bascom Ave.,
Suite D, San Jose. CA 95128. Second-class
postage paid at San Jose. CA. POSTMASTER:
Send address changes to Forth Dimensions,
P.O. Box 8231, San Jose, CA 95155."

Object Commentary
Dear Mr. Ouverson.

This is a comment on Mike Elola's
comment on my comment on his object-
oriented article in Forth Dimensions (X/5)!

First, I'm glad that my comment has
stirred so much enthusiasm. I have received
many positive letters on it. I hope this inter-
est in object-oriented Forth (OOF) contin-
ues to grow.

Using the now-famous arithmetic aver-
age example, listed below, Elola suggested
that the phrase USE FLOAT should not be
necessary in an 00 language.

USE FLOAT
A @ B @
+ 2 1
C !

CSU Forth is not an 00 language. I
found no reason to make it so. Instead, it
accommodates 00 principles. The original
spirit of Forth, as I understood it, is pro-
grammer liberty and language extensibil-
ity. I therefore designed CSU Forth to be
100% compatible with the standards, yet to
offer the programmer an excellent way of
program design if helshe wants to use it. In
CSU Forth, classes and objects are Forth
words. The way they do what they do is
found in their DOES> parts.

In the arithmetic average example, the
phrase USE FLOAT is needed for the
methods + and 2 / , not for the float objects
A, B, or C. These methods will behave dif-
ferently in a float class than in an integer
class. Using USE, the programmer doesn't
have to create a special object to call these
methods. It also allows the programmer to
use familiar word names like 2 1 without

binding ambiguity. The same technique is
found in standard Forth whenever you in-
voke a vocabulary. Perhaps writing the
example as below will remove this misun-
derstanding:

A @ B @
USE FLOAT
+ 2 1
USE FORTH

Finally, I hope that the next Forth stan-
dard will not be called "Forth++." Forth-90
is what I'd like to see. I especially pray that
if the ANSI committee decides to imple-
ment OOF, they will not be inspired by the
cryptic and complex standards of C++. 00
principles are much simpler and easier to
implement than some folks will lead you to
believe.

Sincerely,
Ayman Abu-Mostafa
7932 Lampson Ave. #25
Garden Grove, California 9264 1-4 147

Conditional-Stack Caveat
Dear Marlin,

There is a serious misunderstanding of
the IF ... ELSE ... THEN and IF ... THEN
constructs in Abu-Mostafa's article on
branchless conditionals ("Forth Needs
Three More St.cks,"FD XV1). The stan-
dard interpretation of these constructs in-
cludes the following points:

1. IF removes a single value from the
parameter stack and processes it as a
Boolean.

Volume XI, Number 3 5

2. If the Boolean value is true, processing
continues with the words immediately
following IF and continues up to a
matching ELSE or THEN.

2a. A matching ELSE causes a skip of
processing of words between ELSE and
the matching THEN. Processing is re-
sumed after THEN.

3. If the Boolean value is false, the words
immediately following IF are skipped
up to a matching ELSE or THEN, and
processing is resumed at the matching
ELSE Or THEN.

4. The group of words that is skipped has no
effect on the parameter stack, the return
stack, or any variable in the dictionary,
no matter how long or complicated the
group of words may be.

In these rules, "matching" means that
any IF ... ELSE ... THEN or IF ... THEN
constructs that are nested inside in skipped
code must be passed over, and their ELSE
or THEN parts ignored.

One might quibble about whether my
wording of the rules is precise, complete, or
the most concise possible, but the intent is
clear to all users of Forth. In particular,
skipped words must not affect the parame-
ter stack. Abu-Mostafa's fourth rule of
processing his proposed condition stack
does have skipped IF words affecting the
parameter stack. This is wrong.

One can implement branchless condi-
tionals comtly without the use of a condi-
tion stack. Instead, one needs only an exe-
cution control flag (ECF) and a nesting
depth counter (mc). During initialization
of the system, ECF is setmeandmc isset
to zero; then the following rules apply:

Forth Dimensions

NGS FORTH
A FAST FORTH,
OPTIMIZED JVR THE IBM
PERSONAL COMH7TER AND
MS-DOS COMPATIBLES.

STANDARD FEATURES
INCLUDE:

a79 STANDARD

@DIRECT 1/0 ACCESS

@FULL ACCESS TO MS-DOS
FILES AND FUNCTIONS

I @ENVZRONmmT SAVE & rnAD

@MULTI-SEGMENTED FOR I LARGE APPLICATIONS

1. As each word is parsed from the input
stream. ECF is examined. The word is
executed if ECF is true, and is skivued if - *
ECF is false.

2. Execution of I F causes the top value on
the parameter stack to be stored into
ECF.

3. Execution of ELSE causes false to be
stored into ECF.

4. Execution of THEN is a no-operation.

During "skipping," special actions are
taken if any of the words IF, ELSE, or
THEN are encountered, as follows:

1. Skip over IF causes NDC to be incre-
mented.

2. Skip over ELSE causes a test of NDC,
and ----

2a. If NDC is zero, true is stored into ECF.
2b. If NDC is non-zero, no action is taken.
3. Skip over THEN also causes a test of

NDC, and

The proposed CASE construct re-
quires the programmer to count, by hand,
the number of instances of the word CASE
and enter that number into the source code
explicitly. Surely SELECT and END could
be augmented in some way so that they
cause the instances of CASE to be counted
by the computer rather than by the pro-
grammer. People, even programmers, are
far less reliable at counting than computers.

The definition of CASE contains IF.
The operation of branchless conditionals
requires that the outer interpreter know
about the I F that is hidden inside CASE.
One bit in the NFA is not enough to encode
the necessary information for appropriate
processing of CASE. Apparently, the outer
interpreter must "open up" the definition of
CASE and look inside, find the I F and
process it. This must be very slow indeed.

In conclusion, I would like to caution
any reader thinking of implementing
branchless conditionals on his own Forth to

@EXTENDED ADDRESSING

.MEMORY AXLOCATION
CONFIGURABLE ON-LINE

I 1

Forth Dimensions 6 Volume XI, Number 3

L C) ~ SCREEN BOOT

@LINE SCREEN EDITORS

@DECOMPILER AND
DEBUGGING AIDS

08088 ASSEMBLER

.GRAPHICS & SOUND

aNGS ENHANCEMENTS

@DETAILED MANUAL

@INEXPENSIVE UPGRADES

WGS USER NEWSLETTER

A CVMPLETE FO#rH
DEVEU)HENT SYSTEM.

PRICES START AT $70

NEWeHP-150 ti BP-110
VERSIONS AVAILABLE

rti;
NEXT GENERATION SYSTEM8
P.0.BOX 2987
SANTA CLARA, CA- 95055
(408) 241-5909

3a.If NDC is zero, m e is stored into ECF.
3b.If NDC is non-zero, NDC is decremented.

The use of the NDC makes the "skip-

look before he leaps.

Sincerely,
Paul Condon

ping" state pass over matching pairs of IF
and THEN words without ending the skip-
ping state. It works up to a nesting level
equal to the overflow count of NDC. (Proba-
bly larger than the storage allocation of any
possible condition stack!) The algorithm is
essentially the same as One for finding
matching left and right parentheses in alge-
braic expressions. Evaluation of an Age-
braic expression is nicely done using a
stack to hold intermediate results, but the
stack is quite unnecessary if one is only
interested in finding matches of parenthe-
ses.

In addition to the serious misstatement
of IF ... THEN processing, there are other
less serious problems with Abu-M0~tafa.s
branchless conditionals:

Marking words for special processing
by setting a bit in the NFA is only satisfac-
tory for interpretive mode. If it is used on
compiled code, it would require the outer
interpreter to execute >LINK for every
word that is being skipped during a skip
sequence. This would surely be very slow.

DO ... LOOP still requires a backward
branch. Some of the words that Abu-
Mostafa hopes to eliminate with his
branchless conditionals will still be re-
quired to implement this backward branch.

216 Sheffield Lane
Redwood City, California 94061

Case Counter
In Forth Dimensions XI/1, Dr. Ayman

Abu-Mostafa suggests adding three stacks
to Forth. In addition, he describes a nes-
table case structure which uses his pro-
posed conditional and case stacks. The
scheme for both the stacks and the case
statement seems very easy to implement.

The drawback I see to the proposed case
structure is that it requires the programmer
to specify how many cases are present.
Though not a problem when code is ini-
tially written, when adding or deleting
cases during later maintenance, it will be
easy to forget to update the CASES clause.
I would like to suggest some minor changes
to the case structure that will allow it to
count the number of cases for itself.

The change involves keeping the num-
ber of cases defined on the case stack
underneath the select value. SELECT will
initialize this to zero:

: SELECT (n --)

0 4 >S
4 >S ;

(Letters, continued on page 37)

TIME-STATEMENT
LEXICON

E v e r since my fist process-contml
program, when I needed to execute code on
a timed basis, I have been working on a
lexicon for time statements in Forth. Con-
sulting my back copies of Forth Dimen-
sions, I discovered a typically excellent
article by William Ragsdale (issue V15)
which developed syntaxes of the type:

T I C K I F EACH-SECOND
TOCK I F EACH-MINUTE
T H E N THEN

It was perfect for my needs in that first
control program. My second program re-
quired more sophistication than just each-
second and each-minute kinds of state-
ments, so I began extending Ragsdale's
basic ideas into the present lexicon.

The lexicon allows a variety of time-
based statements inForth. It does not usean
operating-system approach (in which the
"system" maintains a set of timers available
for use), but constructs in-line Forth code
which performs the timing functions. The
lexicon allows syntaxes for dealing with a
variety of time functions, including:

A declarable set of time units (millisec-
onds, seconds, minutes, etc.).

Perform processes on each new time unit
(similar to Ragsdale's T I C K TOCK sys-
tem).

Monitor a time lapse.
Declare a time period.
Detect whether a period has elapsed.
Wait to proceed until after a specified
period,
Monitor a condition (flag) for a time
period.

Functions required beyond this set can
easily be expressed in phrases using the
core lexicon words.

DAVE EDWARDS - SUBIACO, W.A., AUSTRALJA

The fist design requirement was that
the lexicon be able to handle multiple time
units: milliseconds, seconds, minutes, even
hours and days. To implement this, a set of
entities was created that is collectively
called the time units, which are simply
numbers used by the code to distinguish the
current time unit (TU).

Words in the lexicon are designed to run
repeatedly inside a Forth control structure
for the period of interest. Time lapses are
measured by keeping a note of the value of
the time units on the previous pass through
the loop and comparing it to the value of the
time unit on the current pass through the
loop. While in the loop, the words need
access to various parameters:

The time units are
independent of the
timing basis.
- -- p-

the current time unit (TU)
the value of the time unit on the last pass

(4
a counter to accumulate the time lapse (c)
the specified time period or limit value (P)

All of these parameters are passed on the
stack and they remain on the stack for the
duration of the loop. In this sense, the
design uses stack data structures-there is
a different data structure for the various
aspects of time being monitored:

To access a time value requires:
the time unit 0.
To detect a new value requires:
the time unit and aprevious value (vTU).
To monitor a time lapse requires:

a counter plus new's parameters (c v
m.
To detect if a period has elapsed re-
quires: the totalperiod plus lapse's para-
meters (P c v TU).

The fist word in the lexicon is @ T I M E ,
which returns the value of the specified
time unit. It is used by most words in the
lexicon and is shown in Figure One-a Its
definition is implementation-specific and
is discussed in the implementation section.
It can be used directly to return the value of
particular time units, for instance:

: @ S E C S S E C S @ T I M E ;
: @ M I N S M I N S @TIME ;
etc.

NEW expects the previous value of a
time unit, along with the time unit, on the
stack. This word is analogous to
Ragsdale's T I C K but has been generalized
to handle thedifferent units. It leavesan u p
dated TU value and a flag that is uue if there
was a new value, false otherwise. (See
Figure Two.)

Notice that NEW actually leaves the
difference between the two time unit val-
ues on the top of the stack, not a pure flag.
This allows NEW to be reused in the defmi-
ti0n of LAPSE.

NEW can be used immediately in aForth
control structure to execute EACH-time
unit functions similar to Ragsdale's origi-
nal system. For example:

MINS @TIME
S E C S @ T I M E

BEGIN
S E C S NEW

I F EACH-SEC
THEN SWAP

L

Volume XI, Number 3 7 Forth Dimemiorrr

Figure One. Implementation-dependent internals.

Figure One-a

CASE
mSEC OF code to fetch value of milliseconds ENDOF
SECS OF code to fetch value of Seconds ENDOF

etc. ENDCASE ;

Figure One-b
: MAX-TU (TU -- n 1

CASE
mSEC OF 1000 ENDOF
SECS OF 60 ENDOF
MINS OF 60 ENDOF etc. ENDCASE ;

Figure One-c
: MAX-TU (TU - - n)

CASE
mSEC OF 10 ENDOF
cSEC OF 10 ENDOF
dSEC OF 10 ENDOF
SECS OF 60 ENDOF etc. ENDCASE ;

Figure One-d
Physical Timers: VARIABLE msec contains milliseconds

VARIABLE mins contains minute number

Time-Units: mSEC cSEC dSEC SECS MINS HRS

: OTIME CASE
mSEC OF msec O ENDOF
cSEC OF msec @ 10 / ENDOF
dSEC OF msec @ 100 / ENDOF
SECS OF secs Q ENDOF
MINS OF mins @ ENDOF
HRS OF mins O 60 / ENDOF etc ENDCASE ;

Figure Two. Basic lexicon.

: NEW (v TU - - v' f \ True if v' not equal to v)

@TIME DUP ROT - ;

: CLK-ON (TU -- c=O v TU \ Clears a LAPSE counter 1
0 SWAP DUP @TIME SWAP ;

: LAPSE (c v TU - - c' v' TU \ Increments c by time lapse 1
DUP > R NEW DUP

O < IF R0 MAX-TU + THEN SWAP > R + R> R> ;

: ELAPSED (P c v TU -- P c' vT TU f \ True if c' >= P 1
LAPSE 3 PICK 3 PICK > ;

Figure Three. Control structures. I
: PERIOD COMPILE CLK-ON

[COMPILE3 BEGIN
COMPILE ELAPSED : IMMEDIATE

: TIME COMPILE OR
[COMPILE] UNTIL
COMPILE 2DROP ; I MMED I ATE

MINS NEW
IF EACH-MIN
THEN SWAP

AGAIN

Note that current values of the time
units are always on the stack during the
BEGIN ... U N T I L structure.

CLK-ON Sets up the stack values for a
time LAPSE monitor-it initializes the
lapse count (c) to zero and runs @TIME to
provide an initial time unit value. (See
Figure Two.)

LAP SE expects a single-precision
count, along with NEW'S parameters on the
stack. The count is incremented by the time
lapse between the previous value and the
current value, and is shown in Figure
Three.

The word MAX-TU in the definition of
LAPSE is a word which pushes the maxi-
mum value of any TU in the system, and is
used to handle wrap-around of the value.
For instance, when using SECONDS as the
time unit, if the previous value was 59 and
the current value is two, then wrap-around
has occurred and the MAX-TU for SEC-
ONDS (60) must be added to the result left
by NEW (-57). MAX-TU is discussed in
detail in the implementation section.

LAPSE can, therefore, be run only
slightly more frequently than the next
higher time unit in the system-if SECS is
the current time unit, then LAPSE need
only be run once every 59 seconds or so.

LAPSE can be used in a variety of ways.
The following phrase leaves a number on
the stack which indicates how long it took
before the flag-leaving Forth phrase went
true:

mSEC CLK-ON
BEGIN LAPSE . . . (f)
U N T I L 2DROP (n

The next construct will remain in the loop,
running the code between WHILE and RE-
PEAT for ten minutes:

MINS CLK-ON
BEGIN

LAPSE 3 PICK 1 0 <
WHILE ...
REPEAT

2DROP DROP

I

Forth Dimensions 8 Volume XI, Nwnber 3

Optional control structures.

: MONITOR CCOMPILEI TIME
COMPILE 2DROP ; I MflED I ATE

: DETECTED CCOMPILEI TIME
COMPILE > ;

: TIMED CCOMPILEI TIME
COMPILE SWAP
COMPILE OVER
COMPILE > ;

I MMED l ATE

IMMEDIATE

Note again that care must be taken in the
Forth phrases between WHILE and RE-
P EAT, as there are timingcontrol numbers
on the stack for the duration of the loop.

ELAPSED expects a total-period,
single-precision number below LAPSE'S
arguments on the stack. It leaves a flag if the
time lapse equals or exceeds the period
specified-see Figure Two. As an example
of using ELAPSED, a Common need is for
a word which simply consumes the speci-
fied period of time. We have named this
word AFTER and it can be defined as:

: AFTER (P TU --)

\ consumes specified time
CLK-ON

BEGIN ELAPSED UNTIL
2DROP 2DROP ;

The values used during the loop (period,
count, value, time unit) are simply dropped
at the end of the loop, being of no further
interest in this particular case.

Another common requirement is to wait
for a specified total time period and simul-
taneously monitor some condition. If the
condition goes true, the loop is left immedi-
ately; otherwise, the total specified period
is consumed. This can be accomplished
with the phrase:

10 MINS CLK-ON
BEGIN ELAPSED ... (f)
OR UNTIL 2DROP (P c)

This construct leaves two numbers on the
stack, the original limit specified for the
period and the lapsed time when the loop
terminated.

If the period timed out (the condition
did not go true in the specified time period),

the two numbers are equal; if the condition
went true before the period timed out, the
limit is greater than the lapsed time.

The programmer may use these num-
bers in a variety of ways:

To continue without testing the termina-
tion state, 2DROP clears the stack.
To test whether the condition occurred
and leave a flag, simply the word > is re-
quired.
To test whether the condition was cor-
rectly timed and leave a flag and the time
taken for the condition to go true, the
phrase SWAP OVER > is used.

This construct:

CLK-ON BEGIN ELAPSED (condition)
OR UNTIL

has come to be so useful, and was used so
often in process-control code, that compil-
ing words have been defined to build i t The
phrase CLK-ON BEGIN ELAPSED is built
by the word PERIOD, and the phrase OR
UNTIL 2DROP is built by the word TIME.
Their definitions are given in Figure Three.

This control structure, in conjunction
with the subsequent tests, allows state-
ments of the form:

10 SECS PERIOD
?HEATED
TIME 2DROP
(to simply proceed)

20 SECS PERIOD
?TERMINAL
TIME > IF
." Key struck within 20 secs"
THEN

Volume XI, Number 3 9

I FORTH SOURCE" I I
WlSC CPUl16
The stack-oriented "Wr~teable Instruction Set
Computer" (WISC) is a new way of harmonizing
the hardware and the appl~cation program with the
opcode's semantlc content. Vastly improved
throughput is the result.

Assembled and tested WlSC for
IBM PCIATIXT $1500
Wirewrap Kit WlSC for IBM PC/AT/XT $ 500
WlSC CPU/16 manual $ 50

MVP-FORTH
Stable - Transportable - Public Domain - Tools
You need two primary features in a software devel-
opment package ... a stable operating system and
the ability to move programs easily and quickly to a
variety of computers. MVP-FORTH glves you both
these features and many extras.

MVP Books - A Series
Vol. 1, All about FORTH. Glossary $28
Vol. 2, MVP-FORTH Source Code. $25
Vol. 3, floating Point and Math $35
Vol. 4, Expert System $22

I7 Vol. 5, File Management System $30
Vol. 6, Expert Tutorial $22

I7 Vo1.'7, FORTH GUIDE $25
I7 Vol. 8, MVP-FORTH PADS $55

Vol. 9, WorkIKalc Manual $25
MVP-FORTH Soitware - A trans-
portable FORTH

17 MVP-FORTH Programmer's Kit including
disk, documentation. Volumes 1. 2 & 7 of MVP
Series, FORTH Applications, and Starting
FORTH, IBM, Apple. Amiga, CP/M, MS-DOS,
POP-1 1 and others. Specify. $225
MVP-FORTH Enhancement Package for
IBM Programmer's Kit Includes full screen edi-
tor & MS-DOS file interface $110

I7 MVP-FORTH Floating Point and Math
IBM, Apple, or CP/M, 8" $100

I7 MVP-LIBFORTH for IBM. Four d~sks of
enhancements. $25
MVP-FORTH Screen editor for IBM. $15
MVP-FORTH Graphics Extension for

IBM or Apple $100
MVP-FORTH PADS (Professional
Application Development System)
An integrated system for customizing your
FORTH programs and applications. PADS is a
true professional development system. Specify
Computer: IBM Apple $500

I7 MVP-FORTH Floating Point Math $100
I7 MVP-FORTH Graphics Extension $100
I7 MVP-FORTH EXPERT-2 System

for learning and developing knowledge based
programs. Specify Apple, IBM, or

CP/M 8". $175

Order Numbers:
800-321 -41 03

I (In California) 415-961-4103 I I
FREE

CATALOG

MOUNTAIN VIEW
PRESS

PO DRAWER X
Mountain View, CA 94040

Forth Dimensions

sign.
The steps to implement the timing sys-

tem are:
1. Decide on the set of time units.
2. Write @TIME to interface to the hard

ware-specific timing information.
3. Write MAX-TU for the set of time units

chosen.
4. Use the high-level definitions for the

remaining words.

10 MINS PERIOD
?ALARM
TIME SWAP OVER
> IF ." Alarm after "
ELSE ." NO alarm within "

THEN . ." minutes"

If desired, optional compiling utilities
shown in Figure Three can be defined,
allowing statements like:

20 SECS PERIOD
?TERMINAL DETECTED
IF
." Key struck within 20 secs"
THEN

10 MINS PERIOD
?ALARM TIMED
IF ." Alarm after "
ELSE ." No alarm within "

THEN . ." minutes"

Implementation
The lexicon expects values to which it

has access to be changing automatically on
a timed basis. The physical source of these
locations (whether they are created by a
hardware intermpt andintempt code or by
a real-time clock) is immaterial to the de-

The time units are usually defined in
Forth as constants or variables. There is no
restriction on the actual values, except that
they must be distinct from one another. The
interface to the time units is formalized
through two words:

@TIME fetches the value of the
named time unit.

MAX-TU pushes the maximum (i.e.,
wrap-around) value of the
named time unit.

simply to clarify the explanation of the
required functions.

The structure of @TIME is shown in
Figure One-a. It uses the time unit on the
stack as the input to a CASE statement, the
clauses of which perform the particular
fetch operation and form part of the ma-
chine- and even the application-dependent
part of the code.

The structure of MAX-TU is shown in
Figure One-b. It again uses the TU as the
input to a CASE statement and pushes the
wrap-around value of the current time unit
depending on the set of time units chosen in
the implementation, in thiscasemSEc,
SECS, and MINS.

As a further example, if the required set
of time units included, say, mSEC and
hundredths (cSEC) and tenths of a second
(~SEC), then MAX-TU would be as shown
in Figure One-c.

The chosen set of time units is independ-
ent of the physical timing basis. For in-
stance, if a one millisecond interrupt was
used to provide variables for milliseconds
(msec), seconds (secs),andminutes (mins),
it is still possible to implement a set of time
units that includes more than just mSEC,
SECS, and MINS. This is illustrated in
Figure One-d.

Note: MAX-TU is only used in the word
LAPSE, so it does not need to be separately
defined; it can be written in-line in the
definition of LAPSE. It is created here

Example Implementations
Interrupt-based Timing

Ticks CONSTANT TICKS
Seconds CONSTANT SECS
Minutes CONSTANT MINS
Hours CONSTANT HRS

In effect, no redefinition is needed
here--the names of the variables can act as
the time units in this particular implemen-
tation. Having made this decision, the word
@TIME is simply Forth's @ (fetch):

: @TIME @ ;

and MAX-TU is:

: MAX-TU
DUP TICKS =

IF DROP 50
ELSE HRS =

IF 24 THEN
THEN ;

Real-time Clock
The Motorola MC 14 68 18 Real Time

Clock (RTC) has registers which con-
stantly contain the values of:

seconds (reg 0)
minutes (reg 2)
hours (reg 4)

Given these physical addresses, a natu-
ral allocation of the time units is:

!

-
Basis of timing: 20 millisecond (50 Hz)

interrupt
Variables: Ticks, Seconds, Minutes,

Hours

I
(Continued on page 30) /

CoNSTANT SECS
2 CONSTANT MINS
CONSTANT HRS

Interrupt code:

increments Ticks
if Ticks > 49,
clear Ticks
increment Seconds

if Seconds > 59,
clear Seconds
increment Minutes

if Minutes > 59,
clear Minutes
increment Hours

In such a system, the allocation of the .
time units is most conveniently handled by
using the VARIABLE address as the CON-
STANT of the time units:

I

Forth Dimemions I 0 Volume XI. Number 3

A word called @RTC is developed to
fetch from an RTC register; it expects the
register number on the stack and returns the
value of that register:

: @RTC (r -- n)

(code to return the value of)
(Real-Timeclock register r)

I

With this definition in place, @TIME
can be defined as:

:@TIME @RTC ;

and MAX-TU can be defined as:

: MAX-TU
DUP HRS =

IF DROP 24

QUATERNION
ROTATION CALCULATION
- -

ANTONIO LARA-FERIA and JOAN VERDAGUER-CODINA
BARCELONA, SPAIN

T h i s program presents the advantage
of using quatemions, instead of matrix
methods, to calculate rotations. A Forth al-
gorithm to find the unique axis and the
angle of a rotation is presented. It is part of
a work to apply quaternions in robotics and
computer graphics.

According to reference [I], quatemions
require fewer mathematical operations
than matrix methods. An additional feature
of quatemions is that they give the axis and
the angle of a rotation directly.

Quaternions can be applied in many
areas, for example astronautics [2], me-
chanics [3], robotics [4,5,6,8], and com-
puter graphics [1,7]. The program pre-
sented here focuses only on the use of
quaternions to calculate rotations.

- - -

Quaternions require
fewer math operations.

Numbers and Precision
The version of Forth-83 used is Labora-

tory Microsystems, Inc. (LMI) PC/Forth
3.10.

The program was written using straight-
forward, single-length arithmetic. The rea-
sons for doing this are:

In LMI's version of Forth, no words
are provided for multiplying or dividing
double-length integers.

Even though the above-mentioned
language can work with an 8087 coproces-
sor-thus allowing the use of floating-
point arithmetic, no 8087 was present on
the equipment used to develop this pro-
gram.

Screen # 0
(**** QOATERNION PROGRAM **** 21:12 04/29/88)

(Arranged by GRC)

-- ACKNOWLEDGEMENTS - -

Written in PC/FORTH V3.1 from Laboratory Microsystems.
lJses code (SIN & COS routines, plus data tables) from
LM's utility file FORTH.SCR, which are in screens & 5,
6 .

((.') .JVC all but Screens # 5 & # 6

Screen # 1
(INITIALISATION & VARIABLE DECLARATION 21:16 04/29/88)
ASM86 FORTH DEFINITIONS
(Variable declarations)
3 CONSTANT PI VARIABLE ITER
VARIABLE VX VARIABLE VY VARIABLE VZ
VARIABLE VGX VARIABLE VGY VARIABLE VGZ VARIABLE MVG
VARIABLE VGXN VARIABLE VGYN VARIABLE VGZN
VARIABLE AGG
VARIAhLxE 901 VARIABLE Qll VAR1ABL.E Q21 VARIABLE 931
VARIABLE 902 VARIABLE 612 VARIABLE 622 VARIABLE Q32
VARIABLE QOT VAR1ABL.E R1T VARIABLE Q2T VARIABLE Q3T
VARIABLE A VARIABLE B VARIABLE C VARIABLE D
VARIABL#E RO VARIABLE R1 VARIABLE R2 VARIABLE R3
VARIABLE F1

Screen # 2
(VARIAHI~E SE'I--TO-ZERO UTIL$ITY ' O._INTO' 21:24 04/29/88)
: 0-INTO
O V X ! 0 V Y ! 0 V Z !
0 VGX! 0 VGY! 0 VGZ!
0 VGXN ! O VGYN ! 0 VGZN !
0 AGG !
0 Q 0 1 ! 0 Qll! 0 g%l! 0 Q 3 1 !
0 602 ! 0 912 ! 0 422 ! 0 Q32 !
0 Q0T ! 0 dlT ! 0 Q2T ! 0 Q3T !
0 A ! 0 B ! 0 C ! 0 D !
O R O ! 0 R l ! 0 R Z ! LI R 3 ! :

Volume XI. Number 3 11 Forth Dimemions

Sr:r een # 3
('X*' & 'X/' SEMI-DOUBLE PRECISION OPER 21: 17 04/29/88)
: X*
DRdP SWAP DROP * 0 ;

: x/'
DROP SWAP DROP / 0 ;

: DDUP
OVER OVER ;
. DTOP
DDUP . :

: SQR
DIP * ;

Screen # 4
(PQ PIZ0CEr)IJRE 21:17 04/29/88)
VARIABLE EO VARIABLE EI VARIABLE E2 VARIABLE E3
VARIABLE A 0 VARIABLE A1 VARIABIX A2 VARIABLE A3
VARIABLE 90 VARIABLE 61 VARIABLE 92 VARIABLE Q3

: PQ
E O @ A O @ * E l @ A l @ * - E 2 @ A 2 @ * -

E 3 @ A 3 @ * -- BO !
EO @ A1 ia * El i$ A0 @ * + E2 @ A3 @ * +
E3 @ A2 8 * - Ql !
E O @ A % @ * E 2 @ AO@ * + E 3 @ A l @ * +
E l @ A:j@ * - 82 !
E O @ A s @ * E 3 @ A O (? + + E l @ A 2 @ * +
E 2 @ A l e * -- 83 ! ;

Screen # 5
(Sine,/cos lookup, from FORTfI. SCR file RGD 17:17 09/20/84)
(fast SIN and COS by table lookup method, return val*10000)
F'OH'I'H DEFINITIONS DECIMAL,

CREATE S1NTAEI.E
0 , 175 , 349 , 523 , 698 , 8'12 , 1045 , 1219 , 1392 , 1564 ,
1736 , 190iJ , 2079 , 2 2 5 0 , 2419 , 2588 , 2756 , 2924 , 3090 ,
3256 , 3420 , 3584 , 3746 , 3907 , 4067 , 4226 , 4384 , 4540 ,
4695 , 4846 , 5000 , 5150 , 5299 , 5446 , 5592 , 5736 , 5878 ,
6018 , 6157 , f5293 . 6428 , 6561 , 6691 , 6820 , 6947 , 7071 ,
'7193 . '1.314 , '7431 . 754'7 , 7660 , 7771 , 7880 , 7986 , 8090 ,
819: , nz9o . n3fi: , 3480 , 8572 , 8660 , 8746 , 8829 , 8910 ,
8Y8f5 . 9063 , 0135 . 9205 , 9272 , 9336 , 9397 , 9455 , 9511 ,
Si f i r j ; , 461;3 , !'lij!,H , 9'103 . 9744 , 9781 . 9816 , 9848 , 9877 ,
99Cl9 . 9925 . 9945 , 9962 , 9976 . 9986 , 9994 , 9998 , 10000 ,
- . ,

Screen # 6
(Sine/cos lookup, from F'ORTH.SCR file -- RGD 17:18 09/20/84)
FORTH DEFINITIONS DECIMAL
CREATE TRIG ASSEMBLER BX, AX MOV BX, # 90 CMP 1$ JLE
BX, # 180SUB BXNEG 1 BX, 1 SAL
BX, # SINTABLE ADD AX, [BX] MOV RET FORTH

CREATE SINAX ASSEMBLER CWD BX, # 360 MOV
BX IDIV AX, DX MOV AX, AX OR 2$ JNS AX. # 360 ADD

2$: AX, # 180 CMP 3$ JLE AX, # 180 SOB
TRIG CALL AX NEG RET

3$: TRIG CALL RET FORTH
CREATE COSAX ASSEMBLER AX, # 90 ADD SINAX JMP FORTH

(degrees --- cosine)
CODE COS AX POP COSAX CALaL AX PUSH NEXT. END-CODE

egrees --- sine) ' kO:E SIN AX POP SINAX CALL AX PUSH NEXT. END-CODE

Anyhow, the program can easily be
changed to work with floating-point preci-
sion simply by entering LMI's Forth editor
and changing all single-length arithmetic
words to the corresponding floating-point
operators.

Overflow and Inexact Results
Since single-length arithmetic has been

used, depending on the data the user feeds
the program, it may give erroneous results
due to internal overflow. Care should be
taken to avoid such a situation; sometimes,
results shown as the negative of certain
values can indicate an internal overflow
(e.g., since 32767 is the greatest signed
number that can be represented, an over-
flow-bound sequence like 327 67 1 + .
would yield -32768).

On the other hand, when there is no
overflow the results may be slightly incor-
rect due to the poor precision provided by
16-bit signed integer operations.

The magnitude of the two possible er-
rors mentioned above will increase as more
and more rotations are performed upon one
single vector. In fact, the reasonable maxi-
mum number of rotations in such cases
turns out to be two.

Extra Code
Some of the words contain code that is

not being used by the main RUNME word or
the words that it calls. That code expresses
programming alternatives; some of the
routines and the ideas they represent can be
used to change or enhance the program.

How to Run the Program
After entering LMI's PC-Forth, thedisk

drive containing the screen file
QUATERN.SCR should be specified to the
system, i.e.:
USING <DRIVE>:QUATERN.SCR

When the file has been located and
acknowledged by PCForth, load the pro-
gram by entering:
1 ?SCREENS THRU

To execute the program, simply type the
word RUNME.

Note: The program uses PCIForth's
assembler in the s IN and Cos routines, so
the file ASM86.BIN should be present on
the PC/Forth disk. Otherwise, the program
won't be loaded.

Forth Dimemiom 12 Volume XI. Number 3

Bibliography
[l] Lara-Feria A., Verdaguer-Codina J.

"Computer Graphics with Quater-
nions," Seventh International Con-
gress of Cybernetics and Systems.
London, September 1987.

[2] Lara-Feria A., Verdaguer-Codina J.
"Cuaternios. Aplicaci6n a la Deter-
minaci6n de Actitud de un Satklite,"
XI Semana Astronalitica. Barcelona,
November 1985.

[3] Lara-Feria A., Domingo-Duran J.
"Analogia entre la DinSunica del Cu-
erpo Rigido," XI Semana Astro-
nalitica. Barcelona, November 1985.

[4] Lara-Feria A., Verdaguer-Codina J.
"Application de les Quaternions pour
Determiner la Position d'un Solide
Rigide," Seventh IASTED Interna-
tional Symposium on Robotics and
Automation '85. Lugano 1985.

153 Lara-Feria A., Verdaguer-Codina 1.
"Applications of Quaternions to De-
termination of the Rigid Body Posi-
tion," IFAC Symposium on Robot
Control. Barcelona 1985.

[6] Lara-Feria A., Verdaguer-Codina J.
"Quaternions Applied to Direct and
Inverse Robot Kinematics Problem,"
IFAC/IFIP/IMACS International
Symposium on Theory of Robots.
Vienna 1986.

[7] Lara-Feria A., Verdaguer-Codina J.
"Teaching Robotics by Simulation,"
Tenth IASTED International Sympo-
sium on Robotics and Automation.
Lugano 1987.

[8] Verdaguer-Codina J. "Aplicaci6 de la
Cinemhtica Pararnktrica a1 Desenvo-
lupament d' Algoritmes de Control per
a Robots Mitjan~ant Quaternions,"
E.T.S.E.I.B., Tesi Doctoral. Barce-
lona 1988.

Joan Verdaguer-Codina works in the
Centre d'Alt Rendiment, a high-per-
formance sports center in Catalonia.

S c r e e n # 7
(EXTRA WORDS SCREEN-1
FORTH D E F I N I T I O N S
: D<?O

O= NOT
SWAP O= NOT
OR ;

: L L I S T (i n i t i a l , f i n a l -)
PRINTER
1 + SWAP DO

I L I S T LOOP
CONSOLE ;

: AUTOLOAD
1 ?SCREENS THRrJ :

Screen # 8
(EXTRA WORDS SCREEN- 2 2 1 : 1 9 0 4 / 2 9 / 8 8)
: 2INPUT

PAD 1 + 80 EXPECT
SPAN C@ PAD C!
PAD 1+ C@ A S C I l - = I F

0 . PAD 1t CONVERT DROP DNEGATE
ELSE

0 . PAD CONVERT DROP
THEN ;

: SEPARATOR CR 80 0 DO . " - " LOOP CR CR ; : B S 8 EMIT ;
: INPTJT

2INPIJT UROP ;
: 2ROLL

(Work?; j u s t like u s u a l ROLL. R e m e m b e r , t h e ' t op ' e l e m e n t) I
(- 'hol , tnrn ' In HP RPN l a n g u a g e - 1s n u m b e r e d as t h e O t h ! !)
1 t 1)I l t ' h'OI,I SWAP ROI,I, ,

S ~ z r e e n # 9
(EXTRA WORDS SCREEN-3 2 1 : 1 9 0 4 / 2 9 / 8 8)
: ERROR!

. " ** WARNING: T h e r e m a y w e l l he (p l e a s e c h e c k) a n OVERFLOW "

. " ERROR i n t h a t r e s u l t * * " CR :
: INFORM1

. " , a l l * l o A - " ITER @ . CR
ERROR! :

: INFORM2
. " *loA- ' ' I ' rER @ 2 * . CR
ERROR! :

S c r e e n # 1 0
(?PRlNTER & MAIN1 SCREEN
: ?PRINTER

I F PRINTEiR ELSE CONSOLE THEN : 1
: ASKPRINTER 1

. " W i s h da ta t o be p r i n t e d o u t ? (l : Y , 0 : N) : " INPUT NEGATE
F 1 ! ;

: MAIN1 CR
1 Q O l ! 0 0 O Q l l ! Q 2 1 ! Q 3 1 !
CR . " E n t e r c o m p o n e n t s of vector t o be ro ta t ed : "
CR . " X c o m p o n e n t : " INPUT VX !
CR . " Y c o m p o n e n t : " INPUT VY !
CR . " Z c o m p o n e n t : " INPTJT VZ !
F 1 @ DTJP ?PRINTER I F

SEPARATOR . " C o m p o n e n t s of vector t o be r o t a t e d : ' ' CR
. " X = " VX @ . CR . '' Y=" VY @ . CR
. " Z = " VZ @ . THEN 0 ?PRINTER ;

(Screens continued on p i e 21)

Volume XI, Number 3 13 Forth Dimensions

MULTIPROCESSOR
FORTH KERNEL

BRADFORD J . RODRIGUEZ - TORONTO, ONTARIO

T h i s article describes a Forth multi-
tasker for a multiple-CPU 68000 system.
This multitasker:

automatically distributes the task load
among the available processors, without
explicit effort by the programmer;
provides a means to prevent conflicts
when different tasks or different CPUs
attempt to use the same resource;
allows tasks to sit in an idle state, await-
ing an external trigger, without polling or
other CPU overhead;
allows interrupts to alter the scheduling
of tasks.

The principles described herein can be
applied to multiprocessor systems using
other CPUs, and even to single-processor
systems.

For more throughput,
plug in another CPU!

The Application
The multiprocessor kernel was origi-

nally developed for a performance-lighting
control system. The processing demands of
this system were quite strict, and fell into
three categories:

- - / Listing One
S c r # 160

0 \ ***++********* MULTIPROCESSOR TASKER v3 04 02 86 B J R ****it**

1 4 CONSTANT C E L L
2 : CELLS (n - n) 4 * ;
3
4 : SUBROUTINE 0 VARIABLE - 4 ALLOT CCOMPILEI ASSEMBLER ; \ F ig
5 \ : SUBROUTINE CREATE CCOMPILEJ ASSEMBLER ; \ Forth-83
6
7 181 LOAD \ task area d e f i n i t i o n
8 182 LOAD \ internaJ data areas
9 183 LOAD \ tasker subroutines

10 189 LOAD \ tasker p r i m i t i vee
11 190 LOAD \ defining w o r d s & i n i t i a l i z a t i o n
12 191 LOAD \ task setup
13
1 4

S c r # 1 8 1
0 \ T a s k area structure 11 02 86 B J R
1 \ O f f s e t s i n to the task area
2 HEX 80 CELLS CONSTANT U S I Z E \ s i z e of user variables
3 0 CONSTANT UAREA U S I Z E + \ user var iables
4 DUP CONSTANT RSTACK 80 C E L L S + \ return stack
5 DUP CONSTANT RTOP
6 DUP CONSTANT PSTACK 80 C E L L S + \ p a r a m e t e r stack
7 DUP CONSTANT PTOP 4 C E L L S + \ top safety m a r g i n
8 CONSTANT T A S K S I Z E \ t o t a l s i z e of the task area
9 DECIMAL

10 \ o f fsets (f r o m UAREA) t o selected user var iables
11 2 CELLS CONSTANT +RP-TEMP 3 C E L L S CONSTANT +SO
12 4 C E L L S CONSTANT +RO 5 C E L L S CONSTANT + T I E
13
1 4 : TASK 0 V A R I A B L E T A S K S I Z E C E L L - - ALLOT ; \ F i g
15 \ : TA5K CREATE T A S K S I Z E ALLOT ; \ Forth-83

S c r # 182
0 ' S e m a p h o r e queues structure (30 7 86 B J R 15:30)

DECIMAL
2 8 CONSTANT .SEMA 10 CONSTANT . I B I T \ s e m a p h o r e f i e l d o f fsets
3

I

Forth Dimensions 14 Volume XI, Number 3

Event-driven processing-initiated by
external events, such as the system op-
erator moving a control handle. Requires
a response time on the order of 100 milli-
seconds (mse~).
Time-driven processing-must occur at
periodicintervals.Mostofthisrepetitive
processing occurs every 40 msec, but
intervals from ten msec to 1000 seconds

4 : SEMAPHORE 0 VARIABLE 2 C E L L S ALLOT ; \ F i g
5 \ : SEMAPHORE CREATE 3 CELLS ALLOT ; \ ~or th-83
6

\ ready queue header, 3 c e l l s

9 HEX CB USER SELFQ \ "self-queue" t o suspend tasks
18 \ 3 c e l l s i n task 's user area; actual o f f se t i s s y s t e m dependent

i: \ returns addr of c u r r e n t l y - e x e c u t i n g task!
13 s E L F a MYTASK - CONSTANT +SELFQ \ o f f s e t f r o m base of task area
1 4 ;s
15

YES, THERE IS A BETTER WAY
A FORTH THAT ACTUALLY

DELIVERS ON THE PROMISE

FUNCTIONALITY APPLICATION CREATION TECHNIQUES

More important than how fast a system executes, is
whether it can do the job at all. Can 11 work w~th your
computer. Can ~t work with your other tools. Can ~t trans-
form your data into answers. A language should be
complete on the first two, and rninlmize the unavoidable
effort required for the last.

HSIFORTH assembles to any segment tocreate stand
alone programs of any size. The optimizer can use HSI
FORTH as a macro I~brary, or complex macros can be
built as colon words. Full forward and reverse labeled
branches and calls complement structured flow control.
Complete syntax checking protects you. Assembler
programming has never been so easy.

I POWER HSIFORTH opens your computer like no other lan-
guage. You can execute function calls. DOS com-
mands, other programs interactively, from definitions,
or even from files being loaded. DOS and BlOS function
calls are well documented HSIFORTH words, we don't
settle for giving you an INTCALLand saylng "have at i t
We also include both fatal and informatwe DOS error
handlers, installed by executing FATAL or INFORM.

The Metacomp~ler produces threaded systemsfrom a
few hundred bytes, or Forth kernelsfrom 2k bytes. With
tt, you can create any threading scheme or segmenta-
tion architecture to run on disk or ROM.

HSIFORTH's compilation and execution speeds are
unsurpassed. Compiling at 20,000 lines per minute, it
compilesfaster than many systems link. For real jobs
execution speed is unsurpassed as well. Even non-
optimized programs run as fast as ones produced by
most C comp~lers. Forth systemsdesigned to fool
benchmarks are slightly faster on nearly empty do
loops, but bog down when the colon nesting level ap-
proaches anything useful, and have much greater
memory overhead for each definition. Our optimizer
gives assembler language performance even for
deeply nested definitions containing complex data and
control structures.

You can turnkey or seal HSIFORTH for distr~bution, with
no royalties for turnkeyed systems. Or convert for ROM
In saved, sealed or turnkeyed form.

HSIFORTH supports character or blocked, sequent~al
or random 110. The character stream can be recelved
fromisent toconsole, file, memory, printer or com port.
We include a commun~cations plus upload and down-
load utility, and foregroundlbackground music. Display
output through BlOS for compatibility or memory
mapped for speed.

HSIFORTH Includes three editors, or you can quickly
shell to your favor~te program edttor. The res~dent full
wlndow editor lets you reuse former command llnes and
save to or restore from a f~le. It IS both an indispensable
development ald and agreat user tnterface. The macro
edltor provides reuseable funct~ons, cut, paste, flle
merge and extract, session log, and RECOMPILE. Our
full screen Forth ed~tor editsfile or sector mapped
blocks.

HSiFORTH provides the best architecture, so good that
another major vendor "cloned (rather poorly) many of
itsfeatures. Our Forth uses all available memory for

Our formatting and parsing words are w~thout equal. In-
teger, double, quad. financial. scaled, time, date, float-

I both programs and data with almost no execution time
penalty, and very little memory overhead. None at all for

Ing or exponential, all our output words have string
formatting counterparts for buildlng records We also Debug tools include memorylstack dump, memory

map, decompile, slngle step trace, and prompt optlons
Trace scope can be Ilm~ted by depth or address.

programs smaller than 200kB: And you can resizeseg-
ments anytime, without a system regen. With the
GigaForth option, your programs transparently enter
native mode and expand into 16 Meg extended memory
or a gigabyte of vtrtual, and run almost as fast as in real
mode.

provide words to parse all data types w~th your choiceof
field definition. HSIFORTH parsesfiles from any lan-
guage. Other words treat files like memory, nn@H and
nn!H read or write fromlto a handle (file or device) as
fast as possible. For advanced file support. HSIFORTH
easily links to BTRIEVE, etc.

HSIFORTH lacks a "modular" cornp~lation environ-
ment. One motivat~on toward modular compilation IS

that, with conventional compilers, recompiling an entire
application to change one subroutine is unbearably
slow. HSIFORTH compiles at 20.000 lines per minute.
faster than many languages llnk- let alone compile!
The second motivation IS llnktng to other languages.
HSIFORTH links to foreign subroutines dynamically.
HSIFORTH doesn't need the extra layer of flles, or the
programs needed to manage them. With HSIFORTH
you have source code and the executable file. Period.
"Development environments" are cute, and necessary
for unnecessarily compl~cated languages. Simplicity is
so much better.

Benefits beyond speed and program size include word
redefinition at any time and vocabulary structures that
can be changed at will, for instance from simple to
hashed, or from 79 Standard to Forth 83. You can be-
head word names and reclaim space at any time. This
includes automatic removal of a colon definition's local
variables.

HSIFORTH supports textigraphlc windows for MONO
thru VGA. Graphicdraw~ngs (line rectangle ell~pse) can
be absolute or scaled to current window size and
clipped, and work with our penplot routines. While great
for plotting and llne drawing, it doesn't approach the ca-
pabilities of Metawindows (tm Metagraphics). We use
our Rosetta Stone Dynam~c Llnker to interlace to Meta-
windows. HSIFORTH with Metawindows makes an un-
beatable graphics system. Or Rosetta to your own
preferred graphics driver.

Colon definitions can execute Inside machine code
primitives, great for interrupt & exception handlers.
Multi-cfa words are easily implemented. And code
words become incredibly powerful, with multlple entry
points not requiring jumps over word fragments. One of

HSIFORTH provides hardwarelsoftware floatlng point.
including trig and transcendentals. Hardware fp covers
full range trig, log, exponentlal functions plus complex
and hyperbolic counterparts, and all stack and compari-
son ops. HSIFORTH supports all 8087 data types and
works in RADIANS or DEGREES mode. No coproces-
sor? No problem. Operators (mostly fast machine code)
and parselformat words cover numbers through 18 dig-
its. Software fp eliminates conversion round off error
and minimizes conversion time.

HSIFORTH Programming Systems
Lower levels Include all funct~ons not named at a hlgher

many reasons oursystem is much morecompact than
its immensedictionary (1600 words) would imply.

level. Some functions available separately.
Documentation & Working Demo

(3 books. 1000 + pages. 6 Ibs) $ 95.
Student $145.
Personal optlmlzer, scaled &quad integer $245.
Professional 80x87. assembler. turnkey. $395.

dynamic strings, multitasker
RSDL linker,
physical screens

Production ROM. Metacompiler, Metaw~ndows
$495.

I INCREDIBLE FLEXIBILITY

I The Rosetta Stone Dynamic Linker opens the world of
utility libraries. Link to resident routines or link & remove
routines interactively. HSIFORTH preserves relocata-
bility of loaded libraries. Link to BTRIEVE METAWIN-

Single element through 4D arrays for all data types in-
cluding complex use multiple cfa's to improve both per-
formance and compactness. Z = (X-Y) 1 (X + Y) would
be coded: X Y - X Y + I IS 2 (16 bytes) instead of: X @
Y @ - X @ Y @ + I Z ! (26 bytes) Arrays can ignore 64k
boundaries. Words use SYNONYMS for data type inde-
pendence. HSIFORTH can even prompt the user for
retry on erroneous numerlc Input.

DOWS HALO HOOPS ad infinltum. Our call and data
structure words provide easy Ilnkage.

HSIFORTH runs both 79 Standard and Forth 83 pro-
grams, and has extensions covering vocabulary search
order and the complete Forth 83 test suite. It loads and
runsall FIG Libraries, the main difference being they
load and run faster, and you can develop larger applica-
tions than with any other system. We like source code in
text files, but support both file and sector mapped Forth
block interfaces. Both line and block file loading can be
nested to any depth and includes automatic path
search.

Level upgrade, price difference plus $ 25.
OBJ modules $495.
Rosetta Stone Dynam~c Linker $ 95.
Metawindows by Metagraphics (includes RSDL)

$145.
Hardware Floating Point B Complex $ 95.
Quad integer, softwarefloat~ng point $ 45.
Time slice and round robin multitaskers $ 75.
GigaForth (802861386 Native mode extension) $295.

The HSIFORTH machine coded string library w~th up to
3D arrays IS without equal. Segment spanning dynamlc
strlng support includes insert, delete, add, find, replace,
exchange, save and restore strlng storage.

HARVARD
SOFTWORKS

Our minimal overhead round robin and time slice multt-
taskers require a word that exits cleanly at the end of
subtask execution. The cooperatlve round robln multt-
tasker provides lndiv~dual user stack segments as well
as user tables. Control passes to the next tasWuser
whenever desired.

PO BOX 69
SPRINGBORO, OH 45066

(51 3) 748-0390

s
Forth Dimensions
s Volume XI, Number 3

S c r # 187
0 \ T a s k e r -- (w a i t) (68000(21 7 86 B J R 23345)

1 \ get current task f r o m ready queue
2 READYQ # L ARB . L MOV,
3 7 0 0 # S R . W O R , . I B I T A R B & C . E T A S , M I H E R E 4 - * + B C C , \ i
4 1 # . SEMA ARB & C . W ADDQ, \ i n c r e m e n t s e m a p h o r
S GT IF, 0 # TRAP, (ready queue e m p t y !) THEN,
6 A R B [U - L M O V , U C A R 0 - L C M P , \ get head of readyq
7 EQ IF, ARB 4 ARB PC .L MOV, THEN, U E ARB C .L MOV,
8 7 # . I B I T A R B & t . B B C L R , \ release queue
9 \ m a k e s e m a p h o r e ' s task current

10 B U &C RP .L MOV, R P C + S .L MOV, RP C + I P .L MOV, \ restr
11 \ R e s u m e e x e c u t i o n
12 THEN, DR7 SR .W MOV, RTS, ;C \ restore in ter rupt l eve l
13 --> uses d r 7 , a r Z e x p e c t s u,sp,rp v a l i d
14
1s

S c r # 188
0 \ T a s k e r -- (n e x t) (68000) 12 02 86 B J R
1 SUBROUTINE (NEXT) NEXT ;C \ s t a r t Forth inner in terpre ter
2 DECIMAL ;S
3
4 (S IGNAL) and (WAIT) a s s u m e t h a t a l l c o n t e x t has been stacked,
5 and that the last thing stacked i s the P C for the restore.
6 T h i s i s n o r m a l l y a c c o m p l i s h e d by entering v i a JSR.
7
8 T h i s subroutine i s m a d e the s ta r t i ng PC of a n e w l y - i n i t i a l i z e d
9 task. When the n e w task i s star ted f r o m a queue, i t s I P and S P

10 w i l l be unntacked, and then (NEXT) w i l l be entered. . .start ing
11 high-level e x e c u t i o n a t the given I P .
12
13
1 4
1 5

tasks are constantly being moved (i.e.,
relinked) from one list to another-the
task order is dynamic, rather than static.
This approach involves a minimum of

data movement. A task can be moved from
one queue to another by changing four
links.

The linked list requires a very small
memory overhead-three cells (12 bytes)
per queue. This "queue header" contains a
head pointer, a tail pointer, a 16-bit integer
semaphore, and a multiprocessor "lock"
bit.

A snapshot of the queues during execu-
tion might look something like Figure
Three.

Allocation of Tasks
Tasks which are ready to run are held on

a ready queue. When a CPU finishes one
task-perhaps by executing P AUSE-it
will pick up the next task from the head of
the ready queue.

All the CPUs pick up tasks from the
same ready queue, so the first CPU to be-
come available will service the first waiting
task. Since all CPUs see the same memory
and 110 space, and have identical copies of
the program, any task can run on any CPU.

This means that the programmer does
not need to know which CPU his code is to

0 \ T a s k e r -- s t a r t - pause (68000(30 7 86 B J R 17:32
scr * I I run on. In fact, the programmer does not

i CODE START s c+ ARI .L MOV, \ tadr -- : s t a r t n e w task need to know how many CPUs are in-
2 (STf lRT) *+ BSR, NEXT ;C
3 CODE S I G N A L S C + ARE . L MOV, \ qadr -- : release resorcr
4 (SIGN%) * + B S R , N E X T ;C
5 CODE WAIT S C + ARB .L MOV, '\ qadr -- : acquire resorce
6 (WAIT) * + B S R , NEXT ;C
7 CODE PAUSE READYQ # L ARB .L MOV, \ -- : s w i t c h t o n e x t task
8 (S I G N A L) *+ BSR, NEXT ;C
9 CODE SUSPEND SELFQ MYTRSK - U C ARB LEA, \ -- : suspend sel f

10 (WAIT) *+ BSR, NEXT ;C
11 CODE RESUME S C + ARB .L MOV, \ taskadr -- : r e s u m e task
12 SELFQ MYTASK - # L ARB ADD, (S IGNAL) *+ BSR, NEXT ;C
13 ;S
14 N o t e t ha t the Forth c o n t e x t i n f o r m a t i o n (S,IP,RP) i s saved by
15 the task s w i t c h i n g p r i m i t i v e s .

S c r # 190
0 \ T a s k e r -- n e w d e v i c e - n e w r e s o u r c e (30 7 86 B J R 15:43)

1 HEX
2 : NEWDEVICE \ qadr -- : i n i t i a l i z e s e m a p h o r e t o 0 f o r event
3 DUP DUP ! DUP DUP C E L L + ! 0 SWAP 2 CELLS + ! ;
4
5 : NEWRESOURCE \ qadr -- : i n i t . s e m a p h o r e t o 1 f o r shared resou
6 DUP NEWDEVICE 10000 SWAP 2 C E L L S + ! ;
7

DECIMAL ; S

stalled. The task load is automatically di-
vided among the installed CPUs. For more
throughput, plug in another processor!

The limiting factor is bus contention.
We minimized this by giving each CPU a
private (but identical) program memory,
but still the VME bus becomes saturated
when three or four CPUs compete for data
memory.

Protection of Shared Resources
Our critical resources were protected

against conflicting access with the classic
"semaphore" operators, WAIT and SIG-
NAL. Most textbooks on operating systems

1 describe these in detail, so this will be just
/ an overview.

I Each protected resource has an integer
semaphore. Its initial value, +1, indicates
that the resource is available. A zero sema-
phore means the resource is in use. A nega-
tive value, -N, indicates that it is in use and
that there are N pending requests for the
resource.

Whenever a task requests a busy re-

1

Volume XI. Number 3 17 Forth Dimensioru

that resource. This queue is first-in, fmt-
out--or, more to the point, first-come, first-
served. Tasks on a wait queue consume no
CPU time.

The programmer does this through the
operators WAIT and SIGNAL.

I

WAIT decrements a given sema-
phore. If the resource is busy,
the task is parked on the wait
queue, and a new task is started
from the ready queue (Figure
Four).

source, it is placed on a "wait queue" for I I I I

SIGNAL increments the semaphore. If a
task is waiting for this re-
source, pause the current task
and start the waiting task
(Figure Five).

WAIT and SIGNAL surround the code
which uses the protected resource, as fol-
lows:

SEMAPHORE DISK
: xxx DISK WAIT

code t o access d i sk
DISK SIGNAL ;

Note that we can always tell the state of
the resource and its wait queue by examin-
ing the semaphore value. In our implemen-
tation, the semaphore and the header for the
wait queue are stored together (Figure
Two).

(For those familiar with the "monitor"
construct used in many concurrent lan-
guages: monitors can be implemented very
easily with semaphores. Each monitor re-
quires one semaphore, and all routines in
the monitor WAIT and s IGNAL that sema-
phore.)

WAIT and SIGNAL are required to be
indivisible. Nothing must alter or use the
semaphore and queue data structure while a
WAIT Or SIGNAL is in progress. In a
single-CPU system, this is done by dis-
abling interrupts. In a multiple-CPU sys-
tem, we must further guard against, say,
two processors WAIT^^^ the same sema-
phore simultaneously.

In the 68000, this is done with the indi-
visible TAS (Test And Set) instruction.
This instruction is not powerful enough to
use in place of semaphores, but it is suffi-
cient to protect the semaphores themselves
from conflicting access. Figure Six shows

Scr # 191
0 \ Tasker -- in i t - task (30 7 86 BJR 15:38)

1 RTOP 3 CELLS - CONSTANT RINIT \ i n i t i a l l y 3 c e l l s stacked
2
3 : INIT-TASK \ i n i t - i p taskadr -- : word t o set up new task area
4 MYTASK OVER UAREA + USIZE CMOVE \ copy user vars from MYTASK
5 DUP RSTACK + OVER +TIB + ! \ top of user area -> TIB
6 DUP RTOP + OVER +RO + ! \ top of r t n stack -> R0
7 DUP RINIT + OVER +RP-TEMP + ! \ 3 pushes down -> RP-TEMP
8 DUP PTOP + OVER +S0 + ! \ top of param stack -> S0
9 DUP >R PTOP + (NEXT) ROT ROT \ pc,init-ip,sp: task context

10 SP@ R i RINIT + 3 CELLS CMOVE \ copy t o tank re turn stack
11 2DROP DROP ;
12
13 ;S This word assumes that execution of the new task i s t o begin
14 with a high-level Forth word (as specif ied by i n i t - i p) .
15

Scr # 192
8 \ Tasker -- nul l task - co lds tar t (30 7 86 BJR 15:43
1 TASK NULLTfiSK \ "do-nothing" task f o r readyq
2
3 : DONULL BEGIN PAUSE AGAIN ; \ must be a hi - level word!
4
5 : COLDSTART READYQ NEWDEVICE \ i n i t i a l l y have 0 tasks on q
6 SELFQ NEWDEVICE \ i n i t . se l fq (t o be spawned)
7 ' DONULL NULLTASK INIT-TASK ; \ F ig
8 \ ' DONULL >BODY NULLTASK INIT-TASK ; \ Forth-83
9

10 DECIMAL ;S
11

Scr # 193
0 \ Multiprocessor tasker glossary 05 02 86 BJR
1 WAIT qptr --
2 (WAIT) ar0 = qptr
3 Wait on indicated semaphore. Semaphore i s decremented.
4 I f "available", execution proceeds. I f "busy", the task
5 i s placed on the semaphore queue, and a task i s star ted
6 from the ready queue.
7
8 SIGNAL qptr --
9 (SIGNAL) ar0 = qptr

10 Signal indicated semaphore. Semaphore i s incremented.
11 I f then "available", execution proceeds. I f a task i s
12 wait ing on the semaphore, the current task i s put on the
13 ready queue and the wait ing task i s started.
14
15

Scr # 194
0 \ Multiprocessor tasker glossary 11 02 86 BJR
1 START taskadr --
2 (START) a r l = taskadr
3 Put the given task on the ready queue.
4
5 PAUSE --
6 Suspend current task, and s t a r t next avai labl i i task i n
7 the ready queue.
8
9 SUSPEND --

10 Current task i s suspended and put on the i t s in terna l
11 "self-queue". The next ready task i s started.
12
13 RESUME taskadr --
14 Suspend current task, and s t a r t execution of the given
15 task i f i t was SUSPENDcd.

1 1

Forth Dimensions 18 Volume XI, Number 3

how TAS is used to make the semaphore
operations indivisible. (This lock-and-un-
lock action is also shown in Figures Four
and Five.)

Note that the "busy bit" in the sema-
phore only means that the semaphore is
busy, not that the resource is busy. So that
the CPUs don't spend time waiting on this
bit, we ensure that the only routines which
set this bit also clear it after a few dozen
insmctions at most.

Managing Interrupts with
WAIT and SIGNAL

We wish to be able to start a task on the
occurrence of an interrupt. Presumably,
this task will have been in an idle state,
waiting for the interrupt. WAIT and S IG-
NAL let us do this. A semaphore (and
queue) are defined for an intermpt, with the
difference that the semaphore is initialized
to zero instead of +l. The interrupt service
task then WAITS on this semaphore, caus-
ing it to be parked on the wait queue.

Some other task will be running when
the interrupt occurs. The intermpt handler
saves all of the machine context on that
task's stack, then calls (SIGNAL) .
(s IGNAL) stacks the PC, puts the running
task on the ready queue, and starts the
service task which was waiting on the
semaphore queue.

When the service task completes, it will
WAIT again. Eventually, the task that was
interrupted will be pulled from the ready
queue anditsPC popped from its stack. The
PC that was stacked points into the inter-
rupt handler code, just after the call to
(SIGNAL) . This will be the code to re-
store the full context and return from inter-
rupt. (Figure Seven shows how the context
is stored by WAIT and SIGNAL.)

The task is always resumed at the point
in the machine code where it was sus-
pended. This allows a different context to
be saved for programmer and interrupt-
driven task switches. A high-level task
switch (e.g.. PAUSE) need only save IP,
RP, and SP.

The Listing
Listing One is the 68000 assembler

code for the tasker. It was written in a fig-
FORTH derivative, so there are some dif-
ferences from the Forth-83 Standard.

SUBROUTINE defines a code word
which sim~ly returns its address when

Scr 195
0 \ Multiprocessor tasker glossary
1 SEMAPHORE name ---
2 Allocate space f o r a semaphore and queue header, and
3 define "name" t o re turn i t s address when executed.
4
5 TASK name ---
6 Allocate space f o r a task (user area and stacks), and
7 define "nameN t o return i t s address when executed.
a
9 INIT-TCISK i n i t - i p taskadr ---

10 I n i t i a l i z e the user variables and stack pointers fo r the
11 given task, and save i t s machine context so that i t w i l l
12 begin interpretat ion a t i n i t - i p when activated.
13 i n i t - i p must point t o high-level Forth code.
14 INIT-TASK must be used before STARTing a task.
15

5cr # 196
0 \ Multiprocessor tasker glossary
1 NEWDEVICE qadr ---
2 Set the semaphore t o 0 and i t s queue header t o "empty."
3 Used t o i n i t i a l i z e a semaphore f o r an interrupt.
4
5 NEWRESOURCE qadr ---
6 Set the semaphore t o +1 and i t s queue header t o "empty."
7 Used t o i n i t i a l i z e asemaphore f o r a shared resource.
8
9

10
11
12

(Figures continued on next page)

executed. The notation used here is (xxx) I 1
I

Volume XI. Number 3 19 Forth Dimensions

(Figures continued from previous page)

m
I (Memory Dimmer Output

Boards

' VME Bus
Semaphore V d w s
1 -this resource amilabb
0 -this resource in use
-1 - in use, and one task wailing on queue
-2 - in use, and two tarkr wailing ...

Figure One. The hardware.

I I

I I I
Figure Two. A queue. Figure Three. System queues.

v
LOCK LOCK

semaphore
queue

I

I O C K v
LOCK

ready queue
I

semaphore
queue

I
LOCK bd:Fwt) "busy bit" '-*

l o
head of

4
decrement

="'Thore
4

make h the 3.
perform

indivisible

sernabhore (raoumis
207 Y-'.-*)

I- UNLOCK cunent task

make task from
semaphore
queue the

current task

1

4
UNLOCK

$- semaphore

~ u t current quYue
4 semaphore

get task from queue
head of

semaphore
queue

NEXT

UNLOCK

operations

J semaphore
queue

NEXT

UNLOCK

ready queue

I I UNLOCK CLR
"busy bit"

I 3.
.).

NEXT

I

Figure Four. WAIT.
I I

Figure Five. SIGNAL. 'Figure Six. Multiprocessor protection. ' 1
in queue

Concept 4 . 35
FORML. 40
Harvard Softworks. 16
Laboratory Microsystems. 28
MCA . 33
Miller Microcomputer Services.. 19
Mountain View Press.. 9
Next Generation Systems . 6
Offete Enterprises . 29
Saelig Company.. .27
SDS Electronic.. 34
Silicon Composers . 2

Terminal hput Butter m
PC of 'restore' code w

I ~etur; Stack

I

Figure Seven. A task's user area.

L 20 Volume XI, Number 3

for an assembly language subroutine; xxx
for the executable Forth word.

Screen 181 defines the layout of the task
area (Figure Seven). TASK all0~ates this
space in a named data structure.

Screen 182 defines some of the layout
of a semaphore queue header. SEMA-
PHORE is the defining word. Note that the
ready queue is defined the same as a sema-
phore queue.

Every task includes a "private" queue
header in its user variables area. This "self
queue*' is used by SUSPEND and RESUME
(described below).

(START) activates a task for the first
time by putting it on the tail of the ready
queue (see screen 183). From this moment
on, except when executing, the task will
always be on some queue or other. The
remaining words simply move tasks from
queue to queue.

(S IGNAL) and (WAIT) are the basic
task-control routines. They are callable
from a machine-language routine, such as
an interrupt handler.

The Forthcallable START, SIGNAL,
and WAIT are on screen 189.

Note that a PAUSE (voluntary task
switch) is achieved by simply s1GNA~ing
the ready queue. (Follow the logic in Figure
Five.)

A task is SUSPEND^^ by causing it to
WAIT on its self queue, whose semaphore
is initialized to zero. Another task can
SIGNAL that semaphore to RESUME the
suspended task.

NEWDEVICE and NEWRESOURCE ini-
tialize a semaphore queue for an interrupt
and a shared resource, respectively.

INIT-TASK initializes a task area cre-
ated by TASK. It stacks a context such that
the task will begin high-level execution at
init - ip (which should be the parameter
field address of a colon definition).

Screen 192 illustrates the creation of a
task, a do-nothing task in this case. Defin-
ing one such task per CPU will ensure that
the ready queue is never empty (an error
condition).

COLDSTART shows how the multi-
tasker, boot task, and defined tasks are
initialized in a colon definition. Some such
word will be required in the final system's
startup code.

Where to Go From Here
This implementation was adequate for

our needs, but it can certainly be taken

(Screens from page 13)

Screen # 11
(MAIN2, MAIN3 SCREEN 21:20 04/29/88)
: MAIN2 CR
FJ. @ DIJP ?PRINTER IF

CR . " Vector to be rotated: " CR
. " (" VX @ . BS . " , " VY @ . BS . " , "
VZ @ . BS . ") " CR THEN 0 ?PRINTER ;

: MAINS CR
CR . " Enter curnponents of Quaternion Axis:" CR
. " X component: " INPUT VGX ! CR
VGX8 0= 1y

. " Y component: " INPUT CR DrJP VGY ! O= IF
. " Z component: " INPUT CR VGZ !

EI,SE 0 Vi;Z ! THEN
E I S E 0 3 l I P \?GY ! VGZ ! THEN ;

I Screen # 12
(MAIN4 SCREEN 21:20 04/29/88)
: MAIN4 CR

. " Angle to rotate (in degrees) : " INPUT AGG !
F1 4 DCJP ?PRINTER IF

CIZ . " Quaternion rotation vector: " CR
. " X component: " VGX i@ . CR
. " Y component: " VGY @ . CR
. " Z component: " VGZ @ . CR

" Quaternion Gyration Axis: (" VGX @ BS . " , "
VGY @ . BS . " , " VGZ @ . BS . ") " CR
. " Angle to rotate (in degrees) : "

AGG @ . CR THEN 0 ?PRINTER
VGX @ SQR VGY @ SQR + VGZ @ SQR + 0 ZSQRT MVG !
VGX B MVG @ / VGXN ! VGY O MVG @ / VGYN !
VGZ @ MVG 8 / VGZN ! ;

Screen # 13
(MAIN5 SCREEN 21:20 04/29/88)
: MAIN5 CR
AGG @ 2 / DUP I)UP DUP

COS 1000 / Q02 !
SIN 1000 / VGXN @ * Q12 !
SIN 1000 / VGYN @ * Q22 !
SIN 1000 1 VGZN @ * 632 !

(Transfer of values to those in PQ word)
Q02 @ Q12 @ 622 @ 632 @
Q01 @ Qll @ Q21 @ Q31 @
A3 ! A2 ! A1 ! A0 !
E3 ! E2 ! El ! EO !
PQ
QO @ Q1 @ 92 @ Q3 @
Q3T ! Q2T ! Q1T ! QOT !
$OT @ Q01 ! Q1T @ Qll ! Q2T @ Q2l ! Q3T @ 631 ! ;

Screen # 14
(CONVERT-TO-NORMAL utilities 21:ZO 04/29/88)
(For coping with the inexistence of 8087 co-processor . . .)
: CONVERT-TO-NORMAL
QOT @ Q1T @ Q2T @ Q3T @
R 1 @ R 2 @ R 3 @
7 0 DO

6 ROL,L 10000 /
LOOP

R3 ! R2 ! R1 !
63T ! Q2T ! Q1T ! QOT ! ; 1 : /1E4 ITER @ 0 DO 10000 / LOOP ; I : /1E2 ITER @ 0 DO 100 / LOOP ;

: DIVIDE
R3 @ /1E4 R3 ! R2 @ /1E4 R2 ! R1 @ /1E4
R1 ! QOT 8 /1E2 BOT ! BIT @ /1E2 Q1T !
62T 8 /1E2 Q2'l' ! Q3T @ /1E2 Q3T ! ;

--

(Screens continued on next pug

Volume XI. Number 3 21 Forth Dimensions

Screen # 15
(ASK-CONT1, MAIN6 21:21 04/29/88)
: ASK-CONT1

. " Want more than one turn for the same vector? (1:Y. 0:N): " . ,

INPUT NEGATE ;
: MAIN6 CR
0 VX @ VY @ VZ @ QOT @ QlT @ NEGATE Q2T @ NEGATE
Q3T @ NEGATE
A3 ! A2 ! A1 ! A0 !
E3 ! E2 ! El ! EO ! PQ
Q0 @ Ql @ Q2 @ Q3 @
D ! C ! B ! A !
QOT @ QlT @ Q2T @ Q3T @ A @ B @ C @ D @
A3 ! A2 ! A1 ! A0 !
E3 ! E2 ! El ! EO ! PQ
QO @ Ql @ Q2 @ Q3 @
R3 ! RZ ! R1 ! RO ! ;

Screen t4 16
(MAIN7, ASK-CONT2 21:21 04/29/88)
: MAIN7 CR
F1 @ DUP ?PRINTER IF

CR . " Total rotation by Quaternions is:"
CR . " Q=(" QOT @ . BS . ")eO+(" QlT @ . BS . ")el+("

Q2T @ . BS . ")e2+(" Q3T @ . BS . ")e3" INFORM1
CR . " The resultant rotated vector is: "
CR . " R = (" R1 @ . Bs :' '' R2 @ . Bs :' ;'

R3 @ . BS . '') - INFORM2 &R CR
THEN 0 ?PRINTER
CR CR . " Total rotation by Quaternions is:"
CR . " Q=(" QOT @ . BS . ")eO+(" Q1T @ . BS . ")el+("
Q2T @ . BS . ")e2+(" Q3T @ . BS . ")e3" INFORM1
CR . " The resultant rotated vector is:" CR . " R=("
R1 @ . BS . " , " R2 @ . BS . " , '' R3 @ . BS . '') " INFORM2 ;

: ASK-CONT2 . " Enter 1 to continue, 0 to stop: " INPUT NEGATE ;

Screen # 17
(MAIN PROGRAM: RUNME 21:21 04/29/88)
: RUNME
VINIT SEPARATOR *** FORTH QUATERNION PROGRAM ***" CR
SEPARATOR CR ASKPRINTER
BEGIN

0 INTO MAIN1 MAIN2
O-ITER !
BEGIN

MAIN3 MAIN4 MAIN5
ITER @ 1+ ITER !

1 CR ASK CONTl NOT
UNTIL
MAIN6

-

(DIVIDE)
MAIN7 CR ASK-CONTZ NOT

, UNTIL, ;

further.
Support could be included for private

tasks, i.e., tasks restricted to one CPU and
to that CPU's memory. This would largely
solve the problem of bus saturation.

We have prototyped a round-robin
tasker with multiprocessor support; this
may be better suited to many applications.

Finally, the principles of the 68000
multiprocessor tasker can be applied to
other CPUs!

References
Humbert-Droz and Jansson, McPmcal,

Algotech Computer Coqration,
1980. Description of monitors
used in Micro-Concurrent Pascal.

Knuth, The Art of ComputerProgramming,
Volume One: "Fundamental Al-
gorithms," Addison-Wesley,
1968. For everything you ever
wanted to know about linked lists.

Madnick and Donovan, Operating Sys-
tems, McGraw-Hill Computer
Science Series.

Tsichritzis and Bernstein, Operating Sys-
tems, Academic Press, 1974.
Description of semaphores on pp.
34-38.

Bra&ord J . Rodriguez is a freelance
softwarelhardware designer specializ-
ing in real-time control applications. He
discovered Forth as a student in 1978,
but only recently was seduced into
speaking and writing about it.

I

Forth Dimensions 22 Volume XI, Number 3

THE CHALLENGE
OF SORTS

Forth Interest Group (FIG) is
pleased to announce a challenge to all Forth
programmers. Beat our sort program and
have a chance to win a prize of your choice.
The author of the program judged best in
our tests will get to choosebetween free on-
line access to the FIG RoundTable on
GEnie for one month, a $150 credit toward
purchases from the FIG Mail Order Form,
or a check for $100.

The Rules
Submissions must be electronically

transmitted to the Software Libraries in the
FIG RoundTable on GEnie no later than
midnight November 3 1,1989. The results
and the winning entry will be published in
the MarcWApril issue of Forth Dimen-
sions. All entries and results will be avail-
able on most Forth Bulletin Board systems
soon after testing is complete. All submis-
sions become the property of the Forth
Interest Group for distribution as it sees fit.
The source code for all entries must comply
with the Forth-83 Standard (published in
1983 by the Forth StandardsTeam), adocu-
ment available on the FIG Mail Order
Form. The source code may be submitted in
text or block format, but must comply to the
conventions in the block file SORT.BLK
(see following). Submissions will be com-
piled and tested with this test suite, and the
average score after 8 0 TEST s will be used
to compare it to other submissions. The
examples included in SORT.BLK provide
best- and worst-case examples for sorting
algorithms. The BUBBLE sort is the sim-
plest, and the QUICK sort is a modification
(by Wil Baden) of a sorting algorithm
developed by C. Hoare. Figure One gives a
sample of the statistics generated by each
on the judges' system.

Although we encourage you to beat the
score of our QUICK sort, that is not neces-

sary to win this competition. The winner
will be chosen from the valid submissions,
based on the lowest average score (the last
entry in the right-hand column after 8 0
TE s TS). Submissions will be disqualified
if they do not comply to the Forth-83 Stan-
dard or if they fail to execute under this test
suite.

Test Details
Dictionary bytes are determined by the

size of the submitted sort after being com-
piled into our version of Forth. This Forth is
based on the popular F83 model developed
by Harry Laxen and Mike Perry. Although
it is upwardly compatible with F83, we do
not guarantee that the entire test suite will
run under your version. In addition, since
each version of Forth differs in how it
compiles source code, do not assume that
you can duplicate our results.

Figure Two shows statistics about how
our Forth compiles source code. It is not
intended to be a complete list of how our
version of F83 works, but should give you
an indication of how it differs from the F83
model. Refer to Inside F83 by C.H. Ting
(see the FIG Mail Order Form) for more
complete details.

RAM words are determined by memory
usage outside the Forth dictionary; this
includes the parameter and return stacks,
PAD, TIB, and any other memory usage
between these areas and the top of the
dictionary (referenced by HERE). See the
table cited above for indications of how this
number is affected, I have found it ex-
tremely hard to calculate, and have noticed
that it is high by about 26 items. However,
it is sufficient for the sake of this test.

Fetches and stores are affected by ac-
cess to the DATA array to be sorted. They
are incremented by the words S@ and s !
which must be used for all accesses into the

DATA m y .
Although this test suite is only based on

a sort of 1024 bytes, it would not be useful
to limit a sorting algorithm to this size. It
should be assumed that there could be an
unlimited number of data items and that the
data could be of any size. The sorting algo-
rithm should be easily modifiable to ac-
commodate any variations in the data for-
mat.

Compares are incremented by use of the
word COMPARE which also must be used in
your sorting algorithm. It will return a
number that represents the difference be-
tween two data items, according to the
following truth table:

The execution time is based the MS-
DOS time function call which returns the
current time down to 11100th of a second.
Although it is generally accurate, it has
shown variations of up to f 51100th~ of a
second. This should not be significant,
though, since the time is scaled by the
number of bytes we are sorting and will
only give us an error of +5/102400ths in our
final score. As best as possible, we have
tried to isolate the execution time of the sort
itself, but there is a slight overhead encoun-
tered that is not measurable on our test ma-
chine. The tests will be run on a 12.5 Mhz
80386 computer running MS-DOS version
3.21. The score is based on a calculation
combining all the other numbers in the
following formula:

((Fetches+Stores+Compares)+
((Dict+RAM) *Time) / l o o) /BYTES

This will weight the memory usage
I

24 Volume XI, Number 3

based on the amount of time the sort takes
to execute, and will scale everything by the
number of bytes being sorted. Although
this is a fairly arbitrary measure of effi-
ciency, it makes a sort that minimizes data
access come out with the lower score.
Under normal conditions, this could be
considered the goal of any sorting algo-
rithm.

The maximum is the score based on the
individual maximums of each of the above
items. This will indicate a worst case for the
sorting algorithm. However, it is highly
unlikely that the results would ever be
produced on any one test. This number will
only be used to resolve a tie.

The average is the score based on the
individual average of each of the above
items. It should indicate how the sort will
perform under a variety of situations. This
is the number we will use as the basis of our
comparison.

The Data
The DATA array contains 1 0 2 4 ITEMS

to be treated as 16-bit signed values.
There are eight types of data patterns

that we will cycle through during the tests.
Each pattern will be used ten times during
our test, and each will contribute to the
scores:

The RAMP is a simple array of ascending
values. This array is already sorted, so it
should produce the lowest score.
The SLOPE is also a simple array, but of
descending values. The values in the
array need to be reversed.
The WILD pattern contains random
signed values in each element.
The SHUFFLE pattern starts with the
RAMP, then reorders each of the ele-
ments into a random pattern.
The BYTE pattern consists of random

eight-bitvalues. There will obviously be
some duplication in this array.
The FLAT array is filled with a single
value. It will be a random value, but the
array does not need to be rearranged.
The CHECKER pattern consists of alter-
nating values. Two random values are
selected and placed into the even and
odd addresses.
The HUMP is a Gaussian distribution of
values. This pattern has a bell shape
when viewed in graphic format.

The Analysis
As described earlier, we selected a scor-

ing system based on the criteria we con-
sider important in a sorting algorithm.
However, do not expect that you will be
able to reproduce our exact results. To
make timing comparisons before you sub-
mit your entry, base them on the results you

QUICK SORT
Test Dict RAM Fetches
RAMP 400 50 9348
SLOPE 400 5 1 10383
WILD 400 46 17793
SHUFFLE 400 52 17823
BYTE 400 46 16317
FLAT 400 52 16255
CHECKER 400 5 1 16668
HUMP 400 43 15858

BUBBLE SORT
Test Dict RAM
RAMJ? 52 40
SLOPE 52 43
WILD 52 43
SHUFFLE 52 43
BYTE 52 43
FUiT 52 40
CHECKER 52 40
HUM!? 52 43

Fetches
1047552
2095104
1552494
1542996
1240412
1047552
1048574
1 163672

Stores
1023
2050
5881
5885
5493
7810
7530
5575

Stores
0
1047552
504942
495444
192860
0
1022
116120

Compares
7944
7951
11228
11253
10201
8064
8595
9702

Compares
523776
523776
523776
523776
523776
523776
523776
523776

T i e Score
2.03 18.77
2.26 20.89
3.79 35.73
3.79 35.81
3.46 32.76
3.51 32.91
3.63 33.61
3.40 31.87

Time
155.38
352.78
250.57
248.75
191.85
155.77
155.88
177.46

Score
1548.45
3613.22
2543.95
2525.23
1928.96
1548.49
1550.49
1777.75

Maximum
18.77
20.89
35.74
35.81
35.81
37.69
37.69
37.69

Maximum
1548.45
3613.22
3613.22
3613.22
3613.22
3613.22
3613.22
3613.22

Figure One. Sample statistics generated by the judges' quick-sort and bubble-sort routines.

Average
18.77
19.83
25.12
27.80
28.79
29.47
30.06
30.28

Average
1548.45
2580.57
2568.44
2557.58
2431.82
2284.65
2179.81
2129.53

Volume XI, Number 3 25 Forth Dimemiom

Construct
: Header
DO
LOOP
IF
ELSE
UNTIL
; etc .
16-bit l i t era l
32-bit l i t era l

Dictionarv luMM.c
4 bytes 1 word
4 bytes 6 words
4 bytes
4 bytes
4 bytes
4 bytes
2 bytes
4 bytes 1 word
6 bytes 2 words

Figure Two. Examples of how the judges' Forth compiles source code.

obtain from running our examples on your
computer. We will run the test 80 times,
cycling through each data pattern ten
times. We will upload the results from the
last eight runs of each submission into the
Bulletin Board section of the Forth
RoundTable on GEnie, showing the indi-
vidual scores for each data pattern. From
there, they will be distributed to the other
Forth Bulletin Board systems within our
virtual network. The score based on the av-
erages after the last run will be used to rank

each entry. If there is a tie between two
entries, we will use the score based on the
maximums to break the tie. If there is still a
tie, we will select the winner based on the
readability of the source code and the docu-
mentation included with it. We will publish
the three entries with the lowest scores in
the MarchJApril issue of Forth Dimen-
sions.

All entries must either be uploaded to
the Software Libraries of the Forth
RoundTable on GEnie or mailed to the FIG

business offices (P.O. Box 823 1, San Jose,
California 95155 U.S.A.), where they will
be uploaded for you. All entries must con-
tain the name, address, and telephone
number of the author so that winners can be
notified. The deadline for submissions is
November 30, 1989. All submissions be-
come the property of the Forth Interest
Group.

May the best sort win!

SORT.BLK
[Also ovailoble for downloading from the GEnie Forth R o ~ o b l e .]

Screen 0
0 \ SORT.BLK A S o r t i n g C o m p e t i t i o n 11Jun89dar
L

2 (C o n s i d e r t h i s a c h a l l e n g e T h e F o r t h I n t e r e s t G r o u p
wants)

3 (t o s e e how good you a r e . Come up w i t h a s o r t t h a t
w i l l b e a t)

4 (t h i s one and win y o u r c h o i c e o f v a l u a b l e p r i z e s .
Read t h e)

5 (documenta t ion f i l e t h a t accompanies t h i s s o u r c e f o r
c o m p l e t e)

6 (d e t a i l s a b o u t t h e p r i z e s and r u l e s f o r p a r t i c i p & i o n J
7 (May t h e b e s t s o r t win. DaR)

8
9 (As i n a l l my code s i n c e 1986 t h e s t a c k a t t h e

b e g i n n i n g o f 1
10 (a l i n e n o t s t a r t i n g w i t h a c o n t r o l f l o w word, and

a t e x t r a)

11 (s p a c e i n t h e midd le o f a l i n e , i s g i v e n by t h e
most r e c e n t)

12 (s t a c k comment. F o r F o r t h t o b e r e a d a b l e i t i s
a b s o l u t e l y)

1 3 (n e c e s s a r y t h a t what i s on t h e s t a c k i s known.Aftera)
14 (c o n t r o l f l o w word t h e s t a c k i s g i v e n by e x t r a

s p a c e o r a)
15 (s t a c k comment. WWB)

S c r e e n 1
0 \ S o r t Comparison U t i l i t i e s 11Jun89dar
1 DEFER SORT (# -- P: S o r t t h e d a t a)

2
3 FROM SORT.BLK 2 5 THRU (Data Access)

4
5 CREATE START(-- a P : S t a r t o f s o r t a p p l i c a t i o n code)
6
7 FROM SORT .BLK 6 8 THRU (S o r t i n g a l g o r i t h m) HERE START -
8
9 CONSTANT DICTIONARY (-- # P:Bytes u s e d f o r code)

10
11 FROM SORT-BLK 9 1 6 THRU (T e s t i n g r o u t i n e s)

1 2
1 3 : TESTS (# -- P: Run s o r t tests) HEADER 0
14 DO () I PATTERN TEST-SORT TEST-DATA RESULTS
15 LOOP;

I

Forth Dimensions 26 Volume XI, Number 3

S c r e e n 2
0 \ D a t a A r r a y a n d U t i l i t i e s 1 1 J u n 8 9 d a r
1 : CELLS (a -- a ' P : S c a l e w o r d s i z e) 2 * ;
2 : 2CELLS (a -- a' P : S c a l e d o u b l e s i z e 2* 2 * ;
3
4 1024 CONSTANT ITEMS (-- # P : Number o f d a t a i t e m s t o s o r t)
5 CREATE DATA (-- a P : D a t a t o be s o r t e d) ITEMS CELLS ALLOT
6
7 : D* (d n dm -- dp P : D o u b l e n u m b e r m u l t i p l y)

8 >R SWAP OVER (n l m l n 2 m l) * >R (n l m l)
9 OVER >R UM* (d p) R> R> SWAP R>
1 0 (d p n2*ml n l m2) * + + ;
11
12 : MU/NEAR (dn n d -- dq P : D o u b l e d i v i d e w i t h r o u n d i n g
1 3 DUP >R MU/MOD (r dq) >R >R (r)
1 4 2 * R @ l A N D + R > R > R O T (d q r)
1 5 R> > I F (dq) 1 M+ THEN ;

S c r e e n 3
0 \ D a t a A c c e s s S t a t i s t i c s 1 1 J u n 8 9 d a r
1 VARIABLETIMES (-- a P : N u r n b e r o f tests we h a v e c o n p l e t e d)
7
z.

3 : !USE (a -- P : I n c r e m e n t u s a g e c o u n t e r)
4 DUP 2 @ (a d) 1, D+ ROT 2 ! ;
J

6 : !MAX (a -- P : S t o r e u n s i g n e d maximum) DUP >R 2 @ (d)
7 R@ 1 2CELLS + 2 @ (do d l) 2OVER 20VER DU<
8 I F ZSWAP THEN 2DROP (d) R> 1 ZCELLS + 2 ! ;
9
10 : !AVG (a -- P : A c c u m u l a t e a v e r a g e) DUP >R 2 @ (d)

11 R@ 2 2CELLS + 2 @ (do d 2) TIMES @ S>D D*
12 D+ (d) TIMES @ 1+ MU/NEAR R> 2 2CELLS + 2 ! ;

S c r e e n 5
0 \ B u b b l e S o r t E x a m p l e 1 1 J u n 8 9 d a r
1 : EXCHANGE (# 1 # 2 -- P : E x c h a n g e i t e m s a t i n d i c e s)
2 2DUP S@ SWAP S @ ROT S ! SWAP S ! ;
3
4 : BUBBLE (# -- P : S l o w s o r t f o r c o m p a r i s o n)

5 1 DO I 0 DO J S @ I S @ COMPARE
6 0 < I F I J EXCHANGE THEN
7 LOOP LOOP ;
8
9 : .TIMER (d 1 / 1 0 0 s -- P : D i s p l a y t i m e r i n s e c o n d s)

1 0 <# # # 4 6 (.) HOLD # S #>
11 (a #) 8 OVER - SPACES TYPE ;
1 2
1 3
1 4
1 5

S c r e e n 6
0 \ Q u i c k S o r t U t i l i t i e s 1 1 J u n 8 9 d a r
1 : ORDER-3

(f 1 -- f 1 # P : O r d e r f i r s t , m i d d l e a n d l a s t i n d e x)
2 2DUP OVER - 2 / 3 2 7 6 7 AND + >R
3 DUP S @ R@ S @ COMPARE O< I F DUP R@ EXCHANGETHEN
4 OVER S @ R@ S @ COMPARE O> I F OVER R@ EXCHANGE
5 DUP S @ R@ S @ COMPARE OC I F DUP R@ EXCHANGE
6 THEN R> ;

THEN /
7
8 : BOTH-ENDS (f 1 p -- f ' 1' P : T r i m e n d s) >R (f 1)

9 BEGIN OVER S @ R@ COMPARE O< WHILE 1 0 D+ REPEAT
1 0 BEGIN DUP S @ R@ COMPARE O> WHILE 1- REPEAT
11 R> DROP ;
. -

1 3 12

1 4 : !RESULTS (a -- P : A n a l y z e) DUP !AVG ! M A X ; I i3 I
I I TDS 9090 FORTH COMPUTER / 1
1 1 Ideal for starter, teachlng or target system

S c r e e n 4 I I
0 \ D a t a A c c e s s U t i l i t i e s 1 1 J u n 8 9 d a r
1 2VARIABLEFETCHES (-- a P : T i m e s f e t c h e d) 22CELLS ALLOT I I build into your product r~-----%
2 2vARIABLE STORES (-- a P : T i m e s s t o r e d) 2 2 c E L L s ALLOT for rapid completion! 1 - 7
3 2VARIABLECOMPARES (- - a P : T i m e s c o m p a r e d) 2 ZCELLSALLOT
4
5 : S @ (# -- n P : M u s t b e u s e d t o f e t c h v a l u e)

6 CELLS DATA + @ (n) FETCHES !USE ;
7
8 : S ! (n # -- P : M u s t be u s e d t o s t o r e v a l u e)

9 CELLS DATA + ! () STORES !USE ;
1 0
1 1 : c o ~ p A R E (n l n 2 -1 I 0 I 1 P : M u s t b e u s e d f o r c o m p a r e s)
12 2DUP < >R > 1 AND (t 1 R> OR COMPARES !USE ;
1 3
14
1 5

program with IBM-PC

complete Flg-Forth system connect to keyboard, Icd display. RS 232
30K RAM; 16K EPROM 35 VO l l n r ; 10 bit AID option
over 3MX) in use in Europe low power - down to 3 ma @ 616v

Connect the 4" x 3' TDS BOB0 singlo-board computer to an IBM-PC or
compatible and dart writing Forth code Imnwdlatelyl Lots of mady made
application programs come with the kit to do interruptdriven VO, graphics Icd
driver. frequency measurement, solid-state speech and data-logging. The board
includes a ROM-resident Forth language kernel and an assembler. By storing
generated code in either non-volatile RAM or EPROM. the board can be used in a
target system or stand-alone product Based on the CMOS Hitachi HD 63A03Y
microprocessor, it has two timers, two serial ports and interrupts which are
available via Forth Instructions. Also included on board are 30K RAM for
storing source code or data, 16K EPROMInovram for firmware, 256 bytes EEPROM.
35 VO lines, two RS 232 serial interfaces. a watchdog timer to insure recovely from
crashes, and an expandon bus. Interface the TDS 9090 to an 8 x 8 keyboard or an
Icd display, or use two of h e VO lines as an I2C interface. The ROM-resident Forth is
an extended version of Fig-Forth with Forth words to support all the onboard
peripherals, as well as the keyboard and Icd interfaces. Put product application
soilware inb PROM and it starts b run as soon as power is applied. Made in England
by Triangle Digital S o ~ l c n , and well-known in Europe, the TDS 9090 is now
supported in the USA and is available with less than two-week delivery at only

The Sariig Company 1193 Moselry Rd Victor NY 14564 USA
tel: (716) 425-4367 or fax (716) 425-7381

L

Volume XI, Number 3 27 Forth Dimensions

Total control

S c r e e n 7
0 \ Q u i c k S o r t L i s t P r o c e s s i n g 1 1 J u n 8 9 d a r
1 : PARTITION (f 1 -- f 1' f ' 1 P : R e a r r a n g e l i s t s)

2 ORDER-3 S @ >R 2DUP 1 -1 D+ (f 1 f ' 1')

3 BEGIN R@ BOTH-ENDS 2DUP 1 + U<
4 I F 2DUP EXCHANGE 1 -1 D+
5 THEN 2DUP SWAP U<
6 UNTIL R> DROP SWAP ROT ;
7
8 : S I N K (f p # -- f P : Do i n s e r t i o n 1 ROT >R (p %)
9 BEGIN 1- 2DUP S @ COMPARE O<
1 0 WHILE DUP S @ OVER 1 + S ! DUP R@ =

11 I F S ! () R> E X I T THEN
1 2 REPEAT 1 + S ! () R> ;
1 3
1 4
1 5

S c r e e n 8
0 \ Q u i c k S o r t A l g o r i t h m 1 1 J u n 8 9 d a r
1 : INSERTION (f 1 -- P : I n s e r t i o n s o r t) 2DUP U<
2 I F 1 + OVER 1 + DO (f) I S @ I S I N K LOOP DROP
3 E L S E 2DROP THEN ;
4
5 : HOARIFY (f 1 -- ... P : Q u i c k a n d I n s e r t i o n sor ts)

6 BEGIN 2DUP 7 0 D+ U< WHILE PARTITION (f 1' f ' 1)
7 2DUP - >R 20VER - R> > I F 2SWAP THEN
8 REPEAT INSERTION ;
9
1 0 : QUICK (% -- P : Q u i c k s o r t) 1- 0 SWAP DEPTH >R
11 BEGIN (...) HOARIFY DEPTH R@ < UNTIL R> DROP ;
12 ' QUICK I S SORT
1 3
1 4 :SINKING (n-- P : I n s e r t i o n S o r t) 1- 0 SWAP INSERTION;
1 5

I I

with LMI FORTHTM

S c r e e n 9
0 \ R a n d o m N u m b e r G e n e r a t o r 1 1 J u n 8 9 d a r
1 VARIABLE SEED (-- a p : R a n d o m da ta p a t t e r n)

2
3 : SETUP (-- P : S e t u p r a n d o m s e q u e n c e) 1 2 3 4 SEED ! ;
4
5 : RANDOM (-- n P : C a l c u l a t e n e x t r a n d o m n u m b e r)

6 SEED @ (n) 3 1 4 1 5 9 2 6 1 * 1 + DUP SEED ! ;
7
8 :CHOOSE

(l i m i t -- O . . l i m i t - 1 P : C h o o s e n e x t r a n d o m i n r a n g e)
9 RANDOM (l i m i t n) UM* SWAP DROP ;
1 0
11 : GAUSS (n -- u P : G a u s s i a n d i s t r i b u t i o n)

1 2 RANDOM 0 (n d) RANDOM 0 D+ RANDOM 0 D+
13 RANDOM 0 D+ RANDOM 0 D+ RANDOM 0 D+
1 4 6 UM/MOD SWAP DROP UM* SWAP DROP ;
1 5

S c r e e n 1 0
0 \ R a n d o m D a t a p a t t e r n s 1 1 J u n 8 9 d a r
1 : RAMP(-- P : A s c e n d i n g v a 1 u e s) I T E M S OD0 I I S ! LOOP ;
2 : SLOPE (-- P : B u i l d s a m p l e of d e s c e n d i n g v a l u e s 1
3 ITEMS 0 DO ITEMS 1- I - I S ! LOOP ;
4 : WILD(-- p : B u i l d s a m p l e o f r a n d o m p o s i t i v e v a l u e s)
5 ITEMS 0 DO RANDOM I S ! LOOP ;
6 : SHUFFLE (-- P : B u i l d s a m p l e of s h u f f l e d s e q u e n c e) RAMP
7 ITEMS 0 DO ITEMS CHOOSE I EXCHANGE LOOP ;
8 : BYTE (-- P : B u i l d s a m p l e o f b y t e v a l u e s)

9 ITEMS 0 DO 2 5 6 CHOOSE I S ! LOOP ;
1 0 : F L A T (-- P : B u i l d s a m p l e o f e q u a 1 v a l u e s) R A N D O M (n)
11 ITEMS 0 DO DUP I S ! LOOP DROP ;
1 2 :CHECKER (-- P : C h e c k e r b o a r d) RANDOM RANDOM (n l n 2 1
13 ITEMS 0 DO DUP I S ! SWAP LOOP 2DROP ;
1 4 : HUMP (-- P : G a u s s i a n o r b e l l c u r v e d d a t a)

15 ITEMS 0 DO 2 5 6 GAUSS I S ! LOOP ;

h r Programming Professionals:
an expanding family of compatible, high-
performance, compilers for microcomputers
For Development:
Interactive Forth83 InterpreterICornpilers
for MS-DOS, OSl2, and the 80386

16-bit and 32-bit implementations
Full screen editor and assembler
Uses standard operating system files
500 paae manual written in plain English
s u p h i for graphics,floating point, native code generation

For Applications: Forth-83 Metacompiler
Unique table-driven multi-pass Forth compiler
Compiles compact ROMable or disk-based applications
Excellent error handling
Produces headerless code, compiles from intermediate states,
and performs conditional compilation
Crosscompiles to 8080,Z-80,8088,68000,6502,8051,8096,
1802,6303,6809,68HC11,34010, V25, RTX-2000
No license fee or royalty for compiled applications

I Laboratory Micmsystems Incorporated
Post Office Box 10430, Marina del Rey, C4 90295

Phone Credit Card Orders to: (213) 306-7412
FAX: (213) 301-0761

S c r e e n 11
0 \ P a t t e r n S e t u p a n d A n a l y s i s 1 1 J u n 8 9 d a r
1 : PATTERNS (-- P : G r o u p da ta s e t u p p a t t e r n s)

2 RAMP SLOPE WILD SHUFFLE
3 BYTE FLAT CHECKER HUMP ;
4
5 : PATTERN (# --P: S e t u p d a t a b y t e s t) DUP TIMES ! 8 MOD
6 CELLS [' I PATTERNS >BODY + (c i a) PERFORM ;
7
8 : TEST-DATA(-- P : C h e c k o r d e r o f d a t a) DATA @ I T E M S 1
9 DO (p r e v) DATA I CELLS + @ SWAP OVER >
1 0 ABORT" D a t a h a s n o t b e e n s o r t e d "
11 LOOP DROP ;
1 2
13
1 4

S c r e e n 1 2
0 \ S t a c k U s a g e C h e c k s 1 1 J u n 8 9 d a r
1 ZVARIABLESTACK (-- a P : S u m of RAM u s a g e) 2 2CELLS ALLOT
2
3 HEX ASASASA5CONSTANTMARK (- - n P : S t a c k m a r k) DECIMAL
4
5 : FILL-RAM (- - P : F i l l RAM w i t h M A R K e r s) MARKHERE !
6 HERE DUP 1 CELLS + R P @ OVER - CMOVE ;
7
8 : TEST-RAM (-- P : C h e c k RAM u s a g e)

9 0 . STACK 2 ! HERE 1 + 1 CELLS NEGATE AND (a)

1 0 BEGIN DUP @ MARK - I F STACK !USE THEN
11 1 CELLS + RPO @ OVER U < UNTIL DROP
1 2 STACK !RESULTS ;
13
1 4
1 5

L

Forth Dimensions 28 Volume XI, Number 3

S c r e e n 1 3
0 \ S e t u p S o r t T e s t s 1 1 J u n 8 9 d a r
1 2VARIABLE TIME (-- a P : Sum o f t i m e) 2 2CELLS ALLOT
L

3 : !TIME (d l d 2 -- P : S t o r e t i m i n g r e s u l t s)
4 ZSWAP D- TIME 2 ! TIME !RESULTS ;
5
6 : TEST-SORT (-- P : T e s t t h e s o r t a l g o r i t h m)

7 0 . FETCHES 2 ! 0.STORES 2 ! 0.COMPARES 2 !
8 FILL-RAM COUNTER (d) ITEMS SORT
9 COUNTER (d l d 2) TEST-RAM !TIME ()

1 0 FETCHES !RESULTS STORES !RESULTS
11 COMPARES !RESULTS ;
12
1 3
1 4
15

S c r e e n 1 4
0 \ S o r t T e s t R e p o r t s 1 1 J u n 8 9 d a r
1 : HEADER (-- P: S e t u p a n d d i s p l a y test h e a d e r)

2 FETCHES 3 2CELLS ERASE STACK 3 2CELLS ERASE
3 STORES 3 2CELLS ERASE TIME 3 2CELLS ERASE
4 COMPARES 3 2CELLS ERASE SETUP CR
5 ." T e s t D i c t RAM F e t c h e s S t o r e s C o m p a r e s "
6 ." T i m e S c o r e Maximum A v e r a g e " ;
7
8 : .RESULTS (n -- P : D i s p l a y r e s u l t s)

9 >R (1 DICTIONARY 4 U . R
1 0 STACK R@ 2CELLS + 2 @ 4 UD.R
11 FETCHES R@ 2CELLS + 2 @ 8 UD.R
1 2 STORES R@ 2CELLS + 2 @ 8 UD.R
1 3 COMPARES R@ 2CELLS + 2 @ 8 UD.R
14 TIME R> 2CELLS + 2 @ .TIMER ;

I 1 5

S c r e e n 15
0 \ R e p o r t t es t r e s u l t s 1 1 J u n 8 9 d a r
1 : .ANALYSIS (n -- P : C a l c u l a t e r e s u l t s) >R (1
2 FETCHES R@ 2CELLS + 2 @ (d f e t c h)

3 STORES R@ 2CELLS + 2 @ (d f e t c h d s t o r e)

4 COMPARES R@ ZCELLS + 2 @ (d f e t c h d s t o r e d c o m p)

5 D+ D+ 1 0 0 ITEMS M*/ (df + d s + d c / i t e m s)

6 TIME R@ ZCELLS + 2 @ (d d t i m e)

7 STACK R> 2CELLS + 2 @ DROP (d d t i m e s t a c k)

8 DICTIONARY + ITEMS M*/ (d l d 2) D+ .TIMER ;
9
1 0 : RESULTS (-- P : D i s p l a y t e s t r e s u l t s) CR TIMES @ (ti
11 8 MOD CELLS [ALSO BUG] ['1 PATTERNS >BODY + @
1 2 (c f a) >NAME 8 L . I D () 0 .RESULTS
1 3 3 0 DO I .ANALYSIS LOOP [PREVIOUS I ;
1 4
1 5

S c r e e n 1 6
0 \ Random g e n e r a t o r tests 1 1 J u n 8 9 d a r
1 VARIABLECYCLE (-- a P : Random c y c l e c h e c k) 4 CYCLE !
2
3 : TALLY (n -- P : S h o w n) BASE @SWAP([b a s e] n)
4 3 6 BASE ! 1 .R ([b a s e]) BASE ! ;
5
6 : TEST-RANDOM (-- P : T e s t g e n e r a t o r)

7 PAGE DATA ITEMS CELLS ERASE ITEMS (k) 1 1
8 DO ITEMS CHOOSE (k u) DUP 6 4 /MOD AT CELLS DATA +
9 (k a) DUP >R @ (k t a l l y) DUP O=
1 0 I F SWAP 1- SWAP THEN
11 1 + DUP TALLY R> ! (k) DUP O =
1 2 I F 0 1 8 AT I U. LEAVE THEN
13 I CYCLE @ MOD O= I F PAGE THEN
1 4 LOOP DROP ;
15

Indelko RTX Forth Kit

Experiemental Kit for Harris RTX2000 Forth Chip
including:

One 100x100 mm square PC circuit board
Two EPROM's containing cmForth for RTX
cmForth source code on MS-DOS diskette
Assembly instructions and documentation

$150.00

'More on NC4000' RTX Special Issues:

Volume 10: RTX cmF0rt.h and papers
Volume 11: RTX Supplement to 'Footsteps'

and SC32 paper and documentation.
$15.00 per volume

Fat Forth for IBM PCJXTIAT: F-PC 2.25

Disk set: four 360K diskettes, $25.00
F-PC Useis Manual, $20.00

F-PC Technical Reference Manual, $30.00

Ofete Enterprises, Inc.
I306 South B Street

Sun Mateo, CA 94402
(415) 574-8250

Volume XI. Number 3 29 Forth Dimensions

phrases they lead to. Personally, I can stand
writing TIME > instead of DETECTED,
etc., and it keeps the number of required
words to a minimum-I mention them for
purposes of discussion.

Choice of Time Units
Another point of ongoing discussion is

the design/choice of the set of time units.
Some people argue that milliseconds are all
that is ever required (the code can easily be
simplified to this end, if desired), but others
feel that amultiplicity of time units is more
complete and leads to more readable code.

My own feeling on this issue is that a

variable for millisecond-of-minute
(0-59.999 unsigned) and another variable
for minute-of-week (or even minute-of-
month) provides millisecond resolution
over a period of more than 45 days in a
standard Forth double number.

Also, in this design NEW, LAPSE, etc.
could be run as infrequently as every 59.99
seconds and still provide exact millisecond
calculation of elapsed times. In the end, this
decision depends on the source of the tim-
ing information-if there is a real-time
clock in the system, I usually implement
whatever the hardware provides.

Dave Edwards is a qualified electronic
engineer who formed Jarrah Comput-
er- microprocessor engineering
consultancy using Forth as a key ele-
rnent-jkur years ago. His company has
specialized in the design of custom
microcontrollers, ranging from the
68705 sing Ie-chip family to large indus-
trial systems based on Rockwell's
65FII Forth chip and, recently,
Motorola's 68HCII.

(Pages' figures, from page 23)

Figure One. A dummy link and parameter make the vocabulary connections.

vname

vname 1 'IT
FORTH I I I 1 8 1 ~ 0 I l I o o o o I

link

Figure Two.

Forth Dimemiom 30 Volume XI. Number 3

code set.context dummy name dummy link dummy parm

THE BEST OF
GENIE

GARY SMITH - LITTLE ROCK, ARKANSAS

I I

Volume XI, Number 3 31 Forth Dimensions

I n my rush to demonstrate how the
GEnie Forth RoundTable was involved in
the standards effort, how erudite and infor-
mative the guests in our real-time confer-
ences are, and other impressive bits, I over-
looked a facet that may be one of our most
important services. This is how we stand as
a resource center not only to the Forth
expert, but alswperhaps even espe-
cially-to the new users of Forth.

I must begin with the Sunday night
"Figgy Bar," usually conducted by Le-
onard Morgenstern. Leonard, and some-
times lead sysop Dennis Ruffer, conduct
learning and technical sessions aimed at the
new and intermediate Forth user. I have
never come from these Sunday FIGGY's
without some better understanding of
Forth, so do not assume it is only for begin-
ners. The point is, it is especially for begin-
ners. No question is too trivial, so the first
step to learning Forth the GEnie way is the
Sunday night real-time conference.

Also, several files in the library can
assist the newcomer. Browsing just the
keyword "tutorial" generates an impres-
sive list of files worth looking at, including
Bill Kibler's Forth tutorial written in Forth.
All one needs to do is load this file in any
Forth-83-compatible system (the public-
domain version of F83 for your computer is
also waiting in the library!), invoke
Kibler's program, and then learn Forth in
Forth.

In the bulletin board area, we also have
Category 15, Topic 1: Jack Brown's F-PC
Forth tutorial. Jack has created the best on-
line Forth tutorial I have ever seen. It is
intended for use with Tom Zimmer's F-PC,
a Forth for PCs and clones. It can be fol-
lowed using other kernels, though, and a
companion text file for F83 is in the library.

What if someone just has a question?
There is lots and lots of help available on

the GEnie Forth RoundTable bulletin
board. Answers are quick to come from the
GEnie sysops and other GEnie users, or via
ForthNet, which ties us to several other
Forth gurus. Topics such as"WhichPub1ic-
Domain Kernel" (Category 1, Topic 7),
"Basics of the Forth Language" (Category
2, Topic I), and "for us beginners? HELP"
(Category 2, Topic 5) are obviously in
place to serve the new Forth user.

Some sample problems and responses
follow:

Category 1, Topic 7 , Message 1
From: Todd Natkin
Subj: F-PC, F83, MMS FORTH, etc.

A simple question: Is F-PC the "cor-
rect" implementation of Forth for me to be
learning? Is it considered the most current
of the public-domain implementations? I
have looked over the material downloaded
and ordered the technical reference manual
from Dr. Ting, but do not have the time to
review all the different versions of Forth
and then pick the best one.

Where do you stand on this issue?

Category 1, Topic 7 , Message 2
From: Jerry Shijrin
Subj: F-PC, F83, MMS FORTH, etc.

>A simple question: Is F-PC the "cor-
rect" implementation of Forth for me?

Like, politically correct? It's on the
approved list, okay?

You can do useful work with most of the
available Forths. F-PC is good in that it has
numerous add-ons already available.
OTOH, there may be too much material for
some people to be comfortable. For a
smaller implementation, check out Martin
Tracy's ZenForth.

Category 1 , Topic 7 , Message 3
From: John Somerville

Subj: F-PC. F83. MMS FORTH, ere.
Todd, hope you don't mind me butting

in, but I am a relative newcomer to Forth
and computing, so my experience may be
of interest to you. I have tried several PD
Forths and came to the following conclu-
sions:

Laxen & Perry's Forth (F83) is very
good, particularly if you pick up Jack
Brown's VEDIT. However, it does not
have floating point, nor graphics. You can
metacompile it to run on your hard drive.

Zimmer's Forth is nice, particularly
since Jack Brown has put out floating point
for it. I have not tried the floating point,
since I have purchased a commercial pack-
age. However, I found it too large.

I tried ZenForth, but there were a few
versions all packed together, and I really
had trouble knowing what documentation
referred to what.

UniForth has a demo package which
didn't look too bad, but I didn't feel right
about using it and I had no luck getting in
touch with the company.

I purchased the commercial package
(UR Forth) because I was tired of fishing
around without documentation. Also, I
started using versions which someone had
altered and I frequently found myself lost in
an undocumented morass. However. I
think all the boards on this network have
virgin copies of the F83 and F-PC systems.

If I had to choose a public-domain Forth
now, I would go for F-PC because of the
floating point; butF83 still has moreappeal
because of its compactness. If you choose
either of these two, I recommend getting a
hard copy of the source code and the user
manuals available through FIG.
regards
NETJMail: British Columbia Forth Board
Burnaby, BC 604-434-5886

I

Forth Dimensions 32 Volume XI, Number 3

Category 1, Topic 7, Message 4
From: GARY-S [Gary]

MM20, and MX80 are text-oriented
Forth kernels written for CP/M machines,
while F-PC is written for PCs and com-
patibles. I hope this helps resolve some of
the confusion.

Category 1, Topic 7 , Message 5
From: MXawley

I've been going Forth for over a year
now. My recommendation is to start with
F83 and Brodie's book. Starting Forth. The
two complement each other nicely. Forget
floating point. It is a bad habit which you
should unlearn. Later, if you really need it,
it can be added. However, I still haven't
found any good reason to use floating point.
If you have aPC compatible, move up toF-
PC after you are comfortable with F83, the
line editor, and blocks. I think it important
to be exposed to these for a general under-
standing of Forth. At least at first, down-
load only applications written for your
particular version of Forth. Otherwise you
will go nuts trying to supply the "missing
word" which hangs your loading process.
With F-PC, you will have the luxury of a
screen editor and sequential files to work
with. You will need the documentation
from Dr. Ting. Enjoy!

By the way, when you get stuck on a
problem, don't be shy. Post a message to
this board and the experts here will pitch in
to help. They helped me several times. Let
us know how you're doing ...
a recent beginner -meh

Topic 33
From: J.Ventola
Sub: neophyte needs F83 examples

This topic is for pointing us neophytes
to examples in F83 of doing simple things
like getting input from a user.

Category 1, Topic 33, Message 26
From: K.Smithl0

Just going over these messages for the
first time and noticed some questions I
(finally) might help with.. . One of the
handiest things I found with using F83
(MS-DOS) is that you can load a screen-
a single screen-from another file while
you are in the process of loading screens
(blocks) from a different application.. . a
good example of this is the
EXTEND86.BLK load screen, which
loads CPU8086.BLK screen 1 and

UTILITY.BLK screen 1; each of these
screens is a list of LOAD instructions for the
screens within its file, and all of this can be
redirected or cancelled or added to as
needed. I do my development with an
FI33.COM version that has all the utilities I
might need or want; then, when I've fin-
ished my application, I take its file and only
load what it needs--usually not a screen
editor or debugger or dumping, etc. The
load screens act as a vector table pointing to
what you want to use, without having to
physically copy a screen into your applica-
tion file (you do that at compile time in
memory).

Which reminds me of something else
that came up in the messages above, which
is that Forth code is pretty portable-I
know, I know, I've had some real fun uying
it-but most code is gonna follow, or build
on, accepted Forth fundamentals. If the
original programmer was careful, you'll
find most of the CPU- or system-specific
code factored out from the general code
(i.e., if you're going to write directly to
screen memory and bypass the standard
system calls, which words like EMIT are
usually built on, that code will be off in its
own screen grouped with supporting code,
all of it building up to provide the whole
application with generalized words like
"print9'-you could rewrite the low-level
screen-memory codes to use your system
addresses, etc., or simply make up "print"
from general Forth output words like
EMIT.

Long winded! You'd think I was a For-
tran programmer!

Category I , Topic 33, Message 27
From: K.Smithl0

Thought I'd better split up these replies
into separate notes. J. Ventola brought up
implementing Pilot in Forth, but also men-
tioned that he'd found a cheap version
available, so.. . but I bet some of the useful
qualities of Pilot would be handy, at least as
a module, within Forth. For a reference on
Pilot, I remember an article in Computer
Language magazine, the July and Septem-
ber 1986 issues, titled "Interpreter Design
and Construction, formal language defini-
tion and initial coding in Pilot." In the
article, the subject really is formal language
definition, but the vehicle is to define Pilot.
Not sure, don'tremember how strictly Pilot
is actually followed, but the article will
provide ideas on how to go about imple-

menting a language, as well as discussing
the attributes of Pilot .

Category 1, Topic 33, Message 28
From: K.Smithl0

Computer Language magazine has
been a great and enjoyable resource for me
over the years, but for lots of Forth refer-
ence I recommend Dr. Dobb's Journal.
Martin Tracy's "4th Column" would be
interesting to a new or old Forth program-
mer. Something that has helped me under-
stand and useForth better is to look at other
languages (for which it is often easier to
find a larger variety of subjects covered
and, generally, more references), and also
to look into more general aspects of com-
puterprograrnming. I've found that, as I've
gotten into Forth, what I thought was a lack
of understanding of Forth on my part
turned out to be a lack of understanding of
how something goes on inside my com-
puter! I needed to see how interrupts work,
even on a simple level, before I could
resolve some file 110 problems I had, for
example. Forth handled my needs quite
well, once I knew what had to be done and
how to go about it. On a recent project
written in both Turbo BASIC and F83, I
reduced the program file size by 30%,
reduced execution time about 60%, and
made the source instructions much clearer
using the Forth system!

Algorithms! Get a nice, readable book
on data structures. Try implementing some
modules in a language more familiar to you
(BASIC, possibly), then again in Forth. I'll
bet there's a wealth of advice and sugges-
tions to be had in this vein here on GEnie's
Forth forum! Am I right everybody?

Category I , Topic 33, Message 30
From: NMorgenstern [Leonard]

To K.Smith: Yea and verily! Your
experience is that of many others. Mahlon
Kelly commented a few weeks ago on one
of our Figgy Bar sessions that computer
languages were designed to give the user
access to the computer but, more impor-
tantly, t protect the computer from the
user. This is accomplished, of course, by
limiting what the language can do. Forth is
free of these restrictions. Mahlon teaches
Forth, and students have told him that, for
the first time, they understand the com-
puter.

Helen Burke, a friend of mine who is a
well-known metal sculptor, talks a lot

Volume XI, Number 3 33

about organic form in her art, meaning that
the form grows naturally from the materials
and the function. Forth is organic in this
sense, growing from the microprocessor
and operating system rather than from a
preconceived set of rigid ideas about what
a computer language should look like, A la
Wirth,Kemigan, and others. Regrettable ...

Category 2 Introduction to Forth, Topic 5
From: M.Silva (Forwarded)
Sub: for us beginners? Help

We beginners need a place to get our
feet wet. I am somewhat of an accom-
plished programer in assembler, Fortran,
COBOL. Pascal.. . but not Forth. Where do
I get started?

Category 2 , Topic 5 , Message 106
From: C.Struycken1

Very basic question: I am trying to get
condensed mode out of my stargeminilOx
using F83. In screen 44 of utility.blk, I
changed this:

: epson
con t ro l o e m i t ;

to this:

: s t a r cond
con t ro l 15 e m i t ;

and also replaced the noop in the next line
with st a rcond. I then loaded the screen.

This does not seem to work. I tried to see
if save- system f 8 3 . corn would make
a difference ... it did not. How do I get this
to work? I also noticed that the whole
screen got reloaded, resulting in many
"already exists*' notices. Does this mean
Forth has now two identical compilations
of each of these "already exists" words? If
so, what is the correct way to load a word
without reloading the whole screen?

Category 2 , Topic 5 , Message 107
From: NMorgenstern [konard]
To: C.Struycken1

"I changed control o emit to control
15 emit ..."

In F83, the word CONTROL gets the
next word from the input stream and masks
its fxst character back to five bits. Thus,
control-o is the same as 15 (decimal), while
control-15 would be 1.

On Epson printers and many others, 15
(control-o) should put you into condensed
mode. But you have to send it to the printer.

FIG-FORTH for the Cornpaq,
IBM-PC, and compatibles. $35
Requires DOS 2.0 or later,
uses standard DOS files, hard
disk or floppy.

Full-screen editor uses 16by
64 format, has HELP screen
via single keystroke. Source
included for editor and other
utilities.

SAVE allows storing Forth
with all currently defined
words onto disk as a COM
file.

Definitions are provided to
allow beginners to use Starting
Forth as an introductory text.

Source code available as an
option, add $20.

Metacompiler for 630316803
Runs on a host PC, produces
a PROM for a target board.
Includes source for 6303 FIG-
FORTH with multi-tasker.
Application code can be
Metacompiled with Forth to
produce a target application
PROM. $280

Metacompiler for 68HC11
As above, except power fail
handling is omitted $268

ALL CMOS Processor Board
Utilizes the 6303. Size: 3.93
by 6.75 inches. Uses 11-25
volts at 12ma plus current for
options. $1 75-225

Up to 24 kb memory: 8k RAM,
8k PROM, additional 8k RAM
or PROM as desired. Backup
of RAM via off board battery.

Serial port and up to 40 pins
of parallel 110. Processor buss
available at optional header to
allow expanded capability via
your interface board.

You should type P R I N T I N G ON first.

"I got a lot of 'already exists' mes-
sages."

Forth will warn if you are redefining a
word. It is a warning, not necessarily an
error, because sometimes you want to rede-
fine something. In your case, it was an
error. You need to FORGET the words you
havedefined. Thus, FORGET FOOremOVes
the word FOO and all words subsequently
defined. F83 makes forgetting easy by a
special word, MARK. The first thing I do
before loading anything is type MARK TO-
DAY. Then, if I type TODAY, it forgets
everything after TODAY, but not the word
TODAY itself. F83 "makes it easy to for-
get," as the old song goes.

It sounds to me as if you are making
good progress. Please keep asking ques-
tions-others learn from the answers, as
well as yourself. Also, if you can, attend the
Sunday night round tables. They are spe-
cially aimed at beginners like yourself.
Good luck!

Category 2 , Topic 5 , Message 108
C.Struycken1
To: NMorgenstern

Thanks very much for your help and
encouragement. I am just starting to work
my way through chapter nine of Starting
Forth (second edition), and things are be-
coming a lot more confusing. In the mean-
time, I still have not resolved the printer
mystery. (I do have a condensed printout of
all the blocks now by flicking the appropri-
ate dip-switch on the printer.) This is what
I have discovered so far: When the printer
is not hardware-forced into condensed
mode and I use the command PRINTING-
ON, typing 15 EMIT orCONTROL o EMIT
will software-force the printer into con-
densed mode. But, after having changed
NooP to EPSON in the second line of
screen 44, i.e.,

DEFER I N I T P R
' EPSON I S INIT-PR

the words PRINTING-ON, SHOW, and
LISTING should set the printer in con-
densed mode by themselves (because they
all use I N 1 T -PR in their definition). I get
the feeling they all are still refering to the
old i n i t -pr, before I changed it. Does
F83 use a precompiled UTILITY.BLK,
and does it just pretend it is loading the
screens? When, as an experiment, I tried to

Micro Computer
Applications btd

8 Newfield Lane
Newtown, CT 06470

203426-6 1 64
Foreign orders add $5 Shipping and handling.

Connecticut residents add sales tax.
--

Forth Dimensions

FORGET the original EPSON, 1 got a
"Below Fence" message. When does one
needtodoaSAVE-SySTEMF83 .COM,
and why and when does one need to meta-
compile? Do these things all have to do
with the fact that FS3 is working under
DOS?

Category 2 , Topic 5 , Message 109
From: Pete Koziar
Subj: printer initialization

One important step you left out: F83
does not invoke EPSON when printing; it
invokes a deferrred word called I N 1 T-
PR, which is set up to be a NOOP. To use
that printer control, type:

\ epson i s i n i t - p r

before you try to print or list anything. If
you then want a listing, just type l i s t -
ing any time after redirecting INIT-
PR. If you just want to echo what is on the

- -

I
I I SDS FORTH forthe 8051 ,

screen in condensed mode, you would need
to say:

p r i n t i n g {

There is another word, by the way,
known as PAGE. If your printer supports
automatic form-feeds (most do, nowa-
days), you should also type:

' form-feed i s page

I hope this helps!
Via Qwikmail2.01 The Baltimore Sun

Category 2 , Topic 5 , Message 110
From: C.Struycken1
To: Peter Koziak
Subject: printer initialization

Thanks for your response, Peter. I had
already reset NOOP to Epson, but this did
not make it work either. I finally figured
that the words in UTILITY.BLK must be

I
I Programming Environment
I 0 Use your I B M PC compatible as terminal and disk server

precompiled and that, therefore, the other
words that use i n i t -pr in their defmi-
tions are using the older i n i t - p r that
was set to NOOP. Does this make any
sense? Without really knowing what I was
doing, I re-metacompiled the system and
now everything is working. It is still not
completely clear what the metacompiling
does and how it differs from save-sys-
tern, but maybe the "under the hood*
chapter in Starting Forth will make things
a bit clearer.

Category 2 , Topic 5 , Message 11 1
From: Steve Palincsar
Subject: F83 utility.blk

It's been several years since I seriously
looked at F83, but as I recall you are abso-
lutely correct in your surmise that it uses a
precompiled UTILITY .BLK. All the .BLK
files supplied in the .ARC file are there for
documentation and have already been in-
corporated in the FS3.COM file. I don't

0 Trace debugger
0 Full screen editor

Software Features
0 Supports Intel 805x, 87C51FA, N80C451, Siemens 80535, Dallas 5000
0 Forth-83 standard compatibility I

Built-in assembler I
0 Generates headerless, self starting ROM-based applications I
0 RAM-less target or separate data and program memory space I

SDS Technical Support u
0 150+ pages reference manual, hot line, 8051 development board available now

I
Limited development system, including P C software and 8051 compiled software with manual, for $150.00.

I
I

(generates ROMable applications on top of the development system)
I
I
I '

inc , 5375 Pare Avenue #210, Montreal. QC. Canada H 4 P 1P7 (511) 731-1797 , I

Forth Dimemiom 34 Volume XI. Number 3

recall any- optional extension files in the
Laxen &Perry package itself that you need
to load. (There are, of course, hundreds if
not thousands of extensions for F83 in the
public domain.)

Category 2 , Topic 5 , Message 113
From: F.Sergeant

C.Struycken1, there is no need to rede-
fine the word EPSON or to put the new
word in UTILITY.BLK next to EPSON.
There is no need to recompile your Forth
system. Leave EPSON alone and define a
brand-new word that will initialize your
printer, which I gather is not an Epson. Call
the new word STARCOND, as you Sug-
gested,orGEMINI 1 OX, orwhatever. Putit
anywhere in an empty screen.

You would want code something like
this:

HEX
: GEMINIlOX (--)
15 EMIT ;

(This word puts the Gemini printer into
condensed mode.)

' GEMINIlOX IS INIT-PR
(This re-vectors INIT-PR so it will use
your brand-new definition when it does
SHOW, etc., without having to recompile
your Forth system.)

SAVE-SYSTEM F83G.COM
(The " G is to remind you that this version
will work with your Gemini printer.)

I hope this clears things up. -Frank

In the next "Best of GEnie" column, we
will look at how ForthNet has grown since
its first faltering steps a few months ago.

Many of the messages above were posted
to GEnie via ForthNet, thanks in large
meassure to the unflagging efforts of Jerry
Shifiin, sysop of the East Coast Forth
Board.

To suggest an interesting guest, please
leave e-mail posted to GARY-S on GEnie
(gars on Wetware and the Well), or mail me
a note. I encourage anyone with a message
to share to contact me via the above or
through the offices of the Forth Interest
Group.

I

Volume XI, Number 3 35 Forth Dimensions

REFERENCE SECTION

I

Forth Dimensions 36 Volume XI, Number 3

George Shaw
Shaw Laboratories
P.O. Box 347 1
Hayward, CA 94540-3471
4 15-276-5953

David C. Petty
Digitel
125 Cambridge Park Dr.
Cambridge, MA 02140-23 1 1
617-576-4600

Forth Instruction
Los Angeles-Introductory and inter-

mediate three-day intensive courses in
Forth programming are offered monthly by
Laboratory Microsystems. These hands-on
courses are designed for engineers and
programmers who need to become profi-
cient in Forth in the least amount of time.
Telephone 213-306-74 12.

On-Line Resources
To communicate with these systems, set
your modem and communication software
to 300/120012400 baud with eight bits, no
parity, and one stop bit, unless noted other-
wise. GEnie requires local echo.

GEnie
For information, call 800-638-9636

Forth RoundTable (FortWITet link*)
Call GEnie local node, then type M710
or FORTH
S ysOps: Dennis Ruffer (D.RUFFER),
Scott Squires (S .W.SQUIRES),
Leonard Morgenstern (NMORGEN-
STERN), Gary Smith (GARY-S)
MACH2 RoundTable
Type M450 or MACH2
Palo Alto Shipping Company
SysOp: Waymen Askey (D.MILEY)

(Continued on next page,

Forth Interest Group
The Forth Interest Group serves both

expert and novice members with its net-
work of chapters, Forth Dimensions, and
conferences that regularly attract partici-
pants from around the world. For member-
ship information, or to reserve advertising
space, contact the administrative offices:

Forth Interest Group
P.O. Box 8231
San Jose, California 95155
408-277-0668

Board of Directors
Robert Reiling, President (ret. director)
Dennis Ruffer, Vice-president
John D. Hall, Treasurer
Terri Suuon, Secretary
Wil Baden
Jack Brown
Mike Elola
Robert L. Smith

Founding Directors
William Ragsdale
Kim Harris
Dave Boulton
Dave Kilbridge
John James

In Recognition
Recognition is offered annually to a

person who has made an outstanding con-
uibution in support of Forth and the Forth
Interest Group. The individual is nomi-
nated and selected by previous recipients of
the "FIGGY." Each receives an engraved
award, and is named on a plaque in the ad-
ministrative offices.

1979 William Ragsdale
1980 Kim Harris
1981 Dave Kilbridge
1982 Roy Martens

1983 John D. Hall
1984 Robert Reiling
1985 Thea Martin
1986 C.H. Ting
1987 Marlin Ouverson
1988 Dennis Ruffer

ANS Forth
The following members of the ANS

X3J14 Forth Standard Committee are
available to personally carry your propos-
als and concerns to the committee. Please
feel free to call or write to them directly:

Gary Betts
Unisyn
301 Main, penthouse #2
Longmont, CO 80501
303-924-9 193

Mike Nemeth
CSC
10025 LOCUS^ st.
Glenndale, MD 20769
301-286-8313

Andrew Kobziar
NCR Medical Systems Group
950 Danby Rd.
Ithaca, NY 14850
607-273-5310

Elizabeth D. Rather
FORTH, Inc.
11 1 N. Sepulveda Blvd., suite 300
Manhattan Beach, CA 90266
213-372-8493

Charles Keane
Performance Packages, Inc.
515 Fourth Avenue
Watervleit, NY 12189-3703
5 18-274-4774

(Reference Section continued)

BIX (ByteNet)
For information, call 800-227-2983

Forth Conference
Access BIX via TymeNet, then type
j forth I Type FORTH at the : prompt
sysop: Phil Wasson @WASSON)
LMI Conference
Type LMI at the : prompt
Laboratory Microsystems products
Host: Ray Duncan (RDUNCAN)

CompuServe
For information, call 800-848-8990

Creative Solutions Conference
Type !Go FORTH
SysOps: Don Colburn, Zach Zachar-
iah, Ward McFarland, Jon Bryan,
Greg Guerin, John Baxter, John
Jeppson
Computer Language Magazine Con-
ference
Type !Go CLM
SysOps: Jim Kyle, Jeff Brenton, Chip
Rabinowitz. Regina Starr Ridley

Unix BBS's with Forth co@erences
(ForthNet links*)

WELL Forth conference
Access WELL via CompuserveNe
415-332-6106
Fairwimess: Jack Woehr (jax)
Wetware Forth conference
415-753-5265
Fairwimess: Gary Smith (gars)

I
PC Board BBS's devoted to Forth
(ForthNet links*)

East Coast Forth Board
703-442-8695
SysOp: Jerry Schifrin
British Columbia Forth Board
604-434-5886
SysOp: Jack Brown
Real-Time Control Forth Board
303-278-0364
Sysop: Jack Woehr
Melbourne FIG Chapter
Lance Collins
(03) 299-1787 in Australia
61-3-299- 1787 international

(Letters, continued from page 6)

CASE will increment this count:

: CASE (n --)

+CASE
4 S @ = I F ;

Finally, END will do all of the cleanup:

: FORCE (--)
3 S > DROP
1 3 > S ;

: END (--)
FORCE
4 S > DROP
4 S >
0 DO THEN LOOP ;

CASES is no longer needed, as its func-
tion has been absorbed by END.

With these changes. the case statement
can help protect aprogrammer from an
oversight or a miscount. The disadvantages
here are some additional overhead in CASE
and a larger case stack.

Enjoy,
Wes Cowley
P.O. Box 280138
Tampa, Florida 33682-0138
wcowley@dci2wc.das.net or
wes@cup.portal.com

On-line Down Under
Dear Editor,

The Melbourne Chapter of the Forth
Interest Group wishes to acknowledge the
support we have had in keeping our chapter
going and in setting up our bulletin board.

We wish to thank Robert Reiling for his
encouragement and help in obtaining an
early copy of F-PC for us, and some other
Forth software to start our board with last

We want the Forth community to know
that their efforts are greatly appreciated
here.
Yours faithfully,
Lance Collins, Secretary
Melbourne Chapter

(Editorial, continued from page 4)

Some Forth notables are scheduled to
appear at the Embedded Systems Confer-
ence in San Francisco on September 26-29.
FORTH, Inc. will be joining a respectable
exhibit floor with the likes of Advanced
Micro Devices, H-P, Intel, and Tektronix.
And Elizabeth Rather and Ray Duncan,
along with P.J. Plauger and other pundits,
will head intensive workshops during the
event. This will be a fine opportunity for
some cross-pollination, and it would be
hard to find two better proponents of Forth
to speak about embedded systems and real-
time programming.

Year-
We particularly thank Jerry Shifrin for

his initial donation of files, which really
gave our members something to think
about. Recently, we have had another large
batch of files from Jerry, which makes our
board a major resource for Forth people
here.

See your lawyer for details:
Some of our readers are consultants, at

least part of the time, and some of them use
consultants. A decision reached by theU.S.
Supreme Court early this summer affects
both groups by saying that freelance artists
and consultants hold the copyright to all of
their work unless a specific contract is
made with their employer. This means that
the consultant who writes that code might
also own the rights to license and upgrade
it.

The court's ruling may offer some pro-
tection to independent contractors, who
often have liule collection clout after they
have turned in their work, but at the same
time may make it scarier for companies to
use them. Some fall into the habit of work-
ing without a written contract, but this
decision provides motivation to'put down
in black and white exactly who is buying
what from whom. It gives more reason than
ever to be clear about work-for-hire and the
distinctions between an employee and a
consultant. (Source: Sun Jose Business
Journal 7-17-89)

-Marlin Ouverson
Editor

Volume XI. Number 3 37 Forth Dimensiom

FIG
CHAPTERS

The FIG Chapters listed below
are currently registered as active
with regular meetings. If your
chapter listing is missing or incor-
rect, please contact Kent Safford at
the FIG office's Chapter Desk.
This listing will be updated in each
issue of Forth Dimemiom. If you
would like to begin a FIG Chapter
in your area, write for a "Chapter
Kit and Application." Forth Inter-
est Group, P.O. Box 8231, San
Jose, California 95155

U.S.A.
ALABAMA
Huntsville Chapter
Tom Konantz
(205) 88 1-6483

ALASKA
Kodiak Area Chapter
Ric Shepard
Box 1344
Kodiak, Alaska 99615

ARIZONA
Phoenix Chapter
4th Thurs., 7:30 p.m.
Arizona State Univ.
Memorial Union. 2nd floor
Dennis L. Wilson
(602) 381-1146

ARKANSAS
Central Arkansas Chapter
Little Rock
2nd Sat.. 2 p.m. &
4th Wed., 7 p.m.
Jungkind Photo. 12th & Main
Gary Smith (501) 227-7817

CALIFORNIA
Los Angeles Chapter
4th Sat., 10 a.m.
Hawthorne Public Library
12700 S. Grevillea Ave.
Phillip Wasson
(213) 649-1428

North Bay Chapter
2nd Sat.. 10 am. Forth, A1
12 Noon Tutorial, 1 p.m. Forth
South Berkeley Public Library
George Shaw (415) 276-5953

Orange County Chapter
4th Wed., 7 p.m.
Fullerton Savings
Huntington Beach
Noshir Jesung (714) 842-3032

Sacramento Chapter
4th Wed.. 7 p.m.
1708-59th St.. Room A
Tom Ghormley
(916) 444-7775

San Diego Chapter
Thursdays. 12 Noon
Guy Kelly (619) 454-1307

Silicon Valley Chapter
4th Sat, 10 a.m.
H-P Cupertino
Bob Ban (408) 435-1616

Stockton Chapter
Doug Dillon (209) 93 1-2448

COLORADO
Denver Chapter
1st Mon., 7 p.m.
Clifford King (303) 693-3413

CONNECTICUT
Central Connecticut Chapter
Charles Krajewski
(203) 344-9996

FLORIDA
Orlando Chapter
Every other Wed.. 8 p.m.
Herman B. Gibson
(305) 8554790

Southeast Florida Chapter
Coconut Grove Area
John Forsbkg (305) 252-0108

Tampa Bay Chapter
1st Wed., 7:30 p.m.
Teny McNay (813) 725-1245

GEORGIA
Atlanta Chapter
3rd Tues.. 6:30 p.m.
Western Sizzlen. Doraville
Nick Hennenfent
(404) 393-3010

ILLINOIS
Cache Forth Chapter
Oak Park
Clyde W. Phillips. Jr.
(312) 386-3147

Central Illinois Chapter
Champaign
Robert Illyes (217) 359-6039

INDIANA
Fort Wayne Chapter
2nd Tues.. 7 p.m.
I/P Univ. Campus, B71 Neff
Hall
Blair MacDermid
(219) 749-2042

IOWA
Central Iowa FIG Chapter
1st Tues.. 7:30 p.m.
Iowa State Univ.. 214 Comp.
Sci.
Rodrick Eldridge
(515) 294-5659

Fairfield FIG Chapter
4th Day. 8: 15 p.m.
Curdy Leete (5 15) 472-7077

MARYLAND
MDFIG
Michael Nemeth
(301) 262-8140

MASSACHUSETTS
Boston Chapter
3rd Wed.. 7 p.m.
Honeywell
300 Concord, Billerica
Gary Chanson (617) 527-7206

MICHIGAN
DetroitIAnn Arbor Area
4th T h w .
Tom Chrapkiewicz
(313) 322-7862

MINNESOTA
MNFIG Chapter
Minneapolis
Fred Olson
(612) 588-9532

MISSOURI
Kansas City Chapter
4th Tues., 7 p.m.
Midwest Research Institute
MAG Conference Center
Linus Orth (913) 236-9189

St. Louis Chapter
1st Tues., 7 p.m.
Thomhill Branch Library
Robert Washam
91 Weis Drive
Ellisville, MO 6301 1

NEW JERSEY
New Jersey Chapter
Rutgers Univ., Piscataway
Nicholas Lordi
(201) 338-9363

I
Forth Dimensiom 38 Volume XI, Number 3

NEW MEXICO
Albuquerque Chapter
1st Thurs., 7:30 p.m.
Physics & Astronomy Bldg.
Univ. of New Mexico
Jon Bryan (505) 298-3292

NEW YORK
FIG, New York
2nd Wed., 7:45 p.m.
Manhattan
Ron Martinez (212) 866-1 157

Rochester Chapter
Odd month, 4th Sat., 1 p.m.
Monroe Comm. College
Bldg. 7. Rm.102
Frank Lanzafame
(716) 482-3398

OHIO
Cleveland Chapter
4th Tues., 7 p.m.
Chagrin Falls Library
Gary Bergstrom
(216) 247-2492

Columbus FIG Chapter
4th Tues.
Kal-Kan Foods, Inc.
5 115 Fisher Road
Terry Webb
(614) 878-7241

Dayton Chapter
2nd Tues. & 4th Wed., 6:30
p.m.
CFC. 1 1 W. Monument Ave.
#612
Gary Ganger (513) 849-1483

OREGON
Willamette Valley Chapter
4thTues., 7 p.m.
Linn-Benton Comrn. College
Pann McCuaig (503) 752-51 13

PENNSYLVANIA
Villanova Univ. Chapter
1st Mon., 7:30 p.m.
Villanova University
Dennis Clark
(215) 860-0700

TENNESSEE
East Tennessee Chapter
Oak Ridge
3rd Wed., 7 p.m.
Sci. Appl. Int'l. Corp., 8th F1.
800 Oak Ridge Turnpike
Richard Secrist
(615) 483-7242

TEXAS
Austin Chapter
Matt Lawrence
PO Box 180409
Austin, TX 78718

Dallas Chapter
4th Thurs., 7:30 p.m.
Texas Instruments
13500 N. Central Expwy .
Semiconductor Cafeteria
Conference Room A
Clif Penn (214) 995-2361

Houston Chapter
3rd Mon., 7:30 p.m.
Houston Area League of PC
users
1200 Post Oak Rd.
(Galleria area)
Russell Harris
(713) 461-1618

VERMONT
Vermont Chapter
Vergennes
3rd Mon., 7:30 p.m.
Vergennes Union High School
RM 210, Monkton Rd.
Hal Clark (802) 453-4442

VIRGINIA
First Forth of Hampton
Roads
William Edmonds
(804) 8984099

Potomac FIG
D.C. & Northern Virginia
1st Tues.
Lee Recreation Center
5722 Lee Hwy., Arlington
Joseph Brown
(703) 47 1-4409
E. Coast Forth Board
(703) 442-8695

Richmond Forth Group
2nd Wed., 7 p.m.
154 Business School
Univ. of Richmond
Donald A. Full

WISCONSIN
Lake Superior Chapter
2nd Fri., 7:30 p.m.
1219 N. 21st St., Superior
Allen Anway (715) 394-4061

INTERNATIONAL
AUSTRALIA
Melbourne Chapter
1st Fri., 8 p.m.
Lance Collins
65 Martin Road
Glen Iris. Victoria 3 146
03/29-2600
BBS: 61 3 299 1787

Sydney Chapter
2nd Fri., 7 p.m.
John Goodsell Bldg., RM
LC19
Univ. of New South Wales
Peter Tregeagle
10 Binda Rd.
Yowie Bay 2228
021524-7490
Usenet
ted@usage.csd.unsw.oz

BELGIUM
Belgium Chapter
4th Wed.. 8 p.m.
Luk Van Loock
Lariksdreff 20
2120 Schoten
031658-6343

Southern Belgium Chapter
Jean-Marc Bertinchamps
Rue N. Monnom, 2
B-6290 Nalinnes
0711213858

CANADA
BC FIG
1st Thurs., 7:30 p.m.
BCIT, 3700 Willingdon Ave.
BBY, Rm. 1A-324
Jack W. Brown (604) 596-
9764
BBS (604) 434-5886

Northern Alberta Chapter
4th Sat., loam.-noon
N. Alta Inst. of Tech.
Tony Van Muyden
(403) 486-6666 (days)
(403) 962-2203 (eves.)

Southern Ontario Chapter
Quarterly, 1st Sat., Mar., Jun.,
Sep., Dec., 2 p.m.
Genl. Sci. Bldg., RM 212
McMaster University
Dr. N. Solntseff
(416) 525-9140 x3443

Toronto Chapter
John Clark Smith
PO Box 230, Station H
Toronto. ON M4C 512

ENGLAND
Forth Interest Group-UK
London
1st Thurs., 7 p.m.
Polytechnic of South Bank
RM 408
Borough Rd.
D.J. Neale
58 Woodland Way
Morden, Surry SM4 4DS

FINLAND
FinFIG
Janne Kotiranta
Arkkitehdiiatu 38 c 39
33720 Tampere
+358-31-184246

HOLLAND
Holland Chapter
Vic Van de Zande
Finmark 7
3831 JE Leusden

ITALY
FIG Italia
Marco Tausel
Via Gerolamo Forni 48
20161 Milano
021435249

JAPAN
Japan Chapter
Toshi Inoue
Dept. of Mineral Dev. Eng.
University of Tokyo
7-3-1 Hongo, Bunkyo 113
812-21 11 x7073

NORWAY
Bergen Chapter
Kjell Birger Faeraas,
47-5 18-7784

REPUBLIC OF CHINA
R.O.C. Chapter
Chin-Fu Liu
5F, #lo, Alley 5, Lane 107
Fu-Hsin S. Rd. Sec. 1
Taipei, Taiwan 10639

SWEDEN
SweFIG
Per Alrn
46/8-92963 1

SWITZERLAND
Swiss Chapter
Max Hugelshofer
Industrieberatung
Ziberstrasse 6
8152 Opfiion
01 810 9289

SPECIAL GROUPS
NC4000 Users Group
John Carpenter
1698 Villa S t
Mountain View, CA 94041
(415) 960-1256 (eves.)

Volume XI, Number 3 39 Forth Dimensions

FORML CONFERENCE
The original technical conference

for professional Forth programmers, managers, vendors, and users.

Following Thanksgiving, November 24-26, 1989

Asilomar Conference Center
Monterey Peninsula overlooking the Pacific Ocean

Pacific Grove, California U. S .A.

Forth and Object-Oriented Programming
Papers are invited that address relevant issues in the development of object-oriented programming
and object-oriented applications. Data structures to support object-oriented program development
are readily constructed in Forth. These structures may be reused which increases productivity
when new applications are developed. Papers about other Forth topics are also welcome.

Mail your abstract(s) of 100 words or less to FORML Conference, Forth Interest Group, P.O.
Box 8231, San Jose, CA 95155.

Completed papers are due November 1,1989.

Conference Registration
Registration fee for conference attendees includes conference registration, coffee breaks, and note-book of papers sub-
mitted, and for everyone rooms Friday and Saturday, all meals including lunch Friday through lunch Sunday, wine and
cheese parties Friday and Saturday nights, and use of Asilomar facilities.

Conference attendee in double mom-4285 Non-conference guest in same room-4150 Children under 17 in same
room-4100 Infants under 2 years old in same room-free Conference attendee in single room-4335

Register by calling the Forth Interest Group business office at (408) 277-0668 or writing to: FORML Conference,
Forth Interest Group, P.O. Box 8231, San Jose, CA 95155.

Forth Interest Group
P.O.Box 823 1
San Jose, CA 95155

Second Class
Postage Paid at
San Jose, CA

